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Once in a while you get shown the light
in the strangest of places if you look at it right.
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Popular summary

Playing is fundamental for the development of a child into a, hopefully, func-
tioning adult. Social skills may be acquired by arguing over the swings, and
hand-eye coordination can be developed by throwing snowballs. Similarly, ul-
tracold atoms and few-body physics can provide a simple environment where
physicists can play with ideas and theories in a controlled fashion.

To describe physics in an efficient way, mathematics is almost exclusively the
preferred language. Mathematics allows us to generalize a problem or a question
so that for example 7+7 = 14 both can describe how many apples ”Mark” gets,
and how many days there are in two weeks. Of course, there are countless
examples of this.

The fact that we can use a similar set of mathematical tools to describe lots
of different areas in physics has created many examples where two seemingly
distinct theories turn out to be connected. This thesis concerns studies where
well-known physical effects and concepts can be linked to models that describe
only a few atoms.

Most of the particles around us are small parts of large ensembles that together
make up stuff like metals, gases, or ice cubes. Such things can be broken down
into smaller components, but it is in general hopeless to try to predict the motion
of a single atom in, for example, a gas. We can compare this to making a survey
of some general political opinions in a country; using a statistical treatment of
the citizens can give us insight into the overall mood of the country, but not the
personal views of one person on the street. In a statistical model for, let us say a
metal, particles are parts of statistical ensembles with collective properties such
as temperature or pressure. The large-scale (macroscopic) effects in a material
with millions of atoms will, in general, require some statistical model, whereas
the short-scale (microscopic) behavior of individual systems with only a few
particles can be investigated more directly, and with more details.

Quantum mechanics and ultracold systems

To perform experiments and measurements on microscopic systems with a high
level of detail, it is often crucial that one can cool down the surroundings to
extremely low temperatures, close to zero Kelvin. For such (ultracold) temper-
atures it is much easier to understand the behavior of a system on the micro-
scopic scale. We can imagine a box with a number of atoms in it. When the
temperature is high, the particles bounce around and travel at different speed
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in all directions, and it is, therefore, hard to predict the motion of single atoms.
If the temperature is extremely low, however, one can say that the atoms move
more slowly and more predictably, and it is, in general, easier to exercise control
over the system. In ultracold, or cold-atom, systems it is often possible to dir-
ectly control certain properties of the atoms, like for example how they interact.
By modifying the interactions and other parameters, we can build artificial sys-
tems that resemble naturally occurring materials, like for example magnets. In
this way, ultracold systems are easy to work with and are perhaps the ultimate
”physicist’s playground.”

To accurately describe happenings in the microscopic world, which is inhabited
by things like atoms and electrons, we generally use the language of quantum
mechanics. It is rare to observe any direct examples of quantum mechanical
behavior with our own eyes, even though we know it is a fundamental tool in
describing the fabric of the universe. From the perspective of our daily life,
this is probably a good thing, since it would be confusing if things behaved
according to quantum mechanics. In the microscopic quantum world, objects
can, for example, be at different places at the same time and go through walls
and barriers - things that do not happen to us macroscopic beings.

Quantum mechanics provides an excellent tool for physicists to describe phys-
ics on the microscopic scale. It allows us to formulate detailed equations for
particles and their interactions, and to successfully predict the outcomes of ex-
periments based on the solutions of these equations.

From a few atoms to millions of atoms

In theoretical physics, going from a microscopic quantum model of a small in-
teracting system, like a molecule, to a larger interacting system, like a gas of
atoms, is not a trivial task. We may have a deep understanding of a small ul-
tracold system in terms of highly detailed quantum equations, and in principle,
one could often use similar equations for much larger systems, with millions
of atoms. For a small system with only a few interacting atoms the equations
can actually be solved, and we can then extract measurable quantities from the
solutions. The same can not be said for a detailed quantum description of a
large interacting system. In fact, a detailed quantum equation for a handful
of interacting particles could take today’s fastest computers several weeks to
solve. Compare this to the task of sorting a phone book, containing all people
in Sweden, in order of increasing number, which would take a standard laptop
less than a second.
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Here lies one of the core challenges in modern physics - how can we understand
physical behavior for an ultracold system with large numbers of interacting
particles in terms of quantum models at the microscopic level? In general, the
solution is to greatly simplify the quantum-mechanical model of particles so
that the equations become solvable. Another way to go is to keep the highly
detailed description of particles in a system but to actually only consider very
few particles. That is, of course, an enormous simplification if the end goal is
to, for example, simulate and study magnetic behavior in a lump of metal that
contains trillions and trillions of atoms. The situation is however not hopeless
since clever minds over history have managed to characterize what a magnet is
and how it works in terms of relatively simple models. Many of these models
can be applied more or less directly to describe some behavior of an ultracold
system. Armed with the predictions of a simpler, large-scale model, one can
search for some reminiscent behavior in a few-body system, which then can be
identified as a precursor of some physical effect that is present in the larger
system.

In this thesis, a number of different few-particle quantum systems are investig-
ated. We set up equations to determine the microscopic nature of the particles
and develop methods for solving them using computers, here with a special focus
on details that are important for systems with larger numbers of particles.

A specific example - Higgs particles in few-body systems

Thanks to the relatively recent experiments at CERN, we now believe that
Higgs particles are everywhere present in the universe and that they constitute
the proof of the Higgs mechanism, which gives all particles their mass. Higgs
particles themselves are bi-products of this mechanism. One of the fascinating
aspects of the Higgs mechanism is that the building-blocks of the theory come
from a different branch of physics: the field of condensed matter. Years be-
fore the Higgs mechanism was invented, people found rather similar theories to
explain the behavior of, for example, superconductors. It turns out that one
particular theory for ultracold gases actually has the same building blocks as
the theory for the Higgs particle. Here, we study this particular case of an ul-
tracold gas, but for very few particles. By selecting and using a set of known
properties of the Higgs particle in the macroscopic gas, we can show that the
few-particle system indeed exhibits some of the distinct properties associated
with Higgs particle. Our work highlights a theoretical connection between a
few-particle ultracold system and the Higgs particle. Furthermore, we suggest
an experimental setup in which to measure the properties of this system.
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Populärvetenskaplig sammanfattning p̊a svenska

Många människor är av den klara uppfattningen att lek är enormt viktigt för
ett barns utveckling. Under ett br̊ak om vem som ska ha den bästa gungan
tränar barn sin sociala förm̊aga, och genom att kasta snöboll förbättrar barnet
sin motorik. P̊a ett liknande sätt kan ultrakalla atomer fungera som en lekplats
för fysiker, där komplicerade teorier och fysikaliska kuriositeter kan undersökas
i en enkel och kontrollerad miljö.

För att beskriva fysik används matematik. Matematik till̊ater oss att generali-
sera problem och fr̊agor p̊a ett tydligt sätt. Till exempel kan 7 + 7 = 14 kan
användas för att beskriva hur m̊anga äpplen ”Åke” har f̊att, men ocks̊a för
att beskriva hur m̊anga dagar som g̊ar p̊a tv̊a veckor. P̊a liknande sätt kan vi
använda samma matematiska verktyg för att beskriva m̊anga olika omr̊aden in-
om fysiken. S̊adana likheter har g̊ang p̊a g̊ang genom historien visat p̊a hur skilda
koncept inom fysiken kan vara besläktade. I denna avhandlingen kommer vi att
se exempel p̊a hur kända fysikaliska koncept kan undersökas genom att titta
p̊a sm̊a, enkla system. Vi studerar dessa (f̊apartikel) system för att avgöra om
de uppvisar beteende som är nära besläktat med större och mer komplicerade
system.

De partiklar som bygger universum, och som vi alla omges av, är i regel delar
av större sammanhang. Partiklar utgör ofta mindre delar av stora statistiska
”ensemblar” av partilkar, s̊asom metaller, gaser, eller isblock. I viss m̊an g̊ar
det att studera enskilda partiklar inom fysiken, men det är ofta mycket sv̊art
att förutsäga exakt hur en enskild atom rör sig i en metall. Man kan jämföra
med politiska opinionsundersökningar, vilka effektivt kan beskriva det allmänna
politiska klimatet i ett land, men inte kan förutsäga exakt hur Åke Gustavs-
son (53 år) i Falköping ska rösta. I en statistisk modell av, till exemplel, en
metall är partiklarna p̊a samma sätt delar av ett större sammanhang, och de-
ras kollektiva egenskaper beskrivs enklast med koncept s̊asom temperatur eller
elektrisk resistans. Man kan enkelt säga att storskaliga (makroskopiska) effekter
hos material med miljontals atomer ofta kräver en förenklad, statistisk modell,
medan sm̊askaliga (mikroskopiska) effekter hos ett f̊atal atomer kan beskrivas p̊a
ett mer direkt sätt. Det är kanske möjligt att författa en uttömmande bokserie
om Åke och hans familj för att förklara hans politiska ställningstaganden, men
sv̊art att göra detsamma för alla personer i Sverige och samtidigt presentera en
allmän bild om det politiska läget.
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Kvantmekanik och ultrakalla system

Många av de mest intressanta experimenten inom ämnet fysik sker idag vid s̊a
kallade ultrakalla temperaturer. Ultrakalla temperaturer innebär att ett system
är nedkylt till endast n̊agra f̊a nanokelvin (10−9) över absoluta nollpunkten
T0 ≈ −273.15◦ Celsius. Vid dessa temperaturer är det ofta enklare att först̊a
och renodla fysikaliska processer. Man kan föreställa sig en l̊ada inneh̊allande en
gas av atomer. Vid höga temperaturer far atomerna runt och studsar i ett enda
virrvarr, och det är därför mycket sv̊art att förutsäga hur en enskild atom rör
sig. Vid l̊aga temperaturer rör sig däremot atomerna l̊angsammare och p̊a ett
mer förutsägbart sätt, vilket kan göra det lättare att studera, eller till och med
att styra dem, p̊a detaljniv̊a. Vid ultrakalla temperaturer är det ofta möjligt
att kontrollera viktiga egenskaper hos en gas, som till exempel interaktionen
mellan dess atomer. Det är därför möjligt att bygga artificiella system som liknar
naturliga material, (som till exempel magneter eller molekyler), och därigenom
studera dem.

För att korrekt beskriva vad som händer i den mikroskopiska världen, som be-
folkas av atomer och elektroner, används i regel kvantmekanik. Kort sagt är
kvantmekanik ett spr̊ak som förklarar hur den mikroskopiska världen beter sig.
Ett s̊adant spr̊ak är helt nödvändigt eftersom det i denna värld sker saker som
annars är sv̊ara att formulera och beskriva. I kvantmekanikens värld kan par-
tiklar till exempel ”vara p̊a olika platser samtidigt”, eller färdas rakt igenom
väggar”; saker som är omöjliga i v̊ar vanliga värld. Vi kan genom kvantmeka-
nikens spr̊ak formulera fr̊ageställningar och svar för hur mikroskopiska system
beter sig. P̊a samma sätt som vi kan förutsäga solförmörkelser genom att ställa
upp formler och ekvationer för himlakroppars rörelse, kan vi förutsäga partiklars
beteende genom att formulera ekvationer och sedan lösa dem. Ett exempel p̊a
en ekvation inom kvantmekaniken är den berömda Schrödingerekvationen.

Fr̊an en handfull till miljoner atomer

Att beskriva ett litet system med ett f̊atal atomer som interagerar, exempelvis
genom att krocka med varandra, är relativt enkelt. Till exempel är det mycket
väl möjligt att i detalj förutsäga mycket om hur en vätemolekyl, best̊aende av
tv̊a atomer, kommer att bete sig. Att däremot beskriva en miljon krockande
atomer är en stor utmaning. Det är ofta möjligt att formulera en ekvation som
indirekt beskriver alla atomers rörelse, även om det rör sig om miljoner ato-
mer. Problemet är dock att lösa ekvationen. För ett f̊atal atomer är detta ofta
möjligt, till exempel med hjälp av datorer, även om det kräver mycket arbe-
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te. En detaljerad ekvation som beskriver en handfull atomer kan till exempel
ta dagens snabbaste datorer flera veckor att lösa. Jämför detta med uppgiften
att sortera en vanlig telefonkatalog i nummerordning istället för namnordning.
Även om telefonkatalogen inneh̊aller alla personer i hela Sverige skulle detta ta
mindre än en sekund för en vanlig bärbar dator.

Detta visar p̊a en av de stora utmaningarna inom modern fysik. Hur kan vi be-
skriva ultrakalla system med miljontals atomer utifr̊an detaljerade beskrivningar
av de enskilda atomerna? Ofta ligger lösningen i att förenkla ekvationerna ge-
nom att slänga bort oviktiga delar av de detaljerade beskrivningarna. En annan
lösning är att istället beh̊alla alla detaljer, men att faktiskt bara studera ett
f̊atal atomer. Detta är s̊aklart en stor förenkling om m̊alet i slutändan är att,
till exempel, beskriva magnetism för en miljon ultrakalla atomer. Situationen
är dock inte hopplös, eftersom det faktiskt finns flera mer eller mindre enkla
teorier om hur magnetism fungerar. Ofta kan teorierna direkt användas till att
beskriva de ultrakalla systemen, och därigenom göra enklare förutsägelser för
hur de beter sig. Vi kan d̊a luta oss mot dessa förutsägelser och leta efter tecken
p̊a samma beteende i de detaljerade, sm̊a, systemen. Vi kan därigenom skapa
en bryggamellan de detaljerade modellerna (som fungerar för f̊a partiklar) och
de enklare modellerna (som fungerar för m̊anga partiklar).

I denna avhandling undersöker vi en rad olika fysikaliska effekter genom att simu-
lera dem med sm̊a f̊apartikel system”. Vi formulerar detaljerade ekvationer för
en rad olika system, och utvecklar parallellt metoder för att lösa dessa med hjälp
av datorer. Vi fokuserar främst p̊a att utveckla ekvationer och lösningsmetoder
som kan användas för att studera fysikaliska processer som uppkommer i system
med ett större antal partiklar.

Ett exempel. Higgspartikel i system med ett f̊atal atomer

Tack vare de uppmärksammade experimenten p̊a partikelacceleratorn CERN
är det nu mycket troligt att Higgspartiklar faktiskt existerar. Dessa partiklar
bekräftar teorin om Higgsmekanismen, vilken förklarar hur alla partiklar i uni-
versum f̊ar sin massa. Higgspartiklarna själva kan sägas vara en biprodukt av
Higgsmekanismen.

En av de mest intressanta aspekterna av partikelfysikens Higgsmekanism är att
dess teoretiska byggstenar faktiskt kommer fr̊an ett helt annat fält inom fysi-
ken, nämligen kondenserad materia. Flera år innan teorin för Higgsmekanismen
formulerades arbetade folk p̊a liknande teorier för att förklara hur, till exem-
pel, supraledare fungerade. Det visar sig att särskilt en modell, vilken används
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för att beskriva vissa typer av ultrakalla atomgaser, har m̊anga likheter med
Higgspartikeln själv. Vi nudersöker här en modell för denna speciella typ av
gas, fast med endast ett f̊atal atomer, för att se om den uppvisar n̊agra tec-
ken p̊a de egenskaper som vi associerar med Higgspartikeln. Genom att lösa
Schrödingerekvationen för detta artificiella system kan vi p̊avisa en rad likhe-
ter mellan Higgspartikeln och v̊ar modell. Därför tror vi oss ha identifierat ett
förstadium till en Higgspartikel i ett system med f̊a atomer. Vi visar även hur
det med dagens tillgängliga experiment är möjligt att direkt mäta egenskaperna
hos detta förstadium till Higgspartikeln.
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Introduction

1 Ultracold atoms and few-body systems

The research field of ultracold atoms is today very active both within experi-
mental and theoretical physics. In principle, the cooling of atomic gases is a way
to exercise control over happenings in the microscopic world. Much like when
taming a wild animal, we need control to understand and harness the complex
nature of the beast, or in this case the atoms.

A dilute gas of atoms or molecules can be cooled down to extremely low (ul-
tracold) temperatures, typically lower than a few microkelvins (µK) where
particles essentially have no thermal motion [1–5]. Such systems allow for the
study of coherent macroscopic many-body states, in which a large number of
particles share the same quantum-mechanical state, and might, therefore, ex-
hibit quantum interference effects. The perhaps most well known example of
such a state is the atomic Bose-Einstein condensate [6, 7], which was first real-
ized in 1995 [1, 8, 9].

Coherent many-body states of macroscopic matter are typically associated with
concepts such as superconductivity, known from the field of condensed mat-
ter which dates back to Ginzburg and Landau [10]. These types of systems
may exhibit exotic many-body behavior, such as, for example, superfluidity and
quantized vortices, see e.g. [11–14], arising from statistics of the constituent
particles and the interactions amongst them.

In particular, ultracold systems with short-range interactions between particles
is a well-studied topic. For ultracold systems, the van der Waals forces between
two atoms can be approximated by considering only the lowest order of an-
gular momentum l in their relative motion, see for example [15]. For l = 0
(s-wave scattering), the low-energy scattering is spherically symmetric and can
be approximated with Fermi’s contact pseudopotential [16, 17]. Short-range in-
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teractions can dramatically influence the properties of an ultracold system and
have given rise to a plethora of intriguing many-body effects. For a review see
e.g. [15, 18].

However, different types of interactions can be considered. In an ultracold gas of
dipolar atoms or molecules, dipole-dipole interactions may have striking effects
on the physical properties of the system. This type of interaction is, in contrast
to s-wave scattering, long-range and anisotropic, and can give rise to complex
correlations between particles and additional experimental parameters, such as
the dipole’s alignment relative to a trapping potential [19, 20].

An ultracold system can be made very pure and free from imperfections, and it
can also be kept trapped and isolated from the surrounding environment until
measured upon. This isolation allows for a high degree of control where, for
example, the scattering properties of atoms may be tuned via so-called Feshbach
resonances, see e.g. [21, 22] for a general background and [23, 24] for cold-atom
implementations. In cold-atom experiments the effective dimensionality of the
system can also be designed experimentally, see for example [15, 18, 25].

When building a model for an ultracold system, it is in many cases possible to
write down highly accurate, but relatively straightforward, microscopic equa-
tions in terms of only a few parameters which correctly describe the particles
and their interactions. This high degree of control manifests a strong connection
between experiments and theory, where simple quantum mechanical models are
employed to make predictions of the physical features in a system, and where
experiments often can directly test predictions. Furthermore, if we can solve
the equations for a range of values for the fundamental parameters, we may
also predict new phenomena in a larger set of systems, simply by tuning the
parameters. It is possible to compare distinct but closely related systems - for
example, two different atomic ultracold gases with similar scattering properties,
but with different atomic masses. We may also answer hypothetical questions
like; ”What would happen if the atoms in this gas were subject to interactions
that are not spherically symmetric?”. For a review on ultracold many-body
systems, see for example [15, 19, 20].

Cold-atom few-particle systems with tunable interactions are especially valuable
since they allow for a highly detailed description of the microscopic physics, but
yield equations that are possible to solve. For a trapped ultracold system of
fermions, it is now possible to deterministically prepare and measure on states
with only one to ten interacting particles [26, 27]. This possibility has opened
up a new area of research in which solvable interacting few-body systems can
be directly investigated in experiments. By directly accessing the observables
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of a few-body system in this way, it is possible to gain deeper insight into
the microscopic physics and hopefully understand how macroscopic interaction
effects develop with increasing particle number, both in theory and experiments.

At ultracold temperatures, particles go into the lowest energy state, or ground
state, of the system and consequently many of the measurable features of the
gas crucially depend on the nature of this ground state. However, many prop-
erties of a quantum-mechanical system are also determined by the nature of its
excited states especially in cases where the system responds to external per-
turbations. This thesis concerns quantum-mechanical simulations of ultracold
few-body systems with interactions, both in their ground state and in excited
states.

The starting point for all the studies here is the formulation of a few-particle
Hamiltonian and the time-independent Schrödinger equation for the eigenvalues
and eigenstates

Ĥ|ψ〉 = E|ψ〉.
To begin with, the Hamiltonian Ĥ should include all relevant physics and char-
acteristics of some basic model, such that interesting emergent phenomena are
reproduced in the correct limits. Secondly, it should represent a microscopic
few-body system that is numerically solvable to high precision, at least in the
limit of very few particles. Finally, it should be a microscopic representation of
an experimentally realizable system, so that the predictions can be tested.

In short, we deal with physics that in different ways manifest itself in simple
few-particle model Hamiltonians. Some examples of the few-body systems in
question are sketched in Fig. 1. The focus here lies on cases where the solutions
of microscopic few-particle systems can be found using exact diagonalization.
The results are used in predictions for experiments, and also to investigate and
scrutinize phenomenological or less detailed models. In this way, the few-body
systems offer table-top tools for simulation of larger systems and more general
physical effects, which all the projects in this thesis are examples of.
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Figure 1: Sketch of a few different setups used throughout the thesis. The round balls with arrows indicate particles with
either up (+1/2), or down (−1/2) spin. The ovals with cyan arrows indicate dipolar particles with dipole-moment
along the arrows. Upper left: 2D harmonic trap with spin-1/2 particles. Upper right: Quasi-1D Harmonic trap
with spin-1/2 particles. Lower: Two 1D harmonic traps filled with particles with dipole-moments aligned by an
external field, with field-lines indicated by thin, gray lines.

2 Exact diagonalization - an overview of methods

A starting point for investigations of a model Hamiltonian Ĥ is to ask if the
resulting equations can be solved directly or if they are subject to approxima-
tions. We want to solve the Schrödinger equation, which means that we look
for eigenvalues of the Hamiltonian. An exact solution can sometimes be found
analytically, but in general numerical methods are required. One of the most
common methods for numerically solving the Schrödinger equation is exact diag-
onalization. Depending on the particular branch of physics, different names may
be used for this method, like for example configuration interaction in quantum
chemistry and theoretical atomic physics. For a detailed overview of these meth-
ods, see e.g. [28, 29].

In this method, which we from now on call exact diagonalization, a series ex-
pansion over some set of basis states |vi〉 is used to approximate the equations.
An a priori unknown state |ψj〉 is expanded in terms of the basis states and a
set of expansion coefficients ci as

|ψj〉 =
M∑

i=1

ci|vi〉. (1)
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Here M denotes the number of basis states that are used in the expansion. The
exactness of the series expansion approximation crucially depends on the choice
of basis states |vi〉. If the basis states correspond directly to exact solutions of
the original equation, |ψj〉 will naturally be exact. On the other hand, the basis
states might be chosen so that |ψj〉 merely represents an approximation of the
exact solution |ψ̃j〉.

In many cases, it is possible to construct an infinite complete set of basis states
for the Schrödinger equation, such that any exact solution may be expanded in
that basis. In theory, the solutions and the corresponding physical observables
can then be calculated to arbitrary precision. In practice, however, depend-
ing on the choice of basis, a finite (truncated) expansion is often sufficient if
all relevant observables converge with respect to the number of terms in the
series. The projection of the Schrödinger equation onto a finite space leads to
a representation of the Hamiltonian as a finite-size matrix and the solutions
as finite-size vectors. The goal is to diagonalize the matrix to reveal the ei-
genvalues and eigenvectors, which correspond to approximate solutions of the
original equation. We generally look for high precision in the approximations,
but for time-purposes, we naturally want to keep the matrix small and easy to
diagonalize. Here, the selection of basis states again plays a role. By properly
selecting and ordering the basis states, for example by exploiting symmetries in
the Hamiltonian, the form and size of the matrix may be designed to make the
task of diagonalization easier. In many cases a proper exploitation of symmetries
allows us to construct block-diagonal matrices, which significantly reduces the
time required for diagonalization. For an overview of numerical diagonalization
see for example [30].

Figure 2: Sketch of a set of successively larger matrices corresponding to successively larger basis-sizes. Increasing the size
of the basis corresponds to a more accurate representations of the system and a larger set of eigenvalues.

Within this thesis, I present results that are retrieved via many different methods
and techniques to solve this one basic task. For any given project a lot of different
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methods and tricks were tried and tested, and some of them did not turn out
to be successful. It is, however, relevant to briefly summarize some of these
methods, even if all of them are not used for the final results. In fact, the
success or failure of a method often gives deep insight into the system which it
is applied to.

2.1 Cut-off parameters

In most cases, a basis set can be labeled according to one or more relevant
parameters. For example, we can choose to label a basis of 1D plane-wave
functions eip·x in terms of the maximum value of momentum p in the set. (Here
x is the spatial coordinate). The right choice of parameters is therefore often
crucial to achieving convergence in calculations; since the parameters directly
represent the level of detail in which we describe a physical process. Let us
consider a Hamiltonian comprised of two terms

Ĥ = ĤA + γĤB

where γ is a small number. If one has access to a complete set of eigenstates and
eigenvalues for the operator ĤA it is often beneficial to choose a basis comprised
of these states to solve for the complete Hamiltonian Ĥ. A typical choice for
a parameter which defines a set of basis states |vBi 〉 is an upper bound on the
corresponding eigenvalues εBi , such that the basis-set ζ is defined by

|vBi 〉 ∈ ζ if and only if εBi < εcut.

In general, multiple combined cut-off parameters are used in a single simulation,
forming a ”cut-off scheme.” Choosing the correct cut-off scheme requires an
understanding of the basis and the system, but can often significantly improve
convergence in numerical simulations.

2.2 Iterative selection of basis states

Iterative methods of basis selection are used in different areas of physics and
can often help to improve convergence in complex simulations - especially when
a system does not have a known structure, or it changes over time. For imple-
mentations and a more comprehensive overview of the iterative basis selection,
see e.g. [31].

Here, the method consists of an iterative scheme (outlined in Fig. 3) which uses
some operator Ĥ and a complete set F of analytical functions as a reference.
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One starts with some initial guess for a small truncated basis G1 and proceeds
to diagonalize the Hamiltonian within this subspace, retrieving the ground state
|0〉1. Stepping through the elements of G1, all parts in F that couple to G1 via
Ĥ are added to an intermediate set. For each element in the intermediate set,
the overlap with the ground state is calculated. An element is then added to
the basis G1 if the overlap exceeds some cut-off parameter c, which may vary
over the iterations. After adding all new states to G1 we rename it G2 and the
process is repeated until convergence of the relevant observables.

Figure 3: Sketch of the iterative basis selection method. The basis grows successively by including states with sufficient
overlap with the ground state.

2.3 Tailored basis

An alternative to optimizing the selection of basis states from some set of ana-
lytical functions is to optimize the basis states themselves. This may be done
in different ways, for example by diagonalizing the single-particle part of the
Hamiltonian (if it is not already diagonal) and building a new basis from the
eigenstates. Another common method is to define single-particle functions on
a spatial grid and optimize them using the Hartree-Fock method, see e.g. [32]
for applications in atomic physics. Recently, a multi configuration Hartree-Fock
approach has been successfully applied for ultracold atoms [33].

One of the most commonly used methods for exact diagonalization is to employ
the B-spline basis, also discussed in section 7. B–splines are piece-wise polyno-
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mials which may be defined through recursive relations [34]. In principle, the
single-particle basis can then be adapted to a given problem by defining spatial
regions which are described with a high level of detail. Therefore, an intuitive
understanding of a system in terms of spatial properties can be transferred dir-
ectly into the B-spline basis, which in most cases proves to be a very effective
choice, for a review see e.g. [35].

Other choices of tailored basis functions include for example correlated Gaussian
functions, for a review see e.g. [36, 37], and Jastrow-type wavefunctions [38, 39],
for a review see e.g. [40].

2.4 Approximated and modified operators

In many cases, the form of the Hamiltonian proves to be a problem that cannot
be solved by optimizing the basis. In these cases, the only remedy is often
to eliminate parts of the Hamiltonian that are known to cause problems. The
hope is to capture the necessary features in the initial model but to remove or
regularize parts in the Hamiltonian representation in a way that can be justified.
The numerical limitations may enter already in the setup of a problem so that
the choice of, for example, a pseudopotential is motivated both by physical
accuracy and by numerical stability.

Figure 4: Sketch of a frozen-core 2D harmonic oscillator with two-component fermion system. The pseudopotential allows
for excitations from the highest occupied shell, but not from the ”frozen” core shells.

One example is the frozen-core model, well known in nuclear physics (see
e.g. [41]), for a filled-shell 2D harmonic oscillator with interacting fermions,
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which is discussed in relation to Higgs modes in section 6.6. Here we choose
a delta function δ(x1 − x2), where xi denotes spatial position of particle i, to
represent the interaction in 2D. The pseudopotential is however also subject to
the approximation that excitations from shells below the Fermi level are forbid-
den (the core-shells are frozen). In effect, this gives a more sparse Hamiltonian
matrix that is easier to diagonalize. The approximation can be implemented by
imposing conditions on the second-quantized form of the Hamiltonian, and it
can be shown to give a good approximation of the exact system in the limit of
weak interaction.

3 Short-range interacting gases in one dimension
– an introduction to Tonks-Girardeau states

This section gives a brief introduction to 1D systems with short-range interac-
tions, and in particular to Tonks-Girardeau states and super Tonks-Girardeau
states, which are central in papers ii-iv. For a more detailed overview of
Tonks-Girardeau states and 1D systems with short-range interaction, see for
example [42].

Let us first focus on an effective 1D system with short-range s-wave scattering.
Cold atoms with strong short-range interaction confined in 1D quantum wire
geometries have been achieved using deep optical lattices [43–45]. Let us con-
sider atoms with mass m trapped in a 1D harmonic wire with oscillator length
l⊥ =

√
~/mω⊥, where ω⊥ is the radial frequency of the trap. Here, the low-

energy s-wave scattering between atoms, with spatial coordinates z1 and z2, can
be represented by an effective 1D delta pseudopotential as

V (z) = g1Dδ(z1 − z2). (2)

This potential is obtained from Fermi’s 3D contact pseudopotential for s-wave
scattering [16, 17], where the scattering amplitude is specified by the 3D scat-
tering length a3D. In the effective 1D model the interaction strength g1D can
be given in terms of the 3D scattering length a3D as g1D = 2~ω⊥a3D/(1 −
C · a3D/l⊥), with the numerical constant C = 1.034 [46]. By changing a3D,
for example with Feshbach resonances, g1D can thus be changed to both pos-
itive and negative values with a so-called confined-induced resonance (CIR) at
l⊥ = C · a3D [15, 46]. In the following, we can, therefore, treat the interaction
strength as a tunable parameter in effective 1D models.
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3.1 Tonks-Girardeau states

The concept of Tonks-Girardeau (TG) states was first described by Girardeau
in 1960 [47], who showed that in 1D, the wavefunction for a set of bosons with
impenetrable cores could be one-to-one mapped to that of spinless fermions.
An impenetrable core means that two particles cannot be found at the same
position, a boundary condition that can be said to mimic the Pauli exclusion
principle between spinless fermions [47]. The impenetrable core boundary con-
dition can be realized by an infinitely strong, 1/g1D → 0, effective 1D contact
pseudopotential, see for example [48–51]. By using Feshbach resonances and
CIRs, TG states have in this way been realized experimentally, see e.g. [43, 44].
The significance of TG states has been highlighted in papers on effective models
applied to trapped few-body 1D ultracold atoms (see paper ii and [52]). One
important aspect of TG states, which is exploited in these models, is that in the
unitary limit, 1/g1D → 0, the configuration space of a few-particle state splits
into several distinct sectors [53].

In a TG state, the absolute value of the many-body wave function is reduced
to that of non-interacting spinless fermions. This is known as fermionization
of particles, a word that comes from the fact the many of the properties and
observables of the bosonic 1D gas are similar to that of a fermionic gas. There
are however some significant differences between a fermionized gas and a true
fermionic gas, like for example the momentum distribution which is rather dif-
ferent in the two cases, see e.g. [47, 48, 50]. For the momentum distributions to
also become identical, the particles must enter the localized regime where there
is no overlap between the wave packets of the individual particles in the system.
The localization cannot be achieved by a zero-range potential such as the delta
function but requires a long-range interaction like, for example, the dipole-dipole
interaction which has been seen to give rise to a few-body precursor of a Wigner
localized state [54].

Fermionization has been studied for a number of different 1D systems with
strong short-range interactions, where the wavefunction of the interacting
particles can be mapped onto that of spinless fermions. It occurs for both
bosons, different-spin fermions, and for distinguishable particles, see for ex-
ample [47, 49, 55–58] and paper iv.

A TG many-body state has a spatial separation between the constituent particles,
which avoid each other due to repulsion, and is sometimes referred to as a
”gaseous” state. When the repulsive interaction in a 1D system is infinitely
strong, the probability of finding two particles at the same position is zero in
states with finite energy. For a contact-interacting set of particles, this means
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that the states become insensitive to changes in the interaction strength in this
limit and appear as horizontal lines in spectra plotted for varying interactions.
In a homogeneous system, this means that the energy per particle is purely kin-
etic [15, 43]. The formation of a TG gas has also been investigated for two-body
bound complexes, known as dimers. A system with attractive spin-1/2 fermi-
ons can evolve into a superfluid of bound complexes which behave as bosonic
particles, which in turn can form a TG gas [56].

A number of numerical studies on few-body systems have specifically addressed
the development of TG states in the intermediate regime of finite interaction
strength g1D in terms of eigenenergies, as well as 1D single-particle densities

ρ1(z) = 〈Ψ̂†(z)Ψ̂(z)〉 (3)

and two-body correlations

ρ2(z1, z2) = 〈Ψ̂†(z1)Ψ̂†(z2)Ψ̂(z1)Ψ̂(z2)〉. (4)

Here Ψ̂(z) =
∑

i v(z)iâi denotes a field operator with respect to a basis of single-
particle wavefunctions {v(z)i} and annihilation operator âi. It was seen that
these properties evolve continuously towards the TG-limit [50, 58, 59].

A TG state can also be realized for dipolar particles in a quasi 1D trap, where the
dipoles can be aligned perpendicular to the trapping direction. In 1D, the 1/x3-
behavior of the dipolar interaction can serve to completely fermionize particles
at finite interaction strengths [54, 60].

3.2 Super-Tonks-Girardeau states

An extension of the concept of a TG state can be made by studying the regime of
attractive interaction, g1D < 0 in Eq. (2). We can imagine an experiment where
a system is prepared into a TG state via an infinitely repulsive interaction. If
the interaction is adiabatically changed from g1D to −g1D the state develops into
a bound few-body complex, i.e., a cluster state, which is the true ground state
for the strongly attractive interaction [61]. For a sudden shift in the interaction
strength, which for example can be achieved by a slowly tuning of a3D across
a CIR, the outcome is however different. In fact, after a sudden switch in g1D,
the resulting state is metastable in the attractive region, as confirmed both by
theory [61–63] and experiments, see e.g. [64] and paper iii of this thesis. This
type of metastable state is commonly known as a super-Tonks-Girardeau (STG)
state, and it retains the fermionized nature of the TG state, which prevents it
from collapsing into the cluster ground state [62]. The evolution of few-body
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STG states from weak to strong attractive contact interactions has also been
investigated by numerical solutions of few-body systems. When the contact
interaction was tuned from g1D = 0 towards g1D → −∞, the eigenenergies,
single-particle densities and two-body correlations evolved continuously towards
those of spin-polarized fermions [51].

To showcase the formation of TG and STG states in a few-body system, a
simple example with two harmonically trapped contact-interacting particles is
presented in the appendix.

In general, the realization of an STG state depends on the possibility to tune
the interaction strength from positive to negative values. This tunability is a
well-known feature of dipolar systems [65], and a theoretical study predicts that
dipolar version of an STG can be realized by sudden rotations of the dipolar
orientation relative to the confinement in a 1D harmonic trap [66].

4 Short-range interacting ultracold gases in two di-
mensions

Like in the case of ultracold atoms confined in 1D, Fermi’s pseudopotential for
low-energy scattering in a 2D confined geometry can be reduced to an effect-
ive 2D form, see for example [67–69]. For a detailed overview of short-range
interactions in 2D ultracold gases, see e.g. [15, 18].

We consider a trapped ultracold gas of atoms with mass m in the Gaussian
ground state of a confining potential V (z) = mωzz

2/2 with trapping frequency
ωz along the spatial direction z. In the regime where the trapping length lz =√

~/mωz is much larger than the 3D scattering length lz � a3D an effective 2D
pseudopotential can be obtained by integrating the 3D pseudopotential over the
lowest hamonic ground state. This gives an effective 2D coupling strength

g2D = 2
√

2πa3D/lz.

We also note that, like in the case of 1D confinement, confinement induced
resonances may be employed to reach the strongly interacting regime, see for
example [18, 68].
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Results

This chapter gives an overview of the papers in this thesis. The text is di-
vided into three different sections, each representing a specific subject in the
dissertation.

5 Quantum magnetism in a one-dimensional har-
monic oscillator

In papers ii-iv, a spin-chain model for quantum magnetism is investigated in
terms of a few-particle 1D harmonic system with particle-particle contact inter-
actions (upper left in Fig. 1). In the strongly interacting limit, the few-body
Hamiltonian reduces to an interacting Heisenberg spin chain, which is used to
predict several magnetic phases. These results are verified both numerically, by
exact diagonalization in the few-body limit, and experimentally, via measure-
ments of out-tunnelled particles. Through a collaboration involving numerical,
analytical and experimental work, the magnetic properties of an ultracold, 1D
Fermi gas are mapped out and investigated in the few-particle limit. This work
lays the foundation for a cold-atom implementation of one of the fundamental
tools in simulations of quantum magnetism.

5.1 Background

Over the recent years, ultracold atoms have been successfully applied in simula-
tions of quantum magnetism in condensed matter systems, see e.g. [25, 70, 71].
As discussed in the introduction, the high degree of control offered by cold-atom
experiments has made it possible to investigate models over large parameter-
spaces, allowing experimentalists also to address, for example, the study of phase
transitions in complex systems, see e.g. [15, 25, 72, 73].
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In particular, ultracold gases in optical lattices have been used to simulate many
simple models describing magnetism, for a review see for example [25, 73]. Op-
tical lattices were used to realize the super-exchange of particles [74], here in
a double-well potential, which is a crucial component of many models that de-
scribe magnetism. A quantum Ising model was realized for a 1D lattice and
was used to simulate anti-ferromagnetic order for a spin chain [75, 76]. Another
example of a model for magnetism is the Heisenberg spin chain [77].

5.2 The Heisenberg spin-chain Hamiltonian

A Heisenberg spin chain is a model for spin-1/2 particles on a 1D lattice inter-
acting with spin-spin interactions and is commonly used in studies of quantum
magnetism. Like the Ising model it describes phase transitions and magnetic
behavior in the 1D system, but also it uses a quantum-mechanical treatment of
the spins [77]. For an introduction to spin chains see e.g. [77, 78].

For a lattice with N sites and N spins, with either spin up or down, the total
Hilbert space can be constructed as follows: Each site has a two-dimensional
subspace C2 = {↑, ↓} spanned by the spin eigenstates in the spatial x-direction.
For N sites, the Hilbert space then has 2N dimensions. A spin-operator Ŝxi
along the spatial direction x acts only on one site i, and obeys the usual spin-
commutations on that site. With nearest-neighbor spin-spin interaction and
couplings J = Jx = Jy = Jz, the spin-space representation of the Heisenberg
Hamiltonian (or so-called XXX-model, where the name hints at the isotropy of
the couplings) reads

HXXX = −J 1

2

N−1∑

i

(
σxi σ

x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1

)
(5)

where σxi is the Pauli spin-matrix for direction x operating on site i. One ex-
ample of a physical system modeled by a spin chain is a set of localized spin-1/2
particles on a line, with the spatial orbitals subject to exchange interaction.
Here, the spin-chain model successfully accounts for (anti)ferromagnetic order
amongst the spins. Since the Hamiltonian conserves total spin in x, an instruct-
ive example is to consider a subspace of N↑ spin-up particles and N↓ spin-down
particles. This subspace is spanned by all different spin-functions |κ〉 construc-
ted from the N↑ +N↓ spins,

|κ〉 = P{| ↑, ↑, .., ↓, ↓, ..〉},
where P denotes all distinct permutations of the spin-order. The Hamiltonian in
Eq. (5) can also be reformulated in terms of the permutation of two neighboring
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spins

HXXX = −NJ
4
− J

2

N∑

i

Pi,i+1

with
Pi,j |... ↑i, .. ↓j , ..〉 = |... ↓i, .. ↑j , ..〉,

The eigenstates to the Hamiltonian can be found numerically or via, for example,
the Bethe ansatz, see e.g. [79].

5.3 Model for realization of the Heisenberg spin chain

The spin-spin interaction and ordering in the Heisenberg spin-chain model may
be realized without the aid of an optical lattice, as is shown in paper ii. This
is done by employing an infinitely strong repulsive contact interaction between
particles confined in a 1D harmonic trap, also discussed section 3, with oscillator
frequency ω,

Ĥ =
N∑

i=1

(
− ~2

2m

∂2

∂z2
i

+
1

2
mωz2

i

)
+ g1D

∑

i,j

δ (zi − zj) . (6)

Here g1D is the effective 1D interaction strength, as described in section 3.
Throughout this chapter we use dimensionless units ~ = m = 1. Energies
are given in units of ~ω, lengths in units of oscillator-length l =

√
~/mω and

interaction strength g1D in units of ~ωl.

In the limit of 1/g1D → ±0 the eigenvalues to this operator can be found by a
generalization of Girardeau’s Bose-Fermi mapping, as referenced in relation to
Tonks-Girardeau states in sections 3. The spatial part of the eigenfunctions can
then be defined in terms of ψF , the wavefunction of N non-interacting spinless
fermions, and an additional factor that describes the spatial ordering of the
particles. The so-called spatial sector wavefunctions are formally constructed
according to

〈z1, ..., zN |P 〉 =
√
N !θ

(
zP (1), ..., zP (N)

)
AψF (7)

where the unit antisymmetric function A =
∏
i<j sgn(zi − zj) ensures that the

wavefunction is correctly symmetrized. Also, θ
(
zP (1), ..., zP (N)

)
= 1 if z1 ≤ ... ≤

zN and otherwise zero, which defines the order.

An orthonormal subset of sector functions can be spanned by considering all
possible permutations of the spin-order. Now, the full eigenstates of the non-
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interacting systems should also include spin-functions,

|χ〉 =
∑

m1,...,mN

cm1,...,mN |m1, ...,mN 〉

where cm1,...,mN is an expansion coefficient and mi are spin quantum numbers.
Since the asymmetry of the total wavefunction has to be conserved, the spin-
functions must be paired with specific spatial functions. In fact, the eigenfunc-
tions can be obtained directly via the map

W±|χ〉 =
√
N !S± (|id〉|χ〉) , (8)

where |id〉 is the identical permutation of the spatial function, and S± is the
(anti)symmetrization operator which includes the (anti)symmetric sum over all
permutations P of the spin and order. The map in Eq. (8) gives a one-to-
one correspondence between spin-functions and the eigenfunctions of the mul-
ticomponent system, and the Hamiltonian matrix can, therefore, be written
purely in terms of the spin-functions. At infinite interaction, 1/g1D → ±0, the
two-component Hamiltonian is diagonal in the spin-functions, since the ground
state becomes a degenerate manifold. For finite interactions, the degeneracy
is broken, but for sufficiently strong interactions it is possible to describe the
energy-splitting within degenerate perturbation theory. The coupling, arising
from 1/g1D 6= 0, is then represented in terms of matrix-elements between the
spin-functions. The spin density of component m can be fully determined by
the N -tuple

(
ρ1
m, ..., ρ

N
m

)
which directly relates to the spin-function.

For lowest order in 1/g1D the Hamiltonian of the multicomponent system can
be represented as (see paper ii)

HS =

(
EF −

N−1∑

i=1

Ji

)
I±

N−1∑

i=1

JiPi,i+1, (9)

which has the form of a spin-chain Hamiltonian with site-dependent couplings
Ji, which are calculated via N -dimensional integrals involving the spatial sector-
functions. Approximations of the couplings, with the accuracy growing with N ,
are also available.

5.4 Methods

The Hamiltonian in Eq. (6) is solved for different interaction strengths g1D us-
ing exact diagonalization in the Fock-space built from single-particle harmonic
basis functions with cut-off energy Ecut. The interaction is given in terms of an
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exact delta function with matrix elements given by a recursive relation [42]. We
treat the problem in the few-body limit with different configurations of spin-up
and spin-down particles like, for example, a system with two spin-up and one
spin-down fermion which we denote by (2+1). The convergence with respect
to Ecut strongly depends on the interaction strength g1D. As g1D increases,
particles in states of the low-lying spectrum acquire successively higher com-
ponents of momentum, indicating that Ecut has to grow to represent the system
correctly [50]. The calculations for the eigenstates are hence very tricky and
time-consuming. Different approaches can also be used to solve this problem,
such as the coupled-cluster method (see e.g. [80]). The spin-chain model for the
microscopic Hamiltonian in Eq. (6) is therefore not only a goal in itself, but
a tool for numerical simulations of strongly interacting 1D systems, since the
low-energy properties in this regime can be calculated from the computationally
cheaper spin-chain model.

5.5 Summary of the main results

This section is divided into two subsections, giving a summary on the theoretical
basis for the spin-chain system. First, we test the spin-chain model against the
results of exact diagonalization of the Hamiltonian in Eq. (6), establishing the
validity of the model as compared to the microscopic system. Finally, a few
important properties of the implemented spin-1/2 system are discussed.

5.5.1 A test of the spin-chain model

The spin-chain model with interacting spin-1/2 fermions is solved for two spin-
up and one spin-down fermion (abbreviated throughout as ”2+1”), as well as
for 2+2 and 3+1. The structure of the resulting spectrum is compared to the
lowest energy multiplet of the microscopic Hamiltonian in Eq. (6). For example,
the energy levels in the lowest multiplet of the 2+1 system are denoted, in
order of increasing energy, as E0, E1, EF (the subscript F will be explained in
the next section). The multiplet structure is recorded in terms of the fraction
(EF −E0)/(EF −E1), which accounts for the relative splitting between energy
levels, and serves as a test for the validity of the spin-chain model (which is
based on degenerate perturbation theory). These results are shown in Figs. 5
and 6. For other configurations, with larger multiplets, additional fractions are
used to record multiplet structure.

In the limit of strong interaction, the spectra of the two models compare quant-
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itatively for 2+1 and 3+1, and qualitatively for 2+2. The results improve with
increasing interaction strength, owing to the fact that the spin-chain model is
based on the STG/TG limit wave functions at 1/g1D → 0. There is also a good
agreement between the single-particle densities of the two models, as indicated
in Fig. 5, which shows that the spin-chain model accounts for the antiferromag-
netic behavior seen in the ground state of the 1D harmonic system.

Figure 5: Comparison of the full microscopic model with exact diagonalization and a spin-chain model with (N↑ = 2, N↓ =
1) Upper panel: Single-particle densities of spin-up and spin-down fermions. The solid lines show the densities
obtained from the spin-chain model, while the dashed and dash-dotted lines represent exact diagonalization
results. Lower panel: Relative splitting of energy-levels in the lowest multiplet as functions of the inverse
interaction strength. For the spin-chain model, the ratio (EF − E0)/(EF − E1) = 3, as indicated by the
dotted line. The red rings indicate the ratios obtained with exact diagonalization at different g1D . Values above
the dashed line indicate results within 99% of that predicted by the spin-chain model. This figure is taken from
paper ii.

5.5.2 Features of the cold-atom implementation of a spin chain
without an optical lattice

Spin-chain models which employ optical lattices typically requires extremely
low entropies and temperatures to exhibit antiferromagnetic spin-order, (for a
review, see for example [25]). Only very recently, true long-range antiferromag-
netic order was measured in a setup with optical lattices [81].

Although there are remedies to overcome these challenges, see e.g. [82] where
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Figure 6: Structure of energy spectrum of 2+1 contact-interacting fermions calculated via exact diagonalization. The
spin-chain model predicts the fraction (EF − E0)/(EF − E1) = 3, and when going toward higher repulsive
interactions the numerical results converge towards this value.

two particles were prepared in an antiferromagnetic state, a simpler alternative
is in demand.

Using the ultracold implementation of the spin-chain model presented in paper
ii it is possible to deterministically prepare an anti-ferromagnetic (AF), or a
ferromagnetic (F) state. By preparing an imbalanced system into the non-
interacting ground state, the AF state is reached by adiabatically ramping up
the effective interaction strength towards the infinitely strong limit, see paper
ii. Preparation of the F state requires a more complex scheme, which involves
population transfer into a metastable STG state (STG states were discussed in
section 3.2).

Another implementation of the Heisenberg spin chain with strongly interacting
two-component gases was presented in [52, 83], where Girardeau’s Bose-Fermi
mapping also was employed. More examples of spin-chain systems in strongly
interacting 1D gases have since emerged, see for example [84, 85]

Before any further discussion of the experimental realization of the spin chain,
it is important to note a distinction between the solutions of the microscopic
Hamiltonian in Eq. (6) and the solutions of the spin-chain model. While Gir-
ardeau’s Bose-Fermi mapping is exact regarding the expectation values such as
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energies and single-particle densities [48, 50], the single-particle mean occupa-
tion numbers 〈ni〉 and the momentum distribution of single particles repres-
ent properties that are hard to calculate directly for the spin-chain eigenstates.
Therefore, solutions of the microscopic model are not only important to determ-
ine the validity of the spin chain regime, but were also crucial for comparisons
to experiments which specifically measured those observables, as we shall see
in section 5.6. We note that a method for calculation of momentum distribu-
tions and occupation numbers directly from the spin-chain model has become
available since the publication of papers ii and iii [86].

5.5.3 Realizations of spin chains in ultracold mixtures

In paper iv, a spin chain was shown to be applicable also for a 1D system with a
mixture of bosons and fermions, i.e. a Bose-Fermi mixture. Here, the spin-chain
model is somewhat different from the case of multicomponent fermions, which
realized an XXX spin chain with isotropic couplings. The Bose-Fermi mixture
instead realizes an XXZ spin chain with non-isotropic couplings (J = Jx = Jy 6=
Jz). This type of spin chain can also be realized in, for example, mixtures of
two bosonic species, see e.g. [84].

The multiplet structure of the Bose-Fermi spin chain was checked with the
full microscopic model and showed good agreement. The Bose-Fermi mixture
further showed a rich phase diagram for variations in the relative couplings JBB
and JBF , which stand for boson-boson coupling and boson-fermion coupling,
respectively. Other ultracold realizations of XXZ spin chains without optical
lattices have been discussed in, for example, Refs. [84, 87, 88].

5.6 Tunneling experiment

Paper iii concerns the experimental realization of the model Hamiltonian de-
scribed in the previous section. The experiments were performed by Selim
Jochim’s group in Heidelberg1, who tested the predictions of the spin-chain
system by measuring out-tunneled particles. Here, results from exact diagonal-
ization of the Hamiltonian in Eq. (6) and the spin-chain model were both used
for comparison. For completeness, the experimental procedure is here summar-
ized.

The spin chain is realized experimentally in a setup with ultracold 6Li atoms

1http://ultracold.physi.uni-heidelberg.de/
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trapped in an optical dipole trap. The spin chain is prepared deterministically
into the antiferromagnetic state by tuning g1D using Feshbach resonances and
confinement-induced resonances. The state is then probed by letting particles
tunnel out of the trap. The tunneling is prompted by tilting one side of the
1D trap in the elongated direction, as shown in Fig. 7. Two different types
measurements, A and B, can now be performed:

1. Experiment A is performed by letting precisely one particle escape. The
spin of the out-tunneled particle is then measured, and the experiment is
repeated for a range of interaction strengths to reveal the state in the spin
chain.

2. In experiment B the occupation numbers can also be probed experiment-
ally by using tunneling measurements on individual particles, and the res-
ults are in essence fingerprints for the microscopic states inside the trap.
Here, the occupation numbers of a single spin-down fermion can be probed
by removing all spin-up atoms from an interacting state and measuring the
mean occupation numbers of the remaining particle. This measurement of
the state is directly compared to the exact diagonalization results of the
microscopic Hamiltonian in Eq. (6).

5.6.1 Model for simulation of the tunneling experiment

Experiment A constitutes a direct measurement of the spin-chain structure in
a two-component 1D system. A theoretical description for the tunneling was
therefore required, and a phenomenological spin-chain model, abbreviated as
PSC-model, was introduced within the framework of the spin-chain model. This
model is here briefly summarized.

The principle behind the PSC-model is that the spin-chain basis functions, with
definite spin-order, are sufficient to describe the tunneling experiment A. The
spin-order functions have a one-to-one correspondence to the sector functions
(see section 7), which define a strict spatial ordering of particles. In other words,
there is a strict spatial ordering of the spins in the trap basis functions. Now,
a moderate perturbation in the rightmost region of the trap should only affect
the rightmost particle, since the other particles are spatially separated from this
region. We then assume that for short times, only that particular particle may
escape the trap. For a given trap state |ψtrap〉, the tunneling rates of spin-
up versus spin-down particles, therefore, depend on the superposition of basis
states, which each have a specific ordering of particles and spins. Other factors
that influence the tunneling rates in the PSC-model are:
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Figure 7: Sketch of the tunneling scheme where a single particle escapes from a trap with two spin-up and one spin-down
fermion. The spin-order basis functions for this system {|↑↑↓〉, |↑↓↑〉, |↓↑↑〉} have a one-to-one correspondence
to the spatial sector wavefunctions in Eq. (7), and the tunneling measurements can be linked directly to the
state of the spin chain.

1. The energy of the ”out-coupled” particle that breaks away from the spin-
chain state. This particle travels towards an energy-barrier where the
chance of tunneling is directly determined from its kinetic energy. Hence,
the energy difference between the N -particle spin-chain state and the
(N − 1)-particle spin-chain state is a crucial factor that can block cer-
tain tunneling channels.

2. The direct overlap between the N -particle state and the (N − 1)-particle
state, which also can lead to blocked tunneling channels.

The PSC-model was investigated by numerical simulations of the microscopic
Hamiltonian in Eq. (6). As discussed in the above, an important factor for
determining tunneling rates was the probability of measuring spin-up or spin-
down in the rightmost region of the trap. The simplest approximate measure of
tunneling rates from the microscopic Hamiltonian is, therefore, for a given state
|ψtrap〉, the fraction of spin-down particles relative to the total density at some
point far right of the center of the trap. Figure 8 shows the spin-down fractions,
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ρ↓(z)/(ρ↑(z)+ρ↓(z)), for the AF state, calculated via exact diagonalization of the
microscopic Hamiltonian in Eq. (6). The numbers do not account for possible
blocked channels, but the data the show that there is qualitative agreement
with the PSC-model, see Fig. 9, for positions in the far-right region of the trap.
This is not unexpected since the single-particles densities agreed well for the
spin-chain model and the exact diagonalization results.

Figure 8: Numerically calculated spin-down fractions, ρ↓(z)/(ρ↑(z)+ρ↓(z)) (i.e, the fraction between the single-particle
spin-down density and the total single-particle density), for the 2+1 AF state at different interaction strengths
g1D . Inset: Single-particle densities of spin-up and spin-down particles with indications of the positions in z at
which the spin-down fraction is calculated. The overall curve matches well with experiments only for positions
far right of the trap center.

5.6.2 Comparisons between experiment and theory

Figure 9 shows comparisons between tunneling experiment A and the phe-
nomenological spin-chain tunneling (PSC) model. The spin-fractions for the
tunneled particle are measured, and the model agrees very well with the predic-
tion for the spin-chain AF state, which is distinct from predictions for tunneling
from an intermediate (IM) state or an F state. For three different configur-
ations, (2 + 1), (3 + 1) and (2 + 2), the tunneling data indicate that an AF
state was deterministically prepared and detected via tunneling measurements,
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constituting a direct observation of quantum magnetism in an ultracold system
without an optical lattice.

We now proceed to compare the outcomes of the independent experiment B to
the solutions for the microscopic Hamiltonian in Eq. (6). The single-particle
occupation-numbers for the AF and F states were measured by Selim Jochim’s
group and were then compared to the mean occupations ni = 〈â†i âi〉 obtained
from numerically diagonalizing the full Hamiltonian. Figure 10 shows the occu-
pation numbers for a state in the STG regime, which was reached by starting
in the AF state in the Tonks-regime and quickly tuning the interaction towards
attractive values. The results show that the system indeed is in the metastable
AF state, which manifests that a spin-chain AF state can be deterministically
prepared and measured upon across the resonance at 1/g1D = 0. This confirms
that the spin measurements in Fig. 9 were indeed performed for spin-chain AF
states and that the experimental results match well with the predictions of the
spin-chain model.

Figure 9: Tunneling probabilities for a spin-down atom at different interaction strengths g1D . The blue dots are the
experimental values, and the red lines represent theoretical calculations of the AF(solid line), F(dashed line) and
an IM(dotted line) state. Lower left: (3 + 1) fermions. Lower right: (2 + 2) fermions. Upper: (2 + 1) fermions.
Note that blue dots fall closely to the theoretical prediction for an AF state in the trap. The gray dots at the
resonance come from an emergent coupling, due to small irregularities in the trap, between the AF and the IM
state, which influences the probability of spin-down tunneling. This figure is taken from paper iii.
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Figure 10: Occupation numbers for the single spin-down fermion in a (2 + 1)-system (a), and a (3 + 1)-system (b). The
blue dots show experimental values while the red and gray markers show theoretical values from numerically
solving the Hamiltonian in Eq. (6). The measurement was performed for −1/g1D = 0.586 ± 0.014 and
−1/g1D = 0.536±0.013 for the (2+1) and (3+1)-system, respectively. The red dots show the occupations
calculated for the AF state, and the gray markers show occupations for F and IM states. For both configurations,
the experimental values match well with the theoretical prediction for an AF state. This figure is taken from
paper iii.
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6 Higgs modes of a two-dimensional harmonically
trapped Fermi gas

The Higgs-Anderson mode [89, 90] is an important many-body phenomenon that
is recognized as a quasiparticle in Ginzburg-Landau theory [10]. In paper i of this
thesis, we study an emerging Higgs mode few-body precursor for harmonically
confined fermions in a 2D setup. By extensive numerical efforts, few-to-many
body effects and the response of the Higgs-mode precursor to external probes
are simulated. This paves the way for a table-top setup where the few-body fate
of a Higgs mode can be studied systematically.

In this section, we first give a brief introduction to the concept of Higgs modes
and then continue to showcase a setup for which they can be studied in both
the many-body and the few-particle limit. Finite-size precursors of Higgs modes
are not yet fully understood, and this thesis aims at filling the gap between the
few- and many-body limit.

6.1 Background

A Higgs-Anderson mode [89, 90], or simply Higgs mode, is a fundamental
concept within both elementary particle physics and, as mentioned in the above;
condensed matter physics, see for example [91, 92]. It is one of the key com-
ponents that link the theoretical description of a condensate to the standard
model of elementary particles. The Higgs mode does play a major role in math-
ematical descriptions of physics in different areas - versions of the Higgs-mode
also appear in nuclear physics. It turns out that the underlying mechanics for
Higgs modes in nature is the concept of broken symmetries, which has different
manifestations in distinct areas of physics. Over history, many different terms
have therefore been associated with what is essentially very similar physics at
the core. Concepts such as Higgs fields, Bogoliubov modes, amplitude modes,
Goldstone modes, Higgs bosons, pairing vibrations and phase fluctuations are
all strongly connected. Most of the original papers on the subject date back to
the 50’s and 60’s and include contributions from Nambu [93], Bogoliubov [94],
Higgs [90], Goldstone [95] and Anderson [89, 96, 97] (for reviews on this history
see [98, 99]. For a detailed theoretical background see e.g. [92, 98, 100, 101]
and references therein.) The manifestations of the Higgs mode is also a relevant
topic in ultracold systems. For example, Higgs and Goldstone modes were found
in connection with the realization of a supersolid a Bose-Einstein condensate in
Refs. [103] and [104, 105]: In the latter references, the mode excitation energies,
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along with other properties of the supersolid, pointed to the existence of Higgs
and Goldstone modes that could be monitored and manipulated. In Ref. [106]
spontaneously broken symmetries in a rotating gas of bosons, trapped in a 2D
harmonic oscillator, were shown to give rise to Nambu-Goldstone modes which
were identified via clear signals in the excitation spectra.

In Ginzburg-Landau theory the long-range order of superfluids and supercon-
ductors is described in terms of a complex scalar order parameter Φ(r) [10].
The physical behavior of this spatially varying object is described in terms of a
functional for the free energy F [Φ]. Many different physical systems turn out
to be well-described by the particular Landau-Ginzburg form of the free energy
density functional

F [Φ] =

∫
d3r

(
α |Φ (r)|2 + β |Φ (r)|4 + γ |∇Φ (r)|2

)
(10)

where α, β and γ are constant specific to the system (In the following β = γ = 1).
The minimum of the free energy is sometimes referred to as the ground state
energy of the system, with a corresponding ground state order parameter Φ0.
In a simplistic manner, one can refer to fluctuations in the order parameter
around this ground state as excitation modes, or shorter; modes. Considering
only slowly-varying order parameters in the long-range limit the order parameter
can be written as

Φ = |Φ| eiθ.
Here, Φ is divided into an amplitude- and a phase-factor. In Fig. 11, the free
energy density in Eq. (10) is plotted as a function of the order parameter. For
α > 0 there is a single minimum at Φ = 0, but for α < 0 the minimum energy
becomes degenerate. Here, the order-parameter takes on finite values for the
ground state solution, increasing continuously as α becomes increasingly negat-
ive. This is an example of a spontaneously broken symmetry and a continuous
phase-transition where the order parameter is assigned to one of the degenerate
points and therefore breaks the phase-translation symmetry of Φ0. The low-
energy modes of the theory are found by considering small fluctuations around
the ground state, such that Φ = Φ0 + Λ, and expanding the free energy up to
second order in these fluctuations. In the normal phase, α > 0, all fluctuations
around the ground state are associated with an increased energy since they take
the system away from the energy-minimum - one, therefore, speaks of massive
- or gapped - modes. In the broken-symmetry phase, α < 0, the ground state
can be defined as Φ0 = |Φ0| ei·0 where the phase is chosen to be zero and the
minimum solution gives Φ0 =

√−α. The fluctuations are defined as

Φ = (Φ0 + Λ) eiθ.
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Inserting into the Landau-Ginzburg functional gives, to second order,

F [Λ, θ] ≈
∫
d3r

[
−5α |Λ|2 + 0 · θ2

]

where terms linear in θ and Λ disappear since Φ0 is a minimum. The first term is
positive since α < 0 and shows that amplitude fluctuations, or amplitude modes,
of Φ are associated with a cost in free energy, interpreted as a mass of the mode.
The factor in front of the phase-fluctuations is zero, which manifests that such
modes cost zero energy. This amounts to fluctuations around the degenerate
minimum in Fig. 11 c, and are the so-called massless Goldstone modes, which
are associated with a spontaneously broken symmetry [95]. The massive modes
are correspondingly known as Higgs modes [98, 99].

Figure 11: Potential part V (first two terms) of the Landau functional F in Eq. (10) , as a function of the order-parameter
Φ. For a more detailed description of this type of figure, see e.g. [92] The green and blue arrows represent
amplitude and phase-fluctuations of Φ, respectively. This Upper figure: α > 0. Potential minimum for Φ = 0.
Middle figure: α = 0. Potential minimum for Φ ≈ 0. (The extension of the flat bottom of the potential is

exaggerated). Lower figure: α < 0. Potential minimum for Φ =
√
−α/β · eiθ . The minimum potential

energy occurs at the bottom of this so-called Mexican-hat potential.
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Now, as alluded to earlier, the starting point for the discussion on Higgs modes
should be the form of the Landau-Ginzburg free energy F . This particular
form of the free energy is the basis for many different models in physics and has
also been seen to arise directly from microscopic theories [107]. There have been
many publications on table-top systems where Higgs modes can be identified and
studied to some degree, but in general, the short lifetime of the Higgs mode has
been a complicating factor [108–110]. For a review on manifestations of the Higgs
mode, see for example [98]. However, a system for which a Fermi gas is trapped
in a 2D harmonic oscillator has been shown to exhibit long-lived Higgs modes
that may be good candidates for experimental detection [111]. Importantly,
this system is also simple to scale down to small numbers of particles, and the
fate of the Higgs mode in the few-particle limit can, therefore, be studied in a
controlled way.

6.2 Model

An ultracold Fermi-gas trapped in a 2D harmonic micro trap with attractive
contact interaction is a simple system in which to study signatures of Higgs
modes in finite-size systems [111]. Here particles are confined in a deep, narrow
trap in the z-direction and a circular symmetric potential in the (x, y)-plane.
The trapping frequency is much larger in the z-direction than in the other dir-
ections, ωz � ω⊥, so the system is effectively 2D. The microscopic Hamiltonian,
similar to than in Eq. (6) in section 5.3, for particles with mass m and contact
interactions δ(r1 − r2) reads

Ĥ =
N∑

i=1

(
−~2∇2

i

2m
+

1

2
mωri

2

)
+ g

∑

i,j

δ (ri − rj) (11)

where ri is the spatial coordinate of particle i. Like in the previous chapter, we
consider dimensionless units (~ = m = 1) so that energies are given in terms of
~ω, and interaction strength g in terms of (~ω)η2, with η =

√
~/mω.

The single-particle energy spectrum of the Hamiltonian in Eq. (11) is given
in terms of the principal quantum number n = 0, 1, 2, ... and the angular mo-
mentum quantum number m = 0,±1,±2, ...

E = ~ω(2n+ |m|+ 1).

For E > 1~ω the single-particle spectrum has degeneracies for the spatial states,
giving rise to so-called energy shells in which two or more states have the same
energy. The structure of the energy shells (shell structure) of the 2D harmonic
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oscillator is presented in Fig. 12. The concept of shells is important since it is
fundamental for our discussion of basis selection and convergence, as well as for
the analysis of the many-body physics associated with the Higgs mode.

Figure 12: Sketch of a 2D harmonic oscillator with three spin-up and three spin-down fermions. The quantum numbers
n and m denote the principal and angular momentum quantum number, respectively. For successively higher
single-particle energies E the number of degeneracies, i.e., the size of the energy shell, increases. This figure is
taken from paper i

Here we consider a system with N spin-1/2 fermions in a subspace with zero
total angular momentum (L =

∑N
i mi = 0). This restricts the Fock-space

for which we solve our Hamiltonian, but does not constitute an approximation
since the Hamiltonian in Eq. (11) is block-diagonal in different L-subsets, see
section 2.

The delta pseudopotential in Eq. (11) is a representation of the effective 2D
contact interaction, see section 4. Cold-atom experiments allow for the contact
interaction to be controlled experimentally via Feshbach resonances, as also
briefly discussed in section 4. In particular, g can be modulated over time, see
for example [112], which we will see is very useful when we want to excite the
Higgs mode.

For an exact representation of the microscopic system, an expansion of the wave
functions should in principle include the possibility for a particle to occupy any
shell, or at least sufficiently many as to get convergent results when solving the
Schrödinger equation. Unfortunately, in 2D the attractive delta pseudopotential
does not converge with the number of shells allowed in the single-particle basis,
so a regularization procedure which provides a well-defined theory for Ei →∞ is
needed [113–115]. Here, the regularization procedure consists of first performing
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a cut in the number of allowed shells in the Hamiltonian and then plotting all
results in terms of the two-body binding energy ε, calculated within that same
restricted space. This can be shown to act similarly as to a regularization in
terms of a finite-width effective contact interaction [113], and hence the sim-
ulations are essentially performed for a finite-width effective interaction. This
choice is motivated by the efficient calculation of the delta interaction matrix-
elements which reduces the setup-time for the numerical simulation [42].

We aim to solve the Hamiltonian exactly for configurations with up to three spin-
up and three spin-down fermions (abbreviated as 3+3) for a range of attractive
interaction strengths g < 0, recording observables which we associate with Higgs
modes. We then aim towards higher numbers of fermions with an approximate
model, to study the few-to-many body aspects of the system.

6.3 Higgs modes of a 2D harmonic oscillator - the many-body
limit

For attractive interactions the effective Hamiltonian in Eq. (11) is unstable to-
wards pairing, that may result in a superfluid phase for sufficiently strong con-
tact attraction in the many-body limit. The crossover into such a superfluid
phase has already been observed for an ultracold system of a strongly interact-
ing quasi-2D Fermi gas [112]. For a similar 2D system, the occurrence of Higgs
modes close to a phase transition was investigated by Bruun [111]. There, a
functional formulation, outlined in Fig. 13, was used to investigate the low-
energy modes of a 2D harmonic system, with a particular focus on fluctuations
in the pairing order parameter around the normal-to-superfluid phase-transition.
The emergence of correlated fermion pairs was shown to be connected with the
occurrence of a phase transition when the strength of the attractive contact
interaction was increased beyond a critical value.
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Figure 13: A map of the methods and approximations leading up to the identification of a long-lived Higgs-mode as in
Ref. [111]. The calculations involve a mean-field treatment of a pairing-field ∆ leading to the Bogoliubov-de
Gennes equations which can be solved numerically or analytically. For a mean-field treatment of the filled-shell
2D harmonic oscillator, a clear minimum in excitation-energy is identified for oscillations in the pairing-field
amplitude.

More specifically, in Ref. [111] a system of N ∼ 100 particles was studied at zero
temperature and within the Thomas-Fermi approximation. The system was then
investigated for a mean pairing-field ∆, introduced via a Hubbard-Stratonovich
transformation, within the stationary-phase approximation. The ground state
solution was found via numerical simulations in parallel with an approximation
scheme (see Fig. 13), giving analytical solutions in the appropriate limits.

The results of Bruun [111] revealed the normal-to-superfluid phase transition at
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a critical binding energy εc resulting in a ground state with a broken symmetry.
The origin of this broken symmetry is once again exemplified in the plot of the
free energy in Fig. 14 b, where ε > εc gives a Mexican-hat shaped potential like
in Fig. 11. For systems close to the transition point, fluctuations of the pairing-
field around the ground state were then considered in the L = 0 subspace.
The mode-frequencies were found via a Gaussian approximation which yielded
pairing correlation-functions with poles at the low-lying excitation-modes.

Both the numerical and analytical solutions of the system give rise to excitation
modes that can be decomposed into two distinct classes ΛG and ΛH . In the
superfluid phase (ε > εc) these modes correspond exactly to Higgs and Goldstone
modes that become completely decoupled from each other in the limit of perfect
particle-hole symmetry in the system (hence the subscripts G and H). For
a closed-shell configuration the mode-frequency of ΛH has an interesting non-
monotonic behavior across the phase transition, as shown in Fig. 14. The Higgs
mode frequency is zero at the point of the phase transition, associated with
amplitude fluctuations confined to the flat-bottom potential surface of Fig. 11
b. An analogous behavior of amplitude modes was seen both in nuclear physics,
see e.g. [116], and for superconductors, see for example [98], and it provides
a smoking gun for the existence of the broken symmetry and the associated
Higgs mode. In the open-shell configuration, the non-monotonic behavior of
the Higgs-mode is lost, because there is always pairing. There is, therefore, no
quantum phase transition between a superfluid and a normal state. This limits
the number of setups for which this particular signal of the Higgs mode can be
found.

As mentioned at the beginning of the chapter, the lifetime of the Higgs mode
is generally short in the realized table-top system, mainly due to decay into a
continuum of low-energy modes. This means that the spectral signal of the Higgs
mode is broad, which complicates experimental detection with, for example,
Raman spectroscopy [98]. A large obstacle is that any presence of particle-hole
asymmetry in a system couples Higgs and Goldstone modes and consequently
opens strong decay channels. However, in the cold-atom 2D harmonic system
of Ref. [111], the mode frequencies depend only weakly on the asymmetry, as
seen by comparing the numerical and analytical results. Importantly, the decay
is further inhibited by the trapping potential. The Goldstone modes in the
system correspond largely to fluctuations in the total density of particles and
have a discrete spectrum with energies typically associated with the trapping
frequencies. Hence, there is no continuum of low-energy Goldstone modes to
decay into, and the system supports stable Higgs modes. The ultracold system
furthermore allows for a high degree of control over the interaction parameter,

33



and the Higgs mode may be selectively excited by a time-dependent modulation
of the interaction strength, which directly causes fluctuations in the pairing field.

6.4 Higgs modes of a 2D harmonic oscillator - the few-body
limit

A few-body study of the harmonically trapped Fermi gas is valuable for three
main reasons. Firstly, it provides an unbiased microscopical treatment which
uses very few approximations and therefore gives a solid basis for comparison
with the mean-field treatment of pairing in [111]. Secondly, it provides a frame-
work for which to study the few-to-many body development of a concept that
is, essentially, of many-body origin. This may give us a microscopic glimpse into
the inner workings of a phase-transition and the collective modes of a system.
Lastly, the few-body system offers a considerable chance to realize a highly con-
trolled experiment. As shown in paper ii of this thesis, tunneling measurements
on a 1D multicomponent cold-atom system were able to resolve internal details
in a set of microscopic few-body states. In principle, there is a strong possibility
that a similar procedure could be applied to a 2D system, like the one in [112],
where the Higgs mode could be selectively excited and then studied. For two re-
cent examples of experimental studies on the pairing mechanisms in a 2D Fermi
gas at the normal-to superfluid transition, see [117, 118].

6.5 Methods for solving the few-body Hamiltonian

In the few-body limit, a two-parameter cut-off scheme was used to solve the
Hamiltonian in Eq. (11) exactly. Here, the highest allowed single-particle shell
energy Ei and highest allowed many-body energy EMB were increased in a
systematic manner as to reach convergence. For 3 + 3 particles the results
are fully converged with respect to both parameters, whereas the results for
6 + 6 particles are not fully converged with respect to Ei. However, for 6 + 6
particles all plotted quantities are lower bounds in the sense that the features
which emphasize the Higgs mode behavior are expected to improve with Ei.
Extensive efforts were made to go towards higher numbers of particles. Iterative
basis selection (see section 2) was tested but was found to be ineffective due to
the dense nature of the coupling matrices.
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6.6 Discussion on indentification of few-body precursors

The starting point for identifying a few-body Higgs mode precursor is to estab-
lish which properties we are looking for in the few-body limit.

In the many-body study of the filled-shell 2D harmonic oscillator [111], a min-
imum in excitation energy for N ∼ 100 was unequivocally identified with a Higgs
mode in terms of its origin in vibrations of the pairing-field. The approximations
were here systematic, and an exact treatment is expected to reproduce similar
results for the low-energy excitations. Solving the full microscopic Hamiltonian
for N ∼ 100 particles is not possible within the highly correlated regime of the
normal-to-superfluid transition. However, by successively increasing the num-
ber of particles in the few-body limit, we should be able to identify precursors
to the Higgs mode, since we know that a band of closely-spaced levels, which
make up the Higgs mode, is formed when N is large. Each of these levels should
have properties that are associated with the Higgs mode, and we expect that
these properties will become more pronounced when N is increased. Based on
the many-body study of the Higgs modes in a Fermi-gas, we attribute two main
properties to the Higgs excitation mode:

1. A minimum in energy around a transition in the ground state. The min-
imum energy should decrease with larger N , as should the smoothness in
the transition. We believe this to be the case since in the limit N & 100,
the transition is sharp and the minimum in excitation energy approaches
zero [111].

2. The coupling between the ground state and the excitation should be weak
for modulations of the trapping frequency, and strong for modulations
in the interaction strength. This is an inherent property of the many-
body Higgs mode in [111], which is shown to be comprised entirely out
of paired excitations out of the ground state. Therefore, the Higgs mode
cannot be excited utilizing single-particle operators such as the single-
particle density, as they are unable to couple the ground state to the
Higgs mode [111]. Since the Higgs mode is completely decoupled from
density fluctuations in the limit of N →∞ [98, 111], we believe that this
behavior should become more pronounced for successively larger N .

We will study the lowest few eigenstates |En〉 in terms of energy and transition
matrix elements ΓE with respect to the ground state. To represent modulations
in the trapping frequency, we consider matrix elements for a single-particle dens-
ity operator
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ΓEn
trap = |〈G|

∑

i

r̂2
i |En〉|2. (12)

For a few test-cases, other forms of density-operators were used to capture a
more general trapping modulation

d̂ =
∑

i

1

C

(
c1 · r̂2

i + c2 · (r̂2
i )

2 + c3 · (r̂2
i )

3 + ...
)

where the set of expansion coefficients {ci} defines a specific operator. Here C
is a normalization constant, and the series continues to some arbitrary cut-off
point. These operators were however seen to give the same qualitative trends
as the simpler r̂2-operator in Eq. (12).

Interaction modulations were represented in terms of the delta function g
∑

i,j δ(ri−
rj), as it appears for the two-body interaction of the Hamiltonian in Eq. (11).
This operator can excite pairs of particles, and can, therefore, create the type
of pair-vibrations that were identified as Higgs modes in Ref. [111]. The matrix
elements of the interaction modulation are given as

ΓEn
int = |〈G|g

∑

i,j

δ(ri − rj)|En〉|2. (13)

6.7 Few-body results

The few-body spectrum in Fig. 14 shows the minima in excitation energy which
we associated with a Higgs-mode precursor. Furthermore, the minimum be-
comes deeper for larger particle numbers N which indicates a development to-
wards the many-body limit, as previously discussed. Analysis of the ground state
wavefunctions for 3+3 respective 6+6 particles shows a soft transition close to
the point of the minimum. The transition comes from the onset of pairing in
the ground state, and therefore represents the few-body limit of the normal-to-
superfluid transition. The observation of a few-body Higgs mode precursor is
further emphasized by the transition matrix elements in Fig. 15, which show
that the Higgs mode precursors mainly couple to the ground state in terms of
interaction modulations. The modes are also insensitive to fluctuations in the
trapping frequency, which is consistent with fluctuations that do not change
the pairing. These two characteristics, which only occur at a filled-shell con-
figuration, lead to the interpretation that the few-body systems with contact
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interaction2 show behavior that is consistent with a precursor of the many-body
Higgs mode.

Figure 14: Numerical excitation energies for 3+3 fermions (dashed red line) and for 6+6 fermions (red solid line) obtained
in the L = 0 subspace (the energy for 6 + 6 fermions is an upper bound). The blue dashed line is the second
excited state. The solid gray lines are higher excitations for the 3 + 3 system. The black solid (dotted) lines
show the results of the numerical (analytic) many-body calculations of a sharp Higgs mode in [111]. This figure
is taken from paper i.

Comparing with the results in Ref. [111] we note that the few-body simulations
take into account effects far beyond the mean field-calculations, most import-
antly in the sense that all two-body correlations are considered. In the approxim-
ation scheme in Fig. 13, the Hubbard-Stratonovich transformation was applied
to introduce a pairing field, which was then approximated by a saddle-point.
Therefore the many-body calculations only involved a single Slater-determinant,
which constitutes a clear simplification compared to our few-body calculations.
Another difference is that there is no phase transition in the few-body system,
but instead a smooth change in the ground state properties. The effects of

2A few simple test-cases with a narrow Gaussian two-body interaction function gave qual-
itatively the same results as for the delta pseudopotential otherwise applied here.
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increasing N , i.e., the lowering of energy minima and an increase in the pair-
ing coupling matrix elements, however, shows how the few-body precursor ap-
proaches the many-body sharp quantum phase transition. This behavior can be
partly understood by the trend that the critical binding energy decreases with
particle number, which is confirmed in the few-body limit and within the analyt-
ical model of [111]. Therefore, the interaction strength for the phase transition
decreases with N , which indicates that when going towards larger particle num-
bers, higher-order correlations are expected to become less important to describe
the low-energy physics around εc. The accuracy of the mean-field results should,
therefore, increase with N , so that the gap in the excitation energy reduces as
N →∞.

Figure 15: Left: Transition matrix elements ΓEint corresponding to the interaction-modulation operator in Eq. (13) for a
3+3 and a 6+6 system. The quantities are plotted as functions of the two-body binding energy εb, normalized
with respect to the critical binding energy εcb which occurs at the minimum in excitation energy. The matrix

elements are normalized by ΓEint, calculated for the Higgs mode at near-zero coupling strength for the 3 + 3

system. (The result for 6 + 6 fermions is a lower bound) Right: Transition matrix elements ΓEtrap corresponding

to the density-modulation operator in Eq. (12). The matrix elements are normalized by ΓEtrap calculated for

the second excited state at near-zero coupling strength (the result for 6 + 6 fermions is an upper bound). This
figure is taken from paper i.

We finally note an important property of the Higgs mode precursors in Fig. 14:
The Higgs modes are isolated in the spectrum around the transition where the
transition matrix elements reach a maximum. This again establishes the idea
that the modes can be selectively excited using modulations in the interaction
strength. Since there are no other states close to the Higgs mode precursor at
the transition point, we believe that a time-dependent modulation, where the
frequency directly relates to the gap in the spectrum, could be used to access the
Higgs mode directly. We, therefore, conclude that the Higgs mode precursors not
only show strong similarities to the pairing fluctuations but are also accessible
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via cold-atom experiments.

6.8 Higgs modes in a core-less 2D harmonic oscillator

An adapted model of a core-less 2D harmonic oscillator, pictured in Fig. 16 and
discussed in section 2.4, was seen to capture the essential physics of the Higgs-
modes, while at the same time allowing for larger particle numbers than the full
microscopic system. Most of the excitations which are responsible for the Higgs
modes are expected to occur around the highest occupied shells. Therefore
this type of artificial Hamiltonian, with shells only around the Fermi-level, can
be used to represent the development of Higgs-modes with increasing particle
number.

The spectrum in Fig. 17 shows that the trend of decreasing minima in excitation
energy persisted, further exemplifying the few-to-many body fate of the Higgs
mode.

Figure 16: Sketch of a core-less 2D harmonic oscillator where the lowest shells (here shown as transparent shells) are cut
from the regular harmonic oscillator, so that the four lowest configurations of filled shells occurs for 4,6,8 and
10 particles, respectively. This figure is taken from the supplementary material of paper i.
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Figure 17: Numerical excitation energies for a sequence of particle numbers each corresponding to a filled-shell configuration
in the core-less harmonic system of Fig. 16. Each line corresponds to the lowest monopole excitation of
the respective systems, showing a decrease in the excitation gap with increasing particle number. Here, the
regularization-procedure is not applied since it becomes ambiguous for the core-less Hamiltonian. The results
are hence not fully converged, but rather represent upper limits of the true excitation-energies. This figure is
taken from the supplementary material of paper i.

6.9 Outlook - Hartree-Fock Bogoliubov calculations

The normal-to-superfluid transition has also been studied for the Hartree-
Fock Bogoliubov (HFB) method [119], which is a self-consistent field method
that, contrary to the regular Hartree-Fock (HF) method, accounts for some
degree of pair correlation between particles. For a recent example relating
to few-body Higgs modes, see [120]. The HFB method can be extended to
a multiconfiguration-type scheme where a set of HFB solutions form a non-
orthogonal basis for solving the Hamiltonian in Eq. (11). Such a method is
a promising candidate for calculations involving larger particle numbers, and
also offers another perspective on Higgs modes around the normal-to-superfluid
transition in the few-body 2D harmonic oscillator.
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The basic HFB method is based on the Bogoliubov transformation which in-
troduces quasi-particle operators that are used in a minimization procedure of
the ground state energy. The ground state |HFB〉, retrieved from the self-
consistent minimization, is partly defined in terms of the so-called abnormal
density matrix,

κij = 〈HFB|âiâj |HFB〉
where âi is the annihilation operator associated with single-particle state i [119].
The strength of pairing in an HFB solution is represented by the matrix,

∆ij =
1

2

∑

kl

V δ
ijklκkl (14)

where V δ
ijkl is the many-body matrix element for the delta function in Eq. (11).

A suitably chosen and normalized matrix norm ∆pairing ≡ |∆ij |, represents a
scalar measure of the amount of pairing in an HFB-state.

To showcase the applicability of the basic HFB method for our system, the HFB
equations [119] were solved over a range of values for the interaction strength g
for a model-space of six single-particle harmonic shells. The same configurations
of particles, 3 + 3 and 6 + 6, as in the previous section were used here.

In Fig. 18 the ground state energies from the HFB-solutions are compared to the
regular HF-method and the exact CI-calculations within the same single-particle
basis. At the point of the phase transition, g ∼ 3.5(~ω)η2, the HFB energies
become considerably lower than the HF energies, indicating that the pairing
energy gives a large contribution to the ground state that is not accounted
for in HF. This indicates that the HFB method captures some of the pair-
correlations that are responsible for the transition in the ground state, and for
the appearance of Higgs modes.

This fact is further established in Fig. 19, where the energies of some HFB-states
are plotted against ∆pairing. By introducing a scaling parameter, the pairing
strength was forced towards higher or lower values with respect to the actual
value ∆min found for the HFB-solution. The energy reaches a minimum for
∆pairing = ∆min. Each curve represents the energy associated with a modulation
in pairing strength, with respect to the actual pairing in the ground state. We
can see how the energy cost of a pairing modulation here reaches a minimum
around the phase transition, consistent with the results in the previous section.
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Figure 18: Ground state energy for a 2D harmonic oscillator with 3 + 3 (left), and 6 + 6 (right) particles. The energies
are calculated using HF (blue lines), HFB (red lines) and CI (green lines) for a model-space with six harmonic
shells. For 6 + 6 the CI-energies represent an upper bound. After the point of the transition into a paired
ground state , g ∼ −3, the HFB calculations give considerably better results than the HF-calculations.

Figure 19: HFB ground state energies for a few different interaction strengths g. The parameter ∆pairing represents a
scalar measure on the amount of pair-correlation in the ground state. Each curve is sampled by ”forcing” the
pairing towards higher or lower values than that of the true value, ∆min, for the ground state. Note that the
sensitivity of the HFB energy with respect to pairing-modulations is smallest around the transition at g ∼ −3.

42



7 Few-body localization and short-range behavior in
parallel quasi one-dimensional traps with dipoles

As mentioned in the introduction, ultracold systems with dipoles have shown to
give rise to a lot of different many-body and few-body effects, for a review see for
example [19, 20]. In particular, the long range of the dipole-dipole interaction
(DDI) is relevant for studies of systems comprised of two or more spatially
separated traps. For example, in so-called bi-layer systems with two separated
quasi-2D traps, the DDI between the layers may realize a superfluid state of
dimer pairs, see e.g. [121–123].

Setups with two parallel quasi-1D traps have also been studied extensively, both
in the many- and few-body limit, see e.g. [124–129]. In particular the (intertrap)
interaction between different traps is responsible for the formation of bound
dimers between the separate traps [130]. Interestingly, the low-energy limit
of the inter-trap DDI can be approximated by a delta function with suitably
rescaled interaction strength, see for example [129, 131, 132].

In paper v we study the dynamical properties of a system with two parallel quasi-
1D harmonic traps with a few dipolar bosons or fermions. We consider an exact
form of the interaction potential, showing that by tuning the alignment of the
dipoles relative to the confinement, few-body localization within the traps can
be enhanced by the formation of dimers between particles in different traps [126].
We investigate the crossover region between a localized dimer state and a sep-
arated, non-bound state by analyzing some of the dynamical properties of the
system. It is seen that the short-range part of the DDI gives rise to a particular
kind of excited state, which has some analogies to the super-Tonks-Girardeau
states in mixtures of particles with short-range interaction.

7.1 Model

We consider two parallel quasi-1D harmonic traps, Tn and Tn′ , with fermionic
or bosonic dipoles. The trapping potential reads

V trap
n (r) =

m

2
ω2
xx

2 +
m

2
ω2
⊥
[
y2 + (z − nzw)2

]
. (15)

where n denotes the trap index, m is the mass, and ωx and ω⊥ are the trapping
frequencies in the x-direction and yz-plane, respectively. The setup is sketched
in Fig. 20.
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Figure 20: Sketch of two quasi 1D harmonic traps with four dipolar particles. The direction of the dipole moments are
indicated by the red arrows, with directions defined by the two angles θ and φ. The distance between the traps
is denoted by zw . This figure is taken from paper v.

The effective DDI is calculated by assuming that the traps always are in the low-
est transversal energy state of the harmonic confinement so that particles only
move along the x-direction. We can separate the DDI into two parts: inter-
trap interaction V eff

n,n′(x), meaning DDI between traps, and intratrap interaction

V eff
n,n(x), meaning DDI within one trap. We use dimensionless units ~ = m = 1,

and energies are given in units of oscillator frequency ~ωx and lengths in terms
of oscillator length lx =

√
~/mωx.

We only consider the case θ = 90◦, where the dipoles are aligned perpendicular to
the x-axis, giving an effectively repulsive V eff

n,n′ . The interaction strength is given

in terms of the dimensionless parameter d2m/
(
~2lxγ

)
= 8π, where γ = ε0 for

electric dipoles and ε0 is the permittivity of free space. The interaction strength
is chosen so that the single-trap states are always in the fermionized regime,
which means that for more than one particle in each trap, the particles cannot
be found at the same position (see section 3). Since particles are fermionized
within each trap, we can also neglect the delta-function term sometimes included
in the effective 1D DDI of a single trap [124, 133, 134]. The inter-trap distance
is given in terms of the parameter zw = 25lx/l⊥, which is sufficiency large for
the tunneling between traps to be strongly suppressed.
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With these restrictions, it is convenient to express a general state in terms of a
tensor product of the different traps

|ψ〉 = |ψn〉
⊗
|ψn′〉

where n and n′ denotes the pseudo spin associated with trap Tn and trap Tn′ ,
respectively. The intertrap interaction may then expressed as an operator which
couples different pseudo spin states. An approximate form of the intertrap
interaction potential can be found by taking

√
~/mω⊥ → 0.

V eff,θ=90
n,n′ (x̃) = d2

[
1

(z2
ω + x̃2)3/2

− 3z2
ω

(z2
ω + x̃2)5/2

cos2φ

]
(16)

where x̃ is the relative distance between two particles, along the x-axis. This
form is exact for our choice of parameters, so we use it hereafter. V eff

n,n′ specifically
depends on the alignment of the dipoles relative to the trap, given by the angle
φ, on the distance between traps zw, and on the distance x̃ between particles
along x.
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Figure 21: Effective DDI, approximated by Eq. (16) for different angular configurations of the double trap system, as a

function of the relative The short-range part of V eff
n,n′ can be changed toward positive or negative values by

tuning φ, as sketched in the insets. This figure is taken from paper v.

7.2 Methods

The Hamilton matrix of the double trap system is diagonalized with the B-spline
piece-wise polynomial basis [34], see section 2. For details on the numerical
calculations, see paper v. The dipolar angle φ is tuned over a region of values,
giving a crossover from repulsive to attractive short-range V eff

n,n′(x), as shown in
Fig. 21. Two different configurations of particles are investigated; one with a
single particle in each trap, and one with two particles in each trap.
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7.3 One particle in each trap

For a simple system with one particle in each trap (1+1), we study the ground
state transitions from a non-bound state at angle φ = 90◦ into a bound dimer
state at angle φ . 49◦. In Fig. 21 we see how an attractive core of V eff

n,n′ appears
for φ ∼ 54◦, and becomes deeper and wider for successively smaller angles.
A bound state is formed when the depth and width of the attractive core are
sufficiently large for the binding energy to overcome the cost in kinetic energy
associated with confining the particles within the attractive range.

In Fig. 22 the superimposed single particle densities, ρTn + ρTn′ , see Eq. (3),
of the two parallel traps are shown for two ground states - one on each side of
the transition at φ ∼ 51◦. The particular choices of angles are motivated by
the numerical treatment of the Hamiltonian. For angles . 49◦, the convergence
with respect to increasing size of the single-particle basis is so slow that exact
diagonalization becomes impractical.

We see that the non-bound ground state, here at φ = 52◦, has two distinct peaks
of higher density, similar to the density of two spin-polarized fermions in a single
trap, hinting at the separation between particles along x. The pair-correlated
density further emphasizes this separation; for a reference particle at x = 0 in
trap Tn, there is a diminished probability of also finding the particle in trap Tn′

at x = 0.

47



Figure 22: Single-particle density ρTn + ρT
n′ for the ground state of a doubletrap system with one particle in each trap.

The densities are plotted for two different dipolar angles, φ = 49◦ and φ = 52◦. Inset: Pair-correlated densities
for a reference particle at x = 0. For φ = 49◦ the attractive part of V eff

n,n′ produces a bound dimer with high

probability of finding two particles at the same position. For φ = 52◦ the repulsive parts of V eff
n,n′ produces a

separated state with very small probability of finding two particles at the same position.

The curves for the dimer ground state at φ = 49◦ show an entirely different beha-
vior, where the single-particle density does not have the characteristic ”wiggles”
of a fermionic state [50], but rather suggests a single compound of two particles
that are bound together. This is again manifested in the pair-correlated density
for a reference particle at x = 0 in trap Tn, which shows a significant probability
of finding the particle in Tn′ at the same position in x. The existence of few-
body bound states has been discussed for setups with multiple parallel quasi-1D
traps, see for example [130].

7.3.1 Transition into a dimer

Now, we imagine a situation where the ground state is prepared in a non-bound
state at φ0 & 51◦, and φ is adiabatically tuned towards angles which give a
bound state φ . 51◦. This procedure will slowly transform the state into a
bound (dimer) state [130].

However, we find that a sudden change in the angle, φ0 → φ = 49◦, does not
necessarily bring the system into a dimer state, but might instead populate a
particular excited state at φ = 49◦. This state was shown to have an overlap
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close to unity with the ground state at φ = 90◦. Since the excited state is very
similar to the separated ground state, it only has a weak dependence on the
dipolar angle φ, which means that the state is weakly affected by the attractive
short-range part of the effective DDI.

To further investigate the outcome of a sudden change φ0 → φ = 49◦ we calcu-
late the uncertainty in energy,

σE =
√
〈ψ0(φ0)|H2(φ)|ψ0(φ0)〉 − 〈ψ0(φ0)|H(φ)|ψ0(φ0)〉2, (17)

which represents the shortest time scale that characterize a significant change
in the system, where the time scale decreases with increasing σE . For σE = 0,
ψ0(φ0) is an eigenstate of the Hamiltonian H(φ). A non-zero σE means non-
stationary states. The uncertainty shows that for φ0 = 90◦ we have reached a
state which is close to stationary compared to the state reached for φ0 = 52◦.
Furthermore, the uncertainty depends only weakly on φ for φ0 = 90◦, confirming
that the state is largely separated.

Figure 23: Energy uncertainty σE for a state ψ0 after a sudden change in the dipolar angle to φ . 49◦, which corresponds
to the attractive regime where the true ground state is a bound dimer. When ψ0 prepared in the non-bound
ground state at φ = 90◦, the energy uncertainty is weakly dependent on φ, compared to a state prepared at
φ ∼ 52◦.

Since the particles remain separated in the excited state, the formation of a
dimer is suppressed. The existence of such a state was predicted in [130], where
it was noted that the short-range nature of the inter-trap DDI should give rise
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to physics that was analogous to that of particles interacting via a delta pseudo-
potential. The analogy here is the super-Tonks-Girardeau state, discussed in
section 3, which can be populated by a sudden quench in the interaction. We
expand on this analogy in the appendix.

7.4 Two particles in each trap - Enhanced localization by form-
ation of dimers

For a configuration with more than one particle in each trap (Nn+Nn′), the form-
ation of bound states between particles in different traps is especially interesting.
The binding between wires is known to greatly affect the single trap states, for
example by enhancing localization [126]. Dipole-dipole coupling between separ-
ated traps is responsible for many interesting quantum phases, such as dimer-
and trimer-liquids [127, 128].

Figure 25 shows the single-particle densities of trap Tn for a non-bound state at
φ = 52◦, either with fermions or bosons. We note four distinct region of high
density, which indicates that a particle in trap Tn avoids the remaining particle
in the same trap, and also the two particles in trap Tn′ . The particles in Tn
feels the repulsive part of V eff

n,n′ from each of the two particles in Tn′ . Therefore,
particles repel each other, both within the same trap and across the different
traps.

Looking at the projected single-trap states at φ = 52◦, |ψn0〉 and |ψn1〉, we see
that they each are in the fermionized regime, since the single-particle densities
are identical for bosons and fermions. However, there is non-zero overlap in the
probability distributions of particles in the same trap. This overlap is subtle
and can not be seen directly in the pair-correlated plots in Fig. 25, but can be
inferred from the fact that the momentum distributions of fermions and bosons
differ, which means that the state is not localized [42, 54]. From the pair-
correlation between two particles in different traps, one can again see that the
repulsive part of V eff

n,n′(x) causes particles to line up in a checkerboard-pattern,
with a small but non-zero probability of finding particles at the same position
in x.

By tuning φ towards smaller values, we can dramatically alter the ground state
of the double-trap system. Figure 24 shows the ground state of a 2+2 system
at φ ∼ 49◦, where two bound complexes have formed between particles in dif-
ferent traps. Compared to a system with no interaction between the traps, the
localization in the single trap is enhanced by the formation of dimers. As a
measure of this, we again compare the momentum distribution of the fermionic
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and the bosonic system. As noted before, when localization sets in, the bosonic
and fermionic momentum distributions converge onto the same curve. This is
understood by the simple fact that there is zero overlap between the different
wave functions of each particle so that the statistics no longer matter. The
existence of bound dimers is also recognized from the pair-correlated densities
in Fig. 24. For a reference particle in trap Tn, there is a large probability of
finding a second particle in the opposite trap at the same position in x. The
pair-correlation plots also confirm that the overlap of particles in the same trap
is diminished by the binding since the pair-correlation between two particles at
the same position is close to zero.
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Figure 24: Ground state density distributions for a 2+2 system (Nn = Nn′ = 2) with φ ∼ 49◦, for which the attractive

part of V eff
n,n′ is sufficiently strong to form a bound ground state (see Fig. 21). The solid blue lines correspond

to a system of fermions, and the dashed red lines to a system of bosons. Top left: Single particle density in
trap Tn. The fermionic and bosonic densities are next to identical, so the state is fermionized. Top right:
Density distribution in momentum space. The fermionic and bosonic densities are identical, which indicates
that the state is localized. Bottom left: Pair-correlated density for particles in the same trap. A reference
particle is placed at the position of the second peak in the top left figure, as indicated by an X. Bottom left:
Pair-correlated density for particles in opposite traps, with the reference particle again placed at the position of
the second peak. This figure is taken from paper v.
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Figure 25: Similar to Fig. 24 but for φ ∼ 52◦. Here, the ground state does not have bound dimers between traps. This
figure is taken from paper v.

7.4.1 Transition into a localized state with two dimers

We saw that it was possible to bring the double trap system in and out of
localization by tuning φ. By preparing the state in the non-localized and non-
bound state at some angle between φ ∼ 52◦ and φ = 90◦ and adiabatically
tuning φ towards smaller values one can continuously change the few-body state
towards stronger localization. However, like in the case of one particle in each
wire, a quick change in φ gives a very different outcome.

In the energy-spectrum above the bound ground state at φ ∼ 49◦, one finds,
like in the 1+1 system, highly excited states that that have significant overlaps
with the non-bound ground state at φ & 52◦. The outcome of a quick change
in φ strongly depends on the nature of these highly excited states. Since the
non-bound ground state at φ & 52◦ may be close to a stationary state of the
Hamiltonian at φ ∼ 49◦, sudden changes in φ may transfer a significant part of
the population into such excited states, rather than into a bound and localized
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state. Simulations showed that after a fast sweep of φ from φ0 = 90◦ to φ = 49◦,
mainly two excited states were occupied. Both states had a weak dependency on
φ compared to other states and showed the very similar densities as those for the
repulsive ground state at φ. The energy uncertainty in the initial state was hence
only weekly dependent on φ and was furthermore restricted to comparatively
small values also in the strongly attractive regime, as shown in Fig. 26. We
can hence conclude that the formation of dimers and the resulting onset of
localization was prohibited.

Figure 26: Energy uncertainty σE for a state Ψ0 after a sudden change in the dipolar angle to φ = 49◦, which corresponds
to the attractive regime where the true ground state has bound dimers. When ψ0 prepared in the non-bound
ground state at φ = 90◦, the energy uncertainty is weakly dependent on φ, compared to a state prepared at
φ ∼ 52◦.

When starting at φ0 ∼ 52◦ the initial state has less separation between particles
than an initial state prepared at φ0 ∼ 90◦, and when tuning to φ = 49◦ the
energy uncertainty σE depends strongly on φ, reaching comparatively large val-
ues in the strongly attractive regime. This indicates a larger overlap with dimer
states in the trap, which means that in order to suppress dimer formation after
a quench to φ = 49◦, the initial state should be prepared at φ = 90◦, rather
than at φ0 ∼ 52◦.
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1 Short-range interaction potentials between particles
in harmonic traps.

As noted in section 7, the effective intertrap dipole-dipole interaction between
two quasi-1D traps is sometimes approximated with a delta pseudopotential,
see for example [129, 131, 132]. This has led to discussions on how short-range
phenomena, such as Tonks-Girardeau (TG) and super-Tonks-Girardeau (STG)
states (see section 3), may appear in double-trap few-body systems [130]. Here,
we explicitly compare behavior for a few different types of pseudopotentials with
short-range properties, including the dipole-dipole intertrap pseudopotential in
Eq. (16).

For comparison, we first consider the Hamiltonian in Eq. (6). This Hamiltonian
represents an effective 1D system with contact-interacting particles, which is the
typical setting to observe TG and STG states, see for example [48–51]. Here we
use the same system of units as in section 5.3.

We specifically consider a setup for a Bose-Fermi mixture, which offers a direct
comparison to the setup in the double-trap system in section 7. This is the
case since both setups can be described in terms of two pseudo-spin states,
each representing a particle species that is distinguishable from the other. We
note that Girardeau’s mapping of strongly interacting bosons onto spinless non-
interacting fermions, see section 3, is applicable also to Bose-Fermi mixtures [55].
For example, this mapping was employed to construct a spin chain from mixtures
in paper iv.

For a setup with one boson and one fermion, the Hamiltonian in Eq. (6) is
diagonalized for a range of values of interaction strength g1D. We then analyze
the spectrum and the corresponding energy eigenfunctions.

Figure 28 shows the spectrum of one boson and one fermion. The horizontal
lines in the spectrum correspond to spatially antisymmetric wave functions,
which are independent of the interaction. For a system of spinless fermions,
only the spatially antisymmetric spatial functions would appear in the spectrum,
and the system would be non-interacting. For g1D & ±9~ωl the ground state,
marked blue in the plot, approaches energy E = 2~ω, which is the energy of
two non-interacting spinless fermions. The particular value of g1D is chosen
for numerical reasons; the identification of the relevant states in the spectra
becomes increasingly complex with stronger attraction.

In the TG limit, g → ∞, analytic results state that the energy completely
saturates, see for example [48, 49]. This is the case since the hard-core boundary
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condition Ψ(x1 = x2) = 0 there applies to the wavefunction, and the energy is
therefore independent of the interaction strength g1D. In the infinitely attractive
limit, g1D → −∞, the same boundary condition applies to a set of excited states,
as briefly discussed in section 3.2. The lowest of these states, which saturates at
E = 2~ω for g1D → −∞, is marked red in Fig. 28. This state was identified as a
few-body, finite-interaction precursor of an STG in Ref. [51], in which a narrow
Gaussian contact pseudopotential was employed.

Like the energy, other observables of the wave function also approach those of
spinless non-interacting fermions for g1D → −∞, see section 3 again. Figure 27
shows that the single-particle density distributions in the states marked in the
spectrum each become similar to that of spinless fermions, and thus also to each
other.

Figure 27: Single particle densities for one fermion and one bosons in a harmonic trap, corresponding to the spectrum
in Fig. 28, of the Hamiltonian in Eq. (6). The solid lines correspond to g1D = ±9~ω, the dashed lines to
g1D = ±20l~ω, and the dash-dotted line to the spatially antisymmetric state of two non-interacting spin-
polarized fermions (included for comparison). The density profiles of the states marked TG and STG each
converge onto the dash-dotted line for successively stronger interaction and in the unitary limit, g1D = ±∞,
their density profiles are identical to that of the spatially antisymmetric state.

As also mentioned in section 3, STG states are typically produced by preparing
a system in the TG ground state at strong repulsion, and then make a sudden
quench the interaction towards strong attraction. This works if the TG states are
stationary in the regime of strong attraction. In Fig. 29 we plot the uncertainty
in energy, (see Eq. (17) and the following discussion in section 7), for the ground
state |ψ(g0

1D)〉 prepared at different interaction strengths in the repulsive regime.
The uncertainty shows that states prepared at strong repulsion have smaller
uncertainty in the attractive regime g1D ∼ −30l~ω than those prepared for weak
repulsion. Also, the uncertainty of the strongly repulsive states only depends
weakly on the interaction strength. (Note that the exact values in Fig. 17 are not
fully converged, but represent lower bounds of the uncertainty. The overall trend
is however correct.) This indicates that one particular excited state at −g0

1D
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becomes increasingly similar to the ground state at g0
1D for successively stronger

repulsion and also suggests that it develops into a stationary state for g0
1D →∞

and g0
1D → −∞. This behavior is consistent with the findings in Ref. [51], in

which it was shown that the few-body TG and STG precursors indeed develop
towards completely fermionized states at strong contact repulsion/attraction.

Figure 28: Energy spectra of the Hamiltonian in Eq. (6), for a system with one boson and one fermion in a harmonic
trap at different interaction strengths g1D . The thick blue and red lines indicate the TG and STG state
precursors, respectively. In the limit g1D → ±∞, the lines fall onto the same energy, E = 2~ω, as the
spatially antisymmetric state, which is independent of the interaction strength.
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Figure 29: Energy uncertainties, defined in Eq. (17), as functions of the delta pseudopotential interaction strength g1D .
Each line represents an interaction strength g01D at which the ground state is calculated. The values on the

y-axis represents the spread in energy after a fast change in interaction strength g01D → g1D (Note that the
exact values of uncertainty are not fully converged with respect to single-particle basis size, but represent lower
bounds of the uncertainty. The overall trend is however correct.)
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For two particles, in different pseudo-spin states, we calculate the spectrum
for a few different choices of interaction potentials. We study an effective 1D
harmonic system with trapping length lx =

√
~/mωx, where ωx is the trapping

frequency along x. We study the effective 1D Gaussian contact potential,

VGauss = g · e−z2/2W 2
, (18)

the effective dipole-dipole interaction between particles in different parallel traps
(see Eq. (16)) (normalized so that g represents the peak value, i.e. V (0) = g),
and the effective 1D dipole-dipole interaction between particles in the same
quasi-1D trap,

VDDI = g(θ)

√
1

2π

(
2
z

W
+
√

2π(1 +
z2

W 2
)ez

2/W 2
erfc(

z

W
√

2
)

)
, (19)

where erfc() is the complementary error function. Here, g(θ) points to the fact
that the effective interaction strength for the dipole-dipole interaction in a 1D
trap can be changed by the angle θ, which represents the alignment of the dipolar
moments relative to the longest semiaxis in the trap.

For each of these potentials, we identify a parameter W which represents the
width of the potential function. For the interaction between parallel traps in
Eq. (16), we consider W = zw. Figure. 30 is a schematic view of the spectra
for different potentials. We see that the spectra are qualitatively similar to that
of the delta pseudopotential in Fig. 28, with levels approaching the spatially
antisymmetric state at E ∼ 2~ωx. The similarities are not surprising since all
potentials have a short-range nature for W → 0. For example, TG and STG
states can be found for quasi-1D systems, either by considering a narrow Gaus-
sian interaction pseudopotential or an effective 1D DDI [51, 66]. In contrast to
the spectrum for the delta pseudopotential, we can, however, see that the spa-
tially antisymmetric state feels the finite range of the other potentials, causing
shifts in the energy.

For each of the systems, we also investigate the overlaps between the ground
state at strong short-range repulsion and a particular excited state (marked red
in Fig. 30) at strong short-range attraction. The results are summarized in
table 1 and we see that for successively smaller W , meaning a more strongly
peaked short-range potential, the overlaps increase. The excited state may
hence be populated by preparing the ground state at strong repulsion, and then
suddenly change the short-range interaction toward strong attraction. For the
double trap system, this can be achieved by a quick shift in the dipolar angle φ.
In section 7 the energy uncertainty after such a sudden shift in φ was calculated,
see Fig. 23. We can compare this to the corresponding uncertainty calculated
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for a system with a delta pseudopotential, see Fig. 29, after a sudden change
in the interaction strength g. Both figures indicate that the ground state, pre-
pared at successively stronger repulsion, develops towards a stationary state in
the regime of strong attraction.

To summarize: the spectra, the overlaps and the uncertainties all points towards
an analogy between the highly excited states discussed for the double trap in
section 7, and the few-body STG precursor states discussed in Ref. [51].

Table 1: Overlap between the ground state at strong short-range repulsion g0, and a highly excited states at strong short-
range attraction −g0. Here g0 ∼ 20lx~ωx represents the peak value of each potential i.e. V (0) = g0. The

results are obtained for three different interaction potentials; VGauss in Eq. (18), VDDI in Eq. (19), and V eff
n,n′

in Eq. (16). In the limit of small W , each potential is strongly peaked around xi = xj . Note that V eff,θ=90

n,n′
reproduces a large overlap for a small inter-wire length, which was discussed in section 7. Also VDDI produces
large overlaps with the ground state, as predicted in [66].

Width-parameter W 0.1 0.25 0.5 0.8

V (W )Gauss 0.99 0.99 0.92 0.8
V (W )DDI 0.98 0.97 0.91 0.82

V (W )eff
n,n′ 0.99 0.98 0.98 0.8
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Figure 30: A schematic view of the different energy spectra for two particles in a quasi 1D harmonic trap. The spectra
are sketched for three different interaction pseudopotentials; VGauss in Eq. (18), VDDI in Eq. (19), and V eff

n,n′
in Eq. (16). Here, g represents the peak value of each potential V (0) = g. The spectra all have a similar
structure.
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Few-Body Precursor of the Higgs Mode in a Fermi Gas
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2Department of Physics and Astronomy, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark
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We demonstrate that an undamped few-body precursor of the Higgs mode can be investigated in a
harmonically trapped Fermi gas. Using exact diagonalization, the lowest monopole mode frequency is
shown to depend nonmonotonically on the interaction strength, having a minimum in a crossover region.
The minimum deepens with increasing particle number, reflecting that the mode is the few-body analogue
of a many-body Higgs mode in the superfluid phase, which has a vanishing frequency at the quantum phase
transition point to the normal phase. We show that this mode mainly consists of coherent excitations of
time-reversed pairs, and that it can be selectively excited by modulating the interaction strength, using, for
instance, a Feshbach resonance in cold atomic gases.

DOI: 10.1103/PhysRevLett.116.155302

The transition from few-body quantum physics to the
thermodynamic limit with increasing particle number is a
fundamental problem in science. A systematic investigation
of this question is complicated by the fact that the few-body
systems existing in nature, such as atoms and nuclei, have
limited tunability. Artificially created clusters [1,2] or
semiconductor quantum dots [3] offer more flexibility,
but they are often strongly coupled to their surroundings
making a study of pure quantum states difficult. The
creation of highly controllable few-fermion systems using
cold atoms in microtraps [4,5], however, has opened new
perspectives. Tunneling experiments in the few-body limit
demonstrated single-atom control [6,7]. One has already
observed the formation of a Fermi sea [8], as well as pair
correlations in one-dimensional (1D) few-body atomic
gases [5] that have also been studied extensively theoreti-
cally [9–13]. The few- to many-body transition is arguably
even more interesting in higher dimensions, where quan-
tum phase transitions with varying degrees of broken
symmetry are ubiquitous [14]. A key question concerns
the few-body fate of the order parameter, which describes a
broken symmetry phase in the thermodynamic limit.
Another fundamental problem concerns the properties of

the Higgs mode, which corresponds to oscillations in the size
of the order parameter for a given broken symmetry phase
[15,16]. Elementary particles acquire their mass from the
presence of aHiggsmode [17],whichwas famously observed
at CERN [18,19]. The Higgs mode also leads to collective
modes in condensed matter and nuclear systems [14,20].
Despite its fundamental importance, the list of table top
systemswhere it has been observed is short,mainly because it
is typically strongly damped, and because it couples only
weakly to experimental probes [21–23]. Experimental evi-
dence for the existence of a Higgs mode has been reported in
disordered and niobium selenide superconductors [24–27].
Also, neutron scattering experiments for a quantum

antiferromagnet [28] are consistent with the presence of a
broad Higgs mode, and lattice experiments combined with
theoretical models for bosonic atoms in an optical lattice,
indicate that a threshold feature can be interpreted in terms of
a strongly damped Higgs mode [29,30].
Here, we show how one can explore both these funda-

mental questions, the few- to many-body transition and the
nature of the Higgs mode, using an atomic Fermi gas in a
new generation of microtraps. We calculate the few-body
spectrum using exact diagonalization and show that for
closed-shell configurations, the lowest monopole excitation
energy depends nonmonotonically on the interaction
strength, having a minimum in a crossover region, which
deepens with increasing particle number. By comparing
with a many-body theory, we demonstrate that the mode is
the few-body precursor of the Higgs mode in the superfluid
phase, which exhibits a vanishing frequency at a quantum
phase transition to a normal phase. The mode mainly
consists of time-reversed pair excitations, and it can be
selectively excited by modulating the interaction strength.
We consider N=2 fermions of mass m in each of two

hyperfine (spin) states σ ¼ ↑;↓ in a 2D harmonic trap
mω2r2=2. Particles with opposite spin interact via an
attractive delta function interaction (suitably regularized,
see below) gδðr − r0Þ with g < 0, whereas particles of the
same spin do not interact. The Hamiltonian is

Ĥ ¼
XN

i¼1

�
−
ℏ2∇2

i

2m
þ 1

2
mω2r2i

�
þ g

X

k;l

δðrk − rlÞ; ð1Þ

where ri ¼ ðxi; yiÞ is the spatial coordinate of particle i,
∇2

i ¼ ∂2
xi þ ∂2

yi , and k and l in the second sum denote
particles with spin ↑ and spin ↓, respectively.
In order to make rigorous predictions unbiased by any

assumptions, we calculate the eigenstates of (1) by exact
diagonalization using a basis of harmonic oscillator states
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with energy ð2nþ jmj þ 1Þℏω, where n ¼ 0; 1; 2; 3;…,
and m ¼ 0;�1;�2;… is the angular momentum. This
method has been extensively applied to attractive fermion
systems, mainly in one dimension [9–13] but also in two
dimensions [31,32]. As explained in the Supplemental
Material [33], we employ a two-parameter cutoff scheme
for the basis states in order to reach maximum convergence.
Using a sparse representation of the resulting matrix, we
find the eigenvectors using the implicitly restarted Arnoldi
iteration method [36]. This generally allows for a signifi-
cantly larger number of basis states, ∼107, as compared to
other available diagonalization methods, which is crucial,
since we need a very large basis set for an accurate
calculation of the low-lying collective modes.
As it stands, the spectrum of Ĥ depends logarithmically

on the energy cutoff Ecut. To cure this UV divergence, we
eliminate the coupling constant g and cutoff Ecut in favor of
the two-body binding energy ϵb per particle. This is defined
as E2 ¼ 2ℏω − 2ϵb, where E2 is the ground state energy of
one ↑- and one ↓-particle in the trap. In practice, we
calculate ϵb and the many-body spectrum as a function of g
for the same Ecut, and then we plot the spectrum as a
function of ϵb. Since the two-body problem contains the
same logarithmic divergence as the many-body problem,
this procedure yields a well-defined theory for Ecut → ∞
[31,37,38]. A similar UV divergence appears for the system
in three dimensions, where it has been regularized using a
variety of methods [39–45].
Figure 1 shows the lowest monopole (zero angular

momentum) excitation spectrum as a function of the two-

body binding energy ϵb for a 3þ 3 system, consisting of
three ↑-particles and three ↓-particles. The noninteracting
ground state is a closed-shell configuration with the two
lowest harmonic oscillator shells filled. For no interaction,
the excitations all have the energy 2ℏω, and they are formed
either by pair excitations taking two particles with opposite
angular momenta one shell up, see Figs. 2(a)–2(b), or by
single particle excitations taking one particle two shells up;
see Fig. 2(c). We see that all excitation energies, except the
lowest, increase with increasing attraction since the attrac-
tive mean-field interaction potential increases the effective
trapping frequency, thereby increasing the single particle
excitation energies. The lowest mode is, however, qualita-
tively different: The excitation energy first decreases reach-
ing a minimum at a “critical” two-body binding energy ϵcb

FIG. 1. The lowest monopole excitation for 3þ 3 fermions
(dashed red line) and for 6þ 6 fermions (red solid line) obtained
by numerical diagonalization of Eq. (1). The blue dashed line is
the second excited state, and the gray solid lines are higher
excitations for the 3þ 3 system. The black solid (dotted) lines
show the numerical (analytic) many-body Higgs-mode energy
[46] (see Supplemental Material [33]).

FIG. 2. Panels (a) and (b) show a schematic sketch of an
excitation of a time-reversed pair ðn;m;↑Þ and ðn;−m;↓Þ one
shell up. The energy of such excitations decreases with increasing
attraction. Panel (c) shows an example of a single-particle
monopole excitation two shells up. The energy of such excita-
tions grows with increasing attraction.
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(we will justify this name shortly), after which it increases
for stronger attraction. This nonmonotonic behavior cannot
be understood from a single-particle picture. Instead, it is
due to pair correlations. The energy cost of exciting a pair of
time-reversed states across the energy gap, as illustrated in
Figs. 2(a)–2(b), initially decreases with increasing attrac-
tion, since the two excited particles can use the available
states in the empty shell to increase their overlap. In Fig. 1,
we normalize ϵb by ϵcb, defined as the two-body binding
energy that gives the minimummonopole excitation energy,
so that we can compare results for different particle numbers
and for the thermodynamic limit. Exact values of ϵcb are
given in the Supplemental Material [33].
To link the few-body spectrum to the thermodynamic

limit, we also plot in Fig. 1 the lowest monopole mode
obtained from a many-body calculation, which includes
fluctuations around the Bardeen-Cooper-Schrieffer (BCS)
solution [46] (see Supplemental Material [33]). Because of
the energy gap in the single particle spectrum for a closed-
shell configuration, there is a normal to superfluid quantum
phase transition at a critical binding energy ϵcb. The system is
in the normal phase for ϵb < ϵcb, and the lowest monopole
mode corresponds to vibrations in the pairing energy jΔj
around the Δ ¼ 0 equilibrium value. The frequency of this
mode decreases with increasing attraction and vanishes at
ϵcb, signaling a quantum phase transition to a superfluid
phase. In the superfluid phase, the minimum energy is
obtained for jΔj > 0, and the Higgs mode corresponds to
vibrations in jΔj around this minimum. Its energy is
approximately given by 2jΔj (The deviation is due to the
breaking of particle-hole symmetry), increasing from zero at
the critical point. When jΔj ≪ ℏω, the Cooper pairs are
predominantly formed by time-reversed states in the same
shell [46]. Importantly, the Higgs mode is undamped in this
regime due to the discrete nature of the trap level spectrum,
which is in sharp contrast to the other tabletop systems
mentioned above, where the damping is significant.
Comparing the 3þ 3 and the many-body spectrum in

Fig. 1 clearly shows that the lowest monopole mode for the
3þ 3 system becomes the few-body precursor of the Higgs
mode with increasing attraction. The nonmonotonic behav-
ior of its energy is the smooth few-body analogue of the
sharp thermodynamic normal to superfluid quantum phase
transition with a vanishing Higgs mode frequency at the
critical point. We also show in Fig. 1 the lowest monopole
mode for the 6þ 6 system corresponding to a closed-shell
configuration with the three lowest shells filled. The
nonmonotonic behavior of the lowest excitation energy
is now even more pronounced with a deeper minimum,
reflecting the gradual few- to many-body transition with
increasing particle number.
In the Supplemental Material [33], we illustrate further

the few- to many-body transition by calculating the
spectrum for the closed shell configurations up to 15þ
15 particles. Since it is numerically intractable to perform
exact diagonalizations of Eq. (1) beyond 6þ 6 particles, we

use a simplified model, which includes only the highest
filled and the lowest two empty shells. This calculation
clearly shows a pronounced deepening of the minimum of
the excitation energy with increasing particle number.
In Fig. 3, we plot the lowest monopole excitations for a

4þ 4 system, which corresponds to an open-shell con-
figuration where there is a pair of ↑↓ particles in the third
shell. Contrary to the closed-shell configuration, all exci-
tation energies now increase monotonically with the
attraction. This is because there is pairing for any attractive
interaction so that the lowest excitations involve pair
breaking, and it demonstrates that the nonmonotonic
behavior of the lowest mode energy is characteristic of a
closed-shell configuration, where there is a quantum phase
transition in the thermodynamic limit.
In order to investigate further the connection between the

few- and many-body physics, we quantify the amount of
time-reversed pairing correlations in a given state by

P ¼
X

i

jCtr
i j2: ð2Þ

Here, Ci are the expansion coefficients in the many-body
basis for a given eigenstate. The sum runs over all basis states
formed from the noninteracting ground state by excitations
of time-reversed (tr) pairs. In Fig. 4, we plotP for the ground
state and the two lowest excited states. Comparing the first
excited state with the ground state and with the second
excited states clearly shows that below the critical binding
energy ϵcb, the wave function of the lowest mode is mainly
formed by coherent excitations of time-reversed pairs. It is
consistent with the canonical many-body picture of

FIG. 3. Monopole excitations of an open-shell system. The
lowest excitations are intrashell excitations, which do not exhibit
a minimum. The gray lines show higher excitations (which
correspond to inter-shell transitions). Inset: Sketch of time-
reversed intrashell pair excitations.
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vibrations in jΔj, since such excitations give rise to fluctua-
tions in the pairing field. The highermode has a significantly
smaller proportion of pair correlations, and it mainly
consists of single-particle excitations two shells up. The
pairing correlations in the ground state increase with
increasing attraction, as it becomes more favorable to excite
time-reversed pairs across the energy gap. This smooth
increase of ground state pair correlations is the few-body
analogue of the normal to superfluid quantum phase
transition, where excitations of time-reversed pairs cost
zero energy at the critical coupling strength, making the
system spontaneously form Cooper pairs. The pair corre-
lated part of the few-bodyHiggsmode decreases for ϵb > ϵcb,
since it is orthogonal to the ground state.
We now address how one can detect the few-body Higgs

mode in atomic gas experiments using microtraps. Two
experimental probes are widely used: Periodic modulations
of the trapping frequency and of the interaction strength.
From Fermi’s golden rule, the transition rate from the
ground state jGi to an excited state jEi is proportional to
the transition matrix elements

ΓE
trap ¼ jhGj

X

i

r2i jEij2;

ΓE
int ¼ jhGj

X

k;l

δðrk − rlÞjEij2; ð3Þ

for the two probes. In Fig. 5, we plot ΓE
trap and ΓE

int to the
excited states of the 3þ 3 and the 6þ 6 systems. Figure 5
(left) shows that the transition rate into the lowest mode is
much larger than the rate into the second excited state when
the coupling strength is modulated. This is because the
interaction operator Γint can excite time-reversed pairs, (see
Supplemental Material [33]), which are precisely the exci-
tations that give rise to pair vibrations. Thus, theHiggsmode
can be selectively excited by modulating the interaction

strength, using, for instance, a Feshbach resonance. This
fact, together with the nonmonotonic frequency behavior,
can be used to experimentally identify the Higgs mode. On
the other hand, Fig. 5 (right) shows that when the trapping
potential is modulated, the transition rate into the second
excited state is much larger than into the lowest mode for
small attraction. The reason is that

P
ir

2
i is a single particle

operator, whereas the lowest mode mostly consists of time-
reversed pair excitations. With increasing attraction, the
transition rate into the lowest mode increases, consistent
with the fact that the pair correlation P in the Higgs mode
decreases with increasing coupling.
In conclusion, we demonstrated using exact diagonal-

ization that the lowest monopole excitation energy of a two-
component Fermi gas exhibits a nonmonotonic behavior
with increasing attractive interaction for closed shell
configurations. The mode frequency has a minimum in a
crossover region, which deepens as the many-body limit is
approached with increasing particle number. Comparing
with a many-body calculation, we identified the few-body
precursor of the Higgs mode, which has a vanishing
frequency at the quantum phase transition point between
a normal and a superfluid phase. We showed that the mode
is mainly formed by coherent excitations of time-reversed
pairs, and that it can be selectively excited by modulating
the interaction strength. These results demonstrate how a
new generation of cold atom experiments using microtraps
can be used to explore two fundamental questions in
physics: The nature of the Higgs mode and the crossover
from few- to many-body physics. Our results are also
relevant to the nuclear structure community, since we show
how cold atoms can be used to probe pair correlations in
finite systems much more systematically compared to what
is possible in nuclei [47,48].
We end by noting that similar results hold for atoms in a

3D trap [49,50]. Focus was here on the 2D case, as it is
closer to being experimentally realized. Indeed, the first

FIG. 4. Pairing correlations of the few-body states as defined by
Eq. (2) for N ¼ 3þ 3 fermions (dashed lines) and N ¼ 6þ 6
fermions (solid lines). The green lines show the ground state and
the red lines show the first excited state. The blue line shows the
second excited state (only for 3þ 3).

FIG. 5. Left: Transition matrix elements ΓE
int corresponding to

modulating the interaction strength for a 3þ 3 and a 6þ 6
system. The matrix elements are normalized by ΓE

int calculated to
the Higgs mode at a very low coupling strength for the 3þ 3
system. Right: Transition matrix elements ΓE

trap corresponding to
modulating the trapping frequency. The matrix elements are
normalized by ΓE

trap to the second excited state calculated at a very
low coupling strength.
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experiment observing pairing correlations in two dimen-
sions has already been reported [51].
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Quantum magnetism without lattices in strongly interacting one-dimensional spinor gases
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We show that strongly interacting multicomponent gases in one dimension realize an effective spin chain,
offering an alternative simple scenario for the study of one-dimensional (1D) quantum magnetism in cold gases in
the absence of an optical lattice. The spin-chain model allows for an intuitive understanding of recent experiments
and for a simple calculation of relevant observables. We analyze the adiabatic preparation of antiferromagnetic
and ferromagnetic ground states, and show that many-body spin states may be efficiently probed in tunneling
experiments. The spin-chain model is valid for more than two components, opening the possibility of realizing
SU(N) quantum magnetism in strongly interacting 1D alkaline-earth-metal or ytterbium Fermi gases.
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I. INTRODUCTION

Ultracold gases in optical lattices offer fascinating per-
spectives for the simulation of quantum magnetism, a topic
of fundamental importance in condensed matter physics [1].
Starting with the observation of superexchange in double-well
systems [2], recent experiments are quickly advancing in the
simulation of quantum and classical magnetism in optical
lattices, including the creation of plaquette resonating-valence-
bond states [3], the simulation of a quantum Ising model
using tilted lattices [4,5], the realization of classical anti-
ferromagnetism in triangular lattices [6], and the observation
of dipole-induced spin exchange in polar lattice gases [7,8].
However, although short-range antiferromagnetism has been
reported in dimerized lattices [9], Néel long-range order in
two-component Fermi gases has not yet been observed, due to
the very low entropy necessary in typical lattice experiments.

Strongly correlated one-dimensional (1D) systems have
also attracted major attention in recent years [10]. Experi-
mental developments in 1D systems are highlighted by the
realization of the Tonks-Girardeau gas [11,12], followed by the
studies on local two- and three-body correlations [13–15], slow
thermalization [16], and the realization of the super-Tonks gas
[17]. Theoretical investigations led to several generalizations
of Girardeau’s Bose-Fermi mapping for spinless bosons [18]
to multicomponent systems [19–22].

Recent experiments allow for the investigation of small
two-component fermionic 1D systems with a high control
of particle number, spin imbalance, and interaction strength
[23,24]. These experiments have attracted considerable at-
tention, in particular concerning the physics in the vicinity
of a scattering resonance [25–32]. For resonant interactions,
the energy eigenstates show a large spin degeneracy [20,21]
that is lifted for finite interactions, making these systems very
sensitive to temperature effects [28] and spin segregation in
the presence of magnetic-field (B-field) gradients [29,33]. The
analytical form of the many-body wave function has also been
addressed [29–31], although the proposed methods become
very involved for large particle numbers and/or components.

*frank.deuretzbacher@itp.uni-hannover.de
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FIG. 1. (Color online) Continuous (experimentally measurable)
spin densities ρ↑,↓(z) of the full model together with the discrete spin
densities ρ

(i)
↑,↓ of the spin-chain model for seven harmonically trapped

spin-1/2 fermions (N↑ = 4,N↓ = 3) in the antiferromagnetic state.

We show in this article that strongly interacting multi-
component 1D gases in the vicinity of a scattering resonance
realize an effective spin chain without the need for an optical
lattice. We obtain the effective spin model by combining the
exact analytical solution for infinite repulsion [20] with a spin
permutation model originally developed in the analysis of
quantum wires [34–36].1 The resulting model significantly
simplifies the calculations of the eigenfunctions and eigenen-
ergies and may be employed for both strongly-interacting
bosons and fermions. Moreover, it is applicable not only
to two-component gases, but in general to multicomponent
SU(N) systems, which may be realized in alkaline-earth-
metal gases and ytterbium [39–41]. The specific case of
spin-1/2 systems realizes an effective Heisenberg spin model,

1The crossover to the spin-incoherent (Wigner-crystal-like) regime
has been studied in Refs. [37,38] in the context of ultracold fermionic
two-component atomic gases by analyzing the density oscillations on
top of the Thomas-Fermi profile.
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which may acquire a ferromagnetic (F) or antiferromagnetic
(AF) character depending on the sign of the interparticle
interactions. We analyze the dynamic creation of both an
AF and a F state by making use of an exact diagonalization
of the effective spin-chain model. We show finally that the
properties of the spin chain may be directly measured in
ongoing experiments.

II. NONINTERACTING SPIN CHAIN

Multicomponent trapped Fermi or Bose systems with an
infinite contact repulsion may be exactly solved [20] through
a generalization of Girardeau’s Bose-Fermi mapping for
spinless bosons [18]. At infinite repulsion a multicomponent
1D system behaves as a spinless Fermi gas characterized
by states with a given spatial ordering of the particles.
One may construct an orthonormal basis of nonsymmetric
position-space sector wave functions [20]

〈z1, . . . ,zN |P 〉 =
√

N !θ (zP (1), . . . ,zP (N))AψF , (1)

where θ (z1, . . . ,zN ) = 1 if z1 ≤ · · · ≤ zN and zero otherwise,
P is one of the N ! permutations of the ordering of the N

particles, A = ∏
i<j sgn(zi − zj ) is the unit antisymmetric

function [18], and ψF is the ground state of N 1D noninteract-
ing spinless fermions. The eigenfunctions of multicomponent
Bose and Fermi systems are obtained via the map [20]

W±|χ〉 =
√

N !S±(|id〉|χ〉), (2)

where |χ〉 = ∑
m1,...,mN

cm1,...,mN
|m1, . . . ,mN 〉 is an arbitrary

N -particle spin function, S± = (1/N!)
∑

P (±1)P P is the
(anti)symmetrization operator, and |id〉 is the sector wave
function corresponding to the identical permutation.2 An
important consequence of the bijective character of the map (2)
is that the system is uniquely determined by the spin function
|χ〉. In particular, the density distribution of the mth component
is given by [20]

ρm(z) =
∑

i

ρ(i)
m ρ(i)(z) (3)

with the probability that the magnetization of the ith spin
equals m,

ρ(i)
m =

∑
m1,...,mN

|〈m1, . . . ,mN |χ〉|2δm,mi
, (4)

and the probability to find the ith particle (with whatever spin)
at position z,

ρ(i)(z) = N !
∫

dz1 · · · dzNδ(z − zi)θ (z1, . . . ,zN )|ψF |2.
(5)

The continuous spin density ρm(z) is hence fully characterized
by the N -tuple (ρ(1)

m , . . . ,ρ(N)
m ), as illustrated in Fig. 1. The

system thus reduces to a spin-chain model.

2The map (2) can be easily extended to states with excited spatial
degrees of freedom by replacing the ground state ψF in the sector
wave functions |P 〉 by the ith excited state ψ

(i)
F .

III. SPIN-SPIN INTERACTIONS

In the limit of infinite repulsion, 1/g = 0 (with the
interaction strength g), the spin chain is noninteracting, since
all states of the ground-state multiplet are degenerate. This
is no longer the case when 1/g �= 0. In the vicinity of a
scattering resonance the effective theory for finite interactions
may be evaluated to lowest order in 1/g by means of degenerate
perturbation theory. The effective interaction Hamiltonian of
the spin chain reads (see Appendix A for the derivation)3

Hs =
(

EF −
N−1∑
i=1

Ji

)
1 ±

N−1∑
i=1

JiPi,i+1, (6)

where Pi,i+1 denotes the permutation of the spin of neighboring
particles, the + (−) sign applies to fermions (bosons), and the
nearest-neighbor exchange constants are given by

Ji = N !�4

m2g

∫
dz1 · · · dzNδ(zi − zi+1)θ (z1, . . . ,zN )

∣∣∣∣∂ψF

∂zi

∣∣∣∣
2

.

(7)

The exact calculation of the exchange constants Ji requires the
solution of multidimensional integrals of growing complexity
with increasing N , which is in practice possible only for small
N .4 Fortunately, an accurate approximation of the exchange
constants, which becomes even more accurate for growing N ,
is provided by the expression

Ji = �4π2n3
TF(zi)

3m2g
, (8)

where nTF is the Thomas-Fermi (TF) profile of the density and
zi is the center of mass of the ith and (i + 1)th particle density,
ρ(i)(z) and ρ(i+1)(z) (see Appendix B). Expression (8) follows
from the nearest-neighbor exchange of the homogeneous sys-
tem with periodic boundary conditions in the thermodynamic
limit [42] combined with a local density approximation (LDA).
Appendix B shows a comparison between exchange constants
obtained from Eqs. (7) and (8) for up to six harmonically
trapped particles, confirming that, as mentioned above, the
agreement becomes better for growing N .

The diagonalization of the spin Hamiltonian (6) in com-
bination with the map (2) allows for a simple calculation of
the eigenstates of trapped strongly interacting multicomponent
bosons or fermions.5 This means that the spin distribution,
and hence the whole atom distribution in the trap, is de-
termined by a spin permutation Hamiltonian (Sutherland
model [43]). In the case of spin-1/2 particles we have
Pi,i+1 = (	σ (i) · 	σ (i+1) + 1)/2 with the Pauli vector 	σ . Two-
component gases therefore realize an effective Heisenberg
Hamiltonian. The Heisenberg Hamiltonian coincides with that
introduced in the analysis of the conductance of quantum wires

3For particles on a ring, one has to replace N − 1 by N in Eq. (6)
and PN,N+1 has to be replaced by PN,1.

4See the second version of Ref. [30].
5For three spin-1/2 fermions (N↑ = 2,N↓ = 1) our results agree

with those presented in the first version of Ref. [30]. The position
dependence of the nearest-neighbor exchange constants (7) was
recently noted in the second version of Ref. [30].

013611-2



QUANTUM MAGNETISM WITHOUT LATTICES IN . . . PHYSICAL REVIEW A 90, 013611 (2014)

[34–36] and of spectral functions of spin-1/2 1D bosons [42].
The effective spin model is consistent with Bethe-ansatz results
for spin-1/2 bosons [44] and fermions [45]. The validity of
the spin-chain model is restricted to the (super-)Tonks regime,
where |1/g| is small (see Appendix C for a comparison with a
numerical exact diagonalization of the full Hamiltonian).

IV. SPIN ORDER

In the following we focus on the specific case of spin-1/2
gases, which is of direct relevance for ongoing experiments
[23,24]. Equation (7) (Ji ∝ 1/g) implies that the sign of the Ji

can be tuned by means of a scattering resonance [24]. The
spin interaction is F for g < 0 (g > 0) and AF for g > 0
(g < 0) for fermions (bosons). Although spin-spin correlations
would clearly show the (anti)ferromagnetic character of the
interactions, for both F and AF couplings, the local average
magnetization 〈σ (i)

z 〉 is zero for all particle positions in the
ground state due to SU(2) symmetry. As a result, the density
distributions of both spin components will be identical. This
symmetry may be broken by a small population imbalance
(Fig. 1; see also Ref. [21]) or by a spin-dependent external po-
tential, such as a B-field gradient (Fig. 2). Such a gradient adds
to the effective spin interaction Hamiltonian (6) a term VG =
(G/l)

∑
i〈z〉iσ (i)

z with 〈z〉i = ∫
dzzρ(i)(z) and the oscillator

length l (Appendix D). A small G/J [J = ∑
i Ji/(N − 1) is

the average nearest-neighbor exchange constant] results in an
alternating distribution of the two components marking the AF
order. In contrast, when G/J is sufficiently large the system
experiences spin segregation. Since |J | is very small at the
resonance such segregation may occur for rather weak B-field
gradients [29]. We stress, however, that this spin segregation
occurs even for AF interactions, and does not mark an AF-F
transition, being rather a Stern-Gerlach- (SG-)like separation
of the components.
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and 0.8 (G is the B-field gradient and J = ∑

i Ji/(N − 1) is the
average nearest-neighbor exchange). The symbols (shaded curves)
denote the discrete (continuous) distributions.
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nonzero gradients (G �= 0) around the resonance. While spin interac-
tions dominate in the AF and F regimes, the B-field gradient dominates
in the gray-shaded Stern-Gerlach (SG) regime, characterized by SG-
like spin segregation. Inset: Spectrum of six spin-balanced spin-1/2
fermions as a function of −J/G.

V. STATE PREPARATION

In contrast to experiments in optical lattices, where spin
ground states are exceedingly difficult to prepare, the re-
alization of ground states of effective 1D spin chains may
be accomplished in a surprisingly simple way (for the AF
regime) in ongoing experiments on strongly interacting spin-
1/2 fermions [23,24]. The system is first prepared in the
spin-singlet ground state of the noninteracting system.6 The
interaction strength g is then ramped up by means of a
scattering resonance into the regime of large g > 0 (Tonks
regime). Due to spin conservation the noninteracting ground
state evolves into an AF spin chain. As discussed below, the AF
order may be easily revealed in ongoing tunneling experiments
using imbalanced mixtures.

The preparation of the spin ground state is more involved
if it demands a sweep through the scattering resonance. If the
system is driven across J = 0, the ground state of the Tonks
regime becomes the highest excited state of the super-Tonks
regime (g < 0),7 which is preserved due to spin conservation
[29]. A spin-dependent external potential, such as, e.g., a
B-field gradient, violates spin conservation, lifting the spin
degeneracy at J = 0 [28,29] (inset of Fig. 3). In particular, the
AF ground state for g > 0 may be adiabatically transformed
into the F ground state for g < 0 due to the avoided crossing
opened by the B-field gradient, as suggested in Ref. [29]. We

6Temperature effects may be significant if the sample is cooled
down close to the resonance [28], and in particular if kBT > NJ

the system becomes a spin-incoherent Luttinger liquid [36]. This is
however not relevant in typical experiments, since the initial sample
is produced far from resonance.

7For g < 0 the lowest energy corresponds actually to molecular
states, but these states cannot be reached in a sweep.
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−J/G = 10 and the state obtained after a linear sweep across the
resonance starting with the AF ground state for −J/G = −10.

employ below the spin model to analyze the conditions for the
adiabatic sweep in the presence of a B-field gradient.8

The gap 
 between the ground and first excited state is
particularly relevant, since adiabaticity requires that |J/G|
is varied much more slowly than �/
. We have calculated
the gap as a function of −J/G for up to 16 spin-balanced
spin-1/2 fermions by means of an exact diagonalization of the
effective spin Hamiltonian.9 Figure 3 shows that the minimal
gap 
min ≈ G is reached in the Tonks regime (−J/G � 0),
and that 
min decreases slowly with larger N . Also note that
the region where 
 � 
min increases with increasing N . This
implies that an adiabatic sweep becomes more involved for
larger N , since −J/G has to be increased much more slowly
than �/
min in an increasing region of the Tonks regime.

We have perfomed exact time-dependent simulations with
linear sweeps −J (t)/G = −10(1 − 2t/T ) for different values
of the sweeping time T . The initial and final values satisfy
|J/G| 
 1, and hence any final F state is maintained by F in-
teractions and not by a SG-like spin segregation [29]. We have
calculated the overlap between the state after the sweep and
the F ground state. As expected, adiabaticity demands a slower
sweep for larger N . Figure 4 shows that in order to reach the F
ground state of the super-Tonks regime with �100% fidelity,
the sweep must fulfill v ≡ ∂|J/G|/∂t < vc � 0.07G/� in the

8Experiments performed by Jochim and co-workers employ a
scattering resonance at 783 G, well within the Paschen-Back regime,
in which the energies of the employed states |F = 1/2,mF = ±1/2〉
show the same B-field dependence. As a result a B-field gradient does
not lift the degeneracy at 1/g = 0, precluding in this experiment the
use of sweeps to reach the F ground state in the super-Tonks regime.

9We note in passing that the exact diagonalization of the original
Hamiltonian may be accomplished only for very few particles N ≤ 5
[27,28,32] for (quasi)balanced mixtures, whereas the spin-chain
model allows for exact diagonalizations of rather large samples
N ≤ 20 (and the treatment of even much larger N using, e.g., density-
matrix renormalization-group techniques). For the particularly favor-
able case of (N↑ = N − 1,N↓ = 1) systems, up to N ≤ 7 particles
have been calculated using the original Hamiltonian [26], whereas N

up to several thousands can be handled using the spin-chain model.

vicinity of the resonance. This corresponds to T > 300�/G

in Fig. 4. We note that, although we have chosen a linear
sweep for simplicity, the ramp may be much faster far from the
resonance, as long as v < vc in the region of the minimal gap.
Once the F state is reached at |J | 
 G, the B-field gradient
may be removed. Note again that due to SU(2) symmetry the
final F state does not show spin segregation if |J/G| 
 1.

VI. STATE DETECTION

As discussed above, 〈σ (i)
z 〉 is mapped on the densities of the

spin components. The AF or F spin ordering of the spin chain
may therefore be directly probed in imbalanced mixtures by
means of in situ imaging, which is however challenging in
tightly confined samples. An alternative way of probing the
spin order is provided by the tunneling techniques recently
developed by Jochim and co-workers [23,24]. A tight dipole
trap is combined with a B-field gradient, which lowers the
potential barrier at the right-hand side of the trap. The tunneling
through this barrier may be controlled by carefully varying the
B-field gradient. The barrier height and the waiting time may
be chosen such that only one fermion can tunnel. Afterwards
the spin orientation of this fermion is detected. Within the
spin-chain picture only the rightmost particle can tunnel, since
the particles cannot interchange their positions. The spin-chain
picture hence provides a definite prediction about the spin
orientation of the outcoupled fermion. We illustrate this for
the specific case of a (N↑ = 2,N↓ = 1) system in the Tonks
(AF) regime for 1/g → 0. The spin model provides the AF
ground state |0〉 ≡ (|↑,↑,↓〉 − 2|↑,↓,↑〉 + |↓,↑,↑〉)/√6. The
probability of outcoupling a single down spin is therefore
|〈↑,↑,↓|0〉|2 � 16.7%, in very good agreement with the
experiment [46].10 By contrast, if the system is prepared
in the first excited state, |1〉 ≡ (|↑,↑,↓〉 − |↓,↑,↑〉)/√2, the
probability is |〈↑,↑,↓|1〉|2 � 50% and in the F highest
excited state, |2〉 ≡ (|↑,↑,↓〉 + |↑,↓,↑〉 + |↓,↑,↑〉)/√3, we
get |〈↑,↑,↓|2〉|2 � 33.3%. A similar simple calculation pre-
dicts the probabilities 5.1% and 1.5% for the AF ground
states of (3,1) and (4,1) systems,11 respectively, and much
larger probabilities for the corresponding excited states. This
measurement may hence clearly reveal the AF ground state.

Tunneling experiments may also be employed to measure
the occupation-number distribution among the trap levels.
First, the spin-up (-down) fermions are removed with a
resonant light pulse, and afterwards the occupancies of the
remaining spin-down (-up) fermions are probed using the tun-
neling technique [47]. Each spin state is linked to a particular
occupation number distribution of the spin components among
the trap levels (Fig. 5). One may hence utilize this information
as a fingerprint of the state of the spin chain [see Appendix E
for discussion of the (N↑ = 3,N↓ = 2) five-fermion system].

10A similar result (�20%) was predicted in the first version of
Ref. [30]. This result was recently refined (�16.7%) in the second
version of Ref. [30], in excellent agreement with our result obtained
from the spin-chain model.

11The same results were recently presented in the second version of
Ref. [30].
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FIG. 5. (Color online) Mean occupation 〈ni〉 of the harmonic-
trap levels for the (N↑ = 2,N↓ = 1) system in the Tonks regime
[g/(�ωl) = 25] for the states |0〉, |1〉, and |2〉 (see text) of the ground-
state multiplet.

VII. EXPERIMENTAL REQUIREMENTS

As mentioned above, the creation of the AF state with
fermions does not require crossing the scattering resonance.
Due to spin conservation it may be created by increasing g > 0
starting with the noninteracting (spin-singlet) ground state (ini-
tial particle-hole excitations will be mapped on spin excitations
of the AF chain). Realizing and probing the ground state of the
1D AF spin chain requires hence the deterministic preparation
of noninteracting ground states, together with a good isolation
from the environment, single-atom detection, precise control
of g, and quasi-1D confinement. These conditions are already
met in ongoing experiments on degenerate lithium-6 atoms
[23,24,46]. These experiments allow for the preparation of
the noninteracting ground state with a fidelity of 98% per
atom, for a precise control of the spin imbalance, for the
modification of g using a confinement-induced resonance, and
for single-atom detection with near unit fidelity. The system is
very well isolated, with a lifetime of the two-particle ground
state of 1 min. These conditions result in an effective spin
temperature of zero, even for strong interactions, and hence
this setup constitutes an optimal scenario for the realization
of AF chains.12 Although the experiments of Refs. [23,24,46]
are currently limited to small samples (N < 10), much larger
ones, and hence longer spin chains, may be achieved in similar
experiments by increasing the trap aspect ratio (currently
1:10) and improving the fidelity in the preparation of the
noninteracting ground state.

VIII. SUMMARY

Strongly interacting multicomponent 1D gases in the vicin-
ity of a scattering resonance realize a 1D spin chain, providing
a scenario for the study of quantum magnetism alternative to
atoms in 1D optical lattices and ion traps [50]. This alternative
scenario, which avoids the inherent heating associated with

12For moderate trap aspect ratios, like those used by Jochim and co-
workers [23,24], the coupling of center-of-mass and relative motion
[48] may result in the formation of molecules in the Tonks regime
[46,49]. This problem can be avoided using larger trap aspect ratios.

an optical lattice, opens the possibility of creating an AF
state from a noninteracting singlet state by simply increasing
the interaction strength. Moreover, the effective spin-chain
model provides a simple and intuitive understanding of recent
experiments, allows for a very simple calculation of relevant
observables, and enables numerical simulations of the statics
and dynamics of much larger samples than the original model.

Although we have focused mainly on the spin-1/2 case,
the spin-chain picture is equally valid for higher spins.
Interestingly, strongly interacting alkaline-earth-metal or yt-
terbium Fermi gases realize an SU(N) Sutherland model. In
particular, a spin-3/2 system would realize an SU(4) exchange
Hamiltonian, which is of relevance in spin-orbital models
of transition-metal oxides. The ground state of this system
is a spin liquid, since magnetic order is suppressed due to
orbital effects [51]. Moreover, magnetic-field gradients may be
employed to prepare nontrivial initial spin states (e.g., helical
states), and to rotate individual spins in combination with
radio-frequency fields. This would allow for the study of the
subsequent dynamics of the out-of-equilibrium 1D spin chain.
Experiments on 1D strongly interacting multicomponent
Fermi gases hence open a fascinating alternative scenario for
the simulation of 1D quantum spin chains in cold gases.
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APPENDIX A: EFFECTIVE INTERACTION
HAMILTONIAN

We derive in this appendix the effective Hamiltonian for
interactions between nearest-neighboring spins of the spin
chain in the vicinity of the point 1/g = 0. It has been shown
in Ref. [20] that the spin chain is noninteracting at 1/g = 0
and highly degenerate due to the large number of possible spin
configurations. This degeneracy is lifted away from 1/g = 0
but the eigenstates at 1/g ≈ 0 are still very well approximated
by particular superpositions of the eigenstates at 1/g = 0, as
shown in Fig. 1 of Ref. [20]. This suggests determination of
the superpositions by performing a degenerate perturbative
calculation to lowest order in 1/g. In the following we derive
the effective spin Hamiltonian, which leads to the desired
superposition of spin states in the vicinity of 1/g = 0.

We construct for small 1/g the g-dependent sector wave
functions

〈z1, . . . ,zN |P (g)〉 = ψ
(g)
P (z1, . . . ,zN )

=
√

N !θ (zP (1), . . . ,zP (N))ψ
(g)
B (A1)

with θ (z1, . . . ,zN ) = 1 if z1 ≤ · · · ≤ zN and zero otherwise,
P is one of the N ! permutations of the ordering of the
N particles, and ψ

(g)
B is the ground state of N 1D spinless

δ-interacting bosons. They converge in the limit 1/g → 0
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towards the usual g-independent sector wave functions

〈z1, . . . ,zN |P 〉 = ψP (z1, . . . ,zN )

=
√

N !θ (zP (1), . . . ,zP (N))AψF (A2)

with the unit antisymmetric function A = ∏
i<j sgn(zi − zj )

and the ground state of N 1D spinless noninteracting fermions
ψF . We approximate the exact wave functions in the vicinity
of 1/g = 0 by

W
(g)
± |χ〉 =

√
N !S±(|id(g)〉|χ〉), (A3)

where |χ〉 = ∑
m1,...,mN

cm1,...,mN
|m1, . . . ,mN 〉 is an arbitrary

N -particle spin function, S± = (1/N!)
∑

P (±1)P P is the
(anti)symmetrization operator, and |id(g)〉 is the sector wave
function corresponding to the identical permutation. Our goal
is to calculate the matrix elements

〈m1, . . . |
(
W

(g)
±

)†
H W

(g)
± |m′

1, . . .〉 (A4)

of the full many-body Hamiltonian in the vicinity of 1/g = 0.
Inserting Eq. (A3) into Eq. (A4) and using S

†
± = S±,

[H,S±] = 0, and S2
± = S±, we get

〈m1, . . . |
(
W

(g)
±

)†
H W

(g)
± |m′

1, . . .〉
=

∑
P

(±1)P 〈m1, . . . |〈id(g)|H |P (g)〉|m′
P −1(1), . . .〉. (A5)

Next we evaluate the matrix elements 〈id(g)|H |P (g)〉. The first
two terms of the Taylor series of these matrix elements around
1/g = 0 are given by

〈id(g)|H |P (g)〉 = lim
1/g→0

(〈id(g)|H |P (g)〉)

+ 1

g
lim

1/g→0

(
〈id(g)| dH

d(1/g)
|P (g)〉

)

= EF δP,id − 1

g
lim

g→+∞

(
g2〈id(g)|dH

dg
|P (g)〉

)
.

(A6)

Here we used H |P (g)〉 = E(g)|P (g)〉 and d〈id(g)|P (g)〉/dg = 0.
The Hamiltonian of the multicomponent particles reads

H =
∑

i

[
− �2

2m

∂2

∂z2
i

+ V (zi)

]
+ g

∑
i<j

δ(zi − zj ) (A7)

and therefore

lim
g→+∞

(
g2〈id(g)|dH

dg
|P (g)〉

)

=
∑
i<j

lim
g→+∞

[
g2

∫
dz1 · · · dzN δ(zi − zj )

(
ψ

(g)
id

)∗
ψ

(g)
P

]
.

(A8)

Most integrals are zero, since the corresponding domain of
integration has zero volume; hence∫

dz1 · · · dzNδ(zi − zj )θ (z1, . . . ,zN )θ (zP (1), . . . ,zP (N)) · · ·

= δj,i+1(δP,id + δP,Pi,i+1 )
∫

dz1 · · · dzNδ(zi − zi+1)

× θ (z1, . . . ,zN ) · · · . (A9)

Moreover, the limit in Eq. (A8) can be performed, since the
average local correlation function of spinless bosons,∫

dz1 · · · dzN

∑
i<j

δ(zi − zj )
∣∣ψ (g)

B

∣∣2
, (A10)

decreases proportionally to 1/g2 in the limit of large g.13 Using
the boundary condition(

∂

∂zi

− ∂

∂zj

)
ψ

∣∣∣∣
zi=zj +

−
(

∂

∂zi

− ∂

∂zj

)
ψ

∣∣∣∣
zi=zj −

= 2mg

�2
ψ

∣∣∣∣
zi=zj

, (A11)

which is imposed by the δ interaction, Eq. (A8) becomes

lim
g→+∞

(
g2〈id(g)|dH

dg
|P (g)〉

)

= �4

4m2

∑
i

(δP,id + δP,Pi,i+1

) ∫
dz1 · · · dzN

× δ(zi − zi+1)(Diψ
∗
id)(DiψP ) (A12)

with Diψ = D+
i ψ − D−

i ψ and

D±
i ψ =

(
∂

∂zi

− ∂

∂zi+1

)
ψ

∣∣∣∣
zi=zi+1±

. (A13)

Note that we used limg→+∞ ψ
(g)
P = ψP when we performed

the limit. Using

∂ψF

∂zi+1

∣∣∣∣
zi=zi+1

= −∂ψF

∂zi

∣∣∣∣
zi=zi+1

, (A14)

A|zi=zi+1± = (±1)B (A15)

with

B = A

sgn(zi − zi+1)

∣∣∣∣
zi=zi+1

, (A16)

θ (z1, . . . ,zN )|zi=zi+1+
= θ

(
zPi,i+1(1), . . . ,zPi,i+1(N)

)∣∣
zi=zi+1− = 0, (A17)

and

θ (z1, . . . ,zN )
∣∣
zi=zi+1−

= θ
(
zPi,i+1(1), . . . ,zPi,i+1(N)

)∣∣
zi=zi+1+

= θ (z1, . . . ,zi−1,zi+1,zi+1, . . . ,zN ), (A18)

we get

Diψid = −D−
i ψid = DiψPi,i+1 = D+

i ψPi,i+1

= 2B
√

N !θ (z1, . . . ,zi−1,zi+1,zi+1, . . . ,zN )

× ∂ψF

∂zi

∣∣∣∣
zi=zi+1

. (A19)

13This has been shown for homogeneous systems in the thermo-
dynamic limit [52] and it also follows from the solution of two
harmonically trapped particles [53]. It is hence natural to assume
that this property holds true for an arbitrary number of particles in
any confinement.
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Inserting this into Eq. (A12) and using B2 = 1 we get

1

g
lim

g→+∞

(
g2〈id(g)|dH

dg
|P (g)〉

)
=

∑
i

(
δP,id + δP,Pi,i+1

)
Ji

(A20)

with

Ji = N !�4

m2g

∫
dz1 · · · dzNδ(zi − zi+1)θ (z1, . . . ,zN )

∣∣∣∣∂ψF

∂zi

∣∣∣∣
2

.

(A21)

Inserting Eq. (A20) into Eq. (A6) we get

〈id(g)|H |P (g)〉 =
(

EF −
∑

i

Ji

)
δP,id −

∑
i

δP,Pi,i+1Ji .

(A22)

Finally we insert this into Eq. (A5) and obtain

〈m1, . . . |(W (g)
± )†H W

(g)
± |m′

1, . . .〉

= 〈m1, . . . |
[(

EF −
∑

i

Ji

)
1 ±

∑
i

JiPi,i+1

]
|m′

1, . . .〉

(A23)

with “+” for fermions and “−” for bosons.
We would like to note that the effective interaction

Hamiltonian (A23), which acts on many-body spin functions,
originates from the tendency of the system to have a spatial
wave function, which is most symmetric under the exchange of
particles. The effective Hamiltonian following from Eq. (A22),
which acts on the spatial sector wave functions |P 〉, has the
form −∑

i JiPi,i+1 (without diagonal terms). This Hamilto-
nian minimizes the energy of a pair of neighboring sector
wave functions |P 〉 and |Pi,i+1P 〉, if it is in the symmetric su-
perposition (|P 〉 + |Pi,i+1P 〉)/√2, whereas the antisymmetric
superposition (|P 〉 − |Pi,i+1P 〉)/√2 maximizes the energy.
Therefore, the system minimizes its energy, if as many as
possible neighboring sector wave functions are in a symmetric
superposition. This is in agreement with the theorem that
the ground state of a system with the spin-independent
Hamiltonian (A7) strives to have as few as possible zero
crossings of the spatial wave function [54,55]. We finally
note that the effective interaction Hamiltonian (A23), like
the original spin-independent Hamiltonian (A7), commutes
with the square of the total spin 	S2. This, together with the
tendency of the system to have a most symmetric spatial wave
function, leads in the case of spinful fermions to a ground state
with minimal total spin [54], whereas spinful bosons prefer a
ground state with maximal total spin [55].

APPENDIX B: EXCHANGE CONSTANTS OF THE
HARMONIC TRAP

We compare in this appendix the nearest-neighbor exchange
constants (7) of up to six harmonically trapped particles to
their LDA approximations (8). The TF profile of harmonically

TABLE I. Nearest-neighbor exchange constants Jig/(�2ω2l) of
N ≤ 6 harmonically trapped particles. The value in parentheses is
the deviation of the local density approximation. Note that JN−i = Ji

due to the parity symmetry of the harmonic trap.

N J1g/(�2ω2l) J2g/(�2ω2l) J3g/(�2ω2l)

2
√

π

2 = 0.797885 (6.4%)

3 33

23
√

2π
= 1.34643 (2.9%)

4 1.78765 (1.2%) 2.34651 (2.3%)
5 2.16606 (0.14%) 3.17720 (1.6%)
6 2.50218 (−0.55%) 3.90210 (1.1%) 4.35712 (1.2%)

trapped noninteracting fermions is given by

nTF(z) = 1

lπ

√
2N −

(
z

l

)2

. (B1)

It is evaluated at the center-of-mass positions of the ith and
(i + 1)th particles,

zi = 1

2

∫
dz z[ρ(i)(z) + ρ(i+1)(z)]. (B2)

The particle densities ρ(i)(z) have been obtained from a fit
to the exact total density. Table I shows the exact exchange
constants of up to six harmonically trapped particles, obtained
by computing the (N − 1)-dimensional integrals of Eq. (7).
The value in parentheses is the deviation of the LDA result
(8), which shows, as expected, an increasing agreement with
increasing particle number.

APPENDIX C: VALIDITY REGIME OF THE
SPIN-CHAIN MODEL

1. Three spin-1/2 fermions

In this appendix, we compare analytically calculated
energy differences and spin densities of (N↑ = 2,N↓ = 1)
harmonically trapped spin-1/2 fermions to those obtained by
means of an exact diagonalization of the full Hamiltonian. We
first calculate the spectrum and the eigenfunctions of the spin
chain. Within the spin basis, |↑,↑,↓〉, |↑,↓,↑〉, and |↓,↑,↑〉,
the interaction Hamiltonian reads (note that J1 = J2)

Hs = (EF − 2J1)1 + J1

⎛
⎝1 1 0

1 0 1
0 1 1

⎞
⎠. (C1)

Its eigenstates are

|0〉 = 1√
6

(|↑,↑,↓〉 − 2|↑,↓,↑〉 + |↓,↑,↑〉), (C2)

|1〉 = 1√
2

(|↑,↑,↓〉 − |↓,↑,↑〉), (C3)

and

|2〉 = 1√
3

(|↑,↑,↓〉 + |↑,↓,↑〉 + |↓,↑,↑〉). (C4)
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FIG. 6. (Color online) Comparison between the exact-
diagonalization results of the original continuous model and the
results obtained from the effective spin model for (N↑ = 2,N↓ = 1)
harmonically trapped spin-1/2 fermions. Top: Spin densities
of the effective spin-chain model (solid lines) and of an exact
diagonalization of the full Hamiltonian for g/(�ωl) = 10 in a
harmonic trap (dashed and dash-dotted lines). Bottom: Ratio of
energy differences of the ground-state multiplet as a function of
−1/g [solid (black) line with (red) circles]. The corresponding value
of the spin-chain model is 3 (horizontal short-dashed line). The
long-dashed line marks −1% deviation from this value.

They are simultaneously eigenstates of the square of the
total spin 	S2 and the parity operator � = −P1,3,14 with
eigenvalues S = 1/2 and � = −1 for |0〉, S = 1/2 and
� = 1 for |1〉, and S = 3/2 and � = −1 for |2〉 [31].
The eigenenergies are E0 = EF − 3J1, E1 = EF − J1, and
E2 = EF . The ratio of energy differences is hence given by
(EF − E0)/(EF − E1) = 3. Figure 6 (bottom) shows this
ratio of energy differences as a function of −1/g. The result
of an exact diagonalization of the full Hamiltonian of the
harmonically trapped system [solid (black) line with (red)
circles] approaches the analytical value 3, marked by the
horizontal short-dashed line, in the (super-)Tonks regime. The
deviation is smaller than 1% for |�ωl/g| < 0.1.

Next we compare the density distributions obtained from
the spin model with those resulting from the exact diagonal-
ization of the original model. The analytical spin densities of
the AF ground state |0〉 and the first excited state |1〉 are

ρ↑(z) = 5
6ρ(1)(z) + 2

6ρ(2)(z) + 5
6ρ(3)(z), (C5)

ρ↓(z) = 1
6ρ(1)(z) + 4

6ρ(2)(z) + 1
6ρ(3)(z) (C6)

14The parity operator �, which acts originally on the sector
wave functions in the usual way, (z1, . . . ,zN ) → (−z1, . . . , − zN ),
is transformed into the spin basis via the map (2), with the result
� = (±1)�N/2�P1,NP2,N−1 · · · with “+” for bosons, “−” for fermions,
and the common floor function �x�.

and

ρ↑(z) = 1
2ρ(1)(z) + ρ(2)(z) + 1

2ρ(3)(z), (C7)

ρ↓(z) = 1
2ρ(1)(z) + 1

2ρ(3)(z), (C8)

respectively [solid lines in Fig. 6 (top)]. The corresponding
numerical results for g/(�ωl) = 10 (dashed and dash-dotted
lines) agree very well with the analytical spin densities. The
small deviation between the analytical and numerical spin
densities of the AF ground state is larger than for the excited
states (they agree for the F state |2〉).

2. Four spin-1/2 fermions

Here we perform the same comparison as in the last section
for four fermions in the (N↑ = 3,N↓ = 1) configuration.
Within the spin basis |↑,↑,↑,↓〉, |↑,↑,↓,↑〉, |↑,↓,↑,↑〉, and
|↓,↑,↑,↑〉, the interaction Hamiltonian reads

Hs = (EF − 2J1 − J2)1 +

⎛
⎜⎝

J1 + J2 J1 0 0
J1 J1 J2 0
0 J2 J1 J1

0 0 J1 J1 + J2

⎞
⎟⎠.

(C9)

With J1 and J2 of Table I the eigenenergies are given by

E0 = EF − J1 − J2 −
√

J 2
1 + J 2

2 = EF − 7.084(�ωl/g)�ω,

(C10)

E1 = EF − 2J1 = EF − 3.575(�ωl/g)�ω, (C11)

E2 = EF − J1 − J2 +
√

J 2
1 + J 2

2 = EF − 1.184(�ωl/g)�ω,

(C12)

and E3 = EF , which lead to the ratios of energy differences

EF − E0

EF − E1
=

J1 + J2 +
√

J 2
1 + J 2

2

2J1
= 1.982 (C13)

and

EF − E0

EF − E2
=

J1 + J2 +
√

J 2
1 + J 2

2

J1 + J2 −
√

J 2
1 + J 2

2

= 5.983. (C14)

We plot these ratios as a function of −1/g in the bottom
and middle panels of Fig. 7. The results of an exact
diagonalization of the full Hamiltonian of the harmoni-
cally trapped system [solid (black) lines with (red) circles]
approach the results of the spin-chain model, 1.982 and
5.983, respectively (horizontal short-dashed lines), in the
(super-)Tonks regime. Again, the deviation is only �1% for
|�ωl/g| < 0.1.

The eigenstates of the spin Hamiltonian (C9) are

|0〉 = c−(|↑,↑,↑,↓〉 − |↓,↑,↑,↑〉)
− c+(|↑,↑,↓,↑〉 − |↑,↓,↑,↑〉), (C15)

|1〉 = 1
2 (|↑,↑,↑,↓〉 − |↑,↑,↓,↑〉
− |↑,↓,↑,↑〉 + |↓,↑,↑,↑〉), (C16)
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FIG. 7. (Color online) The same as Fig. 6 for the
(N↑ = 3,N↓ = 1) system. Top: Spin densities of the effective
spin-chain model (solid lines) and of an exact diagonalization of
the full Hamiltonian for g/(�ωl) = 25 in a harmonic trap (dashed
and dash-dotted lines). Bottom: Ratio of energy differences of the
ground-state multiplet as a function of −1/g [solid (black) line with
(red) circles]. The corresponding values of the spin-chain model are
1.982 and 5.983, respectively (horizontal short-dashed lines). The
horizontal long-dashed lines mark −1% deviation from these values.

|2〉 = c+(|↑,↑,↑,↓〉 − |↓,↑,↑,↑〉)
+ c−(|↑,↑,↓,↑〉 − |↑,↓,↑,↑〉), (C17)

and

|3〉 = 1
2 (|↑,↑,↑,↓〉 + |↑,↑,↓,↑〉 + |↑,↓,↑,↑〉
+ |↓,↑,↑,↑〉) (C18)

with

c± = 1

2

√√√√1 ± J2√
J 2

1 + J 2
2

=
{

0.6700 (for +),

0.2261 (for −).
(C19)

They are again eigenstates of 	S2 and � = P1,4P2,3 with
eigenvalues S = 1 and � = −1 for |0〉 and |2〉, S = 1 and
� = 1 for |1〉, and S = 2 and � = 1 for |3〉 [31]. The spin
densities of the ground state |0〉 are

ρ↑(z) = (|c−|2 + 2|c+|2)[ρ(1)(z) + ρ(4)(z)]

+ (|c+|2 + 2|c−|2)[ρ(2)(z) + ρ(3)(z)], (C20)

ρ↓(z) = |c−|2[ρ(1)(z) + ρ(4)(z)]

+ |c+|2[ρ(2)(z) + ρ(3)(z)], (C21)

for the first excited state |1〉 we get

ρ↑(z) = 3
4 [ρ(1)(z) + ρ(2)(z) + ρ(3)(z) + ρ(4)(z)], (C22)

ρ↓(z) = 1
4 [ρ(1)(z) + ρ(2)(z) + ρ(3)(z) + ρ(4)(z)], (C23)

and for the second excited state |2〉 we get

ρ↑(z) = (|c+|2 + 2|c−|2)[ρ(1)(z) + ρ(4)(z)]

+ (|c−|2 + 2|c+|2)[ρ(2)(z) + ρ(3)(z)], (C24)

ρ↓(z) = |c+|2[ρ(1)(z) + ρ(4)(z)]

+ |c−|2[ρ(2)(z) + ρ(3)(z)]. (C25)

The spin densities of the spin-chain model, which are shown
in the top row of Fig. 7 (solid lines), are compared to the
numerical results for g/(�ωl) = 25 (dashed and dash-dotted
lines) showing no visible difference.

APPENDIX D: GRADIENT

In this appendix, we transform the Hamiltonian of a B-field
gradient into the spin basis. The matrix elements of a B-field
gradient,

VG = (G/l)
N∑

i=1

∫
dz1 · · · dzN |z1, . . . ,zN 〉

× 〈z1, . . . ,zN |ziσ
(i)
z , (D1)

FIG. 8. (Color online) Mean occupation numbers 〈ni〉 of the
harmonic-oscillator orbitals of an (N↑ = 3,N↓ = 2) Fermi system
in the Tonks regime [g/(�ωl) = 30, ground-state multiplet].
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are

〈m1, . . . |W †
±VGW±|m′

1, . . .〉

= N !〈m1, . . . |〈id|S†
±VGS±|id〉|m′

1, . . .〉

=
∑
P

(±1)P 〈m1, . . . |〈id|VG|P 〉∣∣m′
P −1(1), . . .

〉

= 〈m1, . . . |〈id|VG|id〉|m′
1, . . .〉. (D2)

Here we used 〈id|VG|P 〉 = δid,P 〈id|VG|id〉, which follows
from the fact that different sectors of the many-body position
space RN have no overlap. Using Eq. (D1) we obtain

〈m1, . . . |W †
±VGW±|m′

1, . . .〉

= 〈m1, . . . |
[

(G/l)
N∑

i=1

〈z〉i σ (i)
z

]
|m′

1, . . .〉, (D3)

where 〈z〉i is the position of the ith spin,

〈z〉i =
∫

dz1 · · · dzNzi |〈z1, . . . ,zN |id〉|2

=
∫

dzz

∫
dz1 · · · dzNδ(z − zi)|〈z1, . . . ,zN |id〉|2

=
∫

dzzρ(i)(z). (D4)

APPENDIX E: MEAN OCCUPANCIES OF
HARMONIC-TRAP LEVELS

In the main text, we mentioned that different states of the
ground-state multiplet can be distinguished from each other by
means of the mean occupancies 〈ni〉 of the trap levels. Here we
discuss this issue in more detail for a more involved example.
Figure 8 shows the mean occupancies 〈ni〉 of the harmonic-
oscillator orbitals of an (N↑ = 3,N↓ = 2)-fermion system in
the Tonks regime. In this case, the ground-state multiplet
consists of ten states. One sees that the AF state (state 0) and the
F state (state 9) can be clearly distinguished from the others.
The AF state features high occupancies of the lowest levels
(n = 0,1) and small but nonzero occupancies in the n > 4
levels. For the F state, the lowest five orbitals n = 0,1,2,3,4
are equally populated while higher orbitals (n > 4) are empty.

In general, the occupation-number distribution is a measure
of the symmetry of the spatial part of the many-body
wave function. The AF state of spin-1/2 fermions has the
most symmetric spatial wave function, which leads to high
occupancies of the lowest levels (n = 0,1) and small but
nonzero occupancies above the Fermi edge. The F state has
a completely antisymmetric spatial wave function in which
the states below the Fermi edge are equally populated while
the states above the Fermi edge are empty. The other states
interpolate between these extreme cases, i.e., the symmetry of
the spatial wave functions decreases from state 0 to 9. The
same arguments apply to the momentum distribution [20–22].
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We report on the deterministic preparation of antiferromagnetic Heisenberg spin chains consisting of up
to four fermionic atoms in a one-dimensional trap. These chains are stabilized by strong repulsive
interactions between the two spin components without the need for an external periodic potential. We
independently characterize the spin configuration of the chains by measuring the spin orientation of
the outermost particle in the trap and by projecting the spatial wave function of one spin component on
single-particle trap levels. Our results are in good agreement with a spin-chain model for fermionized
particles and with numerically exact diagonalizations of the full few-fermion system.

DOI: 10.1103/PhysRevLett.115.215301 PACS numbers: 67.85.Lm, 71.10.Pm, 75.10.Jm, 75.10.Pq

The high control and tunability of ultracold atomic
systems offer the fascinating possibility to simulate quantum
magnetism [1], a topic of fundamental importance in
condensedmatter physics [2]. Systems of spin-1=2 fermions
with antiferromagnetic (AFM) correlations are of particular
interest due to the observation of high-temperature super-
conductivity in cuprates with AFM correlations [3]. The
experimental implementation of the necessary exchange
couplings is usually realized by superexchange processes of
neighboring atoms in the Mott-insulating state of a deep
optical lattice. Superexchange couplings were measured in
both bosonic [4] and fermionic double-well systems [5] and
short-range AFM correlations of fermionic atoms were
detected in various lattice geometries [6–8]. Furthermore,
superexchange processeswere used to study the dynamics of
spin impurities above the ferromagnetic (FM) ground state
of bosons in the Mott-insulating state of a one-dimensional
lattice [9]. Bosonic atoms were also used to simulate AFM
Ising spin chains in a tilted optical lattice [10,11]. However,
the AFMground state of spin-1=2 fermions in a deep optical
lattice has so far not been realized due to the very low energy
scale associated with the superexchange coupling.
This problem can be circumvented in 1D systems, where

quantum magnetism can be simulated without an optical
lattice [12–14]. In the regime of strong interactions, the
spatial wave function of both fermions [15] and bosons
[16–18] can be mapped on the wave function of spinless
noninteracting fermions [Fig. 1(a)]. In this so-called
fermionization limit, the strong interactions lead to the
formation of a Wigner-crystal-like state [19–21], which
has a highly degenerate ground state when the particles
have multiple internal degrees of freedom [Fig. 1(b)]
[20–23]. Close to the limit of fermionization, the structure
of the quasidegenerate ground-state multiplet [24–33]
is determined by an effective Sutherland spin-chain

Hamiltonian, which for two-component systems becomes
a Heisenberg model [12,19,21,29,32–34].
In this Letter, we report on the realization of Heisenberg

spin chains of N↑ spin-up and N↓ spin-down particles with
ðN↑; N↓Þ ¼ ð2; 1Þ, (3, 1), and (2, 2). We show that under an

(a)

(c)

E

(b) Ferromagnetic Intermediate Antiferromagnetic

FIG. 1 (color online). Heisenberg spin chain of three fermions.
(a) Sketch of two spin-up and one spin-down atom with diverging
1D coupling constant (g1D ¼ �∞) in a harmonic trap. If the
relative spatial wave function of two distinguishable fermions is
symmetric, the strong interactions induce a cusp in the relative
wave function of the two particles (left-hand side). This causes
them to separate like identical fermions (right-hand side). In this
fermionization limit the system forms a Wigner-crystal-like state
with fixed ordering of the particles. (b) Single-particle contribu-
tions to the total (gray), the spin-up (green), and the spin-down
density (blue) of two spin-up and one spin-down atom in the
fermionization regime in a harmonic trap. Like in a Wigner
crystal, the total densities of the ferromagnetic (left), the
intermediate (middle), and the antiferromagnetic state (right)
are identical, while their spin densities differ and are determined
by a Heisenberg spin-chain Hamiltonian. (c) Densities of three
particles before (left) and after (right) the tunneling of one atom
with energy E out of a tilted trap. At fermionization, only the
rightmost particle can leave the trap in the tunneling process.
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adiabatic change of the interaction strength the noninter-
acting ground states of these systems evolve into the
respective AFM states in the limit of infinitely strong
repulsion [24,28]. We identify the AFM states by two
independent measurements. First, we use a tunneling
technique to measure the spin orientation of the outermost
particle of the spin chain. Second, we probe the spatial
wave function of the spin-down atom in the (2, 1) and (3, 1)
system by projecting it on single-particle trap levels.
In our experiments, we realize a spin-1=2 system by

trapping ultracold 6Li atoms in an elongated optical dipole
trap [35,39] in their two lowest hyperfine states j↑i≡
jj ¼ 1=2; mj ¼ −1=2; I ¼ 1; mI ¼ 0i and j↓i≡ jj ¼ 1=2;
mj ¼ −1=2; I ¼ 1; mI ¼ 1i. As the energy of the atoms is
much smaller than the lowest transverse excitation energy
in the trap, their dynamics are restricted to the longitudinal
axis of the trap. In such a quasi-1D system, the interaction
strength between ultracold atoms of opposite spin is
determined by the 1D coupling constant g1D, which
diverges at a confinement-induced resonance (CIR) when
the 3D scattering length a3D approaches the harmonic
oscillator length of the radial confinement [35,40]. We use a
magnetic Feshbach resonance to control a3D and therefore
are able to smoothly tune g1D across the CIR. At the same
time, scattering between fermionic atoms of the same spin
component is forbidden. Throughout this Letter, g1D will be
given in units of a∥ℏω∥, where a∥ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω∥

p
and ω∥ are

the harmonic oscillator length and the trap frequency in the
longitudinal direction and m is the mass of a 6Li atom.
We start our experiments by preparing a (2, 1), (3, 1), or

(2, 2) system in the noninteracting many-particle ground
state of the trap [35,39]. By changing the magnetic offset
field with a constant rate, we ramp the system into the
fermionization regime close to the CIR (Fig. 2), where it
forms a spin chain. Below the CIR, g1D is large and positive
and the system is in the Tonks regime of strong repulsion
[17,18]. When crossing the CIR, g1D changes sign from
þ∞ to −∞ while the system continuously follows the
so-called upper branch [24] into the super-Tonks regime of
strong attraction [15,41,42] (Fig. 2). In the super-Tonks
regime, the system is in an excited state, which is
metastable against decay into bound states.
In a first set of measurements, we identify the states of the

spin chains by probing the spin distributions in the trap.Here,
we make use of the fact that in the fermionization regime the
atoms become impenetrable and therefore their ordering
along the longitudinal axis of the trap is fixed. This allows us
to determine the spin orientation of the outermost particle in
the trap in a tunneling measurement. To do this, we tilt the
trap as shown in Fig. 1(c) and thereby allow atoms to tunnel
out of the trap.We carefully adjust the trap parameters during
the tunneling process, to let exactly one atom [for the (2, 1)
and the (3, 1) systems] or two atoms [for the (2, 2) system]
tunnel [35]. Finally,wemeasure the number of spin-up atoms
in the final state to determine the spin of the atoms that left the
trap during the tunneling process [35]. We define spin-down
tunneling as the process in which all spin-down atoms tunnel

out. By repeating this measurement at different magnetic
offset fields, we deduce the probability of spin-down
tunneling, P↓ð−1=g1DÞ, as a function of the inverse 1D
coupling constant, as shown in Fig. 3.
As shown in Fig. 1(b) for a (2, 1) system in a harmonic

trap, the different states of the spin chain can be uniquely
identified by their spin densities [12], specifically by the
probability of the outermost spin to point downwards.
Since in the fermionization regime the ordering of the
atoms in the trap is fixed, only the outermost atom can
escape during the tunneling process. Exactly at the CIR,
the probability of spin-down tunneling should therefore
directly reveal the state of the spin chain [12,29,33]. Away
from resonance, the probability of spin-down tunneling is
also influenced by the energy of the final in-trap states,
favoring final states with lower energy, as indicated by the
blue arrows in Fig. 2. To identify the spin states throughout
the entire spin-chain regime, we compare our data to the
results of a tunneling model, which in the following section
is explained for a (2, 1) system.
In our tunneling model, the initial states are eigenstates

of a Heisenberg spin-chain Hamiltonian [35], where the
exchange couplings Ji between neighboring spins depend on
the trap geometry and on the inverse 1D coupling constant
[12]. For the (2, 1) system with repulsive interactions and
a symmetric trap ðJ1 ¼ J2 > 0Þ, these eigenstates are the
AFM ground state, the intermediate (IM) state, and the FM
state, as shown in Fig. 1(b). During the tunneling process the
trap is tilted as shown in Fig. 1(c) and therefore the density
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FIG. 2 (color online). Energies in spin-chain regime. Eigene-
nergies of two (green) and three (red) strongly interacting spin-
1=2 fermions in a 1D harmonic trap as a function of the
interaction strength. In the Tonks regime, the antiferromagnetic
states are the ground states of each multiplet, while the ferro-
magnetic states have the highest energies. In the super-Tonks
regime, the ordering of the energy levels is inverted. Close to
the confinement-induced resonance (CIR), the energy shifts
are linear in −1=g1D and can be determined by a Heisenberg
spin-chain Hamiltonian. The system is initially prepared in the
noninteracting ground state of the three-particle system at
−1=g1D ¼ −∞, which evolves, for increasing −1=g1D, into the
antiferromagnetic state around the CIR (red solid line). During a
ramp across the CIR, the system stays in the antiferromagnetic
state, since all eigenstates of the system are decoupled. The blue
arrows indicate the predominant channels for the tunneling of one
atom below (left) and above (right) the fermionization regime.

PRL 115, 215301 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

20 NOVEMBER 2015

215301-2



is not symmetric. Hence, the exchange couplings are not
identical anymore ðjJ1j > jJ2jÞ, which leads to a coherent
mixing of theAFMand IMstate during the tunneling process
[35]. We calculate a probability of approximately 8% for the
rightmost spin of the AFM state in the tilted trap to point
downwards. This is in good agreement with the blue data
points in Fig. 3(a) that cross the CIR at P↓ ≈ 10%.
Away from the CIR, the eigenstates of both the three-

particle and the two-particle spin chains are nondegenerate
(Fig. 2). In this case, the energies of the initial three-particle
state jii and the final two-particle state jfi involved in the
tunneling process are important, since their difference
determines the energy E of the tunneling particle. The
tunneling rate of the particle that leaves the trap is strongly
affected by its energy and can be calculated as

Ti;f ∝ jhijf; tij2Ee−2γðEÞ; ð1Þ
where jf; ti ¼ jfi ⊗ jti with jti indicating the spin ori-
entation of the tunneling particle. The tunneling parameter
γ is determined by means of a WKB calculation [35]. The
probability to tunnel from state jii to state jfi is given by

Pi;f ¼
Ti;f

ðPf0Ti;f0 Þ
; ð2Þ

where the sum is over all possible final states jf0i.
Using Eq. (2), we calculate the probabilities Pi;j↑;↑i of

tunneling into the spin-polarized final state [red lines
in Fig. 3(a)], which is equivalent to the probability of

spin-down tunneling (P↓). Far below the CIR, the energy
dependent term Ee−2γ dominates the outcome of the
tunneling rates [Eq. (1)]. Therefore, tunneling into the
AFM two-particle ground state ðj↑;↓i − j↓;↑iÞ= ffiffiffi

2
p

is
strongly favored if its spin overlap to the initial state is
not zero. This leads to a limiting value of P↓ ¼ 0 for initial
AFM and IM states. Above the resonance, the energy
ordering of the two-particle FM and AFM states is reversed
and tunneling into the FM states is predominant (Fig. 2)
[43]. Here, P↓ is determined by the ratio of the spin
overlaps between the first two spins of the initial states and
the FM two-particle states j↑;↑i and ðj↑;↓i þ j↓;↑iÞ= ffiffiffi

2
p

.
The comparison of the theoretically predicted P↓ of the

AFM state in the tilted trap [red solid line in Fig 3(a)] with
the experimental data (blue points) shows good agreement,
while the FM(red dashed line) and IM (red dotted line) states
are clearly excluded. We therefore conclude that before
tunneling both below and above the CIR the system is in the
AFM state. The gray points at−1=g1D ≈ 0 indicate a narrow
resonance effect that couples the AFM state to the IM state
of the spin chain. Since this resonance is accompanied
by strongly enhanced three-body losses [35], we suspect
it to be caused by a coupling of the AFM and the IM states
via a molecular state with center-of-mass excitation. The
coupling to such molecular states is strongly enhanced
by the anharmonicity of our tilted trap [44].
For theAFMstate of the (3, 1) system, a similar calculation

predicts P↓ ≈ 1% on resonance and a saturation value of
P↓ ≈ 75% deep in the super-Tonks regime [35]. As shown in
Fig 3(b), the general trend of our measurements agrees with
this prediction for the AFM state, but in the super-Tonks
regime, there is a significant deviation. The reason for this
deviation is that the calculation assumes an adiabatic low-
ering of the potential barrier. As a result, the tunneling
energies of all tunneling channels are always well below the
barrier maximum. We believe that this condition is not
fulfilled for the (3, 1) system in the super-Tonks regime,
where an especially low potential barrier was used for the
tunneling measurement. Indeed, if we model a nonadiabatic
lowering of the potential barrier, the contribution from
tunneling into the IM state reduces P↓ to values that are
compatible with the experimental results [35]. In order to
study the spin configuration of the balanced (2, 2) system,we
adapt the previous procedure and let two atoms tunnel out of
the trap. Here, P↓ is defined as the probability to end up in
state j↑;↑i, where both spin-down atoms tunneled out of the
trap. Again, the predicted P↓ ≈ 4% on resonance and the
limiting value of P↓ ≈ 33.3% in the super-Tonks regime are
ingoodagreementwith the experiment, as shown inFig. 3(c).
To independently confirm the results of our measurement

of the spin distribution, we perform a second set of mea-
surements that directly probes the spatial wave function of the
system. As shown in Fig. 1(a), the relative spatial wave
function between identical spins always exhibits a smooth
zero crossing, while between distinguishable spins with
strong interactions it can exhibit a cusp. The cusps lead to
occupancies of high-energy trap levels, while the zero

FIG. 3 (color online). Probing the spin distribution. Tunneling
probabilities of the spin-down atom in a (2, 1) system (a) and a
(3, 1) system (b) and tunneling probability of both spin-down
atoms in a (2, 2) system (c) as a function of the interaction
strength. The red lines are the solutions of a tunneling model
for the antiferromagnetic (solid), the ferromagnetic (dashed), and
the intermediate state (dotted). The gray points in (a) indicate a
narrow resonance between the antiferromagnetic and the inter-
mediate state of the (2, 1) system close to −1=g1D ¼ 0. Error bars
denote the 1σ statistical uncertainties.
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crossings require only theoccupationof the lowest trap levels.
In general, the more symmetric the spatial wave function
of a state is, the more cusps it will contain. Therefore, the
occupation-number distribution on single-particle trap levels
directly reveals the spin configuration of the system.
To probe this distribution, we prepare an interacting

(2, 1) or (3, 1) system and remove all atoms of the spin-up
component from the trap with a short pulse of light. The
light is σ− polarized and resonant to the D2 transition of
the spin-up atoms (j↑i¼jj¼1=2;mj¼−1=2;I¼1;mI¼0i
to jj ¼ 3=2; mj ¼ −3=2; I ¼ 1; mI ¼ 0i). We confirm that
within our experimental fidelity all spin-up atoms are
removed from the trap by the light pulse, while only 3%
of the population of spin-down atoms is lost. With 15 μs
the duration of the light pulse is significantly shorter than
the inverse longitudinal trap frequency of approximately
100 μs, which sets the time scale of redistribution along
the spin chain. This process therefore projects the spin-
down component of the wave function of the interacting
(N↑; 1)-particle system on single-particle trap levels.
Finally, we measure the mean occupancies on the single-
particle trap levels [35]. In Fig. 4 we compare the mean
occupancies of the spin-down atom for the (2, 1) and the
(3, 1) systems in the super-Tonks regime with the theo-
retical prediction that we obtained by numerically diagonal-
izing the many-body Hamiltonian for these systems. The
comparison shows that both systems are in the AFM spin
state and thereby confirms that our systems follow this state
throughout the fermionization regime.

In conclusion, we have prepared antiferromagnetic
Heisenberg spin chains of up to four atoms in a one-
dimensional trap and independently probed the spin
distributions and spatial wave functions of the systems.
This constitutes a direct observation of quantummagnetism
beyond two-particle correlations in a system of ultracold
fermionic atoms. By using the methods developed in
Ref. [5], multiple spin chains can be realized and coupled,
which offers a new approach to studying two- and three-
dimensional quantum magnetism.
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Strongly interacting one-dimensional (1D) Bose–Fermi mixtures form a tunable XXZ spin chain. Within the
spin-chain model developed here, all properties of these systems can be calculated from states representing the
ordering of the bosons and fermions within the atom chain and from the ground-state wave function of spinless
noninteracting fermions. We validate the model by means of an exact diagonalization of the full few-body
Hamiltonian in the strongly interacting regime. Using the model, we explore the phase diagram of the atom chain
as a function of the boson-boson (BB) and boson-fermion (BF) interaction strengths and calculate the densities,
momentum distributions, and trap-level occupancies for up to 17 particles. In particular, we find antiferromagnetic
(AFM) and ferromagnetic (FM) order and a demixing of the bosons and fermions in certain interaction regimes.
We find, however, no demixing for equally strong BB and BF interactions, in agreement with earlier calculations
that combined the Bethe ansatz with a local-density approximation.

DOI: 10.1103/PhysRevA.95.043630

I. INTRODUCTION

Ultracold atoms are ideally suited to study strongly corre-
lated one-dimensional (1D) systems due to their high degree
of control and tunability [1,2]. These advantageous features
have led to the observation of the Tonks–Girardeau gas [3,4],
the controlled preparation of a highly excited super-Tonks gas
[5,6], undamped dynamics in strongly interacting 1D Bose
gases [7], and the deterministic preparation of 1D few-fermion
systems with tunable interactions [8–12]. Moreover, it became
possible to realize a variety of artificial 1D systems consisting,
e.g., of atoms with a large spin [13] or Bose–Fermi mixtures
with mixed statistics [14].

These developments have renewed the interest in Gi-
rardeau’s Bose-Fermi mapping for 1D spinless bosons with
infinite δ repulsion [15] leading to generalizations for Bose-
Fermi mixtures [16], spin-1 bosons [17], and spin-1/2
fermions [18]. Only recently it was found that these exact
solutions are also useful for the perturbative treatment of
strongly interacting 1D systems [19]. Different from one-
component systems, the ground state of multicomponent
systems with infinite δ repulsion is highly degenerate [16–18].
This is due to the fact that strongly interacting 1D particles
localize and arrange themselves in a spin chain [17,20,21]. This
offers the exciting possibility to study quantum magnetism
without the need for an optical lattice [21–25].

Theoretical studies of Bose-Fermi mixtures in optical lat-
tices predicted composite fermions consisting of one fermion
and one ore more bosons, or, respectively, bosonic holes [26]
and polarons [27]. In addition, pairing, collapse, and demixing
can occur in homogeneous 1D systems of strongly interacting
bosons and fermions [28]. For equally strong boson-boson
(BB) and boson-fermion (BF) δ interactions, the model can be
solved exactly via the Bethe ansatz [29,30]. Selected states of
the degenerate ground-state multiplet have been constructed
in the Tonks-Girardeau regime of infinite δ repulsion [16] and
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classified using Young’s tableaux [31]. Recently, all states of
the multiplet have been constructed for few (up to 6) particles
[32–34] and strongly interacting mixtures with additional
weak p-wave interactions have been studied [35,36].

Here, we develop a spin-chain model for 1D Bose-Fermi
mixtures with nearly infinite δ interactions [37]. We check
the validity of the model by diagonalizing the full few-body
Hamiltonian numerically in the strongly interacting regime.
Using the spin-chain model, we then calculate the ground-
state densities, momentum distributions, and occupancies of
the harmonic-trap levels for atom chains consisting of up to
17 particles. Moreover, we determine the ground-state phases
of these atom chains, finding antiferromagnetic (AFM) and
ferromagnetic (FM) order and a demixing of the bosons and
fermions for particular values of the BB and BF interaction
strengths. However, no demixing is found for equally strong
BB and BF interactions although the bosons are predominantly
in the trap center and the fermions are predominantly at the
edges of the trap [29].

II. SPIN-CHAIN MODEL

We consider a 1D mixture of NB bosons and NF fermions
(total particle number N = NB + NF ). Both species are
assumed to have the same masses, MB = MF = M , and
experience the same trapping potential V (z). The bosons
interact with each other through a δ potential of strength gBB

and with the fermions through a δ potential of strength gBF .
The many-body Hamiltonian of the system is given by

H =
N∑

i=1

[
− h̄2

2M

∂2

∂z2
i

+ V (zi)

]
+ gBB

NB−1∑
i=1

NB∑
j=i+1

δ(zi − zj )

+ gBF

NB∑
i=1

N∑
j=NB+1

δ(zi − zj ). (1)

The interaction strengths gBB and gBF are freely tunable
through a magnetic Feshbach resonance [38] and through the
strong radial confinement [39].
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Here, we focus on the strongly interacting regime, where
the absolute value of both interaction strengths is large, i.e.,
|gBB | ≈ ∞ and |gBF | ≈ ∞. Furthermore, we consider only
the highly excited super-Tonks states [5,6,9] if at least one
of the interaction strengths is attractive.1 Under these con-
ditions, the atoms order in a row and form a spin chain
[17,20,21,40]. An arbitrary state of the spin chain is given by

|χ〉 =
∑

m1,... ,mN

cm1,... ,mN
|m1, . . . ,mN 〉, (2)

where each basis state |m1, . . . ,mN 〉 with mi = B,F

corresponds to a particular ordering of the bosons (B) and
fermions (F ) and can be constructed from the wave function
of N spinless noninteracting fermions [31] (see Appendix A).

Nearest-neighbor particles of the spin chain interact with
each other through the effective Hamiltonian [35]

Heff = EF1 − 2
N−1∑
i=1

J
(BB)
i |B〉i |B〉i+1〈B|i〈B|i+1

−
N−1∑
i=1

J
(BF )
i

(|B〉i |F 〉i+1 + |F 〉i |B〉i+1
)

× (〈B|i〈F |i+1 + 〈F |i〈B|i+1
)
, (3)

as shown in Appendix B. Here, EF is the ground-state energy
of N spinless noninteracting fermions in the trapping potential
V (z) and J

(BB)
i and J

(BF )
i are the exchange coefficients of

nearest-neighbor bosons or bosons and fermions, respectively.
The exchange coefficients are given by J

(BB)
i = Ci/gBB and

J
(BF )
i = Ci/gBF with [19,21]

Ci = N !h̄4

M2

∫
dz1 · · · dzNδ(zi − zi+1)θ (z1, . . . ,zN )

∣∣∣∣∂ψF

∂zi

∣∣∣∣2

,

(4)

where θ (z1, . . . ,zN ) = 1 if z1 < · · · < zN , and zero otherwise,
and where ψF is the ground-state wave function of N spinless
noninteracting fermions in the trap V (z). The Ci can be
efficiently calculated for large N [41–43].

By identifying bosons and fermions with pseudospin-up
and -down particles, respectively, Eq. (3) can be rewritten in
terms of the Pauli matrices σ (i)

x , σ (i)
y , and σ (i)

z :

Heff = −1

2

N−1∑
i=1

{
J

(BF )
i

[
σ (i)

x σ (i+1)
x + σ (i)

y σ (i+1)
y

]
+ [

J
(BB)
i − J

(BF )
i

]
σ (i)

z σ (i+1)
z + J

(BB)
i

[
σ (i)

z + σ (i+1)
z

]}
.

(5)

Here, we neglected the diagonal matrix{
EF − 1

2

N−1∑
i=1

[
J

(BB)
i + J

(BF )
i

]}
1. (6)

1Super-Tonks states may be prepared by ramping adiabatically
across a confinement-induced resonance [5,9,40].

Equation (5) is the Hamiltonian of an XXZ spin chain in
an inhomogeneous magnetic field along the z axis. Similar
effective Hamiltonians have been derived for strongly inter-
acting Bose-Bose mixtures [22,24,25] and strongly interacting
mixtures with weak p-wave interactions [35,36].

The densities of the bosons (m = B) and fermions (m = F )
are given by [17]

ρm(z) =
N∑

i=1

ρ(i)(z)ρ(i)
m , (7)

with the probability to find the ith particle at position z,

ρ(i)(z) = N !
∫

dz1 · · · dzNδ(z − zi) θ (z1, . . . ,zN )|ψF |2,
(8)

and the probability that the ith particle is a boson (m = B) or
fermion (m = F ),

ρ(i)
m =

∑
m1,... ,mN

|〈m1, . . . ,mN |χ〉|2δm,mi
. (9)

The one-body density matrix of the bosons (m = B) and
fermions (m = F ) is given by

ρm(z,z′) =
N∑

i,j=1

ρ(i,j )(z,z′)ρ(i,j )
m , (10)

with [23,41]

ρ(i,j )(z,z′)

= N !
∫

dz1 · · · dzi−1dzi+1 · · · dzN

× [θ (z1, . . . ,zN )|ψF (z1, . . . ,zN )|]zi=z

× [θ (zPi,... ,j (1), . . . ,zPi,... ,j (N))|ψF (z1, . . . ,zN )|]zi=z′ ,

(11)

and

ρ(i,j )
m = 〈χ |m〉i〈m|i P̂ (BF )

i,... ,j |χ〉, (12)

as shown in Appendix C. Here, we defined P̂
(BF )
i,... ,j =

(−1)Ntr P̂i,... ,j with the loop permutation operator P̂i,... ,j , which
moves a particle from position j to position i (see Appendix A
for details). Ntr is the number of transpositions of neighboring
fermions when P̂i,... ,j acts on |m1, . . . ,mN 〉. The momentum
distributions and occupancies of the trap levels are related to
the one-body density matrices by

ρm(k) = 1

2π

∫
dzdz′eik(z−z′)ρm(z,z′), (13)

and

ρm(n) =
∫

dzdz′φn(z)φ∗
n(z′)ρm(z,z′), (14)

with the eigenfunctions φn(z) of the trap V (z).
We have tested the validity of the spin-chain model by

comparing its results to those of an exact diagonalization of
the full few-body Hamiltonian (1) for up to four particles in
a harmonic trap. Both approaches should lead to the same
results in the Tonks-Girardeau regime, gBB = gBF > 10h̄ωl
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FIG. 1. Comparison of the ground-state densities (left) and
momentum distributions (right) of a mixture of two bosons and two
fermions (2B2F mixture) in a harmonic trap calculated by means of
an exact diagonalization (ED) of the full few-body Hamiltonian (solid
lines) and from the spin-chain (SC) model (dashed lines) for equal
BB and BF interaction strengths (gBB = gBF = 15h̄ωl). ω, and l are
the frequency and length scale of the harmonic oscillator.

[21,44] [ω is the frequency and l = √
h̄/(mω) is the length

scale of the harmonic oscillator]. Indeed, the comparison
showed excellent agreement for the spectrum, the densities,
and the momentum distributions for mixtures consisting of
one boson and three fermions (1B3F mixture), two bosons
and two fermions (2B2F mixture), and three bosons and one
fermion (3B1F mixture). As an example, we show in Fig. 1
the result of such a comparison for the ground-state densities
and momentum distributions of a 2B2F mixture for equally
strong BB and BF interactions, gBB = gBF = 15h̄ωl. These
ground-state densities agree with Refs. [32,33].

III. PHASES AND DENSITIES

The ground-state phases of the effective Hamiltonian (3)
or, respectively, (5) are determined by the interplay of the
BB and BF interactions. In particular, we distinguish five
different phases, as shown in the phase diagram in Fig. 2,
which follow from the phases of the homogeneous XXZ chain
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FIG. 2. Phase diagram of the Bose-Fermi chain as a function of
η = |gBF |/gBB for gBF > 0 (upper part) and gBF < 0 (lower part).
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FIG. 3. Ground-state densities of a harmonically trapped Bose-
Fermi mixture consisting of nine bosons (solid) and eight fermions
(dashed) for gBF < 0 (left) and gBF > 0 (right). The different phases
are described in the text. l is the harmonic-oscillator length.

in the absence of an external magnetic field [45].2 For dominant
BB exchange couplings, which corresponds to the parameter
regime |η| = |J (BB)

i /J
(BF )
i | 	 1, the spin chain is in the Ising

AFM (J (BB)
i < 0) or FM (J (BB)

i > 0) state. For J
(BB)
i ≈ J

(BF )
i

(gray shaded regions around η = ±1), the spin chain is in
the XY phase. These phases are characterized by strong FM
(J (BF )

i > 0) or AFM (J (BF )
i < 0) xy correlations. At the edges

of the XY phases (η = 0, ± 2) the system is in the Heisenberg
AFM or FM phases. Note that we consider the highly
excited (metastable) super-Tonks states [5,6] in the regime of
attractive interactions and, therefore, do not obtain collapse and
pairing [28].

Ising FM and AFM order (|η| 	 1). Let us first consider the
case J

(BF )
i = 0, J (BB)

i 
= 0, in which the effective Hamiltonian
(3) is diagonal. In that case, for J

(BB)
i > 0, the energy is

minimized if all bosons are next to each other and in the
trap center (largest Ci). A typical ground state is therefore of
the form |F,F,B,B,B,B,F,F 〉, i.e., the bosons are separated
from the fermions, the bosons are in the trap center, and the
fermions are at the edges of the trap. This separation of the
bosons from the fermions is clearly visible in the densities
of Fig. 3(f). In the opposite case of negative BB exchange
coefficients, J

(BB)
i < 0, the energy is minimized if the bosons

are not next to each other and hence a typical ground state is of

2A homogeneous external magnetic field has no effect due to the
conserved total magnetization of the system in the z direction.
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the form |B,F,B,F,B,F,B〉, as in the ground state of an Ising
AFM chain. In that regime, the densities look, therefore, like
those of Fig. 3(a). The same or similar limiting phases have
been found in related mixtures [24,34–36].

Heisenberg AFM and FM order (η = 0). Let us now
consider the case J

(BB)
i = 0, J

(BF )
i 
= 0, for which the spin-

chain Hamiltonian (5) takes the form

Heff = −
N−1∑
i=1

J
(BF )
i

2

[
σ (i)

x σ (i+1)
x + σ (i)

y σ (i+1)
y − σ (i)

z σ (i+1)
z

]
.

(15)

By performing the unitary transformation

σ (i)
x → (−1)iσ (i)

x , σ (i)
y → (−1)iσ (i)

y , σ (i)
z → σ (i)

z , (16)

we obtain

H̃eff =
N−1∑
i=1

J
(BF )
i

2
�σ (i) · �σ (i+1), (17)

which is the Heisenberg Hamiltonian. Therefore, the ground
state is AFM for J

(BF )
i > 0 and FM for J

(BF )
i < 0. Typical

densities are shown in Figs. 3(b) and 3(e). The spin-spin
correlations σ

(i)
z σ

(j )
z alternate in sign, ∝(−1)i−j , and decay

with distance |i − j | in the AFM state, while staying constant
in the FM state. However, because of the transform (16), the
spin-spin correlations in the xy plane do not alternate in sign
in the AFM state, but instead, they alternate in the FM state.

XY phases (η = ±1). Let us finally discuss the cases
J

(BB)
i = J

(BF )
i (gBB = gBF ). The repulsive case, gBB =

gBF > 0, is exactly solvable for any value of the interaction
strength if V (z) = 0 [29,30]. Combining the exact solution of
the homogeneous system with a local density approximation,
one finds that the bosons and fermions do not demix, but the
bosons are predominantly in the trap center and the fermions
are predominantly at the edges of the trap. We find the same
result and the density profiles are in excellent agreement
with Ref. [29]; see Fig. 3(d). For attractive interactions,
gBB = gBF < 0, the situation is reversed with the fermions
(bosons) sitting predominantly at the center (edges) of the
harmonic trap, see Fig. 3(c). We note that the bosonic
(fermionic) density of the η = 1 case would exactly equal the
fermionic (bosonic) density of the η = −1 case, if the particle
numbers would be equal, i.e., NB = NF .

This symmetry can be understood as follows: For J
(BB)
i =

J
(BF )
i > 0, Eq. (5) takes the form of an XX Hamiltonian with

an inhomogeneous effective magnetic field pointing along the
+z direction,

Heff = −
N−1∑
i=1

∣∣J (BF )
i

∣∣
2

[
σ (i)

x σ (i+1)
x + σ (i)

y σ (i+1)
y

]
−

N−1∑
i=1

∣∣J (BB)
i

∣∣
2

[
σ (i)

z + σ (i+1)
z

]
, (18)
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FIG. 4. Momentum distributions of nine bosons (solid) and eight
fermions (dashed) in a harmonic trap for gBF < 0 (left column) and
gBF > 0 (right column). See the text for a description of the different
phases. l is the harmonic-oscillator length.

while for J
(BB)
i = J

(BF )
i < 0, after performing the transforma-

tion (16), the field points in the −z direction,

H̃eff = −
N−1∑
i=1

∣∣J (BF )
i

∣∣
2

[
σ (i)

x σ (i+1)
x + σ (i)

y σ (i+1)
y

]
+

N−1∑
i=1

∣∣J (BB)
i

∣∣
2

[
σ (i)

z + σ (i+1)
z

]
. (19)

In the first case, the bosons (pseudospin-up) are moved to the
trap center, since the |J (BB)

i | are largest there, while in the latter
case, the fermions (pseudospin-down) are moved to the trap
center. Moreover, both Hamiltonians can be transformed into
each other by exchanging the bosons with the fermions, which
explains the symmetry of the density distributions.

IV. MOMENTUM DISTRIBUTIONS AND OCCUPANCIES

The momentum distributions and the occupancies of the
harmonic-trap levels are important observables, which can be
measured in the experiment [12,13,46]. These distributions
depend strongly on the degree of exchange symmetry of the
spatial many-body wave function and can also be used as a
probe for the magnetic structure of the spin chain [12,41,47].
We therefore expect very different momentum distributions
and trap-level occupancies in the different phases of the Bose-
Fermi chain as will be shown in the following.

Momentum distributions of nine bosons (solid) and eight
fermions (dashed) are shown in Fig. 4. Both momentum

043630-4



SPIN-CHAIN MODEL FOR STRONGLY INTERACTING . . . PHYSICAL REVIEW A 95, 043630 (2017)

(a) η = −10 (b) η = 0

(c) η = −1 (d) η = 1

(e) η = 0 (f) η = 10

0 4 8 12 16 20

Ising AFM

0

0.2

0.4

0.6

0.8

ρ
B
/F

(n
)

0 4 8 12 16 20

Heisenberg AFM

0

0.4

0.8

1.2

0 4 8 12 16 20

XY phase

0

0.2

0.4

0.6

0.8

ρ
B
/F

(n
)

0 4 8 12 16 20

XY phase

0

0.5

1

1.5

2

0 4 8 12 16 20
trap level n

Heisenberg FM

0

0.2

0.4

0.6

0.8

ρ
B
/F

(n
)

0 4 8 12 16 20
trap level n

Ising FM

0

1

2

3

FIG. 5. Occupancies of the harmonic-trap levels of nine bosons
(solid) and eight fermions (dashed) for gBF < 0 (left) and gBF > 0
(right). See the text for a description of the different phases.

distributions resemble Gaussian distributions in the Ising AFM
phase, Fig. 4(a), as expected for a Wigner crystal [48]. This
is a result of the comparatively large distance between the
particles of the same kind; see Fig. 3(a). In the Heisenberg
AFM phase, Fig. 4(b), the bosonic and fermionic distributions
look like those of the corresponding spin-1/2 particles [23,41].
By contrast, in the Heisenberg FM phase, Fig. 4(e), both distri-
butions are much broader, as expected for the highest excited
states of the corresponding spin-1/2 particles [41]. Indeed,
the FM ground state of the Heisenberg Hamiltonian (17) for
J

(BF )
i < 0 is the highest excited state for J

(BF )
i > 0. More-

over, the ground state of Eq. (5) for J
(BB)
i = 10J

(BF )
i < 0,

which has the momentum distribution shown in Fig. 4(a),
is the highest excited state for J

(BB)
i = 10J

(BF )
i > 0 and the

ground state for J
(BB)
i = J

(BF )
i < 0, which has the momentum

distribution shown in Fig. 4(c), is the highest excited state
for J

(BB)
i = J

(BF )
i > 0. This is the reason for the broader

momentum distributions in the left column of Fig. 4. Finally,
in the Ising FM phase, one has a Tonks-Girardeau gas in
the center and noninteracting fermions at the edges of the
trap, Fig. 3(f). Therefore, one expects that the momentum
distributions of that phase resemble those of a Tonks-Girardeau
gas and noninteracting fermions, Fig. 4(f). The distributions
are, however, broader than those of Fig. 4(b), since the particles
are located in a smaller trap volume.

The occupancies of the harmonic-trap levels of nine bosons
(solid) and eight fermions (dashed) are shown in Fig. 5. In
the Ising AFM phase, Fig. 5(a), both occupancies oscillate
out of phase around the same average broad distribution. The

higher oscillator orbitals (n > 10) are preferably occupied by
the bosons, since the bosonic density is broader [Fig. 3(a)].
The separation of the bosons from the fermions in the Ising
FM phase is also manifest in the occupancies, Fig. 5(f).
The bosons preferably occupy the lower oscillator orbitals
(n < 4) and the fermions the higher ones (n > 4). In the
Heisenberg AFM phase, Fig. 5(b), the bosonic and fermionic
occupancies are almost equal. By contrast, in the Heisenberg
FM phase, Fig. 5(e), the fermions occupy the lowest 17
orbitals with 8/17 = 0.47 fermions, whereas the bosonic
distribution decreases roughly linearly. Finally, once again,
the occupancies in the XY phases, Figs. 5(c) and 5(d), re-
semble the behavior of the corresponding densities, Figs. 3(c)
and 3(d).

In closing this section, we note that the variance of the to-
tal momentum distribution, 〈k2〉 = ∫

dkk2[ρF (k) + ρB(k)] =
N2/(2l2), is independent of the pseudospin configuration of
the Bose-Fermi chain. Similarly, the total energy of the Bose-
Fermi chain, calculated from the total trap-level occupancies,∑∞

n=0(n + 1/2)[ρF (n) + ρB(n)] = N2/2, is independent of
the configuration of the bosons and fermions. This follows
from the fact that all pseudospin configurations have the same
total energy at gBB = gBF = ∞ and from the virial theorem.

V. SUMMARY

We have presented a spin-chain model for Bose-Fermi
mixtures with nearly infinite BB and BF δ interactions.
The model is based on a mapping to states of the form
|m1, . . . ,mN 〉 with mi = B,F and to the wave function of
spinless noninteracting fermions. We checked the model by
comparing with an exact diagonalization of the full few-body
Hamiltonian in the strongly interacting regime. Using the spin-
chain model, we determined the ground-state phases of the
Bose-Fermi mixture and calculated the densities, momentum
distributions, and occupancies of the harmonic-trap levels for
up to 17 particles. We found, in particular, AFM and FM order
and a demixing of the bosons and fermions. However, we
found no demixing for equally strong BB and BF interactions
in agreement with earlier calculations [29].
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APPENDIX A: SECTOR WAVE FUNCTIONS
AND PERMUTATIONS

1. Sector wave functions

In the regime of infinite BB and BF repulsion, gBB =
gBF = ∞, the many-body wave function must vanish when-
ever two particle coordinates are equal, i.e., ψ(z1, . . . ,zN ) = 0
if zi = zj . This condition is fulfilled by the wave function of N

spinless noninteracting fermions, ψF , but also by its absolute
value |ψF |, which describes N spinless bosons with infinite δ

repulsion [15]. Additionally, we may restrict |ψF | to a partic-
ular sector of the configuration space RN,zP (1) < · · · < zP (N),
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in order to describe spinless distinguishable particles with
infinite δ repulsion and particle ordering zP (1) < · · · < zP (N).
Here, P denotes an arbitrary permutation of N = {1, . . . ,N}.
The resulting wave function, denoted by |P 〉, is given by [17]

〈z1, . . . ,zN |P 〉 =
√

N !θ (zP (1), . . . ,zP (N))|ψF |. (A1)

Here, θ (zP (1), . . . ,zP (N)) = 1 if zP (1) < · · · < zP (N) and zero
otherwise.

The sector wave functions (A1) are by definition orthonor-
mal, i.e., 〈P |P ′〉 = δP,P ′ , and they have further favorable
properties. For example, the action of a permutation operator
P̂ on a sector wave function |P ′〉 is given by [41]

P̂ |P ′〉 = |P ◦ P ′〉. (A2)

The permutation operator P̂ of a permutation P acts on a
many-body state |α1, . . . ,αN 〉 in the following way:

P̂ |α1〉1 · · · |αN 〉N = |α1〉P (1) · · · |αN 〉P (N). (A3)

That is, P̂ permutes the particle indices of a many-body state
according to the prescription 1 → P (1), . . . ,N → P (N ).

To describe a Bose-Fermi mixture with infinite BB and
BF repulsion, gBB = gBF = ∞, one has to symmetrize the
sector wave functions |P 〉 with respect to the bosonic coordi-
nates, z1, . . . ,zNB

, and to antisymmetrize with respect to the
fermionic ones, zNB+1, . . . ,zN . We therefore define [31]

P̂ |B, . . . ,B,F, . . . ,F 〉 ≡
√

NB!NF !S+S−|P −1〉. (A4)

Here, S+ = (1/NB!)
∑

P ′ P̂ ′ is a symmetrization operator,
where the sum runs over all permutations P ′ of NB =
{1, . . . ,NB}, S− = (1/NF !)

∑
P ′′ (−1)P

′′
P̂ ′′ is an antisym-

metrization operator, where the sum runs over all permutations
P ′′ of N − NB = {NB + 1, . . . ,N}, and P −1 is the inverse of
the permutation P . Furthermore, we specify to use only those
initial sector wave functions |P −1〉, for which the bosonic and
fermionic coordinates are each in ascending order. This is nec-
essary, since otherwise two sector wave functions, which differ
only by the transposition of two fermionic coordinates, would
have a different sign. The requirement is fulfilled if we move
the B at position NB in the initial state |B, . . . ,B,F, . . . ,F 〉
to the new position iNB

with NB � iNB
� N , the B at position

NB − 1 to the new position iNB−1 with NB − 1 � iNB−1 < iNB
,

and so forth.

2. Permutations

We use the cycle notation to specify a permutation. For ex-
ample, the permutation P(α,β,γ ) permutes the numbers α, β, γ

according to the prescription α → β → γ → α. Moreover,
we neglect the parentheses if a permutation consists of only
one cycle, i.e., P(α,β,γ ) = Pα,β,γ . The corresponding unitary
operator that permutes the particle indices α, β, γ of a many-
body state according to the same rule is denoted by P̂α,β,γ . We
also note that a cyclic permutation of α, β, γ does not change
the cycle, i.e., Pα,β,γ = Pγ,α,β = Pβ,γ,α .

The cycle Pα,β,γ is the composition of two transpositions
Pα,β and Pβ,γ , Pα,β,γ = Pα,β ◦ Pβ,γ . The corresponding cycle
operator P̂α,β,γ is the product of two transposition operators
P̂α,β and P̂β,γ , P̂α,β,γ = P̂α,β P̂β,γ . The inverse of the cycle
operator P̂α,β,γ is therefore given by P̂ −1

α,β,γ = (P̂α,β P̂β,γ )−1 =

P̂γ,β P̂β,α = P̂γ,β,α , i.e., the particle indices appear in the
inverse cycle operator in the inverse order.

The identity permutation is denoted by “id” and the
corresponding operator by 1. A particular cycle is the loop
permutation, which is defined by

Pi,... ,j =

⎧⎪⎨⎪⎩
Pi,i+1,... ,j−1,j for i < j

id for i = j

Pi,i−1,... ,j+1,j for i > j.

(A5)

The loop permutation is therefore a composition of transposi-
tions of consecutive integers, Pi,... ,j = Pi,i+1 ◦ Pi+1,i+2 ◦ · · · ◦
Pj−2,j−1 ◦ Pj−1,j (assuming i < j ) and the loop permutation
operator P̂i,... ,j is a product of transpositions of neighboring
particles, P̂i,... ,j = P̂i,i+1P̂i+1,i+2 · · · P̂j−2,j−1P̂j−1,j . The loop
permutation operator P̂i,... ,j therefore moves the particle at
position j to position i.

3. Basis of a two-boson two-fermion mixture

The goal of this section is to clarify definition (A4). A basis
of a mixture of two bosons and two fermions (2B2F mixture)
is given by

|B,B,F,F 〉, |B,F,B,F 〉, |B,F,F,B〉,
|F,B,F,B〉, |F,F,B,B〉, |F,B,B,F 〉. (A6)

The first basis state is, according to Eq. (A4), constructed by
means of the sector wave function |id〉 that corresponds to the
identity permutation,

|B,B,F,F 〉 = 1
2 (1 + P̂1,2)(1 − P̂3,4)|id〉. (A7)

The second basis state is obtained from the first one by
transposing the second and third particle. Therefore, we obtain

|B,F,B,F 〉 = P̂2,3|B,B,F,F 〉
= 1

2 (1 + P̂1,2)(1 − P̂3,4)|P2,3〉. (A8)

The third basis state is obtained from the first one by moving
the second B to the fourth position. This is achieved by
applying the loop permutation operator P̂4,3,2. The inverse
of this loop permutation operator is given by P̂ −1

4,3,2 = P̂2,3,4.
We therefore obtain, using Eq. (A4),

|B,F,F,B〉 = P̂4,3,2|B,B,F,F 〉
= 1

2 (1 + P̂1,2)(1 − P̂3,4)|P2,3,4〉. (A9)

Note that the bosonic (z1,z2) and fermionic coordinates (z3,z4)
are each in ascending order in the initial sector wave function
|P2,3,4〉, since z1 < z3 < z4 < z2, as required.

The fourth basis state is obtained from the first one by
moving the second B to the fourth position and then the first B

to the second position, i.e., by applying P̂1,2P̂4,3,2 = P̂1,2,4,3.
Using P̂ −1

1,2,4,3 = P̂3,4,2,1 = P̂2,1,3,4 we obtain

|F,B,F,B〉 = 1
2 (1 + P̂1,2)(1 − P̂3,4)|P2,1,3,4〉. (A10)

The fifth basis state is obtained from the first one by moving
the second B to the fourth position and then the first B to the
third position, i.e., by applying P̂3,2,1P̂4,3,2 = P̂(1,3)(2,4). Using
P̂ −1

(1,3)(2,4) = P̂(1,3)(2,4) we obtain

|F,F,B,B〉 = 1
2 (1 + P̂1,2)(1 − P̂3,4)|P(1,3)(2,4)〉. (A11)
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The sixth basis state is finally obtained from the first one by
moving the second B to the third position and then the first
B to the second position, i.e., by applying P̂2,1P̂3,2 = P̂1,2,3.
Using P̂ −1

1,2,3 = P̂3,2,1 we obtain

|F,B,B,F 〉 = 1
2 (1 + P̂1,2)(1 − P̂3,4)|P3,2,1〉. (A12)

APPENDIX B: EFFECTIVE HAMILTONIAN

Here, we perform a perturbative calculation of a strongly
interacting 2B1F mixture up to linear order in 1/gBB and
1/gBF . The matrix elements of the Hamiltonian in the
degenerate ground-state manifold are shown to agree with
Eq. (3). The basis states of the 2B1F mixture are [see Eq. (A4)]

|1〉 := |B,B,F 〉 = 1√
2

(1 + P̂1,2)|id〉, (B1)

|2〉 := |B,F,B〉 = 1√
2

(1 + P̂1,2)|P2,3〉, (B2)

|3〉 := |F,B,B〉 = 1√
2

(1 + P̂1,2)|P3,2,1〉. (B3)

The Hamiltonian of the 2B1F mixture is given by [see Eq. (1)]

H =
3∑

i=1

[
− h̄2

2M

∂2

∂z2
i

+ V (zi)

]
+ gBBδ(z1 − z2)

+ gBF δ(z1 − z3) + gBF δ(z2 − z3). (B4)

The matrix element 〈1|H |1〉 is therefore given by

〈1|H |1〉 = 1
2 〈id|(1 + P̂1,2)H (1 + P̂1,2)|id〉. (B5)

H is symmetric under the exchange of the first and second
particle. H therefore commutes with (1 + P̂1,2). Moreover,
(1 + P̂1,2)(1 + P̂1,2) = 2(1 + P̂1,2) and therefore

〈1|H |1〉 = 〈id|H |id〉 + 〈id|H |P1,2〉. (B6)

Let us calculate an arbitrary matrix element 〈P |H |P ′〉 in
the vicinity of (1/gBB,1/gBF ) = (0,0). Performing a Tay-
lor expansion up to first order in 1/gBB and 1/gBF , we
obtain [21]

〈P |H |P ′〉

= EF δP,P ′ − 1

gBB

lim
gBB→+∞

(
g2

BB〈P (gBB )| dH

dgBB

|P ′(gBB )〉
)

− 1

gBF

lim
gBF →+∞

(
g2

BF 〈P (gBF )| dH

dgBF

|P ′(gBF )〉
)

, (B7)

with dH
dgBB

= δ(z1 − z2) and dH
dgBF

= δ(z1 − z3) + δ(z2 − z3).

|P (g)〉 is the ground state of N spinless bosons with strong
δ repulsion restricted to the sector zP (1) < · · · < zP (N) [21].
Furthermore, using the boundary condition(

∂

∂zi

− ∂

∂zj

)
ψ

∣∣∣∣
zi=zj +

−
(

∂

∂zi

− ∂

∂zj

)
ψ

∣∣∣∣
zi=zj −

= 2Mg

h̄2 ψ

∣∣∣∣
zi=zj

, (B8)

one finds

lim
g→+∞[g2〈P (g)|δ(zi − zj )|P ′(g)〉] = C

P,P ′
i,j , (B9)

with

C
P,P ′
i,j = N !h̄4

M2

∫
dz1 · · · dzNδ(zi − zj )

∣∣∣∣∂ψF

∂zi

∣∣∣∣2

× θ (zP (1), . . . ,zP (N))θ (zP ′(1), . . . ,zP ′(N)). (B10)

As a result, we obtain

〈P |H |P ′〉 = EF δP,P ′ − 1

gBB

C
P,P ′
1,2 − 1

gBF

(
C

P,P ′
1,3 + C

P,P ′
2,3

)
.

(B11)

Applying this to the matrix element 〈1|H |1〉, we get

〈1|H |1〉 = EF − 2J
(BB)
1 − J

(BF )
2 , (B12)

since C
id,id
1,2 =C

id,P1,2

1,2 =C1,C
id,id
2,3 =C2, and C

id,id
1,3 = C

id,P1,2

1,3 =
C

id,P1,2

2,3 = 0. In a similar way we obtain

〈1|H |2〉 = 〈id|H |P2,3〉 + 〈id|H |P1,2,3〉 = −J
(BF )
2 , (B13)

since only C
id,P2,3

2,3 = C2 is nonzero. For the next matrix
element, we get

〈1|H |3〉 = 〈id|H |P1,3〉 + 〈id|H |P3,2,1〉 = 0, (B14)

since C
id,P1,3

i,j = C
id,P3,2,1

i,j = 0 for all 1 � i < j � 3. The next
matrix element becomes

〈2|H |2〉 = 〈P2,3|H |P2,3〉 + 〈P2,3|H |P1,2,3〉
= EF − J

(BF )
1 − J

(BF )
2 , (B15)

since only C
P2,3,P2,3

1,3 = C1 and C
P2,3,P2,3

2,3 = C2 are nonzero.
Finally we obtain

〈2|H |3〉 = 〈P2,3|H |P1,3〉 + 〈P2,3|H |P3,2,1〉 = −J
(BF )
1

(B16)

and
〈3|H |3〉 = 〈P3,2,1|H |P1,3〉 + 〈P3,2,1|H |P3,2,1〉

= EF − 2J
(BB)
2 − J

(BF )
1 , (B17)

since only C
P2,3,P3,2,1

1,3 = C
P3,2,1,P3,2,1

1,3 = C1 and C
P3,2,1,P1,3

1,2 =
C

P3,2,1,P3,2,1

1,2 = C2 are nonzero. The same matrix elements are
obtained using Heff , given by Eq. (3).

APPENDIX C: ONE-BODY DENSITY MATRIX

Here, we calculate the matrix elements of the bosonic and
fermionic one-body density matrices of a 1B2F mixture. The
basis states of the 1B2F mixture are [see Eq. (A4)]

|1〉 := |B,F,F 〉 = 1√
2

(1 − P̂2,3)|id〉, (C1)

|2〉 := |F,B,F 〉 = 1√
2

(1 − P̂2,3)|P1,2〉, (C2)

|3〉 := |F,F,B〉 = 1√
2

(1 − P̂2,3)|P1,2,3〉. (C3)

The bosonic and fermionic one-body density-matrix operators
read

ρ̂B(z,z′) = |z〉1〈z′|1 (C4)

and

ρ̂F (z,z′) = |z〉2〈z′|2 + |z〉3〈z′|3. (C5)
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First, we calculate the matrix elements of the bosonic distri-
bution ρ̂B(z,z′). One finds

〈1|ρ̂B(z,z′)|1〉 = 〈id|z〉1〈z′|1(|id〉 − |P2,3〉). (C6)

Only those matrix elements of the form 〈id|z〉i〈z′|i |P 〉 are
nonzero for which P = Pi,... ,j . We define

ρ(i,j )(z,z′) = 〈id|z〉i〈z′|i |Pi,... ,j 〉. (C7)

Using this, we find

〈1|ρ̂B (z,z′)|1〉
= ρ(1,1)(z,z′) = 〈B,F,F |ρ(1,1)(z,z′)|B〉1〈B|1|B,F,F 〉.

(C8)

The next two matrix elements are given by

〈1|ρ̂B(z,z′)|2〉 = 〈id|z〉1〈z′|1(|P1,2〉 − |P3,2,1〉)
= ρ(1,2)(z,z′)

= 〈B,F,F |ρ(1,2)(z,z′)|B〉1〈B|1P̂1,2|F,B,F 〉
(C9)

and

〈1|ρ̂B(z,z′)|3〉 = 〈id|z〉1〈z′|1(|P1,2,3〉 − |P1,3〉)
= ρ(1,3)(z,z′)

= 〈B,F,F |ρ(1,3)(z,z′)|B〉1〈B|1P̂1,2,3|F,F,B〉.
(C10)

In the next case, we find

〈2|ρ̂B(z,z′)|2〉 = 〈P1,2|z〉1〈z′|1(|P1,2〉 − |P3,2,1〉). (C11)

It is easy to show that

〈P |z〉i〈z′|i |P ′〉 = 〈id|z〉P −1(i)〈z′|P −1(i)|P −1 ◦ P ′〉. (C12)

Using this, we find

〈2|ρ̂B(z,z′)|2〉 = 〈id|z〉2〈z′|2(|id〉 − |P1,3〉) = ρ(2,2)(z,z′)

= 〈F,B,F |ρ(2,2)(z,z′)|B〉2〈B|2|F,B,F 〉.
(C13)

In the next case, we obtain

〈2|ρ̂B(z,z′)|3〉 = 〈P1,2|z〉1〈z′|1(|P1,2,3〉 − |P1,3〉)
= 〈id|z〉2〈z′|2(|P2,3〉 − |P3,2,1〉) = ρ(2,3)(z,z′)

= 〈F,B,F |ρ(2,3)(z,z′)|B〉2〈B|2P̂2,3|F,F,B〉.
(C14)

The last matrix element is given by

〈3|ρ̂B(z,z′)|3〉 = 〈P1,2,3|z〉1〈z′|1(|P1,2,3〉 − |P1,3〉)
= 〈id|z〉3〈z′|3(|id〉 − |P1,2〉) = ρ(3,3)(z,z′)

= 〈F,F,B|ρ(3,3)(z,z′)|B〉3〈B|3|F,F,B〉.
(C15)

One sees that the matrix elements of the bosonic one-body
density matrix agree with those of Eqs. (10)–(12). Now, we
calculate the matrix elements of the fermionic distribution
ρ̂F (z,z′). The first two matrix elements read

〈1|ρ̂F (z,z′)|1〉 = 〈id|(|z〉2〈z′|2 + |z〉3〈z′|3)(|id〉 − |P2,3〉)
= ρ(2,2)(z,z′) − ρ(2,3)(z,z′) + ρ(3,3)(z,z′) − ρ(3,2)(z,z′)

= 〈B,F,F |[ρ(2,2)(z,z′)|F 〉2〈F |2 − ρ(2,3)(z,z′)|F 〉2〈F |2P̂2,3

+ ρ(3,3)(z,z′)|F 〉3〈F |3 − ρ(3,2)(z,z′)|F 〉3〈F |3P̂3,2]|B,F,F 〉 (C16)

and

〈1|ρ̂F (z,z′)|2〉 = 〈id|(|z〉2〈z′|2 + |z〉3〈z′|3)(|P1,2〉 − |P3,2,1〉)
= ρ(2,1)(z,z′) − ρ(3,1)(z,z′)

= 〈B,F,F |[ρ(2,1)(z,z′)|F 〉2〈F |2P̂2,1 − ρ(3,1)(z,z′)|F 〉3〈F |3P̂3,2,1]|F,B,F 〉. (C17)

The next matrix element is zero,

〈1|ρ̂F (z,z′)|3〉 = 〈id|(|z〉2〈z′|2 + |z〉3〈z′|3)(|P1,2,3〉 − |P1,3〉) = 0. (C18)

Using Eq. (C12), we obtain for the last three matrix elements

〈2|ρ̂F (z,z′)|2〉 = 〈P1,2|(|z〉2〈z′|2 + |z〉3〈z′|3)(|P1,2〉 − |P3,2,1〉)
= 〈id|(|z〉1〈z′|1 + |z〉3〈z′|3)(|id〉 − |P1,3〉)
= ρ(1,1)(z,z′) + ρ(3,3)(z,z′) (C19)

= 〈F,B,F |[ρ(1,1)(z,z′)|F 〉1〈F |1 + ρ(3,3)(z,z′)|F 〉3〈F |3]|F,B,F 〉,
〈2|ρ̂F (z,z′)|3〉 = 〈P1,2|(|z〉2〈z′|2 + |z〉3〈z′|3)(|P1,2,3〉 − |P1,3〉)

= 〈id|(|z〉1〈z′|1 + |z〉3〈z′|3)(|P2,3〉 − |P3,2,1〉)
= ρ(3,2)(z,z′) − ρ(3,1)(z,z′)

= 〈F,B,F |[ρ(3,2)(z,z′)|F 〉3〈F |3P̂3,2 − ρ(3,1)(z,z′)|F 〉3〈F |3P̂3,2,1]|F,F,B〉, (C20)
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〈3|ρ̂F (z,z′)|3〉 = 〈P1,2,3|(|z〉2〈z′|2 + |z〉3〈z′|3)(|P1,2,3〉 − |P1,3〉)
= 〈id|(|z〉1〈z′|1 + |z〉2〈z′|2)(|id〉 − |P1,2〉)
= ρ(1,1)(z,z′) − ρ(1,2)(z,z′) + ρ(2,2)(z,z′) − ρ(2,1)(z,z′)

= 〈F,F,B|[ρ(1,1)(z,z′)|F 〉1〈F |1 − ρ(1,2)(z,z′)|F 〉1〈F |1P̂1,2

+ ρ(2,2)(z,z′)|F 〉2〈F |2 − ρ(2,1)(z,z′)|F 〉2〈F |2P̂2,1]|F,F,B〉. (C21)

Again, one sees that the matrix elements of the fermionic one-body density matrix agree with those of Eqs. (10)–(12).
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We analyze the microscopic few-body properties of dipolar atoms confined in two parallel quasi-one-
dimensional harmonic traps. An adiabatic change of the dipole orientation with respect to the trap separa-
tion can even drive an initially non-localized few-fermion state into a Wigner-like localized ground state with
strong inter-trap pairing. For a fast non-adiabatic sweep, however, localization is inhibited, and a highly excited
state is reached that may be interpreted as the few-body analog of a super-Tonks-Girardeau state known from
one-dimensional systems with contact interaction.

I. INTRODUCTION

Ultracold atoms or molecules with large permanent mag-
netic [1–9] or electric [10–15] dipole moments have intrigu-
ing properties that originate from the spatial anisotropy of the
dipole-dipole interaction (DDI). In general, the trap geometry
plays a big role, and different quasi one- and two-dimensional
(1D and 2D) confinement configurations ranging from single-
traps to optical lattices and coupled interlayer systems have
been studied (see [16, 17] for reviews). The reduced dimen-
sionality together with the fact that the DDI can be relatively
strong and tailored by means of external fields [18, 19] allow
studying strongly correlated systems. The long-range part of
the dipolar interaction may couple spatially distinct confine-
ment regions in different ways, leading to intriguing many-
body phenomena in optical lattices and multilayer systems,
see, for example, refs. [20–27]. In the few-body regime differ-
ent kinds of bound states were predicted [28–30]. In a planar
array of parallel 1D tubes [31], inter-tube interactions were
found responsible for classically ordered (Wigner-type) clus-
tered states.

It is well known that strong contact repulsion in 1D systems
may lead to a so-called Tonks-Girardeau (TG) state, where
bosons act as non-interacting fermions [32]. The cold-atom
realization [33, 34] of this phenomenon spurred further work
to categorize and probe these states[35–39], and similar states
have also been found for dipolar bosons [40, 41]. TG states are
closely related to the excited states occurring for 1D-confined
particles with short-range attractive interactions, known as
super-Tonks-Girardeau (STG) states [36, 41, 42]. See for ex-
ample Refs. [28, 35, 36, 38, 41, 42] for further theoretical de-
scription, and [43] for an experimental realization. A system,
initially in a TG state, may with a sudden quench of the inter-
action (for example by changing the dipolar orientation) end
up in an STG state of the new Hamiltonian [41].

Here, we show that in parallel 1D traps, the DDI leads to
fundamentally different few-body ground states, depending
on the dipole angle. The interplay between long-range inter-
actions within each trap, and the short range effects between
the traps, plays a decisive role in the formation of a localized
ground state in each of the wires. The inter-trap interaction
may hereby serve to either reduce or enhance particle local-
ization. Finally, we also investigate the transition from a TG
to an STG state by a sudden quench of the DDI, here for spin-
polarized fermions. Our investigations into such short-range

phenomena are partly motivated by the common use of a con-
tact pseudopotential to approximate the DDI [30], which has
been utilized to, for example, study the phase diagram of two
parallel 1D traps [44–46]. We here consider the full form of
the DDI, and specifically address emergent short-range phe-
nomena in the exact solutions of the few-body system.

II. MODEL

Let us consider a few (magnetic or electric) dipolar particles
in two parallel, cigar-shaped traps (schematically sketched in
Fig. 1),

V trap
n (r) =

m

2
ω2
xx

2 +
m

2
ω2
⊥
[
y2 + (z − nzw)

2
]
. (1)

The index n = {0, 1} labels the two traps, m is the parti-
cle mass, r = (x, y, z) and the oscillator frequencies satisfy
ωx < ω⊥. The strong confinement perpendicular to the wire
axes is here sufficient to neglect the tunneling of particles be-
tween the two traps, which keeps the number of particles per
trap constant. In fact, ω⊥ is high enough for the system to be

FIG. 1: (Color online) Two parallel traps elongated along the x-
direction (sketched by the light-blue area). Each trap contains two
dipolar particles (sketched by red bullets and arrows) and the short-
est distance between the two traps is denoted zw. The dipoles are
aligned with an external field. The angles φ and θ define the direc-
tion of alignment relative to the z- and x-axis, respectively.

adequately described by the harmonic oscillator ground state
in the yz-plane. In other words, the dipole interaction is as-
sumed insufficient to excite the system in the tightly confined
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yz-plane. We may then write the one-body orbital ψn,i of a
particle trapped by V trap

n as

ψn,i(r) = ϕn,i(x)φn(y, z), (2)

where ϕn,i are, yet unspecified, basis functions in the x-
direction, and

φn(y, z) =
1

l⊥
√
π
e−[y2+(z−nzw)2]/2l2⊥ (3)

is the ground-state wave function of the two-dimensional har-
monic oscillator centered at (y, z) = (0, nzw). In Eq. (3),
l⊥ =

√
~/(mω⊥) is the characteristic length of the yz-

oscillator. It needs to be shorter than the distance between
the two traps, l⊥ � zw, to ensure a clear separation of the
two confinements with n = 0 and n = 1. The restrictions in
the yz-plane conveniently allow a quasi 1D description of the
double-trap system.

Let us now address the dipolar interaction between two par-
ticles. The angle between the particles’ dipolar vectors rela-
tive to each other determines the anisotropy of the interaction
between them. For identical dipole moment vectors d, the
interaction potential reads (see for example, Ref. [47])

V (r̃) =
d2

4πγ |r̃|3

[
1− 3 (d · r̃)

2

d2r̃2

]
, (4)

where r̃ = r − r′ is the relative position of the two dipolar
particles. (In the case of electric dipoles, γ = ε0, and for mag-
netic dipoles γ = 1/µ0, where ε0 and µ0 are the permittivity
and permeability of free space). In the quasi-1D description
of the double-trap system, we use an effective potential, V eff

n,n′ ,
to model the interaction. The indices n and n′ discern the two
different effective potentials; one intra-trap potential for inter-
acting particles in the same trap (n = n′) and one inter-trap
potential for particles in opposite traps (n 6= n′). Both poten-
tials are derived from the integral expression

V eff
n,n′(x̃) =
∫∫∫∫

dydzdy′dz′ |φn(y, z)|2 |φn′(y′, z′)|2 V (r̃), (5)

where d x̃ = x− x′.
For two particles in the same trap, Eq. (5) reduces to

V eff
n,n(x̃) =

d2 [1 + 3 cos(2θ)]

16πγl3⊥

×
[ |x̃|
l⊥
−
√
π

2

(
1 +

x̃2

l2⊥

)
erfc

( |x̃|√
2l⊥

)
ex̃

2/2l2⊥

+
4l⊥
3
δ(x̃)

]
, (6)

as, e.g., demonstrated by Sinha and Santos [18]. We repeat
that in Eq. (6), θ is the angle between the dipole vectors and
the x-axis, as indicated in Fig. 1. The intra-trap potential is
clearly independent of the angle φ between the dipole vectors
and the z-axis. Hence, depending on θ alone, the interaction
can be either attractive, zero or repulsive. In particular, the
potential is maximally repulsive for θ = 90◦ and vanishes

at the “critical angle” θ = arccos(−1/3)/2 ≈ 54.74◦. (Note
that the additional delta-terms of the intra-trap dipolar interac-
tion may be tuned to zero by means of a Feshbach resonance
[48]). The effective interaction potential for particles in differ-
ent traps does not have an equally simple form. With n 6= n′,
we can, however, turn the potential in Eq. (5) into a single
integral expression,

V eff
n,n′ 6=n(x̃) = − d2

4πγ

∫ ∞

0

dkk2e−k
2l2⊥/2−k|x̃|

×
[
cos2(θ)J0(kzw) + cos2(φ)J2(kzw)

−
(
x̃ sin(2θ) cos(φ)

|x̃| +
sin2(θ)

kzw

)
J1(kzw)

]
, (7)

which has to be evaluated numerically. In Eq. (7), Ji is the
regular Bessel function of order i. At very large relative dis-
tances, the interaction becomes similar to that of two particles
in the same trap, i.e. lim|x̃|→∞ V eff

n,n′ 6=n(x̃) = V eff
n,n(x̃).

With the above assumptions, the many-body Hamiltonian
of the double-trap system here becomes effectively one-
dimensional, and for Nn particles (spin-polarized fermions or
spinless bosons) in each trap n, we obtain

Heff =
1∑

n=0



Nn∑

i=1

h(xn,i) +

Nn∑

j>i

V eff
n,n (xn,i − xn,j)




+

N0∑

i=1

N1∑

j=1

V eff
0,1 (x0,i − x1,j) (8)

where V eff
n,n′ are given by Eqs. (6, 7) and where

h(xn,i) = − ~2

2m

∂2

∂x2
n,i

+
m

2
ω2
xx

2
n,i (9)

is the one-body operator associated with particle i of trap
n. Note that the one-body confining potential mω2

xx
2
n,i/2 =

V trap
n (xn,i, 0, nzw). Also, we left out the constant energy con-

tribution (N0 +N1)~ω⊥/2, associated with the combined os-
cillatory motion in the yz-plane, from Heff.

The eigenstates to the effective Hamilton operator, Eq. (8),
are obtained using the method of full configuration interaction
(also known as exact diagonalization) in a B-spline basis; for
further details see the appendix.

III. GROUND-STATE PROPERTIES

We now proceed to investigate how a change in the rela-
tive dipole angle φ modifies the ground state properties of
a few-body system. To keep the numerical effort tractable,
in the following we restrict the particle number in each trap
to N0 = N1 = 2. These particles can be either spin-
polarized fermions or spin-less bosons. Unless specified oth-
erwise, we use 64 B-splines of order 5. The traps are fur-
ther characterized by the dimensionless parameters ωx/ω⊥ =

l2⊥/l
2
x = 10−4 (where lx =

√
~/mωx), and zw/l⊥ = 25.

Clearly, ωx � ω⊥ and zw > l⊥ which justifies the quasi
one-dimensional treatment of the system discussed in Sec. II.
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FIG. 2: (Color online) The effective intra- and inter-trap interaction
potentials are shown for three different dipole alignments; (θ, φ) =
(90◦, 0◦), (90◦, 50◦) and (90◦, 90◦), for the parameters described in
the main text. The intra-trap potential V eff

0,0 (black line) depends only
on the angle θ and is thus identical in all three cases, see Eq. (6). The
inter-trap potential V eff

0,1 (green, blue and cyan dashed lines) depends
on both φ and θ, see Eq. (7). With θ = 90◦, the short-range part of
the inter-trap potential becomes maximally repulsive for φ = 90◦,
weakly attractive for φ = 50◦ and maximally attractive for φ = 0◦.

We chose an interaction strength dictated by the dimension-
less parameter d2m/(~2lxγ) = 8π and an angle θ = 90◦ for
a maximally repulsive intra-trap interaction. The considered
intra-trap potential V eff

n,n together with the inter-trap potentials
V eff
n,n′ 6=n obtained for different values of φ are shown in Fig. 2.

Note that the inter-trap potential can be made either attractive
or repulsive depending on the choice of φ.

To begin with, let us ignore the interaction between parti-
cles in different traps, thus effectively reducing the problem
to that of a single trap with two particles. Figure 3 shows the
single-particle densities for the ground state. We observe that
the repulsive intra-trap interaction gives rise to similar single-
particle density distributions ρ(1)(x) for fermions and bosons,
see Figure 3. The pronounced minimum in ρ(x) at x/lx = 0
reflects the onset of localization due to the long-range part of
the DDI. In the limit of strong repulsion, ρ(1)(x = 0)→ 0 and
a localized state is obtained, with identical momentum distri-
butions ρ(1)(px) → 0 for fermions and bosons, as previously
shown in [40].

x/lx
-5 0 5

l x
ρ
(1
) (
x
)

0

0.2

0.4

0.6

pxlx/h̄
-5 0 5

h̄
ρ
(1
) (
p x
)/
l x

0

0.5

1
Fermions
Bosons

FIG. 3: (Color online) The ground state density distributions com-
puted for two particles in a single trap. Spin-polarized fermions
(solid blue line) are compared with spinless bosons (red dashed line).
Left panel: The single-particle density ρ(1) shows two pronounced
peaks in the position space, being similar for fermions and bosons,
indicating fermionization of the bosonic system. Right panel: The
single-particle density in momentum space. The fact that the bosonic
and fermionic distributions differ indicates that the ground state is not
fully localized.

The question is now, to what extent the inter-trap interaction
modifies the system properties. When θ = 90◦, one expects
the densities to have common features with the ones in Fig. 3
since

∣∣∣V eff
n,n′ 6=n(x̃)

∣∣∣ <
∣∣V eff
n,n(x̃)

∣∣. In particular, the strong re-
pulsive intra-trap interaction leads to a partly localized ground
state. In Fig. 4 and 5, we show the single trap density distri-
bution at two different angles φ. Here, the particular choices
for the angle φ are motivated by numerical limitations. For
φ . 49◦, the attractive part of the DDI becomes too large
for our methods to produce accurate results with a tractable
single-particle basis. Note that a bound state is formed when
the depth and width of the attractive core are sufficiently large
for the binding energy to overcome the cost in kinetic energy
associated with confining the particles within the attractive
range. For φ ≈ 49◦ the ground state feels an effectively at-
tractive DDI, whereas for the more shallow attractive core at
φ ≈ 52◦, the interaction in the ground state is effectively re-
pulsive.

For effectively attractive interactions, shown in Fig. 4 for
φ = 0.86 ≈ 49.27◦, the localization seen in the ground state
densities is strongly enhanced, as indicated by the pronounced
density minimum. Also, the bosonic and fermionic momen-
tum distributions are now more similar than those in Fig. 3.
The localization is supported by the strong attractive intra-trap
interaction that leads to pairing between the particles in differ-
ent traps. It is interesting to note that in similar, but extended
systems, such bound states were found to give rise to a crystal-
like phase [31]. The states found here appear as pre-cursors in
the few-body limit.

With an effectively repulsive short-range inter-trap interac-
tion, on the other hand, we now observe four distinct peaks
in the density profiles of the four-particle double-trap system,
see Fig. 5. This structure can be understood from the corre-
sponding pair-correlated densities, clearly showing a particle
displacement in the single traps confining two particles each,
that together with the underlying symmetry and degeneracy
gives rise to this overall different density distribution. The
two particles in each trap are now less localized than in Fig. 4,
as indicated by the differing bosonic and fermionic momen-
tum distributions. The bosonic state is however still in the
fermionized regime.
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FIG. 4: (Color online) The ground state density distributions (within
a single trap) when φ = 0.86 ≈ 49.27◦, corresponding to an attrac-
tive inter-trap interaction. The solid blue line is for fermions, and the
red dashed one for bosons. Top left panel: The single-particle den-
sity distribution clearly shows two pronounced peaks, indicating that
the two particles in one of the traps are paired up with the correspond-
ing ones in the other trap. Top right panel: The corresponding dis-
tribution in momentum space shows a similar behavior for fermions
and bosons. Comparing to Fig. 3, we note that the attractive inter-
trap interaction has further increased the localization. Bottom left
panel: The pair-correlated density, with the position of the reference
particle (at x′) indicated by the cross. Both reference particle and
the considered particle reside in the same trap. Bottom right panel:
The pair correlated density with the reference particle being in the
other trap. The pronounced peak at x′ = 0 indicates pairing between
particles in different traps.
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FIG. 5: (Color online) Similar to Fig. 4 but for φ = 0.91 ≈ 52.14◦,
which corresponds to a repulsive inter-trap interaction.

FIG. 6: (Color online) The even parity spectrum for two spin-
polarized fermions in each trap. Insets show the ground state density
profiles for three different angles φ.(noted by circles in the main plot)

IV. QUENCH OF THE DIPOLE ANGLE

In Fig. 6, we show the energy spectrum of the four-particle
double-trap system for states with even parity. By decreasing
the dipolar angle φ, the ground state becomes more correlated
due to the pairing between particles in different traps, and its
energy decreases. Interestingly, however, at higher energies
in the spectrum, we note certain energy levels that seem unaf-
fected by the choice of φ.

Their origin can be understood by looking at the simpler
system with just one single particle in each trap, N0 = N1 =
1, where the Hamiltonian may be separated into two parts:
HR and Hr describing the center of mass motion of the two-
body system and the relative motion of the two particles, re-
spectively. Here, the dipole-dipole interaction enters the ex-
pression for Hr alone,

Hr =
p2
x̃

m
+

1

4
mω2
⊥x̃

2 + V eff
n,n′ 6=n(x̃). (10)

Since the interaction potential is sharply peaked at x̃ = 0, the
odd parity solutions of Hr are, with their nodes at this posi-
tion, largely unaffected by the nature of the dipole-dipole in-
teraction. The even parity solutions do, on the other hand,
heavily depend on the sign and strength of the interaction.
Hence, when we sweep φ, we expect to see states described
by odd parity solutions in their relative coordinate mani-
fested as interaction-invariant lines in the spectrum. A sim-
ilar structure was seen in the few-body spectra of contact-
interacting bosons [38], where the few-body bound states de-
pended strongly on the attractive interaction, while a second
category of states appeared as interaction-invariant lines in the
spectrum at strong attraction. The interaction-invariant lines
were identified as few-body precursors of fermionized super-
Tonks-States [35, 36]. These similarities were also discussed
in [30], where the short-range aspects of the DDI were stud-
ied. Let us now investigate to what extent the lowest STG-
like states at E ≈ 13~ωx in Fig. 6 can get populated. From
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the spectrum, we see that one possibility to reach these ex-
cited states could be to start in a repulsive low-energetic state
and subsequently change the interaction through a tilt of the
dipolar angle. Specifically, if the initial energy eigenstate at
φ = 90◦ remains an eigenstate to the Hamiltonian at a differ-
ent φ value, a single excited state is populated. Let us now
check how closely the i:th energetically lowest state Ψ

(φ=90◦)
i

relates to an eigenstate at lower φ. For this purpose, we com-
pute

σE =

√
〈Ψ(90◦)

i |H2(φ)|Ψ(90◦)
i 〉 − 〈Ψ(90◦)

i |H(φ)|Ψ(90◦)
i 〉2.

(11)
If σE = 0, Ψ

(90◦)
i is also an eigenstate to the Hamiltonian

H(φ) at a different value of φ. In contrast, σE > 0 means that
non-stationary states are formed, and the measure represents
the shortest time scale that characterize a significant change
in the system, where the time scale decreases with increasing
σE . In Fig. 7, we plot σE at different φ for different initial
states. Clearly, the lowest values of σE (and thus closest to
stationary states) are obtained with the third excited state at
φ = 90◦ as initial state. This observation agrees well with the
fact that, at higher values of φ, the energy of the third excited
state shown in Fig. 6 is largely unaffected by a change in the
dipolar angle. The non-zero contribution to σE is mainly due
to a small population of also the first excited STG-like state,
which also depends only weakly on φ. A similar behavior
has also been seen in previous attempts to populate ordinary
STG states and gives rise to breathing mode dynamics in the
system [49]. The small difference in σE seen in 7 for the
different initial states means that also systems prepared in the
ground state (as well as the first and second excited state) at
φ = 90◦ are close to stationary after the quench. With a more
strongly-peaked DDI the difference between the ground state
and third excited state at φ = 90◦ is expected to be further
reduced.

φ [◦]
49.5 50 50.5 51 51.5

σ
E
/(
h̄
ω
x
)

0.8

1

1.2

1.4

1.6

1.8
Ψ

(90◦)
0

Ψ
(90◦)
1

Ψ
(90◦)
2

Ψ
(90◦)
3

FIG. 7: (Color online) Energy uncertainties σE (see eq. 11) as func-
tions of the dipolar angle φ. The plotted quantities represent the
spread in energy after a fast change of the dipolar angle from 90◦

to φ. Each line represent a different initial state before the quench.

V. SUMMARY

We studied the microscopic few-body properties of dipo-
lar bosonic or fermionic atoms confined in two parallel quasi-
one-dimensional harmonic traps, where the dipole moments
are aligned perpendicular to the alignment of the traps. By
tuning the direction φ of the dipole moments relative to the
plane spanned by the two traps, and thereby changing the
shape of the inter-trap dipole-dipole interaction, we saw that
for small inter-wire distances the short-range features of the
inter-wire interaction had striking effects on the ground-state
properties of the system.

Starting in a weakly localized ground state at repulsive
inter-trap interaction, we saw that a slow change in the dipolar
angle brought the system into a regime of strong localization,
owing to the formation of bound dimers between the traps.
Interestingly, a sudden quench in φ instead led to significant
population-transfer into a class of excited states, analogous
to super-Tonks-Girardeau states that are most commonly seen
in strongly correlated one-dimensional systems. These states
largely retain the structure of the non-localized ground state
at φ = 90◦. For a sudden quench in the dipolar angle the
localization of particles is therefore inhibited.
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Appendix: B-splines and exact diagonalization

B–splines are piece-wise polynomials that frequently are
defined through the recursive relation [50]

Bi,1(x) =

{
1 if τi ≤ x ≤ τi+1

0 otherwise (12)

Bi,k(x) =
x− ti

τi+k−1 − ti
Bi,k−1(x) +

τi + k − x
τi+k − τi+1

Bi+1,k−1(x)

(13)

where τi ≥ τi+i are the so-called knot-points and k is the
order of the B-splines. Throughout this work we set k =
5. We use a linear central distribution of knot-points with
∆τ = 0.12, and exponentially increasing distances between
the knot-points outside of the central region. The outermost
knot-points were placed at x = ±5. In total we used 64 B-
splines (except for the spectra shown in Fig. 6 where the num-
ber ofB-splines was 56 to reduce the computational workload
of computing the spectra for a dense mesh of dipole angles).

First, we construct an orthonormal one-body basis by diag-
onalization of the Hermitian h, Eq. (9), in the B-spline basis.
We write

ϕj(x) =
∑

i

cj,iBk,i(x) (14)
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which turns the one-body Schrödinger equation, h(x)ϕj(x) =
εjϕj(x), into the generalized eigenvalue problem,

hcj = εjScj (15)

with matrix elements given by

hi,j =

∫
dxBi(x)h(x)Bj(x)dx, (16)

Si,j =

∫
dxBi(x)Bj(x)dx. (17)

Finally, an orthonormal many-body basis is constructed based
on correctly symmetrized products of the acquired (orthogo-
nal) one-body states following the general prescription of the
configuration interaction method.
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6, 265 (2010), URL 10.1038/nphys1533.
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[20] K. Góral, L. Santos, and M. Lewenstein, Physical Review
Letters 88, 170406 (2002), URL https://doi.org/10.
1103/PhysRevLett.88.170406.

[21] C.-M. Chang, W.-C. Shen, C.-Y. Lai, P. Chen, and D.-W. Wang,
Physical Review A 79, 053630 (2009), URL https://doi.
org/10.1103/PhysRevA.79.053630.

[22] Y.-P. Huang and D.-W. Wang, Physical Review A 80, 053610
(2009), URL https://doi.org/10.1103/PhysRevA.
80.053610.

[23] N. T. Zinner and G. M. Bruun, The European Physi-
cal Journal D 65, 133 (2011), URL 10.1140/epjd/
e2011-20094-3.

[24] A. Chotia, B. Neyenhuis, S. A. Moses, B. Yan, J. P. Covey,
M. Foss-Feig, A. M. Rey, D. S. Jin, and J. Ye, Physical Review
Letters 108, 080405 (2012), URL https://doi.org/10.
1103/PhysRevLett.108.080405.

[25] A. Macia, G. E. Astrakharchik, F. Mazzanti, S. Giorgini, and
J. Boronat, Physical Review A 90, 043623 (2014).

[26] M. Pizzardo, G. Mazzarella, and L. Salasnich, Journal of Low
Temperature Physics pp. 1–20 (2016).

[27] M. Hebenstreit, M. Rader, and R. E. Zillich, Physical Review A
93, 013611 (2016), URL https://doi.org/10.1103/
PhysRevA.93.013611.

[28] B. Wunsch, N. T. Zinner, I. B. Mekhov, S.-J. Huang,
D.-W. Wang, and E. Demler, Physical Review Letters
107, 073201 (2011), URL https://doi.org/10.1103/
PhysRevLett.107.073201.

[29] M. Dalmonte, P. Zoller, and G. Pupillo, Physical Review Letters
107, 163202 (2011), URL https://doi.org/10.1103/
PhysRevLett.107.163202.

[30] A. G. Volosniev, J. R. Armstrong, D. V. Fedorov, A. S. Jensen,
M. Valiente, and N. T. Zinner, New Journal of Physics 15,
043046 (2013), URL http://iopscience.iop.org/



7

1367-2630/15/4/043046.
[31] M. Knap, E. Berg, M. Ganahl, and E. Demler, Physical Review

B 86, 064501 (2012), URL https://doi.org/10.1103/
PhysRevB.86.064501.

[32] M. Girardeau, Journal of Mathematical Physics 1, 516 (1960),
URL http://dx.doi.org/10.1063/1.1703687.

[33] T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125
(2004), URL 10.1126/science.1100700.

[34] B. Paredes, A. Widera, V. Murg, O. Mandel, et al., Nature 429,
277 (2004).

[35] G. E. Astrakharchik, D. Blume, S. Giorgini, and B. E. Granger,
Physical Review Letters 92, 030402 (2004), URL https://
doi.org/10.1103/PhysRevLett.92.030402.

[36] G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini,
Physical Review Letters 95, 190407 (2005), URL https://
doi.org/10.1103/PhysRevLett.95.190407.

[37] F. Deuretzbacher, K. Bongs, K. Sengstock, and D. Pfannkuche,
Physical Review A 75, 013614 (2007), URL https://doi.
org/10.1103/PhysRevA.75.013614.
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