
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Disturbance Rejection and Control in Web Servers

Kjaer, Martin Ansbjerg

2009

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Kjaer, M. A. (2009). Disturbance Rejection and Control in Web Servers. [Doctoral Thesis (monograph),
Department of Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund
University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/e81378aa-35b0-472f-ac91-cbd87234e0ce

Disturbance Rejection and Control in Web Servers

Disturbance Rejection and Control in
Web Servers

Martin Ansbjerg Kjær

Department of Automatic Control

Lund University

Lund, 2009

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--1086--SE

c© 2009 by Martin Ansbjerg Kjær. All rights reserved.
Printed in Sweden by MediaTryck.
Lund 2009

Abstract

An important factor for a user of web sites on the Internet is the duration
of time between the request of a web page until an answer has been
returned. If this response time is too long, the user is likely to abandon
the web site and search for other providers of the service. To avoid this
loss of users, it is important for the web site operator to assure that
users are treated sufficiently fast. On the other hand, it is also important
to minimize the effort to optimize profit. As these objectives often are
contradictory, an acceptable target response–time that can be formulated.
The resources are allocated in a manner that ensures that long response
times do not occur, while, at the same time, using as little resources as
possible to not overprovision.
The work presented in this doctoral thesis takes a control–theoretic

perspective to solve this problem. The resources are considered as the
control input, and the response time as the main output. Several distur-
bances affect the system, such as the arrival rate of requests to the web
site. A testbed was designed to allow repeatable experiments with differ-
ent controller implementations. A server was instrumented with sensors
and actuators to handle requests from 12 client computers with capability
for changing work loads.
On the theoretical side, a model of a web server is presented in this the-

sis. It explicitly models a specific sensor implementation where buffering
occurs in the computer prior to the sensor. As a result, the measurement of
the arrival rate becomes state dependent under high load. This property
turns out to have some undesirable effects on the controlled system. The
model was capable of predicting the behavior of the testbed quite well.
Based on the presented model, analysis shows that feed–forward con-

trollers suggested in the literature can lead to instability under certain
circumstances at high load. This has not been reported earlier, but is in
this doctoral thesis demonstrated by both simulations and experiments.
The analysis explains why and when the instability arises.
In the attempt to predict future response–times this thesis also pre-

sents a feedback based prediction scheme. Comparisons between earlier
predictions to the real response–times are used to correct a model based
response time prediction. The prediction scheme is applied to a controller
to compensate for disturbances before the effect propagates to the response
time. The method improves the transient response in the case of sudden
changes in the arrival rate of requests.
This doctoral thesis also presents work on a control solution for re-

serving CPU capacity for a given process or a given group of processes

5

on a computer system. The method uses only existing operating–system
infrastructure, and achieves the desired CPU capacity in a soft real–time
manner.

6

Preface

I was presented with the subject of queuing systems at the trail lecture
for appointment as an associate professor of Anders Robertsson in June
2005. The presentation introduced the field and also related the subject to
other fields such as high–way queuing modeling. What I found fascinating
about the subject was that no consensus was really found in the modeling,
and this is valid to some degree even today. According to the perspective
one take, the problem can be considered as a continuous system, as a
stochastic system, as a discrete–time system (with fixed time intervals), or
as an event driven system. One can focus on averaged or expected values,
or one can operate on exact variables. Any combination is of course also
possible. Furthermore, the relations between variables are often nonlinear
in a way that challenges the intuitive understanding, and it reveals even
more challenges for control design.
Control of these systems has been around for many years, but not

explicitly treated from a control perspective, since online adjustments are
often designed in an ad hocmanner and without concern for formal proofs.
All together, this field holds a large potential for further control research
both within the theoretical field, but also from an application point of view
by e.g. improving the transient responses.
I hope that the reader of this thesis shares my enthusiasm for the

field, and will enjoy my contribution.

Martin Ansbjerg Kjær, September 2009.

7

Acknowledgments

First, I cannot thank my main supervisor, Anders Robertsson, enough.
Anders is probably the most optimistic and positive person I know. Pre-
sented to the terrifying problem that the server of our lab starts to self–
oscillate under certain circumstances, Anders joyfully responds: What an
interesting control–problem!, something it indeed turned out to be. Also
the capacity to reduce everything, from skiing to bicycling, to fundamen-
tally being a control problem is a great source of amusement. I also thank
Anders for the fine support and guidance throughout my whole time as a
Ph.D. student.
Gratitude is paid to my co–supervisor within the Telecommunication

field, Maria Kihl. Our numerous discussions have been an important ac-
celerator in my journey towards the understanding of queuing systems. A
few open questions still remain, which we have not been able to agree on:
Is it politically correct, according to good business, to denote the clients
(remember, clients=costumers=money) as disturbances? Is it acceptable
to formulate an optimization criterion as holding clients back in the sys-
tem in order to save CPU capacity? Also, I acknowledge Maria for the
encouraging remark when I “discovered” that queues are nonlinear: “Hey,
we’ve known that for years!”.
Karl-Erik Årzén, my second co–supervisor, I acknowledge for his im-

pressive ability to see things in a larger perspective and point out direc-
tions in the jungle of research. Karl–Erik amazes me with his clear sight
of where to go—both regarding research and where to enjoy a quiet drink
after a hard days work in a foreign town.
The honor for the fabulous computer–infrastructure at the department,

designed and maintained by Leif Andersson and Anders Blomdell, can-
not be overrated. Designing network experiments (with network and over
the network) was simplified significantly by their work. The secretaries
of the department Britt-Marie Mårtensson, Eva Schildt, Eva Westin, Ag-
neta Tuszynski, and Ingrid Nilsson, are the fundamental glue keeping

8

the department together, regarding paper work, accounting, remember-
ing important dates, ensuring that Ph.D. students do get married, and
many other important aspects. The librarian Lisbeth R. Karlsson at IT-
biblioteket Katrinebjerg is greatly acknowledged for her outstanding per-
severance in locating papers of older date. It has been a privilege to
work in the same building as the father of control in Sweden, Karl Jo-
han Åström. Facing an unsolvable problem, I often consulted Karl Johan
at the coffee break, and just as often his answer was in the line of “Why
don’t you try ...— I used it to solve a similar problem 30 years ago”. The
whole Department of Automatic Control, including former employees, I ac-
knowledge for the great working environment, intellectually stimulating
atmosphere, and friendly attitude.
Thanks to the room mates that I have had the opportunity to share

office facilities with over the years: Johan Bengtsson and Toivo Perby
Henningsson in Lund, and João Fernandes, Weishan Zhang, and Kristian
E. Kjær in Århus.
During my study of communication systems and queuing theory I have

had the pleasure of working together and having discussions with some
interesting and friendly persons from the Department of Telecommunica-
tion at LTH. I especially thank Christian Nyberg and Mikael Andersson.
The Department of Computer Science (DAIMI) at the University of

Aarhus is acknowledged for their open mind and hospitality. I appreciate
that I was invited in, almost from the street, and given an Internet con-
nection and a coffee mug (all an engineer needs) for more than a year.
Also, I thank the staff of the department, both academic and adminis-
trative, for accepting me into their social activities, especially around the
coffee table.
Thanks to the people that have spent hours proof reading this manu-

script: My sister Maren Ansbjerg Kjær, Björn Wittenmark, Per-Ola Lars-
son, Leif Andersson, Eva Westin, and Mikael Lindberg. Other people by
whom I have found great support, morally and technically, are Oskar Nils-
son and Brad Schofield.
This work has been founded by the Swedish Research Council, un-

der project 621-2006-5522 and the Lund Center for Control of Complex
Engineering Systems (LCCC).
I greatly acknowledge my daughter Karoline for allowing me room

for thinking. She really did a great job of NOT SLEEPING during the
evenings bed–time ritual, giving my brain plenty of time for creative think-
ing.
Finally, I thank all of my family, and in particular my wife, for encour-

agement and support.

Martin

9

Contents

Preface . 7

Acknowledgments . 8

1. Introduction . 13
1.1 Motivation . 13
1.2 Contribution of the Thesis 14

2. Background . 17
2.1 Computer Systems and Control Theory 18
2.2 Virtualization and Resource Reservation 22
2.3 Web Servers . 26
2.4 Queuing Theory . 28
2.5 Metrics for Control . 34
2.6 Actuation Strategies . 35
2.7 Related Areas of Research 37

3. Target System and Testbed 43
3.1 Target System . 43
3.2 Metrics for Quality . 46
3.3 Control–Theoretic Description 47
3.4 Laboratory Description 48
3.5 Virtualization Design . 51
3.6 Virtualization Implementation 52
3.7 Timing Issues and Quantification Errors 54
3.8 Traffic Generation . 58
3.9 Discussions and Conclusions 61

4. Modeling . 63
4.1 Internal and External Buffers 64
4.2 Static Modeling . 65
4.3 Dynamic Modeling . 70
4.4 Linearization . 72

10

4.5 Parameter Estimation and Model Validation 75
4.6 Discussions and Conclusions 78

5. Control Design and Analysis 80
5.1 Control Design Neglecting the External Buffers 81
5.2 Stability Analysis Including the External Buffers 83
5.3 Classification of Instability 88
5.4 Verification by Simulation 96
5.5 Validation by Experiments 99
5.6 Discussions and Conclusions 106

6. Redesign with Band-Stop Filter 107
6.1 Redesign of Feed–Forwards 107
6.2 Stability Analysis . 111
6.3 Verification by Simulation 112
6.4 Validation by Experiments 117
6.5 Discussions and Conclusions 121

7. Improved Feed–Forward Control by Prediction 122
7.1 Control Design . 123
7.2 Verification by Simulations 131
7.3 Verification by Experiments 140
7.4 Discussions and Conclusions 145

8. Nice Resource–Reservation 149
8.1 Modeling . 150
8.2 Control Design and Implementation 152
8.3 Verification by Experiments 154
8.4 Discussions and Conclusions 161

9. Concluding Remarks and Future Work 162
9.1 Concluding Remarks . 162
9.2 Future Work . 163

A. Nomenclature . 166

B. Bibliography . 172

11

1

Introduction

1.1 Motivation

Automatic adaptation to changes in the behavior of the surroundings of a
computer system has gained increasing interest from both academia and
software–system suppliers to provide reliable service to costumers while
maintaining a low operation cost. In the last years, the environmental
effects of computing have also come into perspective, something which
encourages to optimize the performance even further.
Computer systems are often operating in environments with many un-

known interactions caused by the unpredictable behavior of clients, other
computer systems, or even other computer programs. The offered, or re-
quested, traffic to a network can change abnormally with very short no-
tice. If large amounts of data have to pass through the network, the load
on for example a news site can increase suddenly as a response to a big
news event, or a cell–phone router can be overloaded temporarily just after
midnight of New Year’s Eve. Some changes are predictable, such as the
daily variation of requests to a mail server, while others are totally unpre-
dictable. To handle such large variations, hardware of computer systems
are often over–dimensioned compared to normal load demands, resulting
in a lot of wasted resources. To optimize the resource consumption, more
advanced control algorithms are investigated, and here, the field of au-
tomatic control has a lot to offer. It is generally known that a possible
hazard when tuning for too fast and accurate control is loss in robustness
and in worst case instability, which has devastating effects on the perfor-
mance. Therefore, modeling and analysis of the behavior of web–server
systems have become more and more important.
This thesis mainly considers response–time control of web servers,

which present challenging problems on both modeling, analysis, and con-
trol design.

13

Chapter 1. Introduction

1.2 Contribution of the Thesis

Modeling, Control Design, and Analysis

The Chapters 4, 5, and 6 study a problem where a web server is instru-
mented in an inexpedient manner, where only a limited part of the buffer-
ing proceeding the web server is included. This appears to have some dra-
matic effects for the control design, since what would be assumed to be a
measurement of a disturbance turns out to be state dependent, and a zero
enters the transfer function describing the relation from the control sig-
nal to the control output. A stability analysis is presented indicating that
if the system is designed without taking the dynamics of the unmodeled
buffers into account, the system can become unstable for certain choices
of control parameters. A redesign of the control strategy to improve the
robustness is suggested. The results from the analysis are verified by both
simulations and experiments.
The subject is relevant, as the amount of queuing outside the appli-

cation is not always known and often neglected. The results presented in
these chapters show the danger by such a simplification.

Related Publications

Kjær, M. A. and A. Robertsson (2009): “Effects of neglecting buffers in
feed–forward design for web servers.” In Proc. Fourth International
Workshop on Feedback Control Implementation and Design in Com-
puting Systems and Networks (FeBID’09), pp. 61–68. San Francisco,
CA.

Kjær, M. A. and A. Robertsson (2010): “Analysis of buffer delay in web–
server control.” In Proc. American Control Conference (ACC’10). IEEE,
Baltimore, Maryland. Submitted.

In both papers, Martin Ansbjerg Kjær conducted the modeling and sta-
bility analysis, developed the control structure as well as the experimental
testbed, and conducted the tuning and the evaluation.

Improved Feed–Forward by Prediction

Several feed–forward strategies to improve the disturbance rejection in
web servers have been suggested in the literature, but a majority of them
have been based on queuing–theoretic expressions, which require averag-
ing over a long time to be implemented. Furthermore, they rely on offline
estimation of a certain parameter. The work presented in Chapters 4 and
5 indicates that the stability of the whole system depends on the choice
of this specific parameter, if the arriving requests are queued before mea-
surements are taken. The results in Chapter 7 presents an alternative

14

1.2 Contribution of the Thesis

method to estimate the unknown parameter online using a feedback based
prediction method. Earlier work presented in the field were based on of-
fline estimations, which are not as robust to changes, and therefore result
in less attractive transient performance.

Related Publications

Kjær, M. A., M. Kihl, and A. Robertsson (2007): “Response-time control
of a single server queue.” In Proc. 46th IEEE Conference on Decision
and Control (CDC’07), pp. 3812–3817. New Orleans, LA.

Kjær, M. A., M. Kihl, and A. Robertsson (2008): “Response-time control
of a processor-sharing system using virtualized server environments.”
In Proc. 17th IFAC World Congress, pp. 3612–3618. Seoul, Korea.

Kjær, M. A., M. Kihl, and A. Robertsson (2009): “Resource allocation
and disturbance rejection in web servers using SLAs and virtualized
servers.” Network and Service Management, IEEE Trans. on. Submit-
ted.

In [Kjær et al., 2007], Martin Ansbjerg Kjær developed the control
structure, Maria Kihl developed the simulation program, and Martin Ans-
bjerg Kjær conducted the tuning and the evaluation.
In [Kjær et al., 2008], Martin Ansbjerg Kjær developed the control

structure, developed the simulation program, and conducted the tuning
and the evaluation.
In [Kjær et al., 2009], Martin Ansbjerg Kjær developed the control

structure, developed the experimental testbed, and conducted the tuning
and the evaluation.

Nice Resource–Reservation

The results described in Chapter 8 aim to obtain CPU capacity separation
between different tasks in a computer system while keeping the overhead
to a minimum. A feedback based method is used to achieve CPU capacity
reservation on a kernel level, thus avoiding the need to make modifications
to the applications. The implementation makes use of the Linux priori-
tizing scheme to assure a specified amount of CPU capacity to a given
task. The CPU reservations are obtained using existing operating–system
infrastructure.

Related Publications

Ohlin, M. and M. A. Kjær (2007): “Nice resource reservations in Linux.” In
Proceedings, Second IEEE International Workshop on Feedback Con-
trol Implementation and Design in Computing Systems and Networks
(FeBID’07), pp. 20–26. Munich, Germany.

15

Chapter 1. Introduction

Martin Ohlin developed and implemented the CPUreservation algorithm
and conducted the initial tests using infinite while loops. Martin Ansb-
jerg Kjær designed the web server testbed and conduced the web server
experiments. All material on the subject of Nice Resource Reservations in
Linux is presented in this thesis with the acceptance of Martin Ohlin.

Other Contributions

Other contributions by the author, not included in this thesis are:

Kjær, M. A. (2005): “Active stabilization of thermoacoustic oscillation.”
Licentiate Thesis ISRN LUTFD2/TFRT--3239--SE. Department of
Automatic Control, Lund University, Sweden.

Kjær, M. A., R. Johansson, and A. Robertsson (2006): “Active control of
thermoacoustic oscillation.” In Proceedings of the IEEE International
Conference on Control Applications, pp. 2480–2485. Munich, Germany.

16

2

Background

The scope of this chapter is to present relevant background

material that assists the readers accustomed to control

theory to gain a deeper understanding of computer sys-

tems and queuing systems. Therefore, this chapter will not

present any control–theoretical issues, but a great deal on

both queuing theory and computer–related issues. Some

subjects are treated in detail, because they are used in

later chapters, while other subjects are presented to sup-

ply a more general view.

The background to this thesis is based on many disciplines and areas.
First, computer systems are set in the context of control theory. Different
concepts of computer and telecommunication areas are presented, since
these are relevant for later investigations. Specific methods for instru-
mentation are also discussed. Finally, a section is devoted to discuss how
control is used in related areas of computer systems.
Computers are often divided into hardware and software. The hard-

ware is the physical components in the computer, such as the Central
Processing Unit (CPU), the memory, and the hard–disk. The software is
the commands which are executed on the physical hardware. As the com-
plexity of both the hardware and the software increases, the two layers
can be hard to distinguish. Often, instructions are implemented in soft-
ware to ensure that they can easily be redesigned at a later stage, but
they could also be implemented in hardware to obtain faster execution.
Furthermore, both the software and the hardware can be divided into

17

Chapter 2. Background

several categories. Several physical computers can be united to solve a
common task. Examples are super computers, large web sites, and large
databases. The software is often divided into operating systems and ap-
plications, and even into user applications. Computing across multiple
physical computers requires that communication is taken into account
both in the software and in the hardware. For instance, a web server can
forward requests to an application server, which in turn calls a database
server. The database server can be running on two physical computers.
The term computer system is used as an abstraction covering the unified
functionality of the hardware, of the software, and of the infrastructure.
A computer system has one more important factor, the users. Computer
systems may have few or many users, and these users can have very differ-
ent behaviors, and their interaction with the computer system generally
results in unpredictable requirements of the computer system. Only a few
users occupy a super computer at a given time, but the complexity of com-
putations can make the execution quite unpredictable. In a news site, a
large amount of readers request articles at a fairly random pattern. The
operators can have different variables to tune the performance. Some can
be tuned automatically while others are to be tuned manually. Automatic
control can supply tools to assist the operator in adjusting the variables.

2.1 Computer Systems and Control Theory

Even though dynamics are not considered in traditional computer en-
gineering, computer systems are dynamical systems, like other systems
traditionally handled by control, such as robots, airplanes, and chemical
reactors. It takes time from when a certain variable has changed until the
full reaction can be observed. Like other dynamical systems, computer sys-
tems also follow certain physical laws, for example conservation laws, but
other dynamic properties are of more synthetic nature caused by design
choices.
In control theory, a system is often described in terms of inputs, out-

puts (measurements), disturbances and states, as illustrated in Fig. 2.1.
Computer systems are seldom expressed in these terms. The following will
give a general introduction to what these terms can cover when describing
computer systems.

Measurements

Often computer systems are not designed with any control implementa-
tion in mind, and therefore, measurements of relevant variables can be a
problem. In some cases, the variables are not available for the controller,

18

2.1 Computer Systems and Control Theory

Control inputs

Disturbances

Measurements
Computer system

Internal states

Figure 2.1 A computer system from a control perspective.

because the variables are hidden in lower software layers, for example,
in the operating system. It may seem trivial to retrieve the time of an
arrival of a mail to a mail server, but in fact, this is not trivial. One could
argue that because the mail arrives via a TCP connection, the arrival
time can be defined as the time when the connection is being requested.
Here, the problem is, that the operating system is not necessarily aware
of a connection request being associated with a mail. It may as well have
been a HTTP request. Another definition of the arrival time could be the
time where the full request has been delivered from the TCP layer to
the mail program. If the network load is high, some parts of the mail
could have spent much time in the buffer, before all parts of the mail
have arrived, and this definition is thus also problematic. Furthermore,
software systems are often designed in a layered structure, where layers
are not supposed to know too much of what is going on inside the other
layers (this layer structure is very beneficial from a system design point of
view), so the relevant information to obtain a given measurement may not
be available at all. Examples of layered architectures are the Open System
Interconnection reference model (OSI) and the TCP/IP model, which are
discussed in [Tanenbaum, 1996].
Very often, measurements of variables in computer systems can be

inflicted with some delay not usually observed in other control systems.
For instance, the measurement of the response times of a server has a
variable delay, since the measurement of the response time of a particular
job can only be measured when the job has been completed. Since this
variable is treated as state dependent, it must be assumed that it can

19

Chapter 2. Background

change over time, which means that the measurement has a varying time
delay. A similar problem exists in the congestion control of the Internet,
where the response time in some cases is treated as a measure of the
level of congestion. In this situation, the delay of the measurement will
be state dependent, since the output of the control system actually is
the delay. This type of state dependent delays is usually not covered by
traditional control–analysis and control–design methods.

Control Inputs

Many variables can be tuned in a computer system. This is often handled
manually by the system administrator, through text files or dialog boxes.
Many are set to some default values by the software designer and never
changed during operation. Some values require privileged rights to avoid
unauthorized users to cause problems for the computer system. Other
variables are not accessible when the system has been compiled and im-
plemented. Examples of easily accessible inputs are the nicevalue of the
UNIX system (the owner can indicate the relative priority of a process
with respect to the other processes on the system), or the maximum num-
ber of jobs which are allowed to access a web server simultaneously. From
a control point of view, it is extremely important whether these variables
can be changed online or not. The nicevalue can be changed online as
the process is running, but in the case of an Apache server, the maximal
number of jobs allowed is defined when the server is initiated, and cannot
be changed during operation. For this to be a control input, the source
code of the server must be modified, as done in e.g., [Lindegren, 2008].
The maximum length of buffers can also serve as control signals. These
buffers can be hidden in the operating system, and are seldom accessible,
in particular not during operation. Instrumenting these kinds of actuators
are therefore not trivial, if at all feasible.

States

Many variables in a computer system can be dynamical; queue lengths,
number of processes and threads, flow rates on networks and data buses,
load indicators, and instantaneous throughput. Often, the dynamics of
these variables are not considered during system design, and the variables
are not directly measurable.

Disturbances

Disturbances in control terminology are those variables (inputs), which
are independent of the states and which cannot be affected by the con-
trol signal, but which change in an unpredictable manner. Disturbances
in computer systems can be caused by user interactions, such as starting

20

2.1 Computer Systems and Control Theory

programs on a computer or requesting a service from a server. Distur-
bances can also be generated by the computer system itself, for example
when backup procedures or virus scanners are started. Even though these
tasks are not random or unpredictable by nature, these types of actions
can be impossible to keep track of, and are therefore considered as distur-
bances.

Limitations

As most other systems, computer systems experience limitations. Buffers
have limited sizes, negative numbers of processes in the system are not
feasible, and priority levels are restricted to a finite interval. These lim-
itations are often defined during system design, or in some cases, they
can be defined by user (at least during initializion). The levels of these
limitations are often fixed and known (or at least, it is feasible to obtain
knowledge of their values). Other limitations are not known and may not
even be constant. The amount of data that a network can carry before
congesting is not a known value. The amount of active jobs a system can
handle before paging becomes a problem, is also a limit which is so hard
to predict that it must be considered as unknown. These kinds of limita-
tions are difficult to handle. Often, these problems can be solved by some
probing strategy, like for example in the design of the Internet congestion–
control. See Section 2.7 for a more detailed discussion of the congestion
control.

Models

Computers can be viewed from many different angles, resulting in dif-
ferent modeling approaches. The computer consists of physical devices
like resistors and transistors which are continuous on a low–level scale.
Neglecting the dynamics of the capacitors and transistors, the system be-
comes discrete. If a variable is represented by sufficiently many bits, the
quantification can be neglected, and the variable can be viewed as real
valued. On the scheduling level, only one task has access to the CPU at
a given time, and the variable describing the tasks access to the CPU is
thus a discrete, continuous–time variable, which is zero when the process
occupies the CPU and one when some other process occupies the CPU.
On a larger time scale, several tasks have been given access to the CPU,
and a given task has then been given a fraction of the total amount of
computation done. On this time scale, the CPU–fraction can be seen as
a continuous discrete–time variable between 0% and 100%. Likewise, the
amount of jobs in a buffer can be seen as a discrete continuous–time value,
describing the absolute amount of jobs at any time. This variable can be
rather fluctuating and its expected value may be of more interest. This
value can be defined as the average over a time interval, resulting in a

21

Chapter 2. Background

real discrete–time variable, or it may be found by a flow–model approach,
resulting in a real continuous–time variable. Furthermore, the dynam-
ics can be neglected completely and a statistical approach can be taken,
namely the field of queuing theory (to be described later). As these exam-
ples illustrate, the modeling of computer systems depends on what level
of accuracy and time scale is under investigation. Often, this choice is
restricted since modeling tools not always exist for a given accuracy level.
In other systems, such as mechanical systems and chemical systems,

relations between variables can be expressed by known mathematical re-
lations, such as Newton’s laws and Ohm’s law. Similar relations are hard
to find for computer systems, and often more data–driven approaches are
taken. System identification has been used in many cases to assist the de-
velopment of local controllers and to determine stability and robustness
properties. Examples are [Lu et al., 2001; Hellerstein et al., 2004; Lu
et al., 2006].

2.2 Virtualization and Resource Reservation

The history of virtualization and time–sharing systems dates back to the
late 1950s and early 1960s, see e.g. [Strachey, 1959]. In time–sharing sys-
tems different applications run on the same hardware, and the time–share
mechanism distributes the physical resources between the applications ac-
cording to some scheduling method. The applications are aware that they
share the resources with other applications, and can make use of specific
instructions to optimize the use of the physical resources. An application
running in a virtualized system senses that it is running on a physical
system, even though this is not the case. The virtual system just offers
the same functionality as a physical system. The physical system can run
several such virtual machines, and share the physical resources between
them. Here, even operating systems can be seen as an application, which
can be run in an isolated virtual machine. This is not possible for nor-
mal time–sharing systems. A clear formulation of the differences between
these two methods were already formulated in 1969 by Madnick:

A CTSS [Editor’s note: Conventional Time–Sharing Sys-
tem] characteristically provides a software interface to the user,
whereas a VMTSS [Editor’s note: Virtual Machine Time–Sharing
System] presents the user with a simulated hardware interface
to a virtual computer. [Madnick, 1969]

This is still a good description.
Methods of resource reservation can be seen as an underlying mech-

anism to time–sharing systems, where the resource reservation is the

22

2.2 Virtualization and Resource Reservation

method to allocate the physical resources.
The differences between time–sharing system, resource reservation

systems, and virtualized systems are of more computer–science nature,
and are not really relevant for the work presented in this thesis. They all
give the same functionality; physical resources are assigned to an appli-
cation (or a group of applications) by an underlying mechanism, which
can be altered by a (privileged) user. Therefore, the terms are used in-
terchangeably in many places. A solution denoted as a virtualized system
may be implemented as a time–share system with resource–reservation
techniques, but it may just as well be implemented by virtualization tech-
niques. In real–life implementations, the actual choice of technique will
be important in relation to other factors, such as scalability, robustness,
portability, and others, but because this is not the scope of this thesis, the
more casual approach to virtualization and time–sharing is taken.
Mile–stone results on virtualization were delivered by the M44/44X

project, presenting solutions on memory virtualization vs. handcrafted
manual memory–allocation, paging problems, time–share solutions, and
other issues [O’Neill, 1967; Shils, 1968; Sayre, 1969]. Even though for-
mal control–theoretic methods were not utilized explicitly, online measure-
ments of performance indicators were used for feedback in many cases to
adjust performance during execution. These control mechanisms were de-
signed and tuned ad hoc by intuition and engineering experience, and gen-
erally improved the robustness and performance significantly. An example
of this is described in more details later in this thesis (Section 2.7). To-
day, resource reservation and virtualization have become important tools
for modern IT–systems. For example, an Internet host (e.g. a web hotel)
guarantees to supply a certain amount of resources to a number of ser-
vice providers (e.g. web shops). Often several service providers are hosted
on the same hardware, but the host must guarantee that each service
provider receives the agreed amount of resources, despite the behavior of
the other service providers. The specific type of resources can be one or
more of the following; network bandwidth, database access, memory allo-
cation, CPU capacity, and many more. Another example is when a movie
player on a PC needs a certain amount of CPU capacity while a virus
scanner runs in the background.
On a single computer, the exact decision of how the resources are split

between the applications is often left to the operating system. In most
cases, this can be seen as an advantage because it is not normally known
exactly how important they are in relation to each other. For example, it
is not trivial to determine how important the mail server is compared to
the web server. However, in some cases, it would be advantageous if there
existed a mechanism to specify exactly how important different tasks (or
groups of tasks) are compared to each other.

23

Chapter 2. Background

When the a surplus of resources exists, the different applications run-
ning on the same hardware are not restricted in their operation, and they
do not sense the other applications. If the resources are limited, or have
a cost, the application will have to share the available resources, and
now the behavior of one application will have affect on the other applica-
tions. Some applications are sensitive to variations or limitations in the
resources given to them, and in such cases virtualization is a powerful
tool.

Reservation of CPU Capacity

The concept of reservation–based scheduling has been called fair–share
scheduling [Essick, 1990; Kay and Lauder, 1988; Henry, 1984] but is
also known under the name proportional–share scheduling [Fong and
Squillante, 1995; Stoica and Abdel-Wahab, 1995; Waldspurger and Weihl,
1995a; Waldspurger and Weihl, 1995b]. A good summary of this field with
more details can be found in [de Jongh, 2002].
An early attempt to use the operating–system architecture for reserva-

tion–based scheduling is the Watson Share scheduler [Moruzzi and Rose,
1991]. It was implemented on top of a standard AIX operating system at
the Compute Power Server Cluster at IBM, where the nice value was
changed to enforce CPU capacity. It is also mentioned in [Hellerstein,
2004] and [Hellerstein et al., 2005] as something that can be done in
theory in UNIX, but is complicated in practice because of the non–linear
relationship between nice, the number of processes, and the CPU capacity
received. Provided that the number of jobs in the system is fixed, and that
they are all present from the same time onward, a deterministic analysis
of the steady state shares is possible. [Hellerstein, 1993] shows how this
can be used to statically calculate the base priorities on a uni–processor in
the presence of decay–usage scheduling in UNIX. [Epema, 1998] extends
this analysis to the multiprocessor case.

Xen

Xen is a virtual–computer system, where several virtual computers, con-
tainers in Xen terminology, share the physical resources of a computer
[Xen, 2009]. On top of the physical hardware is the Xen scheduler, which
divides resources between the containers. Each container resembles a
computer system, where individual operating systems and applications
can run independently of the other containers. This implies that that all
resources are virtualized. The basic container, container 0, has special
management privileges, and is created when the system boots. From this
domain, new domains can be created and managed. Xen is an open–source
project which has proved suitable for online adjustment of resources in
different applications, as for example [Xu et al., 2006; Wang et al., 2007].

24

2.2 Virtualization and Resource Reservation

VMware

VMware is a commercial virtualization–system which creates virtual com-
puters on top of existing operating systems, see [VMware, 2009].

CKRM

Class–based Kernel Resource Management (CKRM) aims at providing dif-
ferentiated services to resources in Linux such as CPU capacity, memory
pages, I/O, and incoming network bandwidth [CKRM, 2009]. Parts of this
project is used in “SuSE Linux Enterprise Server 9”, not the CPU con-
troller though.

Control Groups

Control Groups is a project under Linux to facilitate grouping of processes
in the Linux kernel, supported from kernel 2.6.24 and onward. The aim is
to make the grouping as easy and logical as possible, requiring a minimum
of kernel–specific knowledge. Groups ordered with the Control–Groups
functionality will be denoted CGroups. CGroups are ordered in a tree–like
fashion where CGroups are sub–groups of other CGroups. This structure
is implemented by mounting a Control–Groups file–system, and building a
directory tree that matches that of the desired CGroup tree, as illustrated
in Fig. 2.2. To associate a process to a CGroup, the process ID is written
to the tasks–file of the relevant CGroup. This file structure is actually
virtual; all files and directories exist only in the memory, but this is of no
importance from a user perspective. See [Linux Headquarters, 2008b] for
more details.
Different subsystems can be added to the Control–Groups functional-

ity:

cpu alters the way the scheduler priorities the CPU capacity. The sched-
uler assigns CPU capacity according to a fair–scheduling principle;
it tries to divide resources equally between the CGroups (note that
the scheduler now distributes resources between CGroups and not
between processes, as would have been the case without the Control–
Groups functionality). By using the CPU–subsystem, the user can
define ratios between the CGroups to alter how the CPU capacity
are distributed. This is done by writing share–values into CGroup–
specific files (named cpu.share). The processes of a CGroup are
scheduled according to a fair–scheduler policy, which cannot be af-
fected by the user, see [Linux Headquarters, 2008a].

cpuacct accounts for the time that the CPU has been allocated, and an
accounting value is updated each time any process in the CGroup has
accessed the CPU. The accounting value is available in the CGroup–
file cpuacct.usage.

25

Chapter 2. Background

Group A

Group A1 Group A2

Root

GroupA

tasks

GroupA1

tasks

GroupA2

tasks

Figure 2.2 Illustration of a CGroup tree (left) and the corresponding Control–
Groups implementation as a file–structure (right). CGroups A1 and A2 are in-
dependent CGroups, both a sub–CGroup to CGroup A. This corresponds to the
Control–Groups implementation where the directories GroupA1 and GroupA2 are
independent, but both are a sub–directories of GroupA. Process–IDs are written into
the tasks–files to associate the process to the CGroup.

cpuset is used to schedule groups of physical CPUs. See [Linux Headquar-
ters, 2008b] for more details.

memory allows the memory to be shared between CGroups. See [Linux
Headquarters, 2009].

Even if the Control Groups system holds tools for virtualization of several
types of resources, it cannot yet perform full virtualization.

2.3 Web Servers

The first web server and corresponding browser (to the authors knowl-
edge) were developed at CERN around 1990 to assist scientists in shar-
ing information [World Wide Web Consortium, 2009a; World Wide Web
Consortium, 2009b]. Today, web servers are widely used on the Internet
providing different services to a range of clients throughout the world. Ex-
amples are Internet shops, news sites, Internet banking, but also smaller
personal sites used by private persons to share pictures, blogs, files, and
much more.
A client requests a certain file, denoted Uniform Resource Locator

(URL), from the web server, and the server responds with the requested
file or some error message if it was not able to deliver the requested file.
The protocol for communication is HyperText Transfer Protocol (HTTP),

26

2.3 Web Servers

which encapsulates messages and data in packets with additional infor-
mation, related to the sender, the language, and the data flow.
The requested information can create bottlenecks at different places

in the physical computer hosting the web server, depending on the type of
information requested. If the web server often serves downloads of large–
sized files, the I/O operations may be overloaded and create a bottleneck.
This can in some cases be solved by cashing data, but this requires physi-
cal memory, which then can become a bottleneck. Other types of requests
require heavy computational work from the CPU on the computer hosting
the web server. This is often the case with dynamically generated web
pages, such as PHP and CGI scripts. Here the CPU can become the bot-
tleneck. If the access network of the server is slow, it can congest and
create a bottleneck. The web server is capable of handling the requests,
but not able to return them sufficiently fast to the client, because the net-
work in between cannot handle the load. The main point is that different
kinds of traffic can cause bottleneck and thereby poor performance. The
bottlenecks can appear in many places in the computer system, and it can
be difficult to predict where to focus the investment on physical resources,
since the bottleneck depends so highly on the information to be requested.
The most common web server today is the Apache server which hosts

around 52% of the sites world wide [Netcraft, 2009]. Apache is an open–
source server, distributed and maintained by a community of developers
under the Apache Software Foundation. It has a modular structure which
allows the user to include or exclude different functionalities. A main focus
of the Apache server is the operational stability. The Internet Information
Server (IIS) from Microsoft is the second largest on the Internet, hosting
around 33% of the sites [Netcraft, 2009]. This server is not an open–
source project. Also Google is active on the web–server market, but with
a remarkably lower market share of roughly 5% [Netcraft, 2009].

The Apache Server

Apache can run on various platforms, such as Linux, Windows, and several
UNIX and BSD systems. Operating systems handle threads and processes
in different ways. Therefore, operating–system specific modules are used
as the interface between the operating system and the Apache server,
while the rest of the Apache remains (almost) independent of the operat-
ing system. The mpm_winnt is the default choice for Windows applications,
where requests are handled by threads contained in a single process. The
PreForkmodule is often used for Linux and UNIX applications. Here, each
process contains only one thread, and thus, a process handles only one re-
quest at a time. The name pre–fork indicates that Apache forks processes
before they are needed, which means that the server always has a surplus
of processes. This has a price in memory consumption, but should reduce

27

Chapter 2. Background

the response time, since a request does not have to wait for a process to
be spawn when the request arrives.
The multi–process strategies implemented in e.g. prefork can be in-

terpreted as a resource controller. Consider the case, where an Apache
server with the prefork runs simultaneously with one CPU–bound pro-
cess on a fair–scheduler system. If Apache has for example three active
processes, the Apache will get 3/4 of the CPU capacity in total. Assume
now, that more requests arrive, and now the Apache has, for example, 5
active processes. Then the Apache uses 5/6 of the CPU capacity. Here the
Apache regulates how much CPU capacity it receives according to the de-
mands. This control mechanism ensures a relatively stable and acceptable
behavior despite its simplicity.
Modules are written and compiled in a structured manner and they

are loaded into the Apache server at start–up. A more detailed description
of the Apache architecture and its model structure is found in e.g. [Laurie
and Laurie, 2002; Apache Software Foundation, 2008]. Functionality can
be added to the Apache server by adding hooks into a chain of phases
in the request handling procedure. Fig. 2.3 roughly illustrates how an
Apache process’ life progresses. At initialization the Apache runs through
a number of initialization phases, where a module can create hooks to
add functionality.
After initialization, the process enters the request handling circle. The

request cycle is run through once for every request the process handles.
In Fig. 2.3 only three phases are indicated, but these phases consist of
several entries for the programmer in which to add hooks. The post config
stage is reached when the header of the new request has been read, and is
thus the first place in the request circle to add a hook. After the request
has been handled, and an answer has been returned to the client, the
logging phase is reached. Finally, the request has been fully served, and
the process is ready to serve a new request, if the process is not forced to
exit.
When exiting the request cycle, the process enters the exit phase,

where the module can release resources, connections or other adminis-
trative things.

2.4 Queuing Theory

Queuing theory is a mathematical discipline with various applications,
such as logistics and telecommunication. The basic assumptions are that
jobs (of some kind) arrive at a processor, which can only handle a certain
amount of jobs simultaneously. If the processor is unavailable, the job is

28

2.4 Queuing Theory

Start up

Post config

Post read

Handling of

the request

Logging

Child exit

Ready for

new request

Request

returned

to client

Request

completed

Request

circle

Figure 2.3 The Apache module structure. Dashed–lined boxes indicate that the
phase is only utilized at the initialization and exit of the process, not necessarily
activated for each request. Full–line boxes indicate that the phase is activated for
each request. Round corners indicate that the module presented later adds a hook
here.

either queued or rejected. By assuming some statistical properties about
the arriving jobs and the time to serve the jobs, steady–state equilibrium
expressions can be derived for certain metrics, such as the expected queue
length and the expected time from arrival to departure. Early work of
queuing theory in telecommunications was formulated in the beginning

29

Chapter 2. Background

arriving requests

Queue Processor

Departing requests

µ

λ

Figure 2.4 A queue.

of the 20th century [Erlang, 1909]. [Kleinrock, 1975] gives a comprehensive
description of the most important aspects.
Consider a queue as in Fig. 2.4. Requests arrive at a queue, where

they are queued until they can start being processed. The requests arrive
according to a (known) statistical distribution of the inter–arrival times
with expected value λ . The processor handles the jobs according to a given
scheduling strategy. The time to serve the individual requests, denoted
the service time x, is given by a (known) statistical distribution with the
expected value x̄ = 1/µ, where µ is the service rate. If λ > µ the system is
overloaded, meaning that requests are arriving faster than the processor
can handle them. In this case, the system is called unstable in queuing–
theory terminology. Stable operation requires that the arrival rate λ is
smaller than the capacity µ.
Little’s law is a kind of conservation law in queuing theory (assuming

stationary conditions), which is valid for any statistical properties and any
scheduler policy. It relates the response time with the expected number
of jobs according to the following expression

d = n̄
λ

(Little’s law)

In queuing theory there exists a special notation which expresses the
important properties of the queue in a compact manner. The notation ex-
presses the queue as X/Y/K–m. The letters X and Y are used to describe
the distributions of the inter–arrival times and the service times respec-
tively. The letter K is used to describe the amount of processors avail-
able, and the letter m can be used to describe the scheduling method.
For example, M/D/1–PS indicates that jobs are arriving to the queue ac-
cording to an exponential distribution (M for Markovian traffic) and the
service time of the jobs are deterministic (D). The queue has one proces-
sor (1) which schedules according to the processor–sharing (PS) method
(all jobs are treated simultaneously, sharing the resources equally). An
M/P/3 queue has exponentially distributed (M) inter–arrival times and

30

2.4 Queuing Theory

0 1 m − 1 m m + 1

λλ λ λλλ

µµµ µµµ

Figure 2.5 A Markov chain model of an infinite queue with a single server.

Pareto–distributed (P) service times. Three processors (3) handle the jobs
according to the first come–first served (FCFS) method (this is the default
scheduling method if nothing else is stated).

The M/M/1 queue

The M/M/1 queue has been studied extensively over the years because
it results in fairly simple relations while it still captures the behavior of
realistic queuing–systems. The assumptions are that all service times and
all inter–arrival times are exponentially distributed and non–correlated.
This is in many cases an over–simplification of the real–life applications,
but the assumptions are often accepted because they simplify the analysis
and allow for the formulation of simple relationships between the traffic
parameters and the queue performance. This type of queues can be mod-
eled by Markov chains as illustrated in Fig. 2.5. The state of the queue
is the number of jobs in the system. At a given state m (except the zero
state) there is an average flow of λ requests per time unit (req/s) towards
the higher state m+ 1, and an average flow of µ towards the lower state
m − 1. Therefore, a statistical distribution for the state is given by

pm =
(

1− λ

µ

) (

λ

µ

)m

(2.1)

where pm is the probability that the queue is in state m. Some of the nice
results are the closed–form equations for the expected number of jobs in
the system (both in the processor and in the queue) and the expected
response time for stable systems:

• The Expected Number of Jobs in the System n̄ is given by

n̄ =
∞

∑

j=0
pj j =

λ

µ − λ

which is an averaging of the entire queue.

31

Chapter 2. Background

Metric

Arrival rate

λ

µ

Service rate

Figure 2.6 General behavior of the metrics of a queue (n̄, d); they grow to infinity,
as the arrival rate λ is increased from zero towards the service rate µ .

• The Expected Response Time d is given by

d = n̄
λ
= 1

µ − λ

which is found by applying Little’s law.

These equations all show the same trend: The metrics (n̄, d) grow
towards infinity, when λ is increased from zero towards µ, as illustrated
in Fig. 2.6. This is a general behavior of a queuing system with stochastic
and deterministic traffic (even with other distribution for inter–arrival
times and service times).

M/G/1/PS and M/M/1 systems

Something interesting occurs when the FCFS scheduling strategy is
changed to a processor sharing (PS) strategy. Assume that the requests
arrive according to an exponential distribution. Then, the queuing system
will behave as an M/M/1 queue in stationarity, no matter what statis-
tical distribution the service time may have [Kleinrock, 1967; Noguahi
and Oizurnih, 1971]. As a consequence, one does not need to consider
the specific distribution of the service time, only the expected value, if
the scheduling strategy is PS. This is a huge advantage since a suitable
theoretical distribution for the service times can be difficult to find.

32

2.4 Queuing Theory

Dynamic Modeling of Queues

A dynamic flow–model of a general single–server, often denoted as Tip-
per’s model, has the following form

d

dt
n = λ(t) − µH

(

n(t)
)

(Tipper’s model) (2.2)

where n is the dynamical state, representing the expected number of jobs
in the system, and H(⋅) is the ensemble average utilization as a function
of the state [Agnew, 1976; Tipper and Sundareshan, 1990; Sharma and
Tipper, 1993; Wang et al., 1996]. The ensemble average utilization depends
on the statistical properties of the queuing system and the scheduling
method. For an M/M/1, H is given by

H
(

n(t)
)

= n(t)
1+ n(t) (2.3)

The model works well at higher loads, where the fluid–flow assumption
matches the traffic well. Also, the model matches the queuing–theoretic
results of Section 2.4 in steady–state.

Queuing Theory from a Control Perspective

In control terminology, traditional queuing–theory handles steady–state
operation. Linearization of Tipper’s model reveals more information on the
dynamics. To allow different kinds of actuation, one often assume that the
service rate (µ) can be altered in some manner by a controller. The arrival
rate (λ) is considered as a disturbance, but actuation strategies, such as
admission control, could transform it into an input.
The linearized Tipper–model, assuming an M/M/1 system, becomes

d

dt
∆n(t) = ∆λ(t) − λ0

n0(n0 + 1) ∆n(t) − n0

(n0 + 1) ∆µ(t) (2.4)

where the queuing–theoretic relationship

µ0 = λ0

n0
+ λ0

has been applied. The linear model shows that the time constant Tl of the
first–order system is given by

Tl = (n0 + 1) n0
λ0

(2.5)

33

Chapter 2. Background

This indicates that if the traffic remains the same (λ and w̄ constant),
the time constant will increase as the load is increased (n is increased by
decreasing µ), and not only linearly, but quadratically. This means that
the system becomes very slow if the control tries to minimize the CPU
consumption. On the other hand, if the load is kept constant when the
traffic parameters are increased (by also increasing µ), the dynamics of
the system will become faster. This makes sense, since more jobs will go
faster through the system.
The steady–state gains from µ and λ are given by

�µ,n = −(n
0)2

λ0
(2.6)

�λ ,n = (n0 + 1) n0
λ0

(2.7)

respectively. They indicates two interesting properties:

1. As the load increases (n0 increases), the control authority (�µ,n) will
increase. This is both advantageous and disadvantageous. It allows
for a better control, as only small changes in the control signal can
achieve a large effect. On the other hand, if the controller generates
too large control signals, the system is driven to extremes very fast,
resulting in bad performance.

2. As the load increases (n0 increases), the system becomes more sensi-
tive to the disturbances (changes in λ), since �λ ,n increases quadrat-
ically. This can cause problems when the controller is optimized for
maintaining low µ. On the other hand, if the load remains constant
when the disturbances increase (by increasing µ), the sensitivity
diminishes.

The system becomes sensitive to both the control signal and the distur-
bances at high loads (high n0) and the dynamics become slower. The sys-
tem becomes less sensitive to both the control signal and the disturbances
as the arrival rate decreases. The system then becomes faster.

2.5 Metrics for Control

Several metrics can be formulated for web servers and for computer sys-
tems in general. In the following, two web server related metrics are dis-
cussed, queue length and response time where one is manager oriented
and one is client oriented. Examples of other metrics are load, utilization,
memory use, rejection probability, and many others.

34

2.5 Metrics for Control

Queue Length

Queue–length control is the problem of controlling the average queue–
length in a system. This control–approach has the clear benefit that the
control output is located at the same place as the controller. Consider-
ing that the physical queue often is limited, the queue length becomes a
potential control–metric. By ensuring that the system operates around a
reference well below the physically limit the queue is not overloaded. The
queue length as a control metric is strictly management oriented. The
actual queue length is only of concern to the service manager, whereas
the client does not care for the length of the queue, but rather for the
service which is delivered (for example the service time). However, the
queue length is related to the more client–oriented response–time (many
jobs in the queue are often related to longer response times), but usually
only steady–state queuing–theoretic relationships are taken into account.
In a control–context, the queue–length metric has the benefit that dy-

namical models for its behavior exist (e.g., Tipper’s model as in Eq. (2.2)).
Examples of control systems with the queue–length as primary metric
are [Kuri and Kumar, 1995; Kihl, 1999; Kihl et al., 2007].

Response Time

The response time is a natural metric for control, since it is one of the
most important factors for the user. Measuring the response time is rarely
feasible for several reasons. First of all, it is normally not feasible for a
server (where the control algorithm is implemented) to measure anything
at the clients. Alternatively, the server can measure the response time
locally, but the network delay is not encountered. The network delay can be
estimated (e.g.by measuring the round–trip times of the acknowledgments
in the TCP–communications). Secondly, assuming that the server could
perform measurements at the clients, the next problem is to define when
a request is generated and when it is served. Is a request to be defined
when the user presses the button to request a URL? Is it to be defined
when the TCP layer requests a connection? Is it defined when the first (or
last) IP datagram is sent from the client? Similar questions can be asked
regarding when a request has been served. In practice, the measurement
of the response time holds many complications. Furthermore, the work
on the modeling of the dynamics of the response time is very limited.
Examples on response–time control are [Lu et al., 2001; Henriksson et al.,
2004; Liu et al., 2006].

35

Chapter 2. Background

2.6 Actuation Strategies

Many actuators are present in computer systems. Not all are originally in-
tended for active control and need smaller modifications to be used. Some
actuation methods are developed explicitly from the desire to change the
behavior of the system by means of active control. The following presents
two actuation methods relevant for control of web servers, admission con-
trol and content adaptation. Examples of other methods are the num-
ber of clients allowed simultaneously and the length of different time–
outs [Hellerstein et al., 2005].

Admission Control

Admission control is an actuation strategy, where arriving jobs are blocked
to some degree by the controller, and thus lightens the load of the sys-
tem. This actuation strategy is clearly nonlinear, since jobs can only be
rejected—they cannot be invented to fulfill the demands of the controller.
The admission control can be implemented in many different ways. To-
ken Bucket generates tokens at a rate given by the controller. When a
request arrives, it is accepted if there is a token available. Dynamic win-
dow allows a certain number of jobs to be present at a given time. When
a request arrives, it is accepted if there is room for it, and rejected if not.
Both of these strategies have the properties that in overloaded situations,
the amount of jobs accepted does not depend on the arriving traffic. An-
other strategy is the percent–blocking–method, where a request is rejected
with a probability set by the controller. This has the advantage that the
accepted requests have the same type of statistical distribution as the ar-
riving requests, and this simplifies the analysis. However, in overloaded
situations, the number of accepted requests depends (proportionally) on
the number of arriving jobs, which means that a certain increase in the
arrival rate can lead to overload.
Examples of admission control are given in [Lee et al., 2004; Liu et al.,

2006; Kihl et al., 2007]). Admission control should be used with care, as
denying requests is generally undesirable. Rejected requests mean loss of
revenue. Admission control is therefore often used as overload protection
to avoid stagnation at ultrahigh work–loads.

Content Adaptation

An alternative to admission control to handle overload is content adapta-
tion. Here, no requests are denied, but instead the content of the reply is
changed with the current load of the system. For instance, if network–
bandwidth is the bottleneck, files can be better compressed or simply
reduced during high load. In the case where the CPU–capacity is the
bottleneck, the content of the dynamically generated pages can be altered

36

2.7 Related Areas of Research

to reduce the required computations. Examples of content adaptation are
presented in [Abdelzaher and Bhatti, 1999; Andersson, 2007].
This actuation type is not trivial to implement, and may not be rele-

vant in many cases, since it requires that the requested content can be
represented at different levels.

Virtualization

Some virtualization techniques can be used as actuators if they allow
for online–adjustment of resources. Examples have been shown in the
literature using Xen [Xu et al., 2006; Wang et al., 2007], but also other
virtualization techniques have been used, see e.g. [Henriksson et al., 2004].

Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) is an actuation method where the voltage
over the CPU is altered to reduce or increase the frequency of the CPU.
The main reason for this is to save electrical power and the fact that
the power scales quadratically to the voltage. Therefore, the motivation to
reduce the CPU frequency becomes obvious. Examples of DVS–actuation
implementations can be seen in [Sharma et al., 2003; Heo et al., 2007].
From a control point of view, this actuation method resembles the

CPU–virtualization method, as they both operate on the service time of
the requests. Therefore, any control method developed for one of the ac-
tuators can easily be used on any other method. The control objective
may change, however. For instance, the quadratic cost obtained from the
voltage–power relationship associated with the DVS method may not be
relevant for virtualization problems.

Load Balancing

Load balancing optimizes the load in a distributed system or on computer
systems with several CPUs. If a unit is highly loaded (in some metric),
jobs or tasks are moved to other, less loaded, units. A trade–off takes place
when jobs or tasks are moved, in particular if new servers need to start
up first. Because the relocation requires resources, too much relocation
will increase the overhead, see e.g. [Kremien and Kramer, 1992; Fu et al.,
2006; Heo et al., 2007]

2.7 Related Areas of Research

Control–theoretic methods are, of course, also applied to other areas of
computer systems. In this section, a couple of examples are described in
some details to illustrate the attempts to bring formalized control design
methods and stability analysis into the computer–engineering world.

37

Chapter 2. Background

CPU–
utilization

100%

CPU–

threshold

Acceptable performance

Underload Overload

Page–replacement
threshold

Page–
replacement
frequency

Figure 2.7 Partition of the state space into three regions; overload, underload,
and acceptable operation, see [Shils, 1968], pp. 8.

An Early Load–Control Design

The first example is not directly coupled to stability analysis and formal
control design, but rather serves as an example of early use of feedback
in a computer system. In 1968 A. J. Shils presented a solution to a load
problem observed when using the IBM M44/44X computer system [Shils,
1968]. A number of 16 users should share the common CPU and memory
resources. At high load, the time to process the jobs increased significantly,
despite that the CPU was not fully utilized. Paging was the root of the
problem, blocking the jobs while waiting for access to the memory. This ef-
fect was self–sustaining, in the respect that arriving jobs would experience
a high probability to page if the system was over–loaded, and thus only
increase the problem further. A solution was to remove jobs temporally to
avoid too much paging, and thus optimize the utilization of the CPU. The
load was characterized by the two variables CPU utilization, and page–
replacement frequency as illustrated in Fig. 2.7. The philosophy was that
if the page–replacement frequency was high while the CPU–utilization
was low, the system was over–loaded. If the CPU–utilization was high,
the system was considered to be running smoothly. In the situation where
both the page–replacement frequency and the CPU–utilization were low,
the system was considered to be underloaded, meaning that less work was
requested than available.
If the system was observed to be overloaded, jobs were taken out of the

running–queue, and put aside in a separate waiting–queue, to reduce the

38

2.7 Related Areas of Research

load temporarily. When the system was running in either the normal mode
or in the underloaded situation, jobs were taken from the waiting–queue
(if there were any), and put in the running–queue. This simple algorithm
improved the throughput (number of jobs served in a given time period)
during high load situations, and decreased the probability for the system
to be in the overloaded and underloaded situation with 42% and 12%,
respectively. The throughput was increased, but the response times were
also smoothed by the control algorithm.
This work is considered as one of the first reported results on feedback

control of computer systems.

Congestion Control in the Internet

The Internet consists of many local networks, and data may be transferred
through several networks from one computer to another. These networks
can have different capacities, and since the sender is not aware of the route
the data will take, the sender cannot predict how much data the given con-
nection can handle. If too much data is pushed through a low–capacity
segment of the Internet, congestion can appear. Congestion manifests it-
self as long transmission times and time–outs (when the acknowledgment
of a data transmission is not returned to the sender within a given time).
The only solution for the sender is to reduce the amount of data sent to
the network. In the Internet the TCP–layer of the network protocol–stack
handles the congestion control. In the original TCP–protocol the conges-
tion control was imposed by limiting the amount of non–acknowledged
data sent to the network, determined by the co-called window size. The
window size was static until 1988, when it was proposed to change the
window size dynamically to improve the throughput and at the same time
avoid congestion [Jacobson, 1988]. From this, several strategies to adapt
the window size dependent on the measured time–outs have been pro-
posed, such as Tahoe, Reno, and Vegas. Some improvements were based
on other probing behavior, while others used different methods to detect
or predict congestion based on time–outs. A bit simplified, the idea is to
slowly increase the data rate offered to the network to probe the network
to find the maximum data–rate possible. When congestion is detected, the
data–rate is decreased dramatically to avoid further congestion, and then
slowly increased again. The real implementation is a bit more complicated,
including both exponential and linear increases, but the principle remains
the same: Slow increase, fast decrease.
Active queue management is a strategy where datagrams are dropped

from queues in the network, even if the specific queue is not congested.
This helps the source to better estimate the level of congestion, and thus
allows a more active congestion control. Examples of queuing policies used
for active queue management are DropTail and Random Early Detection

39

Chapter 2. Background

Sources

Window size

as internal state

Forward
channels

Pure delays

Links

Queue lengths

as internal states

Congestion
Measurements

Average queue–lengths

as internal states

Backward
channels

Pure delays

Transmission
rates

Aggregated
flows

Congestion
measures

Aggregated–
congestion
measures

Figure 2.8 Block diagram of the congestion–control mechanism in the Internet
(TCP/RED).

(RED). A more detailed description of the TCP congestion–control mecha-
nism is presented in [Tanenbaum, 1996], while a good introduction to the
development of the congestion control is presented in [Low et al., 2002].
The TCP congestion algorithms have been studied from a dynami-

cal point of view by researchers from the control community. The fol-
lowing describes some results presented by [Paganini et al., 2001; Low
et al., 2003]. This group modeled the flow with TCP/RED congestion al-
gorithm by studying flow–models. The system was divided into several
inter–connected parts, as illustrated in Fig. 2.8. The sources offer a cer-
tain transmission rate to the network. The channels route these transmis-
sion rates to the individual links, modeled by routing tables and delays.
Depending on the capacity of the individual links, the links respond with

40

2.7 Related Areas of Research

a measurement of its level of congestion. In the case of RED the metric is
a probability of datagram drop. This congestion information is aggregated
back to the source through the backward channels, which are modeled as
pure delays similar to those of the forward channels. Based on the ag-
gregated congestion measurements, the congestion–control algorithm ad-
justs the window–size, and thereby the transmission rate. The congestion
control–algorithm of Reno is modeled as the fraction between the window–
size (which changes over time), and the round–trip time. The flow model
of the window–size–adjustment algorithm is rather complicated, and it is
based on the actual flow rate of the source and the measured congestion
level. The links are modeled as queues, of which the queue lengths grow or
decrease if the aggregated flow into a specific link exceeds or goes below
the capacity of the link, respectively. The congestion measurement at a
particular link is based on an average of the queue length, which imposes
filtering.
The models obtained are non–linear and include time delays, some-

thing that makes stability analysis hard. Linearization of the models
yields some interesting problems. The TCP/RED congestion control
scheme becomes unstable when the delays of the network increase and
also when the capacity increases. The first problem is somehow expected
from a control–theoretical perspective, since it follows a general behavior
for time–delayed systems. The second problem is somehow unintuitive,
since one would expect problems when the capacity is too low—not when
it is high. The problem arises because high capacity of the links will give
higher gains in the open–loop transfer–function, which leads to instabil-
ity. This causes a potential problem, since the capacity of the network is
expected to increase as technology and demand evolve. This motivates for
a different congestion–control algorithm, which remains stable for any ca-
pacity. Also, robustness towards transmission delays is desired, since the
Internet is expected to increase, thus possibly increasing the round–trip
time due to an increase in the number of links through which the flow has
to pass. Following the analysis described above, new congestion–control
schemes that assure local stability for any capacity and any round–trip
time have been presented,. A problem with these methods is that they
are based on new definitions of the congestion metrics, which require new
measurements. Remember that the system is highly decentralized and
it is not easy to obtain link–related measurements at the source where
the controller is implemented. This often requires the datagrams to carry
some extra information (some bit set in the IP header), which is altered
by both the sources and the links, and retransmitted with the acknowl-
edgments for the source to estimate the level of congestion. Furthermore,
the whole analysis is based on known and constant time–delays in the
network. In reality these delays will have to be estimated and will prob-

41

Chapter 2. Background

ably be time–dependent, something which is not covered by the stability
analysis.
This example shows that control–theoretical methods can be used to

analyze and improve the performance and robustness of a computer–
related system. The major problem here is the modeling and the problem
of implementing proper measurements for feedback.

42

3

Target System and Testbed

In this chapter a specific target–system is presented, which

will be used in most of the remaining of this thesis.

A testbed has been constructed to test different control

strategies according to the defined target system, and

this testbed is presented. The system description and the

testbed are also presented in [Kjær et al., 2009].

The computer systems, which are considered in most of this thesis, host
web applications that are widely used on the Internet. These types of
systems can consume considerable amounts of resources, even when the
system operates under normal conditions. Both from an operational point
of view and from an environmental one, it is desirable to adapt the usage
of resources during the changing of loads.
The system described here, along with the testbed presented, consti-

tute the basis for the results to be presented in Chapters 4-7.

3.1 Target System

The main target system in this thesis is a general distributed computer–
system hosting various web applications. Two examples of such systems
are web hotels hosting several web sites, and enterprise data–centers con-
taining business critical applications. Similar systems have been investi-
gated in for example [Horvath et al., 2007; Elnozahy et al., 2003; Heo et al.,

43

Chapter 3. Target System and Testbed

Application

Application

Application

Application

...

...

...

Server

Server

Requests

Requests

Requests

Requests

Computer system

Figure 3.1 A virtualized server environment hosting web applications.

2007]. These systems are often multi-tiered. However, in the analysis one
of the tiers is usually seen as the bottleneck, and thereby the analysis
can be reduced to that single tier. The work presented here takes a simi-
lar approach, and the focus is on the CPUintensive tier, which processes
dynamic application scripts.
The target system is shown in Fig. 3.1. New requests will arrive accord-

ing to some stochastic process that may change over time. Each request
can be treated independently of other requests. The physical resource of
the computer system, in this case the CPU capacity, is shared among the
applications using a virtualized server environment. The required work of
the request, w, is a representation of the amount of work a request needs
from the CPU to be processed. The required work is defined entirely by
the nature of the request and cannot be affected by the control design. In
this thesis the required work is measured in seconds, but it could just as
well be measured in clock cycles, as for example in [Horvath et al., 2007].

44

3.1 Target System

Each application has a Service-Level Agreement (SLA), defining the
Quality of Service (QoS) that the application is guaranteed from the op-
erator who is managing the computer system. Clients send requests to be
processed by the application. Each request requires some resource capac-
ity (here, CPU capacity) from the physical system. To fulfill the SLA, each
application is guaranteed a certain share of the total CPU–capacity. Since
the traffic situation may change over time, the CPU–allocation mechanism
should be dynamic using some optimization criteria.
In this thesis two general assumptions about the system are made.

The same assumptions have also been used in other work, for example
in [Heo et al., 2007; Wang et al., 2007; Horvath et al., 2007].

• The first assumption is that there is a load balancing mechanism,
which distributes the workload among the physical servers. There-
fore, all servers behave equally and independently of each other,
which means that the CPU–allocation mechanism can operate on
only one server.

• The second assumption is that the total CPU–capacity is large
enough to respect the demand of each of the applications. With
this assumption, resource allocation and management will be the
focus rather than overload control. Also, with this assumption the re-
source allocation of each application can be controlled independently
of other applications using the virtualized server environment.

As the load on the different applications can change at any time, a per-
fect load balancing can not be guaranteed. The implemented work–load
mechanism varies from system to system. It is therefore hard to include
imperfect load balancing into the work of this thesis, as the degree of
imperfectness is unpredictable. The second assumption is imposed to sep-
arate the over–load problem from the resource optimization problem. If
the amount of resources are not sufficient, some applications will have
to reject some work to lower the load. How to divide resources optimally
between several applications is an interesting and challenging problem,
which has gained interest over the last years. However, the work presented
in this thesis focuses on the dynamic aspects
With the two assumptions in mind only one server and one application

are used in the analysis in the remaining of this thesis.
An application will have a reserved share pr (0<pr<1) of the to-

tal CPU–capacity. Non–allocated CPU–capacity, 1 − pr, is considered as
profit–generating, since the spare CPU–capacity can be used for other
purposes, such as secondary tasks (not further specified) or to save elec-
tric power by DVS. Therefore, the work presented in this thesis has the
same control objective as presented in several other papers, for example

45

Chapter 3. Target System and Testbed

in [Wang et al., 2007; Lu et al., 2003; Henriksson et al., 2004]; to min-
imize the amount of CPU capacity that is given to each application to
save running costs, at the same time as the SLAs for all applications are
fulfilled.
The SLAs contain the average response time for each request, meaning

that an application should have a sufficient share of the CPU capacity so
that its clients experience an acceptable response time from the system. In
a more sophisticated SLA one could include a cost for the system operator,
if the variance of the response times is too high. However, since focus
here is on the technical aspects of the system rather than on the business
aspects, the SLA design will not be investigated or discussed any further.

3.2 Metrics for Quality

Three metrics are chosen to show the behavior of the system. None of
them are able to describe the total quality of the system, so an acceptable
performance of the system yields a trade–off between several metrics.
The average response time, d, is a prime metric for the end user, and

thus also for the application operator. For the user this metric should
preferably be as small as possible, but for the computer–system operator
it should be balanced with the cost of running the computer system. This
balance is defined in the SLA, which is translated into control terminology
as the response time reference dr. The variable d can be regarded as the
response time of a single request or as an average over a sample interval.
The variation cost of the response time, Vd, is a metric for how indi-

vidual clients are affected by the computer system. If Vd is large, some
clients will experience large response times, which is undesirable. There-
fore, a low Vd is preferable, even though it is not stated as a specific SLA.
Vd is defined for a stationary sequence by

Vd =
1
m

m
∑

j=1
(d̄− dj)2 , d̄ = 1

m

m
∑

j=1
dj

where m is sufficiently large, and dj is the response time corresponding to
the discrete–time index j. Vd is only used for long steady–state scenarios,
where the system can be considered as stationary.
The Loss of capacity, q, is the difference between the reserved CPU

capacity, pr, and the CPU capacity actually used by the application, pa.
Since the system is sampled, pr is constant during each sample. This
metric is relevant for the computer–system operator, since it represents
an operational cost, which does not generate any income. It is of high
interest to keep this metric to a minimum.

46

3.3 Control–Theoretic Description

For steady state cases, these three metrics are evaluated as time–
averages over sufficiently long, possibly down–sampled, sequences, ensur-
ing that the 95% confidence interval for the response time does not exceed
10% of the mean value, and that the size of the 95% confidence interval
for q does not exceed 0.01 (i.e, 1% of the CPU capacity). The confidence
intervals are measures of the accuracy of the average values, compared
to the real expected values according to standard statistical methods, see
among others [Anderson et al., 1998].
Averaging over long time sequences cannot be used to improve the

accuracy for transient experiments. Instead, several similar experiments
are averaged to remove statistical fluctuations:

Jd(m) = 1
m

M
∑

j=1

1
tt

∑

l

(dr − dl, j)2 (3.1)

Jq(m) = 1
M

M
∑

j=1

1
tt

∑

l

(ql, j)2 (3.2)

The above expressions represent averages over m experiments over the
transient period tt. The variables dl, j and ql, j represent the average
response–time and the average loss of capacity for the lth sample inci-
dent and the j th experiment.

3.3 Control–Theoretic Description

The response time d is seen as the output. The actuation method (control
input) is the amount of CPU capacity reserved to the server, pr . The num-
ber of jobs in the system n is an internal state, which is often measurable.
Two types of disturbances are of special concern:

Arrival rate: The arrival rate of requests to the server is a variable
which is considered to be independent of the operation of the server.
This is a simplification, since large response times, caused by a high
load on the server, will make the users discard the web site, and
thereby the arrival rate to the server is reduced. However, this sit-
uation is not covered in this thesis, as the second assumption on
page 45 states that the resources are surplus. The arrival rate seen
as a disturbance can be extremely important for the web server oper-
ation, since it can change very fast, as described by e.g. [Andersson,
2007].

47

Chapter 3. Target System and Testbed

Required work: This variable describes what type of resources the
client is requesting. If a computationally expensive, dynamically gen-
erated, page is requested, the required work is high, whereas a static
HTML file does not require much computation, and thus has a low
required work. The average required work can change over time,
as the popularity of the files of the site changes. If the requests
shift from mainly requesting static HTML files to requesting com-
putationally expensive, dynamically–generated, files, the average re-
quired work will increase, even if the number of requests has not
changed. The required work is measured as the time it would take
the server to complete the request, if this was the only task in the
system. The required work is thus not only dependent on the nature
of the clients, but also on the maximum capacity of the server. An
alternative definition of the required work is to measure it in terms
of clock cycles, as in [Horvath et al., 2007], but for a given server the
two definitions are equivalent, only expressed in different units. In
this thesis the required work is measured in terms of time because
it seems more intuitive.

These two disturbances described above are related to the behavior of
the clients, a behavior which is more or less unpredictable. Using the
terms disturbance and unpredictable about the behavior of the clients
(often the customers), is purely associated with the terminology of the
control community (just to avoid confusion with the telecommunication
community).
Other types of disturbances, like the processes of the operating system

and administrative tasks, can be neglected in comparison to the two main
disturbances.
The requirement related to the response time in the SLA is translated

into control–theoretic terminology as a reference to the response time.
The SLA usually defines a fixed value, which has to be met despite the
behavior of the surroundings. This means that the reference dr can be
considered to be constant, and the control objective is thus to reject the
disturbances rather than reference tracking (servo problem).

3.4 Laboratory Description

A laboratory testbed has been designed to test and evaluate different web–
server scenarios. The main focus was to evaluate different control struc-
tures rather than testing complex system scenarios involving database
servers, application servers, multi–tier, or others. To minimize the com-
plexity the server was implemented as a single web–server on a single

48

3.4 Laboratory Description

Figure 3.2 The laboratory.

standard PC, which was sufficient to represent the system described ear-
lier in this chapter. A number of standard PCs were available for traf-
fic generation, and the whole system was connected by standard network
components. The work in this thesis investigates scenarios where the CPU
causes the bottleneck, and the network was therefore dimensioned in order
not to cause bottlenecks.
The setup consisted of one server, 12 client computers, and one master

computer to administrate the experiments. The clients were connected to
the server by an 100 Mb Ethernet switch. The master computer was con-
nected to the lab-network through a local Ethernet network, see Figs. 3.3
and Fig. 3.2.

49

Chapter 3. Target System and Testbed

Apache

server

TCP/IPTCP/IP TCP/IP

TCP/IP

Idle

OS (Linux)

OS (Linux)

Server

Load

Laboratory network

OS (Linux)

OS (Linux)OS (Linux)

Client # 1

CRISclientCRISclient

Java

JavaJava . . .

Client # 12

CRIS Master

Ethernet switch

Ethernet network

Figure 3.3 Linux based testbed with a web server, client computers, and Ethernet
network.

Specifications:

• Server
A Pentium 4, 1 GB memory, 3 GHz PC, with a Linux Fedora 8
operating system and modified kernel 2.6.25.4 (the Control Group
functionality was included with group scheduling and accounting
functionality) was used as server computer. An Apache server, ver-
sion 2.2.8/prefork, was installed.

• Clients
12 client computers, Athlon, 1.5 GHz PC with 2 GB memory, Linux
Fedora 9 and kernel 2.6.26.3-29. The traffic was generated using
the traffic generation software CRIS [Hagsten and Neis, 2006], con-
trolled from the master computer.

The network delay was estimated by sending IPdatagrams from the
clients to the server, and measuring the time until they were replied. 970
datagrams were sent from a client by the ping program under Linux,
which recorded an average network round–trip–time of 266 ms.

50

3.5 Virtualization Design

Group with CPU allocation and accounting

Group with CPU accounting

Group with CPU allocation Server processes

Non–Server processes

Basic

Server Secondary

Server

Control Req Req Req Req Loss Load

OS

Idle

Figure 3.4 Schematic diagram of the desired grouping of processes for the labo-
ratory implementation.

3.5 Virtualization Design

A virtualized environment was designed as actuator for the controllers.
The virtualization design had to allow the controller to alter the amount
of CPU capacity reserved to the web server. To ensure the operation of
the computer system, the operating system had to be guaranteed a cer-
tain amount of the CPU capacity as well. The remaining part of the CPU
capacity was given to unspecified applications. Measurements of CPU ca-
pacity consumptions should also be available.
Three groups were defined for CPU allocation and accounting; a group,

the basic group, for operating system and other administrative tasks, an-
other group for the server, the server group, and finally a third group,
the secondary group, for secondary unspecified tasks, as illustrated in
Fig. 3.4.
It was desired that certain amounts of CPU capacity could be assigned

to the basic group pbasicr and to the server group pserverr . The remaining
CPU capacity

psecondaryr = 1− pbasicr − pserverr

was allocated to the secondary group. In the case where the assignments
to the basic group and the server group exceeded the available CPU–
capacity, the basic group had the highest priority, so that the server group

51

Chapter 3. Target System and Testbed

was allocated what was not assigned to the basic group.
The CPU requirement for a server group was highly dependent on the

clients requests. If no requests were sent to the server, the server would
not consume any CPU capacity, even if capacity was reserved to the server.
The amount of CPU capacity consumed by the server group was denoted
pa. The reserved, but not utilized, capacity was considered as a loss, and
therefore an important metric, given by

q = pserverr − pa

To measure q, a loss process was added to the server group. Note that it
was associated with its own CPU accounting group, in order for the loss
of CPU capacity to be measured.

3.6 Virtualization Implementation

The focus of this thesis is actuation by changing the CPU capacity dedi-
cated to the application. Resources such as memory, I/O are not consid-
ered, and thus, true virtual systems, such as Xen or VMware, are not nec-
essary and would only cause overhead—both in terms of implementation
and in terms of resource consumption during operation. Instead Control
Groups yields a simpler solution, allowing virtualization and monitoring of
the CPU capacity. Because the Apache/prefork configuration is so widely
used, this configuration was also chosen here.
The Apache server was grouped with an idle process implemented as

an infinite while–loop in a CPU–allocation CGroup. The idle process, in
the following denoted loss–idle process, represented the loss of allocated
CPU–capacity, as it used all capacity allocated but not used by the Apache
web–server.
To distinguish between the capacity used by the Apache server and the

loss–idle process, these two were placed in separate accounting CGroups.
An accounting CGroup and a CPU allocation CGroup were defined

for the secondary applications on the server system, see Fig. 3.5. These
applications were assumed to use the capacity that was not used by the
target application, implemented as an infinite while–loop.
All remaining processes (operating system processes, administrating

processes, and the controller) were collected in an accounting CGroup and
a CPU allocation CGroup.
The loss–idle process and the control process were implemented by

using special requests to the Apache server and by moving these processes
to the relevant CGroups, as indicated by the arrows.

52

3.6 Virtualization Implementation

replacements

CGroup with CPU allocation and accounting

CGroup with accounting

CGroup with CPU allocation

Apache processes

Non–Apache processes

Basic

Server Secondary

Mother

Control Req Req Req Req Idle Idle

OS

Idle

Figure 3.5 Schematic diagram of the processes and CGroup for the Apache im-
plementation.

The loss–idle process was implemented in the normal Apache request
handling sequence. When the idle.start file was requested, an Apache
log_transaction hook started an infinite while–loop. This special request
responded with a simple html answer, but never finished the logging
phase. This means that the while loop used a process as long as the while
loop existed. This did not cause any problems in the normal use of the
server, as the Apache spawned new processes when needed (in the case
of prefork). The while–loop was governed by a lock implemented with a
semaphore. When a normal request arrived, it checked if it was the only
(normal) request being served. If this was true, it locked the semaphore,
and the while–loop stopped. Likewise, when a normal request finished, it
checked if it would leave the system empty for normal requests, and if this
was the case, it released the semaphore. When the loss–idle process was
initiated, it first looked up its own process–id and then moved itself from
the Apache accounting CGroup to the special loss CGroup for accounting
by writing the process–id to the relevant task–file.
The controller relied on access to the measured variables, which were

53

Chapter 3. Target System and Testbed

implemented in the Apache server. Therefore, the controller was imple-
mented inside the Apache server as a special request with similar struc-
ture as the loss–idle process. When the periodicctrl.start file was re-
quested, the handling process entered an infinite loop during the logging
phase. For each loop a control action (reading of relevant measurements
and variables, calculation of a new control signal, and setting the relevant
share–files) was performed, the loop slept for a specified amount of time
before waking up for a new sample. Because the calculation of the control
signal and the setting of the actuator did not happen instantaneously, this
delay was measured and subtracted from the desired sampling interval to
obtain an accurate sleep–interval. Before the control process entered the
infinite loop, it moved itself to the basic CGroup, both for CPU allocation
and for accounting.
The implementation required the use of three hooks into the Apache

request–chain (see Fig. 2.3 on page 29).

• post_config: This hook entered the chain at a quite early stage of
the process life, where initialization of the process itself took place.
A shared memory area dedicated to the prediction/control function-
ality was implemented here to allow communication between the
processes.

• post_read_request: This hook entered the request chain when the
request had been defined, and here all information about incoming
requests was updated. Most importantly, the number of active jobs
was updated here.

• log_transaction: In this hook, the variables updated in the
post_config phase were updated again.

To avoid the problem of parameters being updated by one process while
a second process is reading them (and assuming them to be static), a
locking mechanism was imposed by a semaphore. During a request cycle,
the shared memory was locked and unlocked twice; when the parameters
were updated in the post_read_request stage, and when the parameters
were updated in the log_transaction stage.

3.7 Timing Issues and Quantification Errors

Sampling Intervals

On the scheduler level only one application had access to the CPU at a spe-
cific time, and this application utilized the CPU 100%. This was a discrete
behavior. On a larger time–scale, the fraction of CPU capacity given to a

54

3.7 Timing Issues and Quantification Errors

specific application could be considered as a continuous variable between
0 and 100%. The question was how small the time scale could be before the
discrete behavior became dominant. This investigation was important for
determining the smallest sampling interval, as the implementation should
render a processor–sharing system. A simple setup was constructed to test
how short sampling intervals that can be applied, while still resembling
a processor–sharing system.
Three CGroups were defined. The operating system and other admin-

istrative tasks were collected in CGroup g0. Two infinite while–loops are
placed in CGroup g1 and CGroup g2. The purpose of these while loops was
to consume as much CPU capacity as possible, to have smooth CPU con-
sumptions for evaluation. To ensure that CGroup g0 consumed the CPU
capacity given to it, an infinite while–loop was added to the CGroup. The
reference to group g0 was constant at 15%, while the CPU references to
the two other groups were varied.
Figure 3.6 shows how the scheduler followed a reference for differ-

ent sampling intervals when reading the accounting files. All the figures
show that the references were followed accurately in steady–state. Sam-
pling periods of one second showed nice and exact steady–state reference
following in the top of the figure. With sampling intervals of 100 ms some
fluctuations around the reference were observed. This was an effect of the
non–ideal processing–sharing, which was implemented in the scheduler.
The effect was more pronounced when the sampling period was 10 ms.
From the top of Fig. 3.6 the response to a step change can be seen to

be less or equal to 1 s. The averaging effect of the slow sampling may hide
a faster response, and this is seen in the middle of Fig. 3.6, where the
scheduler seems to have responded within 200 ms or less. Since this is
in the order of the sampling period, faster response may be hidden in the
averaging. The bottom of Fig. 3.6 shows that the scheduler responded after
10 ms or less. Due to the fluctuations it was not possible to investigate at
lower sampling periods.
Figure 3.6 suggests that sampling intervals around 100 ms ensure that

the response time of the scheduler could be neglected, and the scheduler
acted close to ideal processor–sharing. Shorter sampling intervals were
feasible from the scheduler–response point of view, but the fluctuations
observed at the bottom of Fig. 3.6 indicate that the scheduler could no
longer be regarded as processor–sharing. The investigation also suggested
that the dynamics of the actuator could be neglected compared to the lower
boundary of the sampling frequency at approximately 100 ms.

Actuator Dynamics

To get an indication of the delays when accessing the share files and the
accounting files, time measurements (clock readings) were taken at ap-

55

Chapter 3. Target System and Testbed

0 20 40 60
0

50

100

time (s)

C
P

U
 c

ap
ac

ity
 (

%
C

P
U

)

20 22 24 26 28 30
0

50

100

time (s)

C
P

U
 c

ap
ac

ity
 (

%
C

P
U

)

0 20 40 60
0

50

100

time (s)

C
P

U
 c

ap
ac

ity
 (

%
C

P
U

)

21 22 23 24
0

50

100

time (s)
C

P
U

 c
ap

ac
ity

 (
%

C
P

U
)

0 20 40 60
0

50

100

time (s)

C
P

U
 c

ap
ac

ity
 (

%
C

P
U

)

21 21.2 21.4 21.6 21.8 22
0

50

100

time (s)

C
P

U
 c

ap
ac

ity
 (

%
C

P
U

)

CGroup g2

CGroup g1
CGroup g0

Ref. for g2

Ref. for g1
Ref. for g0

Sampling interval of 1000 msSampling interval of 1000 ms

Sampling interval of 100 msSampling interval of 100 ms

Sampling interval of 10 msSampling interval of 10 ms

Figure 3.6 Allocation of CPU with changing references and different sampling
intervals. The right–hand side is a magnification of a reference change in the left–
hand side of the figure. The smoother a signal is, the better the approximation to
processor sharing the system was.

propriate places in the code. Readings of the clock were performed before
and after each reading and writing operation.
Figure 3.7 shows that reading seven accounting files and writing three

share–files took in the order of 0.1 ms - 0.2 ms.

Quantification of the Control Signal

The share values were represented as integers, which means that the
obtainable CPU capacity reserved to the server was quantified. To min-
imize the quantification problem, the maximum share–value was always
associated to the CGroup with the highest CPU–fraction. The remaining
share–values were then calculated to obtain the desired relative relations
between the CPU fractions. Using a maximum share–value of 1,000,000
resulted in a maximum quantification error of 0.0002% of the maximum
share–value (found by numerical evaluation), which was considered ac-
ceptable.

56

3.7 Timing Issues and Quantification Errors

Figure 3.7 Timing histograms when accessing the share files and the accounting
files.

Dynamics of the Idle Process

Figure 3.8 shows the results from a test of the idle–process implementa-
tion. A request for a single PHP document was sent to an empty server.
The PHP request required 16.3 s to complete. As seen in the top of the fig-
ure, the idle–process consumed all CPU capacity dedicated to the server.
When the request arrived, all dedicated capacity was used for handling
the request. When the request was handled, the idle–process again con-
sumed all the dedicated CPU–capacity, and as the server was now empty,
the request–processes consumed no CPU capacity. The two bottom figures
show the CPU allocation just around the arrival time and the departure
time. These figures indicate (within the accuracy of the sampling time of
20 ms) that the idle–process acquired and released the dedicated CPU–
capacity sufficiently fast.

57

Chapter 3. Target System and Testbed

2.7 2.8 2.9 3 3.1 3.2
0

20

40

60

80

100

time (s)

C
pu

 a
llo

ca
tio

n
(%

)

Control Signal

19 19.1 19.2 19.3 19.4
0

20

40

60

80

100

time (s)

C
pu

 a
llo

ca
tio

n
(%

)

Control Signal

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

time (s)

C
pu

 a
llo

ca
tio

n
(%

)

Control Signal

loss
Apache
allocation ref

Figure 3.8 Test results for idle–process experiment. A web page was requested
around time t =2.9 s. The job was completed around time t =19 s. The CPU capacity
was sampled with 100 ms intervals. The CPU capacities were read with 20 ms
interval from the accounting files. The black lines indicate the arrival time and the
departure time, respectively.

3.8 Traffic Generation

Traffic generation for web–server experiments is a complicated issue be-
cause traffic characteristics are not the same from web site to web site.
When designing traffic for a given experiment the relevance of the results
can always be questioned compared to certain applications, as other appli-
cations will be exposed to other types of traffic. The traffic for the testbed
is chosen to resemble that of large modern news–cites as these sites are
exposed to large and highly fluctuating quantities of requests.
Different solutions are available for generating workload for web–

server systems, such as RUBiS [RUBiS, 2009] and SURGE [Barford and
Crovella, 1998]. In this thesis, traffic was generated with the CRIS tool,
which is a java based software tool developed in a large research project
related to crisis emergency management at Lund University [Hagsten and
Neis, 2006]. The CRIS tool is based on real–life data traces from Sweden’s
largest news site. This means that both the traffic model and the request

58

3.8 Traffic Generation

distribution are based on real data.
CRIS allows several clients (computers) to unite to generate traffic

with the specified distribution. Traffic–information files defining both the
arrival times of requests and the requested documents are uploaded to
the clients prior to an experiment. Therefore, the same traffic informa-
tion files can be used for several experiments, providing an easy way to
compare different system implementations.
For the server in the testbed, CRIS generated a number of PHP files. A

PHP request then generated a string of characters the length of which was
fixed for the given file, but varied over the total amount of PHP files with
a predefined distribution. Also, a distribution on the document popularity
was configured, which determined the probability for each PHP file to be
requested.

Inter Arrival Times

The inter–arrival times were defined by distributions prior to the experi-
ment. Fig. 3.9 shows the online measured inter–arrival time distributions
compared to the desired exponential distributions. As observed from the
figure, the distribution of the measured inter–arrival times corresponded
well to the desired distribution.

Offline Estimation of the Average Required Work

The required work w is a key variable in this thesis, but it was not possible
to measure in the testbed. The average required work w̄ was estimated
offline by profiling techniques.
The file–popularity distribution and the character distribution derived

by the CRIS tool did, of course, influence the distribution of the required
work. Estimates of the distribution of the required work and, in particu-
lar, an estimate of the average required work were important for anal-
ysis with queuing theory, dynamic modeling, feedback control design,
and feed–forward control design. Therefore, offline experiments were con-
ducted with low arrival rates, similar to the procedure used in [Liu et al.,
2006; Henriksson et al., 2004].
Four experiments were conducted; two different popularity distribu-

tions (same as in later experiments) and two different values of the
CPU–allocation parameter, pr (kept constant during the experiment). The
inter–arrival times were set to one second (deterministic distribution). A
number of 5000 requests were used for each experiment. A necessary
modeling assumption for the offline estimations was that the response
time of the request, d, was only dependent of the required work, w, and
the CPU–allocation parameter, pr. This means that an estimate of the

59

Chapter 3. Target System and Testbed

0 50 100 150 200 250
0

10

20

30

40

50

60

70

Inter−arrival times (ms)

F
ra

ct
io

n
(%

)
Histogram of inter−arrival times

exp. distribution
40 %CPU,λ=51.3
75 %CPU,λ=92.2

Figure 3.9 Distributions of inter–arrival times for the two arrival rates
λ=50 req/s and λ=100 req/s. An entry in the figure represents the interval half
way between its neighbors. For instance, the entry at inter–arrival time = 25.5 ms
represents the interval from 20.4 ms to 30.6 ms.

required work for a request, ŵ, could be calculated as

ŵ = d ⋅ pr

The distribution of the required work is illustrated in Fig. 3.10, which
shows that the distributions were not exponential.
The estimations of the average required work are listed in Table 3.2.

The estimates should have been independent on the CPU– allocation pa-
rameter. However, as seen in the table, this is not the case. This result
indicates that other factors than the actual CPU–processing, such as I/O
handling and memory handling, affected the response time, and thus, the
model is not accurate. In control theory, model errors do not necessar-
ily yield poor performance due to the properties of feedback. However, if
feed–forward is used, model errors can degrade the performance.

60

3.9 Discussions and Conclusions

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

exp. distribution
50 %CPU, pop. disp 1
50 %CPU, pop. disp 2
85 %CPU, pop. disp 1
85 %CPU, pop. disp 2

Histogram of required work

F
ra
ct
io
n
(%
)

Required work (ms)

Figure 3.10 Distributions of required work for four different experiments. An
entry in the figure represents the interval half way between its neighbors. For in-
stance, the entry at required work = 20.7 ms represents the interval from 16.6 ms to
29.0 ms. Two different document popularity distributions and two different amounts
of allocated CPU capacity were tested. The estimated required work was calculated
by w̄ = d̄ ⋅ pr, where d̄ was the average response time and pr was the (constant)
allocated CPU capacity. The full line represents an exponential distribution with
the same mean as the 50% of the CPU, popularity distribution 1–experiment.

3.9 Discussions and Conclusions

The domain for the remaining of the thesis has been described in this
chapter. The target system is a web server running on a computer. The
CPU capacity available for the server can be changed dynamically and
can be seen as the control signal. The main metric for control is the re-
sponse time from when the clients request the files until the they receive
the corresponding answers. The purpose of control is to maintain a con-
stant average response–time despite disturbances. Disturbances can for
example be changes in the arrival rate.
More sophisticated target systems than the one presented here could

be multi–tier systems, where jobs pass through servers, databases, and

61

Chapter 3. Target System and Testbed

Table 3.2 Average required works, found from low–rate experiments

Popularity %CPU

distribution 50 85

1 10.7 ms 14.1 ms

2 11.8 ms 14.9 ms

application servers located on several physical computers. In this thesis
the focus is on the dynamic properties and disturbance rejection, and not
on a larger resource distribution problem. Both problems represent im-
portant issues which have to be solved. Eventually, real implementations
should incorporate them both, and also here solutions are emerging, as
e.g. [Jayachandran et al., 2009; Padala et al., 2009b].
A testbed was designed to test and verify different control schemes for

a target system as above. Actions (calculations, measurement and con-
trol actions) can be triggered both periodically and by departure events
where a departure occurs when a request is completed and a response is
sent back to the client. Results from the testbed should be not be con-
sidered as representative for real traffic on the Internet as this holds far
more problems. The qualitative behavior should be comparable with the
limitations described. The implementation should not be transferred di-
rectly to a real system for the Internet. The implementation presented in
this chapter serves only to test the control method and does not consider
safety issues, user interaction, and other system specific issues. However,
the basic improvements obtained by the proposed methods and the an-
alytical results are assumed to be general and should also give similar
results if investigated with real systems.

62

4

Modeling

The work presented in this chapter was initiated by oscil-

lations observed in the laboratory. The focus is therefore

given to a specific problem, related to feedback and feed–

forward control of the response time via virtualization.

The modeling approach is similar to the one often taken

in queuing systems; the stochastic nature of the traffic is

approximated as a flow, which leads to continuous dif-

ferential equations. The contribution here is the inclusion

of external buffering which introduces dynamics previ-

ously not reflected in the measurements. The investiga-

tions demonstrate that the consequence of the extra buffer-

ing is that the measurement of a disturbance actually is

state dependent. The material presented in this chapter is

based on [Kjær and Robertsson, 2009; Kjær and Roberts-

son, 2010].

Web servers seldom run directly on the hardware of the computer. Several
layers of software are implemented below the web server, often collected
in the operating system. The philosophy behind the layering is that as
long as the defined interfaces between the layers are respected, the func-
tionality of one layer can be exchanged without redesigning the other
layers. Examples of layers in a modern computer are the IP layer and the
TCP layer. A whole framework of layering is defined in the OSI model
and the TCP/IP stack, which both define a number of layers, where each
layer only has knowledge of the interface to the layer above and the layer

63

Chapter 4. Modeling

below [Tanenbaum, 1996]. One of the methods to keep the layers indepen-
dent of the behavior of the other layers, is to insert buffers. Buffers are
simple queues without processors. When a layer has something to sent
to the upper layer, it may put the job in its own out–going buffer, and is
then ready to proceed with other tasks. When the above layer receives a
job, it may put it in its own in–going buffer until it is ready for treating
it. If this is done throughout the whole stack of layers, a request send to
a web server may pass through several buffers before reaching the actual
web–server. All this buffering optimizes throughput, since the individual
layers do not have to wait for either the upper or the lower layer to re-
spond. The drawback is that determination of the time for a request to
propagate through the whole stack is not possible, and the response times
are therefore out of control.
When trying to alter the dynamics of the system by means of control

(trying to control for instance the average response time), the buffering
will even alter the dynamics of the whole queuing system, since the propa-
gation through the buffers is a dynamic problem. This chapter studies the
effects of these underlying buffers to the dynamics of the queuing system.

4.1 Internal and External Buffers

Assume that the target problem is to control a web server running on top
of a stack as described above. The number of buffers is unknown, and,
naturally, it is not feasible to measure any quantities in these buffers
(such as buffer length or buffering times). At least one underlying buffer
is known to exist in the test bed described in Chapter 3; the Backlog buffer
stores TCP sockets (endpoints of Internet communication flows) until a
web server process becomes available. Other buffers are also likely to be
present. All underlying buffers will from now on be denoted as external
buffers to distinguish them from the web server.
It is assumed that all the buffers implemented before the web server

are ideal buffers, and they do not impose any delay if the following element
in the chain is willing to accept the job. The effect of other jobs passing
through the same buffers is neglected, assuming that the requests to the
web server are not delayed by jobs of other purposes, such as ftp and ssh.
The downstream buffers, which are passed when the answer is sent to the
client, are also neglected. The simplified view of a web–server system is
illustrated in Fig. 4.1.
The web server is modeled as a single processor–sharing server with

a limited capacity in terms of the number of jobs allowed simultaneously
(the internal queue can hold a maximum of Mc requests). To simplify
the analysis, it is assumed that both the inter–arrival times of the re-

64

4.2 Static Modeling

λ

λ i
Server

Requests

from clients

BufferBuffer

External

buffers

Responses to

clients

downstream

buffers

Figure 4.1 Requests may pass through several queues before reaching the server.
The dashed path indicates buffers which are not considered in this work.

quests and the required work w of the requests are uncorrelated and
exponentially distributed. Since the model is intended for control design
and analysis, some inaccuracy can be accepted. Control theory has tools
to handle model inaccuracy, and feedback control may reduce the effect of
inaccurate models.
The individual external buffers do not hold any independent processors

and the external buffers should therefore not be modeled as individual
queuing systems, but rather as one long queue. The only processor in the
system is that of the actual web–server, and the dynamics of the entire
queuing system is therefore modeled as one infinite queue and a single
processor as illustrated in Fig. 4.2.

4.2 Static Modeling

First, the system is considered to be in steady state and all dynamics are
neglected. It is also assumed that the queue is stable, that is, µ > λ .
The queue is modeled with a Markov chain as illustrated in Fig. 4.3,

and the probability distribution for the specific number of jobs in the

65

Chapter 4. Modeling

Entire
queue–length

Internal
queue–length

λ
λ i

External

buffers

Internal
queue

µ

Mc-1

Response

to clients

Requests

from

clients

Web server

Figure 4.2 Model of the entire queuing system. All queues are gathered into one
infinite queue, accepting the arrival rate λ . Only a part of the queue, the first Mc
entries, is visible for the server, and the flow of requests into this part is denoted
λ i. The measured queue–length inside the server is denoted ni.

0 1 Mc − 1 Mc Mc + 1 Mc + 2Entire
queue

0 1 Mc − 1 Mc Mc Mc
Internal
queue

0 0 0 0 1 2External
buffers

λ

λ λ

λ λ

λ

λ

λ

λ λ

λλ λ

λ λ

λλλ

λ

λλ

µ

µ µ

µ µ

µ

µ

µ

µµ

µµµ

µµ

µµµ

µ

µµ

Figure 4.3 Markov chain representing the entire queuing system (upper), the
internal queue (middle), and the external buffers (lower). The variables associated
with the arrows represent the flow from one state to another, while the variables
inside the circles represent the measured value at the given state.

66

4.2 Static Modeling

Limited

queue lengths

Mc

Mc

Total
queue

length

External buffer length

Internal queue length

Figure 4.4 Relation between the instantaneous length of the entire queue and
the instantaneous lengths of the internal queue and the external buffers.

system is given by

pj =
(

1− λ

µ

) (

λ

µ

) j

(4.1)

because it is an M/M/1 queue. This distribution is associated with the
queue and it is therefore identical no matter which part of the queue taken
into consideration.
The average length of the entire queue n̄ is then

n̄ =
∞

∑

j=0
pj j =

(

1− λ

µ

) ∞
∑

j=0

(

λ

µ

) j

j =
λ
µ

1− λ
µ

(4.2)

which is a well–known result from queuing theory.
At a given time, the instantaneous queue–lengths of the internal queue

and the external buffer are given entirely by the instantaneous queue–
length of the entire queue. If the entire queue has less jobs than the
limitation (Mc), the internal queue–length will be identical to the entire
queue. As all jobs are in the internal queue, the external buffers are
empty. If the entire queue holds more jobs than Mc, the internal queue will
hold exactly Mc jobs, while the external buffers will hold the remaining

67

Chapter 4. Modeling

jobs. These relations are illustrated in Fig. 4.4. To evaluate the average
length of the internal queue n̄i and the external buffers n̄e, the Markov
chain is divided into two parts as illustrated in Fig. 4.3. The left–hand
side of the chain represents the situations where the number of jobs in
the entire system does not fill up the internal queue. Here, the internal
queue is treated the same way as when evaluating the entire queue. The
external buffers do not hold any jobs in this case and the contribution
to the average value is therefore zero. The right–hand side of the chain
represents the situation where the internal queue is full and queuing
in the external buffers may occur. Here, the internal queue observes a
number of Mc jobs, and the external buffers observe an increasing number
of jobs starting from zero. The expected values of the internal and external
buffers therefore become

n̄i =
Mc−1
∑

j=0
pj j +

∞
∑

j=Mc

pjMc (4.3)

n̄e =
Mc−1
∑

j=0
pj 0+

∞
∑

l=Mc

pl(l − Mc) (4.4)

Adding the two expected queue–lengths gives

n̄i + n̄e =
Mc−1
∑

j=0
pj j +

∞
∑

l=Mc

pl (Mc + l − Mc) =
∞

∑

j=0
pj j (4.5)

Comparison to Eq. (4.2) reveals an important property:

n̄i + n̄e =
∞

∑

j=0
pj j = n̄ (4.6)

The expected value of the entire queue–length is the sum of the two ex-
pected values of the queue lengths of the individual sub–queues. This may
seem trivial, but trivialities are rare in queuing theory.
Elaborating further on the expression for n̄e from Eq. (4.4) reveals

n̄e =
Mc−1
∑

j=0
pj 0+

∞
∑

l=Mc

pl(l − Mc) (4.7)

=
(

1− λ

µ

) ∞
∑

j=Mc

(

λ

µ

) j

(j − Mc) (4.8)

68

4.2 Static Modeling

which is rewritten into

n̄e =
(

1− λ

µ

) (

λ

µ

)Mc ∞
∑

j=0

(

λ

µ

) j

j (4.9)

=
λ
µ

1− λ
µ

(

λ

µ

)Mc

(4.10)

Comparing to Eq. (4.2), a relation to the entire queue–length is given by

n̄e = n̄

(

λ

µ

)Mc

= n̄
(

n̄

1+ n̄

)Mc

(4.11)

The modeling of the internal queue is simplified by combining the above
equation and Eq. (4.6):

n̄i = n̄− n̄e = n̄
(

1−
(

λ

µ

)Mc)

(4.12)

= n̄

[

1−
(

n̄

1+ n̄

)Mc
]

(4.13)

or formulated as a function of the load

n̄i =
λ
µ

1− λ
µ

[

1−
(

λ

µ

)Mc
]

(4.14)

Figure 4.5 illustrates the internal queue–length and the external
buffer–length as functions of the total queue–length. The behavior illus-
trated in the figure follows the intuition: The internal queue grows with n̄,
but does never exceed Mc, which is the upper limit for the number of jobs
that the web server can hold (represented by the horizontal dashed–line).
For low values of n̄ the external buffers are empty because the web server
can hold all the jobs, but as n̄ becomes higher, the external buffer lengths
grow. At very high values of n̄ the external buffers hold all the jobs ex-
cept the Mc jobs which are held in the web server. What may come as a
surprise is that the internal queue–length curve starts to break so early.
If, for example, a measurement reads 40 req, the actual queue–length is
rather in the order of 50 req. One may consider a reading of 40 req to be
medium loaded, and neglect the effect of the limited queue. However, as
seen in this example, this is not the case. As a consequence, the limitation
on the queue length does not only have effect when the queue length is
close to the limit.

69

Chapter 4. Modeling

50 100 150 200 250

20

40

60

80

100

120

140

160

S
ta
ti
c
Q
u
eu
e–
le
n
gt
h
s

Average queue–length n

Static Queue–lengths
ni
ne

Figure 4.5 Static average queue–lengths for Mc=80. The horizontal dashed–line
represents the upper limit for how many jobs the web server can hold (Mc).

As the queue is assumed to be in steady state, the flow into the external
buffers must be the same as the flow out of the external buffers and thus
λ = λ i. The response times of the entire queue, d, and the response times
of the internal queue di are derived from Little’s law:

d = n̄

λ
= 1

µ − λ
(4.15)

di = n̄i

λ i
=
1−

(

λ
µ

)Mc

µ − λ
(4.16)

Assuming that the service time can be controlled by e.g. CPU virtualiza-
tion or DVS, the service rate is given by

µ = pr/w̄ (4.17)

where w̄ is the average time the jobs would require to be served (not
including queuing time), if only one job were processed at a time.

4.3 Dynamic Modeling

A queue length model for the entire queuing system, without taking ex-
plicit notice of what is observed inside the web server, can be described

70

4.3 Dynamic Modeling

by Tipper’s model (see also Section 2.4):

d

dt
n(t) = λ(t) − µ

n(t)
1+ n(t) (4.18)

assuming exponentially distributed inter–arrival times and service times.
Here, the arriving traffic is entering the first external buffer, which may
not be measurable in a real system. Assuming that the service rate µ can
be changed online by altering the reserved CPU–capacity pr (by some vir-
tualization technique or by dynamic voltage scaling), the model becomes

d

dt
n(t) = λ(t) − pr(t)

w̄

n(t)
1+ n(t) (4.19)

The response time, from the time instant a request arrives at the first
queue to the request finishes at the processor, is modeled according to
Little’s law. The response time is measured as an average of the requests
which have been completed in a sample interval. This imposes lowpass–
filtering and is modeled as a continuous first–order filter,

d

dt
d(t) = − 1

Td
d(t) + 1

Td

n(t)
λ(t) (4.20)

where Td is the filter constant, which corresponds to the sampling inter-
val.

Models of the Measurements

It is assumed that only quantities known inside the web server are mea-
surable.

The average number of jobs inside the web server is denoted ni
and is measurable. The dynamics are associated with the queue and
not with the measurements. Because the average internal queue–
length and the average queue–length of the entire queue are just
different measurements of the same queue, it is assumed that the
static relation from Eq. (4.13) is valid also in the dynamic case. Thus

ni(t) = n(t)
[

1−
(

n(t)
1+ n(t)

)Mc
]

=: fi
(

n(t)
)

; (4.21)

The arrival rate at the web server λ i is measured simply by count-
ing the number of arriving request over a certain time interval. The

71

Chapter 4. Modeling

model is not as trivial as it may seem. First, consider the exter-
nal buffers, and denote the average number of jobs in the external
buffers by ne. This queue is modeled as a simple integrator, where
the queue length is given by the integral of the difference of the in-
flow and outflow. This is similar to a conservation law from physics,
as e.g. flow of liquid into and out from a container. The model be-
comes

ne(t) =
∫ t

0

(

λ(τ) − λ i(τ)
)

dτ (4.22)

Even in the dynamic case, the entire queue–length is the sum of the
internal queue–length and the external buffer–length. The static
relation described in Eq. (4.6) is also valid in the dynamic case, and
therefore

n(t) = ni(t) + ne(t) (4.23)

By differentiation, the following model is obtained

λ i(t) = λ(t) − d
dt
{n(t) − ni(t)} (4.24)

Since the arrival rate is rather noisy, a linear first–order filter is
applied.

d

dt
λ f (t) = −

1
Tλ

λ f (t) +
1
Tλ

λ i(t) (4.25)

where Tλ is the filter constant.

The average response time of the web server di is regarded as the
time from the arrival to the web server of the requests until the
requests have been fully processed. Following the derivation of the
model for the entire–queue response–time, the sampling is modeled
as a low–pass filter. Using Little’s law, the model becomes

ḋi(t) = − 1
Td
di(t) +

1
Td

ni(t)
λ i(t)

(4.26)

4.4 Linearization

The linearized model of the entire queue resembles the model described
in the Background chapter (Chapter 2). This gives

72

4.4 Linearization

∆ṅ(t) = −γ 1 ∆n(t) + γ 2 ∆pr(t) + ∆λ(t) (4.27)

∆ḋ(t) = − 1
Td

∆d(t) + 1
Td

(

γ n ∆n(t) + γ λ ∆λ(t)
)

(4.28)

∆ḋi(t) = − 1
Td

∆di(t) +
1
Td

(

σ n ∆ni(t) +σ λ ∆λ i(t)
)

(4.29)

∆λ i(t) = ∆λ(t) + d
dt
{∆n(t) − ∆ni(t)} (4.30)

∆λ̇ f (t) = − 1
Tλ

∆λ f (t) +
1
Tλ

∆λ i(t) (4.31)

∆ni(t) = σ f ∆n(t) (4.32)

with the operation point given by

n0 = λ0w̄

p0r − λ0w̄
(4.33)

n0i = fi
(

n0
)

= n0
[

1−
(

n0

1+ n0
)Mc

]

(4.34)

d0 = w̄

p0r − λ0w̄
(4.35)

d0i = n0i
λ0

(4.36)

and the parameters given by

γ 1 = p0r
w̄

1
n0 + 1 −

p0r
w̄

n0

(n0 + 1)2 (4.37)

γ 2 = n0

w̄(n0 + 1) (4.38)

γ n = 1
λ0

(4.39)

γ λ = − n0

(λ0)2 (4.40)

σ n = 1
λ0

(4.41)

σ λ = − n0i
(λ0)2 (4.42)

σ f =
n0 + 1− n0

(

n0

n0+1

)Mc
−

(

n0

n0+1

)Mc
− Mc

(

n0

n0+1

)Mc

n0 + 1 (4.43)

73

Chapter 4. Modeling

γ 2

γ λ

γ n

1
s

γ 1

σ f

s

σ n

σ λ

∆d

∆n

∆ni

∆di

∆λ i

∆pr

∆λ

∆λ

∆ni
entire–
queue

quantities internal–
queue

quantities

1
s Td+1

1
s Td+1

Figure 4.6 Block diagram of the server with outputs both from the entire queue
and from the web server. The variables are represented in the Laplace domain.

Transfer Functions

Transfer functions reveals interesting properties of dynamic systems in
the frequency domain. Transfer functions are found by transforming the
linear differential functions into the Laplace domain s by the Laplace
transformation, see e.g. [Franklin et al., 1994]. The system has two inputs
and a number of outputs. The work presented later in this thesis presents
controllers based on measurements of the response time and the arrival
rate, which are related to the inputs according to the following equations.

Λi(s) = σ f s+ γ 1
s+ γ 1

Λ(s) + γ 2(1−σ f)s
s+ γ 1

Pr(s) (4.44)

D(s) = γ λ s+ (γ n + γ λ γ 1)
(s+ γ 1)(s Td + 1)

Λ(s) − γ n γ 2
(s+ γ 1)(s Td + 1)

Pr(s) (4.45)

Di(s) = σ λ σ f s+ (σ nσ f +σ λ γ 1)
(s+ γ 1)(s Td + 1)

Λ(s) − σ λγ 2(σ f − 1)s+σ nσ fγ 2
(s+ γ 1)(s Td + 1)

Pr(s)

(4.46)

Equation (4.45) reveals that the entire queuing–system can be repre-
sented by a simple second–order system from the control input pr to the
output d. Also, the disturbance λ affects the system in a fairly simple

74

4.5 Parameter Estimation and Model Validation

manner. If the entire queue is not available for measurements, the con-
trol design must rely on the measurements of the internal queue. That
is, the system is now described by Eqs. (4.44) and (4.46). It is observed
that if the external buffers really can be neglected (σ f=1), the measured
quantities match those of the whole queue (λ i(t) = λ(t) and di(t) = d(t)).
The equations also reveal that the measurement of the disturbance λ i now
becomes state dependent.

4.5 Parameter Estimation and Model Validation

The nonlinear model has been implemented in Simulink RF for Matlab RF.
The model consists of the entire queuing–system (Eqs. (4.19) and (4.20)),
the internal measurements (Eqs. (4.21), (4.24), and (4.26)). For the re-
sults presented in this chapter, the arrival–rate filter–constant in
Eq. (4.25) was chosen to Tλ=10 s.
The model has only two parameters; w̄ and Mc. The parameter w̄ is

not explicitly set in the test bed described in Chapter 3, so it has to be
estimated. The parameter Mc is set explicitly by the system administrator
in the Apache configuration file as the parameter MaxClients. Therefore,
only one parameter must be estimated.
The model specifically describes the influence of the external buffers,

so for the parameter estimation and for the validation it is important that
the experiments conducted excite the external buffers. This is ensured by
limiting the internal queue (MaxClients set to 80), forcing the external
buffers to hold more jobs. In practice, this short internal queue is not
realistic, but is chosen to demonstrate the effect of the limited internal
queue–length. With a realistic value, as for example MaxClients set to
256, a much higher load would be required to show the same effect.

Parameter Estimation

The estimation of the required work, w̄ is done by steady–state measure-
ments. It is not feasible to measure the response time from the entrance
of the server, but it is feasible to measure the response time at the clients
in steady–state. This measurement includes the network delay, which is
not part of the model. It is assumed that the response time experienced
at the clients is the average round–trip–time added to the response time
of the web server. The average round–trip–time is used as offset to the
response times of the entire queue, predicted by the model.
To excite the external buffers, the web server was operating close to

the stability limit (in the queuing–theoretical sense). Longer experiments
with CPU capacity of around 26% of the total capacity and arrival rate of

75

Chapter 4. Modeling

25 26 27 28 29 30 31 32 33
0

20

40

60

25 26 27 28 29 30 31 32 33
0

2

4

6

25 26 27 28 29 30 31 32 33
0

0.5

1

1.5

2

Internal Queue–Length

Response time measured at the clients

Response time measured inside the web server

CPU capacity reserved to the web server, pr (%)

d
i
(s
)

d
(s
)

n
i
(r
eq
)

Figure 4.7 Validation of the model versus experimental data. The full line rep-
resents the model, and the stars represent steady–state experiment data of ap-
proximately 2000 s (2000 measurements). The vertical dashed lines represent the
theoretical limit for queuing stability (where λ=µ). The horizontal dashed line in
the middle figure represents the estimated network round–trip–time.

around 50 req/s showed a stable, but highly loaded system, whereas CPU
capacity of around 25% of the total capacity and arrival rate of around
50 req/s resulted in an overloaded system.
Several steady–state experiments with arrival rate of 51.3 req/s were

conducted with different CPU capacities. Transients were removed, leav-
ing approximately 2000 measurements for averaging. The sampling inter-
val was 1 s.
Figure 4.7 shows the results of the experiments along with the theo-

retic values obtained with the value ŵ=0.00504 s, which was considered
as the best model fit. The steady–state model is sensitive to the choice
of ŵ at loads close to the stability limit, but this is a known problem
in the field of queuing systems. The parameter also enters the dynamic
properties of the system, but here the sensitivity is not as profound. The
objective of the parameter estimate was to match the model to the exper-
imental data for the entire queue as this model is well established within

76

4.5 Parameter Estimation and Model Validation

300 400 500 600 700 800 900 1000 1100 1200
0

20

40

60

80

time1

experiment
simulation

300 400 500 600 700 800 900 1000 1100 1200
10

20

30

40

50

time2

Internal Queue Length

CPU Capacity Reserved to the Web Server

p
r
(%
)

n
i

Figure 4.8 Validation of the simulated model versus experimental data. The lower
part of the figure shows the control signal pr applied for both the simulation and
the experiment. The top of the figure shows the behavior of the internal queue.

the queuing–theory community (see the middle of Fig. 4.7). The lower
part of the same figure shows the response times measured inside the
web server. The match between the model and the measurements are not
as accurate as in the top of the figure, but it is still acceptable. The queue
length of the entire queue was not measurable, so comparison is only con-
ducted for the internal queue illustrated in the top of Fig. 4.7. Also here,
some deviation is observed, but the model follows the experimental results
quite well.

Model Validation

The dynamic model was validated towards experimental data. To show
the dynamic influence of the external buffers, a scenario was conducted
as both experiment and simulation. The arrival rate was kept constant at
51.3 req/s throughout the entire experiment, while the control signal pr
was as illustrated in the top of Fig. 4.8. The results of the experiment are
illustrated in Figs. 4.8 and 4.9 along with the corresponding simulation
results. The top of Fig. 4.8 shows the behavior of the internal queue. When
the control signal was decreased and the server was overloaded, the queue
built up, but because it was limited to 80 requests, it did not grow that
much. The top of Fig. 4.9 shows the effect of the queue building up; the
response times became longer, but still, the full effect was not seen, since

77

Chapter 4. Modeling

300 400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

2.5

3

time3

300 400 500 600 700 800 900 1000 1100 1200
20

40

60

80

100

time4

experiment
simulation

Internal Response–Time

Filtered Internal Arrival–Rate

d
i

λ
f

Figure 4.9 Validation of the simulated model versus experimental data. The up-
per part of the figure illustrates the response time measured inside the web server.
The lower part of the figure shows the filtered arrival rate measured inside the web
server. (The filter is a linear first–order filter with a time constant of 10 s).

the response times of the entire queue could not be measured. The bottom
of Fig. 4.9 reveals some interesting effects of the external buffers. When
the control signal was decreased, the service rate became smaller than
the arrival rate. Since the internal buffer was often full, the rate of jobs
entering the web server was limited by the service rate, and therefore the
measured internal arrival–rate decreased. When the control signal was
increased, the flow into the web server was still limited by the service rate
until the external buffer was emptied. At this time, the service rate was
around 87 req/s, which is clearly observed as the top peak in the bottom
of Fig. 4.9. When the queue had settled at the new operating point, the
arrival rate measured inside the web server matched that of the offered.
It is worth to remember that the arrival rate entering the entire queuing
system was constant during the whole experiment.
The match between the simulated model and the measurements is ac-

ceptable. The problems of matching the correct levels of response times
and internal queue length observed in the steady–state experiments re-
mains, but the dynamics of the system are matched quite well by the
model. In particular, the filtered internal arrival–rate can be matched
well.

78

4.6 Discussions and Conclusions

4.6 Discussions and Conclusions

This chapter has considered the problem where several buffers, denoted
the external buffers, were inserted between the client and the web server,
and the variables of the external buffers were unmeasurable. The chap-
ter investigated the dynamic effects of these extra buffers, when mea-
surements were taken inside the web server, and the investigations have
revealed an interesting property:

• The (internal) measurement of the arrival rate becomes state de-
pendent.

This alters the properties of a controlled system significantly, so neglect-
ing the external buffers in the control design can become devastating. If
the measurement of the arrival rate is assumed to be independent of the
server system, a feed–forward mechanism is easily designed to improve
transient performance. As this measurement turns out to be state de-
pendent, the feed–forward mechanism changes to a feedback mechanism,
which can compromise the stability of the system.
The model has only two parameters; one explicitly set by the system

administrator (Mc) and one which has to be estimated (w̄). The model has
been verified by comparing simulated behavior to experimental data and
good correspondence has been shown. The levels of some of the variables
were sensitive to the estimated parameter when the system was operated
close to overload. This is a normal situation within queuing systems. The
dynamic properties of the model was not as sensitive to the parameter
variation.

79

5

Control Design and Analysis

The work presented in this chapter is based on the model-

ing results of external buffering for web servers presented

in the previous chapter. To stress the importance of the

suggested model, controllers are designed with the as-

sumption that the external buffers can be neglected, which

if that was true, would mean that a feed–forward control

could be used to reduce the effect of a disturbance with-

out compromising the stability. However, analysis shows

that the stability is indeed compromised when the effect

of the external buffering is taken into account. This prob-

lem is relevant as a modern computer system contains

many buffers in the underlying structure, which are often

not well known by the control designer. The material pre-

sented in this chapter is based on [Kjær and Robertsson,

2009; Kjær and Robertsson, 2010].

If the web–server system is operated in medium or light load, the exter-
nal buffers can be neglected simplifying the measurements and the con-
trol design significantly. The question is then how the controlled system
behaves when operating under higher loads where the external buffers
become significant.
First, a control strategy based on both feedback from the output d and

feed–forward from the disturbance λ is considered, where it is assumed
that the external buffers can be neglected. The response time is chosen
as main metric since it is important from a client–perspective. Another

80

5.1 Control Design Neglecting the External Buffers

choice could be queue–length control, which is more oriented towards the
operator. An analysis then follows, where the control structure and the
control parameters remains the same but the system now includes the
external buffers.

5.1 Control Design Neglecting the External Buffers

The system is modeled by a second–order system with two inputs; one
input for control action pr, and one input as a disturbance λ . The linear
model was derived in Chapter 4. Equation (4.45) is repeated here for
convenience

D(s) = γ λ s+ (γ n + γ λ γ 1)
(s+ γ 1)(s Td + 1)

Λ(s) − γ n γ 2
(s+ γ 1)(s Td + 1)

Pr(s) (5.1)

The low–pass filter
(

1/(s Td+1)
)

represents the averaging of the response–
time during a sample interval. The parameter Td is the size of the sam-
pling intervals.

Feedback Design

Applying a PI controller as feedback ensures that the reference dr is
reached in steady state. The PI controller is defined as [Åström and
Hägglund, 2005]

P f b(s) = − K (Tis+ 1)
Tis

(

Dr(s) − D(s)
)

(5.2)

The first minus–sign is included to compensate for the negative gain from
the control signal to the output of the server model. Applying this con-
troller, the closed–loop expression for D(s) becomes

D(s) = γ 2 (γ n K Ti s+ γ n K)
TiTds3 + Tis2 + TiTdγ 1s2 + Tiγ 1s+ γ nγ 2KTis+ γ nγ 2K

Dr(s)

+ Ti (γ λ s+ γ λ γ 1 + γ n) s
TiTds3 + Tis2 + TiTdγ 1s2 + Tiγ 1s+ γ nγ 2KTis+ γ nγ 2K

Λ(s)

(5.3)

The essential properties of a PI–controlled system are also seen here.
A step–change in the reference dr is followed by the response time d in
steady–state, and a disturbance λ will be removed in steady–state, as-
suming that the closed–loop system is stable.

81

Chapter 5. Control Design and Analysis

Feed–Forward Design

The disturbance λ is measured and utilized for feed–forward control to
reduce the undesired effects of changes in the arrival process. The term
feed–forward is used to emphasize that the only measurement used for this
controller is an input (the disturbance)—no outputs are used. Later, the
measurement used for the feed–forward controller will be exchanged with
an internal measurement of the arrival rate, which can be considered as
an output of the process. The feed–forward mechanism will then actually
become a feedback mechanism but it will still be denoted as feed–forward
to state that it was originally intended as a feed–forward mechanism.
Because the measurement of the disturbance can be quite noisy, it is

filtered with the first–order low–pass filter from Eq. (4.25).
The feed–forward controller is based on the queuing–theoretical re-

lationships from Eqs. (4.15) and (4.17). The equations are rewritten to a
linear function of the filtered arrival rate λ f and a constant term given by
the desired response time dr and the estimated required work. The esti-
mated required work, w̄ is treated as a constant, which must be estimated,
and is denoted ŵ.

p f f (t) = ŵ

dr
+ ŵλ f (t) (5.4)

where p f f is the control signal derived from the feed–forward controller.
This feed–forward mechanism is a proportional controller with propor-
tional gain ŵ and a bias term ŵ/dr. It is noted that the bias–term is
proportional to ŵ, which makes it difficult to evaluate the performance
with different values of ŵ since the operation point changes with ŵ. There-
fore, when applying the feed–forward controller only (without the feedback
controller), the feed–forward expression is rewritten into

p f f (t) = p0r + ŵ
(

λ f (t) − λ0
)

(5.5)

In the case where the PI controller is also active, the integral part will
handle the deviation in the bias term.
Linearization and Laplace transformation of the feed–forward con-

troller gives

P f f (s) = ŵ

Tλ s+ 1
Λ(s) (5.6)

The control system consisting of both feed–forward and feedback con-

82

5.2 Stability Analysis Including the External Buffers

ŵ

Tλ s+ 1

1
Tds+ 1

1
s+ γ 1

σ λ

σ n

γ 2

−K (Ti s+ 1)
Ti s

Pr N

Λ

D

Pf f

P f b

Feedback controller

Feed–forward controller

Λ

Dr

Feed–forward path

Feedback loop

Figure 5.1 Block diagram of the server with feedback and feed–forward control
from the real disturbance.

trollers is illustrated in Fig. 5.1 and has the form

D(s) = γ 2 (γ n K Ti s+ γ n K)
TiTds3 + (Ti + TiTdγ 1)s2 + (Tiγ 1 + γ nγ 2KTi)s+ γ nγ 2K

Dr(s) +

Ti
(

γ λ Tλ s
2 + (γ λ + γ λ γ 1 Tλ + γ n Tλ) s+ (γ λ γ 1 − γ n γ 2 ŵ+ γ n)

)

s

(Tλ s+ 1)(TiTds3 + (Ti + TiTdγ 1)s2 + (Tiγ 1 + γ nγ 2KTi)s+ γ nγ 2K)
Λ(s)

(5.7)

which holds the same properties as described for the feedback controller,
but with the possibility to alter the transient response of the disturbance
rejection by changing ŵ and Tλ .

5.2 Stability Analysis Including the External Buffers

Consider the case where the control design is conducted as described above
(assuming that the external buffers can be neglected), but now the exter-

83

Chapter 5. Control Design and Analysis

ŵ

Tλ s+ 1

1
Tds+ 1

1
s+ γ 1

σ f σ λ

σ n

γ 2

−K (Ti s+ 1)
Ti s

s
NiPr

N

Λi

Di

P f f

P f b

Feedback controller

Feed–forward controller

Λ

Dr

Feed–forward loop

Feedback loop

Figure 5.2 Block diagram of the server with feedback and feed–forward from the
state dependent measurement of the internal arrival–rate.

nal buffers are significant. The analysis then follows that of the above
except that λ and d are exchanged with λ i and di. This has the conse-
quence that an extra zero is included in the server model, and the arrival
rate λ , which before was treated as a disturbance, now becomes a dy-
namic state (λ i), which introduces an extra feedback loop as illustrated
in Fig. 5.2.
The expressions for stability analysis becomes too general to draw any

conclusions from if no parameters are fixed. Therefore, it is in this thesis
chosen to evaluate the stability for the testbed described in Chapter 3, and
for which the parameters are estimated in Chapter 4. The parameters and
operating point are chosen according to the following arguments.

The model parameters are chosen according to the system identified
in Section 4.5; Mc = 80 and ŵ= 0.00504 s.

The operation point is chosen as an acceptable response time for the
end user. Because the entire response–time cannot be measured, a
reference is defined for the internal response–time. It is chosen as

84

5.2 Stability Analysis Including the External Buffers

Table 5.2 Operating points

Parameter p0r λ0 µ0 n0 n0i d0 d0i

Unit % req/s req/s req req s s

Value 26.16 51.30 51.91 83.56 51.3 1.63 1.0

d0i = 1.0 s. Also, a constant arrival rate of λ0 = 51.3 rad/s is chosen,
as this was the arrival rate used for the parameter estimation for
the model. The remaining operating–point parameters are listed in
Table 5.2.

The feedback–control parameters are chosen to Ti = 100.0 and K =
0.1. These values are chosen to give large robustness margins (in-
finite amplitude margin and a phase margin of almost 90○) when
neglecting the external buffers. When taking the zero induced by
the external buffers into account, the phase margin is reduced to
71○ while the amplitude margin becomes 10.8 dB, which is still on
the conservative side. The cross–over frequency, which is a metric
for the closed–loop dynamics, is 0.38 rad/s and 0.1 rad/s neglecting
and including the external buffers, respectively. Because the arrival
rate can be quite irregular, a relatively high degree of filtering is
imposed. A value of Tλ = 10 s is considered to give a nice behavior
of λ f .

The chosen operating point represents a highly loaded situation, which
matches the objective to maximize the utilization of the CPU.

Analysis of the Feedback Design

Due to the complicated denominator, it is hard to say anything general
about how the different parameters affect the stability.
Eqs. (4.45) and (4.46) represent the server system from the control

signal to the output for the system with unlimited and limited measure-
ments, respectively. Fig. 5.3 illustrates the Bode diagrams for the two
systems when the PI controller is applied. The figure indicates that the
limited measurement does not affect the dynamic properties significantly
for low and middle frequency range. For higher frequencies, the phase
curves deviate, but here the gain is so low that the phase is no longer
relevant. Therefore, the stability and the dynamic properties of the sys-
tem does not really change when the response time is measured inside
the server instead of outside the server.

85

Chapter 5. Control Design and Analysis

−100

−50

0

50

100

M
ag

ni
tu

de
 (

dB
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

−180

−135

−90

P
ha

se
 (

de
g)

Bode Diagram

Frequency (rad/sec)

Unlimited queue
Limited queue

Figure 5.3 Bode diagrams for the PI–controlled server. The blue lines represent
the system without limited measurements (Eq. (4.45)) and the red line illustrates
the system with limited measurements (Eq. (4.46)). The black line indicates the
phase margin which is 70○.

Analysis of the Feed–Forward Design

Using the feed–forward controller alone introduces a feedback from the
number of jobs in the system, which alters the stability properties of the
system. The system is then described by

Di(s)
Λ(s) =

σ λ σ f Tλ s
2 + (σ λ γ 1 Tλ +σ λ σ f +σ nσ f Tλ) s+σ λ γ 1 +σ nσ f −σ nσ f γ 2 ŵ
(

sTd + 1
) (

Tλ s2 + (1− γ 2 ŵ(1−σ f) + γ 1 Tλ) s+ γ 1
)

(5.8)

which indicates that the system becomes unstable for

ŵ > γ 1 Tλ + 1
γ 2 (1−σ f)

(5.9)

The test–bed system is, according to the parameters chosen in the begin-

86

5.2 Stability Analysis Including the External Buffers

−0.1 −0.05 0 0.05 0.1

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Re(s)

Im
(s
)

Root locus for the server when w̄ is changed

ŵ = 14.60 ms

ŵ = 14.60 ms

ŵ

ŵ

ŵ

Figure 5.4 Root locus for the server when ŵ used in the feed–forward controller
is changed from 0 ms to 30 ms. A fixed PI–controller is also imposed. A stable pole
is also located in s = −1.20 which slowly moves towards the origin..

ning of this chapter, unstable for

ŵ > 7.281 ms (5.10)

Analysis of the Combined Feedback and Feed–Forward Design

The complete transfer–function for the system containing both the feed-
back and the feed–forward mechanism is too comprehensive to present
on paper, so only the transfer–function representing the test bed for ŵ =
5.04 ms is presented here.

Di(s)
Λi(s)

= 0.2834s2 − 0.05678s+ 0.0003822
s4 + 1.32s3 + 0.1604s2 + 0.01147s+ 0.000095 (5.11)

Figure 5.4 shows the root–locus when all parameter but ŵ in the feed–
forward part are kept constant. The analysis suggests that this system is
unstable for

ŵ > 14.06 ms (5.12)

The stability limit has been increased by including the feedback loop but
only to a certain degree. This is not a general result but it is only valid
for the system resembling the test bed.

87

Chapter 5. Control Design and Analysis

yu

f (y)

G(s)

Figure 5.5 Block diagram of an interconnection between a static nonlinearity
and a linear dynamic system. The describing–function method requires this form of
interconnection.

5.3 Classification of Instability

In systems with limitations (which are always present in practical ap-
plications) instability can expose itself in two different ways; either the
system goes to an extreme configuration determined by the limitations
of the system (such as saturated actuator, saturated states, etc.) and re-
mains there until external events (such as user interaction) occur, or the
system starts to oscillate. Methods to predict this type of instability exist
and one such method is the describing–function method, which will be
described briefly below.

The Describing–Function Method

Consider an interconnected system as in Fig. 5.5 where G(s) is a lin-
ear system and f (y) is a static nonlinearity. Normal linearization of the
nonlinearity only reveals whether the system is locally asymptotically sta-
ble or not—not necessarily the character of the possible instability. The
describing–function method continues the idea of linearization but instead
of linearizing around an equilibrium, it is assumed that the system will
converge towards a limit cycle. The describing function is a description of
how the nonlinearity reacts to an oscillating input. The nonlinearity with
a sinusoidal input is approximated by a Fourier series and the higher–
order term are neglected. The describing function can then be combined
with the linear system in the frequency–domain to predict whether there
will be a stable or unstable limit cycle at a given amplitude and frequency.
The formulation presented here follows the notation used by [Slotine and
Li, 1991] but also [Khalil, 2002] gives a comprehensive treatment.
The describing function Ψ(A) of a static nonlinearity f (⋅) is computed

88

5.3 Classification of Instability

by

a1 = 1
π

∫ π

−π

f
(

A sin(ω t)
)

cos(ω t) d(ω t) (5.13)

b1 = 1
π

∫ π

−π

f
(

A sin(ω t)
)

sin(ω t) d(ω t) (5.14)

Ψ = b1 + a1i
A

(5.15)

Computation of the Describing Function for the Web Server

Several nonlinearities are present in the server system. The nonlinear
model prevents the queue from holding negative jobs (n < 0) but this is
not captured by the linear model. The second nonlinearity is an actuator
saturation since CPU capacity is limited from both below and from above.
The limitations may be defined by only the physical limitations of the
CPU, but further limitations may be imposed by the system design (such
as reserving a certain amount of CPU capacity for administrative tasks).
This nonlinearity is not relevant for the investigated operating–point, as
the control signal remains within the available range. Therefore, the ac-
tuator nonlinearity is not treated any further. The third nonlinearity is
the static function of Eq. (4.21), relating the internal queue–length to the
full queue–length, which holds for n ≥ 0. In the case where n < 0, the
function must be limited from below, so that ni ≥ 0. Furthermore, the
function is altered to operate on the linearized variables:

f̃i(∆n) :=















(∆n+ n0)
[

1−
(

∆n+ n0
1+ ∆n+ n0

)Mc
]

− n0i if ∆n ≥ −n0

−n0i otherwise
(5.16)

This static nonlinearity is illustrated in Fig. 5.6 for different values of Mc.
Assuming the same operation point (n0 = 70 req in this case) the nonlin-
earity becomes more and more dominating as Mc is decreased. For high
values of Mc the nonlinearity becomes almost linear around the operating
point.
The describing function is not derived analytically here. Instead, it is

computed numerically and the results are shown in Fig. 5.7 for different
values of Mc.

89

Chapter 5. Control Design and Analysis

−200 0 200 400 600 800 1000 1200 1400 1600 1800 2000
−100

0

100

200

300

400

500

Mc = 80
Mc = 160
Mc = 256
Mc = 512
Mc = 1024

Static nonlinearity

f̃ i
(∆
n
)

∆n

Figure 5.6 Static nonlinearity in the linearized coordinates with n0 = 70, for
different values of Mc. The dashed lines indicates the maximal values of the function
for the different values of Mc.

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1

Mc = 80
Mc = 160
Mc = 256
Mc = 512
Mc = 1024

Describing Function

Amplitude A

D
es
cr
ib
in
g
fu
n
ct
io
n

Ψ
(A
)

Figure 5.7 Describing function for n0 = 70 for different values of Mc.

90

5.3 Classification of Instability

ŵ
Tλ s+ 1

1
Tds+ 1

1
s+ γ 1

f̃i(⋅) σ λ

σ n

γ 2

-K (Ti s+1)
Ti s

s

Ni

UY

Pr

N Λi Di

P f f

P f b

Λ
Λ

Dr

−1 −1

"Cut" "Cut"

Figure 5.8 Block diagram of the server with feedback and feed–forward control.

Applying the Describing–Function Method

The closed–loop system, including both feedback and feed–forward mech-
anisms, illustrated in Fig. 5.2 is exchanged with the one in Fig. 5.8, where
the static nonlinearity now is present instead of its linearized function.
“Cuts" are made on each side of the nonlinearity. The two variables U (s)
and Y(s) are inserted at the places of “cutting” and the whole block di-
agram is rearranged, so these variables become input and output of a
linear system G(s) as illustrated in Fig. 5.9.

Feed–Forward Control

When the feedback is not utilized, the transfer function reduces signifi-
cantly (as K=0). The transfer function from U (s) to Y(s) is now

G(s, K = 0) = γ 2 ŵ s

Tλ s2 + (1− γ 2 ŵ+ Tλ γ 1)s+ γ 1
(5.17)

which has a zero in the origin and two poles, which implies that the
phase of G(s) will be in the interval] − 90○ 90○[. As the negative in-
verse describing–function is real and strictly negative, it will never inter-
sect with the the Nyquist–curve and thus, the describing–function method
can not predict any limit–cycle. The conclusion is therefore that since the
system is unstable (for ŵ > 7.281) and without limit cycles, the system
will go towards infinity (or minus infinity) until some other saturation is
reached.

91

Chapter 5. Control Design and Analysis

ŵ

Tλ s+ 1
−γ 2
s+ γ 1

f̃i(⋅)

σ λ

σ n
K (Ti s+1)
(Tλ s+ 1)Ti s

−s
Ni

U

Y

Pr

N

Λi P f f

P f b

−1
"Cut"

"Cut"

Linear system G(s)

Static nonlinearity

Figure 5.9 Rewritten block diagram in Fig. 5.8. The system is divided into a
linear part and a nonlinear part interacting through the signals U(s) and Y(s).

Feedback and Feed–Forward Control

For ŵ = 15 ms the transfer function becomes

G(s) = −0.0881s3 + 0.6343s2 + 0.04166s+ 0.0003822
s4 + 1.195s3 − 0.1441s2 + 0.001108s (5.18)

which is an unstable system with two unstable poles, one stable pole,
and one pole in the origin. The right–hand side of the Laplace–plane is
encircled by a closed curve S as illustrated in Fig. 5.10. The origin is not
included in the encapsulation as is the normal procedure when evaluating
Nyquist–diagrams. The large circle–fraction has a sufficiently large radius
to be approximated as infinite (compared to the system dynamics). Note
that the system has two unstable poles encapsulated by the closed curve.
The transfer–function G(s) is evaluated along the curve S, and mapped

into a new complex–plane to draw the Nyquist diagram, which is illus-
trated in Fig. 5.11.
A detailed magnification of the region–of–interest is illustrated in

Fig. 5.13 along with the negative inverse describing–function. As the am-
plitude A increases, the negative inverse describing–function first moves
towards the origin, but from around −1/Ψ = −3.3 it moves towards −∞.
This is illustrated by the blue arrow in the figure. Figs. 5.12 and 5.13
show that the two curves intersect twice at A = 27.4 and A = 152.4
(G(ω i)=-1/Ψ(A)=2.868). The frequency of the transfer function at the
intersection is ω = 0.101 rad/s. Each of the intersections is a possible

92

5.3 Classification of Instability

S

ω

Im(s)

Re(s)

Figure 5.10 The Laplace–plane. The Nyquist curve is found by evaluating the
transfer function along the curve S encapsulating the right–half plane. Note that
the origin is not included.

ω
ω

ω

Im (G(S))

Re (G(S))

Region
of interest

Figure 5.11 The Laplace–plane. The Nyquist curve when both the feed–forward
and the feedback controller are included. The dashed line represents the mapping
of the dashed part of S in Fig. 5.10.

93

Chapter 5. Control Design and Analysis

0 20 40 60 80 100 120 140 160 180 200
−5

−4.5

−4

−3.5

−3

−2.5
Negative inverse describing–function

Amplitude A

-1
/Ψ
(A
)

Figure 5.12 Negative inverse describing–function for Mc=80. The dashed line
represents the intersection with the Nyquist–diagram (G(0.101i) = −3.868).

limit cycle, which is now investigated separately:

A=27.4: Assume that the system is oscillating with an amplitude slightly
above 27.4. The negative inverse describing–function will then have
moved slightly towards the origin, and this point is encircled clock-
wise twice by the Nyquist curve. Following the procedure of [Slotine
and Li, 1991], the limit cycle is stable because the open–loop system
G(s) has two poles in the right–hand side of the Laplace plane.

A=152.4: Assume that the system is oscillating with an amplitude
slightly above 152.4. The negative inverse describing–function will
then have moved slightly towards −∞, and this point is not encircled
by the Nyquist curve. Following the procedure of [Slotine and Li,
1991], the limit cycle is thus not stable because the open–loop system
G(s) has two poles in the right–hand side of the Laplace plane.

From the arguments above, the system is expected to have a stable limit

94

5.3 Classification of Instability

−4.5 −4 −3.5 −3 −2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Im
(s
)

Re(s)

Region of interest of Fig. 5.11

A

ω

−1/Ψ(A = 27.4)
−1/Ψ(A = 152.4)
G(0.101i) = −3.868

= −3.868
= −3.868

−1/Ψ(A)

G(S)

Figure 5.13 Close–up of the region of interest of Fig. 5.11 for ŵ = 15 ms along
with a plot of the negative inverse describing–function (−1/Ψ(A)).

cycle with oscillations in the entire queue length n of 27.4 req in amplitude
and with period time of approximately 2π/0.101 = 62.21 s. This means
that the number of jobs in the system will oscillate and not converge to a
steady value, even if all inputs are constant.

Summary for the Analysis

The analysis suggests that if the value of the estimated required work, ŵ,
is chosen too high, the systems will become unstable. In the saturation
where only feed–forward is applied, the number of requests in the server
will go towards either zero or the maximum value (not yet determined),
when ŵ becomes above 7.28 ms. When both feedback and feed–forward
control is applied, the instability manifests itself as oscillations when the
stability limit is reached at ŵ = 14.06 ms.

95

Chapter 5. Control Design and Analysis

5.4 Verification by Simulation

The simulation–model developed for validation, described in Chapter 4,
was expanded to include both the feed–forward and the feedback con-
troller. A saturation was imposed to limit the control signal pr between
one and zero. The focus here is the stability and therefore all simula-
tions were initiated at the operation point, but a small deviation in the
control signal in the beginning of the simulation ensured that instabil-
ity revealed itself. The operating point was as described in the beginning
of this chapter (listed in Table 5.2), and the system was simulated with
two control–configurations; with feed–forward control only and with the
combined feedback and feed–forward controller.

Feed–Forward Control

Figure 5.14 illustrates the results of two simulations of the system with
the feed–forward controller only. The figure indicates that the system re-
mained stable and well behaved for low values of ŵ but became unstable
for higher values. The stability analysis suggested that the limit for sta-
bility is 7.281 ms which corresponds well with the presented simulation–
results. Also, the simulation results indicate that the system does not
enter stable limit cycles in the unstable operating point, but goes to an
extreme saturation, where the control signal goes to the lower limitation
and the response times goes to infinite (as the queue grows to infinity).
This matches the conclusion from the describing–function analysis in Sec-
tion 5.3.

Feedback and Feed–Forward Control

Fig. 5.15 illustrates the results of two simulations, where both the feed-
back and the feed–forward controllers were utilized. The figures indicate
that the system remained stable and well behaved for low values of ŵ, but
entered stable limit cycles for higher values. The limit cycles were char-
acterized by period times of approximately 65 s. All variables oscillated,
but not symmetrically around the operation–point value. Table 5.3 lists
the deviations from the operation points for the most important variables.
The stability analysis suggested that the limit for stability is 14.60 ms,
which corresponds well with the presented simulation results. The pre-
dicted limit–cycle period was 62.21 s, which corresponds well with the
period–time obtained by the simulations. The analysis also suggested that
the total number of requests would oscillate with an amplitude of 27 req.
The simulations suggested that the amplitude was in the range of 35 req,
which shows that the simulation corresponds reasonable well with the
analysis.

96

5.4 Verification by Simulation

0 1000 2000 3000
0

1

2

3

Time (s)

0 1000 2000 3000
0

20

40

60

Time (s)

0 1000 2000 3000
0

20

40

60

80

Time (s)

0 1000 2000 3000
0

1

2

3

Time (s)

0 1000 2000 3000
0

20

40

60

Time (s)

0 1000 2000 3000
0

20

40

60

80

Time (s)

ŵ = 7 ms
In
t.
re
sp
on
se
–t
im
e
d
i
(s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
qu
eu
e–
le
n
gt
h
n
(r
eq
)

ŵ = 8 ms

In
t.
re
sp
on
se
–t
im
e
d
i
(s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
qu
eu
e–
le
n
gt
h
n
(r
eq
)

di

d

Figure 5.14 Simulation results showing the internal measured response–time di,
the internally measured arrival rate, and the internally measured queue length
when utilizing only feed–forward control. The estimate ŵ used in the feed–forward
controller was 7 ms in the simulation results presented on the left–hand side, and
8 ms in the simulation results presented on the right–hand side.

Table 5.3 Deviation from the operating point for the oscillating system when both
feed–forward and feedback is applied.

Parameter λ f di n ni

Operation point 51.3 req/s 1.0 s 83.56 req 51.3 req

Upper deviation 2.22 req/s 0.145 s 38 req 7.2 req

Lower deviation 1.59 req/s 0.228 s 34 req 11.7 req

97

Chapter 5. Control Design and Analysis

0 1000 2000 3000
0

1

2

3

Time (s)

0 1000 2000 3000
0

20

40

60

Time (s)

0 1000 2000 3000
0

20

40

60

80

Time (s)

0 1000 2000 3000
0

1

2

3

Time (s)

0 1000 2000 3000
0

20

40

60

Time (s)

0 1000 2000 3000
0

20

40

60

80

Time (s)

ŵ= 14 ms

In
t.
re
sp
on
se
–t
im
e
d
i
(s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
qu
eu
e–
le
n
gt
h
n
(r
eq
)

ŵ= 15 ms

In
t.
re
sp
on
se
–t
im
e
d
i
(s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
qu
eu
e–
le
n
gt
h
n
(r
eq
)

di

d

Figure 5.15 Simulation results presenting the internal measured response–time
di, the internally measured arrival rate, and the internally measured queue length
when utilizing both feedback and feed–forward control. The estimate ŵ used in the
feed–forward controller was 14 ms in the simulation results presented on the left–
hand side, and 15 ms in the simulation results presented on the right–hand side.

98

5.5 Validation by Experiments

Summary for the Verification by Simulations

As the analysis suggested the systems becomes unstable if the value of
the estimated required work, ŵ, is chosen too high. In the saturation
where only feed–forward is applied, the simulations have shown that the
number of requests in the server will go towards the maximum value,
when ŵ increases above the stability limit. When both feedback and feed–
forward control is applied, all variables start to oscillate. The time period
and amplitude was approximately as predicted by the analysis.

5.5 Validation by Experiments

The controllers were implemented on the testbed described in Chapter 3.
The condition of all the experiments were as described in the beginning
of the chapter (listed in Table 5.2). A saturation was imposed to limit the
control signal pr between 0.01 and 0.89. (10% of the CPU capacity was
reserved to the operating system and other tasks, and both the secondary
task and the web server were guaranteed at least 1% of the CPU capacity).
The system was tested with two control–configurations; with feed–forward
control only and with the combined feedback and feed–forward controller.

Feed–Forward Control

Figures 5.16, 5.17, and 5.18 illustrate the results of four experiments where
only the feed–forward controller was utilized. Note that the feed–forward
controller was first included after 300 s in the experiment with ŵ=8 ms
(the lower right part of the figures). The initial conditions for the experi-
ments were not the same, therefore only the steady–state conditions can
be compared. For the case of ŵ=7 ms (in the lower left corner), the sys-
tem was stable for a while, but after around 2500 s the system suddenly
became unstable. This suggests that the stability limit for the actual sys-
tem is around 7 ms, which corresponds well with the theoretical analysis,
which predicted the stability limit to 7.281 ms.

Feedback and Feed–Forward Control

Figures 5.19, 5.20, and 5.21 illustrate the results of four experiments
where both the feedback and the feed–forward controllers were active.
Note that the initial conditions for the experiments were not the same,
therefore only the steady–state conditions can be compared.
The figures indicate that the system remained stable and well behaved

for low values of ŵ, but certain signs of instability were observed already
at ŵ = 6 ms. Stable oscillations were observed at ŵ = 8 ms. Here, the
experimental results deviate from the analysis, which predicted instability
for ŵ > 14.06 ms.

99

Chapter 5. Control Design and Analysis

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 200 400 600
0

0.5

1

1.5

2

ŵ = 4 ms ŵ = 6 ms

ŵ = 7 ms ŵ = 8 ms

Time (s)Time (s)

R
es
po
n
se
ti
m
e
(s
)

R
es
po
n
se
ti
m
e
(s
)

Figure 5.16 Experimental results showing the internal measured response–time
di when utilizing only feed–forward control. The estimate ŵ used in the feed–forward
controller is varied between 4 ms and 8 ms.

Summary for the Validation by Experiments

Both the analysis and the simulations suggested that if the value of the
estimated required work, ŵ, is chosen too high, the systems will become
unstable. This was confirmed by the experiments. In the saturation where
only feed–forward is applied, the number of requests in the server will
increased towards the maximum value. When both feedback and feed–
forward control was applied, the system started to oscillate. The limits
for stability was somehow lower than predicted by the analysis. This is
expected to be related to the model, which does not quite predict the actual
levels accurately.

100

5.5 Validation by Experiments

0 500 1000 1500 2000 2500
0

20

40

60

80

0 500 1000 1500 2000 2500
0

20

40

60

80

0 500 1000 1500 2000 2500
0

20

40

60

80

0 200 400 600
0

20

40

60

80

ŵ = 4 ms ŵ = 6 ms

ŵ = 7 ms ŵ = 8 ms

Time (s)Time (s)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

Figure 5.17 Experimental results showing the internal measured arrival–rate λ i
when utilizing only feed–forward control. The estimate ŵ used in the feed–forward
controller is varied between 4 ms and 8 ms.

101

Chapter 5. Control Design and Analysis

0 500 1000 1500 2000 2500
0

10

20

30

40

50

0 500 1000 1500 2000 2500
0

10

20

30

40

50

co
nt

ro
l2

0 500 1000 1500 2000 2500
0

10

20

30

40

50

0 200 400 600
0

10

20

30

40

50

co
nt

ro
l2

ŵ = 4 ms ŵ = 6 ms

ŵ = 7 ms ŵ = 8 ms

Time (s)Time (s)

C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)

C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)

Figure 5.18 Experimental results showing the control signal pr when utilizing
only feed–forward control. The estimate ŵ used in the feed–forward controller is
varied between 4 ms and 8 ms.

102

5.5 Validation by Experiments

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

ŵ = 0.00 ms ŵ = 5.04 ms

ŵ = 6.00 ms ŵ = 8.00 ms

Time (s)Time (s)

M
ea
s.
re
sp
on
se
–t
im
e
d
i(s
)

M
ea
s.
re
sp
on
se
–t
im
e
d
i(s
)

Figure 5.19 Experimental results showing the internal measured response–time
di when utilizing both feedback and feed–forward control. The estimate ŵ used in
the feed–forward controller is varied between 0 ms and 8 ms.

103

Chapter 5. Control Design and Analysis

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

ŵ = 0.00 ms ŵ = 5.04 ms

ŵ = 6.00 ms ŵ = 8.00 ms

Time (s)Time (s)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

Figure 5.20 Experimental results showing the internal measured arrival–rate λ i
when utilizing both feedback and feed–forward control. The estimate ŵ used in the
feed–forward controller is varied between 0 ms and 8 ms.

104

5.5 Validation by Experiments

0 500 1000 1500 2000 2500
0

20

40

60

80

100

0 500 1000 1500 2000 2500
0

20

40

60

80

100

0 500 1000 1500 2000 2500
0

20

40

60

80

100

0 500 1000 1500 2000 2500
0

20

40

60

80

100

ŵ = 0.00 ms ŵ = 5.04 ms

ŵ = 6.00 ms ŵ = 8.00 ms

Time (s)Time (s)

C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)

C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)

Figure 5.21 Experimental results showing the control signal pr when utilizing
both feedback and feed–forward control. The estimate ŵ used in the feed–forward
controller is varied between 0 ms and 8 ms.

105

Chapter 5. Control Design and Analysis

5.6 Discussions and Conclusions

This chapter demonstrated the danger of neglecting the external buffers
during the control design. The measurement of the arrival rate became
state dependent when the load was sufficiently high, and the “feed–-
forward controller” then introduced a feedback loop. The investigations
showed that using a feed–forward strategy alone can lead to instability
if the gain of the feed–forward controller is chosen too high. The insta-
bility was clearly observed as growing response–times and the control
signal going towards zero. If a combination of feed–forward and feedback
control was chosen, the system also became unstable if the gain of the
feed–forward controller was chosen too high. In this case the instability
was manifested as oscillations. The stability conclusions were supported
by theoretical analysis, simulations, and experiments, which all showed
correspondence in the qualitative conclusions. The stability limit derived
from experiments deviated from the stability limit predicted by the anal-
ysis, but this does not come as a surprise since the model showed less
accurate prediction of the response time (which the feedback was based
upon) than for the arrival rate (which the feed–forward controller was
based upon). Furthermore, the describing–function analysis is an approx-
imative method, which gives no guarantee of an accurate result.

106

6

Redesign with Band-Stop

Filter

The work presented in this chapter answers an obvious

question from Chapter 5: When it is now shown that the

feed–forward mechanism introduces risk of instability,

what can then be done to avoid this problem? A tradi-

tional control–design method is used to expand the ro-

bustness towards inaccurate estimates of the parameter

ŵ, and the new controller is verified by both simulations

and experiments.

6.1 Redesign of Feed–Forwards

In classical control theory, compensation links are used to shape the open–
loop transfer function in order to change the behavior of the closed–loop
system, see e.g. [Franklin et al., 1994; Åström and Murray, 2008]. Consider
the server system with both feedback and feed–forward control from Chap-
ter 5, and the associated Nyquist plot of Fig. 5.13 on page 95, reprinted
in Fig. 6.1 for convenience. It is observed that if the intersection of the
Nyquist plot and the real axis could be moved sufficiently towards the
origin, the system would no longer be oscillatory. A band–stop filter with
a narrow stop–band (notch filter) which stop–frequency ω s close to the

107

Chapter 6. Redesign with Band-Stop Filter

−4.5 −4 −3.5 −3 −2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Im
(s
)

Re(s)

Region of interest of Fig. 5.11

A

ω

−1/Ψ(A = 27.4)
−1/Ψ(A = 152.4)
G(0.101i) = −3.868

= −3.868
= −3.868

−1/Ψ(A)

G(S)

Figure 6.1 Reprint of the close–up of the region of interest of Fig. 5.11 on page 93
for ŵ=15ms along with a plot of the negative inverse describing function (−1/Ψ(A)).

resonance frequency (ω s=0.101 rad/s) attains this, without altering the
dynamic properties significant for the other frequencies. The filter should
be implemented before or after the linear system, as indicated by the de-
sirable compensation box in Fig. 6.2. In traditional control systems where
the nonlinearity is located in the actuator or the sensor, this causes no
problems, since the signals U and Y are accessible directly in the con-
troller. In the case investigated here, the nonlinearity represents a rela-
tion between two internal variables, and it is thus not feasible to insert a
compensation link at the desired location. Instead, the compensation has
to be placed at the same location as the controller, as indicated by the
feasible compensations boxes.
Because the feasible compensations G f b(s) and G f f (s) both are in-

cluded in feedback loops, the system cannot be redrawn to a form where
the compensations are placed in series with the original system, as with
the desired compensation. Therefore, the traditional loop–shaping method
cannot be applied here. However, the idea of using a band–stop filter to
avoid excitation of the resonance frequency can still be applied. Consider
the systems represented in Fig. 6.3, where both are consisting of a transfer
function and an ideal band–stop filter. The ideal band stop filter has the
characteristic that its amplification is zero at the stop–frequency ω s, and

108

6.1 Redesign of Feed–Forwards

ŵ

Tλ s+ 1
−γ 2
s+ γ 1

σ λ

σ n
K (Ti s+1)
(Tλ s+ 1)Ti s

−s
U Y

Pr

N

Λi

G f b(s)

G f f (s)Gc(s)
Û

Desirable
compensation

Feasible
compensations

Linear system G(s)

Figure 6.2 Expansion of the block diagram of the linear part of the system,
(see also Fig. 5.9), with both desirable compensation and feasible compensations
included.

Input

Input

Gs(s)

Gs(s)

G0(s)

G0(s)

Output

Output

a)

b)

Figure 6.3 Two feedback connections involving a ideal band–stop filter. The two
systems holds the same dynamical properties.

one elsewhere. As indicated by Table 6.2, the two feedback systems have
the same dynamical properties, so the desired effect of placing a band–
stop filter at the input of the linear system of Fig. 6.4 can be obtained by
using the same filter inside the controller (marked as feasible compensa-
tions in the figure). Investigation shows that the best results are obtained
using the band–stop filter at the feed–forward controller (P f f (s)), and
not at the feedback P f b(s). Fig. 6.4 shows the block diagram of the system
when the feed–forward loop is broken, and p f f and λ i are seen as input
and output of a linear system, respectively.

109

Chapter 6. Redesign with Band-Stop Filter

Table 6.2 Properties of the systems illustrated in Fig. 6.3.

Frequency Ideal band-
stop filter

Closed loop
transfer
function of
system a) in
Fig. 6.3

Closed loop
transfer
function of
system b) in
Fig. 6.3

Gs(s)
G0(s)Gs(s)
1+ G0(s)Gs(s)

G0(s)Gs(s)
1+ G0(s)

s = ω i,ω = ω s 0 0 0

s = ω i,ω ,= ω s 1
G0(ω i)
1+ G0(ω i)

G0(ω i)
1+ G0(ω i)

1
Tλ s+ 1

1
Tds+ 1

1
s+ γ 1

σ f

σ λ

σ n

γ 2

−K (Ti s+ 1)
Ti s

s
NiPr N Λi

Di

P f f

P f b

Λ f

ΛΛ

Dr

Figure 6.4 Block diagram of the server system, where the feed–forward loop is
broken, such that the feed–forward control–signal p f f is the input and the measured
arrival rate λ i is the output.

A second–order band–stop filter can be realized by

G f f (s) = s2 +ω 2s
s2 + 2ζ ω ss+ω 2s

(6.1)

where the parameters ω s and ζ are the stop frequency and the damping
factor (zero for non–damped and one for maximal damping), respectively.
The choice of the parameter ζ reflects how small the stop band becomes.
If the resonance frequency is estimated accurately, a narrow stop–band
can be used by choosing a damping factor in the range of 0.6-0.7. If the

110

6.2 Stability Analysis

estimate is not that accurate, the stop–band can be expanded by choosing
a value of ζ closer to one.
The parameter ω s is chosen as the estimated resonance frequency ω̂ c,

which can be estimated by running the system in the unstable operation,
and then determine the frequency of the oscillations. A more automated
method which does not require unstable operation is relay–feedback which
is also used in auto–tuning of PID controllers to identify the same infor-
mation as here [Åström and Hägglund, 1984]. It should be noted that the
parameter ω̂ c does not only depend on the client properties, but also on
the operating point of the system, and thus on numerous factors, such as
the control–signal level, the arrival rate, and other disturbances.

6.2 Stability Analysis

Under the assumptions used in the previous chapter, the Nyquist dia-
grams of both the compensated system and uncompensated systems are
illustrated in Figs. 6.5 and 6.6. The first figure represents the case where
only feed–forward control is applied (K = 0), and where the uncompen-
sated system is on the stability limit (the Nyquist curve intersects with
the point −1). It is observed that the compensated system remains stable,
and can remain stable for an increase of ŵ of approximately 10%.
Figure 6.6 represents the case where feedback is used together with

feed–forward control (K = 0.1), and where the uncompensated system is
on the stability limit (the Nyquist curve intersects with the point −1). It
is observed that the compensated system remains stable, and can remain
stable for an increase of ŵ of 85%.
Evaluation of the closed–loop poles of the entire system (including

both feed–forward, feedback, and compensation) reveals the stability re-
sults presented in Fig. 6.7. The lines represent the transitions between
stability and instability in the parameter plane. Remember that the feed–
forward requires the choice of two parameters when the band–stop filter
is included. The area above a line represents unstable operation, while the
area below a line represents stable operation. It can be seen that the sta-
bility limit is pushed upwards when the band–stop filter is included. The
effect is most significant when the estimated resonance frequency (ω̂ c) is
close to the real resonance frequency (ω c), and the effect diminishes as
the error becomes more pronounced. An important observation is, that the
stability properties of the compensated system is always better than for
the uncompensated system. That is, from a stability point–of–view, there
are no drawbacks from implementing the band–stop filter.

111

Chapter 6. Redesign with Band-Stop Filter

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Without compensation
With compensation

Re(s)

Im
(s
)

Nyquist plot

Figure 6.5 Nyquist diagram for the system with feed–forward control. The es-
timated required work is ŵ=7.2833 ms, so the uncompensated system is on the
stability limit, while the compensated system has an amplification margin of 1.0936.

6.3 Verification by Simulation

The simulation model described in Chapters 4 and 5 was expanded to
include the band–stop filter. The operating point was as described in
the beginning of Chapter 4 (also listed in Table 5.2). Simulations were
performed for three configurations; without the feed–forward (PI control
alone), with feedback and uncompensated feed–forward control (similar
configuration as in Chapter 5), and with feedback and band–stop com-
pensated feed–forward. The whole point of including the compensation is
to expand the robustness towards inaccurate estimates of w̄, so the sys-
tem was simulated with different values of ŵ. All simulations showed the
response to a step in the arrival rate from 36.3 req/s to 51.3 req/s at
time t=6000 s. The parameter ω̂ c was chosen to 0.101 rad/s, and thus,
represents a quite accurate estimate of ω c.
The left of Fig. 6.8 shows how the system should behave if the esti-

mated parameter ŵ was estimated accurately (ŵ = w̄). Here, the effect

112

6.3 Verification by Simulation

−1 −0.8 −0.6 −0.4 −0.2 0 0.2
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Without compensation
With compensation

Re(s)

Im
(s
)

Nyquist plot

Figure 6.6 Nyquist diagram for the system with feedback control and feed–
forward control. The estimated required work is ŵ=14.61 ms, so the uncompensated
system is on the stability limit, while the compensated system has an amplification
margin of 1.856.

of the feed–forward clearly shows, as the transient of the system without
any feed–forward had a large over–shoot. Since the estimated value of w̄
was accurate, the uncompensated system performed very well, while the
compensated system showed some degradations in the performance. The
degradation occurred because information about the change in the sys-
tem was removed by the filter to some degree, and thus, the feed–forward
could not react as fast.
The left of Fig. 6.8 shows how the system behaved when some inac-

curacy in the estimate of w̄ was included. Now the systems with feed–
forward overcompensated for the disturbance, and therefore, the response
time actually decreased for a while when the arrival rate increased. The
difference between the compensated system and the uncompensated sys-
tem was not significant.
The left of Fig. 6.9 shows the situation where w̄ is very poorly esti-

mated. When ŵ=14 ms, ŵ was just below the stability limit. The simu-
lation showed no significant deviation between the compensated system

113

Chapter 6. Redesign with Band-Stop Filter

0 0.2 0.4 0.6 0.8 1 1.2
14

16

18

20

22

24

26

28

30

P
ar
am
et
er
ŵ
(m
s)

Parameter ω̂ c (rad/s)

Figure 6.7 Numerical investigation of the stability region for ζ = 1. The full
blue line represent the stability limit for the system when the band–stop filter is
applied, and the dashed line represent the system without the band–stop filter.
Configurations above a stability limit are stable (all poles have negative real parts)
while configurations below a stability limit are unstable (one or more poles with
positive real parts).

and the uncompensated system, but it can very well be argued that the
system performed better without any feed–forward at all.
The right of Fig. 6.9 shows the situation where w̄ is so poorly estimated

that the uncompensated system enters instability. Here, the compensated
system remains stable, which was the main purpose of the compensa-
tion. Still, the system without any feed–forward shows a more acceptable
performance than the compensated feed–forward controller.

114

6.3 Verification by Simulation

5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

Without compensation
With compensation
No deed−−forward

5000 6000 7000 8000 9000 10000
30

40

50

60

5000 6000 7000 8000 9000 10000
0

20

40

60

80

5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

5000 6000 7000 8000 9000 10000
30

40

50

60

5000 6000 7000 8000 9000 10000
0

20

40

60

80

Meas. response–time di, ŵ=5.04 ms Meas. response–time di, ŵ=7 ms

M
ea
s.
re
sp
on
se
–t
im
e
(s
)

Int. arrival–rate λ iInt. arrival–rate λ i

In
t.
ar
ri
va
l–
ra
te
(r
eq
/s
)

Control signal prControl signal pr

C
on
tr
ol
si
gn
al
(%
C
P
U
)

Time (s)Time (s)

Figure 6.8 Simulation results showing the transient behavior during changing
arrival rate for the three cases; when no feed–forward is applied, when the feed–
forward is applied without band–stop filter, and when the feed–forward is applied
with the band–stop filter.

115

Chapter 6. Redesign with Band-Stop Filter

5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

5000 6000 7000 8000 9000 10000
30

40

50

60

5000 6000 7000 8000 9000 10000
0

20

40

60

80

5000 6000 7000 8000 9000 10000
0

0.5

1

1.5

5000 6000 7000 8000 9000 10000
30

40

50

60

5000 6000 7000 8000 9000 10000
0

20

40

60

80

Without compensation
With compensation
No deed−−forward

Meas. response–time di, ŵ=14 ms Meas. response–time di, ŵ=16 ms

M
ea
s.
re
sp
on
se
–t
im
e
(s
)

Int. arrival–rate λ iInt. arrival–rate λ i

In
t.
ar
ri
va
l–
ra
te
(r
eq
/s
)

Control signal prControl signal pr

C
on
tr
ol
si
gn
al
(%
C
P
U
)

Time (s)Time (s)

Figure 6.9 Simulation results showing the transient behavior during changing
arrival rate for the three cases; when no feed–forward is applied, when the feed–
forward is applied without band–stop filter, and when the feed–forward is applied
with the band–stop filter.

116

6.4 Validation by Experiments

6.4 Validation by Experiments

The band–stop filter was implemented on the testbed described in Chap-
ter 3 along with the controllers described in Chapter 5. The condition
of all the experiments were as described in the beginning of Chapter 5
(also listed in Table 5.2), and only the case of the combined feedback and
feed–forward controller was investigated. The system was tested for dif-
ferent values of ŵ to investigate if the compensation link expanded the
robustness as suggested by the analysis, and also different values of ω̂ c
were tested to investigate the robustness towards inaccurate estimates of
ω c. Figs. 6.10 - 6.12 show the results of six experiments, all in the same
order. The upper left of Figs. 6.10 - 6.12 repeat the results of the uncom-
pensated system from Chapter 5. The system was unstable for a highly
over–estimated w̄. Under the same conditions, the compensated system
remained stable (the three experiments shown to the right of the figure),
even for different values of ω̂ c. This supports the analysis presented in
Fig. 6.7, which predicted that the compensated system would remain sta-
ble for values of ŵ slightly above the stability limit of the uncompensated
system, even for relative large faults in the estimate of ω c.
The middle left parts of Figs. 6.10 - 6.12 show that the compensated

system remained stable when ŵ was increased further, but as expected
from the analysis, a limit existed, where even the compensated system
became unstable. This is seen in the bottom left parts of Figs. 6.10 - 6.12,
where ŵ was so high that the system entered oscillations.

117

Chapter 6. Redesign with Band-Stop Filter

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

ŵ=8 ms, ω̂ c=0.05 rad/s

ŵ=10 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.10 rad/s

ŵ=15 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.20 rad/s

ŵ=8 ms, no band–stop filter

M
ea
s.
re
sp
on
se
–t
im
e
d
i(s
)
M
ea
s.
re
sp
on
se
–t
im
e
d
i(s
)
M
ea
s.
re
sp
on
se
–t
im
e
d
i(s
)

Time (s)Time (s)

Figure 6.10 Experimental results showing the internal measured response–time
di when utilizing the band–stop filter. The upper left figure shows the results when
the band–stop filter is not applied, and represents the same experiment as in the
lower left of Fig. 5.19.

118

6.4 Validation by Experiments

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

0 500 1000 1500 2000 2500
0

50

100

150

ŵ=8 ms, ω̂ c=0.05 rad/s

ŵ=10 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.10 rad/s

ŵ=15 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.20 rad/s

ŵ=8 ms, no band–stop filter

In
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)I
n
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)I
n
t.
ar
ri
va
l–
ra
te

λ
i
(r
eq
/s
)

Time (s)Time (s)

Figure 6.11 Experimental results showing the internal measured arrival–rate λ i
when utilizing the band–stop filter. The upper left figure shows the results when
the band–stop filter is not applied, and represents the same experiment as in the
lower left of Fig. 5.20.

119

Chapter 6. Redesign with Band-Stop Filter

0 500 1000 1500 2000 2500
0

50

100

0 500 1000 1500 2000 2500
0

50

100

0 500 1000 1500 2000 2500
0

50

100

0 500 1000 1500 2000 2500
0

50

100

0 500 1000 1500 2000 2500
0

50

100

0 500 1000 1500 2000 2500
0

50

100

ŵ=8 ms, ω̂ c=0.05 rad/s

ŵ=10 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.10 rad/s

ŵ=15 ms, ω̂ c=0.10 rad/s ŵ=8 ms, ω̂ c=0.20 rad/s

ŵ=8 ms, no band–stop filter

C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)
C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)
C
on
tr
ol
si
gn
al
p
r
(%
C
P
U
)

Time (s)Time (s)

Figure 6.12 Experimental results showing the control signal pr when utilizing
the band–stop filter. The upper left figure shows the results when the band–stop
filter is not applied, and represents the same experiment as in the lower left of
Fig. 5.21.

120

6.5 Discussions and Conclusions

6.5 Discussions and Conclusions

This chapter has presented a compensation method to expand the stability
range of the feedback/feed–forward configuration presented in Chapter 5,
which has showed to become unstable when a certain parameter is cho-
sen too large. The solution presented in this chapter introduces a new
parameter (ω̂ c) which represents the estimate of the frequency of the os-
cillations that the system will enter, if it becomes unstable. So, basically,
the method suggests to improve the robustness towards one estimation
error by introducing another. The estimation of ω̂ c is not as critical as the
estimation of ŵ, since a poorly estimated ω̂ c will only reduce the effect of
the compensation, and the worst scenario is that the the compensated sys-
tem becomes equal to the uncompensated. However, the more accurately
ω̂ c is estimated, the more the robustness is increased.
The method to find ω̂ c is not investigated in depth here. Systematic

methods do exist, but require retuning on a regular basis, sinceω c depends
on numerous factors, such as arrival rate, control signal level, and more.
As with most other systems, this system holds a trade–off between

robustness and performance, but in this situation, the performance does
not seem to suffer that much from including the compensation. As both
the compensated and the uncompensated system generally suffers from
reduced transient performance for large estimation errors of ŵ, alternative
methods to estimate ŵbecomes attractive. The next chapter presents a
control scheme where ŵis estimated online.

121

7

Improved Feed–Forward

Control by Prediction

In this chapter an existing feed–forward strategy is ex-

panded in order to self–adapt to unknown, and possibly

slowly varying, parameters. The objective of control is the

response time, and the actuation method is the same type

of virtualization as assumed in Chapters 4 and 5. The

proposed method is compared to the original method and

to a queuing–theory based method similar to the one de-

scribed in Chapter 5. The focus of this chapter is the im-

provement of the feed–forward mechanism, and the feed-

back design is thus not treated in greater detail. The ma-

terial presented in this chapter is based on the work pre-

sented in [Kjær et al., 2007; Kjær et al., 2008; Kjær et al.,
2009]

As described in Section 3.3, one view is to consider the control of a web
server as mainly a disturbance–rejection problem. If the disturbances are
not measurable, their effect can only be detected after they have propa-
gated through the system to the outputs. A more desirable behavior can be
obtained if the disturbances are detected and compensated for at an early
stage. By measuring the disturbances, feed–forward mechanisms are fea-
sible. Here the problem is that a fairly accurate model of the relationship
between the disturbance and the output is needed. In this chapter such a
model is developed and verified towards other solutions.

122

7.1 Control Design

7.1 Control Design

The objective of the controller is to fulfill the SLA of the application, that
is to keep the average response–time below a reference value, dr , at the
same time as the reserved share of CPU capacity for the application, pr,
is minimized. In steady–state, this can be obtained by feedback mech-
anisms including integral effects (such as integral controllers and step
controllers), which are tuned conservatively to avoid oscillations. How-
ever, when changes in the workload occur, this solution is far too slow and
a more advanced adjustment of the control signal is necessary. Therefore,
it is an objective to remove effects of load–changes as fast as possible.
From a control–theoretic perspective, the system has one control in-

put, the reserved CPU capacity, pr, and two disturbance inputs, the arrival
times of requests, a, and the required work, w. The control objective is to
alter pr in order to maintain the output, i.e. the response time, d, close to
the reference value dr despite the behavior of the two disturbances. The
interaction between the controller and the server system is illustrated in
Fig. 7.1. It is assumed that the arrival times of requests, a, the instanta-
neous number of requests in the server, ñ, and the response times, d, are
available for measurements. Also, it is assumed that the reserved CPU
capacity, pr, can be set online at certain time intervals. The controller
will have a larger potential to handle changes in the arrival rate than in
the required–work distribution as the controller has direct access to the
behavior of the arrivals through measurements. Changes in the required–
work distribution are much harder to detect since they are seldom directly
measurable, and often the changes will have to propagate to the response
times before being recognized.
Figure 7.2 illustrates a control scenario consisting of a feedback con-

troller to assure convergence of the response times and a feed–forward
controller to assure fast response to changes in the measured disturbance
(the arrival rate). This combination of feedback and feed–forward control
has been used extensively within the field of automatic control and also
in the more specific case of web–server control [Liu et al., 2006; Lu et al.,
2003; Henriksson et al., 2004]. Accurate models of the system can be hard
to find, so feedback is an attractive solution to ensure that the CPU re-
sources adapt as deviations between the measured response time and the
desired response time are observed. Changes in the arrival rate will re-
quire changes in the allocated CPU–capacity if the response times are
to remain the same. The feed–forward controller uses information about
the arrival rate and provides some suggestion on how to compensate for
the change. This suggestion is usually based on a model, and as stated
earlier, accurate models are hard to obtain. The resulting compensation
may therefore be inaccurate, but here, the feedback controller will com-

123

Chapter 7. Improved Feed–Forward Control by Prediction

Server

Controller

a ñ pr

d

Arrivals Departures

w
Disturbances

Process output,

feedback signal

Process input,

control signal

Feed–forward signal

Figure 7.1 An illustration of the control system. Full–line arrows indicate how
requests arrive and depart from the server. Dashed arrows indicate signals sent
between the server and the controller.

Feed–forward
controller

a w

dr

dFeedback
controller

Web server
pr

p f f

Controller

p f b

Figure 7.2 Block diagram of a combined feedback, feed–forward setup.

pensate. The feedback mechanism reacts when an error in the response
times has been observed, and action is taken rather conservatively to avoid
instability. This means that the more inaccurate the feed–forward com-
pensation is, the longer time is required for the controller to compensate
for the change in the arrival rate, and the deviation of the response time
may also be larger in amplitude. It is therefore of high relevance to find
an efficient and accurate method to derive a compensation signal for the
feed–forward controller.
Queuing–theoretic expressions have been used for feed–forward sig-

nals [Liu et al., 2006; Lu et al., 2003]. These expressions are based on the

124

7.1 Control Design

Accumulated jobs

ñ

Known Predicted

tnow

ŵ/pr

Time

Queuing time Processing time

goes

Figure 7.3 Accumulated jobs in a single server queue.

measurement of the arrival times and information on the average required
work. Another feed–forward strategy is based on a prediction method, pre-
sented in [Henriksson et al., 2004]. This method incorporates information
of the instantaneous number of jobs present in the system (ñ) and also an
estimate of the average required work. All these feed–forward controllers
are based on an estimate of the required work, which is obtained offline.
That is, before the system is set into operation, the server is exposed to
some traffic (often with low arrival rate), and the average required work
is then estimated from measured data. This estimate is then inserted into
the controller, and the system is put into real operation. As the required
work is not necessarily constant, the estimated required work may easily
deviate from the real value, and the feed–forward signal can easily be
inaccurate. To avoid this situation, the required work can be estimated
online. In the following, a feed–forward model is derived. It is based on
work presented in [Henriksson et al., 2004], where the required work is
estimated offline.

Prediction Model

The model is based on a prediction approach similar to the one derived
by [Henriksson et al., 2004] as illustrated in Fig. 7.3.
The server is modeled as a single–server system where requests are

placed in an infinite queue and then processed in a First-In-First-Out
fashion. The time to process a job is modeled as being inversely propor-
tional to the reserved share of the CPU, pr , because the CPU is the most
dominant factor limiting the system, which is a main assumption stated
in Section 3.1.
Consider the case where a request leaves the server at time tnow leaving

ñ remaining jobs as in Fig. 7.3. The area to the left of tnow represents the
time that the present jobs have spent in the server, which is known from
measurements in the server. The area to the right of tnow represents the
unknown future, which can only be predicted. By assuming that all jobs
will have the same required work, ŵ, and that pr remains constant, a

125

Chapter 7. Improved Feed–Forward Control by Prediction

prediction of the average response time d̂ is given by

d̂ = 1
ñ

∑

i

(tnow − ai) + ŵ
(ñ+ 1)
2pr

(7.1)

where a is the arrival time of request i. The first term on the right hand
side represents the known area of the figure, and the second term repre-
sents the prediction. The arrival times and the required work are treated
as disturbances, which only means that they are quantities not affectable
by the operator or by the computer system itself. Of the disturbances, only
the arrival times are measurable.

Proposed Prediction Scheme

The prediction model described in Section 7.1 can be useful for online
adjustment of the CPU–allocation parameter, pr, but it relies on several
measurements. The instantaneous number of jobs in the server ñ and
their arrival times, a, are quantities often registered by a real server.
However, to accurately estimate the average required work, ŵ, is not al-
ways trivial. In a single server with a queue, ŵ could be estimated by
measuring former service times, corrected with the current value of pr.
However, more complex systems with for example several protocol layers,
or for processor sharing systems, this approach is not feasible. The time
to process a request depends on other factors, such as the current number
of requests. Therefore, to let the control strategy rely on measurements
of the required work, will reduce the applicability of the method as the
required work is seldom measurable.
In classic linear estimation problems, models are used to estimate non–

measured quantities; see for example [Åström and Wittenmark, 1997].
Often, the measurable variables are compared to the estimated values,
and a feedback mechanism tries to minimize the estimation error. The
response time, d, is considered as a measurable output and the required
work, w, as a state to be estimated. In Fig. 7.4 a PI controller is used
to correct the estimated required work until the predicted response time
matches the measured required work. Equation (7.1) is used as the predic-
tion model. To stress that the estimator does not rely on measurements of
w, an artificial variable, z, is imposed to act as the input to the model. The
interpretation of this artificial variable is somehow strange. The value of z
represents the required work that corresponds to a certain response time,
if the required work would be deterministic (as in Fig. 7.3). As the re-
quired work is most likely not deterministic, the value of z does not match
the average required work ŵ. However, the two variables are correlated,
so a change in ŵ will also result in a change in z.

126

7.1 Control Design

As the real required work cannot be negative, the artificial variable,
z, is not allowed to become negative. The prediction model is then given
by

zk =
{

vk f or vk > 0
0 else

(7.2)

d̂k = 1
ñk

∑

i

(tnow − ai) +
(ñk + 1)
2pr

zk (7.3)

where v is the control signal from the PI controller. The integral part of
the PI controller is implemented with a variable sampling time as the
estimation is updated when a request departs from the server which hap-
pens sporadically and not periodically. Because of the saturation on the
control signal formulated in Eq. (7.2) integrator anti–windup is included
as the last term in Eq. (7.4). The PI controller is then given by

Ik = Ik−1 +
hkK

Ti
(dk − d̂k) +

hk

Ta
(vk−1 − zk−1) (7.4)

vk = K (dk − d̂k) + Ik (7.5)

where Ti and K are controller parameters, and I is the integrated predic-
tion error. The parameters Ti and K are chosen to balance the trade–off of
fast convergence and the robustness towards instability. The variable hk is
the time between the previous and the current sampling. Using a varying
sampling period in the integrator has earlier been shown to be superior
to fixed sample–periods for some event based systems [Årzén, 1999]. The
parameter Ta determines the convergence rate of the anti wind–up; see
[Åström and Wittenmark, 1997].
The value of z has an interpretation as the required work, which cannot

be negative. The anti–windup (the last term of Eq. (7.4)) ensures stability
of the integral part in the PI controller when this restriction is imposed on
z in Eq. (7.2). The choice of initial value of I is not essential as long as it
resembles realistic values of ŵ. A sound choice is to initiate I to zero, and
let the predictor converge before the prediction signal is used (PI control
is used alone in the start–up phase).
Equations (7.4) and (7.5) form a general PI controller where the term

zk−1 is exchanged with the relevant control signal.

Proposed Predictive Feedback Controller (PFB)

The server system suffers from a significant time delay; a change in pr
will only propagate to measurements of the response time dafter a cer-
tain amount of time. In classic control theory, the performance of systems

127

Chapter 7. Improved Feed–Forward Control by Prediction

pr

z

a w

ñ

d

Web server

PI

controller

Prediction
error

Prediction

model

d̂

ñ,a
Dynamic predictor

Figure 7.4 Block diagram of predictor. The predictor can be interpreted as an
observer with state z.

with delays can be improved by prediction techniques such as the Smith
predictor; see [Åström and Hägglund, 2005]. Inspired by this idea, the
predicted response time is used as a proportional feedback signal

pp = −Kp f b(dr − d̂) (7.6)

to respond to errors that are not yet seen in the response time signal. The
prediction signal pp enters directly on the control input pr as illustrated
in Fig. 7.5, and the parameter Kp f b is used to scale the influence of the
prediction (the P controller in the figure). In order to handle model errors,
a periodic PI–controller from the actual response time is included. The
combination of the PI controller, the predictor and the P controller is in
the following sections called the Predictive Feedback Controller (PFB).
Figure 7.6 illustrates the control structure as a combination of feedback

and feed–forward control. Compared to the control structure in Fig. 7.2
the predicted response time is now used as input to the feed–forward.
It is an assumption that the reserved share of CPU capacity, pr , only

can be changed at some fixed time period, Ts. However, the estimation is
not restricted by the sampling period. The estimation is updated for each
departure ensuring that the response time prediction, d̂, and the state, z,
always incorporate the newest measurements. The involved signals can be

128

7.1 Control Design

d̂

P

controller

Dynamic

predictor

dr

PI

controller pr

Web server
d

wa

pp

goes

Figure 7.5 Block diagram of the the proposed PFB controller.

Feed–forward
controller

a w

dr

dFeedback
controller

Web server
pr

p f f

Controller

Dynamic
predictor

p f b

Figure 7.6 Block diagram of the proposed control method, expressed as a combi-
nation of feedback, feed–forward setup. Note that the variable ñ is not included in
the diagram.

quite irregular, which can lead to irregular estimation and poor control
performance. Therefore, filtering may be required, but this will be dis-
cussed in relation to the individual implementations as filtering depends
highly on the specific measurements and memory considerations.

Controllers for Comparison

Earlier work presents solutions where feed–forward and feedback con-
trol are combined as illustrated in Fig. 7.2 [Liu et al., 2006; Lu et al.,
2003; Henriksson et al., 2004]. Similar to the proposed prediction–based
controller, the feed-forward uses measurements of the disturbances to
change the control signal pr before a change in the disturbance is seen in
the response time, and a PI controller to remove the remaining station-

129

Chapter 7. Improved Feed–Forward Control by Prediction

ary errors. In order to compare the performance of the proposed controller
to other feed–forward strategies, the controllers for comparison are used
together with the same periodic PI–controller as used for the proposed
controller.
As comparison, two feed–forward solutions are presented, which both

assume that an estimate of the average required work is available. An
often used procedure to obtain the estimate is to measure the response
times at a very low arrival rate (offline), as described earlier. Assuming
that only one job is present, the response times can be used to estimate
the required work. The estimate is then used online at higher arrival
rates assuming that the required work will remain unchanged. Obviously,
this method is not robust towards changes in the required work as, for
example, when the document popularity within a certain web site sud-
denly changes. Alternatively, response times can be observed at dedicated
high–load experiments and an estimate of the average required work can
be found by assuming some particular queuing–model, as e.g. an M/M/1
model. This kind of approach can also lead to inaccurate estimates as the
assumed model seldom reflects the reality and it does not handle changes
during operation.

Inverse Prediction Feed–Forward (IPFF) This is a slightly modified
version of the feed–forward controller presented in [Henriksson et al.,
2004]. The feed–forward signal p f f , which enters the control signal ac-
cording to Fig. 7.2, is found by rearranging Eq. (7.1) so that p f f is the
control signal required in order to obtain the desired response time dr
(d̂ is exchanged with the desired value dr). Thereby, the feed-forward is
given by

p f f = ñ+ 1
2(dr − 1

ñ

∑

i(tnow − ai))
ŵ . (7.7)

In [Henriksson et al., 2004], the numerator yields ñ and not ñ+ 1.

Queuing–Theoretic Feed–Forward (QFF) The feed–forward part in
this controller is based on a queuing–theoretic model. The average re-
sponse time of a steady M/G/1-PS system is given by

d̄ = x̄/(1− λ x̄) (7.8)

where λ is the average arrival rate and x̄ is the average service time
[Kleinrock, 1967; Noguahi and Oizurnih, 1971]. Equation (7.8), or vari-
eties hereof, have formed the base for other feed–forward designs in the
literature, e.g. [Liu et al., 2006; Lu et al., 2003]. In the specific case of pr

130

7.2 Verification by Simulations

being constant we have x̄ = w̄/pr. Assuming that w̄ is known (and exact)
and λ is estimated by some windowing mechanism (λ̂), a feed–forward
signal can be formed as

p f f = w̄ (1+ λ̂ dr)/dr (7.9)

which enters the control signal as illustrated in Fig. 7.2.

7.2 Verification by Simulations

The proposed PFB–controller is mainly designed to improve the transient
performance at workload changes. However, it is also expected to handle
the short–term stochastic variations observed in the stead–state situa-
tions similar to the controllers for comparison. Simulations of a gener-
alized server system with CPU resource allocation were performed. The
simulation program was written in Java and used an event-based simu-
lation kernel.
Steady–state and transient simulations were performed. All steady–

state results were evaluated after all transients had been removed. Tran-
sient behavior was investigated after convergence to steady–state, and
the simulations were allowed to run for a sufficiently long time for the
transient to settle.

Simulation model

The server system was modeled as a single server queue with processor–
sharing. New requests arrived with an average arrival rate of λ requests
per second. The requests had a reserved share of pr of the CPU capac-
ity. The average required–work was w̄. Since the server used processor–
sharing, w represents the service time a request would get if it were the
only request processed in the system. When several requests are processed
at the same time, the CPU capacity is divided equally among the requests.
Both the inter-arrival times and the required work were modeled as

second order hyper–exponential distributions (H2 distribution) in order to
model a bursty system. An H2 distributed variableψ is with probability β
a realization of an exponentially distributed variable with expected value
ξ1, and with probability (1 − β) a realization of exponential distributed
variable with expected value ξ2. The following parameters were used

β = (C2 − 1)/(C2 + 161) (7.10)
ξ1 = 0.1 x̄ , ξ2 = ψ̄ (1− β)/(1− 10β) (7.11)

where C2 and ψ̄ were the squared variance coefficient and average value
of the H2–distributed sequence, respectively. The value of C2 was chosen

131

Chapter 7. Improved Feed–Forward Control by Prediction

to be equal for the inter–arrival times and the required work distributions
and C2=5 unless stated differently.
The control parameters for the predictor were chosen as Ti = 0.0005,

K = 0.000001, Ta = 0.5. The parameters for the periodic controller were
chosen as K = 0.000014, Ti = 0.010, Ta = 1010. The proportional gain of
the PFB controller was chosen as Kp f b = 0.2. The parameters have been
found by running simulation tests and adjusting the parameters by hand.
The involved signals can be quite irregular, which can lead to irregu-

lar estimation and poor control performance. All the tested periodic PI–
controllers use the comparison of the reference and a filtered response
time dp; dpk = (d

p
k−1+ dwk)/2 where dwk is the average response time of the

jobs that departed under the interval between sampling k− 1 and k.
To update the predictor, the predicted response–time is compared to

a first order auto–regressive filtered measured response–time with filter
constant α = 0.001. The auto–regressive filter is implemented as

d
f
i = (1−α) d fi−1 +α di , (7.12)

where i indicates the departing job number and di is the response time
of job i.
The response time prediction can also be quite irregular. An obvious

idea is to apply a filter directly to the predicted response time d̂. This
has an undesirable effect due to the nonlinear structure. Linear filtering
of the term 1/pr would favor small values of pr and could lead to wrong
predictions. Also, a linear filtering of the term

∑

i(tnow−λ i) would weight
the jobs that have a long service time over those having a short response
time, thus increasing the average prediction. The filtering must there-
fore be placed with care. The best results have been obtained by simply
filtering ñ; n̄ fi = 0.999 n̄

f
i−1 + 0.001 ñi, which is an event–based filter.

The IPFF controller is based on inverse prediction. That is, any re-
sponse time error is compensated in one update. A similar idea is used in
classical minimum–variance control, which is known to have poor robust-
ness properties; see [Åström, 2006]. The result is an undesirable irregular
control signal and some filtering is imposed. Applying a filter to the control
signal would drive the average control signal off due to the nonlinearity of
the fraction in Eq. (7.7). Therefore, the numerator and denominator are
filtered separately;

Pi = 0.999 Pi−1 + 0.001 (ñ+ 1) w̄ (7.13)

Qi = 0.99Qi−1 + 0.01
1
ñ

∑

i

(tnow − ai) (7.14)

pip f f = Pi

2(dr − Qi)
(7.15)

132

7.2 Verification by Simulations

Steady–State Simulations

The traffic load is often described by two quantities; the average arrival
rate (λ) and the nominal service rate (1/w̄). Often, the traffic is quantified
by the offered load, ρ = λw̄. Assuming a single server system, a low value
of ρ means a lightly loaded system, whereas values close to one mean a
heavily loaded system. If ρ exceeds one, the system lacks CPU capacity
to serve incoming requests, which means that the system is overloaded.

Performance when varying offered load Fig. 7.7 illustrates the per-
formance metrics when the arrival rate was varied in a range correspond-
ing to ρ = 0.05 − 0.90. It indicates that all the controllers managed to
keep the average response time near the reference. Remember that the
95% confidence interval was ±0.1 s, so the response time results show no
significant deviation between the controllers.
All controllers performed best when the offered load was relatively

high as the loss of CPU capacity, q, then was small. In the simulations,
the offline estimate of the required work, ŵ, used in the IPFF and QFF
controllers, corresponded exactly to the average required work w̄. The pro-
posed PFB controller estimated this parameter online, but showed no sig-
nificant degradation in performance because of this. The QFF controller
showed a higher variation–cost Vd, which indicates a less smooth response
time than the other controllers.

Robustness to changes in the required work On a real web site, it
is unrealistic that the average required work, w, will be constant during
longer periods since the document popularity is likely to change. There-
fore, a control system must be robust to changes in the average required
work. Fig. 7.8 presents the performance metrics when the required work
was varied in a range corresponding to ρ = 0.14 − 0.875. In the simula-
tions, the offline estimate of the required work, ŵ was therefore inaccu-
rate.
The results reveal that all the controllers managed to keep the average

response time near the reference (the reference was within the confidence
interval). Also here, the QFF controller performed rather poorly over the
full range since it yields both a higher loss of CPU capacity and also a
large variation–cost Vd. Despite the inaccuracy of the offline estimate of
the required work, the IPFF controller performed well in steady–state be-
cause of the robustness of the PI controller. In general, a PI controller
can compensate well in steady–state for well–behaved feed–forward er-
rors. However, poorly designed feed–forward controllers will not always
be handled by the PI controller.
As the arrival rate becomes small, the number of measurements avail-

able to perform a prediction decreases (the predictions are performed

133

Chapter 7. Improved Feed–Forward Control by Prediction

0 10 20 30 40 50 60 70 80 90 100
0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

Arrival rate λ (req/s)

R
es
po
n
se
ti
m
e
(s
)

V
ar
ia
ti
on
C
os
t
V
d
(m
s2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

PFB

QFF
IPFF

Figure 7.7 Averaged steady–state simulations for different arrival rates λ . C2=5,
w̄=0.01 s, ŵ=0.01 s, Ts=1 s, dr=1.0 s.

with fixed time–periods). The variance of the prediction increases and
thereby generating a more noisy control signal, leading to higher loss of
CPUcapacity. This is observed in both Fig. 7.7 and 7.8.

Response Time Reference By ensuring that there always are jobs to
process, the loss of CPU capacity will be small. This is obtained by allow-
ing a higher average response time than what may be possible with more
allocated resources. Fig. 7.9 shows that there was a limit where it was not
worth to increase the response time reference any further. In the given
case, response time references above approximately 1 s did not result in
any significant reduction in the loss of CPU capacity. It did not matter
for the loss of CPU capacity whether there were few (but always some) or
many jobs in the system. Thus, a higher response time reference would
only generate higher average response time but no improvements. When
the response times became small, the risk of an empty system became sig-
nificant, which introduced loss of CPU capacity. This is clearly indicated
for the low response time reference of Fig. 7.9.

Robustness to traffic variance In order to investigate the robustness
for more bursty arrival traffic, simulations were performed where the

134

7.2 Verification by Simulations

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

1

2

3

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0.8

0.9

1

1.1

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
2

4

6

8

Required work w̄ (s)

R
es
po
n
se
ti
m
e
(s
)

V
ar
ia
ti
on
C
os
t
V
d
(m
s2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

PFB

QFF
IPFF

Figure 7.8 Averaged steady–state simulations for different average required work
w̄. C2=5, λ=70 req/s, ŵ=0.01 s, Ts=1 s, dr=1.0 s.

squared coefficient of variation for the arrival process was varied. Fig. 7.10
shows how the proposed controller, PFB, performed under other types
of traffic at different arrival rates. In general, Fig. 7.10 indicates that
the controller handles different levels of burstiness of the traffic quite
well. The variation–cost, Vd, increased with the burstiness of the arrival
process. However, this is an expected result.

Sampling interval Fig. 7.11 shows results that are interesting from an
implementation point of view. In some cases, the sampling period for the
update of pr may not be a free choice, but can be restricted by software and
hardware limitations. Generally, the results presented in Fig. 7.11 show
that the loss of CPU capacity increases with the sampling period. Espe-
cially for low traffic, the proposed controller showed degraded performance
as the sampling period was increased. The variation–cost, Vd, increased
with the sampling period and as a result, higher loss of CPU capacity was
observed. For higher arrival rates, the controller showed acceptable per-
formance with sampling periods several times higher than the response
time reference. However, when the sampling period was longer than about
seven times the response time reference, the performance started to de-

135

Chapter 7. Improved Feed–Forward Control by Prediction

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

15

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

5

10

Response time reference dr(s)

R
es
po
n
se
ti
m
e
(s
)

V
ar
ia
ti
on
C
os
t
V
d
(m
s2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

PFB

QFF
IPFF

Figure 7.9 Averaged steady–state simulations for different response time refer-
ences dr . C2=5, λ=70 req/s, w̄=0.01 s, ŵ=0.01 s, Ts=1 s.

grade. This can cause a serious constraint on the response time references.

Transient Simulations

One strong argument to use feedback in the control is the robustness to-
wards sudden changes in the environment. Therefore, it is of high impor-
tance to also investigate the transient behavior of the controlled system.
Figure 7.14 illustrates how the two main metrics, the response time and

the loss of CPU capacity, behave under transients. Using cost–functions
averaged over several simulations, improves the accuracy of the results
(smaller confidence intervals). Preferably, both cost–functions should be
close to zero to yield good performance. The two cost–functions are not nec-
essarily contradictory as the average response time can be held constant,
if the CPU capacity is allocated just sufficiently and thus minimizing the
loss of CPU capacity. However, the controllers may solve this problem
differently, which can be observed in the figure.
The top of Fig. 7.14 illustrates a situation where the average required–

work, w̄, was suddenly doubled. In the beginning of the simulation, the
offered load was relatively low with ρ=0.4 (λ=50 req/s, w̄=0.008 s). At

136

7.2 Verification by Simulations

0 2 4 6 8 10 12 14
0.8

0.9

1

1.1

0 2 4 6 8 10 12 14
0

2

4

6

0 2 4 6 8 10 12 14
0

2

4

6

Traffic variance coefficient C2 (-)

R
es
po
n
se
ti
m
e
(s
)

V
ar
ia
ti
on
C
os
t
V
d
(m
s2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

λ = 25
λ = 50
λ = 70

Figure 7.10 Averaged steady–state simulations of the proposed PFB controller
for different arrival rates and different variance coefficient C2. w̄=0.01 s, ŵ=0.01 s,
Ts=1 s, dr=1.0 s.

time t=1000 s the average required–work was doubled (w̄=0.016 s), so
that the system was exposed to high–load traffic with ρ=0.8. The offline
estimated required–work was chosen to be ŵ=0.01 s to illustrate a slightly
inaccurate estimate within the tested range. It can be observed that the
proposed PFB controller is superior to the other controllers in the case of
changes in the required work w̄ , as it yields a smaller cost in the response
time error and a smaller cost in the loss of CPU capacity. This behavior
is expected since the PFB controller estimates the value of w̄ online while
the two other controllers use offline estimates.
The middle of Fig. 7.14 illustrates that the proposed PFB controller

handles a change in the arrival rate better than the IPFF controller. The
QFF controller handles the transient with slightly smaller response time
errors, but with substantially larger loss of CPU capacity. This behavior
can be explained by the behavior also seen in Figs. 7.12 and 7.13, which
show a clear over–allocation of CPU resources for the QFF controller. Fig-
ure 7.12 illustrates simulation results of a single simulation run, which
is quite noisy. To remove noise, 250 similar simulation runs were con-

137

Chapter 7. Improved Feed–Forward Control by Prediction

1 2 3 4 5 6 7 8 9 10
1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

Sampling period Ts(s)

R
es
po
n
se
ti
m
e
(s
)

V
ar
ia
ti
on
C
os
t
V
d
(m
s2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

λ = 25
λ = 50
λ = 70

Figure 7.11 Averaged steady–state simulations of the proposed PFB controller for
different sampling period Ts; Arrival rate λ=50 req/s; Variance coefficient C2=5;
Average required work w̄=0.01 s; Response time reference dr=1.0 s.

ducted with different seeds in the random–number generator, and the
results were averaged. This type of filtering is computationally expensive,
but does not influence the dynamics as time–domain filters does. For
all simulation runs the system was initially exposed to a low–load traf-
fic with ρ=0.35 (λ=50 req/s, w̄=0.007 s). Again, the offline estimated
required–work was chosen to be ŵ = 0.01 s to illustrate a slightly inaccu-
rate estimate. At time t=1000 s the arrival rate was doubled, so that the
system was exposed to high–load traffic, ρ=0.7. Fig. 7.13 also shows that
the proposed PFB controller handles the change in the arrival rate with
a smaller deviation in the response time but with a slower convergence.
The results presented in the bottom graph of Fig. 7.14 had traffic vari-

ance coefficients C2=1.1 and shows that in the case of lightly bursty traf-
fic, the IPFF controller handles the transient better than the proposed
PFB controller. In this situation, the inverse nature of the IPFF controller
becomes very beneficial because the model resembles the reality fairly
well. The PFB controller does not rely on an inverted model but rather on
a feedback mechanism, and does therefore not improve as much from the
less bursty traffic.

138

7.2 Verification by Simulations

−100 0 100 200 300 400 500 600
0

1

2

3

4

−100 0 100 200 300 400 500 600
0

5

10

−100 0 100 200 300 400 500 600
0

50

100

PFB

QFF
IPFF

Ref.

Time (s)

R
es
po
n
se
ti
m
e
(s
)

C
on
tr
ol
S
ig
n
al
(%
C
P
U
)

L
os
s
(%
C
P
U
)

Response Time, d

Control Signal, pr

Loss of CPU, q

Figure 7.12 Time–domain transient simulation results with changing arrival rate
and high traffic burstiness (C2=5). Each plot represents a single simulation run.

−100 0 100 200 300 400 500 600
0

1

2

3

4

−100 0 100 200 300 400 500 600
0

5

10

−100 0 100 200 300 400 500 600
0

50

100

PFB

QFF
IPFF

Ref.

Time (s)

R
es
po
n
se
ti
m
e
(s
)

C
on
tr
ol
S
ig
n
al
(%
C
P
U
)

L
os
s
(%
C
P
U
)

Response Time, d

Control Signal, pr

Loss of CPU, q

Figure 7.13 Time–domain transient simulation results with changing arrival rate
and high traffic burstiness (C2=5). Each plot represents an average of m=250 sim-
ulation runs.

139

Chapter 7. Improved Feed–Forward Control by Prediction

0 2 4 6 8

0 0.2 0.4 0.6 0.8

0 0.2 0.4 0.6 0.8

PFB

PFB

PFB

IPFF

IPFF

IPFF

QFF

QFF

QFF

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.81.2 1

24

I95(Jd)
I95(Jq)

Jq(%CPU2/s) Jd(s)

Jq(%CPU2/s) Jd(s)

Jq(%CPU2/s) Jd(s)

Figure 7.14 Cost–function results over transient period of length tt (defined in
Eqs. (3.1) and (3.2)). Each cost function is an average over m simulation runs. Top:
Transient simulations with changing average required–work (m=150, tt=1700 s).
Middle: Transient simulations with changing arrival rate and high traffic bursti-
ness. (C2=5, m=250, tt=300 s). Bottom: Transient simulations with changing ar-
rival rate and low traffic burstiness. (C2=1.1, m=150, tt=300 s). Generally, the
closer a metric is to zero, the better. A controller can show a better performance in
one metric but not in the other (e.g. the QFF vs. the other controllers in the middle
of the figure), but clear improvements in both metrics can also be seen as in the
top of the figure where the PFB controller performs better than the others in both
metrics.

A general observation from Fig. 7.13 and Fig. 7.14 is that the QFF
controller responds poorly to changes. In the case of increasing average
required–work the feed–forward controller did not make any difference
because it only considered the arrival rate. Therefore, the periodic PI–
controller had to handle the change resulting in a large deviation of both
the response time and a large loss of CPU capacity. In the cases where the
arrival rate changed, the QFF feed–forward over–compensated resulting
in a large loss of CPU capacity.
However, for all high–burstiness simulations, the proposed PFB con-

troller showed superior transient response.

140

7.3 Verification by Experiments

7.3 Verification by Experiments

The experiential verification was conducted on the testbed described in
Chapter 3. The prediction algorithm was implemented immediately after
the measurement update in the log_transaction–hook; see page 54. The
location of the prediction algorithm was chosen for two reasons. First, it is
at this stage the request has been fully processed and the response time
can be calculated. Second, if the prediction should impose any overhead,
it will not add to the response time of the associated request since an
answer has been returned to the client
To avoid unnecessary delays caused by file accessing, data for individ-

ual requests were not saved. Instead, the relevant metrics were averaged
over a sample interval and saved after the control signal had been set.
All results presented here are based on such measurements. The sample
interval was 1 s for all experiments. Also, 10% of the CPU capacity was
reserved for the basic group (operating system and controller), and the
control signal was restricted to be in the interval 1% − 89%. The aver-
age required work estimate was set according to the offline experiments
to ŵ=11 ms which approximately corresponded to the estimated required
work of the initial traffic; see Table 3.2. The control parameters for the
predictor were tuned by hand. All parameters were as for the simulations
except for the parameter Ti, which was chosen as Ti = 0.0001. The pa-
rameters for the periodic PI–controller were chosen as K = 0.05, Ti = 3.0,
Ta = 10.0 except for the PFB, which was implemented with K = 0.4. The
proportional gain of the PFB controller was chosen as Kpf b = 0.003. The
feedback loop consisting of the PI controller and the linearized model of
Eq. (4.46), including the external buffers, remains stable in a relevant
range of operating points. Figure 7.15 shows the Bode diagrams for the
operating points w̄=5.04 ms, dr=100 ms, Mc=128, and two different ar-
rival rates; λ0=50 req/s and λ0=100 req/s. As seen in the figure, the
stability margins remain high. The stability of the system with the feed–
forward controllers have not been evaluated since only one of them (the
QFF controller) is modeled.
The periodic PI–controllers used the comparison of the reference time

and an average of the response times of the requests departed during the
last sampling interval. Compared to the response time, the response time
prediction already incorporates some averaging. Therefore, the response
time and the response time prediction were pre–filtered separately with
different filters, before being compared to form an estimation error for
the predictor. All three filters were implemented as a first–order auto–
regressive filters of the same structure as Eq. (7.12). The filter constant
used for the response time and the response time prediction were α =
0.0005 and α = 0.5, respectively. The filter constant for the estimation

141

Chapter 7. Improved Feed–Forward Control by Prediction

−80

−60

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
−2

10
0

10
2

−90

−80

−70

−60

P
ha

se
 (

de
g)

Frequency (rad/sec)

−60

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
−2

10
0

10
2

−90

−60

−30

P
ha

se
 (

de
g)

Frequency (rad/sec)

K = 0.05
K = 0.40

λ0=50 req/s λ0=100 req/s

Figure 7.15 Bode diagrams of the open–loop transfer functions for the two con-
trollers in the operation points λ0=50 req/s and λ0=100 req/s. The model includes
the external buffers. The gain margins are infinite for all four cases, and the phase
margins are between 93○and 127○. The black line indicate the phase margins.

error was α = 0.01. The feed–forward signal from the IPFF controller
was filtered with first–order auto–regressive filter with filter constant
α = 0.5.
Since the involved signals are very irregular, all time–domain results

are presented as 30 s averages.
As in Section 7.2, the investigations are divided into steady–state in-

vestigations and transient investigations. The steady–state behavior il-
lustrates how the controllers handle the short–term stochastic variations,
while the transient investigations reveal the controllers’ capability to han-
dle larger changes in the work load. The latter is the main focus of the
work presented in this thesis.

Steady–State Experiments

Fig. 7.16 shows results from a steady–state experiment with medium
load (λ=50 req/s) after the transient period. Figure 7.17 also illustrates
steady–state results in the time domain, but the accumulated variables
give more direct information on how much the variables deviate from the
desired values. The more steep a line is, the more the variable deviates

142

7.3 Verification by Experiments

1000 1020 1040 1060 1080 1100 1120
0

50

100

150

200

1000 1020 1040 1060 1080 1100 1120
0

50

100

1000 1020 1040 1060 1080 1100 1120
0

20

40

60

PFB

QFF
IPFF

Time (s)

R
es
po
n
se
ti
m
e
(m
s)

C
on
tr
ol
S
ig
n
al
(%
C
P
U
)

L
os
s
(%
C
P
U
)

Response Time, d

Control Signal, pr

Loss of CPU, q

Figure 7.16 Experimental steady–state results in the time–domain. λ=50 req/s.
ŵ=0.011 s, Ts=1 s, dr=0.1 s.

from the desired value, so the desired line is horizontal, which cannot
be obtained in practice. The figures reveal a trend similar for other work
loads; The queuing–theory based controller (QFF) shows the worst ca-
pability to maintain a steady response time compared to the two other
controllers. It is also observed that the control signal of the IPFF and the
PFB controllers are more unsteady than that of the QFF controller.
Fig. 7.18 illustrates average results of a number of steady–state ex-

periments of different average arrival rates λ . It shows that all the con-
trollers are capable of maintaining the average response time near the
reference. The IPFF and the PFB controllers showed similar capability
to keep a steady response time average (similar variation costs) at least
for medium and high load. The proposed PFB controller outperformed the
other controllers with regards to the loss of CPU capacity at high load,
but had the worst performance at low/medium load. These conclusions
correspond well with the observations from the simulations.
The level of the loss of CPU capacities were all an order of magnitude

higher than the simulation results with varying arrival rate (Fig. 7.7).
This is expected to be due to the different response–time references; 1 s

143

Chapter 7. Improved Feed–Forward Control by Prediction

2000 4000 6000 8000
0

50

100

150

200

250

2000 4000 6000 8000
0

1

2

3

4

5

6

7

8
x 10

4

2000 4000 6000 8000
0

1

2

3

4

5

6

7

8

9

10
x 10

4

PFB

QFF
IPFF

Time (s) Time (s) Time (s)

A
cc
u
m
u
la
te
d
R
es
po
n
se
–T
im
e
E
rr
or
(m
s)

A
cc
u
m
u
la
te
d
L
os
s
(%
C
P
U
)

A
cc
u
m
u
la
te
d
C
on
tr
ol
E
rr
or
(%
C
P
U
)

P

pd− dr p
P

q
P

ppr − p̄r p

Figure 7.17 Experimental steady–state results. Accumulated response-error and
accumulated loss of CPU capacity in the time–domain. λ=50 req/s. ŵ=0.011 s,
Ts=1 s, dr=0.1 s.

for the simulations and 0.1 s for the experiment. When the response times
are smaller, fewer requests are being treated simultaneously, and there is
a higher risk for the system to be empty occasionally and thus a higher
loss of CPU capacity. The simulation results with varying response time
reference presented in Fig. 7.9, support this argument.

Transient Experiments

The transient behavior of a controller shows how robust the controller is to
changes in the system, for example changes in the arrival rate. Therefore,
two sets of experiments with changing arrival rate were performed. In
the first experiment, the system was initially exposed to a medium–load
traffic with λ=50 req/s. After 150 s (at time t=0 s), the arrival rate
doubled, so that the system was exposed to high–load traffic. In the second
experiment, the system was initially exposed to high–load traffic, with
λ=100 req/s. After 150 s (at t=0 s), the arrival rate decreased rapidly to
λ=50 req/s. The disturbances are illustrated in Fig. 7.19.
Fig. 7.20 and Fig. 7.21 illustrate the results of the two sets of experi-

144

7.4 Discussions and Conclusions

20 30 40 50 60 70 80 90 100 110 120 130

96

98

100

102

20 30 40 50 60 70 80 90 100 110 120 130
0.5

1

1.5

2
x 10

4

20 30 40 50 60 70 80 90 100 110 120 130
0

5

10

Arrival rate λ (req/s)

R
es
po
n
se
ti
m
e
(m
s)

V
ar
ia
ti
on
C
os
t
V
d
(s
2
)

L
os
s
(%
C
P
U
)

Response Time

Variation Cost

Loss of CPU

PFB

QFF
IPFF

Figure 7.18 Averaged steady–state experiments for different arrival rates λ .
ŵ=0.011 s, Ts=1 s, dr=0.1 s.

ments. As can be seen in the figures, the queuing based predictor (QFF)
performed rather badly. It over–reacted to the changes, thus spending too
much CPU capacity. Also, it took quite a while to return to steady–state.
The inverse–prediction controller (IPFF) did not react immediately to the
change, but managed to recover relatively fast and with a relatively small
increase in the response time. The feedback based prediction–controller
(PFB) had the best performance. It reacted quickly to the change, and
kept the increase in the response time to a minimum.

7.4 Discussions and Conclusions

In all transient evaluations, both by simulations and by experiments, the
proposed PFB controller showed superior capability compared to the other
controllers to suppress the effect of the change of work load. The improve-
ment over the IPFF controller was not as pronounced as of the QFF con-
troller, which can be related to the more advanced structure of both the
PFB controller and the IPFF controller, which both incorporate measure-

145

Chapter 7. Improved Feed–Forward Control by Prediction

−100 0 100 200 300
0

50

100

150

−100 0 100 200 300
0

50

100

150
Increase in arrival intensity Decrease in arrival intensity

A
rr
iv
al
ra
te

λ
(r
eq
/s
)

A
rr
iv
al
ra
te

λ
(r
eq
/s
)

Time (s) Time (s)

Figure 7.19 Disturbances (arrival rate) of the transient experiments.

ments of the number of jobs, ñ. In the experiments, the PFB controller
was able to react faster to the change in arrival rate, and thus avoid a
large deviation in the response time. Furthermore, it managed to return
to a steady operation sooner.
A general trend in all the investigations was the poor performance

of the queuing based controller (QFF). It is based on a fixed, offline es-
timated, required work, and only considers long–term averages in the
feed–forward part. Only with low arrival rate, where the stochastics of
the traffic became dominating, this controller performed similarly or a bit
better than the other controllers. The transient behavior clearly indicates
the problems of basing the feed–forward signal on offline estimations.
In the presented results, the average required work used in the feed–
forward controller were over–estimated. Since this estimate enters the
feed–forward signal proportionally (see Eq. (7.8)), an over–estimate can
have a dramatic effect as seen in all of the transient simulations and ex-
periments; see Figs. 7.13 and 7.16. A solution is to reduce the estimate of
the required work manually, but then the procedure is no longer system-
atic, and if it is lowered too much, the desired effect of the feed–forward
mechanism diminishes. The simulations and the experiments clearly in-
dicate that a control structure, where the required work is not estimated
offline, is clearly preferable.

146

7.4 Discussions and Conclusions

−100 −50 0 50 100 150 200 250 300 350
0

10

20

30

−100 −50 0 50 100 150 200 250 300 350
0

100

200

300

400

500

−100 −50 0 50 100 150 200 250 300 350
0

50

100

Ref.

Time (s)

R
es
po
n
se
ti
m
e
(m
s)

C
P
U
lo
ss
(%
C
P
U
)

C
on
tr
ol
si
gn
al
(%
C
P
U
)

Response Time d

Loss of CPU q

Control signal pr

PFB

QFF
IPFF

Figure 7.20 Time–domain transient experiment results with increasing arrival
rate.

Further research is needed in order for the control scheme to be merged
into more realistic setups. Especially the filtering issues need to be sim-
plified. The proposed controller has a higher degree of complexity, where
calculations are needed for each departure to update the predictor. Only
the variables associated with the measurements are updated at the de-
partures for the other two controllers, and the actual control calculations
are only performed at sampling incidences. The predictor calculations for
the proposed controller are of relatively low complexity, so an efficient im-
plementation would yield a low overhead. The tuning of the predictor in
the proposed controller requires more work by the operator than required
for the two other controllers. Here further research is needed to establish
sound tuning rules.
The most important difference between the proposed controller and

the compared controller, is that the proposed controller does not require
an offline estimation of the required work. This means that the controller
has a superior transient behavior as it becomes robust to changes in the
system. Also, in most of the scenarios, the proposed controller showed the
best performance.

147

Chapter 7. Improved Feed–Forward Control by Prediction

−100 −50 0 50 100 150 200 250 300 350
0

10

20

30

−100 −50 0 50 100 150 200 250 300 350
0

100

200

300

400

500

−100 −50 0 50 100 150 200 250 300 350
0

50

100

Ref.

Time (s)

R
es
po
n
se
ti
m
e
(m
s)

C
P
U
lo
ss
(%
C
P
U
)

C
on
tr
ol
si
gn
al
(%
C
P
U
)

Response Time d

Loss of CPU q

Control signal pr

PFB

QFF
IPFF

Figure 7.21 Time–domain transient experiment results with decreasing arrival
rate.

148

8

Nice Resource–Reservation

The work presented in this chapter represents an early

attempt of virtualization–like actuation for web–server

control. The Linux kernel did not supply functionality

to schedule the CPU capacity on group–level but only

relative priority on process-level. A light–weight kernel–

implementation based on existing operating–system in-

frastructure is presented along with tests on an experi-

mental platform with Apache servers. The material pre-

sented in this chapter is based on [Ohlin and Kjær, 2007].

The objective of this chapter is to achieve CPU–capacity reservations on
a standard Linux computer. Such reservations make it possible to reserve
fractions of the CPU to specific tasks or groups of tasks (threads and
processes).
The developed method has been implemented as an add–on to the

Linux 2.6 kernel. Due to the changed scheduler policy from kernel 2.6.23
(released 2007) and onward the presented method is not compatible with
newer Linux kernels.
A key factor in the implementation has been to make it non–intrusive

and to preserve the way that the original scheduler works. This gives the
benefit that the new features can be used without compromising existing
functionality. The CPU–capacity controller uses the nice value as a con-
trol signal and the task’s execution time as a measurement signal. This
forces the scheduler to give the controlled tasks their specified amount of
CPU capacity.

149

Chapter 8. Nice Resource–Reservation

It may be argued that the presented problem can be solved offline by
specifying a static nice value for each task. This is of course absolutely
true if the system is static and everything is known in advance. That is, if
it is known exactly how many tasks that are present in the system and also
their execution–time demands. These premises are not likely to show up in
an ordinary Linux desktop or server system and therefore it is necessary
to introduce a feedback loop to cope with the unknown. In an ordinary
computer system there is a lot of dynamics. This is due to the fact that
tasks can arrive and leave the system at any time. Tasks can also change
their state and consume more or less execution time. When running on
multi–processor systems, tasks will also jump between processors in a
more or less random pattern from a spectators’ perspective. This causes
the execution environment to change rapidly and therefore an ability to
adapt to different situations is necessary.

8.1 Modeling

The scheduler of the Linux kernel is rather complicated, but some minor
assumptions can lead to a static model suitable for control design.
There are three different scheduling policies available in Linux;

SCHED_FIFO, SCHED_RR, and SCHED_OTHER. The two first are for soft real–
time scheduling policies, and the last is for normal time–sharing schedul-
ing. Only SCHED_OTHER is utilized in the work presented in this chap-
ter. Every task gets to run a certain amount of time, denoted the time

slice Tn , and the actual size of it depends solely on the nice value
given to the task and not on the effective priority. nice values in the
interval [−20 . . . 0 . . . 19] are mapped to time–slice sizes in the interval
[800 ms . . . 100 ms . . . 5 ms] as illustrated in Fig. 8.1. Note that the result-
ing time slices do not scale linearly with the nice value.

Model of the System

It is assumed that a task always needs to run, i.e., it is CPU–bound. The
behavior of the scheduler can be summarized in a few assumptions and a
model of the system to predict its behavior can be formulated.

• A task’s time slice depends solely on its nice value.

• Tasks are scheduled in order of priority.

For a more detailed description of the task scheduler, see [Ohlin, 2006;
Ohlin and Kjær, 2007].

150

8.1 Modeling

−20−15−10−505101520
0

100

200

300

400

500

600

700

800

nice value

tim
e_

sl
ic

e
(m

s)

Figure 8.1 The size of time slice as a function of the nice value. Notice that
the nice values are ordered from positive to negative values to indicate increasing
time slice allocation.

According to the model, the fraction of the execution time a task is
assigned during one round of execution, is calculated as:

p(j) = Tn(j)
∑

∀l Tn(l)
(8.1)

where j and l denote task indices.

Evaluation of the Model

To verify that the model is accurate, theoretical values from the proposed
model are compared to values obtained through measurements. The ex-
perimental setup consists of four tasks running in endless while–loops.
Three of the tasks have nice value 5 while the nice value of the fourth
task is varied in order to give it more or less CPU capacity compared to
the other tasks. The result can be seen in Fig. 8.2. Using lower nice val-
ues than −6 resulted in the system becoming too sluggish to do any good
measurements. Therefore, these are left out. This sluggishness is proba-
bly due to the fact that tasks with that low nice values are given so high

151

Chapter 8. Nice Resource–Reservation

−20−15−10−505101520
0

10

20

30

40

50

60

70

80

nice value

%

Figure 8.2 Comparison of the execution time model for Linux (+) and measure-
ments on a computer (○). Notice that the nice values are ordered from positive to
negative values.

priorities that they conflict with the tasks interacting with the user. As
can be seen, the results from the experiments follow the model very well.

8.2 Control Design and Implementation

The nonlinear mapping from the nice value to the time_slice is illus-
trated in Fig. 8.1. Special concern must be given to references, that re-
quires the control signal to oscillate over the interval [−1, 0]. A PI con-
troller with anti–windup has been implemented using fixed point arith-
metic in a kernel module. Global knowledge of the behavior of other tasks
could also be incorporated, but this has not been implemented in this
work. By using a PI controller in this way, a modulation is achieved au-
tomatically. The implemented PI controller is given by

u(k) = K
(

yre f − y(k)
)

+ I(k)

I(k) = I(k− 1) + Ts
K

Ti

(

yre f − y(k)
)

152

8.2 Control Design and Implementation

where the parameters K and Ti are the proportional and integral control
parameters, respectively. The variable u is the control signal (the nice

value), and y is the measurement (the fraction of time given to the task).
The variable k is the discrete time index, so that t = kTs, where Ts is
the sampling time. The PI controller consists of two components. The pro-
portional part (K (yre f − y(k))) ensures fast reaction to disturbances, but
does not assure that the desired reference is reached. The integral part
(described by I) will accumulate any error between the measurement and
reference in a similar manner as an incremental controller. This part is
particularly beneficial when the system under consideration is not well–
known and predictable as with computer systems. The specific implemen-
tation uses the control parameters K = 0.0.01 and Ti = 52 and sampling
time of Ts=20 ms.
Since the control design is not based on a dynamical model, there are

no theoretical guarantees for performance or stability. However, the values
of K and Ti have been chosen rather conservatively to have large stability
margins. This is imposed because even small changes to the nice value can
lead to large changes in the achieved CPU–capacity. The effect of changes
to the nice value also varies with the number of tasks in the system and
their respective nice values. In the case where the controller saturates,
the control objective may not be satisfied as the controller lacks actuation
possibility. The integral part will remain within the allowed control range
due to the anti–windup scheme.
For more details on the controller implementation, see [Ohlin, 2006].

Taking the Task’s State Into Account

So far it has been assumed that a controlled task is always requesting
CPU capacity, i.e., it is CPU bound. This may be true in some cases but
obviously not in all. Imagine for example that the controlled task is given
a reference of 50% but needs no more than 40% because it is occasionally
waiting on some I/O. As the task does not require CPU capacity from
time to time, the error will remain and the control signal will, due to the
integral effect, continue to rise until it saturates. This is of course not
a satisfying behavior, and could be avoided by taking the current state
of the task into account when controlling it. The strategy could be; do
not increase the control signal further if the task does not require CPU
capacity. This is more or less an anti–windup scheme which ensures that
the integral part does not wind up trying to enforce higher CPU allocation
to a task than the task demands. Now the obvious question is: How to
detect if a task is requiring more CPU capacity than it already has? The
idea used in the current controller implementation is to sample the state
of the task at the same time as the execution time. The controller is
then only executed if two consecutive samples show that the task is in the

153

Chapter 8. Nice Resource–Reservation

running state. This strategy works well if the task is mostly in the running
state for a longer time than the time between two consecutive samples of
the controller. How long time a task spends in its running state, depends
highly on its workload during that time interval, but it also depends on
the other tasks in the system as the task may get interrupted by a task
of higher priority. This makes it hard to give any general rules and hence
draw any conclusions to be used for more accurate control.

8.3 Verification by Experiments

The reservation method was tested under different conditions. First, the
method was tested on a standard PC and a number of while loops to
consume CPU capacity. Then a more realistic scenario was used, involving
web servers and stochastic traffic from several clients.

Experiments with Load Tasks

Two experiments have been performed on a desktop computer with a sin-
gle CPU. At the same time as the experiments were made, there were
a number of tasks in the system, e.g., X, Firefox, Thunderbird, XEmacs,
and so on. All CPU–capacity measurements have been filtered through a
moving average window of 4 s. The filtering is done because of the fact
that when a task executes, it gets 100% of the CPU capacity and then
it gets 0% when it does not execute. Filtering through a moving average
window shows the CPU capacity during that window.
Running the experiments on a computer with more than one CPU will

gain results similar to the ones seen in this section, except that there will
be considerably more load disturbances.
The first experiment consists of four tasks running in endless while–

loops. Two of the tasks have their nice values set to 5, and act as back-
ground load. The third and fourth task’s nice values are used as control
signals to keep the measured CPU–capacity at the desired references.
The references for both of the tasks are initially kept at 25%. At time

182 s, the reference for the first task is changed from 25% to 50%. At
around time 320 s, the reference is changed back to 25%. The result of the
step response for the first task can be observed in Fig. 8.3. The coupling
between the two tasks is visible in Fig. 8.4, which shows the disturbance
on the second task as a consequence of the step on the first one. No
feed–forward term is used in the controller. This experiment shows the
modulating nature of the control signal and the results of the quantization
in the nice value. In Fig. 8.3, it can be seen that the control signal is
constant both before and after the two steps. But when the reference is

154

8.3 Verification by Experiments

set to 50%, the control signal fluctuates a lot. Also note that there is much
less oscillation in the CPU capacity when the reference is set to 25% than
when it is set to 50%. This is due to the fact that some references cannot
be kept stationary because the nice value is discrete.
The second experiment consists of one periodic task that executes for

approximately 40 ms and then sleeps for 60 ms repeatedly. This results in
a task that uses 40% of the CPU at most even if it is alone in the system.
Controlling such a task requires the state of the task to be taken into
account as described in Section 8.2. Two load tasks of the same type used
in the previous experiment are also present in the system.
As can be seen in Fig. 8.5, the proposed scheme works well in practice.

In the beginning of the plot, the reference is higher than the task demands,
and at time 55 s it is set to an even higher value but the control signal
still behaves well. It is also observed that the controller is still able to
follow reference changes when they are lower than 40%.
The observant reader may notice the delay and the following under–

shoot at time 160 s. Also note that this behavior does not show up at any
of the other step changes in the plot. This is not an integrator windup as
may be assumed first, but is instead due to the fact that the system has
marked the task as interactive and therefore given it an additional bonus.
When the task after some time is marked as non–interactive, it loses its
bonus and this causes the under–shoot.

155

Chapter 8. Nice Resource–Reservation

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

%

150 200 250 300 350 400 450
−5

0

5

Measurement
Reference

CPU Capacity of Task 1

Control Signal of Task 1

Time (s)

Time (s)

n
i
c
e
va
lu
e

Figure 8.3 Step response of the CPU capacity (task 1) when controlling two tasks.

150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

%

150 200 250 300 350 400 450
−5

0

5

Measurement
Reference

CPU Capacity of Task 2

Control Signal of Task 2

Time (s)

Time (s)

n
i
c
e
va
lu
e

Figure 8.4 Step response of the CPU capacity (task 2) when controlling two tasks.

156

8.3 Verification by Experiments

0 50 100 150 200 250 300 350 400 450
0

20

40

60

80

%

0 50 100 150 200 250 300 350 400 450
0

5

10

15

20

Measurement
Reference

CPU capacity

Control Signal

Time (s)

Time (s)

n
i
c
e
va
lu
e

Figure 8.5 Step responses for a non CPU–bound task when taking the task’s
state into account.

157

Chapter 8. Nice Resource–Reservation

Experiment with Apache Servers

To test the scheduling mechanism on a more realistic application, exper-
iments were conducted on a testbed with an Apache server. As described
earlier in this thesis, the Apache server creates processes as they are re-
quired, and destroys them again when they are no longer needed. This
non–constant amount of processes, along with the stochastics of the re-
quests, resulted in non–smooth CPU–capacity requirement, which served
to stress the reservation method. The test is not included to suggest that
the mechanism is the best solution for the given example, but only to
demonstrate that the method works for a problem including more ad-
vanced behavior than the previous tests.
The setup represents a hosting system where two service providers are

hosted on the same physical hardware. The objective is to separate the
two service providers, so that one service provider can operate unaffected
by a request overload at the other service provider.
The physical hardware used for this experiment is the same as pre-

sented in Chapter 3, but the configuration of the server is different. Fe-
dora 5 (kernel 2.6.17) was used as operating system for the servers. Two
Apache servers (version 2.2.2), configured by using the prefork module,
were installed on the server as two distinct service providers. The con-
troller was configured to set a common nice value to all the processes of a
given Apache server. Also, the CPU capacity allocated to all the processes
of one Apache serve were summed to give the time fraction measurement.
In this manner, a single–input/single–output (SISO) system was obtained
as required by the control structure. Only one of the Apache servers was
controlled with the proposed scheduling mechanism. The controlled and
uncontrolled server were listening on port 80 and 81, respectively. The
setup is illustrated in Fig. 8.6.
Traffic was generated from the 12 client computers described in Chap-

ter 3. The clients were grouped into three equal groups, each consisting
of four client–computers. The traffic was generated using the traffic gen-
eration software CRIS [Hagsten and Neis, 2006]. All clients requested
the same PHP file, generating a response with 7000 characters, with ex-
ponential distributed inter–arrival times. The clients were configured to
timeout after 10 s.
At the beginning of the experiments, client group I started sending re-

quests to the controlled server, and client group II started to sent requests
to the uncontrolled server. Both groups sent approximately 160 req/q. This
traffic did not result in CPU overload, but left approximately 25% of the
CPU capacity free. A server is considered to be overloaded when the re-
quests cannot be served within the timeout of the clients due to lack of
CPU resources. After 173 s, client group III started to send approximately

158

8.3 Verification by Experiments

Arrival intensity

Time

Arrival intensity

Time

Host computer

Controlled

server

Uncontrolled

server

Port

80

Port

81

TCP/IP layer

100 Mbit switched network

Client

#1
⋅ ⋅ ⋅

Client

#12

Figure 8.6 Experimental setup for experiment with Apache servers.

160 req/q to the uncontrolled server. The traffic going to the uncontrolled
server was the combined traffic from client group II and III. The server
did not have sufficient CPU capacity to maintain operation of both servers.
The average arrival–rate is shown in the top of Fig. 8.7. Preferably, only
the server being exposed to the extra traffic should become overloaded
while the other server should remain operational.
The middle and bottom of Fig. 8.7 illustrate the response times of the

controlled server and the uncontrolled server, respectively. In the case
where the controller was inactive, both servers became overloaded when
the traffic increased. After the increase of traffic, the response times of
both servers increased dramatically and all clients started to timeout.
Consistent timeouts from the clients were observed. In the case where the
CPU–capacity allocation was controlled by the proposed scheduling mech-
anism (reference set to 45% of the CPU capacity), only the uncontrolled
server became overloaded. The controlled server continued to perform with
similar response times. Client timeouts were observed consistently only
on the uncontrolled server’s requests. Two single timeouts were observed
on the controlled server’s requests. The small jump observed in the re-
sponse time of the controlled server (the middle of Fig. 8.7) at around
200 s is assumed to be due to some disturbance from other tasks in the
operating system.

159

Chapter 8. Nice Resource–Reservation

This experiment showed that the scheduling mechanism can be used
to affect the response time of a web server application. The setup with two
different servers with different client groups, can be used in applications
where different sites are hosted on the same physical computer, but where
the performance of one server must be independent of the behavior of the
other server. In this experiment, it has not been considered how such a
system should be built in a real application. However, the experiment
showed that the two servers can be separated by means of the proposed
scheduling mechanism. The setup does not aim to control the response
time. If this was the objective, a second control loop would have to be
included, defining the reference for the CPU–capacity controller.

8.4 Discussions and Conclusions

This chapter has presented an attempt to supply functionality to reserve
CPU capacity in a manner not offered by the original operating system. It
can be viewed as a CPU virtualization method, however, it does not provide
any guarantee that the requested reservation is actually met, especially
not during load changes or reference changes.
An extension of the Linux 2.6 scheduler has been proposed, and a

feedback based method for controlling the CPU capacity given to tasks
in Linux, has been presented. The presented method has shown to work,
both for CPU bound and non CPU bound tasks. A number of experiments
have been performed in order to show that the technique works in reality.
The experiments indicate that CPU–capacity allocation can be obtained
with the proposed scheduling mechanism. Furthermore, the mechanism
can be used to separate the performance of two Apache servers running
on the same physical computer.
It should be mentioned that the method presented here is not com-

patible with newer Linux kernels as the scheduler has been changed sig-
nificantly from kernel 2.6.23. The reservation method described in this
chapter has dynamics in the time scale of seconds, while the scheduler
of the new Linux kernel has dynamics in the time scale of a tenth of a
second (see the discussion on sampling interval in Section 3.7 on page
54).

160

8.4 Discussions and Conclusions

140 150 160 170 180 190 200 210
100

200

300

Time (s)

A
rr

iv
al

 r
at

e
(r

eq
/s

)

Arrival rate

Controlled server
Uncontrolled server

140 150 160 170 180 190 200 210
0

20

40

60

Time (s)

R
es

po
ns

e
tim

e
(m

s)

Response time for controlled server

Inactive controller
Active controller

140 150 160 170 180 190 200 210
0

20

40

60

Time (s)

R
es

po
ns

e
tim

e
(m

s)

Response time for uncontrolled server

Inactive controller
Active controller

Figure 8.7 Results from experiment on two Apache servers. Top: Average arrival
rates. Middle: Response time for the controlled server with and without feedback
control. Bottom: Response time for the uncontrolled server. All variables were mea-
sured at the clients and were filtered with a moving average window of 200 requests.

161

9

Concluding Remarks and

Future Work

9.1 Concluding Remarks

The focus of this thesis has been response–time control of web–server
systems. The web–server system providers and academia have shown an
increasing interest in this field in order to supply reliable services to
costumers while maintaining a low operation–cost. Over the last years,
the environmental impact of computing has also come into consideration,
something that encourages to optimize the performance even further.
In order to optimize the resource consumptions, more advanced control

algorithms must be investigated, and the field of automatic control has
much to offer. It is well known that a possible hazard of tuning for fast and
accurate control is instability, which has devastating consequences for the
performance. Therefore, modeling and analysis of the behavior of web–
server systems have become more and more important. Results presented
in this thesis explain the origin of some instability observed on a web–
server system setup. It is concluded, and verified by both simulations and
experiments, that this instability arises if the controller reacts too aggres-
sively to a change in the arrival rate. This clearly demonstrates the dan-
ger of focusing on the performance. The same analysis also revealed that
the root of the instability was inaccurate modeling. It was assumed that
measurements could be performed inside the web–server system without
considering buffering earlier in the software layers. The analysis showed
that these buffers introduce some important dynamic phenomena, which
change the behavior of the controlled system completely.
In the pursuit of a resource–optimized web–server, this thesis presents

an improved feed–forward mechanism to compensate for changes in ar-

162

9.2 Future Work

rival rate at the web server. A previously proposed method was based
on an offline estimated variable, which might change over time during
operation. The method, suggested in this thesis, adjusts this parameter
online, and thereby ensures that the feed–forward mechanism adapts to
the changing needs of the clients. The new feed–forward method uses a
model to predict the future response times and relocates resources in or-
der to compensate for the changes before they propagate to the response
times. The method was validated by both simulations and experiments,
and proved to be superior to other methods from the literature.
Finally, this thesis presented a solution to obtain CPU–capacity reser-

vation in the Linux kernel. The method allows the user to define how much
of the CPU capacity (in percentage) a process, or a group of processes,
are guaranteed. The method uses only existing kernel–functionality mod-
ulation of the so called nice value, which is the operating–system priority
method. The reservation scheme is tested on a testbed with two Apache
servers to demonstrate the performance in a situation where the requested
CPU–capacity changes much over time.
Two important assumptions have been made. A perfect balancing

mechanism is working in the computer system, and there are always suffi-
cient resources to respect the demands from all applications. In particular,
the latter is restrictive. When the total load is higher than the available
resources, choices have to be made on how to distribute the available
resources. The applications can have quite different requirements and de-
mands, and the applications can be associated by multiple computers.
The allocation problem can render a complicated optimization problem,
especially if also the dynamics of the system are taken into account.

9.2 Future Work

The work presented in this thesis related to response–time control should
be generalized to multi–tier systems. Ideas on this subject have already
been presented by others, see e.g. [Jayachandran et al., 2009; Padala et al.,
2009a; Padala et al., 2009b].
The Apache server has a simple resource controller, as described in

Section 2.3. Here, the amount of CPU capacity obtained by the server is
given by the number of jobs present in the system, assuming that the
amount of other processes remains constant. This could be modeled by
assuming that the CPU resources are divided equally between all active
processes, and thus

pr(t) =
n(t)

n(t) + n0

163

Chapter 9. Concluding Remarks and Future Work

where n0 is the (constant) number of processes other than those of the
server. Combined with the model presented in Chapter 4, the stability
of the resource controller can be evaluated. This is a rather academic
problem as the Apache server has been running stable on thousands of
real sites. However, other resource controllers could be investigated, such
as the controllers which use the maximum number of requests as actua-
tor [Hellerstein et al., 2005; Lindegren, 2008].
Interesting results on the subject of content–adaptation were

presented in [Andersson, 2007]. Here, the network bandwidth was con-
sidered to be a bottleneck during high load situations, and the file size
of static files were divided into five different levels. It was assumed that
all the file sizes were known along with the maximum bandwidth, the
population distribution, and the arrival rate. Then the content level of
the individual files were optimized according to a defined cost–function.
The optimization was performed offline for the specific operating point
and utilized in steady–state experiments. From a control–theoretic point
of view, this method has several problems:

1. The specific implementation could not handle changes in the envi-
ronment (such as changes in the popularity distribution or in the
arrival rate) because the optimization was performed offline.

2. Even if the optimization was performed online, the control strategy
is purely feed–forward, as only un–affectable inputs are included in
the optimization (the popularity distribution and the arrival rate).
If the model is not accurate, the desired result will never be met as
the controller will not be aware of the effects of its own behavior.

The first point is rather straight–forward to solve, assuming that the op-
timization algorithm can be executed in a sufficiently efficient way. Alter-
natively, an offline optimization over the full input–space could be imple-
mented as a look–up table in the memory. This would allow changes in
the inputs and thereby investigation of the dynamics of the controller.
Inclusion of feedback into the controller would potentially solve the

second problem, but this is not trivial. The optimization used does not
directly allow for any feedback, so the optimization will probably have
to be redesigned. Tools from Model Predictive Control (MPC) could hold
solutions to the problem.

164

9.2 Future Work

165

A

Nomenclature

Latin uppercase

A Amplitude in describing function

C2 Squared variance coefficient

D(s) Laplace transform of d

Di(s) Laplace transform of di
Dr(s) Laplace transform of dr
G(s) Transfer function

G0(s) Open–loop transfer function

Gc(s) Desired compensation link

Gcl(s) Closed–loop transfer function

G f b(s) Compensation link for the feedback controller

G f f (s) Compensation link for the feed–forward controller

Gs(s) transfer function for ideal band–stop filter

H Ensemble average utilization

H2 Second order hyper-exponential distribution

I Integral part of the PI controller

Jd Response time cost–function

Jq CPUcapacity cost–function

K Proportional coefficient of the PI controller

Kp f b Feedback coefficient

Kss Steady–state gain of first–order linear system

Mc Maximum number of requests in the server

N(s) Laplace transform of n

166

Ni(s) Laplace transform of ni
P Filtered signal

P f b(s) Laplace transform of p f b
P f f (s) Laplace transform of p f f
Pr(s) Laplace transform of pr
Q Filtered signal

S Closed curve in the complex plane

Ta Anti windup time–constant of the PI controller

Ti Integral coefficient of the PI controller

Tl Time constant of first–order linear system

Tn Time slice, the time period a task is given by the
scheduler

Ts Constant sampling interval

Td Time constant of first–order linear filter

Tλ Time constant of first–order linear filter

U (s) Input of G(s)
Û(s) Compensated input

Vd Variation

Y(s) Output of G(s)

Latin lowercase

a Arrival times of requests

a1 Parameter in the describing function method

b1 Parameter in the describing function method

c0 Parameter for pole placement

c1 Parameter for pole placement

d Response time

d̄ Average response time

d̂ Estimated response time

di Measured response time

d f Filtered response time

dp Filtered response time

dr Response time reference

dw Average response time of the jobs that departed
during the interval between sampling k− 1 and k

167

Appendix A. Nomenclature

f (⋅) Static nonlinear function

fi(⋅) Static nonlinear function

f̃i(⋅) Static nonlinear function

�λ ,n Steady–state gain from λ to n.

�µ,n Steady–state gain from µ to n.

h Sampling interval

i Imaginary operator (
√
−1)

j Summation index

k Discrete–time index

l Summation index

m Integer number

n Expected number of jobs in the system as a dy-
namical state

ñ Instantaneous number of jobs/requests in the sys-
tem

n̄ Average number of jobs/requests in the system
n0 Processes other than those of the server

ne Number of jobs in the external queues

n̄e Average number of jobs/requests in the externals
queues

n̄ f Filtered number of jobs

ni Measured number of jobs in the system

n̄i Average number of jobs/requests in the internal
system

p Fraction of the CPU used by the server

pa Fraction of the CPU used by the server

p f b Feedback control signal

p f f Feed–forward control signal

pir Fraction of the CPU reserved to the i–group. The
notation pr is equivalent to pserverr

pip f f Feed–forward signal from the IPFF controller

pj Probability for the queuing system to hold j jobs

pp Predictive control signal

pq f f Feed–forward signal from the QFF controller

q Loss of CPU resources, q=pr-pa

168

s Laplace operator

t Time

tnow Time at the departure of a particular request

tt Transient period

u General process–input

v Non–saturated control signal

w Required work

w̄ Average required work

ŵ Estimated average required work

x Service time

x̄ Average service time

y General process–output

yre f General process–reference

z Virtual state

Greek uppercase

Λ(s) Laplace transform of λ

Λ f (s) Laplace transform of λ f

Λi(s) Laplace transform of Λ

Ψ(A) Describing function

Greek lowercase

α Filter constant

β Hyper-exponential distribution constant

γ 1 Coefficient in server model

γ 2 Coefficient in server model

γ n Coefficient in server model

γ λ Coefficient in server model

∆ψ Linearization variable of ψ

ζ Damping factor

λ Arrival rate (requests/s)
λ̂ Estimated average arrival rate (requests/s)
λ f Filtered average arrival rate (requests/s)

169

Appendix A. Nomenclature

λ i Measured average arrival rate (requests/s)
µ Service rate (requests/s)
ξ1 Variable

ξ2 Variable

ρ Load

σ f Coefficient in server model

σ n Coefficient in server model

σ λ Coefficient in server model

τ Integration variable

ψ A variable or sequence

ω Frequency

ω c Frequency

ω̂ c Resonance–frequency estimate

ω s Stop–frequency of ideal band–stop filter

Abbreviations

CERN European Organization for Nuclear Research

CGI Common Gateway Interface, a scripting language
for producing dynamic web pages

CPU Central Processing Unit

CRIS Crisis Request generator for Internet Servers

DVS Dynamic Voltage Scaling

FCFS First Come, First Served

ftp file transfer protocol

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IIS Internet Information Server

IP Internet Protocol

IPFF Inverse Prediction Feed–Forward

MPC Model Predictive Control

OSI Open Systems Interconnection

PHP Hypertext PreProcessor. A scripting language for
producing dynamic web pages

PFB Predictive FeedBack

170

PS Processor Sharing

QFF Queuing–theory based Feed–Forward

QoS Quality of Service

RED Random Early Detection

RUBiS Rice University Bidding System

SISO Single input, single output

SLA Service Level Agreement

ssh secure shell

SURGE Scalable URl Reference GEnerator

TCP Transmission Control Protocol

URL Uniform Resource Locator

171

B

Bibliography

Abdelzaher, T. and N. Bhatti (1999): “Web content adaptation to improve
server overload behavior.” Computer Networks, 11–16, pp. 1563–1577.

Agnew, C. (1976): “Dynamic modeling and control of congestion-prone
systems.” Operations Research, 24:3, pp. 400–419.

Anderson, D., D. Sweeney, and T. Williams (1998): Statistics for Business
and Economics, seventh edition. South–Western College Publishing.

Andersson, M. (2007): Overload Control and Performance Evaluation
of Web Servers. PhD thesis, Dep. of Communication Systems, Lund
University, Sweden.

Apache Software Foundation (2008): “Developer documentation for apache
2.0.” http://httpd.apache.org/docs/ 2.0/developer/.

Årzén, K.-E. (1999): “A simple event-based PID controller.” In Proc. 14th
World Congress of IFAC, pp. 423–428. Beijing, P.R. China.

Åström, K. (2006): Introduction to Stochastic Control Theory. Dower
publications Inc, Mineola, NY.

Åström, K. and T. Hägglund (2005): Advanced PID Control. ISA–The
Instrumentation, Systems, and Automation Society, Research Triangle
Park, NC.

Åström, K. and B. Wittenmark (1997): Computer–Controlled Systems.
Printice Hall, Upper Saddle River, NJ.

Åström, K. J. and T. Hägglund (1984): “Automatic tuning of simple
regulators with specifications on phase and amplitude margins.”
Automatica, 20, pp. 645–651.

Åström, K. J. and R. M. Murray (2008): Feedback Systems: An Introduc-
tion for Scientists and Engineers. Princeton University Press, Prince-
ton, NJ.

172

Barford, P. and M. Crovella (1998): “Generating representative web
workloads for network and server performance evaluation.” In Proc.
Performance ’98/ACM SIGMETRICS ’98, pp. 151–160. Madison WI.

CKRM (2009): “Class-based kernel resource management.”
http://ckrm.sourceforge.net/.

de Jongh, J. (2002): Share Scheduling in Distributed Systems. PhD thesis,
Delft University of Technology.

Elnozahy, E., M. Kistler, and R. Rajamony (2003): “Energy-efficient server
clusters.” In Lecture Notes in Computer Science 2325, pp. 179–197.
Springer-Verlag Berlin Heidelberg.

Epema, D. H. J. (1998): “Decay-Usage Scheduling in Multiprocessors.”
ACM Tran. Computing System, 16:4, pp. 367–415.

Erlang, A. (1909): “Sandsynlighedsregning og telefonsamtaler.” Nyt
Tidsskrift for Matematik, B:21, p. 33.

Essick, R. B. (1990): “An Event-Based Fair Share Scheduler.” In Proc. of
the Winter 1990 USENIX Conf., pp. 147–162. USENIX.

Fong, L. L. and M. S. Squillante (1995): “Time-Function Scheduling: A
General Approach to Controllable Resource Management.” Technical
Report RC 20155 (89194). IBM Research Division, T.J. Watson Re-
search Center, Yorktown Heights, NY.

Franklin, G. F., J. D. Powell, and A. Emami-Naeini (1994): Feedback
Control of Dynamic Systems. Addison–Wesley.

Fu, Y., H. Wang, C. Lu, and R. Chandra (2006): “Distributed utilization
control for real-time clusters with load balancing.” In Proc. 27th IEEE
Int. Real-Time Systems Symposium (RTSS’06), pp. 137–146. IEEE, Rio
de Janeiro, Brazil.

Hagsten, A. and F. Neis (2006): “Crisis request generator for internet
servers.”. Master’s thesis, LTH, Lund University.

Hellerstein, J. L. (1993): “Achieving Service Rate Objectives with Decay
Usage Scheduling.” IEEE Trans. Software Eng., 19:8, pp. 813–825.

Hellerstein, J. L. (2004): “Challenges in Control Engineering of Comput-
ing Systems.” In Proc. of the 2004 American Control Conf., vol. 3,
pp. 1970–1979.

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004): Feedback
Control of Computing Systems. Wiley-Interscience.

173

Appendix B. Bibliography

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2005): “Control
Engineering for Computing Systems.” IEEE Control Systems Maga-
zine, 25:6, pp. 56–68.

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved prediction for
web server delay control.” In Proc. 16th Euromicro Conf. on Real–Time
Systems (ECRTS’04). Catania, Italy.

Henry, G. J. (1984): “The Fair Share Scheduler.” AT&T Bell Laboratories
Technical Journal, 63:8, pp. 1845–1857.

Heo, J., D. Henriksson, X. Liu, and T. Abdelzaher (2007): “Integrating
adaptive components: An emerging challenge in performance–adaptive
systems and a server farm case–study.” In Proc. 28th International
Real-Time Systems Symposium (RTSS 2007), pp. 227–238. IEEE.

Horvath, T., T. Abdelzaher, K. Skadron, and X. Liu (2007): “Dynamic
voltage scaling in multitier web servers with end-to-end delay control.”
IEEE Transactions on Computers, 56:4, pp. 444–458.

Jacobson, V. (1988): “Congestion avoidance and control.” In SIGCOMM,
pp. 314–329.

Jayachandran, J. H. P., I. Shiny, D. Wang, and T. Abdelzaher (2009): “Op-
tiTuner: An automatic distributed performance optimization service
and a server farm application.” In Proc. Fourth International Work-
shop on Feedback Control Implementation and Design in Computing
Systems and Networks (FeBID’09). San Francisco, CA.

Kay, J. and P. Lauder (1988): “A fair share scheduler.” Communications
of the ACM, 31:1, pp. 44–55.

Khalil, H. K. (2002): Nonlinear Systems, third edition. Prentice Hall,
Upper Saddle River, NJ.

Kihl, M. (1999): Overload Control Strategies for Distributed Communi-
cation Networks. PhD thesis, Dep. of Communication Systems, Lund
University, Sweden.

Kihl, M., A. Robertsson, M. Andersson, and B. Wittenmark (2007):
“Control-theoretic analysis of admission control mechanisms for web
server systems.” The World Wide Web Journal, Springer, 11:1, pp. 93–
116. Online Aug 2007, print March 2008.

Kjær, M. A. (2005): “Active stabilization of thermoacoustic oscillation.”
Licentiate Thesis ISRN LUTFD2/TFRT--3239--SE. Department of
Automatic Control, Lund University, Sweden.

174

Kjær, M. A., R. Johansson, and A. Robertsson (2006): “Active control of
thermoacoustic oscillation.” In Proceedings of the IEEE International
Conference on Control Applications, pp. 2480–2485. Munich, Germany.

Kjær, M. A., M. Kihl, and A. Robertsson (2007): “Response-time control
of a single server queue.” In Proc. 46th IEEE Conference on Decision
and Control (CDC’07), pp. 3812–3817. New Orleans, LA.

Kjær, M. A., M. Kihl, and A. Robertsson (2008): “Response-time control
of a processor-sharing system using virtualized server environments.”
In Proc. 17th IFAC World Congress, pp. 3612–3618. Seoul, Korea.

Kjær, M. A., M. Kihl, and A. Robertsson (2009): “Resource allocation
and disturbance rejection in web servers using SLAs and virtualized
servers.” IEEE Trans. Network and Service Management. Submitted.

Kjær, M. A. and A. Robertsson (2009): “Effects of neglecting buffers in
feed–forward design for web servers.” In Proc. Fourth International
Workshop on Feedback Control Implementation and Design in Com-
puting Systems and Networks (FeBID’09), pp. 61–68. San Francisco,
CA.

Kjær, M. A. and A. Robertsson (2010): “Analysis of buffer delay in web–
server control.” In Proc. American Control Conference (ACC’10). IEEE,
Baltimore, Maryland. Submitted.

Kleinrock, L. (1967): “Time–shared systems: A theoretical treatment.”
Association for Computing Machinery, 14:2, pp. 242–261.

Kleinrock, L. (1975): Queuing Systems. John Wiley & Sons, Inc, New York.
Kremien, O. and J. Kramer (1992): “Methodical analysis of adaptive
load sharing algrorithms.” IEEE Trans. on Parallell and Distributed
Systems, 3:6, pp. 747–760.

Kuri, J. and A. Kumar (1995): “Optimal control of arrivals to queues with
delayed queue length information.” IEEE Trans. Automatic Control,
40:8, pp. 1444–1450.

Laurie, B. and P. Laurie (2002): Apache: The Definitive Guide, third
edition. O’Reilly.

Lee, S., J. Lui, and D. Yau (2004): “A proportional–delay diffserv–enabled
web server: Admission control and dynamic adaptation.” IEEE Tran.
Parallel and Distributed Systems, 15:5, pp. 385–400.

Lindegren, E. (2008): “Preparing the Apache HTTP server for feedback
control application.” Master’s Thesis ISRN LUTFD2/TFRT--5796--SE.
Department of Automatic Control, Lund University, Sweden.

175

Appendix B. Bibliography

Linux Headquarters (2008a): “This is the cfs scheduler.”
http://www.linuxhq.com/kernel/v2.6/25/Documentation/sched-
design-CFS.txt.

Linux Headquarters (2008b): “What are cgroups ?”
http://www.linuxhq.com/kernel/v2.6/25/Documentation/cgroups.txt.

Linux Headquarters (2009): “Memory resource controller.”
http://www.linuxhq.com/kernel/v2.6/25/Documentation/
controllers/memory.txt.

Liu, X., J. Heo, L. Sha, and X. Zhu (2006): “Adaptive control of
multe–tiered web applications using queuing predictor.” In Proc.
10th IEEE/IFIP Network Operation & Mangement Symp. Vancouver,
Canada.

Low, S., F. Paganini, and J. Doyle (2002): “Internet congestion control.”
IEEE Control Systems Magazine, 22:1, pp. 28–43.

Low, S. H., F. Paganini, J. Wang, and J. C. Doyle (2003): “Linear stability
of TCP/RED and a scalable control.” Computer Network, 43:5, pp. 633–
647.

Lu, C., T. F. Abdelzaher, J. A. Stankovic, and S. H. Son (2001): “A feedback
control approach for guaranteeing relative delays in web servers.” In In
IEEE Real-Time Technology and Applications Symposium, pp. 51–62.

Lu, C., Y. Lu, T. Abdelzaher, and J. S. S. Son (2006): “Feedback control
architecture and design methodology for service delay guarantees in
web servers.” IEEE Transactions on Parallel and Distributed Systems,
17:9, pp. 1014–1027.

Lu, Y., T. Abdelzaher, C. Lu, L. Sha, and X. Liu (2003): “Feedback control
with queuing–theoretic prediction for relative delay guarantees in web
servers.” In Proc. 9th IEEE Real–Time and Embedded Technology and
Application Symp. (RTAS’03). Toronto, Canada.

Madnick, S. (1969): “Time–sharing systems: Virtual machine concept vs.
conventional approach.” Modern Data Systems, 2:3, pp. 34–36.

Moruzzi, C. and G. Rose (1991): “Watson Share Scheduler.” In Proc. of
the Fifth Large Installation Systems Administration Conf. (LISA ’91),
pp. 129–133. USENIX, San Diego, USA.

Netcraft (2009): “Web server survey.” http://news.netcraft.com/.
Noguahi, M. S. S. and J. Oizurnih (1971): “An analysis of the M/G/1 queue
under round–rubin scheduling.” Operations Research, 19:2, pp. 371–
385.

176

Ohlin, M. (2006): “Feedback Linux scheduling and a simulation tool for
wireless control.” Licentiate Thesis ISRN LUTFD2/TFRT--3240--SE.
Department of Automatic Control, Lund University, Sweden.

Ohlin, M. and M. A. Kjær (2007): “Nice resource reservations in Linux.” In
Proceedings, Second IEEE International Workshop on Feedback Con-
trol Implementation and Design in Computing Systems and Networks
(FeBID’07), pp. 20–26. Munich, Germany.

O’Neill, R. W. (1967): “Experience using a time-shared multi-
programming system with dynamic address relocation hardware.” In
Proc. AFIPS 1967 Spring Joint Computer Conf., pp. 611–621. Atlantic
City, New Jersey.

Padala, P., K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal,
and A. Merchant (2009a): “Automated control of multiple virtualized
resources.” In EuroSys ’09: Proceedings of the 4th ACM European
Conference on Computer Systems, pp. 13–26. ACM, New York, NY.

Padala, P., M. Uysal, A. Merchant, X. Zhu, S. Singhal, and K. Shin
(2009b): “Performance differentiation for multi–port arrays: A control–
theoretic approach.” In Proc. Fourth International Workshop on Feed-
back Control Implementation and Design in Computing Systems and
Networks (FeBID’09). San Francisco, CA.

Paganini, F., J. Doyle, and S. Low (2001): “Scalable laws for stable network
congestion control.” In Proc. IEEE 40th Conf. Decision and Control
(CDC01), vol. 1, pp. 185–190. Orlando, Florida.

RUBiS (2009): “Rice University Bidding System.” http://rubis.ow2.org/.

Sayre, D. (1969): “Is automatic folding of programs efficient enough to
displace manual?” Communications of the ACM, 12:12, pp. 656–660.

Sharma, S. and D. Tipper (1993): “Approximate models for the study
of nonstationary queues and their applications to communication
networks.” In Proc. IEEE Int. Conf. Communications, vol. 1, pp. 352–
358. Geneva.

Sharma, V., A. Thomas, T. A. K. Skadron, and Z. Lu (2003): “Power–
aware QoS management in web servers.” In Proc. 24th IEEE Real-Time
Systems Symp. (RTSS’03), pp. 63–72. Cancun, Mexico.

Shils, A. J. (1968): “The load leveler.” Technical Report RC 2233. IBM
Research.

Slotine, J.-J. and W. Li (1991): Applied Nonlinear Control. Prentice-Hall.

177

Appendix B. Bibliography

Stoica, I. and H. Abdel-Wahab (1995): “Earliest Eligible Virtual Deadline
First : A Flexible and Accurate Mechanism for Proportional Share
Resource Allocation.” Technical Report. Norfolk, VA, USA.

Strachey, C. (1959): “Time sharing in large fast computers.” In Proc. Int.
Conf. Information Processing, UNESCO, pp. 336–341. Paris, France.

Tanenbaum, A. S. (1996): Computer Networks, third edition. Prentice
Hall, Upper Saddle River, NJ.

Tipper, D. and M. K. Sundareshan (1990): “Numerical methods for model-
ing computer networks under nonstationary conditions.” Selected Ar-
eas in Communications, IEEE Journal on.

VMware (2009): “Vmware.” http://www.vmware.com.
Waldspurger, C. A. and W. E. Weihl (1995a): “Lottery Scheduling:
Flexible Proportional-Share Resource Management.” In First Symp.
on Operating Systems Design and Implementation (OSDI), pp. 1–11.
USENIX Association.

Waldspurger, C. A. and W. E. Weihl (1995b): “Stride Scheduling: Deter-
ministic Proportional-Share Resource Mangement.” Technical Report
MIT/LCS/TM-528. Massachusetts Institute of Technology, MIT Labo-
ratory for Computer Science.

Wang, W., D. Tipper, and S. Banerjee (1996): “A simple approximation
for modeling nonstationary queues.” In proc. IEEE INFOCOM ’96,
pp. 255–262. San Francisco, CA.

Wang, Z., X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, and S. Sing-
hal (2007): “AutoParam: Automated control of application-level perfor-
mance in virtualized server environments.” In Proc. Second IEEE Int.
Workshop on Feedback Control Implementation and Design in Com-
puting Systems and Networks (FeBID’07), pp. 2–7. Munich, Germany.

World Wide Web Consortium (2009a): “Change history of W3C httpd.”
http://www.w3.org/Daemon/Features.html.

World Wide Web Consortium (2009b): “Status of the CERN httpd.”
http://www.w3.org/Daemon/.

Xen (2009): “User’s manual.” http://www.cl.cam.ac.uk/research/srg/
netos/xen/readmes/user/user.html.

Xu, W., X. Zhu, S. Singhal, and Z. Wang (2006): “Predictive control
for dynamic resource allocation in enterprise data centers.” In Proc.
10th IEEE/IFIP Network Operation & Mangement Symp. Vancouver,
Canada.

178

