
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Searching for new convolutional codes using the cell broadband engine architecture

Johnsson, Daniel; Bjärkeson, Fredrik; Hell, Martin; Hug, Florian

Published in:
IEEE Communications Letters

DOI:
10.1109/LCOMM.2011.040111.101624

2011

Link to publication

Citation for published version (APA):
Johnsson, D., Bjärkeson, F., Hell, M., & Hug, F. (2011). Searching for new convolutional codes using the cell
broadband engine architecture. IEEE Communications Letters, 15(5), 560-562.
https://doi.org/10.1109/LCOMM.2011.040111.101624

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 03. Jul. 2025

https://doi.org/10.1109/LCOMM.2011.040111.101624
https://portal.research.lu.se/en/publications/d5d8dbda-e184-4969-8aa1-3777eb79b235
https://doi.org/10.1109/LCOMM.2011.040111.101624


IEEE COPYRIGHT NOTICE
c©2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be

obtained for all other uses, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers or
lists, or reuse of any copyrighted component of this work in other works.

This material is presented to ensure timely dissemination of scholarly and technical work.
Copyright and all rights therein are retained by authors or by other copyright holders. All
persons copying this information are expected to adhere to the terms and constraints invoked
by each author’s copyright. In most cases, these works may not be reposted without the explicit
permission of the copyright holder.

Last Update: April 7, 2011



IEEE COMMUNICATIONS LETTERS 2

Searching for New Convolutional Codes using the
Cell Broadband Engine Architecture

Daniel Johnsson, Fredrik Bjärkeson, Martin Hell, Florian Hug

Abstract—The Bidirectional Efficient Algorithm for Searching
code Trees (BEAST), which is an algorithm to efficiently deter-
mine the free distance and spectral components of convolutional
encoders, is implemented for the Cell Broadband Engine Archi-
tecture, efficiently utilizing the underlying hardware.

Exhaustive and random searches are carried out, presenting
new rate R = 1/2 convolutional encoding matrices with memory
m = 26–29 and larger free distances and/or fewer spectral
components than previously known encoding matrices of same
rate and complexity.

The main result of this paper consists in determining the
previously unknown optimum free distance convolutional code
with memory m = 26.

Index Terms—Convolutional codes, BEAST, Cell Broadband
Engine Architecture

I. INTRODUCTION

F INDING good convolutional codes by using algebraic
methods has not been very successful, and commonly

computer searches have provided the currently best known
codes. Thus, algorithms for an exhaustive search of convolu-
tional encoders remain an important research topic. Algorithms
like the BEAST [1], [2]—Bidirectional Efficient Algorithm
for Searching code Trees—provide a theoretical limit on the
search-complexity, while their exact implementation is not
specified.

In [3] approximately 80 IBM x86 Opteron cores have been
used to conduct an exhaustive search for memory 25 convo-
lutional codes. However, the increasing complexity of modern
processors, with very fast execution of certain operations,
provides new tools for efficient implementations. Utilizing
extended instruction sets targeting specific processors, the
practical efficiency of such algorithms can be improved. This
paper focuses on the very cost-efficient Cell Broadband En-
gine [4], most notably used within the PlayStation 3TM gaming
console, which has previously been efficiently used in several
scientific applications.

This paper essentially follows [5]; in Section II basic prin-
ciples of convolutional codes and their distance properties are
introduced. The BEAST is described in Section III, while Sec-
tion IV covers some of the specialities of the Cell Broadband
Engine Architecture. The results obtained by exhaustive and
random searches for rate R = 1/2 convolutional encoders of
memory m = 26–29 using the BEAST on the Cell Broadband
Engine Architecture are presented in Section VI, summarizing
the contribution of this paper in Section VII.

Manuscript received September 2, 2010. The associate editor coordinating
the review of this letter and approving it for publication was A. Burr.

The authors are with the Department of Electrical and Information Tech-
nology, Lund University, P.O. Box 188, SE-22100 Lund, Sweden (Email:
{djohnsson, fredrik.bjarkeson}@gmail.com, {martin, florian}@eit.lth.se)

Digital Object Identifier 10.1109/LCOMM.2011.040111.101624

II. PRELIMINARIES

Consider a rate R = 1/2 convolutional code C with
memory m and encoding matrix [6, Ch. 2]

G(D) =
(
g1(D) g2(D)

)
where gi(D), i = 1, 2, denotes the ith binary generator
polynomial of at most degree m.

We represent G(D) by the semi-infinite encoding matrix
G in the time domain; then the binary infinite information
sequence u is mapped to the binary code sequence v by v =
uG. While it is straight-forward to generalize these concepts
to rate R = b/c convolutional codes, we will for simplicity
limit ourselves hereinafter to rate R = 1/2 convolutional codes
with polynomial encoding matrices.

The free distance dfree of a convolutional code C is defined
by

dfree = min
v,v′∈C,v 6=v′

{
dH (v,v′)

}
= min

v∈C,v 6=0

{
wH (v)

}
where dH(s, s

′) and wH(s) denote the Hamming distance and
the Hamming weight, respectively [6, Sec. 1.2]. The free
distance and the free distance spectrum [7] determine the error-
correcting capabilities of a convolutional encoder.

III. THE BEAST

The BEAST [1], [2]—Bidirectional Efficient Algorithm for
Searching code Trees—is an efficient algorithm used for find-
ing the spectral components of block codes and convolutional
encoders as well as for maximum-likelihood decoding of block
codes.

Consider a code tree of a rate R = 1/2, memory m
convolutional encoder, in which every node ξ represents one
of the 2m different states σ(ξ). Each of the two branches
emerging from every node at depth i are labeled by an input
bit ui and an output tuple v(1)i v

(2)
i . Moreover, for every node

ξ denote its unique parent node by ξP and its two children
nodes by ξC.

Clearly, every codeword v of a noncatastrophic convolu-
tional generator matrix [6, Sec. 2.1] corresponds to a path
through such a code tree, ξroot → ξtoor, with σ(ξroot) =
σ(ξtoor) = 0.

Assume searching for the number of codewords nw, that is,
the number of paths ξroot → ξtoor of Hamming weight w. For
each such path there exists an intermediate node ξ, such that

wF(ξ) = fw + j wB(ξ) = bw − j j = 0, 1

where wF and wB denote the accumulated Hamming weights
starting at the root and toor node, respectively, and fw, bw are
freely chosen integers such that fw + bw = w. Note, although



IEEE COMMUNICATIONS LETTERS 3

11

01
root

00

w=0 1/11
10

w=2

1/
10

1/01

w=3

w=3
01

w=3

w=3 0/10

0/
01 w=2

0/
11 w=0

00
toor

Fig. 1. Forward and Backward code tree explored by the BEAST with
forward weight fw = 3 and backward weight bw = 2 with encoding matrix
G(D) = (1 +D +D2 1 +D2).

fw and bw may be chosen freely, an uneven weight distribution
decreases the efficiency of the BEAST.

Based on these observations, the BEAST finds the number
of codewords nw of Hamming weight w by conducting a
bidirectional search as follows:

1) Forward Search: Starting from the zero-weight root node
ξroot, build up a forward code tree and obtain the set of
nodes F+j , j = 0, 1, satisfying

F+j =
{
ξ
∣∣∣wF(ξ) = fw + j, wF(ξ

P) < fw, σ(ξ) 6= 0
}
.

2) Backward Search: Starting from the zero-weight toor
node ξtoor, build up a backward code tree and obtain
the set of nodes B−j , j = 0, 1, satisfying

B−j =
{
ξ
∣∣∣wB(ξ) = bw − j, wB(ξ

C) > bw, σ(ξ) 6= 0
}
.

3) Match: Determine the number of codewords nw of
Hamming weight w by finding the number of node pairs
(ξ, ξ′) ∈ F+j × B−j , j = 0, 1, with the same state,

nw =

c−1∑
j=0

∑
(ξ,ξ′)∈F+j×B−j

χ(ξ, ξ′) (1)

χ(ξ, ξ′) =

{
1, if σ(ξ) = σ(ξ′)

0, otherwise.

Example 1 Consider the encoding matrix G(D) = (1+D+
D2 1 + D2) and assume we want to determine the number
of codewords of weight 5. Applyling the BEAST with, for
example, forward weight fw = 3 and backward weight bw = 2,
leads to the two code trees illustrated in Fig. 1.

According to the algorithm, the forward set stores all nodes
with weight 3 and 4 (marked in gray), that is, F+0 = 01, 11
and F+1 = ∅, while the backward set contains nodes with
weight 1 and 2 (marked in gray), that is, B−0 = 01 and B−1 =
∅. Matching the corresponding sets, we obtain one common
node 01 and thus conclude that there exists one codeword of
weight 5.

IV. THE CELL BROADBAND ENGINE ARCHITECTURE

The Cell Broadband Engine Architecture (CBEA) is a
heterogeneous processor architecture, originally developed for
the PlayStation 3TM by Sony, Toshiba and IBM. The processor
in the PlayStation 3TM is equipped with one general-purpose
PowerPC Processor Unit (PPU) and seven1 Synergistic Pro-
cessor Units (SPU) [4].

1A GNU/Linux operating system is run on the PPU within a hypervisor,
supervised by the native GameOS, permitting access to only six SPUs.

IBM distributes a Cell software development kit (SDK) [4]
for the PlayStation 3TM containing tools for finding perfor-
mance bottlenecks and bugs. An included system simulator can
be used for visualizing a near instruction accurate simulation
of a Cell processor. The SDK also contains an assembly
visualizer for aiding in manually ordering instructions in the
dual SPU pipeline in order to reduce the amount of stalling,
as well as a feedback directed program restructuring tool for
automating the same task.

Each SPU is equipped with a Memory Flow Controller
(MFC), capable of transferring data asynchronously without
interrupting program execution, as well as a 256 KB software-
controlled SRAM-based Local Store (LS) containing both data
and instructions. Utilizing direct memory access commands,
data can be copied between the main memory and the LS
on 16-byte boundaries, with up to 16 simultaneous transfers
in flight. Consequently, using the MFC to asynchronously
transfer data between the SPU and PPU, the communication
delay between each SPU and its corresponding thread on the
PPU can be largely reduced. Moreover, as the SPUs lack
data, instruction and branch caches, fine grained control of
the processor can be used for further individual optimizations.

The PPU and SPU-units have instruction set architectures
(ISA) operating on 128-bit data types which allow simul-
taneous processing of four separate code tree branches [5].
For example, with the SPU ISA containing an instruction
for counting the number of active bits in a byte (cntb),
the Hamming weight calculations of four 32-bit ints can be
effectively calculated simultaneously using the C-function:
inline vec_uint4 hw(const vec_uint4 v) {

return (vec_uint4) spu_sumb(
spu_cntb((vec_uchar16) v),
spu_splats((uint8_t) 0)); }

Conducting an exhaustive code search involves processing
large amounts of data-independent generator matrices. Using
these ideal data characteristics, every SPU processes a gener-
ator matrix independently using data-parallelism, in order to
take full advantages of all CBEA processor cores.

V. IMPLEMENTATION

As the row distances upper-bounds the free distance [6,
Sec. 3.1], we start by using the so-called row distance test
[6, Sec. 8.2] [8] to remove nonpromising encoders without
losing optimality [5, Sec. 6.1]. After checking the remaining
encoders to be noncatastrophic [6, Sec. 2.1], the BEAST is
used to determined the remaining encoder properties, like the
free distance dfree and the spectral components. In particular,
as the row distance test extensively uses the previously de-
fined Hamming weight-function, it can be implemented very
efficiently on the SPUs.

Analyzing pre-generated sets with empirical methods, a
near-optimal time-tradeoff between the BEAST and the ex-
ecution time of the rejection algorithm can be achieved.
For example, in case of the exhaustive search carried out
for memory m = 26, the overall amount of approximately
1.68 · 1015 encoders could be reduced by a factor of 106, still
taking up to 12 GB storage space with each encoder being
stored as two 32-bit polynomials.



IEEE COMMUNICATIONS LETTERS 4

TABLE I
NEWLY FOUND GENERATOR POLYNOMIALS FOR MEMORIES 26–29

OBTAINED BY EXHAUSTIVE (OFD) AND RANDOM (RND) SEARCHES,
COMPARED TO PREVIOUSLY KNOW BEST ODP ENCODING MATRICES.

m g1(D) g2(D) dfree Spectrum Note

26
6450557118 5256265238 28 24, 58, . . . ODP [3]

7361107638 4262370518 28 9, 66, . . . OFD

27
72705107148 50021766648 28 1, 28, . . . ODP [3]

62766312148 54756021648 29 19, 63, . . . RND

28
76051173328 57435215168 30 54, 0, . . . ODP [3]

60053056328 57624230768 30 53, 0, . . . RND

29
73063247638 51360467558 30 5, 47, . . . ODP [3]

60265663758 57135755178 31 64, 164, . . . RND

The BEAST can be efficiently implemented using a recur-
sive depth-first method by partitioning the problem set and
using the SPUs executing in parallel to calculate and sort
subsets of the forward and backward sets for a given w.
Calculated subsets are transferred asynchronously from the
SPU LS to main memory using the MFC while each SPU
continues to produce the next subset. Once both complete
sets have been produced, the PPU is used to find a common
state (1) yielding the dfree and if none is found, the process is
repeated using a greater w.

However, using the recursive method and encoding matrices
with increasing memory sizes, a large call stack memory size
is needed. As the size of the SPU LS is limited, the use of an
iterative implementation greatly reduces the memory footprint
of the algorithm. In particular, eliminating the successive
recursive calls and replacing the call stack with a bit stack,
it is possible to reduce the memory overhead for each depth
in the code tree from 160 bytes to 10 bits [5, Sec. 5.3].

Instead of storing the state information at every depth and
relying on the call stack to restore the previous state and
its weight, the iterative implementation keeps track of the
information lost in a state transition and re-calculates the
previous state and its weight when needed. However, due to
the additional calculations, the efficiency of the BEAST is
reduced slightly.

VI. SEARCH RESULTS

Using the implementation as discussed above, an exhaustive
search for rate R = 1/2 convolutional encoders with memory
m = 26 has been carried out, resulting in the previously
unknown optimum free distance (OFD) encoding matrix being
presented in Table I in octal notation with zeros padded from
the right, i.e., 468 = 100 1102 = 1 +D3 +D4.

With increasing memory, an exhaustive search becomes
infeasible and searches are performed either randomly or are
limited to small subsets of convolutional encoders with certain
“good enough” properties [8]. For example, in [3], a search
limited to optimum distance profile (ODP) encoding matrices
was performed, leading to near-optimum encoding matrices.

By running a random search for rate R = 1/2 encoding
matrices with memory m = 27 − 29 on the Cell Broadband
Engine Architecture, encoders with better properties, that is,
larger free distances and/or fewer spectral components could
be found. These newly obtained encoders in comparison to the
previously found best ODP encoders are additionally given in
Table I.

With the free distance for the OFD convolutional codes with
memory m = 25 and m = 26 being the same, the complexity
of the exhaustive search increases roughly with a factor of
four. Compared to the exhaustive search with memory m = 25
with approximately 80 IBM x86 Opteron cores with 2.6 Ghz
and 4 GB memory in [3], only five PlayStation 3TM were
used to conduct the corresponding search for memory m =
26. Nevertheless, the overall running time remained the same,
namely, approximately two months in both cases.

VII. CONCLUSIONS

The BEAST has been implemented on the Cell Broad-
band Engine Architecture, focusing on efficiently exploiting
the underlying heterogeneous system architecture. Potential
bottlenecks have been highlighted and ways to achieve an
efficient implementation have been provided.

New rate R = 1/2 convolutional encoders with memory
m = 26–29 with better free distances and/or better distance
spectra than previously known ODP encoders of same rate
and complexity have been presented. For memory m = 26,
an exhaustive search could be conducted, leading to our main
result, the previously unknown OFD encoding matrix.

As the PlayStation 3TM was introduced in 2006, using newer
processor architectures like GPUs or homogeneous multicore
CPUs might lead to even more efficient implementations. Such
implementations might be used to find the still unknown OFD
convolutional codes with slightly larger memories.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
valuable comments.

REFERENCES

[1] I. E. Bocharova, M. Handlery, R. Johannesson, and B. D. Kudryashov,
“A BEAST for prowling in trees,” in Proc. 39th Annual Allerton Conf.
Commun., Control, and Computing, Monticello, Illinois, USA, Oct. 2001.

[2] ——, “A BEAST for prowling in trees,” IEEE Trans. Inf. Theory, vol. 50,
no. 6, pp. 1295–1302, Jun. 2004.

[3] F. Hug, “On graph-based convolutional codes,” Master’s thesis, Lund
Institute of Technology, Lund, Sweden, 2008.

[4] (2009, Dec.) Cell broadband engine resource center. [Online]. Available:
http://www.ibm.com/developerworks/power/cell/

[5] D. Johnsson and F. Bjärkeson, “Playing with the BEAST,” Master’s
thesis, Lund Institute of Technology, Lund, Sweden, 2009. [Online].
Available: http://www.eit.lth.se/researchprojects/141/thesis-cell.pdf

[6] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. Piscataway, NJ: IEEE Press, 1999.

[7] I. E. Bocharova, F. Hug, R. Johannesson, and B. D. Kudryashov, “A note
on convolutional codes: Equivalences, MacWilliams identity, and more,”
Jun. 2009, submitted to IEEE Trans. on Inf. Theory.

[8] R. Johannesson, “Robustly optimal rate one-half binary convolutional
codes,” IEEE Trans. Inf. Theory, vol. 21, no. 4, pp. 464–468, Jul. 1975.


