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Abbreviations 

AGO Argonaute
APC Anaphase promoting complex
ARE AU-rich element
ATP Adenosine triphosphate
BRCA Breast cancer gene
C1-4 Conserved region 1-4
CAF Cancer-associated fibroblast
CD Cluster of differentiation
CDC23 Cell division cycle homolog 23
CK Cytokeratin
CMT Charcot-Marie-Tooth disease
CpG Cytosine - phosphate - guanine
DAG Diacylglycerol
DCIS Ductal carcinoma in situ
DCP Decapping protein
DGCR8 DiGeorge Syndrome Critical 

Region 8
DNA Deoxyribonucleic acid
ECM Extracellular matrix
eIF Eukaryotic translation initiation 

factor
EMP Epithelial membrane protein
ER Estrogen receptor
FFPE Formalin-fixed paraffin-embedded
FMRP Fragile X mental retardation 

protein
G3BP Ras-GTPase-activating protein 

SH3 domain-binding protein
GAS Growth arrest-specific protein
GDP Guanosine diphosphate
GTP Guanosine triphosphate
H2O2 Hydrogen peroxide
HER2 Human epidermal growth factor 

receptor 2
HLA Human leukocyte antigen

HMSN Hereditary motor and sensory 
neuropathy

HNPP Hereditary neuropathy with 
liability to pressure palsies

HRI Heme-regulated inhibitor
HSF Heat shock factor
HSP Heat shock protein
HuR Human antigen R
IG Immunoglobulin
IGF2BP Insulin-like growth factor 2 

mRNA-binding protein
INSS International neuroblastoma

staging system
IP3 Inositol triphosphate
IRES Internal ribosome entry site
MAG Myelin-associated glycoprotein
MAP Mitogen-activated protein
MBP Myelin basic protein
MHC Major histocompatibility complex
miRNA micro ribonucleic acid
MMP Matrix metalloproteinase
MPZ Myelin protein zero
mRNA messenger ribonucleic acid
MYCN v-myc myelocytomatosis viral-

related oncogene, neuroblastoma-
derived (avian)

NHG Nottingham histological grade
NTF2 Nuclear transport factor 2
PABP PolyA-binding protein
PB Processing body
PB1 Phox-Bem1
PDK-1 Phosphoinositide-dependent 

kinase-1
PERK PKR-like ER kinase
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PIP2 Phosphatidylinositol-4,5-
bisphosphate

piRNA Piwi-interacting ribonucleic acid
PKC Protein kinase C
PKR Protein kinase R

PLCβ Phospholipase Cβ
PMP22 Peripheral myelin protein 22
PNS Peripheral nervous system
PR Progesterone receptor
RACK Receptor for activated C kinase
RasGAP Ras-GTPase-activating protein
RBP RNA-binding protein
RISC RNA-induced silencing complex
RNA Ribonucleic acid
RNP Ribonucleoprotein
ROS Reactive oxygen species
RRM RNA recognition motif
SELEX systemic evolution of ligands by 

exponential enrichment

SG Stress granule
SH3 SRC homology 3 domain
siRNA small interfering ribonucleic acid
TCGA The Cancer Genome Atlas
TDLU Terminal ducts lobular unit
TH T helper cell
TIA-1 T cell intracellular antigen-1
TMP Tumor-associated membrane 

protein
TPA 12-O-tetradecanoylphorbol-13-

acetate
TTP Tritetraprolin
UPR Unfolded protein response
UTR Untranslated region
UV Ultraviolet
V1-5 Variable region 1-5
VEGF Vascular endothelial growth 

factor
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Cancer introduction 

Cancer is a collective name of more than 100 diseases, having in common an 
uncontrolled and abnormal cell growth. In a healthy tissue, the balance of cell 
division and cell death is tightly regulated for the organ to keep its structure and 
function. If an imbalance in any of these processes occurs, there is an increased risk of 
developing cancer.  

Genetic mutations frequently occur as the DNA replicates during cell division. Most 
errors will not result in permanent modifications due to advanced repair mechanisms 
within the cell. Yet, those mutations that cause advantageous properties of the cell 
will remain and eventually, these might lead to cancer development. The mutations 
can result in sustained proliferation by creating self-sufficiency in growth-promoting 
signals or by avoiding growth suppressive signals. In addition, escape from apoptosis, 
induced immortality, sustained angiogenesis, tissue invasion and metastatic spread are 
characteristics that have been linked to cancer progression [1]. These Hallmarks of 
cancer have later been updated to further include tumor-promoting inflammation, 
ignorance of immune cell mediated destruction, genome instability and mutations as 
well as deregulation of energy metabolism in the cell [2].  

In addition to the genetic events mentioned above, initiation of cancer can also be 
facilitated by epigenetic events such as hyper- or hypomethylation [3, 4]. Tumor 
suppressor genes in cancers can display hypermethylation in the promotor region and 
consequential silenced expression (e.g. of BRCA1 [5] and VHL [6]), but also 
hypomethylation, and thus activation of cancer associated genes, has been reported 
[7]. 
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Breast cancer 

Epidemiology and Etiology 

Breast cancer is the most common form of cancer in women and the second leading 
cause of cancer-related deaths in women after lung cancer [8]. In Sweden, over 8000 
new cases are diagnosed every year, accounting for approximately 30% of all cancer 
diagnoses in women [9, 10]. The breast cancer incidence is still increasing, but better 
treatment and earlier diagnosis have led to reduced mortality and the five-year 
survival rate is now almost 90% [10]. The risk of developing breast cancer depends 
on both hereditary and non-hereditary factors such as hormonal factors, age, 
smoking, diet, infections and genetic predisposition. In addition, women with early 
menarche, late menopause and late first birth have also showed an increased risk of 
breast cancer [8]. Although most breast cancers arise sporadically, about 5-10% of all 
cases depend on hereditary factors and some of the most prominent ones are 
mutations in the tumor suppressor genes BRCA1 and BRCA2 [10]. 

Breast cancer progression 

The breast tissue comprises a branched glandular structure surrounded by supportive 
connective tissue. The gland consists of an inner epithelial layer of luminal cells 
forming the ducts and terminal lobules, and a surrounding layer of basal 
myoepithelial cells responsible for communication with the adjacent stroma and 
maintenance of tissue polarity (Figure 1a). The functional compartments of the breast 
gland are the milk secreting lobules, formed by a cluster of alveoli, gathered as 
terminal duct lobular units (TDLU), which through the ducts subsequently drain 
into the nipple. The TDLUs are the sites where most breast lesions arise, starting with 
a benign modification, often followed by progression into more malignant states 
called atypical hyperplasia and ductal carcinoma in situ (DSIC) (Figure 1b) [11]. 
DCIS accounts for about 20% of all breast cancer cases and is characterized by ductal 
cell invasion into the lumen of the duct [12]. In some cases the tumor cells invade the 
surrounding connective tissue and can as invasive breast cancer eventually metastasize 
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to the lymph node and distant metastatic sites, such as brain, bone, liver and lung 
[13]. 

Histological classification, grading and staging 

The histological classification of breast cancers is based on cellular characteristics and 
morphology of the lesion, and thus reflects the growth pattern of the tumor. The 
most common form is the invasive ductal carcinoma comprising of about 75% of all 
cases, whereas the invasive lobular carcinoma is the second most common 
(approximately 15%) [14, 15]. At least 17 histological types of breast cancer have 
been identified, although most of them show a low prevalence, such as medullary, 
mucinous, tubular and papillary breast lesions. The best prognosis is found among 
patients with carcinoma in situ, where the lesion still resides within the basement 
membrane [12].  

Histological grading of tumors has shown better prognostic and predictive values than 
histological classification and is routinely used in the clinic. Nottingham histological 
grade (NHG) is a classification system based on the aggressiveness of the tumor where 
three histological characteristics, glandular/tubular differentiation, nuclear 
pleomorphism and mitotic count, are being evaluated. Each feature is graded from I-
III, with grade III being least differentiated, and a summary of the scores defines the 
grade of the tumor [16]. 

To define the progression and estimate the outcome of the tumor, the staging system 
TNM is used, which is an abbreviation of tumor, node and metastasis. The tumors 
are classified from T0 to T4 dependent on size and N0-N3, with N0 implying no 
tumor cells present in the adjacent lymph nodes and higher number indicate more 
lymph node involvement. Metastasis is only classified as M0 or M1 depending on 
absence or presence of distant tumor metastasis [17].  

Immunohistochemical analysis 

In clinical diagnostics of breast tumors, immunohistochemical examination for the 
expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal 
growth factor receptor 2 (HER2, also known as ERBB2) as well as the proliferation 
marker Ki67 is routinely performed. In case of HER2 positive staining, in situ 
hybridization (FISH) is additionally performed to evaluate a potential presence of 
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ERBB2 amplification. The expression of these markers can indicate the prognostic 
outcome and is important for therapeutic decisions [17].  

Molecular subtypes 

Analysis of breast tumor specimens using gene expression microarrays was initiated in 
the beginning of 21st century to identify gene expression patterns that could 

 

Figur Figur Figur Figur 1111. . . . Schematic illustration of the breast structure and breast cancer progression. (A)(A)(A)(A) The 
normal breast comprises ducts and lobules of the glandular structure surrounded by adipose 
and stromal cells in the connective tissue. Terminal duct lobular unit (TDLU) is the 
functional unit of the breast, responsible for the milk production. (B)(B)(B)(B) Breast cancer typically 
arises in the TDLU, where initial abnormal cell growth can cause atypical hyperplasia with 
irregular cell morphology. Continuous proliferation of the luminal epithelial cells results in 
formation of ductal carcinoma in situ (DCIS) with cells filling the lumen of the duct. Invasive 
ductal carcinoma (IDC) arises as the basement membrane degrades and cells invade the 
surrounding microenvironment 
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correspond to the phenotypic diversity identified among breast tumors. These results 
described distinctive molecular portraits of each tumor, which further was used to 
identify intrinsic subtypes within the breast cancers. Initially, four biologically distinct 
and clinically relevant classes were identified, although this has later been refined [18, 
19]. Today, tumors are classified as luminal A, luminal B, HER2-enriched, basal-like, 
claudin-low or normal-like, even though the latter has been questioned and novel 
subgroups have been proposed [20-26]. 

A majority of the breast cancers are classified as either luminal A (50-60%) or luminal 
B (10-20%) tumors with high ER expression and/or PR expression. The luminal B 
tumors have a higher expression of the proliferation marker Ki67 and have showed a 
higher grade and worse prognosis than luminal A [14, 27]. HER2-enriched tumors 
are characterized by a high expression or gene amplification of the ERBB2 gene (the 
HER2 encoding gene) and account for approximately 15-20% of all breast tumors. 
These tumors are associated with poor prognosis, although HER2 targeting therapies 
such as trastuzumab have improved the survival of this subgroup [27, 28]. The 
normal-like subtype is poorly characterized, but resembles the expression pattern of 
normal breast samples and displays an intermediate prognosis [27]. Basal-like breast 
cancers, composing 15% of all breast carcinomas, are high-grade tumors with an 
overall bad prognosis [27]. They frequently lack the expression of estrogen and 
progesterone receptors as well as HER2-amplification and are hence called triple-
negative tumors. However, not all basal-like tumors are triple-negative and only 70% 
of tumors lacking ER, PR and HER2 expression are clustered as basal-like [29]. One 
subtype that originally was included among the heterogeneous basal-like tumors is the 
claudin-low group (12-14%). They are mainly triple-negative, but differ from the 
basal tumors by displaying a low expression of adhesion molecules such as E-cadherin 
and claudin -3, -4 and -7 along with having a stem cell like phenotype 
(CD44+/CD24-) and these tumors often have a high immune cell infiltration [24]. 

Basal-like tumor cells resemble the features of the basal myoepithelial cells 
surrounding the mammary ducts and share a common elevated expression of high 
molecular cytokeratins (e.g. CK5 and CK17) [20, 27]. Yet, basal-like tumors are 
heterogeneous and further characterization of these tumors is essential for improved 
therapeutic possibilities since the lack of hormonal receptors disables the use of 
hormone-based or anti-HER2 therapies. Today, patients with basal-like tumors 
mainly receive neoadjuvant treatment, such as anthracyclines, and those who 
experience a pathologic complete response have an improved prognosis. However, 
patients that do not gain any improvement instead display a significantly worse 
survival [30, 31]. Novel studies indicate an advantage of using additional 
chemotherapy blocking DNA repair mechanisms, such as platinum drugs and PARP 
inhibitors, especially in BRCA1 deficient basal tumors [21, 32]. 
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Tumor microenvironment in breast 
cancer 

Tumors were long believed to consist of a homogenous collection of cancer cells and 
the main focus in cancer research was restricted to investigating the genetic alterations 
resulting in tumorigenic transformation within the cell. Later studies have identified 
tumor promoting capacities also in the surrounding tumor microenvironment and 
elucidation of how the cancer and stromal cells communicate and promote 
tumorigenic events may be important for diagnosis and therapy improvement in 
malignant diseases [33-37].  

In normal breast tissue, the ductal epithelium is surrounded by supportive stroma that 
mediates tissue homeostasis and provides signals for epithelial cell differentiation and 
tissue organization. This connective tissue is composed of extracellular matrix (ECM) 
and various types of stromal cells, including fibroblasts, pericytes, endothelial cell, 
adipocytes and immune cells [38-40]. One of the most abundant cell types of the 
stroma are the fibroblasts, mainly functioning by producing ECM components and 
by regulating inflammation, wound healing and epithelial differentiation. The ECM 
balance is regulated by production of collagen fibers for maintenance of a stable 
architecture, but also proteases such as matrix metalloproteinases for ECM 
degradation. Resting fibroblasts can be activated upon tissue injury to produce ECM 
and generate a platform for additional cells that can assist in wound healing [41]. 

Activation of tumor stroma 

Survival and progression of tumor cells are initially counteracted by fibroblasts, 
macrophages and cytotoxic immune cells from the tumor microenvironment to 
prevent tumor growth [42]. However, the tumor-associated stroma can be influenced 
by tumor cells to rearrange the microenvironment to promote tumor growth. This 
process resembles the activation of stroma during wound healing with increased 
number and activation of fibroblasts, enhanced production of ECM components, 
newly formed capillaries and inflammatory infiltrate as a consequence [41] (Figure 2). 
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Angiogenesis 

The tumor stroma is composed of a variety of non-malignant cells and the 
composition and proportion of stromal compartment in relation to tumor mass varies 
extensively between tumors, influencing the profound tumor heterogeneity. Activated 
tumor stroma cells promote an angiogenic switch of endothelial cells, in particular 
through production of vascular endothelial growth factors (VEGF), which leads to an 
activation of endothelial cells and induced formation of new blood vessels [2]. The 
increased need for oxygen and nutrients makes the growing tumor extremely sensitive 
to altered angiogenesis, and inhibition of novel blood vessel formation cannot only 
reduce tumor progression through insufficient oxygen supply but also diminish 
possible vascular routes for tumor metastasis [43-45]. Surrounding the endothelial 
cells of blood vessels, pericytes provide a stabilizing and growth-regulatory effect of 
blood vessels and assist in blood flow regulation in non-active stromal tissue. In 
tumor stroma, blood vessels have a reduced coverage of pericytes, which has been 
shown to have effects on both metastatic rate and survival in breast cancer [46-49]. 

Cancer-associated fibroblast  

Cancer-associated fibroblasts (CAFs or myofibroblasts) become more abundant as a 
response to stroma activation and have in addition been characterized to proliferate 
faster than regular fibroblasts. Growth factors and cytokines, released by the tumor 
cells, recruit CAFs to the tumor site and promote CAF activation. In return, CAFs 
release growth-promoting signals for the adjacent epithelial cells, cytokines for 
immune cell recruitment and various extracellular matrix proteases, such as matrix 
metalloproteinases (MMP), to rearrange the ECM and promote tissue invasion [45, 
50]. Several molecular markers for CAFs have been identified, although none of them 
are exclusively expressed in fibroblasts or expressed in all fibroblasts. Some of the most 
prominent proteins in fibroblasts are α-smooth-muscle-actin (α-SMA), fibroblast 
specific protein-1 (FSP-1), fibroblast-activated protein (FAP), but the variation in 
marker expression both within and between different tissues may indicate the 
presence of fibroblast subtypes [41, 51, 52]. 

Cancer and inflammation 

Immune cell infiltrates are heterogeneous and can vary both in location and 
composition even within the same tumor type. In some cancers, a chronic 
inflammation is a prerequisite for tumor induction, e.g. human papillomavirus in 
cervical carcinoma and Helicobacter pylori in gastric carcinoma [53, 54]. Upon an 



  

13 

innate immune reaction, leukocytes are recruited and various mediators like cytokines 
and proteases are produced to eliminate the source of the infection. Identification of 
foreign antigens by dendritic cells will stimulate clonal expansion of adaptive immune 
cells, such as T cells, for elimination of the pathogen. This is followed by induction of 
cell death to remove damaged cells as well as induction of cell proliferation to 
reestablish the tissue morphology. Sustained stimulation results in chronic 
inflammation, genomic instability and an altered microenvironment, which will 
provide growth survival advantage for neoplastic cells [55, 56]. In other cancers, 
transformed cells can produce inflammatory mediators and thus create an 
inflammatory microenvironment themselves without an underlying inflammatory 
cause. This pro-tumorigenic inflammation provides cancer cells with growth factors 
and stroma-remodeling molecules, promoting further tumor development [57, 58].  

T cells are common infiltrating lymphocytes identified as various subpopulations with 
different regulatory functions. Cytotoxic CD8+ T cells are prone to killing tumor  
 
 

Normal stroma Activated stroma

Extracellular matrix Pericytes FibroblastsBlood vessel B lymphocyte Monocyte MacrophageT lymphocyte

 

Figur Figur Figur Figur 2222. . . . Tumor stroma activation. Normal stroma contains a tightly packed extracellular 
matrix making up a supportive network for the resting fibroblasts, pericyte-covered blood 
vessels and circulating and resident monocytes. In activated stroma, fibroblasts differentiate 
into cancer-associated fibroblasts and together with increased angiogenesis and lymphocyte 
and macrophage recruitment, this tumor microenvironment further promotes tumor 
progression. 
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cells with assistance of CD4+ T helper 1 (TH1) cells and the presence of both of these 
immune cell types was strongly associated with good prognosis in an analysis of 20 
different cancer types [59]. Presence of most other T cells, such as TH2 and regulatory 
T cells, is on the other hand often associated with worse prognosis in breast cancer 
[59, 60], although the opposite has also been reported for TH2 cells [61]. T cell 
receptors expressed on most T cells recognize antigens presented on either major 
histocompatibility complex I (MHC-I) for intracellular peptides or MHC-II for 
foreign proteins. MHC complexes are encoded by HLA (human leukocyte antigen) 
genes on antigen presenting cells, where HLA-A, -B and –C belongs to the MHC-I 
family and HLA-D to MHC-II. HLA-D exist in three variants HLA-DR, -DP and –
DQ that are upregulated in response to hormonal or cytokine stimulation and HLA-
DR as well as HLA-DM, responsible for peptide loading onto HLA-DR, are 
associated with a TH1 profile and improved survival [62]. 

B cells are identified in the invasive margin and stroma of tumors and are the main 
inflammatory component in ductal carcinoma in situ and invasive breast tumors [63]. 
Infiltrating B cells were initially associated with good prognosis in breast cancer [64], 
although later mouse model studies have demonstrated tumor-promoting roles for B 
cells and immunoglobulins in skin cancer [58, 65] and increased lung metastasis in 
breast cancer [66]. However, a B cell signature, consisting of clusters of heavy and 
light chains, was identified among 200 invasive breast carcinomas to associate with 
metastasis-free survival among highly proliferating tumors [67] and immunoglobulin 
kappa chain (IGKC) was identified as a single biomarker for better prognosis and 
expression correlated with complete chemotherapy response in breast cancer [68]. 

Extracellular matrix 

ECM is the supportive tissue in the stroma, responsible for structural organization of 
the tissue and cellular polarization and contains various combinations of proteins (e.g. 
collagen, laminin), glycoproteins (e.g. fibronectin, osteopontin), proteoglycans (e.g. 
decorin, lumican) and polysaccharides (e.g. hyaluronic acid) [69]. The ECM is 
identified to be a dynamic structure that reorganizes depending on the surroundings, 
in particular in response to stromal and immune cell influences. Under pathological 
conditions, the loosely packed matrix stiffens and collagen deposition increases, 
resulting in upregulated integrin signaling which can promote a variety of tumor 
promoting effects, including cell survival, proliferation and lymphocyte infiltration. 
In addition, thickening of collagens is often found at sites of tissue invasion, on which 
cancer cells can migrate. Regulation of ECM is also regulated by MMPs, expressed by 
branching endothelial cells to promote angiogenesis [70, 71]. In breast cancer, 
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stromal expression of especially the gelatinase subgroup MMP-2 and MMP-9 has 
been associated with poor prognosis [72, 73]. 

Identification of ECM gene signatures has been shown to provide breast cancer 
classification with implications for clinical outcome. These clusters did not 
completely overlap the molecular subtypes of breast cancer, but instead identified 
patients with a bad prognosis that otherwise reside in a “good prognosis” subtype. In 
this study, high collagen expression correlated with lymphocyte infiltration, high 
adhesion molecule expression and poor survival [74]. 

Stromal gene expression profiles 

The phenotypic changes in the activated stroma highlight the importance of the 
tumor microenvironment for cancer induction and progression. Evaluations of the 
tumorigenic capacities of the stroma have indicated abilities both to induce and 
reduce neoplastic changes in mammary epithelium [75, 76]. The connective tissue is 
continuously remodeling to meet the needs in the tissue and miss-regulation can 
affect the adjacent epithelium and possibly induce neoplastic transformation [77-79]. 
Stromal gene expression profile analyses have been performed in various ways and 
tissues to delineate how the stroma influences the tumor tissue. In breast cancer, 
studies have identified profiles based on altered stromal expression in cancer and non-
cancer tissue, but also signatures from different stages of progressing breast cancer 
[80-82]. In addition, these profiles could be useful in predicting clinical outcome [33] 
and response to neoadjuvant therapies [83]. Although, the studies vary with regards to 
tissue preparation and isolation techniques, all could produce stroma-specific profiles. 
However, the profile outcome differs to some extent between the studies indicating 
that more studies are necessary to improve stromal-based tumor classification and 
establish prognostic and therapeutic implications. 
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Neuroblastoma 

During early neural development, the outermost ectoderm germ cell layer folds into a 
groove formation creating a neural tube, which later will develop into the central 
nervous system and neural crest cells. Depending on stimulation and site of 
migration, these cells can mature into melanocytes or various peripheral nerve cells 
including glial cells and sensory, sympathetic or parasympathetic neurons [84, 85]. 
Cromaffin cells, residing in the medulla of the adrenal gland, originate from the same 
common sympathoadrenal progenitor cell as the neurons of the sympathetic nervous 
system and function by secreting “fight or flight” catecholamine hormones, 
adrenaline and noradrenaline, directly into the circulation [86]. 

Neuroblastoma is the most common solid childhood malignancy, arising from 
immature neural crest cells in the sympathetic nervous system, with the primary 
tumor residing in the adrenal gland or along the sympathetic ganglia [87]. In Sweden, 
neuroblastoma accounts for about 6% of all childhood tumors and around 20 
children are diagnosed every year [88] with a median age of diagnosis of 18 months 
[87]. 

The survival of neuroblastoma patients has improved during the last decades due to 
better treatment options with an overall survival of about 75%. However, 
neuroblastoma is a heterogenous disease and patients with less differentiated tumors 
have shown a worse prognosis. Most neuroblastomas arise sporadically (98%) with 
amplification of MYCN gene (>10 copies) being one of the most prevalent 
chromosomal aberrations [87]. MYCN encodes a transcription factor that has been 
implicated to affect proliferation and differentiation of neural crest cells [89] and is 
associated with rapid progression, aggressive phenotype and poor prognosis n 
neuroblastoma [87]. In rare cases (2%) neuroblastoma are familial and can depend on 
germline mutations in ALK [90] or PHOX2B genes amongst others [91]. 

According to the International neuroblastoma staging system (INSS) the tumors can 
be divided into five stages based on clinical, radiographical and surgical evaluations 
which can be used for characterization and treatment prediction. Stage 1 tumors are 
localized, well differentiated and often show a good prognosis, whereas patients with 
metastatic stage 4 tumors have a worse outcome [92]. The fifth group, called 4S, is 
less characterized, but the patients are diagnosed before the age of 1 year and show a 
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restricted metastatic pattern to the liver, skin and bone. These patients show a 
favorable prognosis, mainly due to spontaneous regression [93]. Tumors in low-risk 
patients of stage 1-3 are often surgically removed, whereas patients with intermediate 
tumors and established lymph node involvement receive chemotherapy in addition to 
surgery. More aggressive metastatic tumors are treated with a combination of the 
above along with radiotherapy [94]. 
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Protein kinase C 

Protein kinases are regulatory proteins with enzymatic activity, mainly functioning as 
signaling molecules in the cell by adding a phosphate group to serine, threonine or 
tyrosine residues of the substrate. One large group of serine/threonine kinases is the 
AGC kinases, named after the most prominent members, protein kinase A (PKA), 
PKG and PKC, and characterized for the similarities in the catalytic domain sequence 
[95-98].  

PKC isoforms and their structure 

PKC is a family of serine/threonine kinases, consisting of 10 isoforms that arise from 
nine different genes [99]. The family members are divided into three different groups 
(classical, novel and atypical) depending on structure and activation (Figure 3a). Most 
isoforms contain four conserved subdomains (C1-C4), with C1 and C2 residing in 
the class-specific regulatory domain in the N-terminal region and C3 and C4 in the 
catalytic domain localized in the C-terminal region. PKCs can all be activated by the 
interaction with phosphatidylserine, but where the novel PKCs only need additional 
diacylglycerol (DAG) for full activation, classical PKC activation is dependent also on 
Ca2+ ions. The atypical PKCs differ from the other classes in that they are insensitive 
to both DAG and Ca2+. 

Regulatory domain 

The classical (or conventional) group of PKCs consists of the isoforms α, βI/βII and 
γ, where βI and βII are alternatively spliced variants of the same gene [100]. The 
structure of classical PKCs consists of two C1 domains, denoted C1a and C1b, in the 
N-terminal region, involved in the interaction of DAG [101] or phorbol esters such 
as 12-O-tetradecanoylphorbol-13-acetate (TPA) [102]. Both C1 domains share a 
similar sequence and function, but have shown differences in affinity for DAG and 
phorbol esters under certain circumstances and for different isoforms [103, 104]. A 
cysteine-rich region in the C1 domain creates a binding pocket for DAG and phorbol 
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esters, enabling hydrophobic residues in the C1 domain to penetrate into the 
membrane and create a stable interaction [105, 106]. The DAG interaction also 
mediates a conformational change of PKC, resulting in a release of the 
pseudosubstrate from its binding with the catalytic site and enabling access for PKC 
substrates. The classical C2 domain binds phospholipids in a calcium-dependent 
manner, mediating the interaction of PKC to the membrane. Aspartic acid residues 
interact with phosphatidylserine of the cellular membrane, a process that is necessary 
for subsequent C1 domain binding to DAG [107]. PKC localization to the 
membrane has been suggested to be mediated by receptors for activated C kinases 
(RACKs), through interaction with the regulatory domain, although this has not been 
verified for all isoforms [108, 109].  

The novel PKCs (δ, ε, η and θ) display a different alignment of the subdomains in 
the regulatory domain, with a calcium-insensitive C2 domain in the N-terminal 
region followed by tandem C1 domains. Although not sensitive to calcium, this C2-
like domain is still important for PKC activation. It can interact with proteins, such 
as RACKs, for cellular translocation, but also mediate membrane anchorage by 
interacting with phosphatidic acid [110]. In addition, the C2-like domain has been 
suggested to have an auto-inhibitory effect by blocking the DAG binding to the C1 
domain and removal of the C2 domain in novel isoforms has been shown to increase 
protein translocation to the plasma membrane [111] [112]. 

The structure of atypical PKCs (ζ and ι/λ) contains a C1-like domain, without the 
residues important for DAG-binding, and lacks a C2 domain. These proteins are 
thereby neither activated by DAG interaction nor by calcium stimulation. Instead, 
the atypical isoforms carry a phox-Bem1 (PB1) domain which mediates protein-
interactions and thereby activation of the protein [113]. 

Catalytic domain 

The catalytic domain is located in the C-terminal region and shares a common 
conserved sequence among the PKC isoforms with high similarity [114]. The ATP-
binding site resides in the C3 domain, from which the PKC catalyzes hydrolysis of 
ATP, enabling transfer of a phosphate group to the substrate and subsequent 
downstream signaling. Point mutation of a lysine residue in the ATP-binding site 
results in a catalytically inactive PKC as a consequence of the abrogation of its 
phosphotransfer function, and is often experimentally used [115, 116]. The PKC 
signaling transduction through substrate phosphorylation is enacted at the substrate-
binding site in the C4 domain. A large number of proteins have been shown to be 
 



  

21 

  

Figur Figur Figur Figur 3333....    Schematic overview of the PKC structure and regulation. (A) The PKC isoforms can 
be divided into three classes depending on structure and function; the classical, novel and 
atypical isoforms. Phosphorylation sites, depicted on PKCα are important for PKC 
maturation. (B and C) Newly translated PKC is translocated to the cellular membrane for 
phosphorylation and maturation, before residing in the cytoplasm in a mature latent state. 
Upon stimulation, PKC translocates back to the membrane for fully activation. Maturation 
and activation steps are exemplified by PKCα. 
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phosphorylated by PKC, such as transcription factors, kinases, growth factor 
receptors, cytoskeletal proteins, eukaryotic initiation factors and RNA binding 
proteins [117], [118, 119]. Optimal isoform-specific substrate sequences have been 
identified, showing an importance of basic amino acids among the serine and 
threonine residues [120, 121]. 

Five variable regions (V1-V5) surrounding the conserved domains of the PKC 
structure have been identified and are, as the name implies, variable in size and 
structure between the family members. They can provide specificity for the isoform, 
such as V3 in the hinge region between the regulatory and catalytic domain, sensitive 
for caspase-dependent proteolytic cleavage during apoptosis and the C-terminal V5 
region that can influence the protein translocation pattern [122] [123]. 

Regulation of PKCs 

Maturation 

Maturation of PKC by post-translational modifications is necessary for the protein to 
become catalytically competent and includes phosphorylation on three conserved 
positions. Newly translated PKC directly translocates and interacts with anionic lipids 
in the cellular membrane through its C1 and C2 domains as well as the newly 
released pseudosubstrate (Figure 3b) [124, 125]. This open conformation enables 
phosphoinositide-dependent kinase-1 (PDK-1) to bind to the unphosphorylated 
hydrophobic motif and initiate phosphorylation at the activation loop (T497 in 
PKCα). In classical and novel PKCs, this site is located close to the active site in C4 
and contains a threonine residue. As phosphorylation is completed, PDK-1 is 
released, which opens up for additional phosphorylation at other residues [126].  

The following maturation steps include phosphorylation at two additional positions 
in the V5 region of the catalytic domain, namely the turn motif (T638 in PKCα) and 
the hydrophobic motif (S657 in PKCα). Phosphorylation of the hydrophobic motif is 
mediated by autophosphorylation [127], whereas the turn motif probably depends on 
additional kinase activity, such as the mammalian target of rapamycin complex 2 
(mTORC2), containing the serine/threonine kinase mTOR [128, 129]. 
Phosphorylation on these two sites is believed to have a stabilizing, yet not activating, 
effect [130]. 

Even though many PKCs require the same activators, localization and protein 
conformation are important factors that regulate which isoforms will be activated. For 
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example, phosphorylation by PDK-1 only affects PKCs in a membrane bound state, 
when the pseudosubstrate is released. As PKC becomes mature, it adopts a closed 
conformation that is more resistant to phosphatases, proteinases and variations in 
temperature. This latent state involves binding of the pseudosubstrate to the 
substrate-binding pocket as well as interaction of phosphorylated hydrophobic motif 
to a phospho-hydrophobic site binding pocket [131]. Mature latent PKC is released 
from the membrane and diffuses into the cytosol until stimulating signals like DAG 
and Ca2+ facilitate PKC activation and possible substrate interaction [98]. Additional 
phosphorylation of PKC is believed to fine-tune the function of the enzyme in its 
substrate selection [132]. Unphosphorylated PKCs on the other hand are unstable 
and will undergo immediate degradation [133]. 

Activation 

Upon extracellular ligand-binding to G protein-coupled receptors or tyrosine kinase 
receptors a signaling cascade, that enables activation of PKC, is initiated through 
phospholipase Cβ (PLCβ) or PLCγ signaling, respectively (Figure 3c). PLC 
hydrolyzes the membrane bound phosphatidylinositol-4,5-bisphosphate (PIP2) 
resulting in two products; the membrane bound DAG and the soluble inositol 
triphosphate (IP3). IP3 can thus mediate release of Ca2+ from the endoplasmic 
reticulum (ER) into the cytoplasm [134]. The Ca2+ ions can then bind to the C2 
domain of mature and competent classical PKCs and increase attraction to the 
cellular membrane by altering the electrostatic potential of PKC [124, 135]. The lipid 
binding to C2 of classical and novel PKCs is enhanced by DAG interaction with C1 
domains, leading to a conformational change and release of the pseudosubstrate from 
the substrate-binding site [136].  

Membrane-bound, active PKCs are sensitive to dephosphorylation and as the need for 
further signaling is lost, the molecule gets degraded via poorly understood 
mechanisms, although both endosomal and proteasomal degradation have been 
suggested [137, 138]. In addition, chronic stimulation of phorbol esters can result in 
increased degradation of PKC [138]. Heat-shock proteins (HSP) have been shown to 
influence the PKC turnover, either through increased phosphorylation, through 
HSP90, or by protecting dephosphorylated turn motifs through HSP70, and thus 
enabling re-phosphorylation [139]. 
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PKCα in cancer 

PKCα is in general suggested to be a pro-tumorigenic protein, since PKCα can induce 
tumor growth, progression and invasion [140] as well as inhibit apoptosis both in vivo 
and in vitro [97, 141, 142], e.g. through regulation of the anti-apoptotic Bcl-2 protein 
[143]. On the contrary, PKCα-deficient mice show elevated intestinal tumor 
formation with earlier onset and more aggressive tumors [144]. This reflects the great 
diversity of PKC functions, which not only depends on the isoform expressed, but 
also on tissue distribution, subcellular localization and condition of the cell.  

PKCα is abundantly expressed in many tissues, but even though PKCα is coupled to 
tumorigenic events there are no general conclusions to be drawn from its expression 
pattern in tumor tissue. PKCα has been reported to be highly expressed in high-grade 
urinary bladder and endometrial cancers [145, 146], whereas hepatocellular 
carcinoma and colon tumors display decreased levels [147, 148]. This complex 
picture is further corroborated by high-grade glioma cell lines that demonstrate a high 
expression of PKCα, whereas tumors rarely show any variation in expression 
compared to normal brain tissue [149].  

In breast cancer, the expression of PKCα is generally lower compared to non-
malignant tissues [150], but in relation to tumor grade, reports have shown both 
positive and negative correlations [151, 152]. The expression of PKCα has been 
coupled to estrogen receptor negative tumors [153-156] and increased activity 
correlates with HER2 amplification [157]. In addition, increased PKCα expression 
can lead to a loss of ER-positivity in MCF-7 cells along with other features that can 
be coupled to a more aggressive phenotype, such as increased proliferation [158]. As a 
consequence of the increase in hormonal receptors, PKCα-low tumors respond better 
to endocrine treatment and are associated with a better prognosis [152, 159, 160]. 

PKCα has recently been identified as a marker for cancer aggressiveness [152] and has 
been shown to induce migration in breast cancer cell lines [152, 161]. In concordance 
with this, inhibition of PKCα with an isotype-specific V5-region peptide (αV5-3), led 
to reduced intravasation and metastasis through reduction of matrix 
metalloproteinase 9 (MMP9) in a mammary tumor-bearing mouse model [162]. 
PKCα has also been reported to be highly expressed and activated specifically in 
CD44hi/CD24lo mammary epithelial cells. Inhibition of PKCα in these cells induces 
depletion of stem-like cells and decreased tumor growth, indicating that PKCα may 
function as a potential therapeutic target for elimination of cancer stem cells within 
the tumor [156]. 
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Therapeutics 

The work of discovering PKC-specific drugs has been a difficult task because of the 
non-specificity both regarding targeting a certain isoform and for distribution to the 
right cellular compartment. The expected effect by using protein kinase inhibitors 
targeting the kinase domain with ATP-competitive compounds (e.g. Staurosporin, 
Rottlerin, Enzastaurin), and thereby inhibiting downstream signaling, was shown to 
be unspecific due to the presence of ATP-binding sites in all isoforms. As a 
consequence, development of novel PKC-targeting drugs has focused on more 
divergent regions and inhibitors affecting protein interactions or substrate binding 
have been established, mainly targeting the C2 domain, since it is the least conserved 
region among the isoforms [163, 164]. 

In PKCα-targeted therapy, aprinocarsen (LY900003) was a promising drug for tumor 
reduction in several cancers, especially non-small cell lung carcinoma. By using anti-
sense oligonucleotides that complementary bind to the 3’ UTR of PKCα mRNA 
(PRKCA), aprinocarsen could block translation. However, randomized phase III 
studies showed no differences in metastasis or survival compared to control samples 
and no clinical trials are ongoing as of today [165, 166]. Few other therapeutic agents 
against PKCα have reached clinical trials. The lactone bryostatin 1 showed a 
modulating effect on PKC activation, where long exposure could induce loss of 
membrane interaction and hence diminished activity [167]. However, in phase II 
studies, bryostatin 1 could only show minimal anti-tumor effects and is therefore not 
a part of any ongoing studies [168]. Other clinical trials have involved the ATP-
competitive midostaurin and enzastaurin, which have shown promising effects on 
single malignancies, such as leukemia and advanced brain lesions, alone or in 
combinational therapies [163]. 
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RNA metabolism  

The central dogma of molecular biology was postulated by Francis Crick in 1958 
(revised in 1970) and comprised how the flow of genetic information, residing in the 
DNA is transcribed into mRNA molecules that serve as templates for the ribosomal 
protein translation [169]. Even though this is still the fundamental principle, later 
studies have pointed out more complex regulation processes and even non-coding 
RNAs are now well known regulators of RNA expression through a process called 
RNA interference (discussed below) [170].  

RNA regulation is important, not only for spatiotemporally-specific transcription and 
degradation of the molecules, but also for taking care of errors that occur during 
mRNA processing. The RNA metabolism comprises all the regulatory steps affecting 
the RNA, including transcription and translation as well as post-transcriptional 
modifications such as mRNA processing, localization and stabilization of RNA [171]. 
Balance of these processes is of importance and defects can result in various oncogenic 
features [172]. 

The half-life of mRNAs varies between minutes and days and a precise regulation of 
mRNA turnover is important for maintaining the steady-state gene expression levels 
of the cell [173]. Eukaryotic mRNAs are protected by a 7-methylguanosine cap in the 
5’ end along with a poly-A tail in the 3’ end and the conventional decay pathway is 
initiated by deadenylation of the poly-A tail by specific enzymes. Once the 
deadenylation is initiated, processing of the 5’ cap by the decapping enzymes Dcp1/2 
will follow, enabling exonucleolytic degradation by Xrn1 in a 5’ to 3´direction or by 
exosomes in a 3’ to 5’ direction. For unstable short-lived mRNAs, an 
endoribonuclease-mediated decay process is active, binding directly to the mRNA 
body or the 3’ UTR without initial deadenylation [174, 175]. 

Translation initiation 

One of the most important regulatory steps for RNA metabolism is the translational 
initiation, but this is also one of the most deregulated processes in cancer. Eukaryotic 
translation initiation is a precisely regulated process required for the onset of protein 
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synthesis for most 5’cap mRNAs, although internal ribosome entry sites (IRES) 
identified in the middle of the mRNA sequence can be used by RNA viruses or cells 
in mitosis to ignore or even repress regular translation and induce production of 
specific proteins [176]. Initiation of 5’ cap mediated translation requires the binding 
of the ternary complex (eIF2-GTP-tRNAi

Met) to the small ribosomal subunit 40S, 
creating a 43S pre-initiation complex, followed by subsequent recruitment to mRNAs 
by a complex of eukaryotic translation initiation factors (eIFs) called eIF4F. The 43S 
complex scans the mRNA for identification of the initial codon and not until then is 
the eIF2-bound GTP hydrolyzed, initiation factors dissociated and the 60S ribosomal 
subunit attached for translation initiation (briefly summarized in Figure 4) [176, 
177]. 

Cellular stress response 

To survive stressful conditions, the cells have evolved an ability to regulate protein 
translation and alter the translational balance to produce more stress-protective 
proteins, in a process called stress response. Precise regulation of these processes is of 
importance for the cell and modifications in any direction can have disease promoting 
effects as described both for Parkinson´s disease [178] and cancer [179]. Described 
below are some of the most common stress responses. 

Heat shock response is induced in cells exposed to elevated temperatures (3-5°C 
above the physiological level), but also oxidative stress and heavy metals can activate 
this response. Under normal conditions heat shock factors (HSFs) are maintained in 
an inactive state by HSP90. Upon stress, unfolded proteins compete with HSFs for 
HSP90, which releases the HSFs and enables them to function as transcription factors 
for certain protective genes, such as HSP27 and HSP70. These proteins function as 
chaperones, remodeling denatured unfolded proteins and preventing protein 
aggregation and subsequent cell death [180, 181]. 

Unfolded protein response (UPR) is a consequence of stress affecting the endoplasmic 
reticulum (ER), so called ER stress. Accumulation of unfolded proteins, due to lack of 
post-translational modifications such as glycosylation, will induce an activation of the 
three stress-related transmembrane receptors in the ER, PKR-like ER kinase (PERK), 
inositol-requiring protein-1 (IRE1) and activating transcription factor 6 (ATF6). 
Together, these proteins cause a repressed protein translation and induce ER-specific 
protein degradation [182].  
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Figur Figur Figur Figur 4444. . . . Brief description of translational initiation. A ternary complex, consisting of the 
initial methionine tRNA (Met-tRNAi) and the carrying eIF2 associates with the small 
ribosomal subunit 40S creating a 43S preinitiation complex. This complex is recruited to the 
mRNA by an eIF4F complex forming a 48S complex. The eIF4F consist of the 5’ cap-binding 
eIF4E, the scaffolding eIF4G and the eIF4A helicase protein promoting a structure necessary 
for the 60S ribosomal subunit to associate and translation to initiate. Poly-A binding protein 
(PABP) bound to the poly-A tail of the mRNA interacts with the eIF4G, forming a stable 
circularized structure favoring ribosomal cycling and enhance translation. 
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Moreover, stress inducing external factors can cause cellular damage and possible cell 
death upon sustained stimulation. Irradiation, ultraviolet (UV) light or 
chemotherapeutic agents can all result in DNA single or double strand breaks which 
leads to induced DNA damage response in the cell [183]. Oxidative stress caused by a 
disruption in the balance between the production of free radicals and the cells ability 
to create antioxidants can be triggered by induced reactive oxygen species (ROS) or 
hydrogen peroxide (H2O2) within the cell, resulting in cell death unless the stress is 
relieved [184]. Autophagy (self-eating) is a cellular response to metabolic stress such 
as growth factor deprivation, causing a lysosomal degradation of cytoplasmic 
organelles [185].  

Several of these stress responses are connected and one effector does not only result in 
one kind of response. Many of the environmental stress factors can induce 
phosphorylation of the eIF2α subunit at Ser51 and block the eIF2B-mediated 
exchange of GDP to GTP, thereby preventing the formation of the ternary complex 
and subsequent translational arrest [186, 187]. This is one of the major events for 
promoting stress granule (SG) formation. The increased phosphorylation status can 
depend on multiple upstream kinases, including heme-regulated inhibitor (HRI), 
protein kinase R (PKR), general control nonderepressible 2 (GCN2) and PKR-like 
ER kinase (PERK), during various kinds of stress. In general, GCN2 is induced 
during amino acid deprivation, PKR is active in response to viral infections, HRI is 
influenced during heat shock and PERK is induced upon ER stress [188]. Viruses 
have evolved mechanisms to succeed with infection also in translationally repressed 
cells. Some viruses completely repress SG formation, whereas others can trigger initial 
phosphorylation of eIF2α, but later repress this stress response by disrupting stress 
factors such as RasGAP-binding protein (G3BP) [189, 190]. 

Stress granules and Processing bodies 

In response to the various stress factors, cells block the translation of house-keeping 
mRNAs, leaving the mRNAs in a “ready to go”-state. Once the stress factor 
disappears, the ribosomal unit will reunite and translation resume. This stress-induced 
translational arrest was first identified during heat-shock in tomato cell cultures that 
demonstrated a formation of cytoplasmic aggregates consisting of mRNA and protein 
complexes called stress granules (SG) [191]. Even though the SGs in this initial 
finding in tomatoes later was shown not to contain any mRNA [192], the stress 
response was proven to be a well conserved phenomenon among species and in 1999, 
Kedersha et al. identified mammalian SGs [193]. SGs are large complexes containing 
translationally repressed 48S-preinitiation complexes including the ribosomal 
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subunits, eukaryotic initiation factors, RNA-binding proteins and the attached 
mRNA, indicating that this formation is due to an inhibiting process of the protein 
translation initiation [194]. These complexes function as a protective mechanism 
preventing the mRNA from being degraded.  

In most cases, SG-formation is initiated by phosphorylation of the ternary complex 
member eIF2α at residue Ser51 (as described above), although other reports have 
suggested the existence of an alternative eIF2α-independent mechanism for stress 
granule formation by inhibiting the recruitment of eIF4A and eIF4F with pateamine 
or hippuristanol [195, 196] or through H2O2 stimulation [197]. SG assembly can as 
well be promoted by RNA-binding proteins, such as T-cell intracellular antigen-1 
(TIA-1) and its receptor TIAR [198], Fragile X mental retardation protein (FMRP) 
[195], tristetraprolin (TTP) [199] and G3BP [200].  

Processing bodies (PBs) are other dynamical cytoplasmic structures formed under 
normal conditions when required, for maintaining a balance between mRNA 
translation and degradation. They are small, round structures containing proteins 
involved in mRNA decay and silencing, including the decapping proteins (DCP1 and 
DCP2) and 5’-3’ exonucleases (Xrn1). In addition, most of the proteins involved in 
microRNA (miRNA) repression by the RNA-induced silencing (RISC) complex 
(GW182 and Argonaute) reside in the PB [201]. Translationally inactive mRNAs can 
assemble into PB to undergo translational repression, degradation or translocalization 
depending on circumstances [202]. Although PBs are sites for mRNA decay, these 
turnover processes can occur also in the absence of PB molecules [203, 204] and 
release of mRNA from these complexes to return to translation has been reported 
[205] demonstrating a complicated and yet not fully understood picture of mRNA 
decay. 
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RNA-binding proteins 

Ribonucleoprotein (RNP) complexes consist of mRNA molecules and associating 
RNA-binding proteins (RBP). RBPs function by regulating several aspects of the 
mRNA such as capping, splicing, deadenylation, transport, stabilization and 
translation. Several different RNA-binding domains have been identified, among 
which the RNA recognition motif (RRM) is the most common [206]. 

AU-rich elements (ARE) in the 3’ UTR of the mRNA are target sites for many RBPs 
and provide for rapid regulation of mRNA expression. ARE are 50-150 nucleotides 
long sequences that can be divided into three classes depending on their composition 
and how they are regulated [207]. Activation of classical signaling pathways, such as 
the mitogen-activated protein (MAP)-kinase cascade, can lead to phosphorylation of 
RBPs which influences their regulatory effect in mRNA decay and hence affect the 
level of ARE-containing mRNAs [208]. Whereas most RBPs promote mRNA 
degradation during normal conditions (e.g. TTP and TIA-1) others have shown a 
stabilizing effect (e.g. human antigen R (HuR)). A major class of RBPs is the PolyA-
binding proteins (PABPs), which can, through binding to the 3’ polyA tail of most 
mRNAs, both protect the mRNA from degradation and mediate translation 
initiation. RRMs in the PABP sequence mediate the interaction with at least 12 
adenosines of the polyA tail and since this protective tail contains up to 250 
adenosines, several PABPs bind to a single mRNA. For proper translation initiation, 
polyA-bound PABPs bind to the initiation factor eIF4G to circularize the mRNA and 
create a possibility for rapid translation as the ribosomes can be recycled. In addition, 
PABP can affect other metabolic processes of mRNA, such as polyadenylation, 
mRNA transport and degradation [209]. 
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G3BP and its structure 

G3BP is an abbreviation of Ras-GTPase-activating protein SH3 domain-binding 
protein and was named because of its ability to bind the Ras-GTPase-activating 
protein (RasGAP) [210]. Ras is a family of small GTPases, a main signaling 
transducer in the cell, that in an active GTP-bound state initiates downstream 
signaling by activating serine/threonine kinases, e.g. Raf. Inactivation of Ras is 
mediated by hydrolysis of the Ras-bound GTP molecule to a GDP with assistance of 
RasGAPs and will result in inhibition of further signaling [211]. G3BP was suggested 
to interact with the SH3 domain of RasGAP in growing cells or cells with GTP-
activated Ras and thus interfere with the Ras signaling [210, 212, 213], although 
recent studies have failed to repeat these results [214]. 

G3BP is a family of three homologous proteins, G3BP1, G3BP2a and the splice 
variant G3BP2b, with the size of 52, 54 and 50 kDa, respectively. Human G3BP1 is 
encoded by a gene located on chromosome 5, whereas the G3BP2 variants are located 
on chromosome 4 [212, 215]. The three isoforms share structural similarities, with 
the presence of four distinct regions; the nuclear transport factor (NTF2)-like 
domain, the acidic- and proline-rich region, the RRM and the arginine and glycin-
rich box (RGG box) (Figure 5). The main structural difference between the G3BP2 
splice variants is located in the proline-rich region, where G3BP2b lacks residues 
[215]. 

 

 

 

 

Figure 5. Figure 5. Figure 5. Figure 5. Schematic overview of the G3BP structure. G3BP family comprises three different 
variants called G3BP1, G3BP2a and G3BP2b. They all share four domains, NTF2-like, Acid-
rich, RRM and RGG, and vary in sequence mainly in the proline-rich area (PxxP). 
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The NTF2-like domain resembles both the structure and function of the small NTF2 
protein, involved in nuclear transport through nuclear pore complexes [216]. The 
presence of both G3BP1 and G3BP2 in the nucleus upon serum stimulation supports 
the nuclear-transporting functions of the NTF2-like domain [217, 218], however in a 
study of mutations in G3BP2a, the NTF2-like domain was more important for 
distribution to the nuclear envelope and not actual nuclear translocation [219]. The 
NTF2-like domain has, in addition, been shown to mediate protein interaction [210, 
220] and can facilitate G3BP dimerization [200]. 

The center of the G3BP sequence, where a conserved acid- and proline-rich region 
(PxxP) resides, has been suggested to influence protein binding to aromatic amino 
acids in target SH3 domains [221] and was hence believed to mediate the RasGAP 
interaction [210, 212]. Although the protein interaction mediated by this region has 
been questioned [214], it has been indicated to mediate G3BP binding to BART 
mRNA [222]. G3BP2a contains four conserved PxxP regions, whereas G3BP2b, due 
to the alternative splicing, has five of them [212]. G3BP1 only contains one PxxP 
motif, which might limit its protein interacting capacity [223].  

The RRM contains two consensus sequences named RNP1 and RNP2, which in their 
three-dimensional structure, create a platform of alpha helixes and beta sheets for 
interaction with a RNA sequence of 2-8 nucleotides [212, 224]. The RNP1 and 
RNP2 are very similar between the G3BP isoforms, with the main variance in the 
RNP2 region, which may influence the RNA-binding specificity [212]. In addition to 
its RNA-binding function, RRM can interact with proteins which may influence the 
specificity of RNA-RRM interaction [225]. 

RGG box is a sequence of closely located arginine-glycine-glycine residues, hence the 
name RGG, which has been identified in many RBPs. It often has an undefined 
structure due to the larger polar amino acids, such as arginine, that surrounds the 
glycine residues. This open structure influences interaction with proteins or RNA and 
enables post-translational modifications [226]. Modification through methylation of 
arginine residues might affect protein and RNA interactions by blocking the 
hydrogen-bonds important for binding [227]. Arginine methylation of heterogeneous 
nuclear RNP (hnRNP) A1 has been shown to induce nuclear export [228], whereas 
in G3BP1, methylation at R435 in the RGG-region (Uniprot: Q13283) could 
regulate the stability of CTNNB1 (β-catenin) mRNA in a Wnt-dependent manner 
[229]. Interaction with the 3’ UTR of mRNA has been proposed to be mediated by a 
structure of four guanine residues (G-quartet) in the RGG boxes, as described for 
FMRP [230]. This structure has also been identified in nucleolin-binding and 
subsequent repression of c-MYC mRNA [231], although no such binding has been 
reported for G3BP proteins. In addition to RNA- and protein-interactions, RGG 
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regions might influence an ATP- and Mg2+-dependent RNA/DNA helicase activity in 
G3BP [232]. 

G3BP functions 

All G3BP isoforms are expressed in most normal cells, although some isoform-specific 
tissue expression has been identified for G3BP1 in lung and kidney, G3BP2a in brain 
and G3BP2b in small intestine [212]. Over-expression has also been detected in many 
different tumor types e.g. breast [217, 218, 233], pancreas [222], thyroid, colon, head 
and neck tumors [233] as well as in several cancer cell lines [222, 233]. The 
expression of all three G3BP variants is primarily cytoplasmic [210], although 
differences in distribution has been indicated between the isoforms. G3BP2 can 
localize to the nucleus in serum-stimulated cells [217], whereas G3BP1 may reside in 
nucleus also in quiescent cells, probably due to phosphorylation at Ser149 [213, 234]. 

Functional studies have indicated a role for G3BP proteins in cellular proliferation. 
G3BP1 was found to be highly expressed in proliferating retinal pigment epithelial 
cells [235] and in fibroblast cells, G3BP-mutants, lacking the RNA-binding domain, 
lose their ability to induce cell cycle progression, mainly as a result of impaired S-
phase entry [233]. In addition, G3BP1-deficient mice showed fetal growth 
retardation during embryonic stages and, although viable at birth, these mice 
displayed a severe neuronal cell death, resulting in embryonic lethality [236]. 
Fibroblasts from these G3BP1-/- knock-out mice displayed reduced proliferation 
further supporting the role of G3BP1 as a growth inducing agent. Yet, the reports 
regarding effects on cell cycle distribution remain unclear since later studies of  
G3BP-/- fibroblasts were unable to detect any cell cycle arrest [236]. Deficiency of the 
Drosophila G3BP-homolog Rasputin (so named because of its connection to the Ras-
signaling pathway), only resulted in defects in photoreceptor recruitment in the 
development of the eyes [237]. Altogether, these results indicate growth-inducing 
capacities by G3BP. 

G3BP and mRNA interaction 

Studies of G3BP proteins have to a large extent focused on their roles as RNA-
binding proteins, although to date no direct RNA targets for G3BP2 have been 
identified. G3BP1, however, was early identified to interact with and regulate the 
expression of c-MYC mRNA [213]. In a phosphorylation dependent manner, G3BP 
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displayed endonuclease activity resulting in cleavage in the 3’ UTR. This degrading 
effect has later been reported by others [234, 238] and can be attributed to other 
mRNAs as well; BART [222], CTNNB1 [229], IGF-II and GAS5 [236]. In rare cases, 
G3BP has been implicated in mRNA-stabilization e.g. for TAU [239] and CDK7 
[240]. Since unphosphorylated G3BP result in cell proliferation, whereas 
phosphorylated G3BP displays endoribonuclease activity, it has been proposed that 
the phosphorylation status of G3BP may function as a cell growth switch, where 
phosphorylated G3BP can induce degradation of growth-related mRNAs and thus 
reduce cellular proliferation [215].  

Several of the G3BP-regulated mRNAs have demonstrated effects on cell growth both 
in a positive (c-MYC [213] and CDK7 [240]) and a negative way (GAS5 [236]). 
Using an in vitro SELEX (systemic evolution of ligands by exponential enrichment) 
technique, Tourriere et al. identified a best guess consensus site for substrate 
specificity (ACCC(A/C)(U/C)(A/C)(C/G)GC(C/A)(G/C). G3BP interaction to this 
target site mediates for cleavage at CA dinucleotide-rich regions in the 3’ UTR [234]. 
The RNA-binding specificity of G3BP has in several cases been indicated to be 
influenced by protein interactions. CD24 interaction with G3BP can inhibit BART 
mRNA decay which leads to increased invasion capacities of pancreatic cancer cells 
[222] and Caprin-1 can interact with G3BP1 and affect its localization to stress 
granules [220]. 

G3BP and stress granule formation 

The activity of G3BP proteins seems to vary depending on the condition of the cell, 
even though the general function may be to influence proliferation and survival. Both 
G3BP1 and G3BP2 can associate with polysome-associated mRNP complexes [239, 
241] and the main function for this may be to protect mRNAs from translation 
initiation and induce stress granule assembly.  

The dynamic shuttling of mRNPs between translating polysomes and translationally 
arrested compartments such as stress granules (SGs) might be a consequence of 
mRNA sorting. SG formation is induced due to exposure of stressful agents, but both 
duration and the form of stress may influence the components of the SG. Some of the 
most common stress-inducing agents are heat shock and arsenite, which through 
various ways can block translation initiation. Arsenite is a chemical compound 
derived from arsenic and a toxic agent causing cellular stress and subsequent cancer 
and neuropathy development, in part by inducing signaling cascades such as the MAP 
kinase pathway [242]. Stress induction with arsenite results in an oxidative stress 
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response and HRI activation, which causes a phosphorylation of eIF2α and 
subsequent translational arrest [243]. Heat shock response leads to a rapid production 
of protective proteins and subsequent activation of HRI [244]. Both G3BP1 and 
G3BP2 have been identified in eIF2α-induced SGs (G3BP1 [200], G3BP2, shown in 
Paper I), but they have also been reported to induce stress granules independently 
[245]. G3BPs are recruited to SGs in a dephosphorylation dependent manner 
indicating that phosphorylation status of G3BP might influence the fate of the 
mRNA by protecting it from degradation during cellular stress. Under normal 
conditions, G3BP is phosphorylated, causing mRNA degradation, whereas upon 
cellular stress, unphosphorylated G3BP can oligomerize and bring mRNA to the 
stress granule. In concordance with this, arsenite leads to dephosphorylation of G3BP 
at Ser149 and subsequent SG formation [200]. 

In addition to the stress inducing agents, overexpression of several RBP such as TIA-
1, CPEB1, cold-inducible RNA-binding protein and G3BP as well as inhibition of 
components of the initiation complex [195, 196] can induce SG formation [198, 
200, 246]. Although many stress factors are known to induce eIF2α phosphorylation 
with subsequent translational repression, induction of stress granules by G3BP was 
independent of this initial phosphorylation and could instead influence the 
translational complex later by inducing a PKR-mediated eIF2α phosphorylation 
[238]. Yet other reports have shown that overexpression of the C-terminal G3BP 
region can induce eIF2α phosphorylation [222] and there have been contradictory 
reports regarding whether these G3BP-induced SGs colocalize with the SG marker 
TIA1 [200, 238, 247]. 

G3BP as a cancer marker and drug target 

The overexpressed levels of G3BP in human cancers, the reported functions in 
growth-related signaling pathways and the role in stress granule assembly indicate that 
G3BP proteins could be a potential target in anticancer therapy, although no 
relationships have been reported between expression and clinicopathological 
parameters [217]. G3BP-RasGAP interaction was previously suggested to occur in 
proliferating cells in a RasGAP-dependent manner and since G3BP-interacting 
RasGAP-derived peptides showed cytotoxic effect on tumor cells but not normal cells 
[248], a study was conducted to evaluate the targeting potential of G3BP. The 
peptide GAP161 did compete with RasGAP for G3BP-interaction and led to a 
reduced G3BP protein expression. This further triggered an apoptotic response in 
colon carcinoma cells and suppressed cell growth in tumor-bearing mice, supporting 
the idea of targeting G3BP for novel therapies [249]. Yet, it is important to bear in 
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mind the neuronal cell death and embryonic lethality detected in G3BP-deficient 
mice [236] and to realize that targeting G3BP is not a simple task. The essential roles 
for RNA-binding proteins in gene expression regulation and the defects in regulation 
processes during cancer development, demonstrate the importance of further studies. 
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RNA interference 

During the past decades, research has identified novel functions for RNA molecules. 
In addition to its role as an intermediate protein coding template, RNA molecules 
themselves have a regulatory role in its untranslated form [250]. The human genome 
encodes for RNA transcripts of long (>200 nucleotides (nt)) and small (~20-30 nt) 
non-coding RNA that can interfere with other RNA molecules and affect the gene 
regulation program [251, 252]. The small non-coding RNAs can be grouped as small 
interfering RNA (siRNA), Piwi-interacting RNA (piRNA) or microRNA (miRNA) 
depending on biogenesis and function [253]. Both siRNA and miRNA are processed 
by the RNA III ribonuclease Dicer and obtain a silencing function through 
interaction with Argonaute proteins, but whereas miRNAs have an endogenous 
origin, siRNAs are most often derived from exogenous sources such as viral infections 
[254]. In addition, miRNAs differ from siRNAs in the transcript structure they are 
derived from, where the longer hairpin structure of siRNA transcripts can give rise to 
a greater diversity of small RNAs [255]. PiRNA also function in a similar way, but 
regulate RNA silencing in germ cells through interaction with a certain group of 
Argonaute protein called piwi proteins [256]. 

Introduction to microRNAs 

The first miRNA discovered (lin-4) was found in Caenorhabditis elegans 1993 [257], 
but it was not until 2001 that researchers identified miRNAs in other organisms 
[258-260] and introduced the term microRNA. 

Today, more than 2000 miRNAs have been identified (according to the miRNA 
database (miRBase) [261]) and each miRNA can influence more than hundreds of 
target mRNAs. The miRNAs are 19-25 nucleotides long single-stranded RNAs, 
encoded by genes localized in the introns or in rare cases exons of both protein-coding 
and non-coding genes [262]. The miRNA encoding genes are in general transcribed 
by RNA polymerase II [263] resulting in capped and polyadenylated pri-miRNAs 
(Figure 6). These stem-loop formed transcripts are recognized by the RNA-binding 
protein DiGeorge Syndrome Critical Region 8 (DGCR8) which forms a complex 
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with the nuclear RNase III enzyme Drosha and mediates processing of the pri-
miRNA to a shorter pre-miRNA structure [264]. The hairpin formed pre-miRNAs 
are transported to the cytoplasm by Exportin 5 and Ran-GTP through nuclear pore 
complexes [265] where they are processed by the RNAse III enzyme Dicer creating 
double stranded ~22-nt miRNAs [266]. As the dsRNA unwinds, only the strand with 
the most thermodynamically stable 5’ terminal will mature and associate with 
Argonaue (AGO) proteins, forming the RNA–induced silencing complex (RISC). 
The unstable passenger strand, previously denoted miRNA*, will most often be 
degraded [267, 268], although recent studies have identified miRNA characteristics 
also for the miRNA* [269]. This has led to an improved nomenclature where the 
guide strand has gained the suffix -5p and the passenger strand -3p [261]. The 5p 
strand will then guide the RISC complex to its target mRNA and bind to a 
complementary sequence in the 3’ UTR that matches the seed region of the miRNA. 
The seed region is a conserved sequence of the first 2-7 nucleotides in the 5’ end of 
the miRNA and depending on perfect or imperfect base pairing to the mRNA, the 
interaction will induce degradation or inhibit translation, respectively [255, 270].  

The RISC consists of a variety of AGO proteins (AGO1-4 in mammals) that harbor a 
function of binding the 3’ end of the miRNA to its PAZ domain (Piwi - Argonaute - 
Zwille) and the 5’ end to its MID domain. Some AGO proteins have endonuclease 
activity (AGO2 in mammals) and upon perfect complementary miRNA-mRNA 
binding these mRNAs are directly cleaved [271]. Partially complementary miRNA 
binding requires assistance of both AGO proteins along with GW182 proteins to 
mediate translational repression and mRNA deadenylation [272, 273]. The function 
of GW182 is not fully known, but recent reports have indicated a competitive 
binding between GW182 and eIF4G to PABPC1, where the presence of GW182 
results in a linearized and repressed mRNA [274]. As the deadenylation proceeds, 
decapping enzymes (DCP1 and DCP2) initiate the following degradation.  

The miR-34 family 

The miR-34 family consists of three homologous miRNAs located at chromosome 
1p36 (miR-34a) and chromosome 11q23 (miR-34b/c). They are 22 (34a) and 23 
(34b/c) nucleotides long, respectively, and share 82-86% homology. Especially the 
important 8 nucleotide long “seed region” in the 5’-terminal, responsible for 
identification of target mRNAs, is identical between the different family members 
[275, 276], which causes these miRNAs to control the similar sets of target genes 
[277]. 



  

43 

 

Figur Figur Figur Figur 6666. . . . Schematic of miRNA processing. Transcription of miRNA coding genes by RNA 
polymerase II results in production of multi hairpin formed pri-miRNA. This structure is 
processed by Drosha, forming a single-looped pre-miRNA that is exported via Exportin-5 to 
the cytosol for further processing by Dicer. Dicer removes the hairpin structure which 
mediates for unvinding of the double-stranded miRNA and incorporation of the single-
stranded guide miRNA into the RISC complex. The seed region of the miRNA will identify 
target mRNA and induce degradation and/or translational repression by the catalytically active 
Argonaute proteins in the RISC complex. 
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Expression of miR-34 in cancer 

The regions, in which the miR-34 genes reside, are frequently mutated in various 
malignancies. Deletions in 11q22-q23 have, for example, been identified in human 
chronic lymphocytic leukemia (CLL), prostate, lung, breast and colorectal cancers 
[278-282]. In addition, loss of heterozygosity in 1p36 was early identified in 
neuroblastoma [283], but has later been identified in various tumor types such as 
ovarian and breast cancer [284, 285]. In concordance with this, CpG methylations of 
the miR-34 promotors are frequently identified in tumor tissues, with displayed 
effects on the miR-34 expression as well as subsequent downstream processes, such as 
tumor growth, motility and metastasis [286-291]. In breast cancer, genetic 
aberrations in both these loci have been associated with invasiveness [288, 292]. 
Corresponding to these reports, miR-34 expression is reduced in a broad range of 
tumor types, such as prostate [293], ovarian [294], colon [295], lung [296], 
neuroblastoma [297] and breast [298]. The miR-34-dependent effects on such a 
variety of cancer types indicate the importance of miR-34 in tumor suppression. 

Targets of miR-34 

Due to the homology between the miR-34 family members, they to a large extent 
regulate similar targets [277]. These targets are often proto-oncogenic and a tightly 
controlled regulation of these genes enables the execution of tumor suppressor effects 
by miR-34. More than 30 target genes have been postulated for miR-34 and to gain 
the miR-induced phenotype, several of these targets must be regulated simultaneously 
[276]. Some of the distinct miR-34-regulated pathways affect cell cycle progression, 
cell senescence and apoptosis. The G1/S cell cycle arrest [277, 299] can be explained 
by the targeting of the cell growth related genes CCND1, CCNE2, CDK4, CDK6 and 
E2F3 [277, 291, 300, 301] and proliferation inhibition can further be mediated by 
regulation of the signaling molecules MET and Myc [302-304]. Myc is constitutively 
active in many tumors and can thus induce gene expression and promote oncogenic 
signaling. In this matter, Myc can also regulate the expression of miRNAs, both by 
inducing oncogenic miRNAs such as miR-17-92 and by inhibiting tumor-suppressive 
miRNAs like miR-34a [305-307]. The miR-34 family members can also repress 
BCL2 and SIRT and thus induce apoptosis [308-310]. On the contrary, miR-34c 
may protect lung cancer cells from paclitaxel-induced apoptosis, further proving the 
complexity of miRNA regulation on gene expression [311].  
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Regulation of miR-34 by p53 

The transcription factor p53 is a well-studied tumor suppressor protein, mainly 
responsible for inducing cell cycle arrest and eliciting apoptosis. Through DNA 
binding, it induces several downstream proteins, such as p21, a cyclin-dependent 
kinase inhibitor (CKI) that blocks the cell cycle progression in the G1/S transition 
phase. Several miRNAs have also been identified as p53-targets and the miR-34 
family belongs to one of the most studied. Although most studies report of the p53-
induced effect through miR-34a [312], also miR-34b and miR-34c can be regulated 
in a p53-dependent manner [277, 294, 299, 313]. On the other hand, miR-34-
deficient mouse models displayed no impact on p53-regulated cell cycle inhibition or 
apoptosis and no increased tumor take [314], indicating a complex and probably 
context-dependent regulation of miR-34 by p53. In addition, miR-34a can in a p53-
independent manner induce a G2/M arrest with increased abundance of mitotic cells 
and a subsequent mitotic catastrophe response rather than DNA damage response due 
to X-ray irradiation [315]. During mitosis, the E3 ubiquitin ligase, anaphase-
promoting complex (APC), plays a pivotal role in the metaphase-anaphase stages and 
the separation of the two sister chromatids [316]. One member of the APC is the cell 
division cycle homolog 23 (CDC23), which was reported to be highly expressed in 
thyroid cancer cells [317]. Moreover, CDC23 has been indicated to be a target of 
miR-34a in colon carcinoma and was significantly downregulated in a miR-34c-
dependent manner in prostate cancer cells and in breast cancer cells as reported in 
paper III [302, 318].  

Implication of miR-34 in replacement therapy 

Among miR-based therapies, anti-miR, where a complementary anti-sense nucleotide 
strand will bind and reduce the efficacy of the miRNA, is the most widely used 
approach and has showed promising results for many miRNAs [319]. However, this 
method is only applicable when the miRNAs are overexpressed. To counteract the 
frequent miR deficiencies in cancer cells, replacement therapies have shown to be a 
new promising aspect. By delivering miR-34a systemically with nanoparticles or 
adeno-associated viruses, animal models carrying various tumor types have shown a 
reduced tumor burden along with increased apoptotic features, reduced proliferation 
as detected by Ki67 and reduction in expression of common miR-34a targets [276]. 
However, this needs the presence of tissue specific promotors or addition of tumor-
targeting antibodies. In an ongoing phase I clinical trial of primary liver cancers, a 
miR-34a mimic (MRX34) will be delivered through a pH-sensitive liposome that will 
adhere to tumor cells where the pH tends to be lower. It is important to note that a 
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larger difference in expression between tumor and normal tissue is necessary for 
accurate results. This is why miR-34a, highly expressed in normal tissue, can be 
suitable for novel miRNA replacement therapy [168, 276]. 
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Peripheral nervous system and its 
composition 

The peripheral nervous system (PNS) consists of nerve cells that transmit signals from 
the central nervous system (e.g. brain and spinal cord) to limbs and organs in the 
body. Input signals from several dendrites are gathered in the cell body (soma) and 
only signals strong enough will be passed along the neural axon and transmitted to 
adjacent neurons (Figure 7). The PNS is subdivided into the somatic and autonomic 
nervous system, responsible for voluntary and involuntary body movements, 
respectively. The axons of both peripheral and central neurons are surrounded by 
non-neuronal glial cells; oligodendrocytes in the central nervous system and Schwann 
cells in the peripheral nervous system. These cells are wrapped around the axons 
creating a fatty matter called myelin, which insulates the axons and mediates increased 
speed of electrical impulses in the axons [320, 321]. Along the axons, the myelin 
sheaths, also denoted internodal segments, are interrupted by unmyelinated gaps 
called nodes of Ranvier. They contain a high density of voltage-gated sodium 
channels, which mediate sodium intake, generating the action potential and 
transmission of electrical impulses. In between the node of Ranvier and the internodal 
segments resides a region called the paranodal region, with a high expression of 
proteins forming a tight complex with the axon and participates in isolating the nodal 
region [322].  

Myelin proteins 

The myelin composition is mainly characterized by a high proportion of water and 
lipids, whereas only a proportion of about 15-30% are proteins with specific 
expression regions. The most abundant myelin protein (about 50%) is the myelin 
protein zero (MPZ or P0), a glycoprotein that has been postulated to maintain the 
compact structure of the myelin sheath through interaction with other myelin-
associated proteins. In addition, frequently expressed myelin proteins are myelin basic 
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protein (MBP), myelin-associated glycoprotein (MAG) and peripheral myelin protein 
(PMP22) [323]. 

 

FFFFigure 7.igure 7.igure 7.igure 7. Schematic structure of a peripheral nerve cell. Myelinating Schwann cells 
enwrap their membrane around the axon to promote signal transduction. In between each 
internode resides the node of Ranvier, carrying important voltage gated channels. The 
paranodal region is located in the terminal part of the internodes and contains proteins 
enabling tight complex formation with the axon. 
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Peripheral myelin protein 22 

PMP22 is a tetraspan 22 kDa protein, first identified as PASII from bovine peripheral 
myelin [324], but has later also been designated SR13 [325], pCD25 [326] and 
GAS3, because of its growth-arrest specific capacities (Figure 8) [327, 328]. PMP22 is 
one of the main proteins in peripheral nerve fibers (2-5%), but only scantily expressed 
in central neurons [329], and although dysfunctional PMP22 mainly has been 
coupled to peripheral neurological diseases, PMP22 expression has been identified in 
other tissues, including muscle, lung and intestine [329-332].  

Expression of PMP22 has been reported to be initiated by the small GTPase Rho 
[333] as well as by cAMP [334], although exact mechanisms for these regulations 
remain unknown. In addition, IL-6 stimulation of Schwann cells can initiate PMP22 
production in a Jak2 dependent manner, a process that can be counteracted by 
distribution of ascorbic acid [335]. Also post-transcriptional regulation can affect the 
expression of PMP22 both through 5’ and 3’ UTR interactions [328, 336] and 
proliferation-specific miR-29a expression induces PMP22 degradation in cultured 
Schwann cells [337]. Transcription of PMP22 can start at two alternative promotors 
(1A and 1B), giving rise to almost identical transcripts that only differ in the 5’ 
untranslated region [330]. The PMP22 transcripts seem to be expressed in various 
tissues and under different conditions, with 1A expressed mainly in peripheral tissue 
and 1B in non-neuronal tissue [338]. Post-translational modification of PMP22 
through N-glycosylation of the asparagine residue (N41) in the first extra cellular 
loop is necessary for protein stabilization as well as for membrane translocation [339]. 
In addition, N-glycosylation is required for cell growth regulatory capacity, but not 
for apoptotic induction [333]. 

PMP22 belongs to a tumor-associated membrane protein (TMP) family of tetra-
transmembrane glycoproteins, including the epithelial membrane proteins EMP1, 
EMP2, EMP3 and the genetically more distant lens membrane protein MP20 [331, 
340]. Although EMP and MP20 have not been identified to have any function in 
peripheral nervous system, they all seem to be important for growth, differentiation 
and apoptosis [341]. In addition, PMP22 has structural similarities with claudin 
proteins and PMP22 has been proven to be a component of intracellular junctions in 
epithelial cells of colon and liver [342]. 
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Expression, neural damage and neurodegenerative 
disorders  

Schwann cell development is dependent on axonal contact for initial proliferation and 
subsequent differentiation [343]. During the first postnatal weeks, as Schwann cells 
stop dividing and begin to differentiate and myelinate the axons, PMP22 expression 
increases distinctly [329]. Upon neural damage of peripheral fibers, Schwann cells 
lose their axonal connection and a dedifferentiation process, called Wallerian 
degeneration, is initiated. This results in fragmentation and degradation of the distal 
part of the axon as well as the surrounding myelin sheaths and a recruitment of 
macrophages that together with Schwann cells mediate clearance of the nerve crush 
debris [344]. Under these circumstances the levels of PMP22 and other myelin 
proteins decline in the distally located Schwann cells [326, 329]. As the non-
myelinating Schwann cells get in contact with the wounded axons, they enter the cell 
cycle and initiate novel Schwann cell proliferation that can constitute a path for 
regenerating axon fibers [345]. Not until the Schwann cell proliferation ceases, and 
myelin production re-occur, does the PMP22 expression increase [329].  

The gene of PMP22 is located at chromosome 17p11.2, where genetic aberrations are 
frequent. Duplications, deletions or missense mutations of PMP22 have been 
encountered in various hereditary demyelinating neuropathies [346-348]. Hereditary 
motor and sensory neuropathy (HMSN) is a group of related diseases with early onset 
where the patients develop muscle atrophy and sensory neuropathy in the distal limbs 
with characteristic foot drop and hammer toe [349]. Charcot-Marie-Tooth disease 
type 1 (CMT1) is the most common HMSN caused by chromosomal duplication in 
either the minor locus 1q22-q23 (CMT1B) or the major locus 17p11.2-p12 
(CMT1A). The most frequent type CMT1A affects 1/5000 people [350] and results 
in increased PMP22 expression and as a consequence, myelin deficiency and reduced 
conduction of neuronal signaling [351]. Deletions in the same region results in a 
more mild neurological disease known as Hereditary neuropathy with liability to 
pressure palsies (HNPP), where pressure on the nerves can cause sensation loss or 
pain that can last up to a year [352]. Point mutations on the other hand, results in a 
more severe variant of neuropathy, Dejerine-Sottas syndrome, with early onset and 
inability to walk as one of the worst symptoms [353]. More than 30 mutations have 
been identified in the PMP22 gene resulting in demyelination of peripheral neurons 
and studies have shown that some of these mutations can lead to accumulation of 
intracellular PMP22 and hence a non-functional protein [333, 347]. It is 
hypothesized that the myelin-associated proteins form complexes between or within 
the myelin sheaths and that mutated proteins lack the interacting ability and  
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Figur Figur Figur Figur 8888....    Representative structure of PMP22. PMP22 is mainly identified in the myelin 
membrane and has been suggested to be a four transmembrane protein. Depicted in red is the 
N-glycosylation site on the asparagine residue (N41). 

 

prevent the sheaths from forming compact structures. This is supported by reports 
demonstrating that PMP22 does not actually affect the initiation of myelination, but 
instead the thickness of the myelin sheaths [354]. 

Two spontaneous mouse mutants named Trembler and Tremble-J are available, 
which carry autosomal dominant point mutations in the PMP22 gene. These models 
demonstrate myelin defects and continued Schwann cell proliferation. In addition, 
their characteristics resemble the symptoms for CMT1, including limb paralysis and 
tremor, although functional diverseness is also observed. Furthermore, PMP22 
overexpressing mouse models have been established, but these only show a 
pathological phenotype when carrying a high copy number in comparison to the 
trisomy of PMP22 in CMT1A [355]. 

PMP22 and Cell growth 

In addition to the putative role in myelination, PMP22 has also been suggested to 
have a regulatory function in cell growth. Already early investigations proposed this, 
as PMP22 was highly expressed at growth arrest, but attenuated after serum 
stimulation, in Schwann cells [356] as well as in fibroblasts [327, 328, 331]. In 
multiple studies, either reduction or overexpression of PMP22 showed an inverse 
correlation between PMP22 levels and cellular proliferation [354, 356-358] and 
elevated levels of PMP22 lead to delayed G0/G1 to S-phase transition as seen in 
various types of cells [356, 359]. Concomitantly, fibroblasts overexpressing PMP22 
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show an apoptotic phenotype [332, 357, 360] and mutated PMP22 displays impaired 
cell death inducing capacities [333]. 

PMP22 and Cancer 

PMP22 has been thoroughly studied within the field of neuroscience and its 
association with cell growth control. However, little has been investigated regarding 
its role in human cancers and the few existing studies give a complex picture. 
Reduced expression of PMP22 has been identified in invasive breast cancer cells and 
is associated with development of lung cancer in mice [360]. In addition to this, in a 
retrospective study of sporadic primary breast cancers, PMP22 was pointed out as an 
independent prognostic factor for disease-free and overall survival and showed an 
inverse correlation with differentiation grade [361, 362].  

On the other hand, enhanced expression of PMP22 has been detected in 
osteosarcoma [363], pancreatic tumors [364] and glioblastoma [365] and PMP22 has 
been suggested to be an oncogene in human osteosarcoma due to the frequent 
amplification in the 17p11.2-p12 chromosomal region [366]. These reports indicate 
that a potential role in tumor progression may be tissue type-specific, but since both 
deletion and duplication of PMP22 can lead to neuropathies, this just further 
indicates that an exact regulation of PMP22 seems to be important. 
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The present investigation 

Aims 

The general objective of this thesis was to study cellular mechanisms affecting cell 
growth and survival in breast cancer and to investigate expression patterns in the 
surrounding stroma in breast tumors. 

 

The specific aims were: 

-To identify novel interaction partners for PKC and elucidate the role of PKCα in 
cellular stress response. 

-To investigate the role of G3BP proteins in breast cancer cell proliferation.  

-To evaluate how miRNA-34 can influence cell growth and survival of breast cancer 
cells. 

-To establish a method for obtaining RNA with adequate quality for global gene 
expression analysis from microdissected formalin-fixed paraffin-embedded breast 
tumors.  

-To delineate expression patterns in various compartments of the tumor and identify 
gene signatures that can be valuable for prediction of clinical outcome. 
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Paper I  

PKCPKCPKCPKCα    binds G3BP2 and regulates stress granule formation following cellular binds G3BP2 and regulates stress granule formation following cellular binds G3BP2 and regulates stress granule formation following cellular binds G3BP2 and regulates stress granule formation following cellular 
stressstressstressstress    

Previous investigations in our group have revealed an importance of the PKCε 
isoform in neurite outgrowth. To identify novel interaction partners, a mass 
spectrometry analysis was performed, which revealed several proteins bound to a 
neurite-inducing PKCε construct [367]. Among these, we identified the RNA-
binding proteins PABPC1, IGF2BP3 and G3BP2. The interaction with the identified 
proteins could not be verified with endogenous PKCε in the neuroblastoma cell line 
SK-N-BE(2)C, however, a complex formation was detected with the PKCα isoform.  

The interaction between PKCα and two of the proteins, IGF2BP3 and PABPC1, was 
disrupted in the presence of RNase, indicating a non-direct RNA-dependent 
interaction. The direct binding to G3BP2 was confirmed in an in vitro pull-down 
assay, which also verified interaction with the G3BP1 isoform. The regulatory 
domain of PKCα, especially the C1a domain, was important for G3BP2 interaction, 
whereas G3BP2 needed its RNA-binding domain for proper binding. In addition, 
PKCα was found to phosphorylate G3BP2, in particular the NTF2-like domain, 
indicating that G3BP2 may be a putative substrate for PKCα. Since G3BP2 mainly 
pulled down a more slowly migrating PKCα variant, we analyzed possible post-
translational modifications of PKCα and found G3BP2 to mainly interact with a 
mature form of PKCα, phosphorylated in both the turn motif (T638) and the 
hydrophobic motif (S657). 

The interaction of PKCα with three RNA-binding proteins led us to explore a 
potential role for PKCα in RNA regulation. PABPC1 as well as G3BP are localized in 
stress granules upon stress response induction in the cell [368] and we could detect 
that PKCα co-localized with stress granule proteins in response to both heat-shock 
and arsenite treatment. Upon heat shock, we identified the C1a domain of PKCα, 
responsible for G3BP2 interaction, to interact with the stress granule component 
TIAR, indicating that the presence of PKCα in stress granules is mediated by the C1a 
domain. On the other hand, no co-localization with P-bodies was seen for PKCα, 
indicating that PKCα is, presumably not, involved in the RNA decay process.  

To evaluate if PKCα is a driver or a bystander in stress granule formation, the protein 
was depleted with three different siRNAs in MDA-MB-231 breast cancer cells. 
Knockdown of PKCα significantly reduced the stress granule formation capacity to 
almost 50%, which was not seen for PKCε, but prolonged stress still induces stress 
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granules in PKCα-depleted cells to the same extent as in control cells, suggesting that 
removal of PKCα may only delay the stress response. This effect was seen to be stress-
inducer specific since no delay occurred upon arsenite stimulation. Removal of the 
stress factor led to a rapid stress granule disassembly also in the absence of PKCα, 
indicating that the importance of PKCα in stress granule regulation mainly involves 
the initiation process. In addition to the effect on stress induction, we could detect a 
delayed eIF2α phosphorylation when PKCα was depleted. We further analyzed if this 
effect could be a consequence of lost expression of any of the previously recognized 
eIF2α kinases. Out of the two kinases evaluated, only the HRI, mainly responsible for 
inducing stress response during heat shock, showed a tendency to lower expression 
upon PKCα-depletion, indicating that other mechanisms probably also are involved 
in the PKCα-regulated stress response. 

Paper II  

Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast Regulation of PMP22 mRNA by G3BP1 affects cell proliferation in breast 
cancer cellscancer cellscancer cellscancer cells    

In Paper II, we investigated the role of G3BP proteins in breast cancer cell 
proliferation. G3BP proteins have been shown to be highly expressed in several tumor 
types [217, 218, 222, 233] and have been indicated to both induce cell growth and 
reduce apoptosis in various cell types [213, 222]. We could detect a decreased 
proliferation upon depletion of G3BP proteins in four different breast cancer cell 
lines, as indicated both in a [3H]-thymidine incorporation assay as well as when 
quantified as the number of viable cells. Since G3BPs have been reported to be pro-
survival factors, we analyzed if the decreased cell growth corresponds to an increase in 
cell death. However, knockdown of the G3BP proteins did not influence cell death, 
as evaluated by nuclear morphology or analyzed in an Annexin V assay, indicating 
that the G3BP1 effect on cell growth is not dependent on cell death regulation. 

Since G3BP is a well-known RNA-binding protein, we performed a global gene 
expression analysis on G3BP1- and/or G3BP2-depleted MCF-7 cells to identify genes 
with altered expression in response to G3BP. Depletion of G3BP1resulted in altered 
expression of several genes, but among the genes that were most affected, only 
PMP22 displayed a corresponding change in mRNA expression in a qPCR analysis. 
G3BP has been reported to regulate mRNA stability and hence expression of several 
genes, such as c-MYC, CTNNB1, IGF-II and GAS5 [213, 229, 234, 236]. In our 
study, none of these genes were found to have a significantly altered expression, which 
may indicate that the difference in G3BP-regulated mRNA turnover is time- and cell 
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type-dependent. Our results, with only a few genes being regulated by G3BP1, 
correspond to other reports such as in G3BP1-deficient mouse epithelial fibroblast 
(MEF) cells, where neither of the previously reported G3BP1-regulated genes were 
detected [236].  

PMP22 was initially identified as a growth arrest-specific protein (GAS3) [327, 328] 
and in concordance with this, we could see that depletion of PMP22 significantly 
increased cell growth in MCF-7 and MDA-MB-231 cells. To evaluate if the growth 
reduction by siG3BP1 was due to increased expression of PMP22, G3BP1 and 
PMP22 were simultaneously downregulated and the results indicated that depletion 
of PMP22 partially reversed the decreased proliferation seen by siG3BP1. PMP22 
depletion in MDA-MB-231 cells did in concordance with the result in MCF-7 cells, 
cause an increased proliferation. The decreased effect after knockdown of G3BP1, on 
the other hand, was not seen in these cells. This could be due to the difference in 
basal expression levels between the two cell lines investigated. Since MDA-MB-231 
cells express higher levels of PMP22, depletion of G3BP1 may not be able to induce 
it further, which would explain the lack of effect on cell proliferation by G3BP1. 
Unfortunately, we could not evaluate PMP22 expression on Western blot, probably 
due to difficulties in antibody detection since the N-glycosylation on the N-terminal 
extracellular loop has been suggested to influence antibody binding [332, 333]. To 
evaluate the functional effect of PMP22 on cell growth, we conducted an experiment 
with overexpressed PMP22 in MCF-7 cells (Figure 1). Cell proliferation was reduced 
in response to increased PMP22 expression, further supporting a growth inhibiting 
effect of PMP22 in breast cancer cells. 

 

Figure 1. PMP22 decreases cell proliferation. MCF-7 cells were transiently transfected with 

expression vectors encoding Myc-tagged PMP22 for 24 hours prior to [
3
H]-thymidine incubation of 

6 hours (A). Western blot confirms PMP22 overexpression (B). Data (mean ± SEM, n = 3) are 

expressed as CPM relative to control. **< 0.01, according to Student´s t-test. 
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To investigate if G3BP1 regulates PMP22 expression through destabilization of the 
mRNA, MCF-7 cells were treated with Actinomycin D to block novel transcription. 
Analysis of the remaining PMP22 mRNA showed no change in mRNA half-life, 
indicating that G3BP1 does not regulate PMP22 expression by destabilizing its 
mRNA. 

Both G3BP1 and G3BP2 have been reported to be up-regulated in various tumor 
types, but only G3BP1 has been shown to influence cell growth both in tumorous 
[249] and non-tumorous cells [235]. In concordance, depletion of G3BP2 did not 
have an effect on cell proliferation in our cells and did not lead to altered gene 
expression, further indicating a difference between G3BP1 and G3BP2 functions. 
Yet, overexpression of both G3BP1 and G3BP2 proteins results in an increased 
proliferation and a decreased PMP22 expression, suggesting that G3BP2 still may 
have a functional role in cell growth regulation when expressed at sufficient levels. 

Paper III 

Expression of miRExpression of miRExpression of miRExpression of miR----34c induces G2/M cell cycle arrest in breast cancer cel34c induces G2/M cell cycle arrest in breast cancer cel34c induces G2/M cell cycle arrest in breast cancer cel34c induces G2/M cell cycle arrest in breast cancer cellslslsls    

The aim of Paper III was to investigate the role of miR-34c in the regulation of cell 
growth in breast cancer cells. The genomic regions for the miR-34 family members 
are frequently deleted in solid tumors, including breast cancer [292] and deletions or 
silencing of these regions have been associated with increased tumor growth and 
metastasis [288, 290]. In previous findings, our group demonstrated that PKCα 
expression is correlated to breast cancer aggressiveness, poor prognosis and ER and 
PR negativity [152] and PKCα has been shown to be regulated by miR-34c [302]. In 
five different miR-target prediction programs, we identified PKCα to be a possible 
target for miR-34c, which led us to investigate if miR-34c can influence PKCα levels 
and if it has any tumor suppressive roles in breast cancer. 

To investigate the expression and potential importance of miR-34 family members in 
breast cancer, we utilized the publicly available TCGA (The Cancer Genome Atlas) 
dataset. Expression data from 658 breast tumors and 86 normal breast tissue samples 
were analyzed. As expected, a clear correlation was detected between miR-34b and 
miR-34c expression levels as these miRNAs reside at the same loci. On the other 
hand, miR-34c, but not miR-34a or miR-34b, showed a lower expression in basal-
like tumors compared to other breast cancer types as well as normal breast tissue. The 
result that miR-34a expression does not vary between cancerous and non-cancerous 
tissue was not in line with previous results, since miR-34a has previously been 
reported to be reduced in breast tumors compared to the adjacent non-malignant 
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breast tissue [308]. In addition, only miR-34b and miR-34c were shown to have a 
prognostic value, as lower expression correlates with the incidence of new tumor 
events in breast cancer. 

The lower expression of miR-34c in basal-like breast tumors and the worse prognosis 
for patients with tumors that had low expression levels, led us to investigate if the 
presence of miR-34c can provide tumor suppressive functions in basal-like breast 
cancer cells, as has been described for other cancer cells [302, 369]. Overexpression of 
miR-34c led to a significant decrease in proliferation, as analyzed with thymidine 
incorporation, and resulted in a changed cell cycle distribution with reduced number 
of cells in G1 cell cycle phase along with an increase in G2/M phase. This is not in 
line with several other studies, which have reported that miR-34c induces G1/S arrest 
[277, 304]. Instead we found that miR-34c induces a G2/M arrest in breast cancer 
cells. It has been reported that miR-34a can inhibit the transition through the mitotic 
checkpoint inducing a mitotic catastrophe [315] and a miR-34c-mediated G2/M 
arrest was identified in pancreas cancer [370]. The reason for this difference in cell 
growth regulation is not clear, but could be a consequence of diversity in miR-34 
target genes, which is presumably a cell type and context dependent function. 
Furthermore, miR-34c increased the fraction of cells in the sub-G1 phase, which may 
indicate an increased cell death. This was validated with an Annexin V analysis, where 
a two-fold increase in the number of apoptotic cells was detected in response to miR-
34c expression. 

In order to elucidate the mechanisms behind the miR-34–induced growth 
suppression we analyzed the expression of common miR-34 targets. The levels of 
cyclin D1, CDK4 and CDK6 were all reduced in the presence of high miR-34c 
expression, but since they generally influence the G1/S transition, they are probably 
not responsible for the G2/M arrest. The mRNA levels of the predicted miR-34c 
target PRKCA (PKCα) were only reduced in one (MDA-MB-231) out of three cell 
lines evaluated and induced in another (MDA-MB-468). This might be a 
consequence of the alternative expression levels of both miR-34c and PKCα. Basal B 
cell lines (MDA-MB-231 and BT-549) have a lower basal level of miR-34c and a 
more prominent PKCα expression compared to basal A cell lines (MDA-MB-468) 
[152, 371], which may explain why MDA-MB-231 cells are more sensitive to miR-
34c. However, since no effect was seen on protein levels, PKCα is most likely not the 
effector on miR-34c mediated growth suppression.  

In addition, we analyzed the involvement of CDC23, a member of the anaphase-
promoting complex (APC) that has been reported to be a target of miR-34a [318]. In 
concordance with the reduced mRNA expression in prostate cancer cells upon miR-
34c expression [302], CDC23 expression also decreased in breast cancer cells. 
Furthermore, the protein levels were lower in all three cell lines, indicating that 
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CDC23 may be a potential target of miR-34c and thus function as an effector 
molecule for miR-34c growth suppression in breast cancer cells. 

Paper IV 

Identification of stromal gene signatures in breast cancerIdentification of stromal gene signatures in breast cancerIdentification of stromal gene signatures in breast cancerIdentification of stromal gene signatures in breast cancer    

In paper IV, we aimed at identifying characteristic gene expression profiles from 
isolated breast tumor compartments and analyze if they can be used as prognostic 
markers. To identify novel breast cancer subtypes, molecular similarities and 
differences between tumors have previously been studied with gene expression 
analyses. However, this has mainly been performed on whole tumor homogenates 
[18, 24, 372]. Since the tumor consists of not only malignant cells, but also various 
amount of different stromal cells, we wanted to investigate the characteristics of 
epithelial and stromal compartments in breast tumor samples. For this purpose, we 
utilized formalin-fixed paraffin-embedded (FFPE) breast tumor tissue, since this is the 
routine procedure for conservation and diagnosis of tumors after surgery and there is 
a vast amount of FFPE tissue available for analysis. The preservation of tissue samples 
with formalin fixation has a negative impact on RNA quality and reliable 
transcriptome analyses on FFPE material have previously been difficult to perform 
[373]. 

To isolate tumor compartments, laser capture microdissection was used and 
preparation of tissue sections for this procedure was performed with highest possible 
purity to maintain the RNA quality. Optimization was performed to obtain adequate 
amount of RNA with sufficient quality and preserved tissue morphology for 
compartment identification. Analysis of collected material revealed that tumors with 
non-inflammatory stroma did not yield sufficient amount of RNA for performing a 
global gene expression analysis, implying that only tumors with inflammatory stroma 
could be used. In this study, we have analyzed triple-negative breast tumors, a 
subgroup associated with poor prognosis and for which specific therapy is missing 
[29]. 

Since the RNA obtained from FFPE samples is partially degraded, we used novel 
techniques for amplification, labeling and hybridization of our samples with primers 
and probes detecting the whole transcript and not only the 3’ UTR. By selecting 
genes with high expression levels (>7) and variance (>0.15) of log2 normalized data in 
all samples, we analyzed the expression differences by using the limma package of R 
and identified compartment specific genes in the stroma and epithelium. Even 
though the analysis of the stromal compartment identified specific stromal markers, 
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the choice of material (FFPE samples) and method (laser microdissection) is not 
optimal for accurate assessment of the gene expression, due to poor RNA quality. The 
identified stromal genes might reflect the composition of the tumor 
microenvironment and to identify stromal-specific gene signatures, we chose to 
expand the list of identified genes with breast tumor data from the TCGA dataset. 
Based on the expression levels, genes, from the dataset with a correlation coefficient 
above 0.85 to at least one of the original genes, were included for further analysis. 
Iterative correlation analysis of the identified genes identified nine clusters, where the 
expression level of all genes within a cluster had a correlation coefficient above 0.89 
with all the other genes in that cluster. In particular, we identified gene sets with 
extracellular matrix (gene set 1 and 2), endothelial (gene set 3 and 4) or immune 
cell/inflammation (gene set 5-9) related genes. Based on the TCGA data we found 
basal-like breast tumors to have a lower expression in the extracellular matrix and 
vasculature gene sets and higher in the immune profiles. The importance of several of 
the cluster-specific genes has been reported in other studies [81, 374, 375], 
supporting a prognostic value of these genes. 

Evaluation of the prognostic value of these gene sets highlighted gene set 5, 7 and 8 in 
a multivariate Cox proportional hazard analysis. Higher expression of gene set 5 and 
lower of 7 and 8 correlated with an increase in new tumor events in breast cancer 
patients. The same stromal signatures could be used to predict new tumor events and 
survival in kidney and ovarian carcinoma, respectively. Yet, neither of the gene sets 
had alone any effect on new tumor events or survival, further indicating that various 
factors in the tumor stroma are important for influencing tumor progression and that 
a certain composition of stromal cells can alter the prognosis for breast cancer 
patients. 
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Conclusions 

In this thesis, we have identified novel mediators of stress response and cell growth 
regulation in breast cancer cells. In addition, we have identified stromal gene 
signatures that can be a valuable tool for prediction of outcome in breast cancer as 
well as other cancer forms. 

 

We can conclude that: 

• G3BP proteins are direct interaction partners of PKCα. 

• PKCα can regulate stress response by causing a delay in stress granule 
assembly and affect eIF2α phosphorylation. 

• G3BP1, but not G3BP2, has growth promoting effects and mRNA 
regulating capacities in breast cancer cells. 

• PMP22 has a growth inhibiting function in several breast cancer cells.  

• G3BP1 can reduce PMP22 mRNA expression, which may explain the 
increased cell growth induced by G3BP1 expression. 

• Expression of miR-34c has a growth suppressive effect and induces a block of 
the G2/M cell cycle transition in breast cancer cells. 

• G2/M cell cycle arrest might be affected by a miR-34c-mediated repression 
of CDC23. 

• The developed methodological procedure for isolation and characterization 
of compartment-specific genes, using LCM on FFPE triple negative breast 
cancers, enables identification of stromal-specific gene signatures.  

• The stromal gene signatures, obtained from LCM breast tissue, can predict 
new tumor event or death in breast, kidney or ovarian cancer. 
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Populärvetenskaplig sammanfattning 

Cancer är ett samlingsnamn för flera hundra sjukdomar som har gemensamt att de 
har fått en okontrollerad celldelning till följd av genetiska förändringar. Celldelning 
sker ständigt i vår kropp när gamla celler måste bytas ut och nya kopior bildas. Vid 
dessa processer sker det ofta mutationer i vårt DNA så att informationen förändras, 
vilket resulterar i att skadan kopieras till den nya cellen som därmed inte blir identisk 
med sin föregångare. Dessa fel förhindras i det flesta fall genom 
reparationsmekanismer i cellen, men ibland blir de nya förändringarna för starka och 
de felaktiga cellerna kan börja dela sig okontrollerat. 

All grundinformation om hur cellen ska bli finns i cellens DNA, den så kallade 
arvsmassan. Informationen i arvsmassan läses av under kontrollerade former och ger 
då upphov till en ny molekyl som kallas RNA. Denna process heter transkription och 
efterföljs i många fall av translation, där informationen från RNA-molekylen fungerar 
som mall för bildandet av proteiner. Celler skickar signaler både mellan och inom sig 
för att styra olika processer och de flesta av dessa processer regleras av proteiner. På 
senare tid har man dock förstått att även RNA-molekyler är viktiga för att sköta 
regleringen i cellerna och i artikel I och artikel III har vi studerat två mekanismer som 
påverkar cellens RNA-nivåer. 

Under cellulär stress, vilket uppstår i cellen när de normala förhållandena förändrats, 
t.ex. vid förhöjd temperatur eller minskad syrenivå, reagerar cellerna genom att 
utveckla olika skyddsmekanismer. En av dessa försvarsmekanismer omstrukturerar 
balansen för bildandet av nya proteiner, så att cellen enbart producerar proteiner som 
kan reparera skadan. De övriga RNA-molekylerna som redan var producerade och 
redo för att bli proteiner tas nu omhand av cellen i ett skyddskomplex som kallas 
stressgranula. Där förvaras RNAt till dess att stressen försvinner. Om cellen 
fortfarande har behov av de skyddade RNA-molekylerna kan cellen snabbt starta 
proteinproduktionen istället för att börja om från DNA-nivån, och de RNA-
molekyler som inte behövs bryts ner. I artikel 1 har vi studerat ett protein som heter 
proteinkinas Cα (PKCα). Vi har sett att detta protein kan vara viktigt för bildandet av 
stressgranula och därmed skyddande av cellen. Vi har dessutom sett att PKCα kan 
binda till en familj av välkända stress-skyddande proteiner som kallas G3BP. Denna 
bindning skulle kunna vara orsaken till att PKCα kan påverka skyddandet vid stress, 
men exakt hur det här är reglerat är inte klart.  
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G3BP är RNA-bindande proteiner som finns i höga nivåer i flera olika typer av cancer 
och man har trott att dessa kan påverka cellernas förmåga att överleva och föröka sig, 
bland annat genom att reglera RNA-nivåerna av kända tillväxtproteiner. I artikel II 
visar vi att G3BP kan leda till ökad celldelning hos bröstcancerceller genom att 
minska nivåerna av det tillväxthämmande proteinet PMP22. 

Cellens RNA-nivåer kan även regleras av en speciell sorts RNA-molekyl som kallas 
microRNA. Dessa microRNA binder till RNA-sekvenser och förhindrar att RNA 
translateras till protein. I artikel III undersökte vi hur ett visst microRNA, miR-34c, 
kan påverka celldelning i bröstcancer eftersom detta microRNA visat sig skydda mot 
celldöd och öka nyproduktion av celler i andra cancerformer. I bröstcancerceller 
kunde vi se att miR-34c hade en negativ effekt på ett specifikt steg i 
celldelningsprocessen när den viktiga separationen mellan de två nyproducerade 
cellerna sker. Under celldelningsprocessen finns flertalet kontrollsteg och miR-34c 
verkar påverka åtminstone ett av dessa, förmodligen genom att minska RNA-nivåerna 
av CDC23. Vi såg dessutom att patienter med höga nivåer av miR-34c hade en bättre 
prognos än patienter med låga nivåer. 

Inom tumörbiologiforskning tittar man mestadels på cancerceller och hur de beter sig, 
men tumörer består inte bara av cancerceller. Runt tumören finns omgivande celler 
som kan påverka cancercellernas utveckling, till exempel fibroblaster och 
inflammatoriska celler. I normala fall har de som uppgift att hindra felaktiga celler 
från att finnas kvar i kroppen. Till sin hjälp har de ett strukturellt stöttande 
extracellulärmatrix som tillsammans med blodkärl bildar en omgivning som kallas 
stroma, eller när man pratar om tumörer, tumörcellsmikromiljö. Cancercellerna kan 
lära sig att undvika signaler från det omgivande stromat och därmed främja 
tumörutvecklingen. I artikel IV har vi utvecklat en metod för att kunna isolera 
cancerområden och stromadelar separat med laserteknik och utforska dessa delars 
genuttryck. Analyser av genuttrycken, det vill säga de RNA som finns uttryckta i 
vävnaden, visade tydliga mönster från de olika tumördelarna. Mönster från 
stromadelarna kunde sedan användas för att analysera och bedöma prognos för 
bröstcancerpatienter, men de visade sig även vara viktiga för bedömning av patienter 
med andra tumörformer. 
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