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Abstract

This doctorate thesis focuses on sparse regression, a statistical modeling tool for
selecting valuable predictors in underdetermined linear models. By imposing dif-
ferent constraints on the structure of the variable vector in the regression problem,
one obtains estimates which have sparse supports, i.e., where only a few of the ele-
ments in the response variable have non-zero values. The thesis collects six papers
which, to a varying extent, deals with the applications, implementations, modi-
fications, translations, and other analysis of such problems. Sparse regression is
often used to approximate additive models with intricate, non-linear, non-smooth
or otherwise problematic functions, by creating an underdetermined model con-
sisting of candidate values for these functions, and linear response variables which
selects among the candidates. Sparse regression is therefore a widely used tool in
applications such as, e.g., image processing, audio processing, seismological and
biomedical modeling, but is also frequently used for data mining applications
such as, e.g., social network analytics, recommender systems, and other behavioral
applications. Sparse regression is a subgroup of regularized regression problems,
where a fitting term, often the sum of squared model residuals, is accompanied
by a regularization term, which grows as the fit term shrinks, thereby trading off
model fit for a sought sparsity pattern. Typically, the regression problems are
formulated as convex optimization programs, a discipline in optimization where
first-order conditions are sufficient for optimality, a local optima is also the global
optima, and where numerical methods are abundant, approachable, and often
very efficient. The main focus of this thesis is structured sparsity; where the linear
predictors are clustered into groups, and sparsity is assumed to be correspondingly
group-wise in the response variable.

The first three papers in the thesis, A-C, concerns group-sparse regression for
temporal identification and spatial localization, of different features in audio sig-
nal processing. In Paper A, we derive a model for audio signals recorded on an
array of microphones, arbitrarily placed in a three-dimensional space. In a two-
step group-sparse modeling procedure, we first identify and separate the recorded
audio sources, and then localize their origins in space. In Paper B, we examine
the multi-pitch model for tonal audio signals, such as, e.g., musical tones, tonal
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Abstract

speech, or mechanical sounds from combustion engines. It typically models the
signal-of-interest using a group of spectral lines, located at some integer multiple
of a fundamental frequency. In this paper, we replace the regularizers used in pre-
vious works by a group-wise total variation function, promoting a smooth spectral
envelope. The proposed combination of regularizers thereby avoids the common
suboctave error, where the fundamental frequency is incorrectly classified using
half of the fundamental frequency. In Paper C, we analyze the performance of
group-sparse regression for classification by chroma, also known as pitch class,
e.g., the musical note C, independent of the octave.

The last three papers, D-F, are less application-specific than the first three; at-
tempting to develop the methodology of sparse regression more independently of
the application. Specifically, these papers look at model order selection in group-
sparse regression, which is implicitly controlled by choosing a hyperparameter,
prioritizing between the regularizer and the fitting term in the optimization prob-
lem. In Papers D and E, we examine a metric from array processing, termed the
covariance fitting criterion, which is seemingly hyperparameter-free, and has been
shown to yield sparse estimates for underdetermined linear systems. In the paper,
we propose a generalization of the covariance fitting criterion for group-sparsity,
and show how it relates to the group-sparse regression problem. In Paper F, we
derive a novel method for hyperparameter-selection in sparse and group-sparse
regression problems. By analyzing how the noise propagates into the parameter
estimates, and the corresponding decision rules for sparsity, we propose selecting
it as a quantile from the distribution of the maximum noise component, which
we sample from using the Monte Carlo method.

Keywords

sparse regression, group-sparsity, statistical modeling, regularization, hyperparameter-
selection, spectral analysis, audio signal processing, classification, localization,
multi-pitch estimation, chroma estimation, convex optimization, ADMM, cyc-
lic coordinate descent, proximal gradient.
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Chroma Estimation for Harmonic Non-stationary Audio”, Proceedings of
23rd European Signal Processing Conference (EUSIPCO), Nice, France, Au-
gust 31 - September 4 2015.

6. Ted Kronvall, Maria Juhlin, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,
”Sparse Chroma Estimation for Harmonic Audio”, Proceedings of the 40th
IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), Brisbane, Australia, April 19-24, 2015.

7. Stefan Ingi Adalbjörnsson, Johan Swärd, Ted Kronvall, and Andreas Jakobsson,
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Popular scientific summary (in Swedish)

Denna avhandling syftar till att undersöka och vidareutveckla idé och metodik
inom forskningsområdena matematisk statistik och signalbehandling. Som så
ofta inom den tillämpade matematiken finns i denna avhandling en nära, men
också ambivalent, relation mellan teorin och dess tillämpning. Om den matem-
atiska metodiken inte har någon tillämpning försvinner en del av matematikens
existensberättigande, i vart fall i det populärvetenskapliga sammanhanget. Men
samtidigt, om det bara är tillämpningen som är av intresse, och inte med vilken
teori som dess problem ska lösas, försvinner också det sammanhang i vilket den
tillämpade matematikern kan verka framgångsrikt. Om det bara är de kortsiktiga
resultaten som räknas; om huvudsaken är att det just nu aktuella problemet kan
lösas, då kan man också gå miste om de långsiktiga, världsomvälvande resultaten.
Den tillämpade matematikern arbetar därför i gränslandet mellan det kortsiktiga
och det långsiktiga, hållandes den teoretiske matematikern i ena handen och den
praktiske ingenjören i den andra. I denna avhandling beskrivs problemställningar
inom några olika tillämpningar, men det är inte dessa som främst är av intresse.
Tillämpningarna är valda eftersom de utgör exempel där liknande matematisk
metodik kan användas, och det är just metodiken som utgör avhandlingens mit-
tpunkt.

Avhandlingen tar upp begreppet regressionsanalys, som används för att un-
dersöka samband mellan uppmätt data och olika faktorer som kan beskriva den.
Den fokuserar på en relativt ny sorts regressionsanalys som kallas sparse regression
(eller gles regressionsanalys på svenska). Metodiken används för att hitta sam-
band i potentiellt enorma system av faktorer, eller features. I sådana system antas
endast ett litet antal features behövas, vilket motsvarar en sparse variabelvektor.
Sparse regression är en metodik för att ett antal finna ett litet antal nålar i en stor
höstack. Det är en metodik med vilken man med små antaganden snabbt kan
leta efter mönster i stora datamängder. Av denna anledning kallas också systemet
av features för dictionary (eller ordbok på svenska), då den innehåller alla relev-
anta features. Forskning kring sparse regression har pågått i drygt två decennier.
Metodiken har många tillämpningar, exempelvis talkodning, bildanalys, DNA-
sekvensering, mönsterigenkänning och dataanalys för sociala medier. Fokus för
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Popular scientific summary (in Swedish)

denna avhandling är system där features är klustrade. Det innebär att de mönster
som eftersöks inte beskrivs av en, utan av flera features, vilka framträder i grupper.

Den tillämpning som undersökts mest i denna avhandling är tal- och musiki-
genkänning. Ljud består av förtunningar och förtätningar av ett medium, typiskt
luft, vilka kan ses som longitudinella vågor. Beroende på vågornas frekvens (men
även andra features) får ljudet sin karaktär och en noggrann frekvensanalys kan
användas för att skilja olika ljudkällor från varandra. Tal och musik som är ton-
ande, exempelvis vokalljud, har en frekvensinnehåll som består av ett antal av
frekvenser. Dessa har ett särskilt matematiskt samband som är kopplat till ljudets
tonhöjd. Metodiken group-sparse regression kan då användas för att identifi-
era en viss ljudkälla med hjälp av dess tonhöjd. Frekvenser som motsvarar viss
tonhöjd placeras då tillsammans i en grupp, och dictionaryt utgörs av ett system
av grupper för alla möjliga tonhöjder. För en kort sekvens ljud förväntar man sig
inte att alla grupper finns närvarande, utan endast en fåtal, varför en group-sparse
variabelvektor eftersöks.

Avhandlingen inleds med en introduktion av tidigare forskning inom sparse
och grupp-sparse regression, samt en översikt av tillämpningarna. Därefter följer
sex artiklar som publicerats i tidskrifter inom området signalbehandling. I artikel A
härleds en metodik för att identifiera och lokalisera ljudkällor i ett rum. Dessa har
spelats in av en uppsättning mikrofoner vilka godtyckligt ställts upp i rummet.
Testscenariot är att två eller flera personer pratar i mun på varandra och går runt
i ett rum. Rummet har en viss återklang, d.v.s. ljudet studsar i rummets väggar,
tak och golv. Identifikationsmässigt är problemet väldigt svårt; inom forsknin-
gens anses det som ett delvis olöst problem. En svårighet är att bestämma hur
personernas röster ska skiljas från varandra, särskilt när man inte vet hur många
dessa är. Det är också svårt att bestämma personernas position i rummet när
ljudet studsar. I artikeln angrips problemet genom en tvåstegsraket. Steg ett är
att identifiera ljudkällornas tonhöjder genom att dela upp ljudet i små sekvenser
och finna tonhöjderna i varje sekvens. I steg två fastställs sedan, för varje identi-
fierad person i varje sekvens, en eller flera positioner för denne. Dessa kommer
att motsvara både personens riktiga position, men också studsarnas positioner.
I båda stegen används group-sparse regression; i steg ett används ett dictionary
med olika tonhöjder, i steg två ett dictionary med olika positioner. Fördelarna
med metodiken för detta problem är att huvudsakligen två; dels behöver man på
förhand inte veta antal personer som finns i rummet, dels kan positionering ske
trots att ljudet studsar.

xiv



För sparse regression finns det oftast en eller flera inställningsparametrar som
måste optimeras, men detta kräver detta en hel del beräkningskraft och tid. För
problemet med identifikation av ljudets tonhöjd, som också kallas pitch, krävs ib-
land tre sådana parametrar. I artikel B härleds en metodik för att reducera bort
minst en av dessa. Detta görs genom att dess optimeringsproblem modifieras med
hjälp av en funktion som ofta används inom matematisk bildanalys. I artikel C
undersöks en feature som är vanlig inom musikteori; chroma (eller tonklass på
svenska). Dessa är till exempel tonklasserna som används för att komponera mu-
sik, såsom tonen C, oavsett vilken oktav den spelas i. Som beskrivits ovan kan en
ton modelleras som en grupp av frekvenser. Chroma blir då en feature som in-
nehåller alla toner inom samma tonklass. Dictionaryt för chroma innehåller sedan
alla relevanta chroma för ett visst musikstycke. I artikeln beskrivs en utveckling av
group-sparsity, där innehållet i varje grupp också är sparse. Det passar väl proble-
met med att finna identifiera chroma, då en chroma-grupp innehåller alla möjliga
oktaver för en ton, medan en inspelning med detta chroma antas innehålla endast
ett fåtal oktaver.

I artikel D till F avses ingen särskild tillämpning, i dessa föreslås istället olika
förbättringar och modifikationer för group-sparse regression. Artikel D utgår från
ett optimeringsproblem som används för matchning av kovariansmatriser; ett van-
ligt statistisk sätt att mäta beroende i dataserier. Ur denna härleds en metodik för
group-sparse regression där ingen inställningsparameter behöver anges. I artikeln
härleds vidare sambandet mellan metoden för kovariansmatchning och gängse
metoder för group-sparse regression, vilket visar hur inställningsparametrarna kan
väljas i group-sparse regression. I artikel E vidareutvecklas metoden i artikel D för
att kunna köras online, vilket innebär att man så beräkningseffektivt som möjligt
vill uppdatera lösningen i takt med att ny data insamlas. Artikel F ägnas helt åt
hur inställningsparametrarna väljs. Vanligtvis används en statistisk metod som
kallas kors-validering för detta, där regressionsproblemet löses för en mängd olika
värden på inställningsparametrarna. Dessutom görs detta flera gånger, där datat
varje gång delas upp i två delar. Den ena delen används för att skatta lösningen,
den andra för att utvärdera hur bra lösningsvektorn kan användas för prediktion.
Inställningsparametern väljs sedan som det värde som gör prediktionen så nog-
grann som möjligt. Denna metod har två nackdelar; först och främst att metoden
är väldigt beräkningstung, men även även att metoden optimerar prediktion, inte
specifikt urvalet av features, som ofta är det sökta problemet. I artikeln föreslås
istället en metodik som med hjälp av sannolikhetsteori väljer inställningsparamet-
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ern utifrån den statistiska fördelningen av det insamlade datats brus. I sparse re-
gression anger inställningsparametern vad som är en legitim feature och vad som
är mätfel och brus. Parametern skall därför typiskt skall väljas större än bruset,
men mindre än den sökta signalen, vilken är okänd. Med den statistiska Monte
Carlo-metoden kan man sedan numeriskt skatta fördelningen av den maximala
brusnivån, från vilken man sedan kan välja inställningsparametern som en lämplig
kvantil (eller risknivå). I numeriska jämförelser visar sig denna metodik vara både
bättre på att välja features, men också mer beräkningseffektiv, än korsvalidering.
Det är alltså tydligt att sparse regression är ett mycket mångsidigt verktyg. Det är
också en relativt enkel matematisk metodik, som många ingenjörer och tekniker
kan ta del av för att hitta mönster i data.

Det kan också avslutningsvis nämnas att för många problem, däribland flera
av problemen i avhandlingen, kan sparse regression kombineras med maskininlärn-
ing. Maskininlärning är ett metodik inom datavetenskapen för automatisk mönsteri-
genkänning, där både features och modellparametrar tränas in istället för att väljas.
Grundtanken är att insamlad data sällan beskriver isolerade fenomen; genom att
låta systemet lära sig från tidigare insamlad data kan man bättre tolka ny data.
Maskininlärning har inte undersökts i denna avhandling, men sambandet mellan
sparse regression och maskininlärning passar utmärkt för framtida forskning.
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Introduction

These lines introduce a doctoral thesis in the cross-section between the fields of
mathematical statistics and signal processing. It takes the perspective of statist-
ical signal processing, especially that of Kay (1993) [1] and Scharf (1991) [2],
whose good practices hopefully will shine through in the analysis, solution, and
execution done here. In line with this heritage, this thesis attempts to judge per-
formance from a statistical point of view, i.e., whether estimation procedures are
good or bad in terms of, e.g., efficiency, consistency, and bias. Many of the issues
raised in the thesis concerns modeling; how to construct parametric models for
different types of data, and how to estimate its parameters without unnecessary
computational cost, to a desired precision in convergence. The main focus is mod-
eling with sparse parameter supports; how very large linear systems can be used
to model both linear and non-linear systems, and how to construct optimization
problems to obtain estimates where the majority of the parameters become zero.
The main formulation and analysis for sparse modeling derives from the work of
Tibshirani (1996) [3], herein extended with a variety of criterions which enforce
certain sparsity structures. Particularly, the thesis is concerned with linear models
where the sought atoms exhibit some form of natural grouping behaviour. For
these problems, different combination of regularizing the regression problem is
used to promote suitably group-sparse solutions. Grouping of components often
pose combinatorial issues, as the structural criteria may be implicitly defined, or as
groups may have overlapping components, which the thesis will focus on dealing
with. A benefit of using sparse modeling is that model orders, i.e., the number
of groups and size of each group, are set implicitly, and so alleviates the need
of model order estimation, which is a difficult problem necessary for parametric
modeling. Many of the methods presented in this thesis are readily applicable
to spectral estimation problems, and many fundamental results are based upon
the standard reference of Stoica and Moses (2005) [4]. In the included works,
the data is often modeled using a parametric sinusoidal model, where signals are
assumed to be well described as super-positioned complex sinusoids, having both
linear and non-linear parameters, corrupted by some additive noise. Using sparse
estimation, these non-linear parameters are estimated using an overcomplete set

1



Introduction

of candidate parameters, each activated by a linear parameter subject for estim-
ation. Experience shows that a group of sinusoids can be used to describe the
tonal part in acoustical signals, wherein the frequencies of the components in
an audio source often exhibit a predetermined relationship, from which a cluster
may be formed. Many of the papers in the thesis focus on one such relation-
ship, termed pitch; a perception model for which describes the spectral content
of many naturally occuring sounds, such as, e.g., from tonal voice, many mu-
sical instruments, and even from combustion engines. An other feature, herein
modeled using grouped sinusoids, also closely related to pitch, is chroma; a mu-
sical property which is important in, for instance, music information retrieval
(MIR) applications. Furthermore, this thesis will touch upon the field of array
processing, where signals are also attributed with some spatial information. In
fact, many results in spectral analysis may be used in array processing, and vice
versa, as these fields are highly related. To give some fundamental context for
the papers of which this thesis consists, some preliminaries from sparse modeling,
spectral analysis, audio analysis, and array processing will constitute the bulk of
this introductory chapter. Lastly, an overview of the papers in this thesis is given.

2



1. Modeling for sparsity

1 Modeling for sparsity

1.1 Preliminaries

This thesis deals with modeling of data variables using linear models. Given a
measured or otherwise acquired sequence of N data variables stored in a vector y,
relationships on the form

y = Ax (1)

are herein considered in order to identify some sought quantity, to encode, e.g.,
for transmission, or to reconstruct the data in some form. When, as in (1), the
data is exactly modeled by the M parameters in x and the linear map A, and the
system is thus noiseless, whereas if

y = Ax + e (2)

for some non-zero noise component e, the linear system is corrupted by noise
and only captures a part of the data’s variability. When the noise component is
assumed to be stochastic with some addional imposed conditions, the noisy data
model is often referred to as a linear regression model, where a trend is identified
among the dependent variables, y, described through the regressor matrix A, such
that an increase in y is proportional to an increase of the regression coefficients
x. For linear regression, two common assumptions are that M < N and that
the columns of A are pairwise independent. Also, it is typically assumed that
the elements of e are independent and identically distributed, where, however,
cases when the noise terms have different variances are sometimes considered. An
objective of linear regression is to estimate the unknown regression coefficients
given the observed data and known regressor matrix. Commonly, the estimator is
formed by minimizing the �2-norm of the squared model residuals, i.e.,

‖y− Ax‖2
2 (3)

which can be obtained using the Moore-Penrose pseudoinverse A†, as

x̂ = A†y (4)

The Moore-Penrose pseudoinverse is a generalization of the matrix inverse, and
exists for any system A. If the assumptions stated above hold, may be obtained in
closed form as

A† �
(
AH A

)−1
AH (5)
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However, in this thesis, these assumptions are typically stretched or violated in
some way, albeit with other assumptions made in their place. In particular, a
recurring case is that M 
 N , such that the linear system is highly underde-
termined with no unique solution. Furthermore, is it assumed that x has a sparse
parameter support, meaning that only few of the elements in x are non-zero. In
other words, it is assumed that the data is sparse in some high-dimensional do-

main, and that A is a linear map to that domain, i.e., y
A�→ x.

The process of parameter estimation under some sparse constraint is often
referred to as sparse modeling, where in particular, the constrained regression
problem introduced in the next section is referred to as sparse regression. In
the sparse modeling framework, A is also described as a dictionary or codebook,
and its columns as atoms, due to the fact that the observed data may be seen
figuratively as a combination of a small number of components from a vast library
of candidate components.

1.2 Motivations

Sparse regression is an approach well suited for solving many problems in statistics
and signal processing, depending on which the choice of dictionary, estimation
approach, and numerical solver is deliberately made. In particular, problems often
considered are

• How to reconstruct the data vector y using fewer than N data samples.
Given some sparse encoding A, only the non-zero parameters of x and
their positions in the vector need to be stored or transmitted, from which
a reconstruction can be made. This research subject is typically referred to
as compressed sensing, see, e.g., [5, 6], and has attracted much attention
during the last decades.

• Identifying and estimating the parameters of a non-linear system. When
the data is a sum of non-linear functions with respect to some multidimen-
sional parameter, sparse regression may be used to approximate each non-
linear function using a set of linear functions, each representing a possible
outcome of the sought parameter. The parameters for the linear system,
x, thus serves as activation and magnitude parameters, where the correct
values of the sought non-linear parameters should be indicated by large
magnitudes of the corresponding candidates in the linear model. By con-
struction, the linear system becomes highly underdetermined and the use
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1. Modeling for sparsity

of a sparse regression model is designed as to yield few linear parameters
with significant magnitudes. The approach will identify the non-linear sys-
tem on a grid of possible parameter outcomes, which is applicable for both
discrete and continuous non-linear parameters. In the latter case, the dic-
tionary may only represent a subset of possible outcomes of the continuous
parameter space, for which a careful dictionary design must be made. The
parameter estimates are often visualized as pseudo-spectra, for which a user
may identify the number of components and their non-linear parameters.
In particular, sparse regression is commonly used for estimation of line
spectra, see, e.g., [7], where the estimated pseudo-spectra typically offers
resolution capabilities far superior to the periodogram1.

• How to separate and identify the components of mixed observations. When
the data consists of a number of superimposed components, and the object-
ive is to identify exactly which ones and how many, sparse regression can
be primed for selection and model order estimation. Given a dictionary
which exactly represents the data, but which is highly redundant, sparse re-
gression can be used for identifying which ones are represented in the data,
and, using careful statistical analysis, surmising precisely how many atoms
the the observed data allows to model. This feature is often referred to as
support recovery, or sparsistency [8].

1.3 Regularization and convexity

A system on the forms (1) or (2), where the number of unknowns outnumber
the number of observations, either lacks or have infinitely many solutions. Such
systems, termed ill-posed, are in this thesis solved using different regularized op-
timization approaches. Essentially, an optimization method seeks to minimize
some criterion, also called objective or loss function, f (x) : Cm �→ R which goes
to zero as x approaches its true value, say x∗, such that f (x) ≥ f (x∗),∀x ∈ Cm.
Typically, for the linear systems discussed here, the loss function is designed to
measure the deviation from a perfect reconstruction using norms, i.e.,

f (x) = ‖y− Ax‖ (6)

In regularization methods, the loss function is balanced by a regularizer, g(x) :
Cm �→ R which increases as the complexity of f (x) increases. The regularizer can

1The periodogram is defined as the square magnitude of the discrete Fourier transform (DFT)
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Figure 1: A comparison of different penalty functions for a scalar variable x.
The �0 penalty is the most sparsity-enforcing, as any deviation from zero adds
cost. Only the �1 and �2 functions are convex, whereof only the former enforces
sparsity.

be seen as as a way of imposing Occam’s razor to the solution, or alternatively the
more contemporary KISS principle2, and is designed to prevent overfitting the
reconstruction quantity. The optimization problem sought to solve thus becomes

minimize
x

f (x) + λ g(x) (7)

where λ is a user-parameter controlling the degree of regularization. In the lin-
ear systems discussed here, the regularizer typically includes the norm of some
function of x. Figure 1

2The acronym spells out ’Keep it simple, stupid’ and originates from the U.S. Navy forces in
the 1960’s.
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1. Modeling for sparsity

shows an example of the regularization functions

‖x‖0 =

M∑
m=1

1{xm �= 0} (8)

‖x‖q =

(
M∑

m=1

|xm|q
)1/q

(9)

1
1 + c

M∑
m=1

ln
(
1 + c|am|

)
(10)

for q = {0.1, 1, 2}, and where c in (10) is a positive constant, which increases
the absolute slope close to zero. In the figure, c is set to 20. A point of interest for
imposing sparse solutions is at which rate a deviation from zero adds a regularizing
penalty or cost. In this sense, the �0-norm3 is optimal - even an infinitesmal
non-zero value in an element adds a cost which must be justified by a significant
decrease of the loss function. This regularizer is, however, impractical to use, as it
requires solving an exhaustive search among all possible combinations of non-zero
and zero elements of x. To simplify estimation, regularized problems are typically
designed to be convex, which in this example only the �1- and �2-norms are.
Their respective effects on the solution are, however, completely different. Figure
2 illustrates the intuition behind their effects on the solution in R2. It shows the
graphical representation of the equivalent constrained optimization problem

minimize
x

f (x) (11)

subject to g(x) ≤ μ (12)

where the left figure illustrates g(x) = ‖x‖1 and right figure illustrates g(x) =

‖x‖2. In both cases, the ellipse illustrates the level curves of the loss function,
which has its unconstrained optimum in the center of the ellipse. The solu-
tions can be found as the intersection points between the loss function and the
regularizers’ level curves for some μ. Here, one sees that the �1-norm intersects
with the loss function at its edges, yielding zero elements. As a contrast, the
smooth �2 norm is unlikely to intersect the loss function att precisely zero for
some dimension. This example serves to introduce the reader as to why certain

3For correctness, is should be noted that the �0-norm is not a proper norm, as it is not homo-
geneously scalable, i.e., ‖ax‖ �= |a| ‖x‖. It is also sometimes termed the �0-”norm” [6]. Neither is
�p, for 0 < p < 1 a proper norm.
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Figure 2: A comparison between the �1- and �2-norm constrained optimization
problems on the left and right, respectively. The level curves in the center of the
coordinate systems illustrate the regularizers, while the ellipses illustrate a smooth
loss function.

regularizers promote sparse estimates and why others do not. In the next section,
this is mathematically justified for a relevant selection of regularizers. All these
have in common being convex, as for convex problems, there exists formal ne-
cessary and sufficient conditions for a solution to be optimal. These are termed
the Karush-Kuhn-Tucker (KKT) conditions, which are easy to verify for most
problems. Consider a constrained optimization problem

minimize
x

f (x) (13)

subject to g(x) ≤ 0 (14)

h(x) = 0 (15)

where the convex inequality constraints, g(·), and the linear equality constraints,
h(·), are imposed on the convex loss function, f (·). For this problem, the Lag-
rangian is

L(x, λ, μ) = f (x) + λg(x) + μ h(x) (16)

8



1. Modeling for sparsity

where λ > 0 and μ ∈ C are the Lagrange multipliers. This convex problem has
a unique minima, and (x, λ, μ) is an optimal point for that minima if the KKT
conditions are met. These are

∂L
∂x

= 0 (17)

g(x) ≤ 0, h(x) = 0, μ > 0 (18)

λg(x) = 0 (19)

i.e., the optimal point is a stationary point of the Lagrangian, the solution is
primal and dual feasible, and complementary slackness holds, respectively. The
first two conditions mean that x is optimal only if it both minimizes the loss func-
tion and is a point in the feasible set, i.e., a point fulfilling the constraints. The last
condition, complementary slackness, is more involved. It states that if the optimal
point is in the interior of the feasible set, i.e., h(x) < 0, then λ must be equal to
zero. This implies that h(x) vanishes from the Lagrangian, and the optimal point
x only minimizes the loss function together with the equality constraint. The in-
equality constraint is thus only active for points on the boundary of the feasible
set. As the equality constraint must always be active, it offers no complimentary
slackness. For unconstrained problems, these conditions reduce to the first one,
and the Lagrangian reduce to the loss function, for which the optimal point is
a stationary point. The KKT conditions are often utilized to form numerical or
(for simple problems) analytical solvers, some of which will be presented in later
sections.

1.4 Complex-valued data

The outline for regularized optimization defined above describes real-valued func-
tions taking complex-valued arguments. Most literature describing such problem
typically operate in the domain of real-valued numbers. Due to the applications
described in this thesis, it is natural to consider complex-valued parameters, for
which some remarks are due.

Remark 1. Consider the example of g(x) = ‖x‖1 for complex-valued para-
meters. The regularizer is equivalent to

M∑
m=1

|xm| =
M∑

m=1

∥∥∥[ Re(xm) Im(xm)
]�∥∥∥

2
(20)

9



Introduction

i.e., a sum of the �2-norm for the real and imaginary part of each complex valued
element in x. It is worth noting that the sum of �2-norms is another common reg-
ularizer, which is central for this thesis and will be discussed at length in the next
section. So, by stacking the real and imaginary parts of the parameters next to
each other, modifying the loss function accordingly, and then adding the regular-
izer above, one obtains a real-valued function which takes real-valued arguments.
The optimization problem is thus converted into f (x)+λg(x) : R2M �→ R, which
is be possible, however notationally tedious, for most problems described herein.

Remark 2. The common approach when solving the regularized optimization
problems is to, at some point, form partial derivatives with respect to the complex-
valued arguments. To that end, one may use Wirtinger derivatives, which permits
a differential calculus much similar to the ordinary differential calculus for real-
valued variables. Specifically, for the functions used herein, the complex derivative
of x is formed by taking the ordinary derivative of xH , as if it was its own variable.
Thus, for example, the derivative of a quadratic form becomes

∂

∂x
xH Ax = Ax (21)

For the works herein, depending on the implementation used, either one of these
two approaches has been used when deriving solvers for the considered optimiza-
tion problems.

10



2. Regularized optimization

2 Regularized optimization

Depending on which sparsity structure that is sought for a particular data model,
one may use different regularizers to promote such structure. In this section,
some commonly occurring regularizers will be introduced. For most of these,
closed form solutions are derived using KKT, as it may give a qualitative under-
standing of the effect of regularization, as well as the effect of the hyperparameter
λ. The problems introduced here are convex, which means that any numerical
solver that is shown to converge will at some point do so for these problems.
This furthermore means that if a particular iterative solver is used, the path it
takes towards convergence, and the speed at which it reaches it, may differ from
another converging solver, but in the end both will converge to the same point.
These arguments justify the outline of this section, wherein a number of common
sparsity-promoting regularized optimization problems are introduced. To math-
ematically illustrate how these problems promote sparse parameter solutions, the
closed-form expressions for a cyclic coordinate descent (CCD) solver are presen-
ted. As the CCD will converge (although typically slow), the sparsifying effect it
will illustrate will also be true for any other solver applied. See also Section (3.1)
for an overview of the algorithm.

2.1 The underdetermined regression problem

As illustrated for the linear regression problem in the previous section, when the
number of observations are far fewer than the number of modeling parameters,
the system is underdetermined and the Moore-Penrose pseudoinverse does not
have a closed-form expression. In this subsection, a standard approach for cir-
cumventing this issue is examined. As mentioned in Section 1.1, linear regression
is the (unregularized) optimization problem where the loss function is equal to
the �2-norm of the residual vector, i.e., the ordinary least squares (OLS) problem,

minimize
x

‖y− Ax‖2
2 (22)

which has solution4 (4). For an underdetermined system, AH A has dimension-
ality M × M while only being rank N < M , and is therefore not invertible.
The Tikhonov Regularization (TR), also known as ridge regression, is a common

4Obtained by solving the normal equations, i.e., taking the derivative of the loss function and
setting it equal to zero.
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method for solving such ill-posed problem; it is the regularized regression problem

minimize
x

‖y− Ax‖2
2 + γ ‖x‖

2
2 (23)

which has the closed-form solution

x̂ = (AH A + γI)−1AH y (24)

and always exists for a hyperparameter parameter γ > 0. To examine the effects
of this regularizer, consider the coordinate descent approach, where one optimizes
one parameter at a time, while keeping the others fixed. To solve using KKT, and
as (23) has no constraints, one only needs to set the loss function’s derivative with
respect to xm equal to zero, yielding

−am(y− Ax) + xm = 0 ⇒ x̂m =
aH

m rm

aH
m am + γ

(25)

where am denotes the m:th atom of the dictionary and where rm = y−
∑

i �=m ai x̂i

is the residual where the reconstruction effect of the other estimated parameters
have been removed. The iterative result in (24) has the following effects on the
solution:

• For γ = 0, the CCD solves the underdetermined OLS problem, but it will
not converge to a unique solution.

• The denominator in (25) is always positive, and γ > 0 shrinks x̂m to have
smaller magnitude than the OLS solution, thus leaving some of the explan-
atory potential in the dictionary atom to be utilized by another estimate.

• The explanatory capability of an atom in the dictionary depends on whether
there exists linear dependence between the atom am and the data. As
N < M , the atoms are not linearly independent and aH

m am′ �= 0 for
m �= m′, i.e., there exists some redundancy in the dictionary such that
a parameter may be replaced by another parameter.

• If the data has the form y = AIxI+e for some subset of indices I in A and
the TR problem is solved, there will in exist parameter estimates x̂m �= 0,
even though m /∈ I .

• TR estimates are not sparse, they are in fact the opposite, and are typically
used to find smooth estimates for underdetermined problems.

12
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2.2 Sparse regression: The LASSO

The classical approach to promote sparse estimates for a regression problem, using
a statistical framework and convex analysis, was presented in the seminal work by
Tibshirani et al. [3]. The method, termed the Least Absolute Shrinkage and Se-
lection Operator (LASSO), solves the regularized optimization problem wherein
the �2-norm loss function is paired with an �1-norm regularizer, i.e.,

minimize
x

‖y− Ax‖2
2 + λ ‖x‖1 (26)

The same optimization problem goes under different acronyms, and is also re-
ferred to as the Basis Pursuit De-Noising (BPDN) method [9]. It has been the
constant focal point of much research during the last decades, and many prom-
inent researchers have worked on the theoretical properties, solvers, applications,
and extensions of the method. To illustrate the sparsifying effect of the LASSO,
a coordinate-wise optimization scheme is derived, where for the m:th parameter,
one wishes to solve

minimize
xm

‖rm − amxm‖2
2 + λ|xm| (27)

where rm = y −∑i �=m ai x̂i is the residual where the reconstruction effect of the
other estimated parameters have been removed. Examining (27), one may initially
note that the regularizer is non-differentiable for xm = 0. Using sub-gradient
analysis, the KKT conditions for this unconstrained problem state that [10]

− aH
m (rm − amxm) + λum = 0 (28)

um =

{ xm
|xm| xm �= 0

∈ [−1, 1] xm = 0
(29)

where um is the m:th sub-gradient of the non-differentiable regularizer ‖x‖1. Pro-
ceeding, consider the case xm �= 0 for which

xm

|xm|
(
aH

m am|xm|+ λ
)
= aH

m rm (30)

Applying the absolute value on both sides and solving for |xm| yields

|xm| =
∣∣aH

m rm
∣∣− λ

aH
m am

(31)
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which inserted into (30) yields

xm =
aH

m rm

|aH
m rm|

∣∣aH
m rm

∣∣− λ
aH

m am
(32)

Next, consider the case xm = 0, which, using (29), results in the condition

λum = aH
m rm ⇒

∣∣aH
m rm

∣∣ ≤ λ (33)

for the magnitude of the inner product between the dictionary and the residual,
which, when combined with (32) yields the LASSO estimate

x̂m =
S
(
aH

m rm, λ
)

aH
m am

(34)

where

S(z, μ) = z/|z| max(0, |z| − μ) (35)

is a shrinkage operator which reduces the magnitude of z by μ towards zero. The
closed-form expression in (34) fulfills the KKT conditions and, when solved iter-
atively ∀m, yields the global optimum of (26). The solution also shows how the
LASSO promotes sparsity. Just as with TR, all parameter estimates gets smaller
magnitude than the unconstrained OLS would (compare with (25) where γ = 0).
However, while the TR estimate is shrunk proportionally to the OLS estimate, the
magnitude of the LASSO estimate is shrunk absolutely, which has the effect that
when λ is large enough, that parameter estimate is completely zeroed out.

In some cases, it may be beneficial to replace the �2-norm in the LASSO’s loss
function with an �1-norm. Loosely laid out, an �1-norm will penalize the devi-
ation in reconstruction fit less than the �2-norm for large deviations, and will thus
be more lenient towards outlier samples. To that end, the Least Absolute Devi-
ation (LAD) LASSO [11] is sometimes used, which solves the convex program

minimize
x

‖y− Ax‖1 + λ||x||1 (36)

However, producing an analytical coordinate-wise solution for the LAD-LASSO
similar to the LASSO is not straight-forward. Instead, it will be shown in Paper D
that the LAD-LASSO is equivalent to a particular covariance fitting problem,
where the covariance matrix is parametrized using a heteroscedastic noise model,
i.e., where the noise samples are allowed different variability.
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2. Regularized optimization

2.3 Fused LASSO

A common variation of the LASSO, introduced in [12], is called the generalized
LASSO, which use a regularizer on the form

g(x) = λ||Fx||1 (37)

where F is a linear transformation matrix, such that the �1-norm is imposed on a
linear combination of the components in x. A popular choice of F is the first-order
difference matrix, defined as

F =

⎡
⎢⎢⎢⎢⎣

1 −1 0 . . . 0

0 1 −1
. . .

...
...

. . .
. . .

. . . 0
0 . . . 0 1 −1

⎤
⎥⎥⎥⎥⎦ (38)

which has dimension (M−1)×M and regularizes the absolute differences between
adjacent parameters. This reguarlizer is often termed a Total Variation (TV) pen-
alty, as it seeks to minimize the variation among parameters, often used for de-
noising images by removing spurious artifacts . To see this, consider a simplified
solver where one does a change of variables, z = Fx, which yields the equivalent
optimization problem

minimize
z

‖y− Bz‖2
2 + λ||z||1 (39)

where, for the dictionary, B, BF = A is assumed to exist. The generalized LASSO
is thus expressed in the standard LASSO form, where, from (34), sparsity in z
is promoted. In terms of x, as z = Fx is underdetermined, there is no unique
solution for x̂ given ẑ. Parametrizing the solution by x̂1 = u, one obtains

x̂m = x̂m−1 + ẑi, m = 2, . . . ,M (40)

This implies that the parameter x can be seen as a sparse jump process; starting
at u, the process evolves by taking its previous value, until a non-zero ẑm comes
along and adjusts x̂m by this value. As the regularizer zeroes out insignificant
jumps, the TV penalty ensures that the estimates are smooth; only to change
when a significant saving in the loss function is gained by changing the parameter
value. In practice, the generalized LASSO is solved for x directly, instead of z

15



Introduction

and u (see [12]) but (40) serves to illustrate the mechanics of the regularizer. As
shown, the TV penalty does not promote sparse, but rather smooth, solutions.
Therefore, TV may be used in tandem with the standard �1-norm, i.e.,

g = (1− μ) ‖x‖1 + μ ‖Fx‖1 (41)

where μ ∈ [0, 1] is a user-selected trade off parameter. The method is called the
sparse fused LASSO (SFL), introduced in [13], and bestowes a grouping effect
on the solution. If adjacent dictionary components have similar energy, they are
fused into groups without a pre-defined structure. Simultaneously, if components
are too weak, they are regularized to zero. Thus, SFL enforces both grouping and
sparsity.

2.4 Elastic net regularization

In [14], a regularized regression problem is introduced which combines the �1-
and �2-norm regularizers. It is called the elastic net and solves the problem

minimize
x

‖y− Ax‖2
2 + λ1 ‖x‖1 + λ2 ‖x‖2

2 (42)

When combining regularizers, the method imbibes some of the properties from
both regularizers into the solution. As a combination of the LASSO and ridge
regression, the elastic net promotes solutions which are, rather unintuitively, both
sparse and smooth. The intuition for this combinations is that, in extreme cases of
M 
 N , the atoms tend to have high degree of linear dependence (or coherence)
i.e.,

aH
m am′√

aH
m am

√
aH

m′am′

(43)

for two atoms m and m′, and for certain dictionary designs, the linear dependence
may be even further exaggerated. The LASSO then tends to only select one or a
few of the coherent atoms, instead of all. Also, if N is very small, and the num-
ber of components which should be present in the solution, say K , approaches
or surpasses the number of observations, the LASSO also tends to underestimate
the model order. The elastic net therefore serves to smooth the LASSO solution
somewhat, so that collinear dictionary atoms which are excluded from the LASSO
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estimate get caught in the elastic net. Mathematically, this can be seen by initializ-
ing a coordinate descent solver. Similar to (28), the KKT conditions for the m:th
parameter subproblem are

− aH
m (rm − amxm) + λ1um + λ2xm = 0 (44)

um =

{ xm
|xm| xm �= 0

∈ [−1, 1] xm = 0
(45)

where um is the sub-gradient of |xm|. Solving for the two cases xm �= 0 and
xm = 0 separately, one obtains after some algebraic manipulation the closed-form
solution

x̂m =
S
(
aH

m rm, λ1
)

aH
m am + λ2

(46)

which, similar to TR, reduces the magnitude of the estimate further than the
LASSO estimate, giving the opportunity for coherent atoms to capture the re-
maining variability in the data.

2.5 Group-LASSO

This section introduces a method which is at the centre of this thesis, introduced
in [15], in which sparsity is promoted among groups of dictionary atoms. By
structuring the M atoms of the dictionary in K groups of Lk atoms each, such
that

A =
[

A1 . . . AK
]

(47)

Ak =
[

ak,1 . . . ak,Lp

]
(48)

the group-LASSO solves the problem

minimize
x

‖y− Ax‖2
2 + λ

K∑
k=1

√
Lk||xk||2 (49)

For the LASSO, the �1-norm penalizes components based on their magnitudes,
and similarly, the group-LASSO penalizes entire groups based on their magnti-
udes, quantified by the �2-norms of the parameter vectors. The effect is that
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sparsity is promoted among the candidate groups, but not within them. To il-
lustrate this mathematically, consider again a coordinate-wise approach, where
estimates are sought for all parameters in a group, by solving

minimize
xk

‖rk − Akxk‖2
2 + λ

√
Lk||xk||2 (50)

which is similar to the TR problem, except for the (·)2 in the regularizer. As
will be shown, this difference has a substantial impact on the estimate. In (50),
the regularizer is non-differentiable for xk = 0, and the KKT conditions for this
unconstrained problem become

− AH
k (rk − Akxk) + λ

√
Lkuk = 0 (51)

uk =

{
xk

‖xk‖2
xk �= 0

∈ {uk : ‖uk‖ ≤ 1} xk = 0
(52)

which, similar to the LASSO, will be solved for the two cases in (52) separately.
For xk,� �= 0, for any �, one obtains(

AH
k Ak ‖xk‖2 + λ

√
LkI
) xk

‖xk‖2
= AH

k rk (53)

where the approach is to solve for ‖xk‖2 and then insert the solution back into
(53). While this equation could be solved numerically, in order to obtain a closed-
form analytical expression, an assumption must be made. The dictionary group
Ak has dimensions N×Lk, which is typically a tall matrix (having more rows than
columns). If assuming that the dictionary atoms are normalized, i.e., aH

k,�ak,� =

1,∀�, and furthermore assuming that the atoms within each group are linearly
independent, i.e., AH

k Ak = I, one obtains

‖xk‖2 =
∥∥AH

k rk
∥∥

2 − λ
√

Lk (54)

which plugged back into (53) yields

xk =
AH

k rk∥∥AH
k rk

∥∥
2

∥∥AH
k rk

∥∥
2 − λ

√
Lk (55)

Next, for the case when xk,� = 0, for any �, one obtains

λ
√

Lkuk = AH
k rk ⇒

∥∥AH
k rk

∥∥
2 ≤ λ

√
Lk (56)
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which, when combined with (55) yields the group-LASSO estimate, yields the
closed-form solution

x̂m = T
(

AH
k rk, λ

√
Lk

)
(57)

where

T (z, μ) = z/ ‖z‖2 max(0, ‖z‖2 − μ) (58)

is an element-wise shrinkage function which reduces the magnitude of each para-
meter in the group proportionally to λ

√
Lk. From (57), one may see how group-

sparse solutions is achieved; when the contribution from a candidate group is too
small, i.e.,

∥∥AH
k rk

∥∥
2 ≤ λ

√
Lk, all the estimates in a group become zero, and simil-

arly, when the inclusion of a candidate group may contribute enough explanatory
power, the parameter estimates become non-zero. It should be noted that the as-
sumption of linear independence within groups, made in order to obtain (54), is
typically not very restrictive; for most cases, Lk < N and if two atoms within a
group become highly linearly dependent, one may consider pruning that group
in order to remove such correlations. After all, the purpose of the group-LASSO
is to make selection among groups, and not within groups.

Although, as noted in subsection 2.4, one may use a combination a regu-
larizers in order to promote a specific sparsity structure, and a number of such
combinations are introduced later in the thesis. In general, they solve convex
optimization problems on the form

minimize
a

‖y− Ax‖2
2 + λ

J∑
j=1

gj(x, μj) (59)

where gj denotes the j:th regularizer which promotes a certain sparsity structure,
and with λjμj denoting its corresponding regularization level, which weighs the
importance between the sparsity promoted by gj and the model fit. In [16], Simon
et al. introduce the sparse group-LASSO (SGL), which is a group-sparse method
where sparsity is also introduced within groups. This is achieved by combining
the regularizer in the group-LASSO with an �1-norm, i.e.,

g1 + g2 = μ ‖x‖1 + (1− μ)
K∑

k=1

√
Lk ‖xk‖2 (60)
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for 0 ≤ μ ≤ 1. A closed-form expression for the group-wise optimization prob-
lem using this regularizer is not obtainable. However, using sub-gradient analysis
similar to the one in (51) - (52), one may discern its sparsity patterns. Using
algebraic manipulations, xk = 0 implies that∥∥∥∥[ S (aH

k,�rk, λμ
)

. . . S
(

aH
k,�rk, λμ

) ]�∥∥∥∥
2
≤ (1− μ)λ

√
Lk (61)

where each element in the right hand side vector is similar to the regular LASSO
estimate, and the group-LASSO sets the entire group to zero if the �2-norm of
these estimates is too small. For a component within a group, one similarly has

|aH
k,�rk,�| ≤ μλ (62)

for xk,�,where rk,� = y −∑(k,i)�=(k,�) ak,i x̂k,i is the residual where the reconstruc-
tion of all other groups, as well as all other atoms within the current group, has
been removed, implying that some form of CCD approach should also be used
within the groups. Examining (61) and (62), it becomes clear that the SPL have
two constraints on the parameters; that each individual parameter significantly
improves the residual fit, and that each group significantly improves the residual
fit, both of which must be fulfilled for the parameter estimate to become non-zero.
In lack of closed-form expressions for solving the SPL, there are several numerical
methods, some of which are introduced in section 3.
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2.6 Regularization and model order selection

So far, little has been said about how to choose the regularization parameter(s)
in sparse regression. As illustrated, these hyperparameters control the trade-off
between reconstruction fit and sparsity, such that, e.g., for the LASSO,

λ ≥ aH
m y ≥ aH

m rm ⇒ x̂m = 0 (63)

i.e., setting that particular estimate to zero. The regularization parameter can thus
be seen as an implicit model order selection; not one where an exact model order
is selected, but as a minimum requirement on the linear dependence between the
dictionary atom and the data. For notational simplicity in the following quant-
itative analysis, let’s, without loss of generality, assume that the dictionary has
standardized atoms, i.e., aH

m am = 1,∀m. Consider an observation y = Ax + e,
where the parameter vector x is said to have support

I = {i : xi �= 0 } (64)

i.e., a set of indices indicating the locations of the dictionary atoms included in
the data. such that Ax = AIxI . Moreover, let |I| = ‖x‖0 = C be the size of
the support, i.e., number of non-zero elements in x; x is then said to be C/M-
sparse. Then, consider a parameter xm ∈ I which is up for estimation. The inner
product between the m:th atom and its residual may be expressed as

aH
m rm = aH

m

⎛
⎝amxm +

∑
m′ �=m

am′ (xm′ − x̂m′ ) + e

⎞
⎠ ≈ xm + aH

m e (65)

if assuming that the coherence between dictionary atoms in the support, aH
m am′ ,

m,m′ ∈ I , is negligable. It then follows that the estimate of xm will be zero unless

λ < |xm + aH
m e| ≤ |xm|+ |aH

m e| (66)

where the triangle inequality has been used in the last inequality. One may con-
clude that the regularization parameter operates in relation to the magnitude of
the true parameters. An important consequence of this is related to model order
estimation; the LASSO discriminates the estimated support based on magnitude,
a larger parameter is always added before a smaller. Thus, if there are two com-
ponents m ∈ I and m′ /∈ I , but |xm| < |xm′ | due to noise artefacts, then one
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can never obtain a LASSO solution where x̂m is non-zero and x̂m′ is zero, i.e., it is
impossible to recover the true support using the LASSO. This, however, is not an
issue only restricted to sparse estimation methods. In order for support recovery
to be possible,

min
m∈I
|xm| > max

m′ /∈I
|xm′ | (67)

must be true, which is also typically the case for the chosen sparse encoding A.
The regularization parameter is always positive, but one must typically consider a
narrower interval to obtain useful solutions. Let x̂(λ) denote the LASSO solution
as a function of regularization level. Starting from very high levels of λ, the cost
of adding a non-zero parameter to the estimated support is much higher than its
reduction in residual �2-norm, and x̂(λ)→0 as λ→∞. At some point, say λ0,
the first non-zero estimate enters the solution, at

λ0 = max
m
|aH

m y| (68)

whereafter, when decreasing λ, more and more non-zero parameters are added
until, as λ → 0, the LASSO approaches the (generally ill-posed) least squares
problem. Thus, let

Λ = { λ : λ ∈ (0, λmax] } (69)

denote the regularization path for which a non-zero solution path x(Λ) exists,
on which an appropriate point is sought. Before proceeding, one may note how
the function x̂(λ) behaves. To that end, let λ∗ be a regularization level where the
estimated support Î is equal to the true support, and where for some small δ ∈ R,
Î(λ∗ + δ) = Î(λ∗). If furthermore the dictionary atoms in the true support are
linearly independent, one obtains the LASSO solution (using (34))

x̂m(λ∗ + δ) = (xm + aH
m e)

(
1− (λ∗ + δ)|xm + aH

m e|
)

(70)

which is an affine function of δ that has a constant negative slope. The magnitudes
of the LASSO estimates are thus reduced towards zero by a constant rate as λ
increases.

Next, the concept of coherence, or collinearity between dictionary atoms is
discussed. Let

ρ(m,m′) = aH
m am′ (71)
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denote the linear dependence between two dictionary atoms. As the atoms are
assumed to be standardized, i.e., ρ(m,m) = 1, then |ρ(m,m′)| ≤ 1. To see how
a non-zero coherence affects the LASSO estimate, consider a much simplified
one-component observation y = amxm + e and one coherent noise component,
m′ /∈ I where ρ(m,m′) = ρ < 1, and no other coherence. First, one may note
that including xm is expected to be cheaper than including xm′ in the optimization
problem. To see this, consider the two options x̂m = x0 and x̂m′ = x0 for some
value x0, all other parameters being equal. Comparing the expected optimization
cost of these two solutions, one obtains after some algebra

E
(
f (x̂m) + λg(x̂m)− f (x̂m′ ) + λg(x̂m′)

)
(72)

= − 2E
(
|x0|2(1− ρ) + aH

m e− aH
m′e
)

(73)

= − 2|x0|2(1− ρ) < 0 (74)

which is always negative ∀x0, as e is assumed to be a zero mean. Thus, assigning
power to the correct atom is always preferable to assigning it to another atom to
which it is coherent with ρ < 1. This, however, does unfortunately not mean that
spurious estimates does not enter into the LASSO solution. Due to the shrinkage
effect, a parameter has a bias which makes that atom unable to exploit its full
explanatory potential, leaving some data structure to be modeled by coherent
atoms. To see how, consider a CCD approach starting at m, and where λ is
set small enough as to include xm into the support, with estimate x̂m = (xm +

aH
m e)

(
1− λ/|xm + aH

m e|
)
. If then turning to parameter m′, to which there is

coherence as above, xm′ is only excluded from the support if

x̂m′ = 0⇔ λ ≤
∣∣∣∣ ρ xmλ

|xm + aH
m e| + ρ aH

m e
(

1− λ

|xm + aH
m e|

)
+ aH

m′e

∣∣∣∣ (75)

from which it is difficult to discern a more precise conclusion. The important
factors are, however, the regularization level, the coherence, the noise level, and
the signal-to-noise ratio. For instance, if m′ is not coherent to m′, i.e., ρ = 0,
then (75) reduces to

x̂m′ = 0⇔ λ ≤
∣∣aH

m′e
∣∣ (76)

i.e., the regularization level must be selected higher than the noise level as to not
include a spurious estimate. On the other hand, if there is no noise, e = 0, then
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(75) reduces to

x̂m′ = 0⇔ λ <
∣∣∣∣ρ xmλ

|xm|

∣∣∣∣⇒ ρ ≥ 1 (77)

i.e., xm′ never enters the support for any ρ < 1, and thus one may conclude that
it is the noise which introduces spurious estimates to the solution, if λ is set too
low and the coherence is too high.

The literature on sparse regression also contains some methods for hyper-
parameter-selection. The classical approach, as discussed in, e.g., [17], is the
statistical cross-validation tool. It selects the regularization level, λ, which has the
best prediction �2-fit. The exhaustive approach is leave-one-out cross validation,
in which one calculates the path solution x(Λ) for all observations except one,
then calculate how well the estimate may be used to predict the excluded obser-
vation. This is done for the entire solution path, and then iterated by leaving out
all observations in turn, one by one. A cost function is then obtained for each
λ ∈ Λ, which is minimized in order to find the optimal regularization. Needless
to say, this is a computationally burdensome approach. A batch version called
R-fold cross-validation is often used, significantly speeding up the process, and a
path solution is obtained for a discrete grid of candidate regularization levels. Still,
the LASSO needs to be solved a large number of times in order to select the reg-
ularization level. A faster method of computing the solution path was proposed
in [18], which, for real-valued signals, solves the entire solution path of x̂(λ) with
the same computational complexity as if solving for a single λ. Another approach
is to use an information criteria, such as the Bayesian Information Criteria (BIC).
The cross-validation and BIC method do not, however, make any guarantees in
terms of support recovery. There are also a number of heuristic approaches to
setting the regularization level. These often depend on the purpose of the estim-
ation, as examplified in Section 1.2. If, for instance, λ is set too low, the solution
is not sufficiently sparse, but will also not have any false exclusions of the true
parameters. If the purpose is to estimate a non-linear parameter, obtaining a solu-
tion which is too dense might not be problematic. If one searches for a number
of components with strong contribution to the signal, but some very small noise
components are also included into the support, the main contributors will still be
discernible. Also, if the main contributors in x are sought after, selecting λ too
high might falsely exclude some of the smaller components in the data without
decreasing the model fit too much. To that end, one may think of the solution in
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terms of dynamic range. Thus, one may decide upon a dynamic range of δ (dB),
such that the regularization becomes

λ = λ0

√
10−δ/10 (78)

which implies that the maximal dynamic range, i.e., difference in signal power
between two components in the support, is |δ| dB. For example, for δ = 20 dB,
this yields λ = λ00.1.

When utilizing more than one regularizer, selecting the level of regularization
becomes more complex. Not only does the total regularization level need to bal-
ance the model fit, but each of the regularizers also needs to be weighed against
each other, as to find the sought sparsity pattern. With J regularizers, a path solu-
tion generalizes to a J -dimensional regularization path, making cross-validation
and information criteria methods computational burdensome.

2.7 Scaled LASSO

To make selection of the regularization parameter simpler, an auxiliary variable
σ > 0 may be included such that, using (26),

‖y− Ax‖2
2 + λ ‖x‖1 ≤

1
σ
‖y− Ax‖2

2 + Nσ+ μ ‖x‖1 (79)

for λ = μσ, and one may equivalently solve [19]

minimize
x,σ>0

1
σ
‖y− Ax‖2

2 + Nσ+ μ ‖x‖1 (80)

Using a coordinate descent approach where one solves (80) over x and σ, one sees
how the mechanics of the regularization level changes. First, keeping x fixed, the
unconstrained solution of (80) with respect to σ becomes

σ̂ =
1√
N
‖y− Ax‖2 (81)

As this estimate is always non-negative, the constraint σ > 0 is never a hard
constraint. Inserting (81) back into (80), the optimization problem becomes

minimize
x

2 ‖y− Ax‖2 +
μ

N
‖x‖1 (82)
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which is also known as the square root LASSO [20]. Returning to (80), and by
keeping σ fixed at σ̂, the optimization problem becomes

minimize
x

‖y− Ax‖2
2 + μσ̂ ‖x‖1 (83)

which is the standard LASSO formulation, with closed-form solution

x̂m =
S(aH

m rm, μσ̂)
aH

m am
(84)

allowing the regularization parameter to be scaled by the estimate of σ, model-
ing the standard deviation of the noise. By selecting μ instead of λ, one may
do so independently of the noise power. Assume the noise distribution to have
expectation and variance

E(e) = 0, V(e) = σ2I (85)

and consequently, for the linear combination AH e,

E(AH e) = 0, V(AH e) = σ2AH A (86)

For a noise component m /∈ I , where the coherence with other atoms may be
neglected, will becomes non-zero zero if

μσ̂ < |aH
m y| = |aH

m Ax + e| = |aH
m e| ⇒ (87)

μ2σ̂2 < aH eeH a (88)

Taking the expected value on both sides of (88) yields

μ2σ̂2 < aHσ2Ia = σ2 (89)

assuming that the bias in the LASSO estimate makes the estimated standard de-
viation larger than σ. Therefore, in order to set the noise component to zero, one
must at least select μ > σ̂/σ.

2.8 Reweighted LASSO

For the noiseless observation vector in (1), not previously considered for estim-
ation herein, one may obtain a sparse parameter estimate by solving the Basis
Pursuit (BP) problem [21], i.e.,

minimize
x

‖x‖1 (90)

subject to y = Ax
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It is worth noting that this optimization does not contain any regularization para-
meter, as it is not a regression problem where the model fit must be weighed
against sparsity. Merely, as the data is noiseless, it finds the smallest �1-norm
which perfectly reconstructs the data. To promote even sparser estimates than
obtained by BP, the reweighted �1-minimization method was introduced in [22],
which iteratively solves a weighted BP problem, i.e., for the j:th iteration,

minimize
x

M∑
m=1

|xm|
|x̂(j−1)

m |+ ε
(91)

subject to y = Ax

where x̂(j−1)
m denotes the previous estimate of the m:th parameter, and where ε is

a small positive constant used to avoid numerical instability. The parameters in
x are thus iteratively weighted using the previous estimate, with the effect that
small |xm| are successively given a higher optimization cost, whereas the cost is
successively lessened for large |xm|. The iterative approach falls within the class
of majorization-minimization (MM) algorithms (see, e.g., [23] for an overview),
where some given objective function is minimized by iteratively minimizing a
surrogate function which majorizes the objective function. Thus, consider the
(non-convex) optimization problem

minimize
x

g(x) =
M∑

m=1

log(|xm|+ ε) (92)

subject to y = Ax

which one wishes to solve via the MM approach. In the first step of this MM-
algorithm, one lets g(x) be majorized by its first-order Taylor approximation
around x = x̂(j−1), i.e.,

g(x) ≤ g
(

x̂(j−1)
)
+∇g

(
x̂(j−1)

)H (
x− x̂(j−1)

)
(93)

where ∇g denotes the gradient of g . Then, in the second step of the MM-
algorithm, the majorizer is minimized for x in lieu of g , which becomes pre-
cisely the optimization problem in (91). The reweighted �1-minimization method
can thus be seen as solving a series of convex problems approximating the (non-
convex) logarithmic objective function. The effects of the iterative approach is
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twofold; a logarithmic minimizer is both more sparsifying and gives a smaller
parameter bias than the �1-minimizer, as could be seen in Figure 1 above. Using a
similar analysis, the adaptive LASSO was introduced in [24] to approximate the
use of a logarithmic regularizer in sparse regression, i.e., by iteratively solving

minimize
x

‖y− Ax‖2
2 + λ

M∑
m=1

|xm|
|x̂(j−1)

m |+ ε
(94)

where it is worth noting that the regularization parameter is once more included,
as the optimization problems needs to select a trade-off level between model fit
and sparsity. Thus, the reweighted LASSO problem can be seen to have individual
regularization parameters for each variable, iteratively updated ∀j as

λ(j)
m =

λ

|x̂(j−1)
m |+ ε

(95)

growing for small variables, and shrinking for large variables. Typically, the itera-
tions converge quickly, and around 5-20 iterations often suffices for most applic-
ations. The logarithmic regularizer is concave, and as a consequence, one cannot
always expect to find a global optimum. It is therefore important to choose a
suitable starting point. For instance, one may select λ slightly lower than for
the standard LASSO, as spurious components are likely to dissapear, meanwhile
increasing the chance of keeping the signal components.
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3 Brief overview of numerical solvers

For the convex optimization problems described in the previous section, there
exists a large number of numerical solvers. One solver, which uses the methodo-
logy of disciplined convex programming described in [25], comes with a software
package, CVX [26], which makes implementation very approachable. CVX is an
excellent tool for prototyping new optimization problems, such as regularizers in
sparse regression. CVX makes use of commonly available interior point methods
such as SeDuMi [27] and SDPT3 [28] to find solutions which approximately ful-
fill the KKT conditions for the stated problems. The CVX framework is designed
for experimentation and toy examples; it is generally too computationally bur-
densome for practical estimation of the optimization problems considered in this
thesis. The problems and scope of applications presented in the thesis calls for
more efficient solvers, three of which will be briefly described herein: Coordinate
descent algorithms typically suffers from slow convergence, however, for sparse
parameter estimation, they may be utilized to reach coarse (but sufficient) conver-
gence very efficiently [29], as is observed Paper D and F. When combining dif-
ferent regularizers, the alternating direction method of multipliers (ADMM) [30]
is shown to provide efficient estimation, which is utilized in Paper A - C . Also,
for recursive estimation scenarios, when new observations enters the estimator
continuously, a proximal gradient approach may be implemented to reuse old
computations and to avoid storing large matrices, as examined in Paper E.

3.1 Cyclic coordinate descent

For many of the methods presented earlier, coordinate-wise updates have been
used to illustrate the effects of the different regularizers. In this section, a brief
outline is given for the algorithm, including speed-ups. The CCD may be used
to solve the optimization problems one parameter at a time, i.e., for all indices
i = 1, . . . ,M , solving

minimize
xi

f (xi|x−i) + λg(xi|x−i) (96)

while keeping the other parameters, denoted x−i, fixed. Typically, the parameters
are cycled through in randomized order in each pass of the parameters, such that
no parameter may benefit from being consequently estimated before another [31].
Moreover, a significant speed-up utilized in [29] is to focus iterations on the active
set parameters, i.e., the (non-zero) parameters making up the estimated support.
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This can be done by first doing a complete pass on all parameters, and then
only iterate over the non-zero parameters, until convergence, whereafter another
complete pass is done. If the active set then changes, the process is repeated,
otherwise the estimation process is complete. An algorithm outline for CCD thus
becomes

1. Initialize the solution with x̂(0) = 0 and set an iteration counter j = 0.

2. Draw a random permutation order of the M parameter indices. Using

this ordering, minimize the objective (96) and estimate each x̂(j+1)
m in turn,

while the other parameters are fixed at their most recent value. Increase the
iteration counter by one, i.e., j ← j + 1.

3. Let Î denote the set of most recent non-zero parameter estimates, i.e., the
active set.

4. Draw a random permutation order of the parameters in the active set and
minimize the objective function (96) and estimate each x̂(j+1)

m in turn, while
the other parameters are fixed at their most recent value. Update j ←
j + 1. Iterate this step until the solution of the active set converges to some
accuracy.

5. Perform Step 2 and check whether the active set changes. If changed, redo
Step 3 - Step 5.

6. Set x̂ = x̂(j) to finalize estimation.

The benefit of using CCD for sparse regression lies in the resulting sparsity of the
estimates; as most parameters become zero, given a reasonable choice of λ, these
are also likely not to change between iterations. Instead, by only iterating over
the active set, and updating the set of all parameters infrequently, computational
complexity may be drastically reduced. The complexity becomes at mostO(M2),
but is, using the active set updates, greatly reduced for small active sets. Further-
more, as the LASSO estimate is biased, convergence in parameters is not essential.
As the LASSO’s main purpose often is to estimate the parameter support5, con-
vergence can therefore be set quite low.

5After determining the support, a non-biased parameter estimation can be done for the active
set separately.
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Regardless of the order in which the CCD is updated, convergence guarantees
has been shown for objective functions consisting of a smooth and convex loss
function and a possibly non-smooth but convex regularizer which is separable
in the parameters [32]. The LASSO formulation is one such loss function (see
also [17]).

3.2 The alternating direction method of multipliers

The ADMM is a Lagrangian-based approach which has gained popularity with
sparse estimation due to its favorable properties for large-scale systems, (see [30],
for an eloquent analysis). In general, ADMM solves problems of the form

minimize
z

f (z) + g(Gz) (97)

where f (·) and g(·) are closed, proper, and convex functions, and G is a known
matrix. By introducing the new variable u = Gz, and adding this condition
to the optimization problem, the ADMM approach is to iterate between solving
for z, while keeping u constant, and vice versa. The problem (97) may thus be
equivalently expressed as [30]

minimize
z

f (z) + g(u) +
μ

2
||Gz− u||22 (98)

subject to Gz− u = 0

for any smoothing parameter μ, as the penalty term disappears when the con-
straint is fulfilled. To solve this convex program, the augmented Lagrangian for
the scaled form of the ADMM [30, p. 15] is formed as

Lμ(z,u, d) = f (z) + g(u) +
μ

2
||Gz− u + d||22 (99)

where d denotes the scaled dual variable. At iteration (j + 1), the parameters are
obtained by solving

z(j+1)
= arg min

z
Lμ(z,u(j), d(j)) (100)

u(j+1)
= arg min

u
Lμ(z(j+1),u, d(j)) (101)

and then updating the scaled version dual variable as

d(j+1)
= d(j+1) − μ(Gz(j+1) − u(j+1)) (102)
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Clearly, using the ADMM optimization scheme is worthwhile when (100) and
(101) are such that they may be carried out much easier than the original problem
in (97). For the LASSO, this is precisely the case, as will be shown in the next
section.

3.3 Solving the LASSO problem using ADMM

To solve the LASSO using an ADMM approach, consider an augmented optim-
ization problem equivalent to the one in (26), i.e.,

minimize
z,u

‖y− Az‖2
2 + λ||u||1 + μ ‖z− u‖2

2 (103)

subject to z− u = 0

to which the augmented Lagrangian for the scaled form ADMM may be expressed
as

Lμ(z,u, d) = ‖y− Az‖2
2 + λ||u||1 + μ ‖z− u + d‖2

2 (104)

such that d denotes the scaled dual variable. To find the expressions which minim-
ize (104) with respect to z and u, similar to (100) and (101), one must differanti-
ate the Langrangian, set the derivative to zero, and solve for the current variable
at iteration k + 1. For z, this yields an expression similar to the TR estimate in
(24), i.e.,

z(j+1)
=
(
AH A + μI

)−1
(

AH y + μ
(

u(j) − d(j)
))

(105)

while for u, the Lagrangian is non-differentiable due to the �1 penalty. However,
notice that that the two terms which depend on u resembles a simplified version of
the LASSO, where the parameters um, m = 1, . . . ,M uncouple from each other,
and may thus be estimated exactly with one cycle over the parameter vector, where
each estimate of um is obtained by a simple thresholding operation, i.e.,

u(j+1)
m = S(xm + dm, λ/μ) (106)

Finally, the dual variable is updated as in (102), with G = I. The main com-
putational cost occurs in (105), where the inversion requires O(M3) operations,
although it should be noted that this step can be computed offline. Thus, at each
iteration, the estimation process incurs a cost which is at mostO(M2) operations,
which can be reduced further by utilizing efficient matrix-vector multiplication
speed-ups [33].
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3.4 Proximal Gradient

This section deals with a first-order optimization method, utilizing gradients to
do local optimization of the objective function in combination with a quadratic
smoothness term. The proximal gradient solver is a special case of the projected
gradient methods, where the objective function is a combination of a smooth
and convex function and a non-differentiable and convex function, f (x) + λg(x),
which is often the case for the regularized regression problems in this thesis. Recall
that the regularizer can be seen as a constraint for the optimization problem, of
which the objective function is the Lagrange form. The main idea is then to, at
the j:th iteration,

1. Take a gradient step z = x(j) − s(j)∇f (x(j))

2. Project the gradient step onto the solution set obeying the optimization
constraint, by calculating a proximal map, i.e., x(j+1) = proxg(z)

where s(j) denotes step length,∇ the gradient, and where the proximal map is the
projection operator

proxg(z) = arg min
u

‖z− u‖2
2 + λg(u). (107)

For the LASSO problem, the gradient step becomes

z = s(j)
(

AH y−
(

AH A− 1
s(j)

I

)
x(j)
)

(108)

and the proximal map becomes the threshold operator, i.e.,

x(j+1)
m = S(zm, s(j)λ) (109)

for all parameter indices m = 1, . . . ,M (see, e.g., [17] for more details). The
main computational cost of the proximal gradient method is incurred when tak-
ing the gradient step, where the matrix-vector multiplication in (108) has com-
plexity O(M3) operations, which can be reduced to O(M2) by computing the
matrix inner-product offline. For online-estimation, i.e., when new observations
are aquired on a running basis, the dictionary also changes, for which the proximal
gradient method enables cheap updating steps where the lower computational
complexity is kept. This is shown in Paper E.
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4 Introduction to selected applications

This section introduces some preliminaries for the applications discussed in the
thesis; spectral estimation, audio processing, and array processing.

4.1 Spectral analysis

For many applications, a periodic signal of interest may often be well described
by the sinusoidal model

y(t) = s(t) + e(t), s(t) =
K∑

k=1

zkei2πfk t (110)

where s(t) denotes the noise-free super-positioning of K sinusoidal components,
sampled in some form of additive noise, e(t), for t = 0, . . . ,N − 1. For the
k:th component, zk and fk ∈ [0, 1) denote the complex-valued amplitude and the
frequency, respectively. By forming the sample vector

y =
[

y(0) . . . y(N − 1)
]T

(111)

the sinusoidal model (110) may be equivalently formulated as

y = s + e, s =
K∑

k=1

wkzk = Wz (112)

where the noise-free signal vector, s, and the noise vector, e, are defined similarly
to y. Thus, some simple algebraic manipulations allows the signal vector to be
compactly expressed as a matrix-vector multiplication, given that

W =
[

w1 . . . wK
]

(113)

wk =
√

N−1
[

ei2πfk1 . . . ei2πfk (N−1)
]T

(114)

z =
[

z1 . . . zK
]T

(115)

The noise-free signal vector may therefore also be seen as a linear combination of
the columns in W, each column being a Fourier vector parametrizing the sinus-
oidal component, mixing them using the complex weights in z.
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4.1.1 Non-linear estimation of line spectra

If K is known a priori, it may be convenient to view (112) as a non-linear regres-
sion problem, where the spectral components at frequencies Ψ = {fk}K

k=1 are
multiplied by the linear amplitudes. Using the least squares criterion, given by{

Ψ̂, ẑ
}
= arg min

Ψ,z
‖y−Wz‖2

2 (116)

i.e, as the arguments minimizing the sum of squared model residuals. As earlier
shown, the closed form estimate of the amplitudes for a given selection ofΨ is

ẑ = W†y (117)

which, if inserted into (116), gives the non-linear least squares (NLS) criterion

Ψ̂ = arg max
Ψ

yH WW†y. (118)

One may then, for instance, form the frequency estimates by maximizing the NLS
criteria over a K -dimensional grid. Furthermore, as is shown in, e.g., [34], the
NLS estimation errors ofΨ will have the asymptotic covariance matrix

Cov(Ψ̂) =
6σ2

N 3 diag
([

1
|z|21

. . . 1
|z|2K

])
(119)

where diag(c) denotes a diagonal matrix the vector c along its diagonal. In the
case of white Gaussian noise, i.e., e ∼ N (0,σ2I), the covariances in (119) reach
the Cramér-Rao Lower Bound (CRLB), as was shown in, e.g., [35], which gives
the lower bound for the covariance matrix of any unbiased estimator ofΨ. A sim-
ilar analysis can be done for ẑ in (117), showing that the NLS method provides
a statistically efficient estimate of the parametric line spectra. However, the NLS
criterion works poorly in practice for this problem, and the reason is twofold.
Firstly, (118) is non-convex, often highly multimodal, and the global maximum
is typically very sharp, and therefore, to obtain the correct estimates, the max-
imization needs to be well initialized, as well as evaluated over a sufficiently fine
grid. Secondly, any two frequencies must be sufficiently separated in order for
the estimator to work properly. To see this, consider the square matrix WH W in
the middle of the NLS criterion, which needs to be inverted. This matrix meas-
ures the linear dependence between the components in W, wherein each element

35



Introduction

-0.15 -0.1 -0.05 0 0.05 0.1 0.15
Frequency difference

0

0.2

0.4

0.6

0.8

1

D
ic

ti
o

n
ar

y 
co

h
er

en
ce

|h(f)|
|h(n/N)|

Figure 3: Absolute values of the complex function h(Δf ), measuring the amount
of linear dependence between two Fourier vectors, spaced in frequency by Δf .
The example illustrates the function for N = 64 samples, where orthogonality is
found at every n/N , n �= 0.

corresponds to the coherence measure used in (71), which for line spectral com-
ponents can be shown to only depend n the difference in frequency [4, p. 160],
i.e., for element k, k′ is

h(fk − fk′ ) �
{

WH W
}

k,k′ (120)

= wH
k wk′ (121)

=

{
1 fk = fk′

ei2π(fk−fk′ ) ei2πN (fk−fk′ )−1
N (ei2π(fk−fk′ )−1)

fk �= fk′
(122)

where a special case is h(n/N ) = 0, for n = {n ∈ Z : n �= 0}. An example of this
function can be seen in Figure 3, which shows the absolute values of the function
for N = 64. Thus, if two frequencies are too closely spaced, the columns of
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W become linearly dependent, making the inversion and the estimation problem
ill-conditioned. In fact, under the quite restrictive assumption that all frequencies
inΨ are spaced by n/N , n ∈ Z, then WH W = I and (118) reduces to

Ψ̂ = arg max
Ψ

∥∥WH y
∥∥2

2 , ẑ = WH y (123)

which is the (squared) �2-norm of the periodogram estimates. Given this, some
remarks regarding the performance of the periodogram for estimation of line spec-
tra may be noted.

Remark 1: For a single sinusoid in white Gaussian noise, i.e., K = 1, the
periodogram is the ML estimator of the amplitude, as WH W = wH w = 1. To
obtain the frequency estimate in (123), one usually evaluates the periodogram on
an oversampled discrete Fourier transform (DFT) grid, i.e.,

Ψ =

{ m
rN

}
m=0,...,rN−1

(124)

where r is the oversampling or super-resolution factor, such that M = rN , and
picking the largest peak of the corresponding magnitude estimate

|̂z| = |WH y| (125)

yields the frequency and corresponding amplitude estimate.
Remark 2: For K > 1, one usually proceeds in the same manner as for one

sinusoid. In the unlikely case that all frequencies are separated by at least 1/N and
lie exactly on the standard DFT grid, where r = 1, the periodogram would be an
efficient estimator, as WH W = I and so (118) and (123) are equal. Otherwise,
when the frequencies lie off-grid, the periodogram is typically a reasonable, but
not an efficient, estimator [4, p. 161].

Remark 3: The resolution of the periodogram is limited, so that two sin-
suoids closely spaced in frequency are only likely to be resolved if that spacing
is at least 1/N . If spaced finer, they will appear to coincide in the resulting
spectral estimate. However, if given the correct frequencies, (117) gives a very
accurate amplitude estimate. Thus, the problem resides in finding the non-linear
frequency parameters. Some commonly used parametric methods for frequency
estimation with good statistical accuracy include the HOYW, MUSIC, and ES-
PRIT methods [4, ch. 4].

Remark 4: Throughout the analysis in this section, the model order, K , is
assumed to be known, which is also a requirement for most parametric estimation
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Figure 4: The LASSO amplitude estimates for K = 5 well separated sinusoids in
white Gaussian noise. In comparison with a thresholded DFT estimate, âDFT−λ.

methods. However, in practice, the model order is typically unknown, which
requires a model order estimation procedure.

4.1.2 LASSO for line spectra

As introduced in [7], the LASSO can be used for spectral estimation. Assuming
that the spectral content of the data is narrowband, and using an oversampled
DFT matrix as dictionary, sparsity in x follows. Due to the strong linear depend-
ence between sinusoids separated by less than 1/N , as described in (120), it is
reasonable to assume that a grid of finely spaced sinusoids may well model the
true spectral lines, even if the frequencies in the dictionary does not exactly match
the true frequencies. Thus,

s = Wz ≈ Ax (126)
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where A and x is the dictionary and the sparse parameter vector, respectively.
Assuming that the number of candidate spectral lines in A is much larger than
the number of observations, M 
 N , estimating x by minimizing the �2-norm
of the residual vector is an ill-posed problem, and x̂ = A†y has no closed-form
solution, as was discussed above. Sparse regression facilitates a linear methodology
for solving (116), which is non-linear with respect to the frequency parameters
{fk}k = 1, . . . ,K . However, seeking a continuous parameter using a discrete
grid of candidate parameter values, the LASSO has no true support, as defined in
(64). Instead, the typical support sought using the LASSO is the peak of non-zero
candidates nearest to the true frequency. For this reason, the number of spectral
lines found when using a LASSO is not the number of non-zero elements in x̂, but
in practice the number of peaks. When the dictionary is chosen as the standard
DFT matrix, i.e., with r = 1, the LASSO problem becomes uncoupled, i.e., (26)
being equivalent to

minimize
x

M∑
m=1

xH
m

(
xm − 2aH

m y
)
+ λ|xm| (127)

which has the (coordinate-wise) closed-form solution

x̂m = S(aH
m y, λ) (128)

for m = 1, . . . ,M . Note how the elements in x are uncoupled from each other
in (127), and thus the corresponding LASSO estimates may be formed for each
element independently of the other variables, as compared to the general case in
(34). The reason for this is that the DFT dictionary is an orthogonal base, i.e.,,
AH A = I implying that aH

m rm = aH
m y −∑m′ �=m aH

m aH
m′ x̂m′ = aH y. Figure 4

illustrates an example of this, where five sinusoids, well separated by more than
1/N from each other, are estimated using the LASSO with such an orthogonal
dictionary, for N = 64. As a comparison, the DFT estimate thresholded with
the bias, i.e., |x̂m|DFT − λ, is shown, as to clearly illustrate the soft-thresholding
in the LASSO estimate. Typically, the LASSO has better resolution capabilities
than the periodogram. Thus, an oversampled (and thus coherent) DFT matrix
is often used as dictionary, and the estimates become coupled. An example of
this is seen in Figure 5, where the LASSO estimate for a dictionary with over-
sampling r = 20 is plotted. The two closely spaced sinusoids are resolved, but
their respective magnitude is divided between several dictionary elements. As a
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Figure 5: LASSO, Tikhonov regularization, and DFT amplitude estimates for
K = 5 sinusoids in white Gaussian noise, where two of them are spaced by 2/5N,
as compared to the true amplitudes.

comparison, the TR estimate is plotted. One may note that due it’s regularizer,
the TR estimate resembles a scaled version of the DFT estimate x̂ = AH y, which
is also seen in the figure. As is also shown, the LASSO it will generally have good
super-resolution performance, and will typically cope with resolutions upwards of
5 ≤ r ≤ 10 [36]. In terms of theoretical estimation guarantees, the results are
quite pessimistic. There are several different methods of assessing the suitability
of a dictionary for sparse estimation, which include the exact recovery coefficient
(ERC) [37], the spark [9], the two restricted isometry criteria (RIC)6 [5], and
the two coherence measures in [37] (cumulative coherence) and in [9] (mutual
coherence). As noted in [38], only the latter two can be readily calculated for an

6The two RICs are the well-known restricted isometry property (RIP) and the restricted ortho-
gonality property (ROP), respectively.
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arbitrary dictionary. Focusing on the mutual coherence, it is defined as the max-
imum linear dependence present in the dictionary, which for line spectra becomes

ρ(W) � max
fp �=fq

1
N

∣∣h(fp, fq)
∣∣ (129)

for fp, fq ∈ Ψ. The theoretical implications for mutual coherence in line spectra
was examined in [39], where it is claimed that a sufficient condition for robust
recovery is that μ ≤

√
2− 1. In contrast to practical observations this would thus

correspond to a minimal grid point spacing of approximately |fp − fq| ≥ 2N/3,
and so robust recovery in this sense is not possible for super-resolution dictionar-
ies, i.e., for s > 1. Except for super-resolution, another issue affecting perform-
ance is off-grid effects. Re-examining Figure 4, it is apparent that the LASSO does
not robustly recover the correct number of frequency components, even if an or-
thogonal dictionary is used. In spite of this, it has been found that if choosing the
largest peaks of the LASSO estimate, rather than all non-zero parameters, sparse
modeling works well for line spectra in practice [36]. In addition, the estimation
may be further improved by using the LASSO estimates as an initial solution to
the NLS method.

4.2 Audio Signal Processing

In modern audio processing, one primarily deals with the digital representation
of sound waves, i.e., longitudinal waves where a medium7 is compressed and
decompressed. A substantial part of the research in audio signal processing during
the last decades has focused on speech processing, as to fill the emerging need of
solutions for digital communication (see, e.g., [40], and the references therein).
However, in more recent years, much research in audio processing has also been
devoted to musical signals, perhaps not very surprisingly given the large role of
digital media in everyday life (for an overview, see, e.g., [41]). Combined, the
two fields of speech and music processing are formidably vast, and they cannot
possibly be given any form of justice in this introduction. Instead, some brief
excerpts are given, as to give some context to the methods of which this thesis
consist. For both fields, given the nature of sound, signals are periodic and, for our
purposes, their spectral representations are highly relevant. Many audio signals are

7Sounds in air are typically recorded using microphones, but sounds in water are also often
considered, for instance in the sonar applications, where the audio is recorded by hydrophones.
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well described as narrowband, i.e., the spectral energy is largely limited to a few
narrow intervals on the frequency axis. As a result, parametric estimation using
the sinusoidal model is often a good approach to quantifying the properties of
speech and music. A common model used for voiced speech and tonal music is
the harmonic model, or pitch model, which is of the form [42]

y(t) = s(t) + e(t), s(t) =
L∑

�=1

z�e
i2πf �t (130)

for a single pitch. Typically, the non-tonal components are detailed as additive
noise, e(t), whereas the pitch signal, s(t), is assumed to consist of a group of
complex-valued8 sinusoids, whose relation are described as

ψ(f , �) = f �, � ∈ L (131)

where the frequency components are integer multiples of the fundamental fre-
quency f , in the set L. Typically, a pitch is defined by its fundamental frequency,
i.e., ψ(f , 1) = f , and the individual sinusoids are referred to as its harmonics. A
common misconception is that the fundamental is always the lowest frequency
in the pitch, which is only true if 1 ∈ L. This is, however, not always the case,
as some harmonics may be missing, including the fundamental. Instead, it is in
most cases better to view the fundamental frequency as the smallest commonly
occurring distance between two adjacent harmonics in a pitch group. Thus, if a
certain pitch f has the following set of harmonics,

L = {2, 4, 6, 8, . . . , 2L} (132)

it may preferably be seen as a pitch with fundamental frequency f ′ = 2f , and
corrsponding set L′ = {1, 2, 3, 4, . . . ,L} of harmonics. As there might be ambi-
guities as how to chose f and L, such as, e.g., the example given above, the basic
assumption, which is extensively used in this thesis, is that the spectral envelope
of the pitch should be smooth [43], i.e., that adjacent harmonics should be of
comparable magnitude. This is obviously not the case for the pitch described in
(132), as all uneven harmonics have zero magnitude. Promoting such smoothness

8Naturally, recorded audio signals are not complex-valued. However, by using the analytic
representation of the real-valued signals, both analysis and estimation may be greatly simplified.
This is mainly because real-valued signals contain two spectral lines for every frequency f present
in the signal, located at ±f , where the negative component is removed in the analytic signal.
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to avoid ambiguity is one of the objectives of paper B. Another common property
for harmonic audio signals, in particular for some musical instruments, is a slight,
but systematic, deviation from even distances between harmonics. This is referred
to as inharmonicity, which for stringed instruments may be well described as

ψ(f , �) = f �
√

1 + �2B, � ∈ L (133)

where B is called the inharmonicity coefficient, specific to each string; typically
B ∈ [10−5, 10−3] [44]. Another feature of audio, highly related to pitch and es-
pecially used in musical contexts, is chroma. Mathematically, chroma is a change
of variables, such that it represents fundamental frequency on a cyclical scale. To
that end, consider the chroma parameter c ∈ [0, 1), to which the corresponding
fundamental frequencies may be expressed as

f = fbase2
c+m, ∀m ∈ Z (134)

where m is referred to the octave, and where fbase is a tuning or offset frequency,
defining the specific location of a chroma in frequency. This implies that the linear
frequency scale collapses into a cyclic chroma scale, as all fundamental frequencies
which fulfill (134), for some integer o, belong to the same chroma, i.e., if f ∈ c,
then

f ′ ∈ c ⇒ f ′ ∈
{
. . . ,

f
8
,

f
4
,

1
2
, f , 2f , 4f , 8f , 16f , . . .

}
(135)

and all fundamentals in a chroma are thus related by some power of 2. One bene-
fit of the chroma representation is that it groups together pitches that have largely
overlapping frequency content, which makes chroma estimation much less am-
biguous than pitch estimation. In music, the chroma representation is a common
grouping criterion, as all pitches in a chroma are perceived as being similar by
the human hearing [41]. In the Western musicological system, for instance, the
chroma interval is discretized into twelve semitones, uniformly spaced on [0, 1),
i.e.,

c ∈
{

0,
1

12
,

2
12

, . . . ,
11
12

}
(136)

In paper C, the chroma model for Western music is used with sparse modeling to
form estimates, cruder than pitch but more robust, of the spectral components of
an audio signal.
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4.3 Array Processing

In the field of array processing, a common objective is to locate signal emitting
sources by measuring their emissions over an array of sensors. The emitted energy
may be of various types, e.g., acoustic or electromagnetic, to which different cor-
responding types of sensors are used. In this section, some basic results for source
localization is given as to facilitate a bit of background for the methods presented
in Paper A. In general, the objective may be put as finding the distribution of
energy in the spatial domain. If assuming that all sensors have the same gain, the
signal model for the impinging source signal at the j:th sensor may be expressed
as

yj(t) = s(t − τj) + ej(t) (137)

where τj is the source-sensor time-delay with respect to some reference point, such
that the source signal x(t) is at each sensor delayed with respect to the specific
geometry of the array. Consider that x(t) follows the sinusoidal signal model in
(110). As such a signal is formed by a sum of narrowband components, the time-
delay in (137) may typically be well modeled as a phase offset in each component,
exponentially proportional to its frequency, i.e.,

yj(t) =
K∑

k=1

zkei2πfk (t−τj) + ej(t) (138)

which for the sample vector is equivalent to

yj =

K∑
k=1

wkzke−i2πfkτj + ej, (139)

where (·)j denotes the j:th sensor. By column-wise stacking the sample vectors for
all sensors, i.e.,

Y =
[

y1 . . . yJ
]

(140)

the signal model for the entire array may be expressed as

Y =

K∑
k=1

wkzkuT
+ E = W diag(z)UT

+ E (141)
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Figure 6: Principle sketch of a far-field point-source, which from θ emit planar
wavefronts, that are impinging on a ULA, with equidistant sensor spacing d .

where, z denotes the amplitude parameters, and W a matrix of Fourier vectors.
Furthermore, E denotes the observation noise, defined similarly to (140), and
where

U =
[

u1 . . . uK
]

(142)

uk =
[

e−i2πfkτ1 . . . e−i2πfkτJ
]T

(143)

denote the phase offset for each sinusoidal component in each sensor, which de-
pend on both the frequency and the time-delay. The time-delays are inherently
related to both the source position and the geometry of the array, whose relation
may be modeled by imposing some assumptions on the source, and the array,
respectively. Two assumptions, which are very common for localization in array
processing, are

• The source is a point source in the far-field, i.e., the source is at an infin-
ite distance from the sensor array. This implies that the impinging signal
wavefronts are essentially planar, so that a source’s location solely depends
on its Direction-Of-Arrival (DOA).

• The sensors are positioned as a Uniform Linear Array (ULA), meaning that
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they are equidistantly located on a line. This implies that the positions will
be defined to a 2-D space of locations, described by DOA and distance.

Figure 6 illustrates these two assumptions, where the DOA is the 1-D angular
deviation from the array’s normal, denoted θ ∈ [−π, π]. Note that the ULA will
not discriminate between a source impinging from the front or from the back
of the array. From these assumptions, time-delays may thus be expressed as a
function of DOA, i.e.,

τj =
d sin(θ)

c
(j − 1) (144)

where d and c is the sensor distance, and the wave propagation speed, respectively.
Therefore, (143) may be equivalently expressed as

uk =

[
1 e−i2πfk

d sin(θ)
c . . . e−i2πfk

d sin(θ)
c (J−1)

]T
(145)

where ∣∣∣∣fk d sin(θ)
c

∣∣∣∣ ≤ 1
2
⇒ d ≤ c

2fk
(146)

should be fulfilled as to guarantee that aliasing effects are avoided. For the far-
field source and ULA case, uk may thus be seen as a uniformly sampled spatial
DFT vector. In paper A, the preliminaries presented herein are extended, and a
joint multi-pitch and location estimator is proposed, for sources which are near-
field rather than far-field, and when the array’s geometry is arbitrary rather than a
ULA.
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5 Outline of the papers in this thesis

This section briefly summarizes the papers of which this thesis consist, together
with information of where they have been published or submitted.

Paper A: Sparse Localization of Harmonic Audio Sources

In paper A, a two-step procedure is used to form joint estimates of pitches and
near- or far-field locations from measurements on an arbitrary, but calibrated,
sensor array. In the first step, a sparse group-LASSO generalized for array signals
is used to find the active pitches. Then, for estimated pitch, another variation
on the sparse group-LASSO is used on the estimated parameters, which contain
information of both TDOA and signal attenuation. This information is con-
sequently exploited to form location estimates, which may be more than one for
each pitch. The implications of using the sparse modeling approach is interesting,
as it facilitates an opportunity to position sources despite of reverberation effects,
which usually are detrimental to localization. The performance of the proposed
method is validated using both synthetic and real recorded signals, showing prom-
ising results.

The work in paper A has been published/submitted in part as

Stefan Ingi Adalbjörnsson, Ted Kronvall, Simon Burgess, Kalle Åström,
and Andreas Jakobsson, ”Sparse Localization of Harmonic Audio Sources”.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 24,
pp. 117-129, November 2015.

Ted Kronvall, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson, ”Joint
DOA and Multi-pitch Estimation using Block Sparsity”, 39th IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing, Florence,
Italy, May 4-9, 2014.

Paper B: An Adaptive Penalty Multi-Pitch Estimator with Self-Regularization

In paper B, a novel a novel adaptive penalty approach to estimate the paramet-
ers in the multi-pitch model with the use of sparse modeling is proposed. It
further examines the total variation (TV) regularizer examined in the PEBS-TV
method [45], adressing the problem of suboctave errors, a common source of
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misclassifying the fundamental frequency estimation. In PEBS-TV, an additional
regularizer, which is a modification of the TV penalty, is introduced, which is
shown to migitate such issues. However, this method requires tuning three reg-
ularization parameters, which we circumvent in this paper by using the adaptive
approach, in which the TV regularizer is the key, enabling one to drop the �2-
norm regularizer of the group-LASSO altogether. The method may thus be seen
as solving a series of convex problems, where each is a sparse fused LASSO, having
two tuning parameters. The strength of using TV compared to group sparsity is
that the former promotes solutions with smooth parameter envelopes, discour-
aging suboctave errors. The method is shown to work well for highly coherent
dictionaries, and even outperforms the method in [45].

The work in paper B has been published in part as

Filip Elvander, Ted Kronvall, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,
”An Adaptive Penalty Multi-Pitch Estimator with Self-Regularization”, El-
sevier Signal Processing, vol. 127, pp. 56-70, October 2016.

Ted Kronvall, Filip Elvander, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,
”An Adaptive Penalty Approach to Multi-pitch Estimation”. 23rd European
Signal Processing Conference, Nice, France, August 31 - September 4, 2015.

Paper C: Sparse Modeling of Chroma Features

In paper C, an alternative modeling approach for the pitch estimation problem is
used. Instead of focusing on estimating the parameter group of a specific pitch,
groups are formed consisting of all pitches that belong to the same chroma group,
i.e., defined as all fundamental frequencies which on a log-scale are related by
a multiple of 2. The chroma is a concept from musical theory, and transcrib-
ing a piece of audio with respect to its chroma content is a pre-processing step
that is done for a variety of different MIR applications. In the paper, the for-
mulation proposed uses a combination of group-sparsity and TV, such that the
group-sparsity promotes solutions where few chroma blocks are active, and where
TV discourages misclassification due to musical harmony, as chroma groups have
partly overlapping frequency components. The method is numerically evaluated
for both synthetic and recorded audio signals, and indicates a preferred perform-
ance for transcription purposes. In the paper, each amplitude of each component
is also extended to possibly vary over time, which is modeled using a spline basis.
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As the approach increases the number of parameters proportional to the number
of spline knots, the method is especially suitable for longer sequences of data,
where, for audio signals longer than 40 ms, the signal exhibits a large degree of
non-stationarity. The approach may also be beneficial for sounds that are very
transient, or for capturing the onset of a signal. It is shown that for a recorded
violin signal, the proposed method estimates the signal envelope more accurately
than for constant amplitudes.

The work in Paper C has been published in part as

Ted Kronvall, Maria Juhlin, Johan Swärd, Stefan Ingi Adalbjörnsson, and
Andreas Jakobsson, ”Sparse Modeling of Chroma Features”, Elsevier Signal
Processing, vol. 30, pp. 106-117, January 2017.

Maria Juhlin, Ted Kronvall, Johan Swärd, and Andreas Jakobsson, ”Sparse
Chroma Estimation for Harmonic Non-stationary Audio”, 23rd European
Signal Processing Conference, Nice, France, August 31 - September 4, 2015.

Ted Kronvall, Maria Juhlin, Stefan Ingi Adalbjörnsson, and Andreas Jakobsson,
”Sparse Chroma Estimation for Harmonic Audio”, 40th International Con-
ference on Acoustics, Speech, and Signal Processing, Brisbane, Australia, April
19-24, 2015.

Stefan Ingi Adalbjörnsson, Johan Swärd, Ted Kronvall, and Andreas Jakobsson,
“A Sparse Approach for Estimation of Amplitude Modulated Sinusoids”,
The Asilomar Conference on Signals, Systems, and Computers, Asilomar, USA,
November 2-5, 2014.

Paper D: Group-Sparse Regression using the Covariance Fitting Cri-
terion

In paper D, the group-sparse regression problem is formulated using a covariance
fitting criterion, a common metric used in array processing, where the objective
function measures the �2-norm of the misfit between a parametric model for the
covariance matrix and the observed covariance matrix. As shown in [46], the co-
variance fitting criteria, when the covariance matrix is modeled using a highly re-
dundant combination of linear basis functions, i.e., a dictionary, promotes sparse
solutions. Furthermore, the covariance fitting criterion is hyperparameter-free,
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i.e., lacks any user-parameter, which is uncommon for regularized regression prob-
lems. In the paper, the covariance fitting criterion is generalized for groups of
dictionary atoms, which is herein shown to promote group-sparse parameter es-
timates, for which an efficient CCD-based numerical solver is proposed. It is also
shown in the paper that the proposed method is equivalent to a group-version
of the square-root LASSO [47], where the regularization parameter has been
pre-selected. It is shown using simulation studies that this regularization level
is slightly too low, and thus includes some noise components into the solution,
but is robust against false exclusion of the true parameters. It may also be noted
that the regularization level is set at no additional computational cost, which, as
discussed in Section 2.6, is typically not the case. Numerical results for synthetic
signals shows the method to perform on par with an optimally regularized group-
LASSO in terms of recovering the true signal components, and outperform both
the method’s non-grouped counterpart [46] and greedy group-sparse estimators.

The work in Paper D has been published in part as

Ted Kronvall, Stefan Ingi Adalbjörnsson, Santhosh Nadig, and Andreas
Jakobsson, ”Group-Sparse Regression using the Covariance Fitting Cri-
terion”, Elsevier Signal Processing, vol. 139, pp. 116-130, October 2017.

Ted Kronvall, Stefan Adalbjörnsson, Santhosh Nadig, and Andreas Jakobsson,
“Hyperparameter-free sparse linear regression of grouped variables”, Pro-
ceedings of the 50th Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, USA, November 6-9 2016.

Paper E: Online Group-Sparse Regression using the Covariance Fit-
ting Criterion

In paper E, an extension of Paper D is proposed, where samples enters the optim-
ization problem in small batches or one-by-one. Instead of repeating the estima-
tion process for all observations when new data is added, the proposed method,
in a class of so called online estimator, computes recursive update steps at a small
computational cost. To that end, the group-version of the covariance fitting cri-
terion is reformulated as a square-root LASSO problem with a pre-defined regu-
larization level, which is optimized using a proximal gradient solver, which allows
for low complexity updates small memory storage. A simulation study shows
preferable performance in comparison with other group-sparse estimators.
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The work in Paper E has been published in part as

Ted Kronvall, Stefan Ingi Adalbjörnsson, Santhosh Nadig, and Andreas
Jakobsson, ”Online Group-Sparse Regression using the Covariance Fitting
Criterion”, Proceedings of the 25th European Signal Processing Conference
(EUSIPCO), Kos, Greece, August 28 - September 2, 2017.

Paper F: Hyperparameter-selection for sparse regression: a probab-
listic approach

In paper F, a probabilistic method for choosing the regularization level in the
LASSO and group-LASSO methods is proposed. By analyzing how the noise
term propagates into the parameter estimates at different levels of regulariza-
tion, the hyperparameter may be calculated for some false probability threshold,
thereby optimizing support recovery more directly than other methods, such as,
e.g., cross-validation (CV), does. Support recovery, or sparsistency, is achieved
when the hyperparameter is selected to be larger than the noise components, but
still smaller than the unknown signal components. This tradeoff is often quan-
tified in detection therory by selecting a false positive threshold, typically being
a quantile from the appropriate noise distribution. For the LASSO and group-
LASSO, the appropriate quantile follows an extremal distribution quantified by
the maximal inner product between the dictionary and the noise, on which infer-
ence can be done using the Monte Carlo method. To select the regularization level
independently of the unknown noise variance, the scaled LASSO method is used,
wherein the noise variance is simultaneously estimated. As the proposed method
is data-independent, its computational burden becomes much less than statistical
approaches, such as CV or hyperparameter-selection using the Bayesian Infer-
ence Criterion (BIC). Numerical simulations illustrate how the proposed method
outperforms the statistical approaches both in terms of sparsistency and compu-
tational time.

The work in Paper F has been published in part as

Ted Kronvall, and Andreas Jakobsson, ”Hyperparameter-Selection for Sparse
Regression: A Probablistic Approach”, Proceedings of the 51st Asilomar Con-
ference on Signals, Systems, and Computers, Pacific Grove, USA, October 29
- November 2, 2017.
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and has been submitted for possible publication as

Ted Kronvall, and Andreas Jakobsson, ”Hyperparameter-Selection for Group-
sparse Regression: A Probablistic Approach”.
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Paper A

Sparse Localization of
Harmonic Audio Sources

Stefan Ingi Adalbjörnsson, Ted Kronvall, Simon Burgess,
Kalle Åström, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this paper, we propose a novel method for estimating the locations of near-
and/or far-field harmonic audio sources impinging on an arbitrary, but calibrated,
sensor array. Using a joint pitch and location estimation formed in two steps, we
first estimate the fundamental frequencies and complex amplitudes under a si-
nusoidal model assumption, whereafter the location of each source is found by
utilizing both the difference in phase and the relative attenuation of the mag-
nitude estimates. As audio recordings often consist of multi-pitch signals exhib-
iting some degree of reverberation, where both the number of pitches and the
source locations are unknown, we propose to use sparse heuristics to avoid the ne-
cessity of detailed a priori assumptions on the spectral and spatial model orders.
The method’s performance is evaluated using both simulated and measured audio
data, with the former showing that the proposed method achieves near-optimal
performance, whereas the latter confirms the method’s feasibility when used with
real recordings.

Key words: Multi-pitch estimation, near-field and far-field localization, TDOA,
block sparsity, convex optimization, ADMM, non-convex sparsity
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Paper A

1 Introduction

Sound localization has been a topic of interest in a wide range of applications for
centuries, and is well known to be a difficult problem, especially in a reverber-
ating room environment (see, e.g., [1–7], and the references therein). Typically,
a source is located in relation to an array of sensors by exploiting the time delay
between sensors for when they receive its emitted signal. In the literature, this is
referred to as either time of arrival (TOA) estimation, if the time of signal emis-
sion is known, or otherwise time difference of arrival (TDOA) estimation, where
only the relative time delays are used. Common techniques for delay estimation
include different variations on cross-correlation or canonical correlation analysis
(CCA), which then allows the sources to be located in a second step using tri- och
multi-lateration (see, e.g., [8]). Such estimates may also be further improved by
matching the relative received signal gains to a model for signal attenuation. If
the source is far from the sensor array, i.e., in the far-field, its range may not be
determined due to the lack of curvature of the impinging sound pressure wave-
front, which is then approximately planar, making the range estimation problem
ill-posed. The scope is then restricted to determining the direction of arrival
(DOA) of the source relative to the sensor array for the 2-D case, or determining
azimuth and elevation angles for a 3-D scenario. Historically, such methods are
not restricted to sound, but are commonly used, in e.g., military applications,
with electromagnetic signals (see, e.g., [9–11]). Perhaps, partly due to differences
in application for near-field and far-field techniques, these problems are often
treated separately. In this work, and for our purposes with audio signals, the two
problems may indifferently be treated together. A common issue with correlation-
based techniques is that of reverberation. Although often described in a temporal
sense as a filter for each sensor through which the signal is convoluted [12], it
may also be analyzed using a spatial formulation. In principle, reverberation oc-
curs when the original source signal is received together with a number of reflec-
tions of it, which are both time delayed and dislocated in space with respect to
the original. Localization in reverberant environments is still very much an open
topic, although several correlation-based approaches exist which shows some de-
gree of robustness (see, e.g., [2]). By assuming a temporal and spectral parametric
structure on the received signals, localization may be improved by jointly form-
ing estimates of location together with the parameters of such structures. This
is quite common for audio signals such as voiced speech [12], and many forms
of harmonic audio sources, such as stringed, wind, and pitched percussion in-
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struments [13], which typically have lots of structure. At a glance, the spectral
distribution of energy for such signals is typically broadband, but further analysis
shows that it is in fact dominantly multi-narrowband, and may be well described
using the harmonic model, i.e., as a sum of harmonically related sinusoids [14].
Under this assumption, a source’s difference in delay and attenuation when re-
ceived at the different sensors translates into phase shifted and magnitude scaled
versions of the original signal. Exploiting this, joint estimation of the DOA and
the pitch frequency has been addressed, such as in [15–17], wherein the authors
consider the estimation of the DOA of a single harmonic sound source using a
uniform linear array (ULA) of receiver sensor, typically assuming oracle know-
ledge of the number of harmonic signals in the sound source. Here, we extend on
these works, albeit with some generalizations. We are allowing for an unknown
number of near- or far-field harmonic sources, each having an unknown num-
ber of harmonics, to impinge on an arbitrary, but calibrated, sensor array, in the
presence of some degree of reverberation. This feat is attempted through the use
of a sparse recovery framework, which avoids making explicit assumptions on the
number of harmonic signals, i.e., the number of pitches, as well as for the number
of source locations for each pitch. Instead, only an implicit constraint which con-
trols a lower threshold for acceptable source power is needed, which may typically
be set using some simple heuristics. Sparse recovery frameworks have in earlier
works been found to allow high quality estimates for sinusoidal signals; typical
examples include [18–21], wherein the sparse signal reconstruction from noisy
observations were accomplished with the by now well-known sparse least squares
(LS) technique. More recently, the technique has been extended to the case of har-
monically related audio signals [22, 23]. Using the techniques introduced there,
we propose a two-step procedure, first creating a dictionary of candidate pitches
to model the harmonic components of the sources, without taking the locations
of the sources into account, and then, in a second step, a dictionary of possible
locations, including simultaneously near- and far-field locations, to model the ob-
served phase differences, as well as the relative attenuations, of the magnitudes of
each sinusoidal component. In terms of computational complexity, the estimation
problem in each of the two steps is convex, which thus guarantees convergence,
and may be solved using a second order cone (SOC) program. As this is typically
quite costly, we introduce a computationally efficient implementation based on
the alternating direction method of multipliers (ADMM), which makes the pro-
posed method very managable in an off-line estimation procedure. The remainder
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of this paper is organized as follows: in the next section, we present the assumed
signal model and discuss the imposed restrictions on the sensor array. Then, in
section 3, we present the proposed pitch and localization estimator. Section 4
accounts for the ADMM-based implementation, followed in section 5 with an
evaluation of the presented technique using both simulated and measured audio
signals. Finally, we conclude on our work in section 7.

2 Spatial pitch signal model

In this work, we restrict our attention to the localization of complex-valued1

harmonically related audio signals, consisting of K̃ distinct sources, xk(t), for
k = 1, . . . , K̃ . Each source is thus assume to consist of Lk harmonically related
sinusoids, such that it may be detailed as (see also [14])

xk(t) =
Lk∑
�=1

ak,�e
iωk�t (1)

where ωk = 2πfk/fs is the normalized fundamental frequency, with sampling
frequency fs, and with ak,l denoting the complex amplitude of the �:th harmonic.

2.1 Multi-sensor characteristics in near-field environments

When a source signal impinges on a sensor array, it is both delayed and attenuated,
such that at sensor m it may be expressed as

xk,m(t) �
dk,1

dk,m
xk(t − τk,m) (2)

where dk,m denotes the sensor-source distance, i.e.,

dk,m = ‖sk − rm‖2 (3)

with sk and rm denoting the location coordinates of the k:th source and the m:th
sensor, respectively, and ‖·‖2 the Euclidean norm. Thus, (2) accounts for the
approximative attenuation of the signal when propogating in space, according to
the free-space path loss model. Furthermore, τk,m denotes the propagation delay,

1Clearly, the measured audio sources will be real-valued, but to simplify notation and in order
to reduce complexity, we will here initially compute the discrete-time analytic signal versions of the
measured signals, whereafter all processing is done on these signals (see also [14, 24]).
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Figure 1: Illustration of a two sensor scenario, with spherical wavefronts propagat-
ing from the source. The dashed line shows the scaled TDOA of the second sensor
with respect to the first sensor, i.e., τ2.

i.e., the TDOA, relative to a selected reference sensor, say m = 1, so that

τk,m = c−1 (dk,m − dk,1
)

(4)

for m = 1, . . . ,M , where τk,1 � 0, with c denoting the propagation velocity. An
illustration of this is shown in Figure 1, for the case of a single source and two
sensors. When recording audio, we often obtain multi-pitch signals of the type

x(t) =
K̃∑

k=1

xk(t) (5)

which may be either a single source in the physical environment emitting mul-
tiple pitch signals, such as an instrument playing a chord, or multiple sources in
the physical environment each emitting a single pitch, such as multiple speakers
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talking at the same time from different locations. We may also receive a com-
bination of these two types. Without loss of generality, we will hereafter term
a source as a spatio-temporal object which has a unique combination of funda-
mental frequency and location. Two sources may thus have the same fundamental
frequency or the same location in space, although not both. This has rather large
implications when considering reverberation, where we, apart from the original
source, also receive a large number of reflections of it, each reflection having highly
similar spectral content, albeit differently attenuated and delayed, i.e., having dif-
ferent magnitudes and phases. All reflections will thus be modeled as separate
sources, which implies that under such a model assumption K̃ generally becomes
very large. If not seen as separate sources, however, the localization of the original
source will become biased by the interference caused from its reflections. To see
this, consider for example a sinusoid with frequency ω, magnitude a1, and phase
φ1, measured in superimposition with its S − 1 reverberating reflections, having
magnitudes a2, . . . , aS , and phases φ2, . . . ,φS . For the mth sensor, the measured
(noise-free) signal becomes

xm(t) =
S∑

s=1

ase−i(ωt+φs) � be−i(ω0t+ψ) (6)

i.e., a single sinusoid with magnitude b ∈ R+ and phase ψ ∈ [−π, π), generally
being different from the original source. Thus, if trying to estimate the TDOA
using phase estimates without taking all reflections into account, for instance by
using a correlation-based measure, then only the biased phase, ψ, would be ob-
tained. However, separation of all reflections for all fundamental frequencies is
a quite difficult problem, and in this work, we propose to split the estimation
procedure into two subproblems. In the first, we find the present fundamental
frequencies, and then for each of these we separate the original source(s) from its
reflections. To that end, consider K ≤ K̃ as the number of unique fundamentals.
The noisy signal measured at sensor m may thus be expressed as

ym(t) =
K∑

k=1

Lk∑
�=1

bk,�,meiωk�t + em(t) (7)

where the TDOA and attenuation of all Sk reflections of the k:th pitch, for over-
tone � and sensor m, is gathered in the complex amplitude of the signal, bk,�,m
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using (2) in the same manner as in (6), i.e.,

bk,�,m =

Sk∑
s=1

ak,�,s
dk,1,s

dk,m,s
e−iωk�τk,m,s (8)

where ak,�,s, dk,m,s, and τk,m,s denote the amplitude, the distance to the mth sensor,
and the TDOA for the sth reflection, respectively. Thus, as K̃ =

∑K
k=1 Sk, the

estimation procedure first finds the K active fundamentals, whereafter for each
one, the original source is separated from its reflections. This approach offers great
simplification in contrast to decoupling all K̃ sources simultaneously. To simplify
presentation, and without loss of generality, we will here restrict our attention to
the case when all sources and signals are restricted to a 2-D plane, i.e., s ∈ R2 and
r ∈ R2.

2.2 Avoiding spatial aliasing in arbitrary array geometries

In the literature, keeping below half wavelength sensor spacing is generally pre-
ferred to avoid spatial aliasing, although some methods of circumventing this have
been published, see e.g. [25]. In this work, we assume a calibrated, although ar-
bitrary, sensor array, without requiring it to satisfy the pairwise half wavelength
spacing. We will therefore briefly examine the spatial aliasing effect in the near-
field environment, which is the phase difference ambiguity between sensors, res-
ulting when the solution may map to several feasible source locations. To that
end, consider a reverberation-free, delayed, and attenuated complex amplitude
from a single sinusoidal signal, b. Naturally,

bm =
d1

dm
ae−iωτm =

d1

dm
ae−i(ωτm+k2π) (9)

and thus the mapping between phase and TDOA is ambiguous for any k ∈ Z.
Considering a given TDOA, and by combining (3) and (4), one will note that
any source s located on a half-space of an hyperbolic curve, i.e.,

τmc = ‖s− rm‖2 − ‖s− r1‖2 (10)

is a feasible location. To obtain a unique solution, we add additional sensors, and
we may thus form new sensor pairs yielding new hyperbolas, where the feasible
solution set will be restricted by the intersection of these curves. Ambiguity may
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Figure 2: TDOA hyperbolas representing all feasible locations of a single source
received by three sensors. As ||r2 − r1|| > λ/2, spatial aliasing yields another
hyperbola of feasible locations. And yet, in this case, there exists only one inter-
section between the hyperbolas and so the estimate may still be obtained unam-
biguously.

arise when, for each sensor pair, there exist another TDOA (and thus another k)
which fulfills (9), giving rise to an additional hyperbolic curve of feasible points,
also intersecting the hyperbolas for other sensor pairs. To identify such ambiguous
cases, we first show that a feasible TDOA is restricted to an interval. Using the
triangle inequality,

|τmc| =
∣∣∣‖s− rm‖2 − ‖s− r1‖2

∣∣∣ ≤ ‖rm − r1‖2 (11)

it is directly implied that the TDOA must satisfy

τmc ∈
[
−‖rm − r1‖2 , ‖rm − r1‖2

]
(12)
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i.e., is restricted by the sensor-sensor distance. And so, using (9), an estimate of
arg b ∈ [−π, π] will map to any TDOA

τmc =
λ arg b

2π
+ λk ∈

[
−‖rm − r1‖2 , ‖rm − r1‖2

]
(13)

where k ∈ Z, and λ = 2πc/ω is the wavelength of the signal. Therefore, if
the sensors are spaced by less than λ/2, the feasible τm is unique, and there is
no ambiguity in the resulting estimates. If instead some sensors are spaced further
apart than λ/2, then, for all such sensor pairs, there will be more than one feasible
TDOA, thereby yielding as many hyperbolas indicating feasible source locations,
with a minimum distance of λ/2 apart. Our main argument to relax the halv
wavelength spacing limit is that, when using sufficiently many sensors, the feasible
source locations are restricted to the intersection of many hyperbolas, which will,
with a high probability, yield a unique solution. Consider an example illustrated
in Figure 2, where a single source emits a 1000 Hz signal, which is recorded
by three sensors. As shown in the figure, between sensors one and three, which
are less than λ/2 apart, the source gives a single TDOA and a corresponding
hyperbola, where the source may be located. Between sensors one and two, which
are spaced by more than λ/2 apart, a second TDOA is feasible, λ/c apart from
the true one, also fulfilling (13). However, as shown in the figure, the combined
hyperbolas coincide in only a single feasible location, thus still allowing for an
unambiguous estimate of the source location. Furthermore, for pitch signals, each
overtone will yield a separate set of hyperbolas, which all must intersect to the
same location, which further helps to avoid ambiguity. Modeling the attenuation
between sensors also helps to avoid ambiguity. Examining the magnitude of the
the complex amplitude in (9), we find that

|bm| =
d1

dm
|a| (14)

for each pair, consisting of the first and the m:th microphone, which limits s to lie
on a circle. Using the same arguments as above, a feasible source location in terms
of attenuation is thus the intersection of circles for all microphone pairs, and
will further contribute to avoid spatial aliasing. Even if, despite of intersecting
the feasible solutions for all harmonics in terms of both delay and attenuation,
ambiguities still remain, then as more sensors are added to the array the set of
possible locations quickly becomes small, and a unique solution generally exists,
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even if not guaranteed. We thus deem that the imposed restriction on the array’s
geometry is mild.

3 Joint estimation of pitch and location

We proceed to detail the proposed two-step procedure to form reliable estimates
of both the pitches and locations of the sources impinging on the array, without
assuming detailed model knowledge of either the number of sources, K , the num-
ber of overtones for each source, Lk, the number of reflections experienced due to
a possibly reverberant environment, Sk, or requiring knowledge about if sources
are far- or near-field. In the first step, the magnitudes, phases, fundamental fre-
quencies, and model orders of the present pitches are estimated, whereas, in the
second step, the phase estimates are used to find the locations of these sources.
Let

Φ =

{{
bk,�,m

}
�=1,...,Lk
m=1,...,M

,ωk,Lk

}
k=1,...,K

(15)

denote the set of unknown parameters to be determined in the first step. Min-
imizing the squared model residual in (7), an estimate of Φ may thus be formed
as

Φ̂ = arg min
Φ

N∑
t=1

M∑
m=1

∣∣∣∣∣ym(t)−
K∑

k=1

Lk∑
�=1

bk,�,meiωk�t

∣∣∣∣∣
2

(16)

Clearly, given the dimensionality of the problem, and the required model order
estimation steps in order to determine K and Lk, this is a non-trivial problem,
and needs to be modified to allow for an efficient solution, as is detailed below.
Moving over to the second step, where the found magnitude and phase estimates,
b̂k,l,m, are exploited to form estimates of the source locations, let

Ψk =

{{
ak,�,s

}
�=1,...,Lk

, ss

}
s=1,...,Sk

(17)

be the amplitudes and coordinates for a present fundamental frequency k. The
locations may be determined by minimizing the squared model residual in (8),
i.e.,

Ψ̂k = arg min
Ψk

L̂k∑
�=1

M∑
m=1

∣∣∣∣∣b̂k,�,m −
Sk∑

s=1

ak,�,sd
−1
k,m,se

−iωk�τk,m,s

∣∣∣∣∣
2

(18)
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where τk,m,s and dk,m,s are functions of the location ss, as defined in (3) and (4). As
before, this minimization is also non-trivial, requiring an estimate of Sk, and also
needs to be modified to allow for a reasonably efficient solution. In the following,
we will elaborate on the proposed modifications of the above minimizations. In
order to do so, we first extend the sparse pitch estimation algorithm presented in
[22, 23] to allow for multiple measurement vectors. In the second minimization,
we then introduce a similar sparsity pattern to solve the localization problem. We
begin by examining the extended pitch estimation algorithm.

3.1 Step 1: Sparse pitch estimation

Define the measurement matrix

Y =
[

y(1) . . . y(N )
]T

(19)

where

y(t) =
[

y0(t) . . . yM−1(t)
]T

(20)

denotes a sensor snapshot for each time point t = 1, . . . ,N , with (·)T being the
transpose. The measurements may then be concisely expressed as

Y =

K∑
k=1

WkBk + E (21)

where E denotes the combined noise term constructed similar to Y, and

Wk =

[
w1

k . . . wLk
k

]
(22)

wk =
[

eiωk . . . eiωkN
]T

(23)

Bk =
[

bk,1 . . . bk,Lk

]T
(24)

bk,� =
[

bk,�,1 . . . bk,�,M
]T

(25)

Reminiscent to the sparse estimation framework proposed in [18], we form an
extended dictionary of feasible fundamental frequencies, ω1, . . . ,ωP , where P 

K , being chosen so large that K of these will reasonably well coincide with the
true pitches in the signal. In the same manner, the number of harmonics of each
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pitch is extended to an arbitrary upper level, say Lmax, for all dictionary elements.
The signal model may thus be expressed as

Y =

P∑
p=1

WpBk + E = WB+ E (26)

where the block dictionary matrices are formed by stacking the matrices such that

W =
[

W1 . . . WP
]

(27)

B =
[

BT
1 . . . BT

P

]T
(28)

Note from (26) that if the element (�, r) of the matrix Bk is non-zero, the fre-
quency �ωk is present in the signal at sensor r. Furthermore, since we assume
all sensors to receive essentially the same signal, although time-delayed, one may
assume that for a harmonic signal, the rows off a non-zero Bk will either be non-
zero, implying that the harmonic � is present in the pitch, or zero, if the harmonic
is missing. An appropriate criterion, that promotes a combination of model to
data fit and the sparsity pattern just described, may thus be formed as

minimize
B

{
1
2
‖Y−WB‖2

F + λ
P∑

p=1

Lp∑
�=1

∥∥bp,�
∥∥

2

+

P∑
p=1

γp
∥∥Bp

∥∥
F

}
(29)

where two different kinds of group sparsities are imposed, and with ‖·‖F denoting
the Frobenius norm. This can be seen to be a generalization of the sparse group
lasso to the multiple measurement case (see also [23, 26]). Here, the double sum
of 2-norms in the second entry of the minimization should enforce sparsity in the
solution in the rows of B, and ideally only have as many non-zero rows as there
are sinusoids in the signal. The third entry makes the solution (matrix) block
sparse over the candidate pitches, penalizing the number of pitches with non-zero
magnitude in the signal, ideally making them as many as there are pitches in the
signal, i.e., K . Given an optimal point, B̂, the number of pitches is thus estim-
ated as the number of non-zero matrices B̂k, and, for each pitch, the number of
harmonics, Lk, is estimated as the number of non-zero rows. The user parameters
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λ,γp ∈ R+ weighs the fit of the solution to its vector and matrix sparsity, respect-
ively. It is well known (see, e.g., [27]) that the amplitudes in the sparse estimate
will be increasingly biased towards zero as sparse regularizers are increased. As
we here intend to use both the estimated phases and the magnitudes, we propose
to refine the amplitude estimates using a reweighting scheme similar to the one
presented in [28]. This is accomplished by iteratively solving (29), such that at
iteration j + 1, one updates

γ
(j+1)
p =

γ(0)
p∣∣∣∣∣∣B̂(j)

p

∣∣∣∣∣∣
F
+ ε

(30)

where B̂(j)
p is block p of the optimal point for iteration j, and all γ(0)

p are set to

be equal in the first iteration. As a result, the block matrices, B̂(j)
p , which have

a small Frobenius norm at iteration j will be penalized harder in the next step,
whereas the ones that have a larger Frobenius norm will be penalized less, and as
a result reducing the bias. The resulting algorithm can be seen as a sequence of
iterative convex programs to approximate the concave log(

∑P
p=1 γ

(0)
p
∥∥Bp

∥∥
F + ε)

penalty function [29], where ε is chosen as a small number to avoid numerical
difficulties. The introduction of the reweighting yields sparser estimates due to
the introduction of the log penalty [28, 30], and the resulting technique may be
viewed as an alternative to using an information criterion (as was done in [23], to
avoid spurious peaks caused by the signal model and data miss-match).

It is worth noting that as we are here focusing on localization, we have selected
to use a somewhat simplistic audio model that ignores several important features
in harmonic audio signals, such as issues of inharmonicities, pitch halvings and
doublings, and of the commonly occurring forms of amplitude modulation ex-
hibited by most audio sources (see also [14]). Clearly, the used model could be
refined reminiscent to models such as the one used in [23,31], introducing a total
variation penalty to each column of B, and/or using an uncertainty volume to
allow for inharmonicity. However, for localization purposes, these issues are of
less concern, as halvings/doublings and/or amplitude modulations will not affect
the below localization procedure more than marginally. Inharmonicity is more
pressing, but we have in our numerical studies found that given the size of the
calibration errors, the inharmonicity is not affecting the solution significantly,
and in the interest of reducing the complexity, we have here opted to exclude this
aspect from the estimator.
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As for the selection of the tuning parameters, one may use, for example, cross
validation techniques, although it may be noted that, in high SNR cases, one can
often get good results by simply inspecting the periodogram and by then setting
the tuning parameters appropriately (see also [23] for a further discussion on this
issue). Furthermore, we note that in the case of different noise variances at each
sensor in the array, the Frobenius norm in the first entry of the minimization
criterion may be replaced with a weighed Frobenius norm. Finally, we note that
non-Gaussian noise distributions can also be used as long as the negative log-
likelihood is convex.

3.2 Step 2: Sparse localization

According to the signal model (7), B̂ will inherently contain the TDOA and
attenuation for all reflections of any fundamental frequency present in the signal,
which enables a range of post-processing steps to, for instance, estimate position,
track, and/or calibrate the sensors. Here, we limit our attention to estimating the
source positions. Let B̂ denote the solution obtained from minimizing (29), and
consider a scenario where the sources are well separated in their pitch frequencies,
and, initially, suffering from negligible reverberation, implying that S1 = . . . =
SP = 1. Then, the minimization in (18) may be seen as a generalization of the
time-varying amplitude modulation problem examined in [32] (see also [11]) to
the case of several realizations of the same signal, sampled at irregular time points,
and with a different initial phase for each realization. Reminiscent to the solution
presented in [11, p. 186], one may thus find the source locations, for far-field
signals, for every pitch p with non-zero amplitudes in Bp, as

ŝp = arg max
sp

Lp∑
�=1

∣∣∣∣∣
M∑

m=1

b̂2
p,�,me−i2ωp�τp,�,m

∣∣∣∣∣
2

(31)

where the TDOAs τp,�,m are found as a function of the source location sp, using
(4). This minimization may be well approximated by 1-D searches over range
and DOA (or over range, azimuth, and elevation in the 3-D case). Considering
also reverberating room environments, wherein each of the pitches may appear as
originating from many different locations, the minimization needs to be extended
to allow for varying number of reflections, Sk. To allow for such reflections, we
proceed to model every non-zero amplitude block from the pitch estimation step

74



3. Joint estimation of pitch and location

as

Bk =

Sk∑
s=1

diag
(
ak,s
)

Uk,s + Ek (32)

with diag(x) denoting a diagonal matrix with the vector x along its diagonal, Ek

the combined noise term constructed in the same manner as Bk, and

Uk,s =

[
u1

k,s . . . uL̂k
k,s

]
(33)

uk,s =

[
eiωkτk,1,s

1 . . . eiωkτk,M,s

dk,M,s/dk,m,s

]T
(34)

ak,s =

[
ak,1,s . . . ak,L̂k,s

]T
(35)

where τk,m,s and dk,m,s are related to the source location as given by (3) and (4),
respecively. Analogously to the above procedure for the pitch estimation, we then
extend the dictionary of feasible source locations for the kth source, s1, . . . , sSk ,
onto a grid of Q 
 Sk candidate locations sq, for q = 1, . . . ,Q, with Q chosen
large enough to allow some of the introduced dictionary elements to coincide, or
closely so, with the true source locations in the signal. Clearly, this may force Q
to be very large. Striving to keep the size of the dictionary as small as possible, we
consider grid points in polar coordinates, with equal resolution for all considered
DOAs, and linearly spaced grid points over the distance in each DOA. Thus, we
get a denser grid in the close proximity to the sensor array, where the resolution
capacity is highest, and then a less and less dense grid for sources further away
from the array. Finally, to also allow for far-field sources, one may include one
dictionary element for each direction at an infinite range, for which, naturally,
the attenuation effect may be disregarded, i.e., dk,m,s � 1 for all sensors. Thus,
we may estimate the source locations for the k:th pitch using a sparse modelling
framework as

minimize
ak,1,...,ak,Q

{
1
2

∥∥∥∥∥∥Bk −
Q∑

q=1

diag ak,qUk,q

∥∥∥∥∥∥
2

F

+

Q∑
q=1

κq
∥∥ak,q

∥∥
2
+ ρ

Q∑
q=1

∥∥ak,q
∥∥

1

}
(36)
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where, again, two types of sparsity is imposed on the solution. The 2-norm pen-
alty term imposes sparsity to the blocks ak,q, i.e., penalizing the number of source
locations present in the signal. Furthermore, the 1-norm term penalizes the num-
ber of harmonics, to allow for cases when some sources may have missing har-
monics. Thus, here the number of sources is estimated as the number of nonzero
blocks in an optimal point and any zero elements within a block corresponding
to a missing harmonic. Here, κq, ρ ∈ R+ are tuning parameters, controlling the
amount of sparsity and the weight between sparsity in pitches and in harmonics,
respectively, whereas the factor ρ is only used if two sources share the same fun-
damental frequency but differ in which harmonics are present. Finally, κq may
be updated in the same manner as described in section III.A. As shown in the
following section, the optimization problem in (29) and (36) are equivalent, so
these tuning parameters may be set in a similar fashion.

4 Efficient implementation

It is worth noting that both the minimization in (29) and (36) are convex, as the
tuning parameters are non-negative and all the functions are convex. Their solu-
tions may thus be found using standard convex minimization techniques, e.g.,
using CVX [33,34], SeDuMi [35], or SDPT3 [36]. Regrettably, such solvers will
scale poorly both with increasing data length, the use of a finer grid for the fun-
damental frequencies, and with the number of sensors. Furthermore, such imple-
mentations are unable to utilize the full structure of the minimization, and may, as
a result, be computationally cumbersome in practical situations. To alleviate this,
we proceed to formulate a novel ADMM re-formulation of the minimizations,
offering efficient and fast implementations of both minimizations. For complete-
ness and to introduce our notation, we briefly review the main steps involved in
an ADMM (we refer the reader to [37, 38] for further details on the ADMM).
Considering the convex optimization problem

minimize
z

f (z) + g(z) (37)

where z ∈ Rp is the optimization variable, with f (·) and g(·) being convex func-
tions. Introducing the auxiliary variable, u (37) may be equivalently be expressed
as

minimize
z,u

f (z) + g(u) subject to z− u = 0 (38)
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Algorithm 1 The ADMM algorithm

1: Initiate z = z0,u = u0, and k = 0
2: repeat
3: zk+1 = argmin

z
f (z) + μ

2 ||z− uk − dk||22
4: uk+1 = argmin

u
g(u) + μ

2 ||zk+1 − u− dk||22
5: dk+1 = dk − (zk+1 − uk+1)
6: k← k + 1
7: until convergence

since at any feasible point z = u. Under the assumption that there is no dual-
ity gap, which is true for the here considered minimizations, one may solve the
optimization problem via the dual function defined as the infimum of the aug-
mented Lagrangian, with respect to x and z, i.e., (see also [37])

Lμ(z,u, d) = f (z) + g(u) + dT (z− u) +
μ

2
||z− u||22

The ADMM does this by iteratively maximizing the dual function such that at
step k + 1, one minimizes the Lagrangian for one of the variables, while holding
the other fixed at its most recent value, i.e.,

zk+1 = arg min
z

Lμ (z,uk, dk) (39)

uk+1 = arg min
u

Lμ
(
zk+1,uk, dk

)
(40)

Finally, one updates the dual variable by taking a gradient ascent step to maximize
the dual function, resulting in

d̃k+1 = d̃k − μ
(

zk+1 − d̃k+1

)
(41)

where μ is the dual variable step size. The general ADMM steps are summarized
in Algorithm 1, using the scaled version of the dual variable dk = d̃/μ, which
is more convenient for implementation. Thus, in cases when steps 3 and 4 of
Algorithm 1 may be carried out more efficiently than for the original problem,
the ADMM may be useful to form an efficient implementation of the considered
minimization.
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It may be noted that the minimizations in (29) and (36) are rather similar,
both containing an affine function in a Frobenius norm, as well as a sum of the
norm of different subset of the variable. In fact, by using the vec operation,
i.e., vectorization, both minimizations may be shown to be equivalent with the
problem

minimize
z

{
1
2
‖y− Az‖2

2 + γ
P∑

k=1

‖zk‖2

+ δ
P∑

k=1

Gk∑
g=1

∥∥zk,g
∥∥

2

}
(42)

where the complex variable z is given as

z =
[

zT
1 . . . zT

P

]T
(43)

zk =

[
zT

k,1 . . . zT
k,Gk

]T
(44)

where each zk and zk,g denote complex vectors with Gk and O elements, respect-
ively. For the minimization in (29), this implies that

y = vec(Y) (45)

z = vec(B) (46)

A = I⊗W (47)

where ⊗ and I denote the Kronecker product and an M-dimensional identity
matrix, respectively, with Gk being equal to the number of harmonics, Lk, and O
equals the number of sensors, M . Similarly, for the minimization in (36),

y = vec(Bp) (48)

z = ak (49)

A = Ṽk (50)

where

ak =

[
aT

k,1 . . . aT
k,Q

]T
(51)

Ṽk =
[

Ṽk,1 . . . Ṽk,Q
]

(52)
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and Vk,q = Uk,q ⊗ I, with Ṽk,q being formed by removing all columns from Vk,q

that correspond to zeros in the vector vec(diag(ak,q)), and Gk being equal to Lk

and O equals 1. Thus, we can formulate an ADMM solution for (42) that solves
both problem (29) and (36). To that end, defining

f (z) =
1
2
‖y− Az‖2

2 (53)

g(u) = γ
P∑

k=1

‖uk‖2 + δ
P∑

k=1

Qk∑
g=1

∥∥uk,g
∥∥

2
(54)

yields a quadratic problem in step 3 in Algorithm 1, with a closed form solution
given by

zk+1 =
(
μI + AH A

)−1
(
μ (uk − dk) + AH y

)
with (·)H denoting the Hermitian transpose, whereas in step 4, by solving the
sub-differential equations (see [23] for further details), one obtains

uk+1 = S
o (
S

i (zk − dk, κ/μ
)
, δ/μ

)
(55)

where the shrinkage operators So and S
i are defined using the vector shrinkage

operator S, defined for any vector v and positive scalar ξ such that

S(v, ξ) = v
(
1− ξ/||v||2

)+
(56)

where (·)+ is the positive part of the scalar, and

S(z, ξ)o
=
[
S

T (z1, ξ) . . . S
T (zP , ξ)

]T
(57)

S(z, ξ)i
=
[
S

T (z1,1, ξ) . . . S
T (z1,G1, ξ) . . .

S
T (zP,1, ξ) . . . S

T (zP,GP , ξ)
]T

(58)

The resulting algorithm is here termed the Harmonic Audio LOcalization using
block sparsity (HALO) estimator.

5 Numerical comparisons

We proceed to examine the performance of the proposed estimator using both
synthetic and measured audio signals, initially examining the performance using
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Figure 3: The PWL and RMSE for a single-pitch signal as compared with the
optimal performance of an estimator reaching the CRB.

simulated audio signals. In the first examples, we limit ourselves to the case of
letting a far-field signal impinge on a ULA. Figure 3 shows the percentage within
limits (PWL), defined as the ratio of pitch estimates within a limit of ±0.1 Hz
from the true pitch, and the root mean square error (RMSE) of the DOA, defined
as

RMSEθ =

√√√√ 1
nK

K∑
k=1

n∑
i=1

(
θ̂k,i − θk

)2
(59)

where n denotes the number of Monte Carlo (MC) simulation estimates, and
K the number of pitches in the signal, for the resulting estimates. For compar-
ison, we use the Cramér-Rao lower bound (CRB), the NLS estimator, and the
Sub approach (see [15] for further details on these methods and for the corres-
ponding CRB). These results have been obtained using n = 250 MC simulations
of a single pitch signal, with ω1 = 220 Hz and L1 = 7 harmonics, impinging
from θ1 = −30◦, where both the NLS and the Sub estimators have been al-
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Figure 4: The PWL and RMSE for a multi-pitch signal with two pitches, as
compared to the corresponding CRB.

lowed perfect a priori knowledge of both the number of sources and their number
of harmonics, whereas the proposed method is allowed no such knowledge. As
is clear from the figures, the HALO method offers a preferable performance as
compared to the Sub estimator, and only marginally worse than the NLS estim-
ator, in spite of both the latter being allowed perfect model orders information.
Here, the number of sensors in the array was M = 5 and we used 20 ms of data
sampled at fs = 8820 Hz, i.e., N = 176 samples. Furthermore, c = 343 m/s and
d = c/fs ≈ 0.0389 m. We proceed to consider the case of multi-pitch signals
impinging on the array. Measuring as in the single-pitch case, we now form a
multi-pitch signal with two pitches and fundamental frequencies {150, 220} Hz
containing {6, 7} harmonics, coming from θ1 = −30◦. Figure 4 shows the
RMSE and PWL estimates, as obtained using 250 MC simulations, clearly show-
ing that the HALO estimator is able to reach close to optimal performance also in
this case. Here, no comparison is made with the NLS and Sub estimators of [15]
as these are restricted to the single-pitch case. Throughout these evaluations, we
have used Lmax = 15. Also, as the resulting estimates were found to be appropri-
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Figure 5: The two-source and eight-sensor layout in 2-D. The position of each
sensor, shown in the plot with carthesian coordinates as rm = [x, y], was obtained
in an a priori calibration step.

ately sparse when using only the convex penalties, and no reweighing steps were
used. We next proceed to examine real measured signals. The measurements were
made in an anechoic chamber, approximately 4 × 4 × 3 meters in size, with the
sensors and speakers located as shown in Figures 5 and 7. Two speakers were
placed at locations (in polar coordinates) s1 = [θ1,R1] = [115.03◦, 1.15 m] and
s2 = [θ2,R2] = [−74.53◦, 1.33 m], with respect to the central microphone,
respectively. The positions of the sensors were determined by placing them to-
gether with the sources, using the acoustic method detailed in [39]. This is done
by calibrating the sensors with a single moving source, using a correlation-based
methodology. The positions were also confirmed via a computer vision approach
were the positions were found by taking several photos and reconstructing the
environment. The maximum deviation in position between these methods was
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Figure 6: Time-domain data (lined) and estimated signal reconstruction (dotted)
for the 6:th sensor (top two) and 8:th sensor (bottom two), for two different
signals. The left two subfigures display a voice signal saying the phonetic ’a’ in
’why’, while the right two subfigures display a violin signal.

less than 1 cm. As the spatial impulse responses of the microphones were deemed
to be reasonably omni-directional, as well as roughly the same for all the micro-
phones, no further calibration of the sensor gains were performed. The positions
were then projected onto a 2-D plane using principal component analysis. In or-
der to illustrate the HALO estimator’s ability to handle an environment with the
same pitch signal originating from different sources, as a much simplified proof
of concept for a reverberating room environment, we examine a case with two
sources playing the same signal content. Both sources plays a (TIMIT) recording
of a female voice saying ’Why were you away a year, Roy?’, timing the source’s
playback so that the recording at each microphone sounds slightly echoic. The
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Figure 7: A photo showing the experimental setup in the anechoic chamber, where
eight sensors are used to record two coherent sources.

eight microphones all record at a sample rate of fs = 96 kHz. The data is then di-
vided into time frames of 10 ms, i.e., N = 960 samples, which allow each frame
to be well modelled as being stationary. Examining a part of the speech that is
voiced, arbitrarily selected as the frame starting 380 ms into the recording, about
when the voice is saying the voiced phonetic sound ’a’ in ’why’, Figure 4 show the
signal measured at the 6th and 8th microphone, respectively, together with the
reconstructed signal obtained from the pitch estimation step in HALO, obtained
as

Ŷ = WB̂ (60)

using the resulting model orders and estimates. The estimator indicate that the
signal contains a single pitch at ω̂/2π = 193.5 Hz, having L̂ = 12 overtones. As
is clear from the figures, the estimator is well able to model the measured signal
in spite of the presence of the reverberation. Comparing the figures, one may also
note the time shift between the sensors, due to the additional time-delay for the
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Figure 8: The experimental setup in the anechoic chamber, showing the sensor
and loudspeaker locations, the considered dictionary grid, as well as the resulting
estimated as obtained by the proposed algorithm.

wavefront traveling between them, corresponding to a linear combination of the
two sources, each with their particular TDOA and attenuation. It should also be
noted that the signals are not simply time-shifted versions of each other due to the
room environment and the attenuation of the signal when propagating in space
(which would thus create problems for an estimator based on the cross-correlation
between the sensors). The same situation is illustrated in left two subfigures in
Figure 4, showing the results when the signal source is replaced with that of a
part of a (SQAM) violin signal. Again, the estimator can be seen to be able to
well model the impinging signals, which is estimated as being a single pitch with
the fundamental frequency ω̂/2π = 198.0 Hz, containing L̂ = 14 harmonics.
In order to examine the location estimation, we construct a 2-D grid of feasible
locations, chosen such that the space is discretized into 1008 points, consisting
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of 72 directions between [−180◦, 180◦), spaced every 5◦, where each direction
allows for ranges R ∈ [0.7, 2] m, spaced 10 cm apart. The resulting grid is shown
in Figure 8, which is roughly covering the entirety of the anechoic chamber. To
also allow for far-field sources, a range of R =∞ is also added to the grid for each
direction, which we have chosen to illustrate by the outer circle in Figure 8. For
these far-field grid points, the time-delays are instead computed as (see also [9])

τm =

min
z
‖rm − �(z)‖2

c
(61)

for a location z on the line �(·), which is perpendicular to the DOA and goes
through r1. The figure also shows the locations for the sensors and the sound
sources, as well as the estimated locations, as obtained by the second step of the
HALO estimator (the estimated locations were identical for both audio record-
ings). The errors in position were 5 cm in range for each source, where a bias,
overestimating the range, accounts for almost all of the error. On the other hand,
as shown in the figure, the angles of the sources θ were accurately estimated. The
overestimation of the range may to a large extent likely be explained by poor scal-
ing when calibrating the array. One may note that, for localization in 3-D, the size
of the dictionary will increase significantly as compared to the 2-D case used for
numerical illustration in this paper. For the case above, if also the elevation angle
is to be considered, having the same resolution as for the azimuth, this would
yield a dictionary of 72 576 atoms. Although much larger, a sparse modeling
systems of this size is by no mean impractical to work with. Also, our investiga-
tions show that a less dense location grid may be used, whereafter a zooming step
can be taken. Finally, we illustrate the algorithm’s performance using MC simu-
lations, using simulated sources, one near- and one far-field source, detailed with
ω = [200, 270] Hz, L = [15, 14] harmonics, impinging from θ = [110◦,−70◦]
at R = [1.3,∞] m, respectively. The sensors are placed as a uniform circular
array, with 7 sensor placed evenly at a 0.5 m radius, together with a sensor being
placed in the center of the array. First, we examine the position estimates using
a coarse spacing for the possible sources, spaced by 11 cm in angle for all angles
θ ∈ [−180◦, 180◦), and spaced by 10 cm in range, at R ∈ [0.7, 3] m. In each
MC simulation, the true location of each source was offset by a (uniformly distrib-
uted) range offset of plus minus one half the grid spacing. In all simulations, we
ensured that neither of the sources were placed on a dictionary grid point. Figure
9 shows the PWL for the angle and range estimates, where the limit is chosen to
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Figure 9: The PWL ratio for the angle and range estimates when using a coarsely
spaced grid, indicating the ratio of estimates that are within ±10 cm in range,
and ±5◦ in angle.

be the same as the grid spacing, i.e., the ratio of estimates that are within ±10 cm
in range, and ±5◦ in angle. As seen from the figure, the both the range and the
DOA of the sources are well determined, indicating that even with the use of a
coarse grid, one is able to obtain reliable estimates. Proceeding to instead using a
fine grid, the coarse estimates may then be refined by zooming in the grid over the
found locations. Using a dictionary of the same size as the coarse grid, although
centered around the found estimates, yields a resolution of ±5 mm in range and
±0.25◦ in angle. Figure 10 shows the resulting RMSE for the angle and pitch
estimates on the finer grid, as compared to the CRB (given in the Appendix). As
can be seen from the figure, the RMSE (and the corresponding CRB) of the far-
field source is somewhat lower than the near-field source, although both sources

87



Paper A

5 10 15 20 25

10
0

P
W

L 
θ

SNR [dB]

 

 

5 10 15 20 25
10

−4

10
−2

10
0

P
W

L 
ra

ng
e

SNR [dB]

 

 

HALO R
CRB R

HALO θ
1

HALO θ
2

CRB θ
2

CRB θ
1

Figure 10: The RMSE for the angle and range estimates when using a finely
spaced grid, indicating the ratio of estimates that are within ±5 mm in range,
and ±0.25◦ in angle.

are well estimated, yielding a performance close to being optimal. The slight
offset from the CRB is deemed to be largely due to a small bias in the final estim-
ates, resulting from the smoothness of the approximative cost function resulting
from the additive convex constraints. As is clear from the above presentation, the
HALO estimate exploits the harmonic structure in the received audio signals to
position the sources, using the pitch estimates to form a sparse estimate over a
wide range of feasible positions. Obviously, most audio signals are not harmonic
at all times, and the estimator should thus be used in combination with a track-
ing technique, possibly using a methodology reminiscent to the one presented
in [40, 41]. In such a tracking scheme, the estimated pitch amplitudes should be
used as an indicator for the reliability of the obtained positioning, yielding poor
or maybe even erroneous positioning for unvoiced or non-harmonic audio sig-
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nals, whereas reasonably accurate positions may be expected for more harmonic
signals.

6 Conclusions

In this paper, we have presented an efficient sparse modeling approach for loc-
alizing harmonic audio sources using a calibrated sensor array. Assuming that
each harmonic components in each pitch can only come from one source, the
localization estimate is based on the phase and attenuation information for all
of the harmonics jointly. The resulting model phases and attenuation will then
depend on the source location. By using sparse modeling, the method inherently
estimates both the number of sources, the number of harmonics in each source,
as well as the extent of a possibly occurring reverberation. The effectiveness of the
resulting algorithm is shown using both simulated and measured audio sources.

7 Acknowledgements

The authors wish to express their gratitude to the Signal Processing Group at
Electrical and Information Technology, Lund University, for allowing use of their
experimental facilities, as well as to the authors of [15] for sharing their Matlab
implementations.

8 Appendix: The Cramér-Rao lower bound

In this appendix, we briefly summarize the Cramér-Rao lower bound (CRB) for
the examined localization problem. As is well known, under the assumption of
complex circularly symmetric Gaussian distributed noise, the Slepian-Bangs for-
mula yields [11, p. 382]

[
P−1

cr

]
ij = trace

[
Γ−1Γ′

iΓ
−1Γ′

j

]
+ 2R

[
μ′Hi Γ

−1μ′j
]

(62)

where R denotes the real part of a complex scalar, Γ the covariance matrix of
the noise process, and μ is the deterministic signal component, with Γ′

i and μ′i
denoting the derivative of Γ and μ with respect to element i of the parameter
vector, respectively. For the case of uncorrelated noise with a known variance σ2,
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this simplifies to

[
P−1

cr

]
ij = 2R

[
μ′Hi μ

′
j

]
/σ2 (63)

Using the assumed signal model as measured at sensor m, stacking the the ob-
servations as in (19), and then using the vec operator on the resulting matrix
results, one obtains the μ function needed for the CRB calculations. Here, the
parameters to be estimated are

Δ =

{{
ak,�,φk,�

}
�=1,...,Lk

,ωk,θs,k,Rs,k

}
s=1,...,S
k=1,...,K

(64)

Clearly, the resulting function may easily be derivated with respect to the mag-
nitude, frequency and phase parameters. However, since the location parameter,
θs,k and Rs,k, enter into the expression in a complicated manner depending on
the sensor geometry, the corresponding derivatives are not straight forward for
an arbitrary array. For this reason, for the considered array geometries, we here
simply approximate the resulting expressions using numerically differentiated ex-
pressions.
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An Adaptive Penalty Multi-Pitch
Estimator with Self-Regularization

Filip Elvander, Ted Kronvall, Stefan Ingi Adalbjörnsson, and
Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

This work treats multi-pitch estimation, and in particular the common misclassi-
fication issue wherein the pitch at half the true fundamental frequency, the sub-
octave, is chosen instead of the true pitch. Extending on current group LASSO-
based methods for pitch estimation, this work introduces an adaptive total vari-
ation penalty, which enforces both group- and block sparsity, as well as deals with
errors due to sub-octaves. Also presented is a scheme for signal adaptive diction-
ary construction and automatic selection of the regularization parameters. Used
together with this scheme, the proposed method is shown to yield accurate pitch
estimates when evaluated on synthetic speech data. The method is shown to
perform as good as, or better than, current state-of-the-art sparse methods while
requiring fewer tuning parameters than these, as well as several conventional pitch
estimation methods, even when these are given oracle model orders. When eval-
uated on a set of ten musical pieces, the method shows promising results for
separating multi-pitch signals.

Key words: Multi-pitch estimation, block sparsity, adaptive sparse penalty,
self-regularization, ADMM
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1 Introduction

Pitch estimation is a problem arising in a variety of fields, not least in audio
processing. It is a fundamental building block in several music information re-
trieval applications, such as automatic music transcription, i.e., automatic sheet
music generation from audio (see, e.g., [1], [2]). Pitch estimation could also be
used as a component in methods for cover song detection and music querying,
possibly improving currently available services. For example, the popular query
service Shazam [3] operates by matching hashed portions of spectrograms of user-
provided samples against a large music database. As a change of instrumentation
would alter the spectrogram of a song, such algorithms can only identify record-
ings of a song that are very similar to the actual recording present in the database.
Thus, services such as Shazam might fail to identify, e.g., acoustic alternate ver-
sions of rock songs. A query algorithm based on pitch estimation could on the
other hand correctly match the acoustic version to the original electrified one as
it would recognize, e.g., the main melody.

The applicability of pitch estimation to music is due to the fact that the notes
produced by many instruments used in Western tonal music, e.g., woodwind in-
struments such as the clarinet, exhibit a structure that is well modeled using a
harmonic sinusoidal structure [4]. However, for some plucked stringed instru-
ments, such as the guitar and the piano, the tension of the string results in the
harmonics deviating from perfect integer multiples of the fundamental frequency,
a phenomenon called inharmonicity. For some instruments, such as the piano,
there are models describing the structure of the inharmonicity based on physical
properties of the instrument [5]. Such signals require agile pitch estimation al-
gorithms allowing for this form of deviations (see, e.g., [6–8]). In this work, we
will assume such deviations to be small, although noting that one may extend the
here presented work along the lines in [6–8].

Estimating the fundamental frequencies of multi-pitch signals is generally a
difficult problem. There are many methods available, see, e.g., [9], but most of
them require a priori model order knowledge, i.e., they require knowledge of the
number of pitches present in the signal, as well as the number of active harmon-
ics for each pitch.1 Three such methods will be used in this work as reference
estimators. The first method, here referred to as ORTH, exploits orthogonality

1It may be noted that, generally, obtaining correct model order information is a most challen-
ging problem, with the model order estimates strongly affecting the resulting performance of the
estimator.
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between the signal and noise subspaces to form pitch frequency estimates. The
second method is an optimal filtering method based on the Capon estimator,
and is therefore here referred to as Capon. The third method is an approximate
non-linear least squares method, here referred to as ANLS [10–12] (see also [9]
for an overview of these methods). Methods not requiring a priori model or-
der knowledge have also been proposed. For example, Adalbjörnsson et al. [13]
use a sparse dictionary representation of the signal and regularization penalties to
implicitly choose the model order. A similar, but less general, method was in-
troduced in [14], which used a dictionary specifically tailored to piano notes for
estimating pitch frequencies generated by pianos. Other source specific meth-
ods include [15], [16]. In [17], the author proposes a sparsity-exploiting method,
where the dictionary atoms are learned from databases of short-time Fourier trans-
forms of musical notes. A similar idea is used in [18] for pitch-tracking in music.
In [16], [19], pitch estimation is based on the assumption of spectral smooth-
ness, i.e., the amplitudes of the harmonics within a pitch are assumed to be of
comparable magnitude.

Another field of research is performing multi-pitch estimation, often in the
context of automatic music transcription, by decomposing the spectrogram of the
signal into two matrices, one that describes the frequency content of the signal
and one that describes the time activation of the frequency components. This
method makes use of the non-negative matrix factorization, first introduced in
this context in [20] and since then widely used, such as in, e.g., [21]. There are
also more statistical approaches to multi-pitch estimation, posing the estimation
as a Bayesian inference problem (see, e.g., [22]).

The approach to multi-pitch estimation presented in this work is to solve the
problem in a group sparse modeling framework, which allows us to avoid making
explicit assumptions on the number of pitches, or on the number of harmonics in
each pitch. Instead, the number of components in the signal is chosen implicitly,
by the setting of some tuning parameters. These tuning parameters determine
how appropriate a given pitch candidate is to be present in the signal and may be
set using cross-validation, or by using some simple heuristics. The sparse model-
ing approach has earlier been used for audio (see, e.g., [23]), and specifically for
sinusoidal components in [24]. We extend on these works by exploiting the har-
monic structure of the signals in a block sparse framework, where each block rep-
resents a candidate pitch. A similar method was introduced in [13], where block
sparsity was enforced using block-norms, penalizing the number of active pitches.
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As the block-norm penalty, under some circumstances, cannot distinguish a true
pitch from its sub-octave, i.e., the pitch with half the true fundamental frequency,
the method is also complemented by a total variation penalty, which is shown to
solve such issues. Total variation penalties are often applied in image analysis to
obtain block-wise smooth image reconstructions (see, e.g., [25]). For audio data,
one can similarly assume that signals often are block-wise smooth, as the harmon-
ics of a pitch are expected to be of comparable magnitude [19]. Enforcing this
feature will specifically deal with octave errors, i.e., the choosing of the sub-octave
instead of the true pitch, as, in the noise free case, only every other harmonic
of the sub-octave will have non-zero power. In this paper, we show that a total
variation penalty, in itself, is enough to enforce a block sparse solution, if utilized
efficiently. More specifically, by making the penalty function adaptive, we may
improve upon the convex approximation used in [13], allowing us to drop the
block-norm penalty altogether, and so reduce the number of tuning parameters.
In some estimation scenarios, e.g., when estimating chroma using the approach
in [26], this would simplify the tuning procedure significantly.

Furthermore, we show that the proposed method performs comparably to
that of [13], albeit with the notable improvement of requiring fewer tuning para-
meters. The method operates by solving a series of convex optimization problems,
and to solve these we present an efficient algorithm based on the alternating dir-
ection method of multipliers (ADMM) (see, e.g., [27] for an overview of ADMM
in the context of convex optimization). As the proposed method requires two
tuning parameters to operate, we also present a scheme for automatic selection of
appropriate model orders, thereby avoiding the need of user-supplied parameters.

The remainder of this work is organized as follows; in the following section,
we introduce the signal model, followed in Section 3 by the proposed estimation
algorithm. Section 4 summarizes the efficient ADMM implementation whereas
Section 5 examines how to adaptively choose the regularization parameters. Nu-
merical results illustrating the achieved performance are presented in Section 6.
Finally, Section 7 concludes upon the work.
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2 Signal model

Consider a complex-valued2 signal consisting of K pitches, where the kth pitch is
constituted by a set of Lk harmonically related sinusoids, defined by the compon-
ent having the lowest frequency, ωk, such that

x(t) =
K∑

k=1

Lk∑
�=1

ak,�e
iωk�t (1)

for t = 1, . . . ,N , where ωk� is the frequency of the �th harmonic in the kth
pitch, and with the complex number ak,� denoting its magnitude and phase. The
occurrence of such harmonic signals is often in combination with non-sinusoidal
components, such as, for instance, colored broadband noise or non-stationary
impulses. In this work, only the narrowband components of the signal are part of
the signal model, such that all other signal structures, including the signal’s timbre
and the background noise, are treated as part of an additive noise process, e(t).

In general, selecting model orders in (8) may be a daunting task, with both
the number of sources, K , and the number of harmonics in each of these sources,
Lk, being unknown, as well as often being structured such that different sources
may have spectrally overlapping overtones. In order to remedy this, this work
proposes a relaxation of the model onto a predefined grid of P 
 K candidate
fundamentals, each having Lmax ≥ maxk Lk harmonics. Here, Lmax should be se-
lected to ensure that the corresponding highest frequency harmonic is limited by
the Nyquist frequency, and could thus vary depending on the considered candid-
ate frequency (see also [13]). For notational simplicity, we will hereafter, without
loss of generality, use the same Lmax for all candidate frequencies. Assume that the
candidate fundamentals are chosen so numerous and so closely spaced that the
approximation

x(t) ≈
P∑

p=1

Lmax∑
�=1

ap,�e
iωp�t (2)

holds reasonably well. As only K pitches are present in the actual signal, we want
to derive an estimator of the amplitudes ap,� such that only few, ideally

∑K
k=1 Lk,

2For notational simplicity and computational efficiency, we here use the discrete-time analytical
signal formed from the measured (real-valued) signal (see, e.g., [9], [28]).
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Figure 1: The upper picture depicts a pitch with fundamental frequency 100
Hz and four harmonics. The lower picture depicts a pitch with fundamental
frequency 50 Hz and eight harmonics where all odd-numbered harmonics are
zero (marked red dots).

of the amplitudes in (2) are non-zero. This approach may be seen as a sparse
linear regression problem reminiscent of the one in [24] and has been thoroughly
examined in the context of pitch estimation in, e.g., [13, 29, 30]. For notational
convenience, define the set of all amplitude parameters to be estimated as

Ψ = {Ψω1 , . . . ,ΨωP} (3)

Ψωp = {ap,1, . . . , ap,Lmax} (4)

where, as described above, most of the ap,� in Ψ will be zero. Note that Ψ will
be sparse, i.e., having few non-zero elements. Also, the pattern of this sparsity
will be group wise, meaning that if a pitch with fundamental frequency ωp is not
present, then neither will any of its harmonics, i.e.,Ψωp = 0.
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Due to the harmonic structure of the signal, candidate pitches having fun-
damental frequencies at fractions of the present pitches’ fundamentals will have a
partial fit of their harmonics. This may cause misclassification, i.e., erroneously
identifying a present pitch as one or more non-present candidate pitches. This is
the cause of the so-called sub-octave problem, which is mistaking the true pitch
with fundamental frequency ωp for the candidate pitch with fundamental fre-
quency ωp/2. This may occur if the candidate set Ψ is structured such that the
sub-octave pitch may perfectly model the true pitch, which is when Lmax ≥ 2Lp.
This is illustrated in Figure 1, displaying an extreme case with a pitch with fun-
damental frequency 100 Hz and four harmonics as well as its sub-octave, i.e., a
pitch with fundamental frequency 50 Hz and eight harmonics where only the
even-numbered harmonics are non-zero. Relating to music signals, this is the
same as mistaking a pitch for the pitch an octave below it. Thus, when estimating
the elements of Ψ, one also has to take into account the structure of the block
sparsity, in order to avoid erroneously selecting sub-octaves.

3 Proposed estimation algorithm

Consider N samples of a noise-corrupted measurement of the signal in (8), y(t),
such that it may be well modeled as y(t) = x(t) + e(t), where e(t) is a broad-
band noise signal. A straightforward approach to estimate Ψ would then be to
minimize the residual cost function

g1(Ψ) =
1
2

N∑
t=1

∣∣∣∣y(t)−
P∑

p=1

Lmax∑
�=1

ap,�e
iωp�t

∣∣∣∣2 (5)

However, setting

Ψ̂ = arg min
Ψ

g1(Ψ) (6)

will not yield the desired sparsity structure ofΨ and will be prone to also model
the noise, e(t). Also, solutions (6) will not be unique due to the over-completeness
of the approximation (2). A remedy for this would be to add terms penalizing
solutions Ψ̂ that are not sparse, for example as
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Ψ̂ = arg min
Ψ

g1(Ψ) + λ||Ψ||0 (7)

where ||Ψ||0 is the pseudo-norm counting the number of non-zero elements in
Ψ, and λ is a regularization parameter. However, this in general leads to a com-
binatorial problem whose complexity grows exponentially with the dimension
ofΨ. To avoid this, one can approximate the �0 penalty by the convex function

g2(Ψ) =
P∑

p=1

Lmax∑
�=1

|ap,�| (8)

The resulting problem

minimize
Ψ

g1(Ψ) + λg2(Ψ) (9)

is known as the LASSO [31]. In fact, it can be shown that under some restrictions
on the set of frequencies ω (see also [32]), the LASSO is guaranteed to retrieve
the non-zero indices of Ψ with high probability, although these conditions are
not assumed to be met here. To encourage the group-sparse behavior of Ψ̂, one
can further introduce

g3(Ψ) =
P∑

p=1

√√√√Lmax∑
�=1

|ap,�|2 (10)

which is also a convex function. The inner sum corresponds to the �2-norm,
and does not enforce sparsity within each pitch, whereas instead the outer sum,
corresponding to the �1-norm, enforces sparsity between pitches. Thereby, adding
the g3(Ψ) constraint will penalize the number of non-zero pitches. The resulting
estimator was in [13] termed the Pitch Estimation using Block Sparsity (PEBS)
estimator. However, if we for some p have 2Lp ≤ Lmax, the above penalties have
no way of discriminating between the correct pitch candidate ωp and the spurious
sub-octave candidate ωp/2. However, as the candidates will differ in that the sub-
octave will only contribute to the harmonic signal at every other frequency in the
block, as was seen in Figure 1, one may reduce the risk of such a misclassification
by further adding the penalty
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ğ4(Ψ) =
P∑

p=1

Lmax∑
�=0

∣∣∣∣|ap,�+1| − |ap,�|
∣∣∣∣ (11)

where we define

ap,0 = ap,Lmax+1 = 0 ,∀p (12)

which would add a cost to blocks where there are notable magnitude variations
between neighboring harmonics. Unfortunately, (11) is not convex, but a simple
convex approximation would be

g̃4(Ψ) =
P∑

p=1

Lmax∑
�=0

|ap,�+1 − ap,�| (13)

which would be a good approximation of (11) if all the harmonics had similar
phases. This estimator was in [13] termed the PEBS-TV estimator. Clearly, this
may not be the case, resulting in that the penalty in (13) would also penalize
the correct candidate. An illustration of this is found by considering the worst-
case scenario, when all the adjacent harmonics are completely out of phase and
have the same magnitudes, i.e., ap,�+1 = ap,�eiπ with magnitude |ap,�| = r, for
� = 1, . . . ,Lp − 1. Then, the penalty in (13) will yield a cost of g̃4(Ψωp) = 2rLp

rather than the desired ğ4(Ψωp) = 2r. The cost may also be compared with that
of (8), which is g2(Ψωp) = rLp, suggesting that this would add a relatively large
penalty. More interestingly, for the sub-octave candidate pitch, the cost will be just
as large, i.e., if ωp′ = ωp/2, then g̃4(Ψωp′

) = 2rLp provided that Lmax ≥ 2Lp,
thereby offering no possibility of discriminating between the true pitch and its
sub-octave. Such a worst case scenario is just as unlikely as all harmonics having
the same phase, if assuming that the phases are uniformly distributed on [0, 2π).
Instead, the g̃4 penalty of the true pitch will be slightly smaller than its sub-octave
counterpart, on average, and together with (10), the scales tip in favor of the true
pitch, as shown in [13]. One may thus conclude that the combination of g3 and g̃4

provides a block sparse solution where sub-octaves are usually discouraged. How-
ever, it should be noted that such a solution requires the tuning of two functions
to control the block sparsity.
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This work proposes to simplify the PEBS-TV estimator by improving the
approximation in (13), by using an adaptive penalty approach. In order to do so,
let φp,� denote the phase of the component with frequency ωp,�, and collect all
the phases in the parameter set

Φ = {Φω1 , . . . ,ΦωP} (14)

Φωp = {φp,1, . . . ,φp,Lmax} . (15)

The penalty function in (11) may then instead be approximated as

g4(Ψ,Φ) =
P∑

p=1

Lmax∑
�=0

|ap,�+1e−iφp,�+1 − ap,�e
−iφp,� | (16)

thus penalizing only differences in magnitude, given that the phases φp,�+1 have
been chosen as to offset phase differences between the harmonics. In order to do
so, the phases φp,� need to be estimated as the arguments of the latest available
amplitude estimates ap,�. As a result, (16) yields an improved approximation
of (11), avoiding the issues of (13) described above, and also promotes a block
sparse solution. The block sparsity is promoted due to the introduction of zero
amplitudes in (12). In effect, this introduces a penalty for activating a pitch block.
As a result, the block-norm penalty function g3 may be omitted, which simplifies
the algorithm noticeably. Thus, we form the parameter estimates by solving

Ψ̂ = arg min
Ψ

g1(Ψ) + λ2g2(Ψ) + λ4g4(Ψ,Φ) (17)

where λ2 and λ4 are user-defined regularization parameters that weigh the im-
portance of each penalty function with that of the residual cost. To form the
convex criteria and to facilitate the implementation, consider the signal expressed
in matrix notation as

y =
[

y(1) ... y(N )
]T

=

P∑
p=1

Wp ap + e � Wa + e (18)

where

W =
[

W1 . . . WP
]

(19)

Wp =

[
z1

p . . . zLmax
p

]
(20)
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zp =
[

eiωp1 . . . eiωpN
]T

(21)

a =
[

aT
1 . . . aT

P

]T
(22)

ap =
[

ap,1 . . . ap,Lmax

]T
(23)

where the powers in the vectors zk
p are taken element-wise. The dictionary matrix

W is constructed by P horizontally stacked blocks, or dictionary atoms Wp, where
each is a matrix with Lmax columns and N rows. In order to obtain an acceptable
approximation of (11), the problem must be solved iteratively, where the last
solution is used to improve the next. To pursue an even sparser solution, a re-
weighting procedure is simultaneously used for g2(Ψ), similar to the one used
in [33]. Redefining the functions gj to operate on matrices, the solution is thus
found at the kth iteration as

â(k)
= arg min

a

1
2

∥∥∥y−H(k)
1 a
∥∥∥2

2
+ λ2

∥∥∥H(k)
2 a
∥∥∥

1
+ λ4

∥∥∥H(k)
4 a
∥∥∥

1
(24)

where

H(k)
1 = W (25)

H(k)
2 = diag

(
1/
(∣∣∣â(k−1)

∣∣∣+ ε)) (26)

H(k)
4 = F diag

(
arg

(
â(k−1)

))−1
(27)

where diag(·) denotes a diagonal matrix formed with the given vector along its
diagonal, | · | is element-wise absolute value, arg(·) is the element-wise complex
argument, and ε� 1. If the magnitude of a certain component of â(k−1) is small,
the construction of H(k)

2 will ensure that the magnitude of the corresponding
component of â(k) will be penalized harder. This iterative re-weighting procedure
will then be a sequence of convex approximations of a non-convex logarithmic
penalty on the �1 norm of a. The inclusion of ε is made to ensure that a division by
zero is avoided. Also, I denotes the identity matrix, and F is a P(Lmax+1)×PLmax

matrix F = diag(F1, . . . ,FP), where each block Fp is a (Lmax + 1)× Lmax matrix
with elements

fk,� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if k = � = 1

−1 if k = �, � �= 1

1 if k = �+ 1

0 otherwise

(28)
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As intended, the minimization in (24) is convex, and may be solved using one
of many publicly available convex solvers, such as, for instance, the interior point
methods SeDuMi [34] or SDPT3 [27]. However, these methods are quite compu-
tationally burdensome and will scale poorly with increased data length and larger
grids. Instead, we here propose an efficient implementation using ADMM. The
problem in (24) may be implemented in a similar manner as was done in [25],
requiring only two tuning parameters, λ2 and λ4. The proposed method com-
pares to the PEBS and PEBS-TV algorithms as improving upon the former, and
requiring fewer tuning parameters than the latter. The proposed method is there-
fore termed a light and improved version of PEBS, here denoted the PEBSI-Lite
algorithm.

4 ADMM implementation

In order to solve (24), we proceed to introduce an efficient ADMM implementa-
tion. To this end, let z ∈ CPLmax be the primal optimization variable and introduce
the auxiliary variables u1 ∈ CN , u2 ∈ CPLmax , and u4 ∈ CP(Lmax+1) and let

G(k)
=

[
H(k)T

1 H(k)T
2 H(k)T

4

]T
(29)

u =
[

uT
1 uT

2 uT
4

]T
. (30)

Thus, we want to solve

minimize
z

f
(

G(k)z
)

(31)

where

f
(

G(k)z
)
=

1
2

∥∥∥y−H(k)
1 z
∥∥∥2

2
+ λ2

∥∥∥H(k)
2 z
∥∥∥

1
+ λ4

∥∥∥H(k)
4 z
∥∥∥

1
. (32)

Using the auxiliary variabel u, one may equivalently solve

minimize
z,u

f (u) +
μ

2

∥∥∥G(k)z− u
∥∥∥2

2

subject to G(k)z− u = 0
(33)

where μ is a positive scalar, as the added term is zero for any feasible point. The
Lagrangian can be succinctly expressed using the (scaled) dual variable

d =
[

dT
1 dT

2 dT
4

]T
(34)
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where d1 ∈ CN , d2 ∈ CPLmax , and d4 ∈ CP(Lmax+1). By completing the square,
the Lagrangian of the problem can be equivalently expressed as

Lμ(z,u, d) = f (u) +
μ

2

∥∥∥G(k)z− u− d
∥∥∥2

2
− μ

2
‖d‖2

2 . (35)

Also, define

ζ
(

j
)
=
[
ζT

1

(
j
)
ζT

2

(
j
)
ζT

4

(
j
) ]T

(36)

where

ζ�
(

j
)
= H(k)

� z
(

j + 1
)
− d�

(
j
)
, � = 1, 2, 4 . (37)

The Lagrangian (35) is separable in the variables z, u1, u2, and u4, and one may
thus form an updating scheme similar to that in [25], as

z
(

j + 1
)
= arg min

z

∥∥∥G(k)z− u
(

j
)
− d

(
j
)∥∥∥2

2
(38)

u1
(

j + 1
)
= arg min

u1

1
2
‖y− u1‖2

2 +
μ

2

∥∥ζ1

(
j
)
− u1

∥∥2
2 (39)

u2
(

j + 1
)
= arg min

u2

λ2 ‖u2‖1 +
μ

2

∥∥ζ2

(
j
)
− u2

∥∥2
2 (40)

u4
(

j + 1
)
= arg min

u4

λ4 ‖u4‖1 +
μ

2

∥∥ζ4

(
j
)
− u4

∥∥2
2 (41)

d
(

j + 1
)
= u

(
j + 1

)
− ζ

(
j
)
. (42)

The updates of z and u1 are given by

z
(

j + 1
)
=

(
G(k)H G(k)

)−1
G(k)H (u( j

)
+ d

(
j
))

(43)

and

u1
(

j + 1
)
=

y + μζ1

(
j
)

1 + μ
(44)

respectively.

111



Paper B

Algorithm 1 The proposed PEBSI-Lite algorithm

1: initiate k := 0, H(0)
1 = I, H(0)

4 = F, and
â(0) = zsave = dsave = 0PLmax×1

2: repeat {adaptive penalty scheme}
3: initiate j := 0, u2(0) = â(k),

z(0) = zsave, and d(0) = dsave

4: repeat {ADMM scheme}
5: z

(
j
)
=
(
G(k)H G(k)

)−1
G(k)H

(
u
(

j
)
+ d

(
j
))

6: u1
(

j + 1
)
=

y+μζ1( j )
1+μ

7: u2
(

j + 1
)
= T

(
ζ2

(
j
)
, λ2
μ

)
8: u4

(
j + 1

)
= T

(
ζ4

(
j
)
, λ4
μ

)
9: d

(
j + 1

)
= u

(
j + 1

)
− ζ

(
j
)

10: j ← j + 1
11: until convergence
12: store â(k) = u2(end), zsave = z(end), and dsave = d(end)
13: update H(k+1)

2 = diag
(
1/|â(k)|+ ε)

)
, H(k+1)

4 = F diag
(
arg

(
â(k)
))−1

14: k ← k + 1
15: until convergence

Using the element-wise shrinkage function,

T
(
x, ξ

)
=

max(|x| − ξ, 0)
max(|x| − ξ, 0) + ξ

� x (45)

where the max function operates on each element in the vector x separately and
� denotes element-wise multiplication, one may update u2 and u4 as

u2
(

j + 1
)
= T

(
ζ2

(
j
)
,
λ2

μ

)
(46)

and

u4
(

j + 1
)
= T

(
ζ4

(
j
)
,
λ4

μ

)
(47)

respectively. The resulting PEBSI-Lite algorithm is summarized in Algorithm 1,
where the solution is given as â = â(kend) with kend denoting the last iteration index
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of the outer loop. The complexity of the resulting algorithm will be dominated by
the computation of step 5 in Algorithm 1. This system of equations can be solved
efficiently by storing the Cholesky factorization of the matrix to be inverted, with
a one-time cost of O

(
p3
)

operations, where p denotes the number of variables
(here, assumed to be larger than the number of data points). Furthermore, at each
iteration, one needs to perform a back solve costing O

(
p2
)

operations.

5 Self-regularization

The quality of the pitch estimates produced by the PEBSI-Lite algorithm depends
on the values of the regularization parameters λ2 and λ4. In general, large values
of λ2 encourage sparse solutions, whereas large values of λ4 encourage solutions
that are smooth within blocks. As the model order is unknown, it is generally
hard to determine how sparse the solution should be in order to be considered
the desired one. Therefore, one often determines the values of the regularization
parameters using cross-validation schemes, making the performance of the meth-
ods user dependent. Instead, one would like to have a systematic and preferable
automatic method for choosing λ2 and λ4, and thereby the model order.

A common approach to solving model order problems is to use information
criteria such as AIC or BIC [35], which measure the fit of the model to the data,
while penalizing high model orders, resulting in a trade-off criterion that should
take its optimal value for the correct model order. For the LASSO problem, there
have been suggestions of appropriate model order criteria [36], [37]. In [13], the
authors suggest a BIC-style criterion for multi-pitch estimation for given regular-
ization parameters. However, this criterion can only be used to determine which
of the found pitches are true and which are spurious, and not to determine the
appropriate regularization parameters. Thus, even if one has an efficient criterion
for choosing between different models, one first has to form a set of candidate
models, in effect running Algorithm 1 for different values of λ2 and λ4. For the
simpler case of the LASSO, the analog is to solve (9) for all λ ∈ R+, for which
there are algorithms such as LARS [38]. There have also been methods suggested
for solving the LASSO for only a finite number of values λ, i.e., only values of the
regularization parameter where the number of active components of the solution
change (see, e.g., [37]). For our problem, the analog is to find solutions for the
set of parameter values

{(λ2, λ4)|(λ2, λ4) ∈ R+×R+} . (48)

113



Paper B

For the real-variable counterpart of the here considered pitch estimation problem,
known as the Sparse Fused LASSO [39], there have been algorithms suggested for
computing the whole solution surface. In [40], the authors present an elegant
way of finding a solution path for the case of the dictionary W being the identity
matrix, meaning that the estimated amplitude vector is just a smoothed version
of the signal y. The algorithm can be used for general matrices W, under the con-
dition that W has full column rank, something that is not true for dictionaries in
high-resolution spectral estimation applications such as the one considered here.
In [41], the authors present an approach to find the solution path of

minimize
β

1
2
‖y−Wβ‖2

2 + λ ‖Dβ‖1 (49)

for the real-variable case with a general penalty matrix D by considering the solu-
tion paths of the dual variable. Unfortunately, this is only for the one-dimensional
case, i.e., for the case when the minimization has only a single regularization para-
meter.

Despite the above efficient ADMM implementation, it is computationally
cumbersome to conduct a search on (48) in order to find an appropriate model
order, with the computation complexity increasing both in the case of longer
signals, and when using more elements in the dictionary. Instead of constructing
a fully general path algorithm for PEBSI-Lite, we therefore proceed to propose a
scheme for constructing a reduced size signal adapted dictionary that combined
with a parametrization of the regularization parameters (λ2, λ4) will allow us to
form good pitch estimates without having to predefine values of the regularization
parameters, by means of a simple line search instead of searching through (48).
The proposed dictionary construction begins by estimating the frequency content
of the signal without imposing any harmonic structure. This estimation may
be performed by any standard method, such as ESPRIT (see, e.g., [42]). As
the number of sinusoidal components is unknown, estimates corresponding to
different model orders can be evaluated using, for instance, the BIC criterion
(see, e.g., [35])

BICk = 2N log σ̂2
k + (5k + 1) log N (50)

where σ̂2
k is the maximum likelihood estimate of the residual variance correspond-

ing to the model constituted by k estimated sinusoids, in order to choose a suitable
model order. The accuracy of the frequency estimates produced by ESPRIT will
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suffer if a too low model order is determined, whereas it is less sensitive to cases
when the model order is moderately overestimated. Thus, we propose to increase
the robustness of the frequency estimates by using k + δ, δ ≥ 1, estimated si-
nusoids for the case when order k is determined optimal by the BIC. As the only
interesting pitch candidates are those having at least one harmonic corresponding
to a present sinusoidal component, we can then design a considerably reduced
dictionary, containing only pitches with such matching harmonics. If one has
some prior knowledge of the nature of the signal, one could impose stronger as-
sumptions on the candidate pitches in order to reduce the dictionary further, e.g.,
by allowing only pitches whose first harmonic is found in the set of estimated
sinusoids. Using the obtained dictionary, one could then proceed to conduct a
search for λ2 and λ4.

Although considerably cheaper as compared to when performed using a full
dictionary, a complete evaluation of the λ2λ4-plane is still somewhat expensive.
To avoid a full grid search, the following heuristic concerning the connection
between λ2 and λ4 can be used. Assume that we have a single-pitch signal where
all Lk harmonics have equal magnitude r. Further, assume that when setting
λ4 = 0, λ′ is the largest value of λ2 resulting in a nonzero solution, where each
harmonic amplitude is estimated to r0. If we would instead set λ2 = 0, and
consider which value of λ4 that should result in the same solution, this value
should be

λ4 =
Lk

2
λ′ (51)

as this would result in precisely the same penalty as with λ4 = 0, λ2 = λ′. More
compactly, we have that

λ2 = αλ′ , λ4 =
(
1− α

)Lk

2
λ′ (52)

yields the penalty λ′ Lkr0 for all α ∈ [0, 1]. If we assume (52) to be true, we
should, for spectrally smooth signals, expect to see ridges in the solution surface
where the number of pitches present in the solution changes, and the shapes of
the ridges in the λ2λ4-plane should be described by lines similar to (52).

This is illustrated in Figure 2, presenting a plot of the number of pitches
present in the solution for different values (λ2, λ4) for a signal consisting of three
pitches with fundamental frequencies 400, 550 and 700 Hz, and with 4, 8, and
12 harmonics, respectively. The magnitude of each harmonic amplitude has
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Figure 2: Number of pitches, K, present in the solution of PEBSI-Lite for different
values (λ2, λ4) when applied to a three pitch signal with 4, 8, and 12 harmonics,
respectively.

been drawn uniformly on (0.9, 1.1) and each phase has been drawn uniformly
on (0, 2π). The signal was sampled at frequency 20 kHz in a time frame of length
40 ms, generating 800 samples of the signal. The signal-to-noise ratio (SNR),
as defined in (55), was 20 dB. On the plateau with two pitches, the pitch with
four harmonics have been forced to zero, whereas on the plateau with one pitch
present, only the pitch with 12 harmonics is present. Note the shape of the dif-
ferent plateaus: seen in the λ2λ4-plane, the slopes of the ridges seem to be well
described by (52) where Lk = 4, 8, and 12, for the three ridges corresponding to
changes from three to two, from two to one, and from one to zero pitches, re-
spectively. The signal corresponding to Figure 2 has a relatively low level of noise.
Increasing the noise level, the least regularized solutions, i.e., with λ2 and λ4 close
to zero, results in more than three non-zero pitches. Guided by this observation,
one could reduce the search for (λ2, λ4) from a 2-D to a 1-D search by using a

116



5. Self-regularization

Algorithm 2 Self-Regularized PEBSI-Lite

1: initiate � = 1
2: repeat {sinusoidal component estimation}
3: ω̂� ← � sinusoidal components from ESPRIT
4: BIC� ← 2N log σ̂2(ω̂�) + (5�+ 1) log N
5: until BIC� > BIC�−1

6: ω̂�+δ ← �+δ sinusoidal components from ESPRIT, where δ ≥ 1 is a safety
margin

7: construct dictionary W from ω̂�+δ

8: L← largest number of active harmonics among candidate pitches in W
9: initiate λ = ε, k = 1

10: σ̂2
y ← Var

(
y
)

11: σ̂2
MLE ← maximum likelihood (least squares) estimate of noise power

12: repeat {regularization parameter line search}
13: λ2 ← λ, λ4 ← L

2λ
14: form amplitude estimate â(k) from Algorithm 1
15: estimate the power of the model residual σ̂2(λ2, λ4)
16: λ← λ+ ε
17: k← k + 1
18: until

(
σ̂2(λ2, λ4)− σ̂2

MLE

)
> τσ̂2

y

19: â← â(k−1)

re-parametrization. Keeping the plateaus in Figure 2 and our assumption of spec-
tral smoothness in mind, we should expect a desirable solution to correspond to
a (λ2, λ4)-pair with λ2 ≤ λ4. In order to get solutions regularized with respect to
spectral smoothness, while keeping the risk of getting only zero solutions low, the
following parametrization can be used. Let λ denote the only free parameter and
set

λ2 = λ (53)

λ4 =
L
2
λ (54)

where L is the largest number of harmonics among the pitches present in the
signal. Although L is unknown, it can be estimated during the dictionary con-
struction phase using the BIC and ESPRIT estimates, permitting us to conduct a
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Estimator SNR (dB) -5 0 5 10 15 20

PEBS-TV
λ2 0.2 0.2 0.2 0.15 0.1 0.1
λ3 0.3 0.3 0.3 0.2 0.2 0.15
λ4 0.1 0.1 0.1 0.75 0.75 0.05

PEBS
λ2 0.2 0.2 0.2 0.15 0.15 0.1
λ3 0.4 0.4 0.4 0.3 0.3 0.2

Table 1: Regularization parameter values for PEBS-TV and PEBS.

line search for the value of λ. Having obtained a solution with PEBSI-Lite using
the regularization parameter λ, the residual power σ2

λ can be estimated by least
squares. It is worth noting that in low noise environments, it can be expected
that false pitches modeling noise will not contribute much to the signal power.
Thus, the first significant rise in residual power is expected to occur when one of
the true pitches are set to zero. Therefore, we propose keeping only models that
correspond to lower values of σ2

λ and then choosing the optimal model as the one
having the least number of active pitches. The complete algorithm for the dic-
tionary construction, line search, and pitch estimation is outlined in Algorithm 2,
where ε denotes the step size of the line search and τ ∈ (0, 1) is a threshold for
detecting an increase in model residual power. The step size ε can be chosen based
on afforded estimation time, as small values of ε will result in more steps for the
line search. τ can be chosen based on estimates of the noise power, if available.

6 Numerical results

We proceed to examine the performance of the proposed algorithm using signals
simulated from the pitch model (8) as well as synthetic audio signals generated
from MIDI, and measured audio signals.

6.1 Two-pitch signal

We initially examine a simulated dual-pitch signal, measured in white Gaussian
noise at different SNRs ranging from −5 dB to 20 dB in steps of 5 dB. The SNR
is here defined as
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Figure 3: The periodogram estimate and the true signal studied in Figure 4.

SNR = 10 log10
σ2

x

σ2
e

(55)

where σ2
x and σ2

e are the powers of the signal and the noise, respectively. For a
pitch signal generated by (8), under the simplifying assumption of distinct sinus-
oidal components, the power of the signal is given by

σ2
x =

K∑
k=1

Lk∑
�=1

|ak,�|2
2

. (56)

At each SNR, 200 Monte Carlo simulations were performed, each simulation gen-
erating a signal with fundamental frequencies of 600 and 730 Hz. As PEBS and
PEBS-TV rely on a predefined frequency grid, the fundamental frequencies were
randomly chosen at each simulation uniformly on 600 ± d/2 and 730 ± d/2,
where d is the grid point spacing, to reflect performance in present of off-grid
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Figure 4: Percentage of estimated pitches where both fundamental frequencies lie
at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of
SNR. Here, the pitches have [5, 6] harmonics, respectively, and Lmax = 10.

effects. The phases of the harmonics in each pitch were chosen uniformly on
[0, 2π), whereas all had unit magnitude. The signal was sampled at fs = 48 kHz
on a time frame of 10 ms, yielding N = 480 samples per frame. As a result, the
pitches were spaced by approximately fs/N Hz, which is the resolution limit of
the periodogram. This is also seen in Figure 3, illustrating the resolution of the
periodogram as well as the frequencies of the harmonics, at SNR = −5 dB. From
the figure, it may be concluded that the signal contains more than one harmonic
source, as the observed peaks are not harmonically related. Furthermore, it is clear
that the fundamental frequencies are not separated by the periodogram, indicat-
ing that any pitch estimation algorithm based on the periodogram would suffer
notable difficulties. For PEBSI-Lite, the estimates are formed using Algorithm 2
with τ = 0.1 and ε = 0.05. The safety margin for the sinusoidal model order
is δ = 1. For PEBS and PEBS-TV, the estimation procedure is initiated using
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Figure 5: Percentage of estimated pitches where both fundamental frequencies lie
at most 2 Hz, or d/5 = 1/50N , from the ground truth, plotted as a function of
SNR. Here, the pitches have [10, 11] harmonics, respectively, and Lmax = 20.

a coarse dictionary, with candidate pitches uniformly distributed on the interval
[280, 1500] Hz, thus also including ωp/2 and 2ωp for both pitches. The coarse
resolution was d = 10 Hz, i.e., still a super-resolution of fs/10N . After estima-
tion on this grid, a zooming step was taken where a new grid with spacing d/10
was laid ±2d around each pitch having non-zero power. The regularization para-
meter values used for PEBS-TV and PEBS are presented in Table 1. The values
where selected using manual cross-validation for similar signals. Comparisons were
also made with the ANLS, ORTH, and the harmonic Capon estimators, which
had been given the oracle model orders (see [9] for more details on these meth-
ods). The simulation and estimation procedure was performed for two cases; one
where the number of harmonics Lk were set to 5 and 6, and one where Lk were
set to 10 and 11. In the former case, Lmax = 10 and in the latter, Lmax = 20, i.e.,
well above the true number of harmonics.
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Figure 6: The percentage of the estimates in which the model order choice cri-
terion (50) correctly determines the number of sinusoidal components in the two-
pitch signal, for the case of 5 and 6 harmonics, and 10 and 11 harmonics, respect-
ively.

Figures 4 and 5 show the percentage of pitch estimates where both lie within
±2 Hz from the true values for the six compared methods, for the case of 5 and
6 as well as 10 and 11 harmonics, respectively. In this setting, PEBS performs
poorly, as the generous choices of Lmax allow it to pick the sub-octave, as pre-
dicted. As can be seen in Figure 4, PEBSI-Lite performs better than all reference
methods for SNRs above and including 10 dB despite not having the model order
information given to ORTH, ANLS, and Capon, nor having the supervised regu-
larization parameter choices of PEBS and PEBS-TV. Though, in higher noise set-
tings, the performance of PEBSI-Lite degrades and its pitch frequency estimates
are worse than those produced by the reference methods for SNRs below 10 dB.
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Figure 7: The percentage of the estimates in which the model order choice cri-
terion (50) selects a model with too few sinusoidal components for the two-pitch
signal, for the case of 5 and 6 harmonics, and 10 and 11 harmonics, respectively.

For the case of 10 and 11 harmonics, PEBSI-Lite performs on par with the ref-
erence methods for SNRs above and including 15 dB, while performing worse in
higher noise settings. As shown in Figures 6 and 7, the drop in performance for
lower SNRs results from the difficulty of accurately estimating the total number
of sinusoids, as used by the ESPRIT step, for such signals. In Figure 6, the per-
centage of the estimates in which the the BIC criterion (50) correctly determines
the number of sinusoidal components in the signal is presented, whereas Figure 7
shows the percentage of the estimates in which the BIC criterion (50) determines
a too low model order. As is clear from the figures, the model order estimates
strongly degrade for lower SNRs, thus causing the PEBSI-Lite dictionary to be
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inaccurate. Clearly, all the other methods here shown using oracle model order
information would suffer drastically from such inaccuracies, although it should be
stressed that one may expect these methods to suffer further, as they also need to
perform an exhaustive combinatorial search to determine the number of pitches
given the found number of sinusoids.

6.2 Three-pitch signal

To further examine the performance of Algorithm 2, it was evaluated using a
simulated triple-pitch signal, measured in white Gaussian noise at different SNR
levels, ranging from 0 dB to 25 dB, in steps of 5 dB. Instead of using unit mag-
nitudes of the harmonics, as was the case for the above presented two-pitch set-
ting, the spectral envelopes of the three pitch components were constructed from
periodograms of three different speech recordings. The formants of the three
pitches are displayed in Figure 8. The pitches had fundamental frequencies 200,
350, and 530 Hz, and 7, 8, and 11 harmonics, respectively. At each level of SNR,
1000 Monte Carlo simulations were performed, where the fundamental frequen-
cies were chosen uniformly on 200 ± 2.5, 350 ± 2.5, and 530 ± 2.5 Hz, re-
spectively, and the phase of each harmonic was chosen uniformly on [0, 2π). The
signal was sampled in a 40 ms window at a sampling frequency of 20 kHz, gener-
ating 800 samples of the signal. The algorithm settings were τ = 0.1, ε = 0.05,
and δ = 1. Here, Algorithm 2 was compared to the ANLS, ORTH, harmonic
Capon, as well as PEBS-TV estimators. The three first comparison methods were
given the oracle model orders.

To illustrate the fact that the choice of regularization parameter values is
not universal, the values found using cross-validation for the two-pitch case (see
Table 1) were used for PEBS-TV initially. However, this resulted in such poor
performance that the parameter values had to be slightly altered in order to make
PEBS-TV an interesting reference method. As a compromise, the parameter val-
ues corresponding to SNR 20 dB in Table 1 were used for all SNRs in this sim-
ulation setting. For the dictionaries of PEBSI-Lite and PEBS-TV, Lmax = 16
was used, well above the true model orders. Figure 9 shows the percentage of the
pitch estimates where all three pitch estimates lie within ±2 Hz of the true values
for the five different methods. As can be seen, the performance of PEBSI-Lite
is again poor for low SNRs while improving considerably for lower noise levels.
The low scoring for PEBSI-Lite for low SNRs is mainly due to the selection of
wrong model orders. This is illustrated in Figure 10, which shows the percentage
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Figure 8: Magnitudes for the harmonics of the three pitches constituting the test
signal for the Monte Carlo simulations.

of the estimates in which PEBSI-Lite and PEBS-TV select the correct number of
pitches. As can be seen, for an SNR of 0 dB, PEBSI-Lite selects the true model
order in less than 10% of the simulations. Mostly, a too high model order is se-
lected, which is to be expected as the model order choice is based on the power
of the model residual and that the pitch estimates depend on the accuracy of the
initial ESPRIT estimates. Arguably, one could improve on these results by either
using prior knowledge of the noise level or by estimating it, and based on this
make the model order selection scheme more robust. Figure 11 shows the root
mean squared error (RMSE) for the estimated fundamental frequencies. Instead
of presenting three separate RMSE plots, Figure 11 shows an aggregate version
where the MSE for the three pitches have been summed. In order to compute
relevant RMSE values for PEBSI-Lite and PEBS-TV, estimates where the model
order has not been correctly determined have been discarded. Thus, for an SNR
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Figure 9: Percentage of estimated pitches where all three fundamental frequencies
lie at most 2 Hz from the ground truth.

level of 0 dB, the RMSE values for PEBSI-Lite are based on quite few samples.
However, as PEBSI-Lite finds the correct model order for high SNR levels with
high probability, the corresponding RMSE values are more trustworthy in these
regions. For the reference methods ORTH, ANLS, Capon, and PEBS-TV, some
of the estimates deviate from the true pitch frequencies with as much as 100 Hz,
resulting in very large RMSE values should all estimates be used in their computa-
tion. Thus, in order to obtain RMSE values comparable to that of the PEBSI-Lite
estimates, only estimates found within 2 Hz of the true pitch frequencies are used
when computing RMSE for the reference methods. With this, as can be seen
in Figure 11, PEBSI-Lite performs worse than the reference methods for SNRs
below and including 10 dB, while outperforming all reference methods except
Capon for SNRs above and including 20 dB. Though, one should bear in mind
that the RMSE values for Capon for these SNRs are based on only 15% respect-
ively 8% of the available pitch estimates, as can be seen in Figure 9, and that the
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Figure 10: Estimated probability of PEBSI-Lite determining the correct number
of pitches for the triple pitch test signal.

Capon method has been allowed oracle model order knowledge. Also presented
in Figure 11 is the root Cramér-Rao lower bound (CRLB) for the estimates of
the pitch frequencies. As the frequencies of the harmonics in this case are distinct
and the additive noise is white Gaussian, the lower limit for the variance of an
unbiased pitch frequency estimate f̂k is given by [9]

Var
(

f̂k
)
≥ 6σ2

(
fs/2π

)2

N (N 2 − 1)
∑Lk

�=1 |ak,�|2�2
(57)

where σ2 is the power of the additive noise, ak,� is the amplitude of harmonic �
of pitch k, N is the number of data samples, and fs is the sampling frequency.
In analog with the summed MSE values for the pitch estimates, the root CRLB
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Figure 11: The RMSE for the fundamental frequency estimates for the triple
pitch test signal, as compared to the (root) CRLB. For PEBSI-Lite and PEBS-
TV, only estimates where the number of pitches is found are considered. For the
reference methods ORTH, ANLS, Capon, and PEBS-TV only estimates where
all estimated pitch frequencies lie within 2 Hz of the true pitch frequencies are
considered.

curve presented here is the sum of the three separate limits, i.e.,

CRLB =

3∑
k=1

6σ2
(

fs/2π
)2

N (N 2 − 1)
∑Lk

�=1 |ak,�|2�2
. (58)

As can bee seen in Figure 11, PEBSI-Lite, as well as the other methods, fails
to reach the CRLB. In an attempt to improve the PEBSI-Lite estimates for SNR
levels above and including 15 dB, a non-linear least squares (NLS) search was per-
formed, using the presented algorithm estimate as an initial estimate of all the un-
known parameters, including the model orders. This means that we obtain refined
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estimates of the pitch frequencies fk contained in the vector f as (see, e.g, [42])

f = arg max
f

yHB
(
BHB

)−1
BHy (59)

where B is a block matrix consisting of K blocks,

B =
[

B1 . . . BK
]

(60)

where each block Bj corresponds to a separate pitch and is constructed as

Bj =

⎡
⎢⎣

ei2πfj/fs t1 . . . ei2πLj fj/fs t1

...
...

ei2πfj/fs tN . . . ei2πLj fj/fs tN

⎤
⎥⎦ . (61)

Given that the PEBSI-Lite estimates are fairly close to the true pitch frequencies,
we expect the NLS scheme to converge if we solve (59) using routines like MAT-
LAB’s fminsearch initialized with the PEBSI-Lite estimates. However, the success
of such a scheme is not only dependent on good initial frequency estimates, we
also need the true number of harmonics Lj for each pitch.

Figure 12 presents a plot of the average absolute error in the number of de-
tected harmonics for each pitch for the test signal when using PEBSI-Lite. As can
be seen, the number of detected harmonics is only correct for the third pitch even
for the largest SNRs. The errors in number of harmonics for the first and second
pitches are due to the relatively small amplitudes of both pitches highest order
harmonics, as shown in Figure 8, making these harmonics prone to occasionally
being cancelled out by the PEBSI-Lite regularization penalties. Using erroneous
harmonic orders as input to the NLS search, we expect the resulting pitch fre-
quency estimates to be somewhat biased. Indeed, this is what happens. Figure 13
presents a plot of the RMSE of the pitch frequency estimates when the PEBSI-
Lite estimates for SNRs above and including 15 dB have been post-processed
using NLS. As can be seen, the estimator still fails to reach the CRLB, although
the estimation errors have become smaller. Note also that the slopes of the RMSE
curve for PEBSI-Lite and CRLB are now somewhat different, which is due to that
the erroneous harmonic orders induces varying degrees of bias in the estimates.
Considering computational complexity, ANLS and ORTH are by far the fastest
methods, with average running times of 0.03 and 1.6 seconds per estimation cycle
on a regular PC, respectively. For Capon and PEBS-TV, the corresponding run-
ning times are 6.1 and 6.4 seconds for the considered example, respectively, while
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Figure 12: The average absolute error in the number of detected harmonics
(L1,L2,L3) for the three pitches of the test signal when using PEBSI-Lite. Only
estimates where the correct number of pitches is found are considered.

running PEBSI-Lite using Algorithm 2 requires on average 40.1 seconds per es-
timation cycle. As a comparison, it may be noted that if one replaces Algorithm 1
in Algorithm 2 to instead use SeDuMi or SDPT3, the computation time for this
step of Algorithm 2 increases almost tenfold3. Although Algorithm 2 is consid-
erably more expensive to run than the reference methods, it should be noted that
the method does not require any user input in terms of regularization parameter
values. PEBS-TV could arguably be tuned to perform on par with PEBSI-Lite
if one is allowed to change the values of its regularization parameters. However,
PEBS-TV needs the setting of three parameter values and after trying only seven
such triplets, the computational time is the same as running Algorithm 2 in its

3For all algorithms, the given execution times are those of direct implementations of the corres-
ponding methods. Clearly, these methods can be more efficiently implemented by fully exploiting
their inherent structures.
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Figure 13: The RMSE for the fundamental frequency estimates where the estim-
ates obtained using PEBSI-Lite have been improved using NLS for SNR levels
15, 20, and 25 dB, as compared to the (root) CRLB. Only estimates where the
number of pitches is found are considered.

entirety.

6.3 MIDI and measured audio signals

Figure 14 shows a plot of the spectrogram of a signal consisting of three MIDI-
saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz.
The signal was sampled initially at 44 kHz and then down sampled to 20 kHz.
The 311 Hz saxophone starts out alone and is after 0.45 seconds joined by the
277 Hz saxophone and after 0.95 seconds by the 440 Hz saxophone. The image
is quite blurred for the later parts of the signal, but for the first half second, one
can clearly see the harmonic structure of the saxophone pitch. It is worth noting
that a large number of harmonics is present. Figure 15 shows pitch estimates pro-
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Figure 14: Spectrogram for a signal consisting of one, two and lastly three MIDI-
saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz,
respectively.

duced by Algorithm 2, using τ = 0.1 and Lmax = 15, when applied to the same
signal, using windows of lengths 40 ms. As can be seen, the estimates are quite
accurate, with the exception of the beginning of the first tone and for a single
frame where the 440 Hz pitch is mistaken for a 220 Hz pitch. It is worth not-
ing that such errors may be avoided using the information resulting from earlier
frames, for instance using an approach similar to [22]. The figure also shows the
estimated pitch tracks obtained using the ESACF estimator [43]; this estimator
requires a priori knowledge of the number of sources in the signal, but is, given
this information, able to estimate the number of harmonics of each source. Here,
ESACF has thus been provided oracle knowledge of the number of sources, with
each source given the same maximum harmonic order as used by PEBSI-Lite (as
before, the latter also has to estimate the number of sources). As can be seen from
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Figure 15: Pitch tracks for a signal consisting of one, two, and lastly three MIDI-
saxophones playing notes with fundamental frequencies 311, 277, and 440 Hz,
respectively.

the figure, the ESACF estimator fails to track the pitches in several of the frames.
In particular, it fails to estimate the pitch with fundamental frequency 440 Hz
altogether. Furthermore, Figure 16 examines the performance of the PEBSI-Lite
estimator when applied to a measured audio signal. The considered signal consists
of three trumpets playing the notes A4, B4, and C�4, which, using concert tun-
ing, corresponds to the fundamental frequencies 440, 493.883, and 554.365 Hz,
respectively. However, it should be noted, that as the musicians play with vibrato,
the fundamental frequencies are not constant across the frames, which may also
be seen in the resulting estimates. To facilitate for a comparison, the ground truth
estimates of the fundamental frequencies have been obtained using the joint order
and (single) pitch estimation algorithm ANLS, presented in [11], when applied
to each individual trumpet separately. As a comparison, the figure also shows
the three fundamental frequencies obtained using the ESACF estimator (which
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Figure 16: Pitch tracks produced by PEBSI-Lite as well as ESACF when applied
to a triple-pitch signal consisting of three trumpets. The ground truth has been
obtained using ANLS applied to the single source signals.

has here, again, been allowed oracle knowledge of the number of sources, but
using the same maximum number of harmonics as used by PEBSI-Lite). As can
be seen, PEBSI-Lite accurately tracks each of the three pitches, even catching the
pitch variations caused by the vibrato. As before, it may be noted that the estim-
ates produced by ESACF have lower accuracy as compared to PEBSI-Lite, with
the ESACF estimator here erroneously picking one of the sub-octaves in some of
the frames. The trumpet signal was sampled at 8 kHz. The pitch estimates where
formed in non-overlapping frames of length 30ms.

The performance of PEBSI-Lite and ESACF on real audio was also evaluated
on the Bach10 dataset [44]. This dataset consists of ten chorales composed by
Johann Sebastian Bach. The parts are performed by a violin, a clarinet, a saxo-
phone, and a bassoon, with each piece being approximately 30 seconds long. Each
piece was sampled at 44.1 kHz, then downsampled to 22.05 kHz, and divided
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Performance measure PEBSI-Lite ESACF

Accuracy 0.499 0.269
Precision 0.631 0.471
Recall 0.609 0.386

Table 2: Performance measures for PEBSI-Lite and ESACF when evaluated on
the Bach10 dataset.

into non-overlapping frames of length 30 ms. Estimates of the ground truth
fundamental frequencies in each frame were obtained by applying YIN [45] to
each individual channel. Obvious errors in the YIN estimates were then corrected
manually.

As before, to yield its best possible performance, ESACF was given oracle
knowledge of the number of present pitches and both methods were given a max-
imum harmonic order of 15. For PEBSI-Lite, τ = 0.1 was used. Table 2 presents
the resulting measures of the accuracy, precision, and recall for the dataset, defined
as

Accuracy =

∑I
i=1

∑Ti
t=1 TP(t, i)∑I

i=1

∑Ti
t=1 TP(t, i) + FP(t, i) + FN(t, i)

(62)

Precision =

∑I
i=1

∑Ti
t=1 TP(t, i)∑I

i=1

∑Ti
t=1 TP(t, i) + FP(t, i)

(63)

Recall =

∑I
i=1

∑Ti
t=1 TP(t, i)∑I

i=1

∑Ti
t=1 TP(t, i) + FN(t, i)

(64)

where TP(t, i), FP(t, i), and FN(t, i) denote the number of true positive, false
positive, and false negative pitch estimates, respectively, for frame t in music piece
i. Furthermore, Ti is the number of frames for music piece i, whereas I is the
number of music pieces. Here, an estimated pitch is associated with a ground
truth pitch only if its fundamental frequency lies within a quarter tone, or 3%,
of the ground truth pitch (see also, e.g., [46]). To avoid the most non-stationary
frames, where we cannot expect the estimates produced by PEBSI-Lite and ES-
ACF, nor the ground truth, to be reliable, frames containing note onsets, defined
as frames where one of the ground truth pitches change with more than a semi-
tone, have been excluded when computing the measures. As can be seen from
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Figure 17: Pitch tracks produced by PEBSI-Lite when applied to first 15 seconds
of J. S. Bach’s Ach, lieben Christen, performed by a violin, a clarinet, a saxophone,
and a bassoon. The ground truth has been obtained using YIN applied to the
single source signals.

the table, PEBSI-Lite performs better than ESACF for all of the three considered
measures accuracy, precision, and recall. As PEBSI-Lite does, for now, not incor-
porate information between adjacent frames, these results are most promising for
what might be achievable when extended to include such information.

As an illustration of the performance, Figures 17 and 18 present pitch tracks
produced by PEBSI-Lite and ESACF when applied to the first 15 seconds of
one of the pieces in the dataset, namely Ach, lieben Christen. As can be seen
from the figures, PEBSI-Lite tracks the fundamental frequencies of the violin, the
saxophone, and the bassoon fairly well, while having trouble with the clarinet.
This problem is caused by the shape of the spectral envelope of the clarinet, as
it is dominated by a large peak at the fundamental frequency, with very weak
overtones, and thus deviates from the here used model assumption of spectral
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Figure 18: Pitch tracks produced by ESACF when applied to the first 15 seconds
of J. S. Bach’s Ach, lieben Christen, performed by a violin, a clarinet, a saxophone,
and a bassoon. The ground truth has been obtained using YIN applied to the
single source signals.

smoothness. It may also be noted that PEBSI-Lite has better performance at the
stationary parts of the signal, while producing more erroneous estimates at note
on- and offsets due to quickly changing spectral content. The ESACF estimator
on the other hand has serious problems tracking the violin and clarinet, often
picking sub-octaves estimates instead of the correct pitch, although being able to
track the saxophone and bassoon fairly well.
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7 Conclusions

The proposed algorithm PEBSI-Lite has been shown to be an accurate method for
multi-pitch estimation. The method was shown to perform as good as, or better
than, state-of-the-art methods. As compared to related methods, the presented
algorithm requires fewer regularization parameters, simplifying the calibration of
the method. Furthermore, the work introduces an adaptive dictionary scheme
for determining suitable regularization parameters. Combined with this scheme,
PEBSI-Lite was shown to outperform other multi-pitch estimation methods for
high levels of SNR, while breaking down in too noisy settings. However, even
if this scheme would fail to select the correct model order, the obtained efficient
dictionary facilitates a more rigorous grid search in terms of computational com-
plexity. Such a grid search could also exploit information about the solution
surface obtained from the line search. Using an additional refinement step, the
proposed algorithm is found to yield estimates reasonably close to being efficient,
if considering that the method has not been allowed any knowledge of the model
order of the signal.
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Abstract

This work treats the estimation of chroma features for harmonic audio signals
using a sparse reconstruction framework. Chroma has been used for decades as
a key tool in audio analysis, and is typically formed using a periodogram-based
approach that maps the fundamental frequency of a musical tone to its corres-
ponding chroma. Such an approach often leads to problems with tone ambigu-
ity, which we adress via sparse modeling, allowing us to appropriately penalize
ambiguous estimates while taking the harmonic structure of tonal audio into ac-
count. Furthermore, we also allow for signals to have time-varying envelopes.
Using a spline-based amplitude modulation of the chroma dictionary, the presen-
ted estimator is able to model longer frames than what is conventional for audio,
as well as to model highly time-localized signals, and signals containing sudden
bursts, such as trumpet or trombone signals. Thus, we may retain more signal
information as compared to alternative methods. The performance of the pro-
posed methods is evaluated by analyzing average estimation errors for synthetic
signals, as compared to the Cramér-Rao lower bound, and by visual inspection
for estimates of real instrument signals, showing strong visual clarity, as compared
to other commonly used methods.

Keywords: Chroma, multi-pitch estimation, sparse modeling, amplitude
modulation, block sparsity, ADMM
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1 Introduction

Music is an art-form that people have enjoyed for millennia. Perhaps music is even
enjoyed more today, as the development of personalized computers and smart
telephones have enabled ubiquitous music listening, automatic identification of
songs, or even the chance for anyone to be a self-made DJ. When listening, learn-
ing, composing, mixing, and identifying music, there are a number of musical
features one may utilize (see, e.g. [1]). One of the fundamental building blocks in
music, the musical note, is a periodic sound, typically characterized by its pitch,
timbre, intensity, and duration. For transcription purposes, i.e., to separate one
tone from another, pitch serves as the common descriptor. From a conventional
perspective, pitch is measured on an ordinal scale, at which a pitch is humanly
perceived as either higher, lower, or the same as another pitch. However, from
a perspective of scientific audio analysis, pitches are quantified using an interval
scale, in which its spectral distribution of energy is modeled. A single pitch may
be seen as a superposition of several narrowband spectral peaks, which are approx-
imately integer multiples of a fundamental frequency. Thus, we refer to the group
of frequencies as the pitch, and to each frequency component as the harmonic,
or, alternatively, as the partial harmonic. As to the fundamental frequency, it is
either the lowest partial, or, if that partial is missing, the smallest spectral distance
between adjacent partials. The number of harmonics in a certain pitch, as well as
the relative power between these, varies greatly between different sounds, as well
as over time. Identifying pitches in a way similar to our human perception has
proved to be a difficult estimation problem. Partly, this difficulty is due to coin-
ciding frequency components between certain pitches. For instance, two pitches,
where one has exactly twice the fundamental frequency of the other, are referred
to as being octave equivalent, as the relative distance by a factor of two is called
an octave. These will typically share a large number of partials, often making an
estimation procedure ambiguous between octaves. To further complicate matters,
other pairs of pitches may also have many coinciding partials, and these are typ-
ically found together in audio, an aspect which is referred to as harmony, since
they are perceptually pleasant to hear [2]. Jointly estimating several pitches in
a signal, i.e., multi-pitch estimation, has been thoroughly examined in the liter-
ature (see e.g., [3–5], and the references therein). However, separating intricate
combinations of frequency components into multiple pitches often proves diffi-
cult, even if the harmonic structure of each musical tone is taken into account.
Typically, issues arise when the complexity of the audio signal increases, such that
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there are simultaneously two or more pitches with overlapping spectral content
present, for instance played by two or more instruments. In the Western musi-
cological system, the frequency interval corresponding to an octave is discretized
into twelve intervals, called semi-tones. By gathering all pitches with octave equi-
valence to their respective semi-tone, these form twelve groups of pitches, called
chroma. As octave equivalent pitches share a large number of harmonics, the no-
tion of chroma is thus a method for grouping together those pitches which are
perceived as most similar. Therefore, chroma features are widely used in applica-
tions such as cover song detection, transcription, and recommender systems (see,
e.g. [6–8]). Most methods for chroma estimation begin by obtaining estimates
of the pitches in a signal, which are then mapped into their respective chroma.
Some of these take the harmonic structure into account, and others do not. The
commonly used method by Ellis [9] is formed via a time-smoothed version of
the Short-Time Fourier Transform (STFT), whereas the CP and CENS methods
by Müller and Ewert [10] use a filterbank approach. The method in [11] uses
a sparse methodology, and the method in [12] uses a non-negative least squares
approach. Neither of these take the harmonic structure of pitches into account.
Other approaches instead allow for the harmonic structure, such as the method
presented in [13], which uses a comb filtering technique, and the method in [14],
in which post-processing on the periodogram is performed. Most existing meth-
ods have in common that their estimates are not directly formed from the actual
data, but rather on a representation of these measurements, such as, for instance,
using the STFT or the magnitude of the periodogram. Herein, we propose to es-
timate the chroma using a sparse model reconstruction framework, where explicit
model orders are not required. The estimate is found as the solution to a con-
vex optimization problem, where the solution is obtained as a linear combination
of an over-complete chroma-based set of Fourier basis functions. Overfitting is
avoided by introducing convex penalties promoting solutions having the sought
chroma structure. The model orders are thus set implicitly, using tuning para-
meters which may be obtained using cross-validation, or by utilizing some simple
heuristics. In this paper, we generalize upon the work in [5], taking into account
the chroma structure, as well as allowing the frequency components to have time-
varying amplitudes. The proposed extension increases robustness, as it allows
for highly non-stationary signals, or signals with sudden bursts, like trumpets,
whose nature may easily be misinterpreted when using ordinary chroma selection
techniques. As in [15], the extended model uses a spline basis to detail the time-
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varying envelope of the signal, thereby enabling the amplitudes to evolve smoothly
with time. The theoretical performance of the proposed estimator is verified using
synthetic signals, which are compared to the Cramér-Rao Lower Bound (CRLB),
which we here present for the chroma signal model. The practical use of the pro-
posed estimator is illustrated using some excerpts from a recorded trumpet signal,
showing an increased visual performance, as compared to some typical reference
methods.

2 The chroma signal model

A sound signal typically contains a broad band of frequency content. However,
for tonal audio, it is well-known that a predominant part of the spectral energy
is confined to a small number of frequency locations. Let ψ(f , �) denote the
function which describes the frequency of the �:th component. If this function is
known, the entire group of components, or partials, representing a musical tone
may be described by their fundamental frequency, f . Many oscillating sources,
such as, for instance, the human vocal tract and stringed, or wind, instruments,
emit tonal audio where the partials are integer multiples of the fundamental, i.e.,

ψ(f , �) = f �, � ∈ L ⊆ N (1)

where L denotes the index set of partials present in the signal. However, for an
arbitrary L, the definition in (1) is not sufficient to uniquely describe a pitch, as
the set of frequencies may map to infinitely many combinations of f and L. For
example, for any n ∈ N, the two pitches

ψ = {ψ(f , �) : f ∈ R,∀� ∈ L ⊆ N} (2)

ψ′
=

{
ψ(f ′, �′) : f ′

=
f
n
,∀�′ ∈ L′ = {n� : � ∈ L}

}
(3)

have identical frequency components. Therefore, some constraints need to be
imposed on L. A common assumption for pitches is spectral smoothness of the
harmonics, i.e., that adjacent harmonics should be of comparable magnitude [16].
This implies that L typically has few missing harmonics, and that n is as small as
possible. However, in some signals, the first harmonic might be missing, so rather
than defining the pitch as the signal’s smallest frequency component, we define
the fundamental frequency more rigorously. If the set of frequencies in a pitch
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may be described by (2), then for any n ∈ Q, the fundamental frequency is the
largest f ′ = f /n which fulfill (3), i.e., which ensures thatL′ = {n�, � ∈ L} ⊆ N.
The index set therefore plays a vital role in the definition of the pitch frequency.
Furthermore, because of the harmonic structure, many different pitches will have
coinciding partials. To illustrate this, consider two pitches

ψ = {ψ(f , �) : f ∈ R,∀� ∈ {1, 2, . . . ,L}} (4)

ψ′
=

{
ψ(f ′, �′) : f ′

=
f
n
,∀�′ ∈ {1, 2, . . . , nL}

}
(5)

which consist of all harmonics from � = 1 up to L and nL, respectively. Here,
n may be a rational number, as long as (5) is fulfilled. Indeed, both pitches
are unique according to our definition. Still, they will share a large number of
harmonics, in fact L of them, as ψ forms a perfect subset of ψ′, i.e., ψ ∈ ψ′, and
they will also, as sounds, be perceived as being similar, especially if n is small. This
motivates the introduction of chromas, which are also referred to as pitch classes.
The chroma, which means ’color’ in greek, is the collection of pitches which are
an integer number of octaves apart, meaning that n in (5) fulfills

n = 2−m,m ∈ Z (6)

with m ∈ N denoting the octave, which implies that n ∈ Q. The fundamental
frequency may thus be modeled in terms of its chroma, c̃, and its octave, m, as
(see also, e.g., [1])

f = fb 2c̃+m (7)

where c̃ ∈ [0, 1) and fb denote the chroma class and a base (tuning) frequency,
respectively. Using this formulation, the parametric pitch model presented in [17]
may be extended into a parametric chroma model. Thus, the frequency peaks in
a complex-valued1 noise-free musical tone may be modeled as

x(t) =
L∑

�=1

a�(t)e
i2πfb2c̃+m�t (8)

for a time-frame t = 1, ...,N , where a�(t) denotes the complex-valued amplitude
of the �:th harmonic, which may be either constant over the time-frame, or may

1In order to simplify notation, we here examine the discrete-time analytic signal version (see,
e.g., [3, 18]) of the measured audio signal.
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vary slowly. Here, c̃, m, and L denote the chroma, octave, and the number of
sinusoids of the tone, respectively. It may be noted that the data is thus modeled
in the time domain, as this is shown to render more efficient estimates than using
the magnitude STFT [3]. In most Western music, there are twelve chroma classes,
defined as the twelve semitones

C ,C#,D,D#,E, F , F#,G,G#,A,A#, and B (9)

and the concatenation of a chroma with its octave number, e.g., A4, denotes a
musical tone. Here, two adjacent semitones are relatively spaced by 21/12. Thus,
the chroma parameter c̃ is discretized into twelve values, uniformly spaced on
[0, 1), i.e.,

c̃ ∈
{

0,
1

12
,

2
12

. . . ,
11
12

}
(10)

The tuning parameter fb often varies somewhat amongst musicians, but a com-
mon standard sets ’A4’ to 440 Hz [19]. This corresponds to c̃ = 9/12, and
m = 4, yielding the (normalized) tuning frequency

fb =
440
fs

2−(9/12+4) (11)

where fs denotes the sampling frequency. Our auditory system does not only
perceive tones with these chroma as being distinctly different from each other,
but also as equally spaced, which gives credit to the idea that our hearing is log-
tempered. Furthermore, coinciding harmonics are not restricted to pitches within
the same chroma, as pitches in different chromas may yield coinciding harmon-
ics. For instance, for n = 3/2 ≈ 27/12, the two pitches in our example will
have many coinciding partials; two such tones are referred to as fifths. Fifths are
thus spaced by approximately seven semitones and are commonly used together
in musical compositions, as the overlapping spectral content is often deemed per-
ceptually pleasant. Thus, if assuming that a polyphonic audio signal consists of
K superimposed musical tones, the signal may be well modeled as

y(t) = x(t) + e(t) (12)

where

x(t) =
K∑

k=1

Lk∑
�=1

ak,�(t)e
i2πfb2ck+mk �t (13)
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with the subscript k denoting the parameter of the k:th tone, and where e(t)
is some form of additive noise. As (13) only models the sinusoidal part of the
signal y(t), any other features, such as, e.g., the timbre, will, without any loss
of generality, be modeled as a part of the noise. In this work, the amplitude is
allowed to be either constant, i.e., ak,�(t) = ak,l ,∀(k, �), or slowly varying within
each considered time-frame of N samples. Reminiscent to the approach in [15],
we model the amplitude’s time-varying nature using a spline basis with uniformly
spaced knots (see, e.g., [20, p. 151]), i.e., such that the amplitudes in the time-
frame follow a superposition of R B-spline bases,

ak,�(t) =
R∑

r=1

γr(t)sk,�,r (14)

where the r:th spline base is weighted by an unknown complex amplitude, sk,�,r .

3 Sparse chroma modeling and estimation

One way of estimating the unknown parameters in (13) may be to form the es-
timate as the one minimizing the (possibly weighted) squared estimation resid-
uals, e.g., by using the non-linear least squares (NLS) algorithm. However, such
an estimate requires precise knowledge about the model orders, something which
generally is unknown. Such model orders are typically difficult to estimate for
multi-pitch signals, as both the number of pitches and the number of harmon-
ics in each pitch must then be determined. Furthermore, even if the true model
orders are known, the NLS estimate will still require solving a multidimensional
minimization over a typically multimodal cost function, thus necessitating an ac-
curate search initialization [21]. On the other hand, if one tries to estimate the
tonal content using, for instance, a periodogram-based approach, where the spec-
tral peaks are estimated without taking the chroma structure into account, and
thereafter grouping together the resulting estimates, this yields an involved com-
binatorial problem, as a number of frequency components typically belong in sev-
eral tones, due to harmony. Instead, in this work, we construct an estimator based
on the assumption that any given frequency component will be part of an ordered
group of harmonic frequencies, i.e., a pitch. To achieve this, we propose to use
a sparse modeling approach, reminiscent of the one presented in [5], where the
non-linear model in (13) is replaced by a linear approximation of it, consisting of
a highly overdetermined linear system, where the number of non-zero parameters
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in the sought solution should be few, i.e., the solution should be sparse. Thereby,
one may take the spectral structure of musical tones into account, while circum-
venting the need for explicitly estimating the model orders. Thus, consider the
linear approximation

x(t) ≈ x̃(t) =
11∑

c=0

Mmax∑
m=Mmin

Lmax∑
�=1

ac,m,�e
i2πfb�t2(c/12+m)

(15)

where x̃(t) denotes the signal model representing the chromas in the Western
musicological system, as described in (9)-(10). By denoting the twelve semitones
using c = 12c̃, ordered as in (9), (15) includes all candidate tones within a range
of octaves, from Mmin to Mmax. Furthermore, Lmax denotes the maximal number
of harmonics considered, and ac,m,� the (complex-valued) amplitude for the �:th
harmonic in the m:th octave of pitch class c. From this approximation, it is clear
that the spectral content is discretized into Q = 12(Mmax −Mmin)Lmax feasible
frequencies, grouped into pitches of the same chroma. Also, as noted above, many
of the harmonics between tones typically coincide, and it is therefore insufficient
to simply map individual frequencies to a chroma, as they will likely map to
several other chromas as well. To illustrate the sought sparsity structure of the
solution, let

Ψ =

{
{ac,m,1, . . . , ac,m,Lmax}m=Mmin,...,Mmax

}
c=0,...,11

(16)

be the set of linear amplitude parameters for all possible frequencies in the over-
complete model. As the set Ψ is much larger than the actual solution set, most
amplitudes, ac,m,�, in (16) should be equal to zero, i.e., Ψ should be sparse. If,
for instance, only the key C#5 is played, then all amplitudes, except a1,5,�, for
those � present in this tone, should be zero. To measure the fit of the selected and
estimated non-zero parameters, one may examine the minimum of the squared
model residuals, by solving

minimize
Ψ

N∑
t=1

∣∣∣y(t)− x̃Ψ(t)
∣∣∣2 (17)

However, such a minimization will not promote the sought sparsity structure,
and we therefore impose constraints to ensure a more desirable sparsity structure.
In principle, we will do so by adding penalties to (17), reminiscent to the ones
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used in [22–24], which add cost to non-desirable solutions that violate the sought
sparsity pattern. The use of these will be somewhat different depending on if the
amplitudes are allowed to vary or not; in the next two sections, we will deal with
the two approaches separately.

3.1 Promoting sparsity when the amplitudes are constant

We proceed by first detailing the proposed chroma estimation procedure for the
case without amplitude modulation. To simplify the exposition, consider the
signal model in (15) for the entire time-frame expression on vector form as

y =
[

y(1) ... y(N )
]T

(18)

=

11∑
c=0

Wc ac + e � Wa + e (19)

where (·)T denotes the transpose, and where

W =
[

W0 . . . W11
]T

(20)

Wc =
[

Wc,M0 . . . Wc,M
]T

(21)

Wc,m =
[

w1
c,m . . . wLmax

c,m

]T
(22)

wc,m =

[
ei2π2(c/12+m)

. . . ei2πN 2(c/12+m)
]T

(23)

denote the dictionary of candidate tones and their partials, respectively. Also, let

a =
[

aT
c . . . aT

c

]T
(24)

ac =
[

aT
c,M0

. . . aT
c,M

]T
(25)

ac,m =
[

ac,m,1 . . . ac,m,Lmax

]T
(26)

denote the linear amplitude parameters, Ψ, of the over-complete dictionary on
vector form. Thus, the blocks-within-blocks dictionary, W ∈ CN×Q , consists of
twelve blocks of candidate chroma, such that each chroma is a block of (Mmax −
Mmin) octave equivalent pitches, where each of these, in turn, consists of a block of
Lmax Fourier vectors. Our proposed method obtains the sought sparsity structure
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by minimizing

||y−Wa||22 + λ2||a||1 + λ3

11∑
c=0

||ac ||2 + λ4||Fa||1 (27)

where λi, for i = 2, 3, 4, denotes the user-defined sparse regularizers which weigh
the importance between the different terms in (27), and where F ∈ C(Q−1)×Q

denotes the first order difference matrix, having elements Fi,i = 1 and Fi,i+1 =

−1 for i = 1, . . . ,Q − 1, and zeros elsewhere. The first term in (27) penalizes
the distance between the model and the measured signal, whereas the second
term governs the overall sparsity of the amplitudes, thus forcing small values of a
to be zero, affecting all indices equally. The third term is a group sparsity penalty,
promoting sparsity between chromas, thereby countering the contributions from
other chromas with partially overlapping spectral content. The last term in (27) is
a total variation penalty which will penalize non-zero amplitudes at wrong octaves
within the chroma, so that they will be efficiently clustered.

3.2 Promoting sparsity while allowing for time-varying amplitudes

To also allow for time-varying amplitudes, one has to consider some additions
as well as some alterations to the earlier described method. Firstly, to allow for
amplitude modulation, one has to extend the original problem with an additional
parameter dimension. Using (14), the amplitudes’ time-varying nature may be
expressed on vector form as

ak,l =

R∑
r=1

γr sr,k,l = Γsk,l (28)

so that the amplitude vector, ak,l , is a linear combination of the γr ∈ RN×1,
for r = 1, . . . ,R, spline basis vectors, and where sr,k,l denotes the corresponding
complex amplitude at spline point r of the l :th harmonic for the k:th pitch, and
with

ak,l =
[

ak,l (1) ak,l (2) · · · ak,l (N )
]T

(29)

sk,l =
[

s1,k,l s2,k,l · · · sR,k,l
]T

(30)

Γ =
[
γ1 γ2 · · · γR

]
(31)
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Using this formulation, the signal model for the time dependent amplitude be-
comes

y =

M∑
m=M0

11∑
c=0

diag(ΓSc,mWT
c,m), (32)

where

Sc,m =
[

sc,m,1 · · · sc,m,Lmax

]
(33)

sc,m,l =
[

s1,c,m,l · · · sR,c,m,l
]T

(34)

As a result, the sought chroma features of the considered signal frame may be
found as the parameters minimizing

minimize
S0,M0 ···S11,M

1
2

∣∣∣∣∣
∣∣∣∣∣y−

11∑
c=0

M∑
m=M0

diag(ΓSc,mWT
c,m)

∣∣∣∣∣
∣∣∣∣∣
2

2

(35)

where y denotes the vector containing the measured signal. To promote a sparse
solution, one may rewrite and extend (35) as

minimize
SP

1
2

∣∣∣∣∣∣
∣∣∣∣∣∣y−

P∑
p=0

diag(ΓSpW
T
p )

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

(36)

+ λ2

P∑
p=0

Lmax∑
l=1

∣∣∣∣sp,l
∣∣∣∣

2
+ λ3

11∑
c=0

∣∣∣∣∣∣S̃c

∣∣∣∣∣∣
F

(37)

where the reparametrization from c,m to p is p = 12(m − M0) + c, with P
denoting the total number of chroma-octave pairs in the dictionary, and with

S̃c =
[

Sc,M0 · · · Sc,M
]

(38)

The first term in (37) measures the distance between the signal model and the
measured data, the second term in (37) has the effect of setting columns in sp,l

with small l2-norm to zero, whereas the third term promotes the sparsity of the
resulting chroma estimate.
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4 Efficient implementations

The optimization problems in (27) and (37) are convex, and may thus be solved
using one of the many freely available interior point methods, such as, e.g., Se-
DuMi [25] and SDPT3 [26]. However, these methods typically scale poorly with
increasing data lengths or with increasing dictionary sizes. To allow for a more ef-
ficient implementation, we here propose an implementation based on the Altern-
ating Direction Method of Multipliers (ADMM), splitting the optimization into
two or more simpler optimizations, which are then solved iteratively. Depending
on the complexity of these sub-problems, the ADMM in general reaches a good
approximate solution very fast, while thereafter converging more slowly to a really
accurate solution [27]. For sparse modeling, this becomes evident as the ADMM
converges quickly to the correct set of non-zero variables, while convergence to
the correct relative amplitudes requires some further iterations. For the constant
amplitude case in (27), the generalized ADMM (for more than two functions) is
used, reminiscent to the approach proposed in [28]; this case is detailed in the
following.

4.1 Chroma estimation with constant amplitudes via ADMM

The ADMM considers convex optimization problem which can be expressed as
the sum of two convex functions by separating the variable into two parts

minimize
z,u

f (z) + g(u) subject to u− Gz = 0 (39)

whereafter the augmented Lagrangian, i.e.,

Lρ(z,u, d) = f (z) + g(u) +
ρ

2
||Gz− u + d||22 (40)

can be used to find a solution to the original problem by iteratively solving

z(�+ 1) = arg min
z

Lρ(z,u(�), d(�)) (41)

u(�+ 1) = arg min
u

Lρ(z(�+ 1),u, d(�)) (42)

d(�+ 1) = Gz(�+ 1)− u(�+ 1) + d(�) (43)

To cast (27) in this framework we use the generalization idea proposed in [27]
to extend the ADMM to problems with more than two convex function. This is
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done by assuming that f = 0, and defining g as the sum of the functions in the
original problem, i.e.,

minimize
u

3∑
i=1

gi(Hiu) (44)

with H1 = W, H2 = I, H3 = F, and

g1(Wu) = ||y−Wu||22 (45)

g2(u) = λ2||u||1 + λ3

11∑
c=0

||uc||2 (46)

g3(Fu) = λ4||Fu||1 (47)

The augmented Lagrangian of (27) is

L(z,u, d) = g1(u1) + g2(u2) + g3(u3) +
μ

2
||Wz− u1 − d1||22 (48)

+
μ

2
||z− u2 − d2||22 +

μ

2
||Fz− u3 − d3||22

where

u =
[

uT
1 uT

2 uT
3

]T
(49)

d =
[

dT
1 dT

2 dT
3

]T
(50)

denote the additional variables used to rewrite the optimization problem, and the
dual variables, respectively. Thus, for the �:th iteration,

z(�+ 1) = arg min
z

L(z,u(�), d(�)) (51)

which has the solution

z(�+ 1) =
(
GH G

)−1
GH (u(�) + d(�)) (52)

where

G =
[

WT I FT
]T

(53)
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For u1,

u1(�+ 1) = arg min
u1

L(z(�+ 1),u1, d1(�)) (54)

which may be solved as

u1(�+ 1) =
y + μ (Wz(�+ 1)− d1(�))

1 + μ
(55)

For the remaining variables,

u2(�+ 1) = arg min
u2

L (z(�+ 1),u2, d2(�)) (56)

u3(�+ 1) = arg min
u3

L(z(�+ 1),u3, d3(�)) (57)

which have the solutions (see, e.g., [29])

u2(�+ 1) = T
(

t
(

z(�+ 1)− d2(�),
λ2

μ

)
,
λ3
√

(M)

μ
√

(12)

)
(58)

u3(�+ 1) = t
(

Fz(�+ 1)− d3(�),
λ3
√

(M)

μ
√

(12)

)
(59)

where the shrinkage mappings T(·) and t(·) are defined as

t(x, κ) =
xk

|xk|
max

(
|xk| − κ, 0

)
, for all elements in x (60)

T(x, κ) =
x
||x||2

max
(
||x||2 − κ, 0

)
(61)

The augmented dual variable is updated as

d(�+ 1) = d(�)− (Gz(�+ 1)− u(�+ 1)) (62)

The final chroma estimate is then found as setting â = z(�final). The resulting
estimator is termed Chroma Estimation using Block Sparsity (CEBS). A summary
of CEBS is shown in Algorithm 1.
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Algorithm 1 The proposed CEBS algorithm

1: Initiate z = z(0),u = u(0), d = d(0), and � = 0
2: repeat
3: z(�+ 1) is updated as (52)
4: u1(�+ 1) is updated as (55)
5: u2(�+ 1) is updated as (58)
6: u3(�+ 1) is updated as (59)
7: d(�+ 1) is updated as (62)
8: until convergence

4.2 Chroma estimation with amplitude modulation via ADMM

After the addition of amplitude modulation to the signal model, the problem is
still convex, and we make use, once again, of the ADMM formulation, remin-
iscent to the approach proposed in [27]. The derivation becomes some what
different to that in the previous section, since the amplitude modulated chroma
model is more intricate. Denoting S =

[
S1 · · · SP

]
, (37) may be rewritten

as

minimize
X ,Z

f (X) + g(Z) subject to X− Z = 0 (63)

where

f (X) =
1
2

∣∣∣∣∣∣
∣∣∣∣∣∣y−

P∑
p=1

diag(ΓXpWp)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

g(Z) = λ
P∑

p=1

Lmax∑
l=1

‖zp,l‖2 + γ
11∑

c=0

‖Zc||F

(64)

with X and Z having the same structure as S. It is worth noting that the ADMM
separates the sought variable into two unknown variables, here denoted X and Z,
enabling the original problem to be decomposed into easier sub-problems. These
are in turn solved iteratively until convergence. The augmented Lagrangian of
(63) becomes

Lρ(X,Z,D) = f (X) + g(Z) +
ρ

2
||X− Z + D||22 (65)
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where D represents the scaled dual variable (see also [27]), which allows (65) to
be solved iteratively as

X(�+ 1) = arg min
X

Lρ(X,Z(�),D(�)) (66)

Z(�+ 1) = arg min
Z

Lρ(X(�+ 1),Z,D(�)) (67)

D(�+ 1) = X(�+ 1)− Z(�+ 1) + D(�) (68)

at the �:th iteration. To solve (66), one differentiates f (X) + ρ
2 ||X− Z + D||22

with respect to Xp and sets the result equal to zero, which yields

−
N∑

n=1

y(n)Γ(n, ·)H Wp(·, n)H
+
ρ

2
(Xp − Zp + Dp)

+

P∑
u=1

N∑
n=1

Γ(n, ·)HΓ(n, ·)XuWu(·, n)Wp(·, n)H
= 0

By stacking all columns in X on top of each other, this may be represented as

N∑
n=1

a(p, n)H y(n) +
ρ

2
(zp − dp) =

N∑
n=1

P∑
u=1

a(p, n)H a(u, n)xu +
ρ

2
xp (69)

where

a(u, n) = Wu(·, n)T ⊗ Γ(n, ·) (70)

xu = vec(Xu) (71)

zu = vec(Zu) (72)

du = vec(Du) (73)

with ⊗ denoting the Kronecker product, and Wu(·, n) and Γ(n, ·) denoting the
n:th column in Wu and the n:th row Γ, respectively. Let

A(p, u) =
N∑

n=1

a(p, n)H a(u, n) (74)

ỹ(p) =
N∑

n=1

a(p, n)H y(n) (75)
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Algorithm 2 The proposed CEAMS algorithm

1: Initiate X = X(0),Z = Z(0),D = D(0), and � = 0
2: repeat
3: X(�+ 1) = (AH A +

ρ
2I)−1AH Ỹ

4: Z(�+ 1) = T (T(Xp(�+ 1) + Dp(�), β/ρ), α/ρ), ∀p
5: D(�+ 1) = X(�+ 1)− Z(�+ 1) + D(�)
6: �← �+ 1
7: until convergence

Ỹ =
[

ỹ(1) · · · ỹ(P)
]T

(76)

A =

⎛
⎜⎝

A(1, 1) · · · A(1,P)
...

. . .
...

A(P, 1) · · · A(P,P)

⎞
⎟⎠ (77)

This yields the proposed algorithm, which is summarized in Algorithm 2, where
T(·) is defined as in (60), and T (·) is defined as

T (X, κ) =
X
||X||F

max
(
||X||F − κ, 0

)
(78)

and is interpreted column wise, with T (·) operating over each part of Xp + Dp

that corresponds to S̃c̃. We term the resulting algorithm the Chroma Estimation
of Amplitude Modulated Signals (CEAMS) method.

5 Numerical results

We proceed to examine the performance of the proposed estimators as a function
of the Signal-to-Noise Ratio (SNR), measured in dB, defined as

SNR = 20 log10
σx

σe
(79)

where σx and σe denote the power of the noise-free signal and the noise, respect-
ively. As noted, the noise signal is here considered to consist of both the actual
background noise and of any non-harmonic components in the recording. There-
fore, in the case of strong formants, inharmonicity, or other musical features not
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Figure 1: Percentage of estimates within c ± 1/2 from the true tone, when using
twelve chromas, corresponding to the twelve semi-tones. Here, (a) is evaluated for
the note C at different octaves, m, whereas (b) is evaluated for the note C3 when
c ∈ [0, 12) is discretized into 6/δ points. For both, N = 1024 and fs = 20 KHz
(which equals a signal of approximately 51 ms).

modeled in this work, this signal might be quite strong. To examine the statist-
ical limitations of chroma estimates, we initially examine the estimation limits,
as obtained by the CRLB, which is derived in the appendix. As chroma is con-
ventionally not considered a continuous variable, but rather as a number of grid
points corresponding to some musicological system, we examine the achievable
performance using the percentage-within-limits (PWL). This measures the num-
ber of estimates which are expected to fall within some pre-defined limit from the
true value, i.e., c ± δ. For δ = 1/2, this corresponds to the probability of obtain-
ing estimates within the correct semi-tone, as c = 0, . . . , 11. For δ = 1/4, the
PWL instead determines the likelihood of correctly estimating each quarter tone,
and so forth. Figure 1(a) illustrates the performance of C notes at octaves m = 0
through m = 8, illustrating how the estimation problem becomes more difficult
as the frequencies move closer to zero. The note is here formed from N = 1024
samples of a three-harmonic single pitch signal, measured at fs = 20 KHz, which
corresponds to a signal of approximately 51 ms. As can be seen from the fig-
ure, the PWL will reach 100% for the lowest note, i.e., being the most difficult
estimation problem, at an SNR of approximately 0 dB. Figure 1(b) further il-
lustrates the estimation limit for half tones up to the 64th tones, for a C3 tone,
again reaching a perfect PWL at an SNR of approximately 0 dB, even for the
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Figure 2: Percentage of estimates within c ± 1/2 from the true tone, when using
twelve chromas. Here, (a) is evaluated for the note C3, for different data lengths,
using fs = 20 KHz, which implies a signal of N/fs seconds, i.e., being (from the
left) approximately 205 ms, 102 ms, 51 ms, 26 ms, 13 ms, 6 ms, and 3 ms. In
(b), the estimated PWL for the CEBS estimator is compared to the CRLB for the
C0 note, using N = 1024.

64th tone. Figure 2(a) similarly illustrates the estimation bounds as a function of
the data length for the C3 note, using δ = 1/2. All three figures thus indicate
that one may expect a statistically efficient estimator to have no problems in cor-
rectly estimating the chromas, even in cases of SNR being significantly lower than
expected for most audio recordings. However, due to the introduced penalties
in the proposed estimators, one cannot expect these to be statistically efficient,
even if the noise signal was a white sequence. This as the penalties will introduce
an estimation bias, that although minor for most cases, will prevent the estimat-
ors to reach the CRLB. This is illustrated in Figure 2(b), showing the estimated
PWL for the CEBS estimator, as obtained using 1000 Monte Carlo simulations,
as compared to the corresponding CRLB. As may be seen in the figure, the actu-
ally achieved performance is, as expected, somewhat worse than predicted by the
CRLB, although the latter gives a good indication of the achievable performance.
Next, we proceed to examine the clarity of the proposed estimates, as compared
to the (publicly available) estimators in [9,10], using two audio signals from [30],
namely a two channel FM-violin playing a middle C scale (all tones from C4
to C5), and a C-major chord, both in equal temperament, sampled at fs = 22

165



Paper C

KHz, mixed to a single channel using the method detailed in [10]. Figure 3 il-
lustrate the resulting log-chromagrams for the Ellis, the Müller and Ewert, and
the CEBS estimators. We have here divided the signal in segments of length
N = 1024 samples (about 46 ms), having an overlap of 50%. For CEBS, we set
λ2 = 0.05, λ3 = 2.3, and λ4 = 0.1, for the chord, and λ2 = 0.05, λ3 = 4, and
λ4 = 0.1 for the scale, which are chosen using a simple heuristics from the FFT
(see, e.g., [5]). The tuning frequency is here set to fbase = 440, and results remain
quite unchanged at ±3 Hz. As can be seen in the figures, the CEBS estimator
yields a preferable estimate, suffering from noticeably less leakage and spurious
estimates. Continuing, we examine the performance of the proposed estimators
using a concert C-scale played by a trumpet acquired from [31], i.e., a highly
non-stationary signal. Figure illustrates the resulting chromagrams, as obtained
using the estimators in [10], [9], the CEBS estimator and the CEAMS estimator,
respectively. For the CEAMS, we use λ = 0.3 and γ = 193, a window length
of 1024 samples, a sampling frequency of 22050 Hz, Lmax = 9 overtones, and
9 spline points. As is clear from the figure, both the estimators in [9, 10] suffer
from apparent problems in choosing the correct chroma-bin for the scale. The
CEBS estimate is notably cleaner, but still suffers from some spurious chroma
features due to the inharmonicity of the signal. These spurious peaks have almost
completely vanished in the CEAMS estimate. Here, we have used the same basic
settings for CEBS as for CEAMS, and with λ2 = 0.05, λ3 = 3 and λ4 = 0.1 (in
setting these parameters, we have taken care to find the best possible setting for
CEBS). It may be noted that the G in the scale is not detected by any method.
This is because the fundamental frequency found in those time frames is 808 Hz,
which is slightly closer to G#5 than to G5, using concert tuning. To illustrate
the difference in time-localization between CEBS and CEAMS, Figure show the
3-D chromagrams, where it once again can be noted that CEBS fails to identify
the chroma-bin at G#. Moreover, one may note the spurious peaks produced in
CEBS, compared to the rest of the chromagram. This is in contrast to CEAMS,
where none of the above mentioned behavior is present. Finally, we examine
how well the proposed estimators capture the actual signal dynamics, by studying
the envelopes of the reconstructed signals, formed from the respective estimates.
Figure 6 illustrates how the amplitude modulation introduced in the CEAMS
estimator has an advantage over the CEBS estimator. The CEAMS estimator
captures both the shape and magnitude of the true signal envelope, whereas the
CEBS estimator captures the shape reasonably, but fails to capture the amplitude.
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Figure 3: The performance for the (a,b) Ellis’s method, (c,d) the Müller and Ewert
method, and (e,f ) the proposed CEBS algorithm, when evaluated on a C-chord
(left), and a C-scale (right).
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Figure 4: The figures above display the chromagrams for the trumpet scale, ob-
tained using (a) Ellis’s method, (b) the Müller and Ewert method, (c) CEBS, and
(d) CEAMS.

6 Conclusions

In this article, we have presented two new methods for chroma estimation based
on a sparse modeling reconstruction framework. The first method, CEBS, is de-
signed to handle stationary time signals, and uses a fixed amplitude dictionary to
model the measured signal. The method was further extended to also allow for
time-varying signals, using a a spline-base model to capture the time-localization
of the signal; the resulting estimator was termed the CEAMS method. The per-
formance of the proposed estimators are compared both to the CRLB, presented
herein for the problem at hand, as well as to two well-known chroma estimators
using both real audio signals. It was found that the proposed estimators offer
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a notable performance gain as compared to the comparable methods, with the
CEAMS method being the better at capturing both the time-varying nature of
the signal and the overall signal envelope.

7 Appendix: The Cramér-Rao lower bound

In this appendix, we present the Cramér-Rao Lower Bound (CRLB) for the
chroma estimation problem. The signal in (15) may be equivalently be expressed
as

x(t) =
K∑

k=1

Mk∑
m=1

Lk∑
l=1

ack,m,l e
j(2πfblt2me(ln(2)ck/12)

+φck,m,l ) (80)

where Mk and Lk denote the highest octave and the highest harmonic for chroma
class k, respectively. The the unknown parameters of the model are

θ = [ck, ack ,1,1,φck,1,1 · · · ack,m,l ,φck,m,l , ck+1, ack+1 ,1,1,φck+1,1,1 · · · ] (81)

The variance of the k:th parameter, θk, will thus be bound as

var(θk) ≥ [B(θ)]k,k (82)

where B(θ) denotes the CRLB matrix. Let

x̂(θ) =
[

x̂(0,θ) · · · x̂(N − 1,θ)
]T

(83)

Assuming that the noise is independent of the parameters to be estimated, as well
as having a Gaussian distribution with covariance matrix Q, the Slepian-Bangs
formula yields (see, e.g., [32, 33])

B−1(θ) = 2 Re
{∂x̂H (θ)

∂θ
Q−1 ∂x̂(θ)

∂θT

}
(84)

Introduce

νck,m,l = 2πfblt2m ln(2)
12

eln (2)ck/12ack,m,l (85)
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(a) (b)

Figure 5: The chromagrams with time localization for the (a) CEBS and (b)
CEAMS methods.

and form the partial derivatives with respect to the parameters as

∂x(t,θ)
∂θ

=

⎡
⎢⎢⎢⎢⎢⎣

∑Mk
m=1

∑Lk
l=1 jνck,m,l e

j(2πfblt2me(ln(2)ck/12)
+φck,m,l )

ej(2πfblt2me(ln(2)ck/12)
+φck,m,l )

jack,m,l e
j(2πfblt2me(ln(2)ck/12)

+φck ,m,l )

...

⎤
⎥⎥⎥⎥⎥⎦ (86)

Making the further assumption that the noise is white, i.e., Q = σ2I, the CRLB
matrix may be written as

B−1(θ) =
2
σ2 C (87)

where C is defined as

C = Re
{∂x̂H (θ)

∂θ

∂x̂(θ)

∂θT

}
(88)

Next, define

χk =

[∂x̂(0,θ)
∂ck

· · · ∂x̂(N − 1,θ)
∂ck

]T
(89)

Ψck,m,l =

⎡
⎣ ∂x̂(0,θ)

∂ack ,m,l
· · · ∂x̂(N−1,θ)

∂ack ,m,l
∂x̂(0,θ)
∂φck,m,l

· · · ∂x̂(0,θ)
∂φck,m,l

⎤
⎦ (90)
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Figure 6: The figure above displays the time envelopes for the original signal
(black) and the reconstructed signals.

Then, using
∑P

p=1 =
∑Mk

m=1

∑Lk
l=1,

C1,1 =

⎡
⎢⎢⎢⎣
χH

1 χ1 χH
1 Ψ1,1 χH

1 Ψ1,2 · · · χH
1 Ψ1,P

ΨH
1,1χ1 ΨH

1,1Ψ1,1 ΨH
1,1Ψ1,2 · · · ΨH

1,1Ψ1,P
...

...
. . .

. . .
...

ΨH
1,Pχ1 ΨH

1,PΨ1,1 ΨH
1,PΨ1,2 · · · ΨH

1,PΨ1,P

⎤
⎥⎥⎥⎦ (91)

and, analogously,

C2,1 =

⎡
⎢⎢⎢⎣
χH

2 χ1 χH
2 Ψ1,1 χH

2 Ψ1,2 · · · χH
2 Ψ1,P

ΨH
2,1χ1 ΨH

2,1Ψ1,1 ΨH
2,1Ψ1,2 · · · ΨH

2,1Ψ1,P
...

...
. . .

. . .
...

ΨH
2,Pχ1 ΨH

2,PΨ2,1 ΨH
2,PΨ2,2 · · · ΨH

2,PΨ1,P

⎤
⎥⎥⎥⎦ (92)
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Thus,

C = Re

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

C1,1 C1,2 C1,3 · · · C1,k

C2,1 C2,2 C2,3 · · · C2,k
...

...
. . .

. . .
...

Ck,1 Ck,2 Ck,3 · · · Ck,k

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (93)

with

Re{χH
k χk} =

Mk∑
m=1

Lk∑
l=1

a2
ck,m,l (2π 2mfbl ln(2)

12 eln(2)ck/12)2

6/ (N (N + 1)(2N + 1))

Re{ΨH
ck ,m,lΨck,m,l} =

[
N 0
0 Na2

ck ,m,l

]
(94)

Re{Ψck ,m,l ,χk} =
[

0
a2

ck ,m,l2πfbl2m ln(2)
12 eln(2)ck/12 N (N−1)

2

]
(95)

Re{Ψk,m,l ,Ψk,m,r} = 0 for l �= r (96)

If there is a spectral overlap between the chroma groups, and/or when the octaves
considered have overlapping harmonics, the matrices Ck,r , with k �= r will have
non-zero entries. However, for the case considered herein, using 12 distinct
chroma classes and only one tone, the following simplifications may be made:

Re{χkχr} = 0 for k �= r (97)

Re{Ψk,p,Ψk,q} ≈ 0 (98)

Re{Ψk,χr} ≈ 0, (99)

implying that C will be a block-diagonal matrix, with all off diagonal blocks being
zero, such that

C−1
= Re

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C−1
1,1 0 0 · · · 0
0 C−1

2,2 0 · · · 0

0 0
. . .

. . .
...

...
...

. . .
. . .

...

0 0 0 · · · C−1
k,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(100)
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Partitioning the matrix Ck,k as

Ck,k =

[
c dH

d E

]
(101)

where c is a constant, d is a vector, and E is a diagonal matrix, one may use the
matrix inversion lemma to form the inverse matrix [C−1

k,k ]1,1 as

[C−1
k,k ]1,1 = (c − dH E−1d)−1 (102)

yielding the bound

var(ck) ≥ 6σ2∑Mk
m=1

∑Lk
l=1(ack,m,l2πfbl2m ln(2)

12 eln(2)ck/12)2N (N − 1)2
(103)
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Group-Sparse Regression Using the
Covariance Fitting Criterion

Ted Kronvall, Stefan Ingi Adalbjörnsson, Santhosh Nadig,
and Andreas Jakobsson

Abstract

In this work, we present a novel formulation for efficient estimation of group-
sparse regression problems. By relaxing a covariance fitting criteria commonly
used in array signal processing, we derive a generalization of the recent SPICE
method for grouped variables. Such a formulation circumvents cumbersome
model order estimation, while being inherently hyperparameter-free. We derive
an implementation which iteratively decomposes into a series of convex optim-
ization problems, each being solvable in closed-form. Furthermore, we show the
connection between the proposed estimator and the class of LASSO-type estim-
ators, where a dictionary-dependent regularization level is inherently set by the
covariance fitting criteria. We also show how the proposed estimator may be used
to form group-sparse estimates for sparse groups, as well as validating its robust-
ness against coherency in the dictionary, i.e., the case of overlapping dictionary
groups. Numerical results show preferable estimation performance, on par with
a group-LASSO bestowed with oracle regularization, and well exceeding compar-
able greedy estimation methods.

Keywords: covariance fitting, SPICE, group sparsity, group-LASSO,
hyperparameter-free, convex optimization
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1 Introduction

The last decades’ development in compressive sensing, sparse estimation (which
includes sparse modeling, sparse subset selection, and sparse regression), and re-
lated fields has resulted in a convenient toolbox of methods, allowing practition-
ers to relatively easily tackle a wide range of problems in areas such as, e.g., audio,
video, and image analysis, spectroscopy, seismology, and genome sequencing (see,
e.g., [1–3], for an overview). Commonly, such problems contains data sets which
can be either transformed into, or be well approximated by, overdetermined lin-
ear systems, where only a small subset of the explanatory variables are necessary
to represent the data. Commonly, the candidate regressors are denoted atoms,
and the collection of all atoms is referred to as the dictionary, which is typically
designed specifically for the application. The main idea of sparse estimation is to
infer means of restricting, or regularizing, the parameter space to have few active
(or non-zero) elements, e.g., by a shrinkage operator, as was used for wavelets in
the early work [4]. In statistical modeling, the sparse estimation problem is re-
ferred to as sparse regression, for which the seminal least absolute selection and
shrinkage operator (LASSO) was proposed in [5]. The LASSO solves a minim-
ization problem which contains two positive terms; a fitting term which goes to
zero when the model fits the data, which is offset by a penalty term which grows
when the explanatory variables grow. In signal processing, the problem is referred
to as basis pursuit [6], or basis pursuit de-noising (BPDN) [7] in the noisy case.
In fact, the LASSO and BPDN have equivalent problem formulations, and in the
remainder of this paper, we will, out of convenience, simply refer to the method-
ology as the LASSO. Often, sparse estimation is pursued in a greedy manner, by
including non-zero components into the solution one-by-one; referred to as step-
wise regression in statistical modeling, and matching pursuit in signal processing,
for which in the latter an orthonormalization step is often included [8]. Early on,
there were also alternatives to the LASSO for sparse estimation, such as the es-
timator proposed in [9], which formulates a penalized (or regularized) likelihood
problem.

One reason for the wide-spread praise of the LASSO is its ability to produce
robust and accurate estimates, supported by several theoretical results for recov-
ery guarantees, described by, e.g., mutual coherence [10], the restricted isometry
property [11], or via the so-called spark of the dictionary [1]. These results, how-
ever, directly or indirectly, assume low correlation in the parameter space, for
which the elastic net was proposed in [12] to better avoid mismatch in correlated

182



1. Introduction

dictionary designs. Another reason of the success for the LASSO is that it is a con-
vex �1-relaxation of a �0-regularized estimation problem, for which user-friendly
scientific software exists, e.g. [13].

In spectral analysis, as well as in array processing, two important purposes of
sparse estimation are to linearize the non-linear problem formulation related to
parametric estimation of frequencies or locations, and to circumvent the difficult
model order estimation problem. This is achieved by discretizing the parameter
space into a large grid of possible frequencies or locations, from which sparse
modeling selects the best (sparse) subset of atoms to parametrize the data [14].

In array processing, a common estimation approach is to perform matching
between the estimate of a covariance matrix, and the covariance matrix paramet-
rized by a certain model. Overviewed in [15], the covariance matching estimation
technique (COMET) may, for instance, be used to find the direction-of-arrival
(DOA) for a signal impinging on a sensor array. In a recent effort, the sparse
iterative covariance-based estimation (SPICE) method proposes to model the co-
variance matrix using a highly underdetermined system of candidate parameters,
and shows how the covariance matching formulation thereby promotes sparse es-
timates, both for line spectra [16], and for DOA estimation [17]. Other methods
for sparse estimation in array processing include [18] and [19] for DOA estim-
ation, and [20] for MIMO radar imaging. Related to spectral analysis, sparse
estimation is applied to music analysis in [21] and [22]. Sparse estimation using
SPICE has been extensively studied in the works of [23], [24], and [25], showing
how SPICE is equivalent to the least absolute deviation (LAD) LASSO [26] un-
der the assumption of the signal being corrupted by heteroscedastic noise, and to
the square-root (SR) LASSO [27], under the assumption of homoscedastic noise.
The difference between the standard LASSO and these variants lies in the fitting
term; for LASSO this is the �2-norm squared, whereas for the LAD-LASSO and
the SR-LASSO it is the �1- and �2-norms, respectively. The SR-LASSO is essen-
tially equivalent to the LASSO, whereas the LAD-LASSO offers more robustness
against data outliers.

In this paper, we are mainly interested in the group-sparse estimation prob-
lem, i.e., when the dictionary atoms each hold a group of regressors rather than
just one, and the aim is to find a small subset of such atoms to model the data.
The LASSO may still recover the true support for such models, but it cannot
recognize which component belongs to which group. Hence, for correlated dic-
tionary designs, the LASSO will typically overfit the data by introducing spuri-
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ous non-zero variable estimates for regressors having non-zero linear dependence
with some of the true regressors. To form clustered estimates, the probing ab-
solute least squares modeling [28] was developed for data mining applications,
and the group-LASSO [29] to improve performance in analysis-of-variance (AN-
OVA) problems with multi-factor variables, with subsequent theoretical results
being presented in, e.g., [30, 31]. In the group-LASSO, the fitting term is regu-
larized by an �1/�2-term in lieu of the �1-norm penalty, where the �2-norm is used
within a group and the �1-norm between groups. In [32], different approaches
of modifying the group-LASSO penalty was examined, and in [33] and [34], the
group-LASSO was applied to logistic regression and multivariate regression, re-
spectively. In some cases, it may be reasonable to assume that not all components
within a group are present in the data. This case was examined in [35], wherein
a group-LASSO for sparse groups was proposed, extending the �1/�2 penalty by
an additional �1 penalty. Another penalty for sparse estimation was introduced
in [36], where a total-variation penalty, commonly used in image analysis, was
used to group estimates by fusing together adjoining variables of similar size.

Thus, depending on the sparsity structure sought for the specific application,
one may model one’s own combination of penalties to promote sparse estimates
with such structure. Recently, this idea was applied to multi-pitch estimation
[37,38], a problem formulation commonly used in audio analysis where the signal
consists of a small number of groups of spectral lines, which for each group are
located at integer multiples of some fundamental frequency. Similarly, sparse
estimation was also used for joint multi-pitch estimation and source location [39],
as well as for estimation of chroma features in music processing [40].

Although there exists theoretical recovery guarantees for group-sparse estim-
ation, these often assume the dictionary is sufficiently incoherent, i.e., that there
is low co-linearity between the dictionary atoms. In several applications, for in-
stance the group-sparse multi-pitch estimation problem, the dictionary design in
inherently highly correlated. For these problems, the real benefit of group-sparse
estimation is that the estimator selects among candidates which all partly fit the
data, but where one does so while also fitting the sought sparsity structure. To
further improve sparse estimation for correlated dictionary designs, some meth-
ods have been proposed; e.g., the overlap and graph group-LASSO [41], and the
trace LASSO [42].

So far, we have not mentioned the inherent caveat in the sparse estimation
framework. i.e., choosing the regularization level. Certainly, by imposing sparsity
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on some over-complete data parametrization, the amount of sparsity inferred on
the solution needs to be selected, and for most methods, there is one or more hy-
perparameters that need to be set. To that end, a homotopy method was presented
in [43], and later the least angle regression (LARS) algorithm in [44], which com-
pute a solution path, i.e., all solutions over an interval of the hyperparameter. Not-
ably, LARS operates at the same cost as typical solvers for the LASSO, although
requiring a relatively low degree of dictionary coherence, especially for grouped
variables. By utilizing warm-starts, the solution path may also be computed rel-
atively fast by the other methods mentioned herein. Still, an appropriate level of
regularization needs to be selected, i.e., a point on the solution path. This may
be done in different ways, e.g., using some heuristics, or using cross-validation (as
was done in [45] for the multi-pitch estimation problem), or using some inform-
ation or model order criteria (see, e.g., [46, 47]), which may be difficult- and or
time-consuming depending on the problem. By contrast, SPICE is promoted as a
hyperparameter-free sparse estimation method [48]. However, given that SPICE
may be formulated as a particular LASSO problem, this hyperparameter is rather
pre-selected than nonexistent. The published works on SPICE, cited herein, fur-
thermore indicate that the method works very well for a wide array of problems,
not being limited to array processing, for which the covariance fitting criteria was
originally intended.

In this work, we propose a generalization of the SPICE formulation for pro-
moting group-sparse estimates, by a relaxation of the covariance fitting criteria.
Still being convex, we introduce an efficient implementation of the proposed
group-SPICE which is inspired by, like SPICE, an approach from optimal exper-
imental design [49]. Thus, an auxiliary variable is introduced, and we formulate
an estimator solving a sequence of simple optimization problems, computable in
closed form via the Karush-Kuhn-Tucker conditions [50]. Similar to the connec-
tion between SPICE and the LASSO, we establish the connection between group-
SPICE and the group variants of the LAD-LASSO and the SR-LASSO [51], illus-
trating how the covariance fitting criteria implicitly will set the hyperparameter(s)
for these estimators. We also show that group-SPICE yields group-LASSO for-
mulations where an �1/�q penalty, for 1 ≤ q ≤ 2, can be used to improve
performance when sparsity exists within groups. Furthermore, we illustrate the
performance of group-SPICE for Gaussian dictionaries, as well as for multi-pitch
dictionaries used for audio recordings, illustrating how it optimally regularizes the
group-sparse estimation problem, while clearly outperforming the corresponding
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greedy estimators, especially for highly coherent regressor matrices.

2 Promoting group sparsity by covariance fitting

Consider a length N complex-valued measurement, constituting a mix of C
sources, each parametrized by a group of Lc components, such that (see also,
e.g., [39])

y =

C∑
c=1

sc + e′ (1)

where e′ ∈ CN denotes an additive noise component, and

sc =

Lc∑
�=1

a(θc, �)xθc ,� (2)

with sc ∈ CN is the parametrization of the c:th source, with a(θc , n) ∈ CN

denoting the regressor vector, and xθc ,n the corresponding complex-valued amp-
litude (or regressand). Thus, the c:th source is fully parametrized by the (un-
known) parameters

{θc, xθc ,1, . . . , xθc ,Lc}c=1,...C (3)

which are subject to estimation. However, typically the number of sources, C ,
is unknown, and in some applications also the group sizes, Lc, necessitating an
estimate of the different model orders before these parameters can be determined.
Using a sparse reconstruction framework, the proposed method selects the appro-
priate model orders as a part of the estimation procedure, avoiding the need of
explicit (and difficult) model order selection. To do so, we proceed to formulate
a sparse regression model, introducing a predefined dictionary of possible can-
didates over the parameter space θ, i.e., consisting of potential candidates θk, for
k = 1, . . . ,K , with K 
 C selected large enough to ensure that some of the K
candidates well coincides with the true parameters (see also, e.g., [52]). The size
of each group, Lk, may be either known or unknown. If known, then those Lk in
the true support will be equal to the corresponding Lc, while if unknown, if, e.g.,
only a subset of the group’s regressors are present in the data, an upper bound, L,
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is selected such that L ≥ maxc Lc. To simplify the notation, we hereafter simply
use (·)k in place of (·)θk , allowing (1) to be expressed compactly as

y =

K∑
k=1

Akxk + e = Ãx + e (4)

where e is a noise component analogous to e′, and

Ã =
[

A1 . . . AK
]
∈ CN×M (5)

Ak =
[

ak,1 . . . ak,Lk

]
∈ CN×Lk (6)

x =
[

x�1 . . . x�K
]� ∈ CM (7)

xk =
[

xk,1 . . . xk,Lk

]�
(8)

with M =
∑K

k=1 Lk denoting the number of columns in the dictionary, and
(·)� the matrix transpose. Furthermore, define the covariance matrix of the noise
component as

Σ = E{eeH} =

⎡
⎢⎢⎢⎣
σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 · · · · · · σN

⎤
⎥⎥⎥⎦ (9)

where E{·} denotes the expectation and (·)H the conjugate transpose. Further-
more, we adopt the common assumption that the phases of xk,l are independent
and uniformly distributed on [0, 2π], see, e.g., [53, p. 176], implying that the
covariance matrix of the measurement vector, R = E(yyH ), may be modeled as

R =

K∑
k=1

Lk∑
�=1

|xk,�|2ak,�a
H
k,� +Σ � APAH ∈ RN×N (10)

where the dictionary has been augmented such that A =
[

Ã I
]
∈ CN×(M+N ),

with I denoting the n× n identity matrix, and where similarly

P =

[
diag

([
p�

1 · · · p�
K

]�)
0�

0 Σ

]
∈ R(M+N )×(M+N ) (11)
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pk =
[
|xk,1|2 · · · |xk,Lk

|2
]�

�
[

pk,1 · · · pk,Lk

]�
(12)

with diag(c) denoting a diagonal matrix with vector c along its diagonal and where
0 is an N × K zero matrix. The matrix P is thus diagonal, and, for notational
convenience, we let P � diag(p), where p ∈ C(M+N ) denotes the (unknown)
grouped vector of diagonal loadings in the covariance model, i.e.,

p =
[

p�
1 · · · p�

K pK+1 . . . pK+N
]�

(13)

with pK+n = σn, for n = 1, . . . ,N , implying that the noise powers represent
independent groups of size one. The covariance structure is thereby completely
described by the diagonal loadings, p, and the dictionary matrix, A.

In order to form an estimator which yields a group sparse solution using the
weighted covariance fitting criterion, we here generalize upon the works presented
in [17], where p is estimated in lieu of x. To that end, consider minimizing a
function describing the mismatch between the theoretical and sample covariance
matrices, i.e.,

f = ||R−1/2(R̂− R)||2F (14)

= ||y||2tr(R−1R̂) + tr(R) + D (15)

= ||y||2yH (APAH)−1
y︸ ︷︷ ︸

�f1

+ tr
(
APAH)︸ ︷︷ ︸
�f2

+D (16)

with || · ||F denoting the Frobenius norm, tr(·) the trace, R̂ = yyH , D is a
constant, and where (15) is formed by completing the square. Analyzing (16), it
holds two terms, f1 and f2, that balance each other. The first describes how well
the observations follows the combined signal and noise model, with f1 → 0+
for some pk,� → ∞. However, the second term adds a cost to that variable
being non-zero, with f2 → ∞ as pk,� → ∞. In this work, we propose that
f2 is modified such that the cost of having a solution clustered in few source
groups becomes smaller as compared to having it spread out across many groups.
Applying Hölder’s inequality to each group yields

f2 =

K+N∑
k=1

Lk∑
�=1

pk,�

�wk,�︷ ︸︸ ︷
||ak,�||22 (17)
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=

K+N∑
k=1

p�
k

�wk︷ ︸︸ ︷[
wk,1 · · · wk,Lk

]�
(18)

=

K+N∑
k=1

〈pk,wk〉≤
K+N∑
k=1

‖pk‖r ||wk||s � g2 (19)

where 〈·, ·〉 denotes the inner product, and where r, s ∈ [1,∞], with r−1+ s−1 =

1. Minimizing f1 + g2 in lieu of f should thus shift the optimum point such that
a group sparse solution is preferable to one that is not. Consider p∗ to be the
optimal point for f , such that f (p∗) ≤ f (p),∀p. Let g be the relaxed covariance
fitting criteria, g = f1 + g2, i.e.,

g(p) = ||y||2 · yH (APAH)−1
y +

K +N∑
k=1

‖pk‖r ||wk||s (20)

and let p̄∗ be its optimal point. We then have that

f (p∗) ≤ f (p̄∗) ≤ g(p̄∗) ≤ g(p∗) (21)

to which one may conclude that the optimum of the proposed criteria g will be
a relaxation of the optimal value of f , while still being bounded above by the
optimal point of f , i.e., p∗, evaluated in g . In cases when the optimal point for
g is the same as that for f , the bound is tight. Instead of minimizing (16), the
sought solution is found by solving the relaxed covariance fitting problem

minimize
p

g(p) = yH R−1y +

K+N∑
k=1

vk ‖pk‖r (22)

subject to R = APAH pk,� ≥ 0, ∀(p, �)

where vk � ||wk||s. Here, the factor ||y||2 has been dropped from the minimiz-
ation, as it can be incorporated into the vk:s. Also, as is shown in the following,
the minimization is actually invariant to such scaling. In comparison with the
SPICE method which minimizes f , in this paper, for r > 1, the minimization
in (22) further increases the cost of activating a component in a new candidate
group, k′, as compared to activating a component within an already active group,
k, given that these components model the same data characteristics. Thus, (22)
will promote a group sparse solution, as is also further discussed in the following.
In the next section, we proceed to derive an algorithm for solving (22).
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3 A group-sparse iterative covariance-based estimator

The optimization problem in (22) is convex, as it is being formed from an ap-
propriate combination of convex functions [50, p. 84]. The first term is a
positive weighted sum of the inverse of the terms in p, which is convex for
pk,� > 0,∀(k, �). The second term is a positive weighted sum of norms, which is
convex for any r-norm. Being convex, the minimization in (22) enjoys favorable
properties such that any local optima is also the global optimum, that there exists
a well defined theory stating necessary and sufficient conditions for optimality, as
well as the opportunity for efficient computational methods. In the following, we
will derive one such estimator. As the first part of the cost function in (22) is non-
separable in the estimation parameters, pk,�, we here propose, reminiscent to [17],
to split the optimization problem into two simpler convex subproblems, each of
which has a closed-form solution, and then to solve these iteratively. This is done
by introducing an auxiliary variable, making the original variable separable in the
parameters. For clarity of presentation, this step is shown via an intermediate aux-
iliary variable. In this first step, let this intermediate variable, Q ∈ CN×(M+N ),
be a matrix which fulfills

QH P−1Q =
(
APAH)−1 ⇐⇒ AQ = I (23)

allowing for the formulation of the equivalent optimization problem

minimize
p,Q

g(p,Q) = yH QH P−1Qy +

K+N∑
k=1

vk ‖pk‖r (24)

subject to AQ = I pk,� ≥ 0, ∀(p, �)

over p and Q. Next, let the main auxiliary variable be defined as β � Qy, β ∈
C(M+N ), such that

AQ = I =⇒ Aβ = y (25)

This change of variables yields the equivalent optimization problem

minimize
p,β

g(p,β) = βH P−1β+
K+N∑
k=1

vk ‖pk‖r (26)

subject to Aβ = y, pk,� ≥ 0, ∀(p, �)
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which may be identified as a (convex) quadratic-over-linear program [50, p. 76],
and is the central optimization problem for this paper. To see that (22) and
(26) are equivalent, one may fix p and solve (26) for β. As this is a constrained
optimization problem, the Lagrangian becomes

L(β,μ) = βH P−1β+
K+N∑
k=1

vk ‖pk‖r + μ
H (Aβ− y) (27)

where μ ∈ CN is the Lagrange dual variable. Next, the saddle point of the
Lagrangian is obtained by minimizing over β and maximizing over μ. Using
Wirtinger calculus for complex-valued variables [54], one may form the derivative
of the Lagrangian with respect to β and set it equal to zero, obtaining

P−1β+ AHμ = 0 =⇒ β̂ = −PAHμ (28)

which inserted into (27) yields the dual problem, and its solution

maximize
μ

− μ�APAHμ− μ�y =⇒ μ̂ = −
(
APAH)−1

y (29)

which inserted into (28) then yields the solution to (26) as

β̂ = PAH (APAH)−1
y (30)

By inserting (30) into (26), one obtains the minimization problem in (22), which
is thus equivalent to (26). Here, we propose to solve (26) using a block coordinate
descent approach, where we iteratively alternate between solving for p, with β
fixed at its most recent value, and then solving for β, with p fixed at its most
recent value. The latter problem has the closed-form solution given by (30), as
shown in (27)-(30). We proceed to examine the former problem for two separate
cases.

3.1 The general case of heteroscedastic noise

We initially consider the case of heteroscedastic noise, i.e., when the noise vari-
ances are formed as in (9), allowing different samples to have different noise vari-
ances. In the next subsection, we will then proceed to examine the equivariance
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case. Using β, g may be expressed as a fully separable function in the K + N
groups, such that

g(p) =
K+N∑
k=1

( Lk∑
�=1

|βk,�|2
pk,�

+ vk ‖pk‖r

)
�

K+N∑
k=1

gk(pk) (31)

where βk,� is the �:th component in the k:th candidate group. Being separable,
one may therefore optimize each function gk over the variables pk,1, . . . , pk,Lk

in-
dependently of the other groups. The Lagrangian for the k:th subproblem be-
comes

L(pk,μk) =
Lk∑
�=1

|βk,�|2
pk,�

+ vk ‖pk‖r − μ�k pk (32)

where μk ∈ RLk is the Lagrange dual variable. Regrettably, one may not form
a closed-form solution of βk for this constrained problem for a general r-norm;
however, we may instead exploit a property of the optimality conditions. The
Karush-Kuhn-Tucker conditions [50] state that a local solution yields the global
minima of gk if it (i) is a point where zero is in the sub-differential of the Lan-
grangian, (ii) it is primal and dual feasible, i.e., pk,� ≥ 0,∀� and μk,� ≥ 0,∀�,
and (iii) that complementary slackness holds, i.e., μk,� pk,� = 0,∀�. Consider-
ing the third condition, it states that if the solution will lie within the interior
of the feasible set, such that pk,� > 0,∀�, then μk,� = 0,∀�, implying that the
last term in (32) vanishes. It is also worth noting that p is constrained to non-
negative solutions in (26), whereas the second term in g is non-differentiable on
the boundary pk,� = 0, implying that the use of subdifferentials are needed in
solving the optimization problem. However, when pk,� → 0+, then gk → ∞,
and so gk implicitly has its own barrier to prevent a zero solution. This allows
the solution to be found as follows; assuming that pk,� > 0,∀�, which implies
that μk = 0, and that (32) is differentiable, we solve for βk and analyze whether
the solution strays from the interior of the feasible set. Setting the derivative with
respect to the �:th variable to zero, one obtains

∂L(pk, 0)
∂pk,�

= −|βk,�|2
p2

k,�
+

vk pr−1
k,�

‖pk‖r−1
r

= 0 (33)
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3. A group-sparse iterative covariance-based estimator

yielding

pk,� =
|βk,�|2/r+1 ‖pk‖

r−1/r+1

r

(
√

vk)2/r+1
(34)

where ‖·‖p/q
m denotes the m-norm to the p/q:th power. Next, one may obtain an

expression for ‖pk‖r by first taking the r:th power on both sides of (34), and then
summing these terms over �, yielding

‖pk‖r
r = ‖bk‖

2r/r+1

2r/r+1

(
‖pk‖

r−1/r+1
r(√

vk
)2/r+1

)r

(35)

where

βk =
[
βk,1 · · · βk,Lk

]�
, for k = 1, . . . ,K + N (36)

Solving for ‖pk‖r yields

‖pk‖r =

∥∥βk

∥∥
2r/r+1√
vk

(37)

which, if inserted in (34), yields the estimate

p̂k,� =
|βk,�|2/r+1

∥∥βk

∥∥r−1/r+1

2r/r+1√
vk

(38)

∀(k, �) in the parameter set. Thus, whenever βk,� �= 0, the solution is guaranteed
to lie in the interior of the feasible set, and so (38) is the solution to (26). In turn,
from (30) it holds that βk,� = 0 only if either pk,l = 0, or if there is exactly1

zero linear dependence between the regressor ak,� and the residual R−1y. Thus, as
long as neither p or β are initiated with the zero solution, an iterative scheme of
solving (26) using (30) and (38) will stay within the feasible set, and so μk = 0.
This in turn implies that the optimization scheme for estimating p is valid. Note
that when L1 = · · · = LK = 1,

p̂k,� =
|βk,�|
‖ak‖2

(39)

1In practice, for noisy data, this is highly unlikely. But in the event of the unexpected, we set
that particular pk,l = 0 and exclude it from further estimation.
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which thus coincides with the SPICE solution (see, e.g., [16, eq. (34)]). It is
worth noting that β has here been introduced for the sake of implementational
convenience. However, by combining (4) with (25), one obtains

Aβ = Ãx + e ⇐⇒ β =

[
x
e

]
⇐⇒

βk =

{
xk, k = 1, . . . ,K
ek−K , k = K + 1, . . . ,K + N

(40)

where en denotes the estimated noise component at sample point n. Thus, one
may note that the first K groups in β correspond to the response vectors xk, for k =

1, . . . ,K , whereas the last N elements in β correspond to the noise component
e. Using (30), an estimate of the response vector may be formed as

x̂k = diag(p̂k) AH
k

(
AP̂AH

)−1
y, k = 1, . . . ,K (41)

for k = 1, . . . ,K , which incidentally also corresponds to the linear minimum
mean square error estimator formula in [25]. Algorithm 1 summarizes the pro-
posed method, here termed group-SPICE.2 The main computational cost, com-
puting the covariance matrix, R, occurs on line 7, such that the overall complex-
ity of group-SPICE becomes O(NM2). This may be compared to interior-point
methods, such as, e.g., [13], which typically require O(M3) evaluations. The
algorithm is initialized in the same manner as SPICE, but the results are rather
insensitive to this choice, and one may also use β(0)

= A†y inserted into (38),
where (·)† denotes the Moore-Penrose pseudoinverse. We deem the solution as
converged when the change in variable is small, i.e., when

∥∥p(j) − p(j−1)
∥∥

2 < δ,
for some δ > 0, or, for convenience sake, when some maximum number of iter-
ations has been reached. Empirically, we find that sparse estimation solvers typic-
ally converge in support quite fast, i.e., determining which elements are zero (or
near-zero), whereas convergence in magnitude is slower. Thus, if support recov-
ery is the main objective, the convergence precision can be set rather low without
loosing performance.

3.2 The special case of homoscedastic noise

We proceed to consider the case when the noise in homoscedastic, i.e., where
Σ = σI, i.e, when the signal is corrupted by an equivariance noise. In this case,

2An implementation will be provided online upon publication.
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3. A group-sparse iterative covariance-based estimator

Algorithm 1 The heteroscedastic group-SPICE algorithm

1: initialize j ← 0,
2: for all (k, �) do

3: pk,�
(0) =

|aH
k,�y|2

||ak,�||4
4: end for
5: repeat
6: covariance update:
7: R = APAH , z = R−1y
8: power update:
9: for all (k, �) do

10: rk,� = |aH
k,�z|

11: pk,�
(j+1) =

(pk,�
(j)rk,�)

2
r+1

(∑Lk
�=1(pk,�

(j)rk,�)
2r

r+1

) r−1
2r

√
vk

12: end for
13: j ← j + 1
14: until convergence
15: for k = 1, . . . ,K and ∀� do
16: x̂k,� = pk,�

(end) aH
k,�z

17: end for

instead of (26) and (31), one obtains

minimize
p,β

g =

K∑
k=1

( Lk∑
�=1

|βk,�|2
pk,�

+ vk ‖pk‖r

)
(42)

+

(
1
σ

K+N∑
k=K +1

|βk|2 + Nσ

)
�

K+1∑
k=1

gk

subject to pk,� ≥ 0 ∀(k, �), σ ≥ 0, Aβ = y

such that the noise in g is still separable from the signal components. Thus,
for the K first groups, one obtains K optimization problems identical to those
in the heteroscedastic case, with identical closed-form solutions. For the noise
component, one may, using an argument similar to the one above and assuming
that σ > 0, take the derivative of the corresponding Lagrangian of (42) with
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respect to σ, with μK +1 = 0, and setting it to zero, obtaining

∂L(σ, 0)
∂σ

= − 1
σ2

K+N∑
k=K+1

|βk|2 + N = 0 =⇒ (43)

σ̂ =

√√√√ 1
N

K+N∑
k=K+1

|βk|2 =
‖e‖2√

N
(44)

where (40) was used in the last step. As before, an iterative optimization scheme
will not reach the feasibility boundary, i.e., σ = 0, as long as the noise compon-
ent does not become zero. Similarly to the argument made for the heteroscedastic
case, (10) is accepted as the solution to the constrained (K + 1):th optimiza-
tion problem described in (42). Algorithm 2 outlines the proposed group-SPICE
algorithm for homoscedastic noise.

4 A connection to the group-LASSO

The optimization problem outlined in (26), together with the solution scheme
where the closed-form estimation steps (30) and (38) are carried out iteratively,
can be seen as a generalization of the SPICE algorithm, solving the extended prob-
lem for the case where each candidate dictionary atom may consist of a group of
components, instead of just one component. For the SPICE algorithm, there
is a connection between the covariance fitting criterion in (14) and the class
of LASSO-type estimators (see [23–25] for details). However, for the LASSO,
there typically exists at least one hyperparameter allowing the user to prioritize
between the fit of a solution and its sparsity. By constrast, SPICE is designed
to be hyperparameter-free and to require no tuning, or more precisely, the re-
quired hyperparameter has been selected to be optimal in the covariance fitting
sense. Thus, for the covariance model and the corresponding covariance fitting
criterion, SPICE yields both an, in some sense, optimal strategy for choosing the
LASSO regularization parameter, and suggests an efficient implementation of the
equivalent estimator. For the proposed group-SPICE, we will similarly establish
its connection with the group-LASSO, as to show how the group sparse estimator
may be optimally regularized in the context of covariance fitting. First, it is shown
that group-SPICE formulation is scaling-invariant in same sense as SPICE is, i.e.,
that the addition of a multiplicative user parameter for either term in (20) will
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Algorithm 2 The homoscedastic group-SPICE algorithm

1: initialize j ← 0, σ(0) =

√
yH y
N

2: for k = 1, . . . ,K , and ∀� do

3: pk,�
(0) =

|aH
k,�y|2

||ak,�||4
4: end for
5: repeat
6: covariance update:
7: R = APAH , z = R−1y
8: power update:

9: σ(j+1) = σ(j)
√

zH z
N , and

10: for k = 1, . . . ,K , and ∀� do
11: rk,� = |aH

k,�z|, and

12: pk,�
(j+1) =

(pk,�
(j)rk,�)

2
r+1

(∑Lk
�=1(pk,�

(j)rk,�)
2r

r+1

) r−1
2r

√
vk

13: end for
14: j ← j + 1
15: until convergence
16: for k = 1, . . . ,K , and ∀� do
17: x̂k,� = pk,�

(end) aH
k,�z

18: end for

not affect the estimate of the regressor variables, xk, for k = 1, . . . ,K . To that
end, consider the two optimization problems

p̂ = arg min
p

g = yH (APAH)−1
y +

K+N∑
k=1

vk ‖pk‖r (45)

ˆ̄p = arg min
p̄

g ′ = yH (AP̄AH)−1
y + γ2

K+N∑
k=1

vk ‖p̄k‖r (46)

where the second problem has been scaled by an arbitrary γ > 0. For (45), the
group-SPICE solution for fixed β is given in (38). For (46), by incorporating γ2

into the vk:s, i.e.,

v′k � γ
2vk,∀k (47)
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its solution follows analogously, i.e.,

ˆ̄pk,� =
|βk,�|2/r+1 ‖bk‖

r−1/r+1

2r/r+1√
γ2vk

=
1
γ

p̂k,� ⇐⇒ ˆ̄p =
1
γ

p̂ (48)

and using (41), the response vector estimate for (46) becomes

ˆ̄xk =
1
γ

P̂ AH
k

(
A

1
γ

P̂AH
)−1

y, k = 1, . . . ,K =⇒

ˆ̄xk = x̂k, k = 1, . . . ,K (49)

implying that the optimization problem in (46) yields an identical estimate to
that obtained from (46). We may therefore conclude that group-SPICE exhibits
a scaling invariance similar to the original SPICE formulation. This observation
offers justification for removing ‖y‖2

2 from the first term in g in (22). Next, we
show how the estimate relates to the LASSO.

4.1 The connection with the LASSO for heteroscedastic noise

In deriving the proposed group-SPICE estimator, a change of variables was made,
introducing the auxiliary variable β, thereby transforming the relaxed covariance
fitting problem in (22) into the group-SPICE problem in (26). In this section,
we rewrite the group-SPICE problem into a LASSO-type problem by finding an
equivalent optimization problem through a change of variables. By using (38),
one may reformulate (31) to be expressed in β exclusively, such that

g(p̂,β) =
K+N∑
k=1

( Lk∑
�=1

|βk,�|2
p̂k,�

+ vk ‖p̂k‖r

)
(50)

=

K+N∑
k=1

⎛
⎝ Lk∑

�=1

|βk,�|2
|βk,�|2/r+1

√
vk
∥∥βk

∥∥− r−1
r+1

2r/r+1
+ vk

∥∥βk

∥∥
2r

r+1√
vk

⎞
⎠ (51)

=

K+N∑
k=1

(
‖β‖2r/r+1

2r/r+1

√
vk
∥∥βk

∥∥− r−1
r+1

2r/r+1
+
√

vk
∥∥βk

∥∥
2r

r+1

)
(52)

= 2
K +N∑
k=1

√
vk
∥∥βk

∥∥
2r

r+1
(53)
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Then, one may formulate an optimization problem equivalent to (26) as

minimize
β

g =

K+N∑
k=1

√
vk
∥∥βk

∥∥
2r

r+1
(54)

subject to Aβ = y

Changing the variables from β to x and e, as per (40), yields

g(x, e) =
K∑

k=1

√
vk ‖xk‖ 2r

r+1
+

K+N∑
k=K+1

√
vk|ek−K | (55)

=

K∑
k=1

√
vk ‖xk‖ 2r

r+1
+ ‖e‖1 (56)

and the equivalent optimization problem

minimize
x,e

g = ‖e‖1 +

K∑
k=1

√
vk ‖xk‖ 2r

r+1
(57)

subject to Ãx + e = y

Incorporating the constraint into the cost function, by expressing e using x, we
obtain the equivalent LASSO-type optimization problem

minimize
x

g =

∥∥∥y− Ãx
∥∥∥

1
+

K∑
k=1

√
vk ‖xk‖ 2r

r+1
(58)

which is the group-version of the weighted LAD-LASSO [26]. For this LASSO-
type estimator, there typically exists a hyperparameter, λk, for each group, which
is, by construction, chosen as λk =

√
vk for the proposed heteroscedastic group-

SPICE.

4.2 The connection with the LASSO for homoscedastic noise

In the case of homoscedastic noise, i.e., when Σ = σI, one may use g as expressed
in (42) and perform a change of variables similar as is done above, which yields

g(p̂,β) =
K∑

k=1

( Lk∑
�=1

|βk,�|2
p̂k,�

+ vk ‖p̂k‖r

)
+

1
σ̂

K+N∑
k=K+1

|βk|2 + N σ̂ (59)
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Variable representation p p and β β

Optimization problem (22) (26) (54)
Methodology covariance fitting group-SPICE group-LASSO

Table 1: Interpretation of the relaxed covariance fitting criterion for grouped vari-
ables under different choices of variable representations

= 2
K∑

k=1

√
vk
∥∥βk

∥∥
2r

r+1
+

√
N
‖e‖2

‖e‖2
2 + N

‖e‖2√
N

(60)

= 2

(
√

N ‖e‖2 +

K∑
k=1

√
vk
∥∥βk

∥∥
2r

r+1

)
(61)

Thus, one may formulate an optimization problem equivalent to (42) as

minimize
x,e

g =
√

N ‖e‖2 +

K+N∑
k=1

√
vk ‖xk‖ 2r

r+1
(62)

subject to Ãx + e = y

and then incorporating the constraint into the cost function yielding the LASSO-
like optimization problem

minimize
x

g =

∥∥∥y− Ãx
∥∥∥

2
+

K∑
k=1

√
vk

N
‖xk‖ 2r

r+1
(63)

which is a group-version of the weighted square-root LASSO [27]. Also in this
case there exists a hyperparameter, λk, for each group, which is, by construc-
tion, chosen as λk =

√
vk/N for the proposed homoscedastic group-SPICE. We

may conclude that the distinction between hetero- and homoscedasticity in the
covariance fitting model results in different LASSO formulations, where the mis-
fit cost term is either the �1- or �2-norm. This implies that the heteroscedastic
group-LASSO offers more robustness than its homoscedastic counterpart, as the
model allows for data anomalies, e.g., outliers, to be modeled as independent
noise samples. Also, we have shown that by changing the variable representation
of the covariance fitting problem, we may equivalently formulate it as a SPICE
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group-SPICE

or a LASSO problem, which is illustrated in Table 1. We also believe it is of
interest to note that, despite the different sets of assumptions made in the covari-
ance matching and sparse regression frameworks, respectively, both formulations
turn out to be equivalent.

5 Considerations for hyperparameter-free estimation with
group-SPICE

In this work, we have introduced group-SPICE by applying Hölder’s inequality
to the second term of the covariance fitting criteria in (14), which holds true for
any r-norm, r ≥ 1. In this section, we examine what may constitute a suitable
choice of this design-parameter. In connection with the equivalent LASSO-type
estimators in (58) and (63), the choice of r affects which norm is used in the
penalty functions. Define

q �
2r

r + 1
(64)

as the penalty norm for these group-LASSOs. The constraint r ≥ 1 implies that
group-SPICE is equivalent to a LASSO formulation fulfilling

1 ≤ q < 2 (65)

where on the lower bound, one obtains the non-grouped LASSO, whereas on the
upper bound one obtains the �2 group-LASSO described in the earlier literature.
With the purpose of achieving group sparsity, q → 2 is an intuitive choice of
design, as the �2-norm does not promote sparsity within a group, whereas the
sum of such norms does promote group-sparsity among them, as intended. In
some cases, however, it may be reasonable to assume that not all components
within a candidate group are represented in the data, and thus the group-LASSO
for sparse groups was introduced in [35]. It does so by introducing a second
penalty function, and solving

minimize
x

g =

∥∥∥y− Ãx
∥∥∥2

2
+ λ

(
μ ‖x‖1 + (1− μ)

K∑
k=1

√
Lk ‖xk‖2

)
(66)

201



Paper D

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1
l1-norm
l2-norm
lq-norm, q=1.3

Figure 1: Illustration of the LASSO-type penalty for different choice of �q-norms
for a group with two components, xk,1 and xk,2. The sparsifying effect of the
group-LASSO for sparse groups corresponds to a choice 1 < q < 2, which is
equivalent of setting 1 < r <∞ in group-SPICE.

i.e., by using a combination of penalty terms with �1- and �2-norms, where the hy-
perparameter μ ∈ [0, 1] prioritizes between regular and group sparsity, and where
λ sets the level of sparsity. For this LASSO-type, the authors in [55] show that, for
the components within a group, the penalty’s constraint region lies between that
of the �1- and �2-norms, as illustrated in Figure 1. For group-SPICE, this implies
that one would achieve similar group sparsity with sparse groups for 1 < q < 2,
i.e., 1 < r < ∞. Next, it is worth examining the inherent choice of hyperpara-
meter for the homo- and heteroscedastic group-SPICE methods. First, we note
that any scaling of the terms in g , such as with γ2 in (46), will not affect the
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hyperparameter. This becomes apparent in (55) for the scaled g ′, as

g ′(x, e) =
K∑

k=1

√
γ2vk ‖xk‖ 2r

r+1
+

K+N∑
k=K+1

√
γ2vk|ek−K | = γ g(x, e) (67)

which when minimized thus attains the same optimal point in x as g .
Second, let λk be the regularization term for the k:th group for the group-

LASSO reformulations descibed herein. Then, using (58) and (63), one may
conclude that

λk =

√
vk

N ν
=

√
1

N ν

∥∥∥∥[ ∥∥ak,1
∥∥2

2 · · ·
∥∥ak,Lk

∥∥2
2

]�∥∥∥∥
2r

r−1

(68)

with ν = 0 and ν = 1 for the hetero- and homoscedastic noise cases, respectively.
As an example, for many applications, the dictionary Ã is constructed such that is
has normalized atoms, i.e.,

∥∥ak,�
∥∥

2 = 1,∀(k, �). Thus, we obtain

λk =

√
Lk

r−1/r

N ν
(69)

and, e.g., for the homoscedastic group-SPICE with r → ∞, it is equivalent to a
square-root group-LASSO with regularization λk =

√
Lk/N .

6 Numerical results

In this section, we evaluate the performance of the group-SPICE methods presen-
ted in this paper. For simulated signals, we establish the results that group-SPICE
performs as well as an optimally regularized group-LASSO, and has preferable
performance to both standard SPICE and common greedy group sparse methods.
We perform these evaluations under different levels of noise power, sample size,
and dictionary coherence. We also show that the implicit regularization level of
group-SPICE in comparison to the square-root group-LASSO is adequate. First,
we consider Gaussian dictionaries.

6.1 Signals from Gaussian dictionaries

We commence by examining the problem of recovering a group sparse signal
generated from a real-valued dictionary with regressor candidates drawn from an
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Figure 2: Exact recovery rates from 100 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario one,
where an incoherent Gaussian dictionary is used, with C = 3 active groups, for
varying SNR levels.

independent Gaussian distribution, i.e.,

ak,� ∈ N
(
0, ξk,�I

)
(70)

∀(k, �), where ξk,� is chosen such that
∥∥ak,�

∥∥
2 = 1. Such a dictionary is known

to be incoherent with high probability [56]. Furthermore, we let the signal
be corrupted by an equivariance circular symmetric Gaussian noise. We com-
pare the performance of the homoscedastic group-SPICE to the standard group-
LASSO [30], the standard SPICE, as well as two greedy methods, namely the
Block Orthogonal Matching Pursuit (BOMP) [57], and the Block Matching Pur-
suit (BMP) [58]. In the simulations, the group-LASSO is allowed oracle know-
ledge of the noise variance, and the hyperparameter is selected as λ = σ

√
L. In

this setting, the group-LASSO will illustrate a soft upper performance bound for
the group-SPICE estimator. Furthermore, without loss of generality, we choose
L1 = · · · = LK = L. The signal is generated by randomly selecting C groups
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Figure 3: Hamming distances from 100 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario one,
where an incoherent Gaussian dictionary is used, with C = 3 active groups, for
varying SNR levels.

from the dictionary to make up the signal, where each group randomly consists of
between �L/2� and L active components, with �·� denoting the ceiling operator.
Thus, the active groups have on average a smaller support than the dictionary
groups, illustrating the realistic scenario of not precisely knowing the model or-
ders. For each active group, we set the parameter value xc = 1, c = 1, . . . ,C .
In the first simulation scenario, we examine the performance over different levels
of the signal-to-noise ratio, defined as SNR = 10 log(σ2

sig/σ
2
e ), where σ2

sig and
σ2

e denote the power of the signal and the noise, respectively. Here, N = 200
samples, P = 200 candidate groups, L = 10, C = 3 active groups. To obtain
statistics, we perform MC = 100 Monte-Carlo simulations on which parameter
estimation is performed using the above mentioned methods. To measure the
estimation performance, we use the exact recovery rate (ERR), defined as

ERR(i)
= 1

{
Î (i)

C = I (i)
C

}
(71)

205



Paper D

100 101 102 103 104 105

0.05

0.1

0.15
B

C

ρ  = 0
sorted M{i,j}
μ

b
 = 0.057691

K

100 101 102 103 104 105
0.05

0.1
0.15

0.2
0.25

B
C

ρ  = 0.1 sorted M{i,j}
μ

b
 = 0.13385

K

100 101 102 103 104 105

Sorted coherence index

0.4

0.6

B
C

ρ  = 0.5 sorted M{i,j}
μ

b
 = 0.51815

K

Figure 4: Plot of block coherence (BC) elements in the vector vec(M), sorted from
high to low, where the first K elements correspond to the diagonal elements of M,
indicated by the vertical dash-dotted line, whereafter the last K 2 − K elements
correspond to the off-diagonal coherences. The BC measure μb corresponds to
the largest off-diagonal element, i.e., the (K +1):th element in the plot, indicated
by the horizontal dashed line.

for the i:th Monte-Carlo realisation, where ÎS denotes the set of group indices
whose estimated parameters have the largest �2-norm, and IC is the set of true
group indices. In other words, ERR measures whether the C largest groups in
the estimate have the same support as the ground truth. Secondly, we use the
hamming distance (HMD) for groups, defined as the number of binary flips 0→
1 or 1→ 0 required to obtain the correct group support, i.e.,

HMD(i)
=
∑

k∈Î (i)
C

1
{

k /∈ I (i)
C

}
+

∑
k′∈I (i)

C

1
{

k′ /∈ Î (i)
C

}
(72)

implying that 0 ≤ HMD ≤ 2C . These measures for the first scenario are shown
in Figures 2 - 3, respectively.

We examine the performance of group-SPICE with both r = ∞, corres-
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Figure 5: Exact recovery rates from 200 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario two,
where Gaussian dictionaries of different levels of coherence are used, with C = 3
active groups.

ponding to the standard group-LASSO, as well as with r = 2, corresponding to a
mix between group- and component-wise sparsity as described above. As can be
seen from the figures, the non-greedy estimators outperform the greedy estimat-
ors, whereas group-SPICE outperforms the standard SPICE estimator, indicating
that imposing group sparsity improves estimation performance. It is worth noting
that, as expected, the hyperparameter-free group-SPICE performs on par with an
optimally regularized group-LASSO. One may also note that BOMP and BMP
performs equally in terms of ERR, but in terms of HMD, BMP performs as well
as SPICE, indicating that BMP have determined some groups correctly, although
not all.

In principle, as may be seen in the first scenario, even a non-grouping sparse
estimator often finds the correct group support if the dictionary is sufficiently or-
thonormal. Support recovery results for such dictionaries has been shown (see,
e.g., [11]), but intuitively it also makes sense, considering that an orthonormal
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Figure 6: Hamming distances from 200 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario two,
where Gaussian dictionaries of different levels of coherence are used, with C = 3
active groups.

dictionary has components which uniquely describe the data, in which no sup-
port mismatch may occur. In several applications, e.g., the multi-pitch estimation
problem, there are different possible groups having single components that may
partly model the signal, however only one group which model all the compon-
ents in a source. For such dictionaries, referred to as being coherent or having
overlapping groups, standard sparse regression methods (such as, e.g., SPICE
or LASSO) may not differentiate the correct group support from its spuriously
matching components, whereas their group-sparse estimation counterparts would
select the group which corresponds to the best clustering of components. Further-
more, a consequence of such dictionary designs is that the true sources may also
have components which are coherent, why greedy estimators, which estimate the
sources serially rather than jointly, are likely to estimate the wrong group sup-
port. Therefore, in the second scenario, coherence is added between dictionary
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Figure 7: Exact recovery rates from 100 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario three,
where Gaussian dictionaries with coherence ρ = 0.1 are used, with C = 3 active
groups, for different sample lenghts.

components. To that end, we let

ak,� =
∑
Iρk,�

bk′,�′ , bk′,�′ ∈ N
(
0, ξk′,�′I

)
(73)

where bk,�,∀(k, �) are the regressors of the incoherent dictionary used above, and
where Iρk,� is an index set of size n equal to a random sample from a binomial

distribution, i.e., n ∈ Bin
(
(K − 1)L, ρ

)
, where these indices are uniformly

drawn from

(k′, �′) ∈ {k : 1 ≤ k ≤ K , k′ �= k} × {1 ≤ � ≤ L} (74)

Thus, there are no coherent components within each group, but for every
component in a group, there will on average be (K − 1)Lρ components in other
groups to which it is coherent. To quantize the amount of coherency between
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Figure 8: Hamming distances from 100 Monte-Carlo samples estimated with
group-SPICE in comparison to other methods under simulation scenario three,
where Gaussian dictionaries with coherence ρ = 0.1 are used, with C = 3 active
groups, for different sample lenghts.

groups in the dictionary, we use the block-coherence measure, μb, defined as [57]

μb = max
i �=j

M{i, j}, M{i, j} = L−1
∥∥Ai

H Aj
∥∥

2 (75)

where L is the maximal group size, and B{i, j} denotes the (i, j):th matrix element
and ‖B‖2 the spectral norm for a matrix B. To illustrate the difference between
the incoherent case, ρ = 0, and coherent dictionary designs where ρ > 0, we ex-
amine the distribution of elements in vec(M), where vec(·) denotes vector stack-
ing, by ordering them from high to low. The ordered sample of vec(M) is seen
in Figure 4 for three realizations of Gaussian dictionaries with different levels of
coherence. As ρ increases, so does the block coherence measure, but the figure
also illustrates the distribution of coherence values in M; The diagonal elements,
i.e., M{i, i}, i = 1, . . . ,P, denotes the co-dependence of a group with itself,
whereas off-diagonal, i.e., M{i, j}, i �= j, denotes the co-dependence with the
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Figure 9: Exact recovery rates from 200 Monte-Carlo samples estimated with
square-root group LASSO for different group-norms r, i.e., with penalties
‖xk‖ 2r

r−1
, at different levels of regularization. Gaussian dictionaries with coher-

ence ρ = 0.1 are used, where C = 3 active groups and SNR = 10 dB. Here,
λ = 1 corresponds to the group-SPICE regularization level, illustrated by the
vertical dashed line.

other candidate groups, which should ideally be low. As can be seen in Figure 4,
when the block-coherence is low, the coherence is much higher on diagonal than
off the diagonal, whereas when block-coherence increases, the differences become
negligible. Thus, as ρ → 1, many groups are almost as co-dependent with other
candidates as with themselves, which intuitively makes sparse estimation increas-
ingly difficult. In a second simulation scenario, we evaluate the performance at
different levels of coherence, ρ, using the same settings as above, with SNR = 40
dB. Figures 5 - 6 illustrate the comparison between the methods measured in
ERR and HMD, respectively. Here, we have the same performance relationships
as before, although in this case BOMP can be seen to outperform BMP, likely
due to its orthogonalization feature which slightly offsets the dictionary coher-
ency. It also becomes apparent that group-SPICE finds the correct group subset,
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Figure 10: Hamming distances from 200 Monte-Carlo samples estimated with
square-root group LASSO for different group-norms r, i.e., with penalties
‖xk‖ 2r

r−1
, at different levels of regularization. Gaussian dictionaries with coher-

ence ρ = 0.1 are used, where C = 3 active groups and SNR = 10 dB. Here,
λ = 1 corresponds to the group-SPICE regularization level, illustrated by the
vertical dashed line.

even with very high dictionary coherence. In a third scenario, we examine the
performance under varying sample size. Otherwise similar to the first scenario,
here we use SNR = 40 dB and ρ = 0.1, i.e., with some added coherence. The
results are shown in Figures 7 - 8, indicating similar results as seen in the pre-
vious scenarios. Next, we examine how the choice of regularization level affects
the estimation performance, to assess whether the model-based choice of regu-
larization in group-SPICE is optimal. To that end, we form estimates using the
square-root group-LASSO estimator at different regularization levels. To simplify
comparison, we reparametrize its hyperparameter using (70) as

λ = μ

√
Lr−1/r

N
(76)
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Figure 11: Average overfitting from 200 Monte-Carlo samples estimated with
square-root group LASSO for different group-norms r, i.e., with penalties
‖xk‖ 2r

r−1
, at different levels of regularization. Gaussian dictionaries with coher-

ence ρ = 0.1 are used, where C = 3 active groups and SNR = 10 dB. Here,
λ = 1 corresponds to the group-SPICE regularization level, illustrated by the
vertical dashed line.

where μ > 0, such that the group-SPICE estimator is obtained when μ = 1.
Here, we use the settings from the first scenario, SNR = 10 dB, and ρ = 0.1.
Figures 9 - 11 illustrate the resulting performance, also showing the average over-
fitting measure

ε(x,C ) =
1

K − C

∑
k/∈ĴC

‖xk‖2 (77)

such that ε measures the average �2-norm of the parameters outside the desig-
nated signal set, indicating power leakage in the estimates. In Figures 9 and 10,
one may note that at some just point above μ = 1, ERR falls significantly, as a res-
ult of too much regularization, which thereby yields a (nearly) zero solution. At
exactly how much above the group-SPICE regularization this happens depends
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Figure 12: Exact recovery rates from 480 Monte-Carlo samples estimated with
group-SPICE under different choices of grouping norm q. Gaussian dictionaries
with coherence ρ = 0.1 are used, where C = 3 active groups and SNR = 40 dB.
Here, the lower endpoint q = 1 corresponds to the regular SPICE method, and
subsequently q = 2 gives the standard �2-norm commonly used in group-sparse
regression.

on the studied problem; in all examined examples, we have observed a similar
effect occurring at, or at most one order of magnitude above, μ = 1. Another
property of varying the regularization level is shown in Figure 11, where one may
note that too low regularization gives estimates which are too dense, correspond-
ing poorly to the true level of sparsity in the signal, which occurs at, or slightly
below, μ = 1. In conclusion, we observe that the inherent group-SPICE regular-
ization offers a trade-off between sparsity and model fit, just small enough not to
give a zero solution, although large enough to avoid excessive overfitting. In the
final scenario for Gaussian dictionaries, we examine the choice of the grouping
norm, r. We use the same setting as in the fourth scenario, with N = 100, and
SNR = 40 dB, although the dictionary group sizes are on purpose made much
too large. We thus set L = 40, whereas in the true blocks only between 5 and
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Figure 13: Hamming distances from 480 Monte-Carlo samples estimated with
group-SPICE under different choices of grouping norm q. Gaussian dictionaries
with coherence ρ = 0.1 are used, where C = 3 active groups and SNR = 40 dB.
Here, the lower endpoint q = 1 corresponds to the regular SPICE method, and
subsequently q = 2 gives the standard �2-norm commonly used in group-sparse
regression.

10 elements of these, randomly chosen, are present in the signal. The result can
be seen in Figures 12 - 13, where it is clear that estimation performance is max-
imized for q = 1.6, i.e., r = 4. Note however that even with 1/8 to 1/4 sparse
blocks as in this scenario, the performance degradation is not large at the upper
endpoint. Therefore, the selection of r seems not to be critical, and choosing the
upper endpoint, i.e., r → ∞, always seems to be a reasonable initial choice. In
fact, as seen in the previous scenarios, this is also often the best choice.
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6.2 Multi-pitch signals

We proceed to examine results for group-SPICE when applied to the multi-pitch
estimation problem, i.e., when each noise-free group is assumed to be on the form

sc(t) =
Lc∑
�=1

xθc ,� ei2πθc�t/fs (78)

for t = 1, . . . ,N , for some fundamental frequency θc and sampling frequency
fs, thus being a sum of complex exponentials with frequencies at an integer mul-
tiplicity of the fundamental, being the harmonics of the pitch signal. The sparse
modeling approach to this problem is to linearize the non-linear signal model
(a sum of groups each parametrized in (78)), by defining a grid of possible fun-
damental frequencies, θk, k = 1, . . . ,K , and a group size L ≥ maxc Lc, from
which the dictionary is constructed. Thus, we choose the regressor ak,� as the �:th
harmonic of the k:th candidate pitch, i.e.,

ak,� =
1√
N

[
ei2πθk�·1 . . . ei2πθk�·N ]�

(79)

where the scaling by
√

N gives the regressor unit �2-norm, i.e.,
∥∥ak,�

∥∥
2 = 1.

In the simulation, we examine a mix of C = 3 pitch signals with fundamental
frequencies uniformly selected from the continuous interval Θ = {θ : 100 ≤
θ < 400} Hz. We select the dictionary to parametrize candidate pitches with
K = 300 fundamental frequencies uniformly spaced on Θ . The true funda-
mentals are thus always somewhat off-grid, and can therefore partly be modeled
by either of its neighboring fundamentals present in the dictionary. To account
for such off-grid effects in the performance metrics, we use the approximate re-
covery rate (ARR), defined as

ARR(i)
= 1

{∣∣∣Î (i)
C − I

(i)
C

∣∣∣ ≤ δ} (80)

for some limit δ ∈ N. For example, one may choose δ = 1 if a match to either of
a pitch’s two closest grid points is deemed acceptable. In the simulation scenario,
we set δ = 1, as well as SNR = 20 dB, N = 200, fs = 8 kHz, L = 10, and
where the true number of harmonics in each pitch is randomly chosen between
�L/2� and L.

The results can be seen in Figures 14 - 15 with respect to ARR and HMD,
respectively, illustrating how the group-SPICE estimator performs on par with
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Figure 14: Approximate recovery rates (for recoveries ±1 gridpoint from ground
truth) from 200 Monte-Carlo samples estimated with group-SPICE and compar-
able estimators at different sample lengths. Here, we have sampled a mix of C = 3
pitch signals from the multi-pitch model, with fundamental frequencies randomly
chosen on the interval [100, 400) Hz, measured in noise with SNR = 40 dB. We
thus make use of a multi-pitch dictionary with K = 300 candidate fundament-
als, uniformly spaced on [100, 400] Hz, where each pitch group contains L = 10
harmonics.

the ideally regularized group-LASSO, whereas standard SPICE and group-sparse
greedy estimators completely fail to find the true support. Most likely, SPICE,
BMP, and BOMP failed estimations are due to the inherently large block-coherence
of the multi-pitch dictionary, as illustrated in Figure 16, for N = 25, 100, and
400. It can be seen that whereas μb decreases when N grows, the ratio between
on-diagonal and off-diagonal elements remains unchanged, illuminating the diffi-
culty of the multi-pitch estimation problem. Finally, we conclude the numerical
section by a small example of how well group-SPICE works for multi-pitch signals
recorded in natura. Here, we use a rather simple signal, namely a mixed recording
of three trumpets, playing the musical notes A4 (≈ 440 Hz), B4 (≈ 493.883 Hz),
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Figure 15: Hamming distances from 200 Monte-Carlo samples estimated with
group-SPICE and comparable estimators at different sample lengths. Here, we
have sampled a mix of C = 3 pitch signals from the multi-pitch model, with fun-
damental frequencies randomly chosen on the interval [100, 400) Hz, measured
in noise with SNR = 40 dB. We thus make use of a multi-pitch dictionary with
K = 300 candidate fundamentals, uniformly spaced on [100, 400] Hz, where
each pitch group contains L = 10 harmonics.

and C�5 (≈ 554.365 Hz), respectively, for a duration of less than five seconds.
The signal is decimated from 44 kHz to fs = 8 kHz to reduce complexity, which,
as its spectral content is largely confined to lower frequencies, typically does not
effect estimation performance noticably. Estimation is performed on individual
30 ms frames (N = 240) which are 50 % overlapping, using a dictionary with
K = 350 candidate fundamental frequencies uniformly spaced on the interval
[100, 800) Hz, with L = 20. We have, however, limited the group size for each
candidate group individually, such that no frequency in the dictionary becomes
larger than the Nyquist sampling frequency fs/2, e.g., LK = �fs/θK � = 5 for the
largest fundamental, where �·� denotes the flooring operator. Thus, the group
sizes, Lk, vary from L1 = 20 down to LK = 5. The estimation results can be
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Figure 16: Plot of block coherence (BC) elements in the vector vec(M), sorted
from high to low, where the first K elements correspond to the diagonal elements
of M, indicated by the vertical dash-dotted line, whereafter the last K 2 − K ele-
ments correspond to the off-diagonal coherences. The BC measure μb corres-
ponds to the largest off-diagonal element, i.e., the (K + 1):th element in the plot,
indicated by the horizontal dashed line.

seen in Figures 17 - 18, illustrating the estimates of group-SPICE (r = ∞ and
r = 4), group-LASSO, SPICE, BOMP, and BMP. For the group-LASSO, the reg-
ularization level cannot be chosen as done earlier due to the noise variance being
unknown. Instead, we here chose it such that the largest dynamic range of the
estimates becomes η = 30 dB, i.e., the difference in power between the strongest
and the weakest non-zero group in the estimate. Thus, we set λ = λmax

√
10−η/10,

where λmax is the smallest regularization level which gives the null solution. It be-
comes apparent from the figures that the multi-pitch estimation problem is not
trivial; the group-LASSO should be able to give a solution comparable to group-
SPICE, but here it clearly needs further tuning of the hyperparameter to give
satisfying estimates. Instead it exhibits the so-called suboctave error, where half or
the quarter fundamental frequency is found in lieu of the true one. The standard
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Figure 17: Fundamental frequency tracks from estimation on a mix with three
trumpets playing three different musical notes. Ground truth is illustrated by
solid lines, whereas estimates are, for clarity of presentation, given by markers for
every 8:th estimated frame.

SPICE also perform poorly, the lack of grouping results in unpredictable estim-
ates where dominant individual frequencies are preferred to pitches. The greedy
estimators perform likewise; BMP also illustrate suboctave errors, whereas BOMP
entirely fails to function with the highly coherent dictionary. In conclusion, for
this example only group-SPICE is found to deliver high performance estimates.

It is also worth noting that there exists a myriad of estimators specifically cre-
ated for, and fine-tuned to solve the multi-pitch problem (see, e.g., [59,60] for an
overview). In this paper, we have confined ourselves to comparisons with more
general estimators based on sparse regression, and a detailed comparison with cur-
rent state-of-the-art multi-pitch estimators is thus beyond the scope of this work.
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Figure 18: Fundamental frequency tracks from estimation on a three trumpet
mix. Ground truth is illustrated by solid lines, whereas estimates are, for clarity of
presentation, given by markers for every 8:th estimated frame.

7 Conclusions

In this work, we have presented the hetero- and homoscedastic group-SPICE
methods, and propose using them for group-sparse regression problems, as they
circumvent cumbersome model order estimation, while being hyperparameter-
free. We have also shown the connection between homoscedastic group-SPICE
and the SR group-LASSO, as well as between the heteroscedastic group-SPICE
and the LAD group-LASSO, thereby endowing these with optimal regularization
strategies. Furthermore, the group-SPICE formulation allows, without necessit-
ating, the setting of a hyperparameter which improves performance when sparsity
also occurs within the active groups. From simulation results, we have illustrated
how group-SPICE shows robustness against dictionary coherence, achieving per-
formance as good as the group-LASSO when allowed oracle regularization, and
far outperforms comparable greedy estimation methods. We have also verified
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these results when applied to the multi-pitch estimation problem, both for syn-
thetic and recorded audio data.
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Online Group-Sparse Estimation Using
the Covariance Fitting Criterion

Ted Kronvall, Stefan Ingi Adalbjörnsson, Santhosh Nadig,
and Andreas Jakobsson

Abstract

In this paper, we present a time-recursive implementation of a recent hyperparameter-
free group-sparse estimation technique. This is achieved by reformulating the ori-
ginal method, termed group-SPICE, as a square-root group-LASSO with a suit-
able regularization level, for which a time-recursive implementation is derived.
Using a proximal gradient step for lowering the computational cost, the proposed
method may effectively cope with data sequences consisting of both stationary
and non-stationary signals, such as transients, and/or amplitude modulated sig-
nals. Numerical examples illustrates the efficacy of the proposed method for both
coherent Gaussian dictionaries and for the multi-pitch estimation problem.

Keywords: Online estimation, covariance fitting, group sparsity, multi-pitch
estimation.
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1 Introduction

Estimating a sparse parameter support for a high-dimensional regression problem
has been the focus of much scientific attention during the last two decades, as
this methodology has shown its usefulness in many applications, ranging from
spectral analysis [1–3], array- [4–6] and audio processing [7–9], to biomedical
modeling [10], and magnetic resonance imaging [11, 12]. In its vanguard, not-
able contributions were done by, among others, Donoho et al. [13] and Tibshir-
ani et al. [14]. Their methods are effectively equivalent but are termed differ-
ently; the basis pursuit de-noising (BPDN) and the least absolute selection and
shrinkage operator (LASSO), respectively, are nowadays a common component
in the standard scientific toolboxes. These methods will estimate a parameter vec-
tor which reconstructs the signal using only a small number of regressors from
the regressor matrix, i.e., a small number of columns from an (often highly un-
derdetermined) linear system. More recently, a methodology termed the group-
LASSO [15] was developed for modeling a signal where the sparse parameter
support is assumed to be clustered into pre-defined groups, with the justification
that some signal sources are better modeled by a group of regressors rather than
just one. The above mentioned methods, as well as the vast majority of sparse
estimators, have in common the requirement of selecting one or several hyper-
parameters, controlling the degree of sparsity in the solution. This may be done
using, e.g., application-specific heuristics, cross-validation, or using some inform-
ation criteria, which may often be computational burdensome and/or inaccurate.
The discussed sparse estimation approaches typically assume having access to one
or more offline frames of data, each having time-stationary signal support. For
many applications, such as, for instance, audio processing, data is often generated
online, with large correlation between consecutive frames, and with a varying de-
gree of non-stationarity. To better accommodate these conditions, one may use
a sparse recursive least squares (RLS) approach (see, e.g., [16, 17]), such as the
one derived in [18] for the multi-pitch estimation problem. In a recent effort,
the sparse iterative covariance-based estimator (SPICE) [19] utilizes a criteria for
covariance fitting, originally developed within array processing, to form sparse es-
timates without the need of selecting hyperparameters. In fact, SPICE may shown
to be equivalent to the square root (SR) LASSO [20]; in a covariance fitting sense,
SPICE may as a result be viewed as the, in some sense, optimal selection of the
SR LASSO hyperparameter [21]. In this paper, we extend the method proposed
in [22], which generalizes SPICE for grouped variables, along the lines of [23] to

232



2. Notational conventions

form recursive estimates in an online-fashion, reminiscent to the approach used
in [24]. By first reformulating group-SPICE as an SR-LASSO, we then derive
an efficient method for sparse recursive estimation formed via proximal gradient
iterations, enabling recursive estimation of non-stationary signals. We justify the
proposed method accordingly by numerical examples, illustrating its performance
as on par with group-SPICE for stationary signals, and outperforming an online
SPICE for group-sparse non-stationary signals.

2 Notational conventions

In this paper, we use the mathematical convention of letting lower-case letters,
e.g., y, denote scalars, while lower-case bold-font letters, y, denote column vec-
tors and upper-case bold-font letters, Y, denote matrices. Furthermore, E de-
notes the expectation operator, ∇ the first order derivative, and (·)� and (·)H

the transpose and hermitian transpose, respectively. Also, | · | denotes the abso-
lute value of a complex number, while ‖·‖q and ‖·‖F denotes the �q-norm for
q ≥ 1 and the Frobenius norm, respectively. We let diag(a) denote the diagonal
matrix with diagonal vector a, and tr(A) the matrix trace of A. We describe the
structure of a matrix or vector by ordering elements within hard brackets, e.g.,

y =
[

y(1) y(2)
]�

, while a set of elements is described using curly brackets,
e.g., N = {1, 2, . . .} denotes the set of natural numbers. We use subscripts to
denote a subgroup of a vector or matrix, while time indices are indicated within
parentheses, e.g., xk(t) denotes the variables in subgroup xk at time t. Superscript
typically denotes a power operation, except for when the exponent is within par-
entheses, e.g., x(j), which denotes the j:th iteration of x. Finally, we also make
use of notations (x)+ = max(0, x), sign(x) = x/ ‖x‖2, and x ∈ Bin(n, p), where
the latter denotes that x is binomally distributed with n independent trials and
probability parameter p.

3 Group-sparse estimation via the covariance fitting cri-
terion

Here, we consider an N sample signal frame which may be reasonably well ap-
proximated by a select few variables in the linear signal model

y = Ax + e (1)
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where A ∈ CN×M and x ∈ CM denote the regressor matrix (or dictionary) and
the response variable vector, respectively, and where e denotes the approximation
error and noise. In our signal model, we assume that a possible signal source is
represented by a sum of column vectors from the dictionary rather than just one,
such that it may be clustered into K predefined groups,

A =
[

A1 . . . AK
]

(2)

Ak =
[

ak,1 . . . ak,Lk

]
(3)

where the k:th group has Lk basis vectors, and consequently the dictionary has
altogether M =

∑K
k=1 Lk columns. By construction, we consider a group-sparse

regression problem, where only a small number of the K possible groups are
represented in the signal. We assume that e is reasonably homoscedastic, i.e.,
E(eeH ) = σI, as well as that the variables in x are independent and identically
distributed with a random phase, uniformly distributed over [0, 2π). The covari-
ance matrix may thus be expressed as

R = E(yyH ) = APAH
+ σI (4)

where P is a diagonal matrix with the diagonal vector

p =
[

p1 . . . pK
]�

(5)

pk =
[

pk,1 . . . pk,Lk

]�
(6)

which corresponds to the squared magnitude of the response variables, i.e.,

pk,� = |xk,�|2 (7)

for the �:th component in the k:th dictionary group. To account for the group-
sparse structure, we have relaxed the orginal covariance fitting criterion used in
[19] by following the lines of [22] and thus seek to minimize

g(p,σ) = yH (APAH
+ σI

)−1
y +

K∑
k=1

vk ‖pk‖∞ (8)

with respect to the unknown variables p and σ, where

vk =

√
tr(AH

k Ak) = ‖Ak‖F (9)
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Following the derivations in [22], minimizing (8) with respect to p and σ is equi-
valent of minimizing

g(x) = ‖y− Ax‖2 +

K∑
k=1

√
vk

N
‖xk‖2 (10)

with respect to the original variable x, which is a square root group-LASSO [25]
with the regularization parameter individually set for each group as

√
vk/N .

4 Recursive estimation via proximal gradient

To allow for a recursive estimation of x, which can be improved or changed adapt-
ively as new samples are added, let x(n) denote a linear filter for some time point
n ∈ {1 ≤ n ≤ N}. Also, we reformulate the first term in (10), here denoted
q(·), such that a forgetting factor, 0 < λ ≤ 1, is utilized to give older samples less
importance than newer samples, i.e.,

q(y(n), x(n)) =

√√√√ n∑
t=1

λn−t |y(t)− α(t)�x(t)|2 (11)

where y(n) and α(t)� denote the vector of samples up to n and the t:th row of A,
respectively. On matrix form, q(·) may be equivalently formulated as

q(y(n), x(n)) =
∥∥∥√Λ(n)

(
y(n)− A(n)x(n)

)∥∥∥
2

(12)

where A(n) =
[
α(1) . . . α(n)

]�
denotes the first n rows in A, and where

Λ(n) = diag(
[
λn−1 . . . λ0

]
). Our aim is to implement a proximal gradient

algorithm reminiscent of [26] to estimate x(n),∀n. To that end, one may iter-
atively upper-bound q(·) by centering it around the previous iteration’s estimate,
x(j−1)(n), i.e.,

q(y(n), x(j)(n)) ≤ q(y(n), x(j−1)(n))

+ (x(j)(n))− x(j−1)(n)))T ∇q(y(n), x(j)(n)))

+
1
2h

∥∥∥x(j)(n))− x(j−1)(n))
∥∥∥2

2
(13)
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Algorithm 1 The proposed online group-SPICE algorithm

1: Intitiate n← 0,R← 0, r← 0,γ← 0 and set x(n) = 0
2: while n < (N − τ) do
3: Reset j ← 0 and warm start u(j) ← x(n)
4: Add τ new samples and set n← n + τ
5: Update R, r, and γ using (23)
6: repeat {proximal gradient iterations}
7: Update gradient ∇q(y(n),u(j))) using (18)
8: Take a gradient step, from u(j) to z, using (16)

9: Apply group-wise shrinkage u(j+1)
k using (15)

10: j ← j + 1
11: until convergence

12: Save x(n) = u(j)
k

13: end while

for some step size h > 0, and instead of minimizing (10) one may equivalently
instead iteratively minimize [26]

g̃ =
1
2h

∥∥∥x(j)(n))− h∇q(y(n), x(j−1)(n))
∥∥∥2

2

+

K∑
k=1

μk

∥∥∥x(j)
k (n)

∥∥∥
2

(14)

for a suitable choice of regularization μk. By solving the subgradient equations
of (14), previously shown in, e.g., [27] and here omitted due to page restrictions,
one obtains the closed-form solution for the k:th group as

x(j)
k =

(
‖zk‖ − hμk

)
+

sign(zk) (15)

where z =
[

z�1 . . . z�K
]�

is formed as

z = x(j−1)(n)− h∇q
(

y(n), x(j−1)(n)
)

(16)

where the gradient∇q becomes

∇q(y(n), x(n)) =
−A(n)HΛ(n)

(
y(n)− A(n)x(n)

)
∥∥∥√Λ(n)

(
y(n)− A(n)x(n)

)∥∥∥
2

(17)
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wherein the superscript of x(j−1)(n) was temporarily omitted for notational con-
venience.

5 Efficient recursive updates for new samples

One may facilitate an efficient estimation process when new samples are intro-
duced by reusing old computations. To that end, the derivative (17) may be
expressed as

R(n)x(n)− r(n)√
γ(n)− 2R

(
r(n)H x(n)

)
+ x(n)R(n)x(n)

(18)

where

r(n) = A(n)HΛ(n)y(n)

R(n) = A(n)HΛ(n)A(n)

γ(n) = y(n)HΛ(n)y(n) (19)

Let
[

y(n + 1) . . . y(n + τ)
]�

, τ ∈ N denote a vector of τ new samples
available for estimation, and (+τ) the time indices from n + 1 to n + τ. Then,

y(n + τ) =
[

y(n)� y(+τ)�
]�

(20)

A(n + τ) =

[
A(n)

A(+τ)

]
(21)

Λ(n + τ) =

[
λτΛ(n) 0

0� Λ(τ)

]
(22)

which, if inserted into (19), yields the updating formulas

r(n + τ) = λτr(n) + A(+τ)HΛ(τ)y(+τ)

R(n + τ) = λτR(n) + A(+τ)HΛ(τ)A(+τ)

γ(n + τ) = λτγ(n) + y(+τ)HΛ(τ)y(+τ) (23)

The hyperparameters, μk, from (15), are in (10) defined as μk =
√

vk/N . In a
time-recursive scheme, however, when new samples are added and older samples
are given smaller importance, one must choose μk accordingly. As the sample
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size and dictionary matrix increase, governed the forgetting factor, one may select
μk(n) as

μk(n) =

√√√√ √
tr
(
Rk,k(n)

)
(λn − 1)/(λ− 1)

(24)

where the denominator results from the geometric sum
∑n−1

t=0 λ
t and Rk,k(t) =

Ak(t)HΛ(n)Ak(n), which is obtained by choosing a submatrix of the recursively
updated R(t) with rows and columns corresponding to group k. The step size, h,
may, e.g., be chosen along the lines of [27]. Algorithm 1 summarizes the proposed
method, which has computational complexity O(M2). The main cost occurs at
line 5 and is independent of the sample size, n.

6 Numerical results

In this section, we compare the proposed estimator to relevant estimators for
some different scenarios. We begin by examining the case of a cohrerent Gaussian
dictionary, which is constructed by letting

ak,� =
∑
Iρk,�

bk′,�′ , bk′,�′ ∈ N (0, I) (25)

where bk,�,∀(k, �) are independent and identically distributed Gaussian vectors
with zero mean and unit variance. The set Iρk,� selects a mix of n ∈ Bin

(
M −

Lk, ρ
)

of these vectors, the indices of which are uniformly drawn from

(k′, �′) ∈ {k : 1 ≤ k ≤ K , k′ �= k} × {1 ≤ � ≤ Lk} (26)

This results in a dictionary of mixed Gaussian regressors, with no linearly de-
pendent components within the groups, but for every component in a group,
there will on average be (M − Lk)ρ components in other groups to which it is
linearly dependent. The parameter ρ thus controls the degree of regressor co-
herence, 0 ≤ ρ ≤ 1. Figure 1 verifies the stationary performance of the pro-
posed method in comparison with the non-recursive group-SPICE, the standard
SPICE, the group-LASSO with a manually optimized choice of hyperparameter,
as well as the (greedy) block matching pursuit [28] and block orthogonal match-
ing pursuit [29]. The results are based on 500 Monte-Carlo (MC) simulations of

238



6. Numerical results

0 20 40 60 80 100
Signal-to-noise ratio (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
xa

ct
 r

ec
o

ve
ry

 r
at

e
GSPICE r=INF
OL-GSPICE
SPICE
GLASSO λ-opt
BOMP
BMP

Figure 1: Exact recovery rates from 500 Monte-Carlo samples estimated with
online group-SPICE (OL-GSPICE) in comparison to other methods, where an
coherent Gaussian dictionary is used, with C = 3 active groups.

N = 100 samples with C = 3 groups, having L1 = L2 = L3 = 10 components,
randomly drawn from a dictionary with K = 200 blocks of size L = 10, with
dictionary coherence ρ = 0.1. To measure performance, we use the exact recovery
rate (ERR) metric, defined as the rate of correct support recovery, i.e.,

ERR(i)
= 1

{
Î (i)

C = I (i)
C

}
(27)

for the i:th MC simulation, averaged over all simulations, where I (i)
C and Î (i)

C
denote the true and the estimated support, respectively. To be able to make
comparisons with the abovementioned stationary estimators, we use λ = 1 for
the proposed method. As can be seen from the figure, the online group-SPICE
performs on par with a group-LASSO, which has been given the oracle hyper-
parameter, whereas SPICE (without grouping) yields significantly poorer results.
Next, we examine estimation results for a multi-pitch dictionary, where the k:th
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Figure 2: True parameters for a simulated non-stationary multi-pitch signal (left),
with corresponding estimates of the proposed method (middle), in comparison
with the online-SPICE estimator (right).

candidate dictionary group in the dictionary is

αk(t) =
[

ei2πfk/fs1t) · · · ei2πfk/fsLkt
]

at sample point t, i.e., where the regressors are Fourier vectors with frequencies at
an integer multiple of the fundamental frequency candidate fk. Here, we simulate
a non-stationary signal by allowing C = 2 sources to have a dynamic support
changing at random locations over a frame N = 5 · 103 samples. We let the dic-
tionary contain K = 50 candidate fundamental frequencies, fk, uniformly spaced
on [100, 800) Hz, with fs = 44 kHz. Figure 2 illustrates the true signal (left),
the estimates of the proposed estimator (middle), and the estimates of the on-
line SPICE (right). The figure clearly shows favorable performance of the online
group-SPICE, whereas online SPICE is prone to misclassification. This is likely
due to the harmonic structure of the multi-pitch dictionary, making it highly
coherent, with the consequence that many erroneous candidate groups partly fit
the signal. It may however be noted that the estimates for the proposed method
are slightly too dense, even if an ocular inspection clearly shows the two signal
sources.
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Hyperparameter-Selection for
Group-Sparse Regression:
A Probablistic Approach

Ted Kronvall and Andreas Jakobsson

Abstract

This work analyzes the effects on support recovery for different choices of
hyper- or regularization parameters in LASSO-like sparse and group-sparse re-
gression problems. For these problems, the hyperparameters implicitly select the
model order of the solution, and are typically set using cross-validation (CV).
This may be computationally prohibitive for large problems, and also often res-
ults in an overestimation of the model order, as CV optimizes the prediction error
rather than the support recovery directly. In this work, we propose a probablistic
approach to select the hyperparameters, specifically aimed at support recovery, by
quantifying the type I error (false positive rate) using extreme value analysis. Us-
ing Monte Carlo simulations, one may draw inference on the upper tail of the
distribution of the spurious parameter estimates, such that the regularization level
is selected to yield an appropriate detection quantile. Solving the scaled group-
LASSO problem, our proposed choice of hyperparameters becomes independent
of the noise variance, which is also estimated and thus decouples from the reg-
ularization level. Furthermore, we analyze the effects on the false positive rate
caused by collinearity in the dictionary, and discuss different strategies to circum-
vent this. The proposed method is compared to other methods for selecting the
hyperparameters, in terms of the rates of support recovery, false positive rate, false
negative rate, and computational complexity. Simulated data illustrate how the
proposed method outperforms both cross-validation and the Bayesian Informa-
tion Criterion in terms of computational complexity and support recovery.
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1. Introduction

1 Introduction

Estimating the sparse parameter support for a high-dimensional regression prob-
lem has been the focus of much scientific attention during the past two decades, as
this methodology has shown its usefulness in a wide array of applications, ranging
from spectral analysis [1–3], array- [4–6] and audio processing [7–9], to biomed-
ical modeling [10], magnetic resonance imaging [11,12], and more. For many of
these and for other applications, the retrieved data may be well explained using
a highly underdetermined regression model, in which only a small subset of the
explanatory variables are required to represent the data. The approach is typically
referred to as sparse regression; the individual regressors are called atoms, and the
entire regressor matrix the dictionary, which is typically customized for a partic-
ular application. The common approach of inferring sparsity on the estimates
is to solve a regularized regression problem, i.e., appending the fit term with a
regularization term that increases as variables become active (or non-zero). Much
of the work in the research area springs from extensions on the seminal work
by Tibshirani et al., wherein the least absolute selection and shrinkage operator
(LASSO) [13] was introduced. The LASSO is a regularized regression problem
where an �1-norm on the variable vector is used as regularizer, which in signal
processing is also referred to as the basis pursuit denoising (BPDN) method [14].
Another early alternative to the LASSO problem is the penalized likelihood prob-
lem, introduced in [15].

In this paper, we focus on a generalization of the sparse regression problem,
wherein the atoms of the dictionary exhibit some form of grouping behavior
which is defined a priori. This follows the notion that a particular data feature
is modeled not only using a single atom, but instead by a group of atoms, such
that each atom has an unknown (and possibly independent) response variable, but
where the entire group is assumed to be either present or not present in the data.
This is achieved in the group-LASSO [16] by utilizing an �1/�2-regularizer, but
other approaches have also been successful, such as in, e.g., [9, 10]. Being a gen-
eralization of the LASSO, the group-LASSO reverts back to the standard LASSO
when the group sizes in the dictionary all have size one. Typically, results which
hold for the group-LASSO thus also hold for the LASSO. One reason behind
the success of LASSO-like approaches is that these are typically cast as a convex
optimization problems, for which there exists strong theoretical results for con-
vergence and recovery guarantees (see, e.g., [17–19], and the references therein).
For convex problems, there also exist user-friendly scientific software for simple
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experimentation and investigation of new regularizers [20].

The sparse regression problems described here, being a subset of the regular-
ized regression problems, have in common the requirement of selecting one or
several hyperparameters, which have the role of controlling the degree of sparsity
in the solution by adjusting the level of regularization in relation to the fit term.
Thus, sparsity is subject to user control, and must therefore be chosen adequately
for each problem. To that end, the least angle regression (LARS) algorithm [21]
calculates the entire (so called) path of solutions on an interval of values for the
hyperparameter of a LASSO-like problem, and at a computational cost similar to
solving the LASSO for a single value of the hyperparameter. However, by using
warm-starts, a solution path may also be calculated quickly using some appropri-
ate implementation of the group-LASSO. Even so, a single point on the solution
path must still be selected; often, this is done using cross-validation (CV), as was
done, for instance, in [22], for the multi-pitch estimation problem. However, due
to the computationally burdensome process of CV, one often instead reverts to us-
ing less consistent heuristic approaches, or choosing the hyperparameter based on
some information criteria (see, e.g., [23]). One approach to simplify the choice
of hyperparameter is the scaled LASSO [24], wherein an auxilliary variable de-
scribing the standard deviation of the model residual is introduced. This has the
effect that the regularization level may be selected (somewhat) independently of
the noise variance, often simplifying matters for the heuristic approaches.

With a heritage from array processing, the sparse iterative covariance-based es-
timation (SPICE) method yields a relatively sparse parameter support by match-
ing the observed covariance matrix and a covariance matrix parametrized by a
dictionary, with an implicitly made choice of the hyperparameter. The method
has been shown to work well for a variety of applications, especially those per-
taining to estimation of line spectra and directions-of-arrival (see, e.g., [25]). In
subsequent publications (see, e.g., [25, 26]), SPICE was shown to be equival-
ent to either the least absolute deviation (LAD) LASSO under a heterscedastic
noise assumption, or the square root (SR) LASSO under a homoscedastic noise
assumption, both for particular choices of the hyperparameter. It may be shown
that the SR LASSO and the scaled LASSO are equivalent, and we conclude that
SPICE is a robust (and possibly heuristic) approach of fixing the hyperparameter
(somewhat) independently of the noise level. In a recent effort, the SPICE ap-
proach was extended for group sparsity [27], showing promising results, e.g., for
multi-pitch estimation, but also illustrating how the fixed hyperparameter yields
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estimates which are not as sparse as one may typically expect.

A valid argument in defence of the SPICE approach is that the measure of
’good’ in sparse estimation is not entirely straightforward, and not sparse enough
may still be good enough. Borrowing some terminology from detection theory
[28], one way of measuring performance is to calculate the false negatives (FNs),
i.e., whether atoms pertaining to the true support of the signal (those atoms of
which the data is truly composed) are estimated as zero for some choice of the
hyperparameter. As the SPICE regularization level is typically set too low, the
possibility of FNs is consequently also low, which for some applications may be
the focus. Conversely, for some applications, the focus may be to eliminate the
false positives (FPs), i.e., when noise components are falsely set to be non-zero
while not being in the true support set. The FPs and FNs are also sometimes
referred to as the type I and type II errors, respectively. In addition, a metric
called sparsistency is sometimes used, measuring the binary output of whether
the estimated and the true supports are identical, which is the complement of
the union between FN and FP [29]. Sparsistency might also be unobtainable for
a certain problem; avoiding FPs requires selecting the hyperparameter so large
that FNs will arise, and similarly avoiding FNs will result in more FPs. To the
best of our knowledge, there exists no method of choosing the regularization level
formulated with regards to FPs and FNs. There have, however, been other related
works on hyperparameter selection; in [30], a covariance test statistic was used to
determine whether to include every new regressor along a path of regularization
values, whereas in [31], the regularization level was selected using a maximum-
a-posteriori approach, which was estimated alongside the regression variables by
appropriately selecting a hyperprior for it.

In this work, we take a probabilistic approach to hyperparameter selection.
By analyzing how the noise component propagates into the parameter estimates
for different estimators and different choices of the hyperparameters, we seek
to increase the sparsistency of the group-LASSO estimate by means of optim-
izing the FP rate. By making assumptions on the noise distribution and then
sampling from the corresponding extreme value distribution using the Monte
Carlo method, the hyperparameter is chosen as an appropriate quantile of the
largest anticipated noise components. Avoiding FPs can never be guaranteed
without maximizing the regularization level, thereby setting the entire solution
to zero, but the risk may be quantified. By specifying the type I error, the sparsist-
ency rate is also indirectly controlled, whenever this is feasible. Furthermore, for
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Gaussian noise, we show that the distribution for the maximum noise compon-
ents follows a type I extreme value distribution (Gumbel), from which a paramet-
ric quantile may be obtained at a low computational cost.

For coherent dictionaries, i.e., where there is a high degree of collinearity
between the atoms, many of the theoretical guarantees for sparse estimation will
fail to hold, along with a few of the methods themselves. The effects on the estim-
ates for the collinear atoms are difficulty to discern; depending on the problem
either all of them, or just a few of them, become non-zero. Coherence therefore
typically results in FPs, if the regularization level is not increased, which in turn
might yield FNs. There exists some approaches of dealing with coherent diction-
aries. The elastic net uses a combination of �1 and �2 penalties [32], with the
effect of increasing the inclusion of coherent components, thereby avoiding some
FNs, but still not decreasing the number of FPs. Another popular approach is
the reweighted LASSO [33], which solves a series of LASSO problems where the
regularization level is individually set for each atom using its previous estimate.
This approach approximates the use of a (non-convex) logarithmic regularizer,
which allows the estimates to better reallocate power to the strongest of the co-
herent atoms. The proposed approach does not account for the leakage of power
between coherent components in the true support, but only for the coherence
effects on the assumed noise. As a remedy, the proposed method instead solves
the reweighted LASSO problem at the chosen regularization level.

To illustrate the achievable performance of the proposed method, numerical
results show how the proposed method for selecting the hyperparameter is both
much less computationally demanding and at the same time far more accurate
than both CV and the Bayesian information criterion (BIC). These results are
obtained for both the sparse and the group-sparse regression problems.

The remainder of this paper is organized as follows: Section II defines the
mathematical notation used throughout the paper, whereafter Section III de-
scribes some background on the group-LASSO and the scaled group-LASSO
problems, also including an implementation of the cyclic coordinate descent solver
for these problems. Section IV desribes the proposed method of selecting the reg-
ularization level. Section V then describes how the estimate of the noise standard
deviation may be improved, and section VI how FPs due to coherence may be
dealt with. Thereafter, Section VII describes the competition; the CV and BIC
methods. Section VIII shows some numerical results, and, finally, Section 9 con-
cludes upon the presented results.
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2 Notational conventions

In this paper, we use the mathematical convention of letting lower-case letters,
e.g., y, denote scalars, while lower-case bold-font letters, y, denote column vectors
wheras upper-case bold-font letters, Y, denote matrices. Furthermore, E,V ,D,
and P denote the expectation, variance, standard deviation, and probability of
a random variable or vector, respectively. We let | · | denote the absolute value
of a complex-valued number, while ‖·‖p and ‖·‖∞ denote the p-norm and the
maximum-norm, respectively. Furthermore, diag(a) = A denotes the diagonal
matrix with diagonal vector a, although diag(A) = a is also denoting the diagonal
vector of a square matrix. As is conventional, we let (·)� and (·)H denote the
transpose and hermitian transpose, respectively. Subscripts are used to denote a
subgroup of a vector or matrix, and superscript typically denotes a power opera-
tion, except when the exponent is within parentheses or hard brackets, which we
use to denote iteration number, e.g., x(j), is j:th iteration of x, and the index of a
random sample, e.g., x[j] denotes the j:th realization of the random variable x. We
also make use of the notations (x)+ = max(0, x), sign(x) = x/ ‖x‖2, and x ∼ F ,
which states that the random variable x has distribution function F . Finally, we
let ∅ denote the empty set.

3 Group-sparse regression via coordinate descent

Consider a noisy N -sample complex-valued vector y, which may be well described
using the linear regression model

y = Ax + e (1)

where A ∈ CN×M , where M 
 N , is the (possibly highly) underdetermined
regressor matrix, or dictionary, constructed from a set of normalized regressors,
i.e., aH

i ai = 1, i = 1, . . . ,M , with ai denoting the i:th column of A. The un-
known parameter vector x is assumed to have a C/M-sparse parameter support,
i.e., only C < N of the parameters in x are assumed to be non-zero. In this pa-
per, we consider the generalized case where the dictionary may contain groups of
regressors whose components are linked in a modeling sense, such that the model
parametrizes a superpositioning of objects, each of which is modeled by a group
of regressors rather than just one. Therefore, we let the dictionary be constructed
such that the M regressors are collected into K groups with Lk regressors in the
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k:th group, i.e.,

A =
[

A1 . . . AK
]

(2)

Ak =
[

ak,1 . . . ak,Lk

]
(3)

and where, similarly,

x =
[

x�1 . . . x�K
]�

(4)

Furthermore, we assume that the observation noise, e, may be well modeled as
an i.i.d. multivariate random variable, such that e = σw, where w ∼ F , for
some sufficiently symmetric distribution F with unit variance. Let x̂(λ) denote
the solution to the convex optimization problem

minimize
x

f (x) = ‖y− Ax‖2
2 + λ

K∑
k=1

‖xk‖2 (5)

for some hyperparameter λ > 0. This is the group-LASSO estimate, for which
we briefly outline the corresponding cyclic coordinate descent (CCD) algorithm.
In its essence, CCD updates the parameters in x one at a time, by iteratively min-
imizing f (x) for each xi, i = 1, . . . ,M , in random order. As x is complex-valued,
and as f (x) is non-differentiable for xk = 0, for any k, we exploit Wirtinger calcu-
lus and subgradient analysis to form derivatives of f . Let rk = y−A−kx−k be the
residual vector where the effect of the k:th variable group has been left out, i.e.,
such that A−k and x−k omit the k:th regressor and variable group, respectively.
Thus, one may find the derivative of f (x) with respect to xk and set it to zero, i.e.,

∂f (x)
∂xk

= −AH
k (rk − Akxk) + λuk = 0 (6)

where

uk =

{
sign(xk) xk �= 0
{uk : ‖uk‖2 ≤ 1} xk = 0

(7)

Under the assumption that AH
k Ak = I, a closed-form solution may be found as

x̂k(λ) = T (AH
k rk, λ) (8)
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3. Group-sparse regression via coordinate descent

where T (z, α) = sign(z)
(
‖z‖2 − α

)
+

denotes the group-shrinkage operator. The
group-LASSO estimate is thus formed by the inner product between the re-
sidual and regressor groups, albeit where the groups’ �2-norms are reduced by
λ. Therefore, the estimate x̂ will be biased towards zero. Similarly, sparsity in
groups is induced as the groups having an inner product with �2-norm smaller
than λ are set to zero. The regularization parameter thus serves as an impli-
cit model order selector. In particular, the zeroth model order, x̂ = 0, is ob-
tained for λ ≥ λ0 = maxk

∥∥AH
k y
∥∥

2. Let the true support set be denoted by
I = {k : ‖xk‖ �= 0}. When decreasing λ, the model order grows, introducing the
parameter group k ∈ Î(λ)⇔

∥∥AH
k rk

∥∥
2 > λ. As a consequence, parameter groups

are included in the support set in an order determined by their magnitude. In the
case that

∥∥AH
k rk

∥∥ >
∥∥AH

k′ rk′
∥∥

2, then the implication k′ ∈ Î(λ) ⇒ k ∈ Î(λ)
is always true, and a parameter group with some smaller �2-norm is never in the
solution set if another one with a larger �2-norm is not. Selecting an appropri-
ate regularization level is thus important; if set too large, the solution will have
omitted parts of the sought signal, if set too small, the solution will include noise
components and be too dense. Recently, the scaled LASSO was introduced, solv-
ing the optimization problem (here in group-version) [24]

minimize
x,σ>0

g(x,σ) =
1
σ
‖y− Ax‖2

2 + Nσ+ μ
K∑

k=1

‖xk‖2 (9)

i.e., a modification of the group-LASSO where the auxilliary variable σ, repres-
enting the residual standard deviation, scales the least squares term, and where
μ > 0 is the regularization parameter. Again, utilizing a CCD approach, σ may
be included in the cyclic optimization scheme, which has the closed-form solution

σ̂(μ) =
‖y− Ax̂(μ)‖2√

N
(10)

Similar to the derivations above, the xks may be iteratively estimated as

x̂k(μ) = T (AH
k rk, σ̂μ) (11)

which are thus regularized by σμ, making μ seemingly independent of the noise
power. However, the estimate of σ is itself clearly affected by μ. For too low values
of μ, typically σ̂(μ) < σ, i.e., smaller than the true noise standard deviation, as too
much of the noise components will be modeled by x̂(μ). Similarly, when μ is too
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Algorithm 1 Scaled group-LASSO via cyclic coordinate descent

1: Intialize x(0) = 0, r = y, and j = 1
2: while j < jmax do
3: σ← ‖r‖2 /

√
N

4: Ij = U (1, . . . ,K )
5: for i ∈ Ij do

6: r← r + Aix
(j−1)
i

7: x(j)
i = T (AH

i r,σμ)

8: r← r− Aix
(j)
i

9: end for
10: if

∥∥x(j) − x(j−1)
∥∥

2 ≤ κtol then
11: break
12: end if
13: j ← j + 1
14: end while

large, σ̂(μ) > σ as it will also model part of the signal variability. However, even
when the regularization level is chosen appropriately, one still has σ̂(μ) ≥ σ in
general due to the estimation bias in x̂(μ). It is also worth noting that by inserting
σ̂ into g(x,σ), one obtains the equivalent optimization problem

minimize
x

g(x) = 2 ‖y− Ax‖2 +
μ√
N

K∑
k=1

‖xk‖2 (12)

which may be identified as the square-root group-LASSO [34]. Algorithm 1 out-
lines the CCD solver for the scaled group-LASSO problem at some regularization
level μ, where jmax, κtol, and U (·) denote the maximum number of iterations, the
convergence tolerance, and a random permutation of indices, respectively. Here,
when comparing (11) to (8), it becomes apparent that the group-LASSO and the
scaled group-LASSO will yield identical solutions when λ = σμ. The motivation
behind using the scaled group-LASSO is instead that the regularization level may
be chosen independently of the noise variance. In the next section, we make use
of this property.
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4 A probabilistic approach to regularization

Consider the overall aim of selecting the hyperparameter in order to maximize
sparsistency, i.e., selecting λ such that the estimated support coincides with the
true support,

λ = {λ : Î(λ) = I} (13)

From the perspective of detection theory, whenever the support recovery fails, at
least one of the following errors have occurred:

• False positive (FP) or type-I error: the regularization level is set too low and
the estimated support contains indices which are not in the true support;(
Î(λ) ∩ I c

)
�= ∅, where I c denotes the complement of the support set.

• False negative (FN) or type-II error: the regularization level is set too high
and the estimated support set does not contain all indices in the true sup-

port;
(
Î c(λ) ∩ I

)
�= ∅.

One may therefore seek to maximize sparsistency by minimizing the FP and FN
probabilities simultaneously, which for the group-LASSO means finding a regu-
larization level which offers a compromise between FPs and FNs. To that end,
let Λ∗ = [λmin, λmax] denote the interval for which any λ ∈ Λ∗ for the group-
LASSO estimator fulfills (13), where

λmin = inf{λ : max
i/∈I

∥∥AH
i ri
∥∥

2 ≤ λ} (14)

λmax = sup{λ : min
i∈I

∥∥AH
i ri
∥∥

2 ≥ λ} (15)

Thus, λmin is the smallest λ possible which does not incur FPs, whereas λmax is
the largest λ possible without incurring FNs in the solution. Therefore, support
recovery is only possible if λmin ≤ λmax. Clearly, the converse might occur, for
instance, if the observations are very noisy, and the largest noise component be-
comes larger than the smallest signal component, and, as a result Λ∗ = ∅.

4.1 Support recovery as a detection problem

The i:th parameter group is included in the estimated support if the �2-norm of
the inner product between the i:th dictionary group and the residual is larger than
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the regularization level. The group-LASSO estimate for each group can thus can
be seen as a detection problem, with λ acting as the global detection threshold.
Support recovery can therefore be seen as a detection test; successful if λ can be
selected such that all detection problems (for each and every group) are solved.
We therefore begin by examining the statistical properties of the inner product
between the i:th dictionary group and the data model. We here assume that the
observations consist of a deteministic signal-of-interest and a random noise. Thus,

E(y) = Ax, V (y) = E(eeH ) = σ2I (16)

The inner product between the dictionary and the data, AH y, yields a vector in
which each element constitutes a linear combination of the data elements. Under
the assumption that M > N , the variability in the data vector is spread among
the elements in a larger vector. Let u = AH y denote this M element vector, which
has the statistical properties

E(u) = AH Ax, V (u) = σ2AH A (17)

and while the elements in y are statistically independent, the elements in u are
generally not, as AH A �= I for M > N . By examining the i:th group in u, one
may note that

E(ui) =

{ ∑
j∈I AH

i Ajxj, i /∈ I
xi, i ∈ I (18)

where it is also assumed that the components in the true support are independent,
AH

i Aj = 0, for i �= j, (i, j) ∈ I . One may note how the true variables are mixed
amongst the elements in u; they appear consistently in the true support, while
also leaking into the other variables, proportionally to the coherence between the
groups, as quantified by AH A. In the CCD updates for the group-LASSO, the
i:th component becomes active if

λ <
∥∥AH

i ri
∥∥

2 (19)

=
∥∥AH

i (Ax + e− A−ix−i)
∥∥

2 (20)

=

∥∥∥∥∥∥AH
i Aixi +

∑
j∈I

AH
i Aj(xj − x̂j) + AH

i e

∥∥∥∥∥∥
2

(21)
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=

{ ∥∥∥∑j∈I AH
i Aj(xj − x̂j) + AH

i e
∥∥∥

2
, i /∈ I∥∥xi + AH

i e
∥∥

2 , i ∈ I
(22)

This result provides some insight into choosing the regularization level; this must
be set such that with high probability

λ >

∥∥∥∥∥∥
∑
j∈I

AH
i Aj(xj − x̂j) + AH

i e

∥∥∥∥∥∥
2

, ∀i /∈ I (23)

λ <
∥∥xi + AH

i e
∥∥

2 , ∀i ∈ I (24)

where if (23) is not fulfilled, FPs enters the solution, whereas if (24) does not
hold, FNs will enter the solution. Certainly, the true x is unknown, as is x̂ before
the estimation starts, at which point λ must be selected. If there is coherence in
the dictionary, it is not well defined how the data’s variability is explained among
the dependent variables, due to the bias resulting from the regularizers used in
the LASSO-methods. Our proposition is thus to, when selecting the regulariza-
tion level, focus on the noise part, while leaving the leakage of the xi:s into the
other components be, dealing with them in a later refinement step. To that end,
consider an hypothesis test examining whether the observed data contains the
signal-of-interest or not, i.e.,

H0 : y = e (25)

H1 : y = Ax + e

Under the null hypothesis, H0, I = ∅. In this case, (23) and (24) reduces to

λ >
∥∥AH

i e
∥∥

2 , ∀i (26)

which should be fulfilled with a high probability for all groups. Thus, one may
chose the regularization level with regards to the maximum noise component, i.e.,

P
(

max
i

∥∥AH
i e
∥∥

2 ≤ λα
)

= 1− α (27)

such that λα denotes the α-quantile of the maximum �2-norm of the inner product
between the dictionary and the noise. This regularization level can be seen as
a lower bound approximation of λmin, where FPs due to leakage from the true
support are disregarded.

259



Paper F

4.2 Model selection via extreme value analysis

In order to determine λα, we need to find the distribution in (27), which is an
extreme value distribution determined by the underlying noise distribution. To
that end, let

zi =
∥∥AH

i e
∥∥2

2 /σ
2 (28)

denote the (squared) �2-norm of the inner product between the i:th dictionary
group and the noise, scaled by the noise variance. For the scaled group-LASSO,
where λ = μσ̂, one may express the sought extreme value distribution, denoted
F̄ , as

P
(

max
i

∥∥AH
i e
∥∥

2 < μσ̂

)
= P

(
max

i
σ
√

zi < μσ̂

)
(29)

= P

(
max

i
zi < μ

2
(
σ̂

σ

)2
)

(30)

= F̄

(
μ2
(
σ̂

σ

)2
)

(31)

Thus, if σ̂/σ ≈ 1, one may seek μ instead of λ, providing a method for finding a
regularization level independent of the unknown noise variance. We thus propose
selecting μ as the α-quantile from the extreme value distrubution F̄ which may be
obtained as

μα =
σ

σ̂

√
F̄−1(1− α) ≈

√
F̄−1(1− α) (32)

It is, however, difficult to find closed-form expressions for extremes of depend-
ent sequences; z1, . . . , zK become dependent as the underlying sequence, u (from
(17)) from which the zi:s are formed, is dependent. As a comparison, let z̃1, . . . , z̃K

denote a sequence of variables with the same distribution as the zi:s, although be-
ing independent of each other. One may then form the bound

P
(

max
i

zi ≤ μ2
)
≥ P

(
max

i
z̃i ≤ μ2

(
σ̂

σ

)2
)

(33)

= P

(
z̃i ≤ μ2

(
σ̂

σ

)2
)K

(34)
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= G

(
μ2
(
σ̂

σ

)2
)K

(35)

∀μ > 0, where the independence of the parameters was used to form (34). One
may thus form an upper bound on the sought quantile as

μα ≤ μ̃α =
σ̂

σ

√
G−1

(
(1− α)m−1

)
(36)

where G is the distribution of zi, assumed to be equal ∀i. Indeed, μα is thus con-
structed such that the null hypothesis,H0, is falsely rejected with probability α. It
does not, however, automatically mean that the probability for FPs, as described
in (24), is also α. As argued above, the FP probability is typically larger than α,
but, as will be illustrated below, can be shown to yield regularization levels that
give high sparsistency.

4.3 Inference using Monte Carlo sampling

The proposed method for choosing the regularization level, as presented in this
paper, only requires knowledge of the distribution family for the noise. We might
then sample from the corresponding extreme value distribution, F̄ , using the
Monte Carlo method. Consider w[j] to be the j:th draw from the noise distri-
bution F which has unit variance. A sample from the sought distribution, F̄ , is
then obtained by calculating

max
i

z[j]
i ∼ F̄ (z) (37)

where z[j]
i = w[j] H AiAH

i w[j]. By randomly drawing Nsim such samples from F̄ ,
the quantile μα may be chosen either using a parametric quantile, or using the
empirical distribution function, i.e.,

μα =
√
Ψ−1

F̄
(1− α) (38)

where ΨF̄ is the empirical distribution function of F̄ . For small α, the empirical
approach may be computationally burdensome as

μ2
α ≤ max

j=1,...Nsim

(
max

i
z[j]

i

)
⇒ Nsim ≥ �α−1� (39)
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and one might then prefer to use a parametric quantile instead. Luckily, as the
noise distribution F is assumed to be known, or may be estimated using standard
methods, it is often feasible to derive which distribution family F̄ belongs to. By
then estimating the parameters of the distribution using the gathered Monte Carlo
samples, a parametric quantile μα may be obtained using much fewer samples than
using the corresponding empirical quantiles.

4.4 The Gaussian noise case

A common assumption is to model the noise as a zero-mean circular-symmetric
i.i.d. complex-valued Gaussian process with some unknown variance, σ2, i.e.,
e = σw, where w ∼ N (0, I). For the i:th group, one then obtains

AH
i w ∼ N (0, I) ⇒ zi ∼ χ2(2Li) (40)

as it is assumed that AH
i Ai = I,∀i. Thus, as zi is a sum of Li independent squared

N (0, 1) variables, it becomes χ2 distributed with 2Li degrees of freedom. In
such a case, one may use (36) to directly find a closed-form upper bound on the
regularization parameter. Alternatively, to find a more accurate quantile, one may
draw inference on the Monte Carlo samples obtained when sampling from F̄ in
(37) instead. Classical extreme value theory states that the maximum domain of
attraction for the Gamma distribution (of which χ2 is a special case) is the type I
extreme value distribution, i.e., the Gumbel distribution [35]. By estimating the
scale and location parameters of the Gumbel distribution, one may obtain a more
accurate tail estimate from the zi:s than the empirical distribution yields. Thus, it
holds that

max
i

zi ∼ F̄ (z) = exp
(

e−
z−γ
β

)
(41)

where the parameters γ and β are obtained using maximum likelihood estimation
on the samples max

i
z[1]

i , . . . ,max
i

z[Nsim]
i . The regularization parameter μα can

then be calculated using (32).

5 Correcting the σ-estimate for the scaled group-LASSO

The scaled LASSO framework provides a way of choosing the regularization
level independently of the noise variance. By introducing σ as an auxiliary vari-
able in the LASSO minimization objective, it may be estimated along with x.
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5. Correcting the σ-estimate for the scaled group-LASSO

In the CCD solver, the estimate of the noise standard deviation is obtained in
closed-form, from (10), as the residual standard deviation estimate, i.e., σ̂(μ) =

‖y− Ax̂(μ)‖2/
√

N . There are two aspects in how well σ̂ approximates the true
noise standard deviation; firstly, as σ̂(μ) models the residual, it will depend on the
sparsity level of x̂(μ), such that

σ̂(μ)→
√

yH y/N , as μ→ μ0 (42)

σ̂(μ)→ 0, as μ→ 0 (43)

where μ0 is the smallest μ which yields the zeroth solution, i.e.,

μ0 =

max
i

∥∥AH
i y
∥∥

2√
yH y/N

(44)

Therefore, if μ is chosen too large, such that it underestimates the model order, σ̂
is overestimated, whereas if μ is chosen too small, and too many components are
included in the model, σ̂ becomes underestimated. The second aspect is that the
estimate models the residual standard deviation for the LASSO estimator, where
the magnitudes of the elements in x are always biased towards zero, and will thus
overestimate σ̂ even when the regularization level is selected such that the true
support is obtained, i.e.,

σ̂(μ) =
‖y− Ax̂(μ)‖

N
≥ ‖y− Ax‖

N
= σ, μ ∈ M∗ (45)

where M∗ is the interval over μ which yields the true support estimate. These as-
pects have a profound effect on the regularization level. As a result of the approx-
imation in (32), the chosen α will not yield the actual FP rate of the hypothesis
test under H0; let the true FP rate be denoted by α∗. The relation between the
chosen quantile μα and the true quantile μα∗ is then

μα =
√

F̄−1(1− α) = σ̂(μα)
σ

√
F̄−1(1− α∗) =

σ̂(μα)
σ
μα∗ (46)

and subsequently the true FP rate becomes

α∗ = 1− F̄

((
σ

σ̂(μα)

)2

F̄−1(1− α)
)

(47)
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One may therefore deduce that when σ̂ is over- or underestimated, the FP rate
becomes over- or underestimated, respectively; i.e.,

σ(μα) > σ⇒ α∗ > α (48)

σ(μα) < σ⇒ α∗ < α (49)

while if the standard deviation is correctly estimated, α∗ = α. This may be at-
tempted by selecting α small, such that the model order reasonably reflects the
true model order, and then estimate the noise standard deviation using an un-
biased method instead of via the LASSO. One may then undertake the following
steps to improve the estimate of the noise standard deviation:

1. Estimate x and σ by solving the scaled group-LASSO problem (9) with
regularization parameter μα, given by (32) for some α.

2. Re-estimate σ using a least squares estimate of the non-zero variables ob-
tained in Step 1),

xi ∈ Î , i.e., σ̂LS =

∥∥∥(I− AÎA†
Î

)
y
∥∥∥

2
/
√

N .

3. Estimate x by solving the (regular) group-LASSO problem in (5) with the
regularization parameter selected as λ = μασ̂LS.

6 Marginalizing the effect of coherence-based leakage

The proposed method calculates a regularization level by quantifying the FP error
probability for the hypothesis testing of whether the noisy data observations also
contain the signal-of-interest, Ax, or not. This FP rate is used to approximate
the FP rate for finding the correct support, which is a slightly different quantity.
The regularization level is set by analyzing how the noise propagates into the
estimate of x, and selects a level larger than the magnitude of the maximum noise
component. In relation to the hypothesis test in (25), when the signal-of-interest
is present in the signal, the group-LASSO estimate suffers from spurious non-zero
estimates outside of the support set, as described in (23). Thus, even if the choice
of μα drowns out the noise part with probability 1−α, it does not necessarily zero
out the spurious signal components, if the dictionary coherence is non-negligible.
The true support is thereby not recovered, and the sparsistency rate is lower than
1 − α. One remedy is to set the regularization level higher, but it is inherently
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difficult to quantify how the variability of the signal component is divided among
its coherent dictionary atoms with LASSO-like estimators, and therefore difficult
to assess how much higher it should be selected. For low SNR observations, the
choice of the regularization level is sensitive; if set too high, the estimate will
suffer from FNs. One should therefore to keep the regularization level as the
proposed quantile μα, but instead to modify the sparse regression as to promote
more sparsity among coherent components, and thereby possibly increasing the
sparsistency rate. One such method is to solve the reweighted group-LASSO
problem, where one at the j:th iteration obtains x̂(j) by solving

minimize
x

‖y− Ax‖2
2 + λ

K∑
k=1

‖xk‖2∥∥∥x̂(j−1)
k

∥∥∥
2
+ ε

(50)

where ε is a small positive constant used to avoid numerical instability. Thus, the
regularization level is iteratively updated using the �2-norm of the old estimate,
which has the effect that the individual regularizer

λk =
λ∥∥∥x(j−1)

k

∥∥∥
2
+ ε
↘ , ‖x̂k‖2 > 1 (is large) (51)

λk =
λ∥∥∥x(j−1)

k

∥∥∥
2
+ ε
↗ , ‖xk‖2 < 1 (is small) (52)

Thus, the best (largest) component among the coherent variables will be less
and less regularized, while the weaker components will be more and more regu-
larized, until they are omitted altogether. By solving (50) iteratively, the solver
approximates a (non-convex) sparse regression problem with a logaritmic regu-
larizer, which is more sparsifying than the �1-regularizer. We thus propose to
modify Step 3) in the σ-corrected approach discusses above with the reweighted
group-LASSO, using λ = μασ̂LS.

7 In comparison: Hyperparameter-selection using inform-
ation criterias

Commonly, the statistical approach to finding the regularization level is to solve
the LASSO problem for a grid λ ∈ Λ, typically selected as Nλ points uniformly
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Figure 1: Results for estimation of σ for different levels of the regularization level,
μ; the top plot illustrates how the �2-norm of the maximum nuisance compon-
ent is distributed, the middle and bottom plots illustrate the ratio between the
estimated σ̂ and the true σ, for different levels of regularizations, using the scaled
LASSO estimator. The different curves show the ratio estimates for different levels
of SNR, i.e., σ. In the bottom plot, the σ-correction step has been applied to the
estimation.
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chosen on (0, λ0]. Commonly, x(Λ) is then referred to as the solution path.
For each point, λj, on the solution path, one can obtain the model order, k̂j =∥∥x̂(λj)

∥∥
0 and the statistical likelihood of the observed data given the assumed

distribution of the parameter estimate, L(y, x̂(λj)), which when used to calculate
the Bayesian Information Criteria (BIC), i.e.,

BIC(λj) = log(N )k̂(λj)− 2L(y, x̂(λj)) (53)

yields the model order estimate λ̂BIC = argminj BIC(λj). Certainly, this proced-
ure may prove costly, as it requires solving the LASSO Nλ times. Typically, BIC
also tends to overestimate the model order, thereby underestimating λ̂BIC. An-
other commonly used method for selecting the regularization level is to perform
cross-validation (CV) on the observed data. As there exist many different vari-
ations of CV, many of which are computationally infeasible for typical problems,
this paper describes the popular R-fold CV variant [36], in which one shall:

1. Split the observed data into R disjoint random partitions.

2. Omit the r:th partition from estimation and use the remaining partitions
to estimate a solution path xr(Λ). Repeat for all partitions.

3. Calculate the prediction residual variance r(λ, r) = ‖y(r)− A(r)xr(λi)‖2
2

and use this to calculate

CV(λj) =
R∑

r=1

r(λi, r)n−1 (54)

SE(λj) = D
(
{r(λj, r)}R

r=1

)
R−1/2 (55)

4. Let λ∗ = argminj CV (λj). Utilizing the one standard error rule, one then
finds λCV = supj λj such that CV(λj) ≤ CV(λ∗) + SE(λ∗).

5. Calculate the solution x̂(λCV) using the entire data set.

When R is large enough, CV has been shown to asymptotically approximate the
Akaike Information Criterion (AIC) [37]. However, CV is generally computa-
tionally burdensome, requiring solving the LASSO (NλR + 1) times. It should be
noted that CV forms the model order estimate by selecting the λ which yields the
smallest prediction error. This undoubtedly discourages overfitting, but does not
specifically target support recovery, which often is the main objective of sparse es-
timation. Thus, CV tends to set λ too low, which reduces the bias for the correct
variables of x̂(λ), but which also introduces FPs.
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8 Numerical results

To illustrate the efficacy of the proposed method, termed the PRObabilistic reg-
ularization approach for SParse Regression (PROSPR) for selecting a regulariza-
tion level, we test it under a few test scenarios, in comparison to the BIC and
CV methods. However, before doing so, we illustrate the distribution of the
maximum noise component over μ (from (32)), and make analysis on how σ is
estimated in the scaled LASSO for these levels of the regularization parameter,
with and without the σ-correction step described in Section 5. We thus simulate
NMC = 200 Monte Carlo simulations of y, such that

y[n]
= A[n]x[n]

+ σw[n] (56)

for the n:th simulation, where the elements in the dictionary consists of i.i.d.
draws from the complex-valued Gaussian distribution, N (0, 1), and wherein x
are S = 5 non-zero elements with unit magnitude, at randomly selected indices.
In this test scenario, we consider the standard (non-grouped) regression problem.
In each simulation, N = 100 data samples are retrieved, and the number of
regressors is set to M = 500, and thus equally many groups, K = 500, such
that L = 1. The signal-of-interest is here corrupted by an i.i.d. complex-valued
Gaussian noise, such that w ∼ N (0, I). Figure 1 illustrates the distribution of
z[n]

i = max
i

(a[n]
i )H w[n], for n = 1, . . . ,Nsim, in the top figure, where the dens-

ity function for a fitted Gumbel distribution is overlaid. The dash-dotted line
illustrates the quantile value for α = 0.05, which thus corresponds to the regular-
ization level used with the proposed method for that α. The middle plot illustrates
the paths of the ratios σ̂(μ)/σ, when estimated using the scaled LASSO, wherein
each of the four lines illustrates the estimated ratio when the true σ used in (56)
is selected such that the signal-to-noise ratio (SNR) is −10, 0, 10, 20, and 40 dB,
respectively. Depending on μ, the LASSO estimate will include either only noise,
or both noise and the signal-of-interest, and the ratios thus grow as μ → μ0.
When the SNR is low, the ratio contains much of the signal-of-interest even at a
low regularization level, while, as the SNR is low, the signal-of-interest is weak.
Also, one may note that the ratios levels out as μ → μ0, at which point x̂ = 0.
The choice of α, if selected too small, in tandem with a low SNR, will therefore
yield the zero solution. One sees this in the middle figure, as the ratio has leveled
out for SNR = −10 dB, whereas the ratios are still growing for the other noise
levels. Most important, however, is how the ratios affect the choice of μ in (32).

268



8. Numerical results

10-3 10-2 10-1

10-2

100

F
P

 r
at

e

1-1
PROSPR
error bound

10-3 10-2 10-1

10-2

100

F
P

 r
at

e

1-1
PROSPR(σ)
error bound

10-3 10-2 10-1

α-level

10-2

100

F
P

 r
at

e

1-1
PROSPR(σ) (noise only)
error bound

Figure 2: The subfigures illustrate the FP rate of support recovery for different
levels of α. For all figures, the filled curves shows the preferred 1-1 line, the filed
lines with symbols shows the estimate, and the dashed line shows the estimates ±
one standard error. The top figure illustrate the FP rates for the PROSPR method,
in the middle figure PROSPR with σ-correction is used, and the bottom figure
shows the FP rate when the data is noise-only.
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As the method assumes that the ratio is close to one, the effect when it grows be-
comes, as given by (48), that the actual α becomes larger than the selected value,
which decreases sparsistency as FPs enter the solution. A remedy to this may be
seen in the bottom figure, where σ is re-estimated along the lines described in
Section 5. By using the least squares estimate, the ratio becomes larger than one
only if the components in the true support has already been excluded from the
estimated support, which can be seen for SNR = −10 and 0 dB. It may be noted
that for the other SNR levels, the ratio is approximately one in the upper tail of
the Gumbel distribution, and α approximates the true FP rate for inclusion of
components due to noise.

As noted above, this is not necessarily equal to the FP rate of support recovery,
as is illustrated in Figure 2, where the estimated FP rate for support recovery,

1
NMC

NMC∑
n=1

1
{(
Î ∩ I c

)
�= ∅

}
(57)

is shown, where 1 {·} denotes the binary indicator function, which is one if the
specified condition is fullfilled (and zero otherwise); the condition being that there
exists elements in estimated support which are not in the true support. One may
also note from the top figure that SPICE, which is shown in, e.g, [27], to have
the regularization level fixed at μ = 1, is very unlikely to avoid FPs.

The middle plot illustrates the obtained FP rate for different choices of α,
when σ-corrected PROSPR is used. The filled line with sitting triangles shows the
mean value, and the dashed lines shows the mean value± one standard deviation.
In this scenario, we have used the same parameter settings as above, although with
NMC = 5000 Monte Carlo simulations, at SNR = 20 dB. To select the regular-
ization level in each simulation, we let PROSPR use Nsim = 500 simulations of
the noise, w[j], and use a parametric quantile from a Gumbel distribution fitted
to the obtained draws of max

i
z[j]

i . One note from the simulation results that in

the middle figure, the estimated FP rate is consistenly higher than the selected α.
This is a result of the dictionary coherence, which makes the signal power in the
true support leak into the other variables, as shown in (22). To verify this claim,
the bottom figure shows the same estimation scenario, when applied to the noise-
only signal, i.e., y = σw, where thus I = ∅, and FPs occur whenever x̂(μα) �= 0.
As may be seen in the figure, the FP rate follows the α-level well for this scen-
ario. To remedy the overestimated FP rate, one should set the regularization level
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Figure 3: Compared performance results with LASSO using PROSPR (with and
without σ-correction), CV, BIC, and in the top plot, an oracle method, illus-
trating the best result achievable at any regularization level. The top plot shows
sparsistency (or support recovery rate), the second plot shows the FP rate, the
third shows the FN rate, and the bottom plot shows the average run times for
each method.

271



somewhat higher, in order to account for the signal leakage, too. Generally, we
have found that when σ-correction is not used, and the estimated σ is too large,
as discussed above, this results in a regularization level that is set too high, i.e.,

λα = μασ̂(μα) > μασ = λα∗ (58)

which may cancel out the unwanted effect of having a too large FP rate. For
this estimation scenario, this indeed becomes the case, as can be seen in the top
figure, where the FP rate follows the specified α-level well. Next, we compare the
proposed method, with and without σ-correction, to the BIC and CV methods
for hyperparameter selection, in terms of sparsistency

1
NMC

NMC∑
n=1

1
{
Î = I

}
(59)

FP rate from (57), FN rate

1
NMC

NMC∑
n=1

1
{(
Î c ∩ I

)
�= ∅

}
(60)

and average run time in seconds, when implemented in Matlab using the
CCD solver on a 2013 Intel Core i7 MacBook Pro, for NMC = 200 simulations.
In the top plot in Figure 3, illustrating the sparsistency results at different levels
of SNR, we have also included the oracle support recovery, which illustrates the
maximum rate of support recovery achievable using an oracle choice of λ. For CV
and BIC, the LASSO is solved on a grid of Nλ = 50 regularization levels, uni-
formly spaced on ( 0, λ0], and R = 10 folds were used for CV. For the PROSPR
methods, α = 0.05 was used. From the FP and FN results, one sees the trade-off
between FPs and FNs, such that, on average, CV is the approach which selects
the lowest regularization level, benefitting the FN rate, but at the cost of often
incurring FPs. PROSPR, on the other hand, selects the highest regularization
level, which results in approximately 5 % FPs, with the result that FNs are more
frequent than with CV. However, if sparsistency is the focus of the regularization,
the proposed methods fairs the best, outperforming both CV and BIC. An ad-
vantage with CV is that it chooses the regularization level with respect to both the
signal and the noise components, and thus improves as SNR increases, whereas
PROSPR yields similar FP rates independently of the SNR. One may therefore,
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8. Numerical results
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Figure 4: Compared performance results with reweighted LASSO using PROSPR
(with and without σ-correction), CV, BIC, and in the top plot, an oracle method,
illustrating the best result achievable at any regularization level. The top plot
shows sparsistency (or support recovery rate), the second plot shows the FP rate,
the third shows the FN rate, and the bottom plot shows the average run times for
each method.
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if the SNR is high, choose an α smaller than α = 0.05. As also verified in Figure
2, the FP-rate for the σ-corrected estimate becomes smaller than α; here at most
0.5, whereas PROSPR without σ-correction performs best from SNR = 5 dB and
higher. Most impressive are the run times; CV should be at most NλR = 2.5 · 102

times slower than the proposed method - a gap which is slightly narrowed as CV
uses warm-starts and as PROSPR’s regularization level still requires some compu-
tational effort. Still, the PROSPR methods are significantly faster than CV. By
comparison, BIC seems to fair somewhere in between; it is faster than CV, but
also performs worse than CV for high levels of SNR.

As discussed in Section 6, the effect of coherence-based leakage from the signal
components may be lessened by using a reweighted LASSO, where the (group-)
LASSO problems is solved several times, with the regularization level being indi-
vidually and iteratively selected for each group using the old estimate. The ap-
proach approximates a non-convex logarithmic penalty, which is sparser than the
convex �1 or �2/�1 regularizers for the LASSO and group-LASSO, respectively.
Typically, the reweighted (group-) LASSO handles FPs very well, pushing these
towards zero, while FNs remains unchanged. As seen from Figure 3, the main
error incurred in the PROSPR methods is FNs, why instead of using α = 0.05
(i.e., using a low probability of FP), one might select a larger quantile, such that
the FN rate decreases, at the expense of a higher FP rate. Figure 4 illustrates the
estimation performance when the reweighted LASSO has been used at the regu-
larization levels by the methods, where α = 0.5 is used for the PROSPR-methods.
One may note at this level, PROSPR with σ-correction follows CV well, with the
FPs being dealt to a large extent. Although performing similarly to CV in terms of
sparsistency, the proposed method still has a substantial computational advantage.

Next, we then analyze estimation performance for the group-sparse regression
problem. We simulate NMC = 200 Monte Carlo simulations of the signal in
(56), with N = 100 observations in each, using a dictionary with M = 1000
atoms collected into K = 200 groups with L = 5 atoms in each. The true signal-
of-interest consists of S = 3 groups, with indices randomly selected, and where
xi = 1, for i ∈ I .

Otherwise, the settings are identical to the standard sparse regression setup.
Figure 5 shows the estimation performance for this simulation scenario, for dif-
ferent levels of SNR. One may note that CV does not perform as well as for the
standard sparse regression model, as the FP rate does not decrease when SNR in-
crease. As before, PROSPR performs better without σ-correction than with, for
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Figure 5: Compared performance results with group-LASSO using PROSPR
(with and without σ-correction), CV, and in the top plot, an oracle method,
illustrating the best result achievable at any regularization level. The top plot
shows sparsistency (or support recovery rate), the second plot shows the FP rate,
the third shows the FN rate, and the bottom plot shows the average run times for
each method.
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high levels of SNR. Unlike before, the BIC criterion for groups is not straight-
forward, as the degrees of freedom in the estimation is not well-defined; we have
therefore decided to omit it from comparison in the group-sparse regression scen-
ario.

Finally, similar to Figure 4, Figure 6 compares the estimation results for the re-
weighted group-LASSO estimator for the compared methods, for different levels
of SNR. One may note that the proposed method with σ-correction now out-
performs CV, approaching the oracle performance, while the proposed method
without correction performs on par with CV. It therefore seems that CV, for the
group-sparse problem, sets the regularization level relatively higher than for the
non-grouped case. Still selecting α = 0.5 heuristically seems to be good for the
reweighted approach; it is set low enough to avoid FNs, while the reweighting
manages to lessen the FPs. Again, the computational complexity can be seen to
be significantly lower than for CV.

9 Conclusions

This paper has studied the selection of regularization level for sparse and group-
sparse regression problems. As an implicit model order selection, it has a profound
effect on support recovery; by changing the regularization level, one obtains sup-
ports with sizes ranging from very dense to completely empty. If support recov-
ery is the main objective, selecting the regularization level carefully is of utmost
importance. The group-regression problem, includes or excludes components
from the estimated support depending on how the �2-norm of the inner-product
between the dictionary group and the modeling residual compares to the regu-
larization level. Intuitively, one therefore wishes to select the regularization level
larger than the noise components, as to exclude them, but smaller than the signal
components, as to include these. As the regularization level is selected prior to
estimation, when the signal components are still unknown, we have instead stud-
ied the effect of the unit-variance observation noise, and how it propagates into
the parameter estimates. Via extreme value analysis and by virtue of Monte Carlo
simulations, we sample from the distribution of the maximal noise component,
and may therefore select the regularization level as a quantile from the distribu-
tion. With the implicit assumption that the signal components are larger than the
noise components, the quantile level, if chosen too large, may incur FNs, and if
set too small, may incur FPs.
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9. Conclusions
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Figure 6: Compared performance results with reweighted group-LASSO using
PROSPR (with and without σ-correction), CV, and in the top plot, an oracle
method, illustrating the best result achievable at any regularization level. The top
plot shows sparsistency (or support recovery rate), the second plot shows the FP
rate, the third shows the FN rate, and the bottom plot shows the average run
times for each method.
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The proposed method is thus not hyperparameter-free, and in some sense
merely replaces one hyperparameter by another. However, the sparse regression
model does not contain enough information to be hyperparameter-free on its
own; other methods for hyperparameter-selection will also require assumptions
on the model, e.g., CV assumes that the optimal regularization level is the one
yielding the smallest prediction error. Similarly, SPICE simply selects μ = 1. In
this work, we have shown that by selecting 0 < α < 1 in μα, one approximately
select the FP rate for support recovery. If set too generous, FPs are likely but for
low SNRs, FNs become less likely, and conversely, if set too small, the solution
is likely to be sparse, but might omit parts of the sought support. We argue that
α is relatively easy to set heuristically, whereas the regularization level, λ, is much
more difficult to set appropriately. We have also shown that the median quantile,
i.e., α = 0.5, will approximate the CV’s regularization level, which, when used
for the reweighted LASSO problem, gives high rates of support recovery.

The great virtue of the proposed method lies in the computational complex-
ity; CV is often computationally burdensome, even infeasible for some applic-
ations, solving the LASSO problem again and again for different regularization
levels, while the proposed method is independent of the examined data. It only
requires knowing the approximate shape of the noise distribution. This may of-
ten be found using secondary noise-only data, or using some standard estimation
procedure. Furthermore, the family of the noise distribution is not required to be
specifically known, as it may suffice to draw samples from its empirical distribu-
tion function.
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