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Background 

Colorectal cancer 

Epidemiology 

Colorectal cancer (CRC) is the third most common cancer in men and the second 
most common cancer in women globally, with an annual incidence of 
approximately 1.2 million cases and more than 600000 related deaths each year 
[1]. Incidence rates vary largely by geographical location, with the highest rates 
reported in more developed regions, i.e. North America, Western Europe, 
Australia and New Zeeland, whereas the lowest rates are seen in Africa (except 
Southern Africa) and South-Central Asia [1]. The incidence of CRC is 
substantially higher in men than in women, with a 1.4:1 male to female rate 
globally [1]. Swedish incidence rates for colon cancer are similar between the 
sexes, but for rectal cancer, the incidence is approximately 50% higher in men 
than in women [2,3].  

Increasing incidence rates are observed in newly developed or economically 
transitioning countries, most likely reflecting a “Westernization” of the lifestyle 
with altered dietary habits, increased prevalence of obesity and decreased physical 
activity [4]. During the last decades, CRC incidence rates, adjusted for population 
growth and increased life expectancy, have been fairly stable, with only a modest 
annual increase in Sweden [5,6], and other developed countries [4,7]. 
Interestingly, CRC incidence rates are declining in North America [8], largely 
attributed to the implementation of screening [9,10]. 

In the last decades, CRC age-standardized mortality rates have steadily decreased, 
and survival has consistently increased, in Sweden [6] and the rest of the 
developed world [4,11,12]. These trends are likely due to the to the improvements 
made in CRC detection and treatment during this period [13-15]. Mortality rates 
are generally lower in women than in men [1]. 

The relative 5-year survival rates for colon cancer in Sweden 2011 were 64.1% for 
men and 66.8% for women. For rectal cancer, the corresponding relative 5-year 
survival rates were 62.9% for men and 64.2% for women [16]. 
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Figure 1.  The age standardized incidence and mortality for colon cancer (A), rectal cancer (B), and 
age specific incidence of CRC (C) in Sweden [16,17]. 
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Etiology and risk factors 

CRC most commonly occurs sporadically, and, as with the majority of other 
malignancies, the etiology is multifactorial [18]. CRC risk increases with age and 
75% of cases occur after the age of 65 [17]. The rapid increase in CRC incidence 
in populations previously considered to be at low risk, the substantial geographical 
difference in incidence, and the incidence changes observed in migrant studies 
suggest environmental and lifestyle factors as etiological agents [19]. Diet is likely 
the most important exogenous factor and the evidence that consumption of red 
meat, processed meat and excessive amounts of alcohol causes CRC is convincing 
[20]. Further, food containing dietary fibers seems to protect from CRC [20].  

Obesity, and in particular abdominal fatness, likely increases the risk of CRC, 
whereas physical activity decreases the risk [20]. Interestingly, the increased risk 
for CRC associated with obesity is more pronounced in men and premenopausal 
women [21]. Accumulating evidence further supports that tobacco smoking is a 
risk factor for CRC [19,22,23]. Other environmental factors include 
cholecystectomy, that has been proposed to increase the risk for CRC by means of 
altered bile secretion, but results are conflicting [24-26]. The association between 
inflammatory bowel disease (IBD) and CRC is well established and forms the 
basis for widely adopted endoscopic surveillance recommendations [27,28]. 
However, recent findings suggest that the increase in risk for CRC due to IBD 
might not be as substantial as previously considered [29,30].  

Long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) has been 
proven to significantly reduce the risk for CRC [31], and prophylactic NSAID 
treatment in high-risk groups, i.e. patients with inherited CRC predisposition, is 
feasible [32]. Serious side effects, such as bleeding ulcer, may however outweigh 
the benefits for the general public [33]. 

Results from the Women’s Health Initiative (WHI) large randomized controlled 
trials of hormone therapy have demonstrated that postmenopausal hormone 
replacement therapy (HRT), with estrogen plus progestin, significantly reduces the 
incidence of colon cancer [34]. Of note, women who took estrogen plus progestin 
were diagnosed at a more advanced stage than those who took placebo [34]. 
Interestingly, therapy with estrogen alone was not significantly related to CRC 
incidence [35]. Moreover, the risk for breast cancer, coronary heart disease, stroke, 
and venous thromboembolic disease were increased in women taking estrogen 
plus progestin [34], hence limiting the potential use of HRT as chemoprevention 
for CRC.  
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Hereditary CRC 

Approximately 20-30% of CRC cases have a familiar basis, that is two or more 
first- or second degree relatives (or both) also having been diagnosed with CRC, 
whereas highly penetrant, inherited syndromes such as hereditary nonpolyposis 
colon cancer (HNPCC) and familial adenomatous polyposis (FAP) account for 
less than 5% of cases [18,36].  

HNPCC, also referred to as the Lynch syndrome, is the most common form of 
hereditary CRC [36]. HNPCC is caused by a germline mutation in one of the 
genes associated with the DNA mismatch repair (MMR) system, predominantly 
MLH1, MSH2, MSH6 or PMS2, leading to microsatellite instability (MSI) [36]. 
Inheritance is autosomal dominant, and individuals carrying mutations in the 
MMR genes have a 50–80% lifetime risk of developing CRC [18]. Carcinogenesis 
is markedly accelerated in HNPCC, and CRC commonly has an early age of onset, 
with a mean age of 45 years [36]. HNPCC tumours are preferably located in the 
proximal colon, and display specific histopathologic characteristics, i.e. poor 
differentiation, mucinous or signet ring cell histology, and marked lymphocytic 
infiltration [36]. Multiple synchronous and metachronous CRCs are common [36], 
and there is an excess of extracolonic malignancies, predominantly endometrial 
cancer [36]. Individuals at risk can be identified by assessment of personal and 
family cancer history and by molecular testing of CRC tumor specimens for MSI 
[18]. The diagnosis is confirmed by germline MMR gene mutation analysis [18]. 

FAP is characterized by hundreds to thousands of adenomatous polyps that 
develop at an early age. The condition is caused by a germline mutation in the 
adenomatous polyposis coli (APC) gene and is most often inherited in an 
autosomal dominant manner [18]. However, up to 30% of cases emerge as de 
novo mutations, and, consequently, are not associated with a family history [37]. 
Without prophylactic surgery, the risk of developing CRC is nearly 100% by the 
age of 40 [37]. Extra-colonic manifestations include duodenal adenomas, and, less 
commonly, desmoids and osteomas [37]. Patients with a verified APC mutation, or 
a familiar history of FAP, should be surveilled with endoscopy and recommended 
prophylactic surgery once the polyp burden is too extensive [37]. Total 
proctocolectomy with ileoanal pouch anastomosis is the preferred approach rather 
than less extensive surgery, such as total colectomy with ileorectal anastomosis, as 
the remaining mucosa is at substantial risk for malignant transformation [37]. 

Carcinogenesis 

For decades, the paradigm of CRC carcinogenesis has been the multistep genetic 
model proposed by Fearon and Vogelstein in 1990. In brief, a series of genetic 
events were postulated to be required for the development of CRC. These events 
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include mutational activation of several oncogenes and inactivation of tumour 
suppressor genes, leading to a stepwise accumulation of genetic alterations, 
ultimately resulting in malignant transformation [38]. Morphologically, these 
events are reflected in the sequential transformation of normal mucosal epithelium 
through adenoma to carcinoma, widely described as the “adenoma-carcinoma 
sequence” [39]. Although this model is still definitely valid, it is not telling the 
whole truth. Most importantly, it has become clear that the genetic alterations 
required for colorectal carcinogenesis may develop through several different 
pathways, and, therefore, the transformation from normal epithelium to cancer 
obviously is not as sequential and uniform as previously suggested. 

 

Figure 2.  The adenoma carcinoma sequence, as proposed by Fearon and Vogelstein. 
Tumourigenesis proceeds through a series of genetic alterations involving oncogenes and tumour 
suppressor genes.  

 

Early premalignant changes have been observed in the mucosal crypts. These so 
called aberrant crypt foci (ACF) harbor premalignant genetic alterations and are 
considered to be precursor lesions to adenomas and carcinomas [40]. Likely, ACF 
can also transform directly to cancer, bypassing the adenoma stage [40]. However, 
most CRCs evolve in a preexisting adenoma [41], and this malignant 
transformation generally takes decades. However, time to progression varies 
depending on the type of adenoma, with large size, multiple adenomas, villous 
histology and high-grade dysplasia being high-risk features [42]. Further, sessile 
serrated adenomas (SSA), comprising a subgroup with distinct molecular and 
pathological characteristics, are thought to progress to cancer via a different 
pathway [43].  
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An underlying genetic instability is considered to be a prerequisite for the 
significant accumulation of genetic and epigenetic alterations seen in CRC [44]. 
At present, three different major pathways of genetic instability have been 
recognized; i.e. the chromosomal instability (CIN), the microsatellite instability 
(MSI) and the CpG Island Methylator Phenotype (CIMP) pathways [45]. 
Depending on the carcinogenetic pathway, CRCs acquire distinct different 
molecular, pathological and clinical characteristics. However, these pathways are 
not always mutually exclusive, and a tumour can exhibit features from different 
pathways [46].  

The chromosomal instability (CIN) pathway 
Approximately 70-85% of CRCs develop through the CIN pathway [47,48]. CIN 
is characterized by an accelerated rate of gains or losses of whole or large portions 
of chromosomes that result in intercellular karyotypic variability [46]. The 
consequence of CIN is aneuploidy, subchromosomal genomic amplifications, and 
a high frequency of loss of heterozygosity (LOH) [46]. CIN is further associated 
with a characteristic set of mutations, most importantly mutation in APC and/or 
loss of chromosome 5q, harbouring the APC gene, mutation of the v-Ki-ras2 
Kirsten rat sarcoma viral oncogene homolog (KRAS) oncogene, loss of 
chromosome 18q and deletion of chromosome 17p, harboring the tumour 
suppressor gene TP53 [48].  

The crucial tumour suppressor gene APC is mutated in up to 80% of sporadic 
CRCs and adenomas, indicating that this mutation represents an early event in 
carcinogenesis [46,48]. By binding to beta-catenin, APC suppresses activation of 
the Wnt-signaling pathway that regulates cellular growth, apoptosis and 
differentiation [48]. Mutations in APC truncate the APC protein and interrupt its 
binding to beta-catenin, thus causing unsuppressed downstream signaling [46]. 

KRAS is another important gene within the CIN pathway. In brief, mutated KRAS 
is locked in a constitutively active form, and downstream regulation of the 
Ras/Raf/MEK/MAPK pathway is lost [49]. Activating KRAS mutations are found 
in approximately 40% of CRCs [49]. 

Finally, inactivation of TP53 occurs either through loss of heterozygosity or 
mutation and is considered a late event in colorectal carcinogenesis [46]. The p53 
protein normally acts to increase the expression of cell-cycle inhibiting genes upon 
DNA damage, in order provide sufficient time for DNA repair. Furthermore, when 
the genetic damage is irreparable, p53 induces pro-apoptotic genes, thus 
terminating the genetic insult through programmed cell death [46]. 

Tumours of the CIN phenotype develop though the traditional adenoma-carcinoma 
sequence and exhibit clinical characteristics such as distal location and high 
differentiation grade, and have an intermediate prognosis [47,50,51]. 
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The microsatellite instability (MSI) pathway 
Microsatellites are short repeating sequences of DNA, spread out over the whole 
genome and are prone to errors during replication due to their repetitive manner 
[47]. Mismatches of nucleotides occur when the DNA-polymerase inserts bases 
wrongly in the newly synthesized DNA. The DNA mismatch repair system 
(MMR) acts as a ”spell checker”, normally recognizing and repairing these 
mismatches instantly [47]. Instability of microsatellites is a reflection of the 
inability of the MMR system to correct these errors and is recognized by 
frameshift mutations in the microsatellite repeats [52].  

The pure form of MSI is caused by a germline mutation in one of the MMR genes, 
as seen in HNPCC. However the majority of MSI CRCs occur sporadically due to 
DNA methylation of the MLH1 promoter and the consequent transcriptional 
silencing of MLH1 expression. In other words, MSI is acquired by the CIMP 
pathway in sporadic CRC [47,48,53]. MSI tumours, whether sporadic or inherited, 
share similar biology [48], however the precursor lesion is generally a traditional 
adenoma in HNPCC and a CIMP-associated SSA in sporadic MSI [48]. 
Approximately 15% of sporadic CRCs display MSI [52]. 

Detection of MSI can be done either indirectly by demonstrating the absence of 
expression of MMR proteins with immunohistochemistry (IHC) or more directly 
by polymerase chain reaction (PCR) based amplification of specific microsatellite 
repeats [54]. When evaluating MSI status by IHC, a tumour is generally classified 
as being either microsatellite unstable (MSI) or microsatellite stable (MSS), 
depending on the expression of MMR proteins MLH1, PMS2, MSH2 and MSH6 
[54]. In PCR based MSI analysis, a panel of five specific microsatellite loci 
(BAT25, BAT26, D5S346, D2S123, and D17S250) are generally used and 
tumours classified as either MSI-high, when instability is observed in at least two 
markers, MSI-low when unstable in one marker, or MSS when there is no 
apparent instability [54]. However, MSI-low CRCs do not appear to differ 
clinically or pathologically from MSS CRCs, and generally MSI-low is 
categorized as MSS [54]. The validity of the two methods has been debated, but 
both are well recognized and have proven concordant [54].  

MSI tumours have distinct clinical and pathological characteristics; tumours are 
predominantly located in the proximal colon and typically display poor 
differentiation, mucinous or signet ring cell histology, and marked lymphocytic 
infiltration [53]. In sporadic CRC, MSI is further associated with female sex and 
old age [52]. Despite the adverse pathological features, MSI is generally 
associated with a good prognosis [55].  

MSI tumours tend to be diploid, with less LOH and few mutations in KRAS and 
p53 [52]. BRAF V600E mutation is commonly seen in sporadic MSI CRC, but 
very seldom in HNPCC [52].  
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In vitro studies indicate resistance of MSI tumors to various chemotherapeutic 
agents, such as fluorouracil (5-FU) and cisplatin [56], but clinical data on the use 
of MSI as a chemotherapy predictive marker are conflicting [55,57]. 

The CpG Island Methylator Phenotype (CIMP) pathway 
Epigenetic alterations refer to changes in gene expression or function that are 
mediated by mechanisms that do not affect the DNA sequence [47]. These 
changes are usually caused by DNA methylation or histone modifications [47]. 

DNA methylation commonly occurs in short sequences rich in the CpG 
dinucleotide, so called CpG islands, which can be found in the promoter regions in 
about half of all human genes [58]. Methylation of cytosines within these regions 
causes loss of gene expression, functionally equivalent to inactivating mutation 
[58]. Aberrant DNA methylation increases with age and can also be induced by 
environmental factors, such as smoking [52]. 

Several important tumour suppressor genes, such as APC, CDKN2A, MGMT and 
MLH1, can be silenced by DNA methylation in CRC [52,59]. A subset of CRCs 
exhibits widespread CpG hypermethylation, referred to as the CpG island 
methylator phenotype (CIMP) [58].  

Using PCR-based methods, the presence of methylation in a panel of CpG markers 
can be assessed [48]. Most often, tumours are categorized as either CIMP-high, 
CIMP-low or CIMP-negative, depending on the extent of methylation [60]. CIMP-
low has been associated with KRAS mutation and male sex [61], however it is 
controversial whether CIMP-low represents a distinct entity or not [59]. 

Tumours with CIMP constitute a distinct subgroup, and are associated with 
proximal location, female sex, old age, mucinous and poor differentiation, MSI, 
BRAF mutation and inversely associated with TP53 mutation [52,59]. Up to 20% 
of sporadic CRCs are CIMP-high [52].  

CpG methylation is an early event in CRC carcinogenesis [47,61], and the 
precursor lesion is generally a SSA [52]. 
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Figure 3.  Schematic model of CRC carcinogenesis. The transformation from normal mucosa to 
metastatic cancer involves multiple molecular alterations in complex interaction. Used with 
permission by Tidsskrift for Den norske legeforening [62]. 

 

In summary, CRC evolves through at least three distinct pathways that can be 
defined by certain molecular features, i.e. CIN, MSI and CIMP. These entities are 
not mutually exclusive, but CIN seems to exclude CIMP [51]. A classification of 
CRC based on these molecular characteristics has been suggested [60]:  

1. CIMP high/MSI high (12% of CRC); originates in serrated adenomas and 
is characterized by BRAF mutation and MLH1 methylation. 

2. CIMP high/MSI low or MSS (8%); originates in serrated adenomas and is 
characterized by BRAF mutation and methylation of multiple genes. 

3. CIMP low/MSI low or MSS (20%); originates in tubular, tubulovillous, or 
serrated adenomas and is characterized by CIN, KRAS mutation, and 
MGMT methylation. 

4. CIMP negative/MSS (57%); originates in traditional adenoma and is 
characterized by CIN. 

5. HNPCC; CIMP negative/MSI high (3%); negative for BRAF mutations. 
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Figure 4.  Derivation of molecular CRC groups 1-5 based on CIMP status (H=high, L= low, 
Neg=negative) and MSI status (H=high, L=low, S=stable). Used with permission by John Wiley & 
Sons Ltd [60]. 

Sex differences in carcinogenesis, risk and survival  

To begin with, several sex-related differences can be observed in CRC 
epidemiology. As previously noted, the CRC incidence and mortality rates are 
significantly higher in men than in women [1]. The discrepancies in incidence and 
mortality are particularly striking between premenopausal women and age-
matched men [63], indicating a hormonal influence. Further, differences in dietary 
and lifestyle factors likely contribute [64]. Among known risk factors for CRC, 
women appear to ingest more dietary fibre, seem to benefit more from physical 
activity, and consume less alcohol [64].   

CRC mortality rates are declining in most developed countries, particularly in 
women [4,65]. A possible explanation for the comparatively improved survival in 
women might be earlier and more widespread favorable dietary and lifestyle habits 
[65], but may also be due to the use of postmenopausal HRT or oral contraceptives 
(OC) [65]. Other factors potentially accounting for sex differences in survival are 
differences in screening participation and stage at diagnosis [66]. 
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Further, women more often have proximal tumours [63], and are more likely to 
respond to adjuvant treatment with 5-FU [63]. At the molecular level, MSI and 
CIMP-high tumours are more frequent in women [67]. 

The metabolic syndrome has been reported as an independent risk factor for CRC 
in men but not in women [68], and obesity seems to increase the risk for CRC, in 
particular in men [21]. Obese men further appear to present with a more advanced 
tumour stage at diagnosis [69]. 

Clinical management 

The successful management of CRC is truly a multidisciplinary task, and depends 
upon the cooperation between pathologists, radiologists, oncologists and surgeons 
to ensure a detailed diagnosis, optimal surgery and adequate adjuvant treatment. 
Surgery is the cornerstone for curative treatment and has changed considerably 
over the last decades. Most importantly, the implementation of the total mesorectal 
excision (TME) technique has improved the outcome significantly for patients 
with rectal cancer [70]. Advances in neoadjuvant and adjuvant chemo-
radiotherapy have increased survival and reduced recurrences, and the addition of 
targeted therapies has prolonged life in metastatic disease to a considerable extent 
[71-73]. Further, imaging modalities such as magnetic resonance imaging (MRI) 
and positron emission tomography (PET) have contributed to better staging. Of 
note, no prognostic molecular biomarkers have yet found a place in clinical 
protocols.  

Prevention 
Primary prevention of CRC means the identification and removal of etiological 
risk factors [17]. In specific, there is convincing evidence that obesity, physical 
inactivity, smoking, a diet low in fiber and high in red meat and excessive alcohol 
consumption increases the risk for CRC [20,74]. Thus, counteracting lifestyle 
modifications likely have a significant impact on CRC development and should be 
recommended. Moreover, both the use of NSAIDs and postmenopausal HRT has 
proven to increase the risk of CRC, however side effects limit the clinical use as 
chemopreventive agents [33,34]. 

Secondary prevention of CRC aims to identify cases with subclinical disease by 
screening in a healthy population, i.e. to detect and remove premalignant 
adenomas before the development of CRC [17,75].  

Screening has proven to significantly reduce the relative mortality from CRC 
[76,77] and several methods can be used. Indirect methods include fecal occult 
blood tests (FOBT) and stool DNA tests, whereas sigmoidoscopy and colonoscopy 
represent direct methods [78]. The usefulness of the different methods are being 
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debated [78] but irrespectively of the method, screening for CRC has been shown 
to be cost-effective and is estimated to save a large number of lives [79].  

CRC screening is recommended in the USA and many European countries, but at 
present not in Sweden. However, a Swedish screening study has recently been 
initiated, with the aims to study the impact of screening on CRC mortality in 
Sweden, and to compare the effectiveness of FOBT vs. colonoscopy [80]. 

Up to now, no reliable serum markers for CRC screening have been identified. 
Carcinoembryonic antigen (CEA) has proven to be prognostic in early CRC [81] 
but is not good for screening purposes [81]. At present, CEA is used mainly for 
postoperative monitoring for recurrent disease [82].  

Clinical staging 
Disease stage is the strongest predictor of survival for patients with CRC and 
accurate staging is critical for appropriate patient management [83]. Historically, 
several classification systems have been used, i.e. the Dukes and Astler-Coller 
classification systems [84,85]. However, these systems are now considered 
obsolete and at present, the predominant staging system is the TNM system 
maintained by the American Joint Committee on Cancer (AJCC) and the 
International Union for Cancer Control (UICC) [83]. 

 

Figure 5.  Schematics of the TNM staging system, that codes the extent of the primary tumor (T), 
regional lymph nodes (N), and distant metastases (M) 
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The TNM system codes the extent of the primary tumor (T), regional lymph nodes 
(N), and distant metastases (M) and provides a combined disease stage based on T, 
N, and M [83,86]. As visualized in Figure 5 and described in detail in Table 1, T-
stage refers to the depth of invasion into the intestinal wall and beyond, N-stage 
denotes the degree of regional lymph node involvement, and M-stage indicates 
whether the tumour has spread to distant organs, i.e. liver, lungs and peritoneum. 

 
Table 1.  The TNM system according to the AJCC cancer staging manual, 7th edition [87]. 

Primary tumour (T) Regional lymph nodes (N) 
TX Primary tumour not assessable NX Regional lymph nodes not assessable 
T0 No evidence of primary tumour N0 No regional lymph node metastasis 
Tis Carcinoma in situ N1 Metastasis in 1–3 regional lymph nodes 
T1 Tumor invades submucosa N1a Metastasis in one regional lymph node 
T2 Tumour invades muscularis propria N1b Metastasis in 2–3 regional lymph nodes 
T3 Tumour invades through muscularis 

propria 
N1c Tumor deposit(s) in the subserosa, 

mesentery, or nonperitonealized pericolic 
or perirectal tissues without regional nodal 
metastasis 

T4a Tumor penetrates to the surface of 
the visceral peritoneum 

N2 Metastasis in 4 or more regional lymph 
nodes 

T4b Tumor directly invades or is 
adherent to other organs 

N2a Metastasis in 4–6 regional lymph nodes 

 N2b Metastasis in 7 or more regional lymph 
nodes 

Distant metastasis (M) 
M0 No distant metastasis 
M1 Distant metastasis 
M1a Metastasis confined to one organ or site 
M1b Metastases in more than one organ/site or the peritoneum 

 

According to the Working Party Report of the World Congress of 
Gastroenterology in 1991, at least 12 lymph nodes should be dissected and 
examined by a pathologist after surgical resection of a CRC to achieve an 
adequate clinical staging [88]. Fewer than 12 examined lymph nodes should be 
considered a risk factor and adjuvant chemotherapy may be advised [88].  

The T, N, and M parameters are further grouped to determine the stage of a tumor 
and relates to its prognosis, as presented in Table 2. 
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Table 2.  Survival according to TNM stage (AJCC cancer staging manual, 7th edition) [89].  
Stage TNM 5-year survival (%) 
I T1-T2 N0 M0 92 
IIA 
IIB 
IIC 

T3 
T4a 
T4b 

N0 
N0 
N0 

M0 
M0 
M0 

84 
76 
59 

IIIA 
 
IIIB 
 
 
IIIC 
 
 

T1-T2 
T1 
T3-T4a 
T2-T3 
T1-T2 
T4a 
T3-T4a 
T4b 

N1/N1c 
N2a 
N1/N1c 
N2a 
N2b 
N2a 
N2b 
N1-2 

M0 
M0 
M0 
M0 
M0 
M0 
M0 
M0 

83 
 
64 
 
 
32 

IVA 
IVB 

any T 
any T 

any N 
any N 

M1a 
M1b 

10 

 

Surgery 
Surgery is the cornerstone for treatment of CRC, and in most cases involves 
resection of the primary tumor and regional lymph nodes. Advances in surgery 
and perioperative care have likely had a significant effect on outcome; with 5-year 
survival approaching 90% for stages I and II, and >70% for stage III cancers with 
current adjuvant regimens. 

A careful preoperative investigation is essential, and the aims are to confirm the 
site of the primary tumour, to obtain a histological diagnosis, to rule out 
synchronous tumours or adenomas, to assess the extent of local and nodal spread 
(in particular in rectal cancer) and to detect distant metastases [90]. This generally 
involves a colonoscopy, a CT scan of the thorax and the abdomen and, for rectal 
cancers, a MRI. 

The extent of resection for a colon cancer is based on colonic blood supply. A 
right hemicolectomy should be performed for cancers of the cecum to the hepatic 
flexure and includes ligation of the ileocolic, right colic and right branch of the 
middle colic vessels [91]. Transverse colon cancers require a transverse 
colectomy. However, an extended right hemicolectomy, with ligation of the 
ileocolic and middle colic arteries but preservation of the left colic artery, is often 
preferred because of concerns over tension or inadequate blood supply at the 
anastomosis [91]. Splenic flexure cancers are managed either by an extended right 
hemicolectomy or by a left hemicolectomy, with ligation of the inferior mesenteric 
vessels, depending on the blood supply ascertained after a complete splenic 
flexure mobilization [91]. Descending and proximal sigmoid colon cancers are 
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treated with left hemicolectomy, ligating the inferior mesenteric vessels [91]. For 
mid- and distal sigmoid colon cancers, a sigmoid resection, ligating the left colic 
artery, is appropriate [17,90]. Anatomic resection based on colonic blood supply 
assures both adequate margins as well as adequate anastomotic blood supply. The 
anastomosis can either be stapled or hand-sewn, with similar complication 
frequencies [91].  

Analogously to TME surgery for rectal cancer, the concept of complete mesocolic 
excision (CME) with central vascular ligation (CVL) has emerged in recent years, 
whereby the tumour is resected using embryologic tissue planes along with the 
entire regional mesocolon in an intact peritoneal and fascial lined package [90]. 
This standardized approach to surgery for colon cancer based on good oncologic 
principles has been shown to significantly improve survival [92,93], and possibly 
represents a new era coming. 

Surgery for colon cancer is performed in an acute setting in 20-25% of cases [17] 
which is associated with a significantly increased mortality [94]. The indication 
for acute surgery can be obstruction, or less commonly perforation or major 
bleeding [17]. Obstructing cancers are associated with an increased anastomotic 
leak rate, leading to decreased survival [95]. Generally, obstructing right and 
transverse colon cancers can be resected with a primary anastomosis, whereas 
obstructing left-sided cancers most often are managed by resection and a 
colostomy. In recent years, endoscopic stenting as a bridge to surgery has emerged 
as an attractive option [91]. Perforated colon cancers have a poor prognosis, 
regardless of the site of perforation. Perforation may occur at the site of the tumor 
or proximal to a distal obstruction. In both cases, the area of perforation and the 
tumor should be resected, and most often a stoma is required [91]. 

Traditionally, patients with rectal cancer have had a worse prognosis compared to 
patients with colon cancer. However, rectal cancer management has evolved 
substantially over the past decades, and this has led to a marked improvement in 
rectal cancer outcome [96,97], with some countries now reporting a better 
outcome than for colon cancer [98-100]. This change in scenario can be attributed 
the cumulative effect of an increased focus on rectal cancer with standardization of 
surgery, TME [101], use of standardized preoperative staging with MRI [102], and 
use of neoadjuvant radiotherapy with or without chemotherapy in selected patients 
[71]. 

Surgery for rectal cancer is more difficult and demanding than for colon cancer, 
and should be performed by skilled and dedicated surgeons [103]. The adequate 
procedure is generally a low anterior resection (LAR), or an abdominoperineal 
resection (APR) [17,95]. The gold standard for rectal cancer surgery is the TME 
technique, involving removal of the entire rectal mesentery, including that distal to 
the tumor, as an intact unit. TME requires precise dissection in an areolar plane 
along the visceral fascia that envelops the rectum and its mesentery [101].  
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Tumours of the upper third of the rectum are treated with high ligation of the 
inferior mesenteric vessels and adequate mobilization of the proximal colon to 
allow a tension-free anastomosis with a good blood supply [104].  The rectum and 
its mesorectum are divided 5 cm below the lower end of the tumour, and a primary 
anastomosis is constructed [104] and can either be hand sewn or stapled. A 
covering stoma is not usually required [104]. 

Tumours of the distal and middle thirds of the rectum are managed either by a 
LAR, or by an APR for the most distal tumours. Since the advent of circular 
stapling devices, there is no technical lower limit for an anastomosis, however 
functionality is inferior for distal anastomoses [17,104].  

A LAR is performed with the TME-technique, with meticulous dissection and 
complete mesorectal exicion. The inferior mesenteric artery is ligated, the level of 
ligature beeing debated extensively [105]. A distal margin of 1-2 cm has proven 
sufficient [17,90]. After resection, intestinal continuity is restored, commonly with 
a stapled side-to-end anastomosis [17]. A covering loop ileostomy is 
recommended, due to the high risk of anastomotic leakage [17]. A Hartmann’s 
procedure, i.e. a resection with closure of the rectal stump and formation of an end 
colostomy, is an alternative for some patients [17].  

An APR consists of synchronous resection of the complete rectum, including the 
anal canal and the sphincter complex, and the formation of an end colostomy [17]. 
The abdominal dissection is performed with the TME-technique [17]. 

Local excision by transanal endoscopic microsurgery (TEM) can be an option for 
malignant polyps or even T1 tumors located in the rectum for carefully selected 
patients, such as elderly and fragile patients for whom a more conventional 
surgical approach would not be appropriate [106,107].  

In recent years, there has been a trend towards minimal invasive surgical 
techniques. For colon cancer, several randomized studies indicate the same 
oncologic results with laparoscopic surgery as with open surgery [108-110]. For 
rectal cancer there is evidence that laparoscopic surgery is feasible with less 
postoperative morbidity and faster recovery, but the oncological outcome remains 
controversial [111]. Robot assisted surgery for rectal cancer is in its beginning 
and, consequently, no firm conclusions or recommendations can be given based on 
the available data [111,112]. 

The liver and lungs are the most frequent sites (>50%) for distant metastases or 
recurrent disease, while about 13-25% of patients with recurrent CRC develop 
synchronous or metachronous peritoneal metastasis. Due to improvements in the 
surgical and oncological management, cure can be achieved for a selected but 
increasing number of patients with pulmonary [113], liver [114] and peritoneal 
metastases [115]. 
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Neoadjuvant and adjuvant treatment 
Guided by MRI, advanced stage rectal cancers are treated with neoadjuvant 
radiotherapy (RT) or chemoradiotherapy (CRT) for downstaging purposes, and to 
decrease the risk for local recurrence [17,104,116]. The efficacy of different 
protocols, i.e. short course RT (5x5Gy) and long course RT (2x25Gy), are 
currently being compared in the Stockholm III trial [117]. Some patients receiving 
neoadjuvant CRT achieve a complete clinical response (cCR), where no evidence 
of residual tumor can be found [104]. Recent studies have suggested a “watch and 
wait policy” in cCR, however this merits further investigation. 

Adjuvant chemotherapy is administered after an apparently complete colorectal 
resection to reduce the risk for recurrence. Most commonly fluorouracil (5-FU) is 
used, often in combination with leucovorin and oxaliplatin. 5-FU together with 
leucovorin reduces the risk for recurrence with approximately 30% [72]. With the 
addition of oxaliplatin, the risk for recurrence is reduced another 20%, however at 
the cost of significant toxicity [72]. Administration is intravenous, however 
Capecitabine, a 5-FU prodrug, is an oral alternative with comparable efficacy [72].  

At present, adjuvant chemotherapy is offered to patients with TNM stage III 
disease, i.e. with presence of metastatic spread in the lymph nodes. The potential 
use of adjuvant therapy in stage II disease has been extensively investigated [118], 
and might be beneficial in selected cases with high-risk features, such as locally 
advanced tumours and tumour perforation [72]. Further adverse factors, such as 
inadequate lymph node sampling, vascular or perineural invasion and poorly 
differentiated histology are also known to indicate a higher risk of recurrence 
[119], although the potential benefit of adjuvant chemotherapy is not fully known 
in patients with tumours displaying these features [72]. Oppositely, MSI is 
associated with a good prognosis, and may decrease the indication for adjuvant 
therapy [120]. MSI has further been proposed to indicate resistance to 5-FU based 
therapies, however recent findings have shown no differences in response between 
MSS and MSI tumours [57].  

The evidence for adjuvant chemotherapy in curatively resected rectal cancer is not 
as solid as for colon cancer and protocols vary considerably around the world.  
Shedding some light on this issue, a Cochrane review from 2012 demonstrated 
significant survival benefits for adjuvant treatment in rectal cancer patients [121].  

Also in a palliative setting, fluoropyrimidine-analogs remain the cornerstone, often 
in combination with oxaliplatin or irinotecan.  

In recent years, the development of targeted therapies, e.g. monoclonal antibodies 
targeting specific molecules implicated in CRC carcinogenesis, have changed the 
scene somewhat: 

The angiogenesis inhibitor bevacizumab is a monoclonal antibody targeting the 
vascular endothelial growth factor (VEGF) and is generally used in combination 
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with chemotherapy for patients with advanced CRC [72]. Bevacizumab has a 
documented effect on survival in patients with metastatic CRC (mCRC) [122], but 
has not proven to be useful as adjuvant treatment [122].  

Cetuximab and panitumumab are monoclonal antibodies targeting the epidermal 
growth factor receptor (EGFR). Cetuximab is used in combination with 
chemotherapy for mCRC in both first and second line settings, or as third line 
monotherapy [122]. Panitumumab have similar indications. The clinical effect of 
EGFR inhibitors has been extensively studied, with mixed results [122]. Adjuvant 
use is unsupported [122]. 

Importantly, EGFR inhibitors have shown clinical efficacy only in tumors that are 
KRAS wild type, and not in those with KRAS activating mutation [123-127]. 
Therefore, KRAS mutation status is routinely tested prior to initiation of anti-
EGFR therapy. Similarly, EGFR inhibitors are most effective in tumors that are 
BRAF wild type [122]. 

Investigative markers 

Advances in molecular technology have resulted in the discovery of many putative 
biomarkers relevant to CRC, but nearly all are still in the discovery phase waiting 
to undergo clinical validation.  

Cyclin D1 
The cyclin D1 proto-oncogene belongs to the highly conserved cyclin family and 
plays a key role in cell cycle control, particularly in the transition from G1 to S 
phase [128,129]. Together with cyclin dependent kinase 4 and 6 (CDK4 and 
CDK6), cyclin D1 forms an active complex that promotes cell cycle progression 
by phosphorylation and, hence, inactivation of the retinoblastoma protein (pRb) 
[128,129]. Recent findings have also shown that cyclin D1 functions as a 
transcriptional modulator [128,130]. 

Cyclin D1 is considered important for the development and progression of several 
cancers [128,129]. Further, overexpression and amplification of cyclin D1 has 
been linked to the development of endocrine resistance in breast cancer in vitro 
and in vivo [128,131]. Increased levels of cyclin D1 may result as a consequence 
of gene amplification or from defective regulation at the post-translational level 
[128,132]. The oncogenic effect of cyclin D1 is due to enhancement of several 
processes during malignant cell transformation, such as abnormal growth, 
angiogenesis, and resistance to apoptosis [133]. Cyclin D1 is a target of the Wnt-
pathway, and it has been suggested that cyclin D1 activation secondary to APC or 
beta-catenin mutation is implicated in CRC carcinogenesis [134,135]. Further, 
cyclin D1 is also commonly activated through the Ras/Raf/MEK/MAPK pathway 
[130]. 



33 

Cyclin D1 is frequently overexpressed in CRC [136-144], however the relation 
between cyclin D1 expression and clinical outcome in CRC is uncertain. A 
summary of published studies on the prognostic value of cyclin D1 in CRC is 
presented in Table 3. 

 
Table 3.  Summary of studies on the clinicopathological correlates and prognostic value of cyclin 
D1 expression in CRC. 

Study Year n Significant associations/main findings  
Maeda et al [140] 1997 101 Advanced T-stage. Poor prognosis. 
Bahnassy et al [136] 2004 60 Advanced tumour size, T-stage and N-stage. Poor 

prognosis. 
Holland et al [138] 2001 126 Low differentiation and proximal tumour location. 

Nuclear expression associated with p21 expression. 
Good prognosis. 

Ogino et al [142] 2009 602 MSI-high, CIMP-high and BRAF-mutation. 
Expression of p21 and p27. Good prognosis. 

Jang et al [139] 2012 220 Good prognosis, overall and in adjuvantly treated 
patients. 

MacKay et al [145] 2002 249 Expression of p21 and p27. Old age. Not 
independently prognostic. 

Knösel et al [146] 2005 270 Not prognostic 
Formentini et al [147] 2012 140 Not prognostic 
Hislka et al [148] 2005 363 Not independently prognostic 
Kouraklis et al [149] 2006 111 Not independently prognostic 
Lyall et al [150] 2006 90 Not independently prognostic 
Schmitz et al [151] 2007 135 Not independently prognostic 
Theocharis et al [152] 2007 86 Not independently prognostic 
Saridaki et al [153] 2010 144 Not independently prognostic 
Mao et al [154] 2011 169 Not independently prognostic 

 

Beta-catenin 
Beta-catenin is a membrane-associated protein that plays a dual role in the cell. It 
has an essential function in the regulation of cellular adhesion, and further serves 
as the major mediator of the Wnt-signaling pathway, which has a crucial role in 
embryonic development and tissue regeneration [155]. Wnt-signaling has further 
been implied to be involved in energy metabolism [156,157]. Mutations in the 
Wnt-pathway further have an important role in the development of CRC 
[155,158]. 

Beta-catenin forms a complex with kinases GSK3 and CK1, and tumour 
suppressor proteins APC and Axin. When Wnt receptors are not engaged, kinases 
in the complex phosphorylate beta-catenin, thus targeting the latter for rapid 
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destruction. When receptors are activated by Wnt ligands, the intrinsic kinase 
activity of the complex is inhibited. As a consequence, stable nonphosphorylated 
beta-catenin accumulates and makes its way into the nucleus, where it coactivates 
transcription of various target genes, such as cyclin D1 and c-Myc and, hence, 
regulates cell proliferation and apoptosis [155,159].  

 
Table 4 . Summary of studies on the clinicopathological correlates and prognostic value of beta-
catenin expression in CRC.  

Study Year n Significant associations/main findings 
Chen et al [160] 2013 3665 Meta-analysis. Nuclear expression associated with 

advanced disease stage and poor prognosis. 
Andras et al [161] 2012 100 Loss of membranous expression associated with poor 

prognosis 
Stanczak et al [162] 2011 66 Nuclear expression associated with a poor prognosis 
Matsuoka et al [163] 2011 156 Loss of membranous expression in the invasive front 

associated with poor prognosis 
Ougolkov et al [164] 2002 202 Nuclear expression in the invasive front associated 

with advanced disease stage and recurrent disease 
Toth et al [165] 2012 79 Nuclear expression associated with distant metastasis 
Sun et al [166] 2011 67 Nuclear expression associated with advanced T- and 

M-stage 
Chen et al [167] 2008 96 Nuclear expression associated with advanced disease 

stage and low differentiation grade. Not independently 
prognostic. 

Bravou et al [168] 2006 125 Nuclear expression associated with advanced disease 
stage 

Fernebro et al [169] 2004 269 Loss of membranous or cytoplasmic expression 
associated with metastatic disease 

Morikawa et al [170] 2011 995 Nuclear expression associated with a favorable 
prognosis in obese patients 

Pancione et al [171] 2010 141 Expression associated with a favorable prognosis 
Jang et al [139] 2012 220 Not independently prognostic 
Mårtensson et al [172] 2007 67 Not independently prognostic 
Togo et al [173] 2008 183 Not prognostic 

 

Thus, translocation of beta-catenin to the nucleus is an indicator of an active Wnt-
signaling pathway [160]. Nuclear beta-catenin overexpression is common in CRC 
and has been linked to CIN [172,174]. Mutation in APC is the predominant factor 
causing aberrant Wnt-signaling, however mutation in beta-catenin and Axin also 
occur [159,175]. The clinical significance of altered beta-catenin expression in 
CRC is controversial, and previous results are conflicting [139,161-173,176-179]. 
However, a recent meta-study concluded that nuclear beta-catenin overexpression 
is independently associated with a poor prognosis [160]. A summary of published 
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studies on the prognostic value of beta-catenin expression in CRC is presented in 
Table 4. Of note, beta-catenin staining evaluation protocols in these studies are 
quite heterogeneous. 

MSI 
As previously described, MSI in sporadic CRC is caused by silencing of MMR 
genes though hypermethylation [53], due to the CIMP phenotype [53]. MSI 
tumours are associated with female sex, proximal location, low differentiation 
grade and mucinous histology [53]. Further, MSI is, without controversy, 
associated with a good prognosis [55,180].  

MSI has been shown to indicate resistance to various chemotherapeutic agents, 
including 5-FU, in vitro [56]. However, clinical studies on the use of MSI as a 
predictive marker of chemotherapy response are conflicting [55,57,180-182]. 

KRAS 
KRAS is a membrane-associated GTPase protein, in humans encoded by the v-Ki-
ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) proto-oncogene, with a 
central role in many cellular signal transduction pathways connecting extracellular 
signals with nuclear transcription factors [183,184]. Inactive KRAS is bound to 
GDP, which is exchanged with GTP upon activation by cell surface receptors, 
such as EGFR, leading to subsequent downstream signal transduction. This is 
transient however, as GTP is converted to GDP by intrinsic enzymatic activity and 
KRAS turns itself off, acting as a self limiting molecular on/off switch. Mutated 
KRAS, predominantly in codons 12 and 13, remains in the active GTP-bound state 
and regulation of downstream signaling is lost [49,183,185]. Approximately 40% 
of all CRCs have an activating KRAS mutation [49,183,184,186-189]. The 
mutational incidences for ACFs, adenomas and carcinomas are similar, indicating 
that KRAS mutation represents an early step in CRC carcinogenesis [190]. 

KRAS acts downstream of EGFR in the Ras/Raf/MEK/MAPK pathway, and 
KRAS mutation has proven to be predictive of resistance to EGFR-inhibiting 
therapies [123-127]. Thus, KRAS mutation analysis has become clinical routine 
before considering administration of such drugs. 

Numerous studies have investigated the relationship between KRAS mutation 
status and survival from CRC, with divergent results, however the majority have 
demonstrated an association between KRAS mutation and poor prognosis 
[67,123,189,191-195]. An overview is presented below in Table 5. Notably, while 
most studies did not consider specific mutations, accumulating evidence indicates 
that specific codon 12 and 13 mutations have a different impact on the 
functionality of the KRAS protein, and, hence, its impact on clinical outcome in 
CRC patients [191,196,197]. 
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Table 5.  Summary of studies on the prognostic value of KRAS mutation in CRC. 
Study Year n Stage Significant associations/main findings 
Richman et al [198] 2009 711 IV Any KRAS mutation associated with poor 

prognosis 
Nash et al [192] 2010 532 I-IV Any KRAS mutation associated with poor 

prognosis 
Farina-Sarasqueta et al 
[199] 

2010 364 II-III Any KRAS mutation associated with poor 
prognosis 

Hutchins et al [193] 2011 1913 II Any KRAS mutation associated with poor 
prognosis 

Phipps et al [194] 2013 1989 I-IV Any KRAS mutation associated with poor 
prognosis 

Samovitz et al [197] 2000 1413 I-IV Codon 12 mutation associated with proximal 
tumour and advanced tumour stage. G13A 
mutation associated with poor prognosis. 

Andreyev et al [189] 2001 3439 I-IV G12V mutation associated with poor 
prognosis 

Bazan et al [191] 2002 160 I-III Codon 13 mutation associated with advanced 
disease stage and poor prognosis. Codon 12 
associated with mucinous histology. 

Imamura et al [200] 2012 1075 I-IV Codon 12 mutation associated with poor 
prognosis 

Yokota et al [201] 2011 229 IV Not independently prognostic 
Mouradov et al [202] 2013 375 II-III Not prognostic 
Lee et al [203] 2008 134 I-IV Not prognostic 
Wang et al [204] 2003 396 II Not prognostic 
Ogino et al [67] 2009 649 I-IV Not prognostic 
Roth et al [195] 2010 1404 II-III Not prognostic 

 

BRAF 
V-raf murine sarcoma viral oncogene homolog B (BRAF) is a proto-oncogene, 
encoding for the serine/threonine protein kinase BRAF [205]. Acting downstream 
of KRAS in the Ras/Raf/MEK/MAPK pathway, BRAF plays an important role in 
the regulation of signal transduction between the extracellular environment and the 
nucleus [184].  

BRAF mutation, predominantly a V600E substitution, results in constitutive 
activation, and has been reported in CRC at a frequency of 5-18% [184,205,206]. 
Generally, KRAS and BRAF mutations are mutually exclusive [207]. 

Further, BRAF mutation is closely associated with CIMP and MSI [205], and has 
been reported to indicate resistance to anti-EGFR therapies [208-210]. Despite the 
association with MSI, which is associated with a good prognosis [55], BRAF 
mutation appears to be associated with a poor prognosis in CRC [195,199,210-
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215]. However, the association between BRAF mutation and poor prognosis has 
been reported to be evident only in combination with MSS tumours, which might 
explain the paradox [199,211-213]. Moreover, BRAF mutation is considered a 
marker for the “serrated pathway”, which involves the progression of a serrated 
lesion to cancer [216]. 

EGFR 
The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine kinase 
receptor with an important role in the Ras/Raf/MEK/MAPK and PI3/PTEN/AKT 
signaling cascades [217]. Activation by the main ligands epidermal growth factor 
(EGF) and transforming growth factor alpha (TGF-α) leads to intracellular signal 
transduction, gene activation and stimulation of cell cycle progression [218]. 
Dysregulation of EGFR function contributes to the growth and survival of cancer 
cells, and is observed in a variety of malignancies [219]. 

EGFR overexpression and gene copy number (GCN) alterations are commonly 
seen in CRC [218,220-222]. A high level of EGFR protein expression in CRC has 
been correlated with advanced stage disease [218,222,223] and a poor prognosis 
[220,223-226], whereas an increased EGFR gene copy number (GCN) has been 
associated with clinical response to anti-EGFR treatment [227-229]. 

The correlation between EGFR protein expression and GCN is unclear, and the 
results from previous studies are conflicting [230-235]. Further controversies exist 
about the validity of the different detection methods, i.e. immunohistochemical 
evaluation of EGFR protein expression vs. EGFR gene copy number (GCN) 
measured by different in situ hybridization techniques [219,229] and lack of 
standardization in scoring systems and cutoffs adds further debate [219,236]. 
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The present investigation 

General aims 

The main focus of this thesis was to investigate the prognostic and treatment 
predictive value of a number of putative biomarkers in CRC, with a special focus 
on sex differences. Further, the aim was to study the associations between the 
investigated biomarkers and clinicopathological and molecular characteristics. 

Methods 

Patients 

The Malmö Diet and Cancer Study (MDCS) is a prospective population-based 
study designed to investigate the impact of diet and other lifestyle factors on the 
risk of developing cancer. Between 1991 and 1996, 18326 women (60.2%) and 
12120 (39.8%) men were enrolled, with a total of 30446 participants (from a 
background population of 74,138). Subjects were aged between 44-74 years [237].  

Until 31 Dec 2008, 626 incident cases of CRC had been registered in the MDCS. 
Cases were identified from the Swedish Cancer Registry up until 31 Dec 2007, 
and from The Southern Swedish Regional Tumour Registry for the period of 1 Jan 
- 31 Dec 2008. All tumours with available slides or paraffin blocks were 
histopathologically re-evaluated on haematoxylin and eosin stained slides. 
Histopathological, clinical and treatment data were obtained from the clinical 
and/or pathology records. TNM staging was performed according to the American 
Joint Committee on Cancer (AJCC). Information on vital status and cause of death 
was obtained from the Swedish Cause of Death Registry up until 31 Dec 2009. 
Follow-up started at date of diagnosis and ended at death, emigration or 31 Dec 
2009, whichever came first. None of the CRC cases registered until 31 Dec 2008 
was lost due to emigration during follow-up. Median follow-up time was 3.35 
years (range 0–17.69) for the full cohort (n = 626) and 6.05 years (range 1.03-
17.69) for patients alive (n = 344). Ethical permission was obtained from the 
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Ethics Committee at Lund University for the MDCS (Ref. 51/90), and the present 
study (Ref. 530/2008). 

 

Figure 6.  Incident CRC in the Malmö Diet and Cancer Study, as of 31 December 2008. 

Tissue microarray construction 

Cases with an insufficient amount of tumour material were excluded, whereby a 
total number of 557 (89.0%) tumours were suitable for tissue microarray (TMA) 
construction. Areas representative of cancer were marked on haematoxylin and 
eosin stained slides and TMAs were constructed.  

In brief, two 1.0 mm cores were taken from each tumor and mounted in a new 
recipient block using a semi-automated arraying device (TMArrayer; Pathology 
Devices, Westminster, MD, USA). Four µm sections from this block were 
subsequently cut using a microtome and mounted on glass slides (Figure 7).  

The TMA technique is a well-established research tool that enables high-
throughput simultaneous analysis of multiple tissue specimens. Further, utilization 
of limited tissue material is optimized [238].  

Tumor heterogeneity may represent a technical limitation. However, it should be 
pointed out that conventional whole tissue sections also only represent selected 
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areas of a tumour, and the TMA technique may provide even better prognostic 
information than large tissue sections [239]. Furthermore, TMA is used for 
population-level research, and not clinical diagnosis of individual cases and, thus, 
tumor heterogeneity generally is not a limitation [240,241]. 

 

Figure 7.  The TMA technique. A tissue core biopsy is punched from a preselected region of the 
donor block (A). The tissue core is mounted in a recipient block (B). Four µm sections from the 
recipient block are cut (C) and mounted on glass slides (D). Used with permission by John Wiley & 
Sons Ltd [240]. 

Immunohistochemistry 

The fundamental concept behind immunohistochemistry (IHC) is the 
demonstration of antigens within tissue sections by means of specific antibodies. 
The antigen–antibody interaction can then be visualized, commonly by using 
antibodies labeled with an enzyme, such as peroxidase, that catalyzes a colour-
producing reaction. 

In this study, 4 µm TMA sections were deparaffinized, rehydrated and pretreated 
with the heat induced epitope retrieval method (HIER), using the PT-Link system 
(Dako, Glostrup, Denmark). Pretreatment, or antigen retrieval, is required to 
unmask hidden epitopes due to formation of methylene bridges caused by fixation 
[242]. TMA sections were then stained (Autostainer Plus; Dako) with the 
monoclonal antibodies described in Table 6. 

A
B

C

D
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Table 6.  Antibodies used in papers I-IV 
Marker Manufacturer Clone Dilution Paper 
Cyclin D1 Dako DSC-6 1:50 I-IV 
beta-catenin BD Pharmingen 14/Beta-Catenin 1:5000 II-IV 
p21 Dako SX118 1:25 II-IV 
p27 Dako SX53G8 1:100 II-IV 
p53 Dako DO-7 1:100 II-IV 
MLH1 Dako ES05 1:100 II-IV 
PMS2 BD Pharmingen A16-4 1:300 II-IV 
MSH2 Calbiochem FE11 1:100 II-IV 
MSH6 Epitomics EPR3945 1:100 II-IV 
EGFR Zymed 31G7 1:25 IV 
EGFR Ventana 3C6 dispensed IV 

 

Staining was evaluated by two independent observers, blinded to data on clinical 
outome. Any scoring differences were discussed in order to reach consensus.  

The different scoring models are described in each paper. 

Pyrosequencing 

Pyrosequencing is a DNA sequencing technique based on the sequencing by 
synthesis principle. Made simple, nucleotides are sequentially added to a DNA-
template. If the nucleotide is complementary, it binds to the DNA and through a 
cascade of enzymatic reactions, visible light is generated proportional to the 
number of incorporated nucleotides, and as the added nucleotide is known, and the 
amount of light emitted can be measured, the sequence of the template can be 
determined [243]. A sample pyrogram is presented in Figure 8. 

In paper III, the PyroMark Q24 system (Qiagen GmbH, Hilden, Germany) was 
used for pyrosequencing analysis of KRAS and BRAF mutations in DNA from 1 
mm formalin-fixed, paraffin-embedded tumour tissue cores taken from areas with 
>90% tumour cells. In brief, genomic DNA was extracted from tumour tissue 
using QIAamp MinElute spin columns (Qiagen) and DNA regions of interest were 
PCR-amplified (Veriti 96-Well Fast Thermal Cycler, Applied Biosystems Inc., 
Foster City, CA, USA). KRAS codons 12 and 13 were analyzed using Therascreen 
KRAS Pyro Kit (Qiagen). Analysis of BRAF mutation hotspots in codons 600 and 
601 was performed using previously published PCR primers [198] and a novel 
BRAF sequencing primer (5′-TGATTTTGGTCTAGCTACA-3′), which was 
designed using the PyroMark Assay Design 2.0 software (Qiagen). All samples 
with a potential low-level mutation were reanalyzed. 
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Figure 8.  A pyrogram demonstrating a KRAS wild-type genotype (top) and a G13D 
(gly13→asp13) mutation in codon 13 (bottom). 

In situ hybridization 

In situ hybridization (ISH) techniques use a labeled strand of complementary 
DNA or RNA, i.e. probe, to localize a specific DNA or RNA sequence in a tissue 
sample, and can be used to detect chromosomal imbalances. The method applied 
in paper IV, brightfield double in situ hybridization (BDISH), uses two separate 
probes on a single slide: an EGFR gene (localized in chromosome 7) probe, 
resulting in a black signal, and a chromosome 7 centromere (CEN7) probe, 
resulting in a red signal. Thus, the level of EGFR gene amplification can be 
assessed by calculating EGFR/CEN7 ratios [244].  

In specific, automated BDISH was performed on Ventana Benchmark Ultra 
(Ventana Medical Systems). Ultraview Inform Chromosome 7 DIG probe RUO 
and EGFR DNP Probe RUO (Ventana Medical Systems) were visualized on the 
same slide. Assay conditions were modified to obtain optimal results. The whole 
assay procedure (deparaffinization, pretreatment, hybridization, stringency wash, 
signal detection and counterstaining) was fully automated. Both probes were 
denatured at 80 °C for 8 min and hybridized at 44 °C for 6 h. Stringency washes 
were performed at 72˚C for 8 min. The silver signal for EGFR was revealed by 
sequential silver reactions. The signal of the centromere was visualized with the 
RedISH Naphtol reaction. The tissues were counterstained with Hematoxylin II 
and Bluing Reagent. ISH was scored with the use of a brightfield microscope 
(Olympus BX45) with 40x and 60x objective. EGFR amplification was considered 
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to be present when the EGFR/CEN7 ratio was ≥2 within 20 tumour cell nuclei. 
Ratios between 2 and 5 were considered as low-level amplification and >5 as 
high-level amplification. Polysomy was defined as increased numbers of EGFR 
gene copies as well as CEN7 signals with a ratio > 2. 

Statistics 

Associations between the investigated biomarkers and clinicopathological factors 
were explored by Spearman’s rank correlation in paper I and by Pearson’s Chi-
squared test in paper II-IV. Kruskal-Wallis or Mann-Whitney U test was applied 
for continuous variables. Kaplan-Meier analysis and log-rank test were performed 
to illustrate differences in survival. Further, Cox proportional hazards regression 
was used for estimation of hazard ratios (HR) for death from CRC in both uni- and 
multivariable analysis. A backward conditional method was used for variable 
selection in multivariable models. The interaction between investigative factors 
and sex in paper I and adjuvant treatment in paper IV was explored by a Cox 
model including the interaction variable. All tests were two-sided. A p-value of 
0.05 was considered significant. All statistical analyses were performed using IBM 
SPSS Statistics version 20.0. 
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Paper I 

Aims 

The main objective of paper I was to examine the association of nuclear cyclin D1 
expression with established clinicopathological characteristics and survival from 
CRC, in the full cohort and in subgroups according to gender. Further, the 
distribution of clinicopathological characteristics and treatment given was 
explored.  

Summary of results 

The distribution of patient and tumour characteristics, as well as treatment given, 
did not differ significantly between subgroups according to gender. There was no 
significant sex-related difference in cancer-specific survival (CSS), neither in the 
entire cohort nor in patients with stage IV disease at diagnosis. IHC nuclear cyclin 
D1 expression was evaluated as intensity and fraction, and could be assessed in 
527 tumours. Whereas 105 (19.9%) tumours did not express cyclin D1, the 
remaining 422 (80.1%) expressed cyclin D1 in various fractions and intensities. 
The intensity, but not the fraction, of nuclear cyclin D1 was significantly lower in 
male CRC (p=0.018). 

Further, the association of cyclin D1 expression with clinicopathological 
characteristics was examined. In the full cohort, cyclin D1 fraction was associated 
with age (r=0.101, p=0.020), and inversely associated with T-stage (r=-0.105, p= 
0.018), N-stage (r=-0.114, p=0.012), M-stage (r=-0.091, p=0.039) and vascular 
invasion (r=-0.121, p=0.034). In female patients, cyclin D1 fraction was inversely 
associated with vascular invasion (r=-0.175, p=0.026). Finally, in male patients, 
cyclin D1 fraction, as well as intensity, was inversely associated with N-stage ((r=-
0.134, p=0.041); (r=-0.153, p=0.020)), and M-stage ((r=-0.143, p=0.024); (r=-
0.161, p=0.011)).  

Proceeding with survival analysis, we found that cyclin D1 expression, 
dichotomized as no expression vs. any expression, was significantly associated 
with an improved CSS in the full cohort (HR=0.69; 95% CI=0.49-0.96) and in 
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men (HR=0.48; 95% CI=0.31-0.74), but not in women. However, these 
associations did not remain significant when adjusting for age, gender, TNM-
stage, differentiation grade and vascular invasion. Cox interaction analysis 
confirmed a significant interaction between cyclin D1 expression and gender 
(p=0.024), however significance was not retained in multivariable analysis. 
Kaplan-Meier analysis in combined subgroups according to gender and cyclin D1 
expression revealed a significantly reduced CSS for men with cyclin D1-negative 
tumours compared to men with cyclin D1-positive tumours, and all women, 
irrespective of cyclin D1 expression. Stratifying further for disease stage, this 
association was not evident in stage I-II but remained significant in stage III-IV. 

Finally, we looked at the potential impact of cyclin D1 expression on response to 
adjuvant treatment in curatively treated patients with stage III disease, but no 
significant correlations were observed.  

Discussion 

In this paper, we demonstrate that cyclin D1 expression is associated with a 
favorable prognosis in male, but not in female, CRC. This association was 
however not independent of established prognostic factors. We further observed 
an inverse association of cyclin D1 expression with TNM-stage and vascular 
invasion, both representing established adverse prognostic factors, which may 
explain the lack of independent significance. 

Several previous studies have investigated the role of cyclin D1 expression in 
CRC, with divergent results [136,138-140,142,145-154]. However, several recent 
studies link cyclin D1 expression to a good prognosis [138,139,142], further 
validating our findings. 

Despite obviously carrying oncogenic properties [133], tumour-specific cyclin D1 
expression seems to indicate a good prognosis. However, CRC carcinogenesis is 
complex, and the accumulation of genetic and epigenetic events can follow 
different pathways. Consequently, a tumour bypassing cyclin D1 activation may 
develop an even more aggressive phenotype. Analogously, MSI is also associated 
with a good prognosis [55]. Moreover, associations between cyclin D1 expression 
and a good prognosis have also been described in lung-, breast-, and bladder 
cancer [245-247]. 

To our knowledge, the sex-related difference in the prognostic value of cyclin D1 
has not been reported previously, and neither has the observation of a lower 
nuclear cyclin D1 intensity in male compared to female CRC.  

Several previously observed sex-related differences in CRC epidemiology and 
biology indicate a hormonal influence, such as the incidence generally being 
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higher in men [1,3], and women more often having proximal tumours, 
characterized by MSI and CIMP [63,67]. Further, postmenopausal HRT with 
estrogen and progestin have proven to significantly reduce CRC incidence rates in 
several studies[34,248], though results on the CRC-protective effect of estrogen 
only treatment are conflicting [35,249]. However, the reduction in CRC risk 
associated with estrogen and progestin use has been reported to be confined to 
patients with MSS tumours [248]. Epidemiological data further indicate that oral 
contraceptives (OC) users have a reduced risk of colorectal cancer [250]. 

Cyclin D1 is an important mediator of estrogen signaling, either by direct 
interaction or by activation through the Wnt-pathway [130,251,252]. Estrogen 
receptors, predominantly ERβ, are commonly expressed in CRC [253] and are 
considered to have a prominent role in the biological mechanisms of sex steroid 
action on colorectal tissue [254]. 

Of note, the sex-related prognostic effect of cyclin D1 was evident in stage III-IV, 
but not in stage I-II, disease. We have no obvious explanation to this observation, 
however, a not too far-fetched speculation is that cyclin D1 expressing tumours 
represent a less aggressive phenotype, even when being in a disseminated state. 

Cyclin D1 expression has previously been linked to MSI and CIMP [141,142]. We 
did not have MSI data at the time of publishing paper I, but in paper II we report a 
strong association between cyclin D1 expression and MSI. Thus, MSI, indicating a 
good prognosis, may be a confounding factor. However, it is reasonable to assume 
that cyclin D1 is involved in the development of MSI. 

A common polymorphism of the cyclin D1 gene, A870G, appears to be a low-
penetrant risk factor for CRC [255], and further seems to be associated with HRT-
associated CRC risk reduction [256]. Hence, it would be of interest to study the 
associations of different cyclin D1 genotypes and risk of CRC, overall and 
according to tumour-specific cyclin D1 expression, in the MDCS.   

The distribution of patient and tumour characteristics were in line with the 
expected, except the low frequency of acute surgery (8.7%). Generally, the 
reported frequency of acute surgery in CRC is approximately 25% [257,258]. One 
explanation for this discrepancy might be a high health awareness among the study 
participants. Further, information on the type of surgery was missing for 5.1% of 
patients. 

In conclusion, we here demonstrate that cyclin D1 expression is a favourable, 
however not independent, prognostic factor in male but not in female CRC. This 
further confirms the involvement of cyclin D1 in CRC carcinogenesis and adds 
weight to the accumulating evidence that CRC is a sex hormone-dependent 
disease.  
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Paper II 

Aims 

In paper II, we moved the focus upstream of cyclin D1, to the Wnt-pathway 
mediator beta-catenin, and to microsatellite instability (MSI) status, which also 
have been reported to interact with cyclin D1 [141]. We further looked at cell 
cycle regulators p21 and p27, and tumour suppressor p53. The prognostic and 
treatment predictive significance of beta-catenin expression and MSI was 
explored, and correlations between investigative and clinicopathological factors 
were examined. 

Summary of results 

MSI screening status was defined as MSI for tumours lacking nuclear IHC 
staining for MLH1, PMS2, MSH2 or MSH6, and MSS for tumours expressing all 
four MMR proteins. Out of 515 assessable tumours, 438 (85%) were MSS, and 77 
(15%) were MSI. MSI was positively associated with older age (p=0.003), female 
sex (p=0.021), proximal tumour location (p<0.001), low differentiation grade 
(p=0.003), and inversely associated with N-stage (p=0.017) and M-stage 
(p=0.010). Further, there was a positive correlation between MSI and expression 
of cyclin D1 (p<0.001 for fraction and intensity), and p21 (p=0.002 for fraction 
and p<0.001 for intensity), and an inverse correlation between MSI and expression 
of p53 (p<0.001) and p27 (p=0.003 for fraction and p<0.001 for intensity). 

Immunohistochemical beta-catenin expression was evaluated according to a 
previously described protocol [259], whereby membranous staining was denoted 
as 0 (present) or 1 (absent), cytoplasmic staining intensity as 0-2, and nuclear 
staining intensity as 0-2. The total score ranging from 0 (corresponding to 
membranous staining only, as in normal colonic mucosa) to 5 (tumours with 
strong nuclear and cytoplasmic staining) was either dichotomized (0-2 / 3-5) or 
trichotomized (0-1 / 2-3 / 4-5). A high beta-catenin score was associated with 
distal tumour location (p<0.001), low T-stage (p=0.039) and intermediate or high 
differentiation grade (p=0.016), and further with expression of p53 (p<0.001), 
cyclin D1 (p=0.001 for fraction) and p27 (p<0.001 for fraction and intensity). An 
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inverse correlation was observed between MSI and beta-catenin overexpression 
(p<0.001). 

In survival analysis, MSI was associated with an improved CSS in the full cohort 
(HR=0.50; 95% CI=0.29-0.84) and in stage III-IV (HR=0.46; 95% CI=0.23-0.95), 
but not in stage I-II, disease. These associations remained significant when 
adjusting for age, TNM-stage, differentiation grade and vascular invasion 
(HR=0.46; 95% CI=0.25-0.84 for the entire cohort and HR=0.33; 95% CI=0.14-
0.78 for stage III-IV disease).  

A high beta-catenin score also correlated with a prolonged CSS in the full cohort 
and in stage III-IV, but not in stage I-II, disease. These associations were however 
weaker than for MSI in that significance was only reached in adjusted analysis 
(HR=0.70; 95% CI=0.51-0.97 for the entire cohort and HR=0.67; 95% CI=0.46-
0.97 for stage III-IV disease), and not in unadjusted analysis. 

MSI and beta-catenin overexpression did not predict response to adjuvant 
treatment in stage III disease, and no sex-related differences in the prognostic 
value of MSI and beta-catenin overexpression were observed. 

Discussion 

Here, we have shown that MSI independently predicts a prolonged survival from 
CRC, both in the full cohort and in stage III-IV disease. The majority of previous 
studies link MSI to a good prognosis [55,180], and our findings further confirm 
this association. MSI represents a distinctively different pathway of carcinogenesis 
than CIN [120], which in turn seems to be associated with a poor prognosis [50]. 
Thus, it is unclear whether the good prognosis associated with MSI is independent 
of, or merely reflects the absence of CIN. 

Of note, MSI was prognostic in stage III-IV, and not in stage I-II, disease. These 
findings differ somewhat from previous studies in which MSI has proven to be an 
independent prognostic factor also in stage II CRC [202,260-262]. Despite being 
associated with a good prognosis, MSI tumours are known to display several 
adverse prognostic features, such as advanced T-stage and low differentiation 
grade[263]. Although the causality behind this discrepancy in clinicopathological 
characteristics and survival is unknown, the favorable phenotype associated with 
MSI could explain why MSI is associated with an improved survival even in 
metastatic disease. Interestingly, hepatic metastases from CRC rarely display MSI 
[264]. 

As the median patient age in the investigated cohort is 71.4 years, most cases with 
MSI are likely sporadic tumours caused by MLH1 hypermethylation / CIMP. 
However, CIMP does not invariably result in MSI, and although CIMP-high / 
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MSS tumours represent a minority [59], it would be of great interest to investigate 
CIMP status of the tumours in this cohort. 

As previously mentioned, MSI has been suggested to indicate resistance to 
chemotherapy, although clinical data are somewhat inconsistent [55,57,180-182]. 
In our study, we did not observe any influence of MSI on treatment response in 
stage III disease. It should however be pointed out that the subgroups available for 
analysis were rather small, thus limiting the analysis. 

We further demonstrated significant associations between MSI and 
clinicopathological characteristics, such as old age, female sex, proximal tumour 
location and low differentiation grade. These associations are all in line with the 
expected [53], therefore further validating our data. Molecular correlates with MSI 
were also in concordance with previous studies [141,265]. 

Beta-catenin overexpression was also associated with a good prognosis, both in 
the full cohort and in stage III-IV disease, however not as significantly as for MSI. 
Notably, these associations were only significant in multivariable, and not in 
univariable, analysis, which might indicate a strong interaction between 
covariates. Previous studies on the prognostic value of beta-catenin in CRC show 
divergent results [139,160-166,168-173,176], however a recent meta-analysis 
concluded that nuclear beta-catenin overexpression indicates a poor prognosis 
[160]. The discrepancy in results regarding the prognostic value of beta-catenin 
overexpression may be attributed to several factors. Firstly, the intracellular 
localization of beta-catenin in CRC, as evaluated by IHC, has shown wide 
variability in terms of proportions of nuclear, cytoplasmic, or membranous 
staining [266,267]. Furthermore, different IHC staining methods and scoring 
protocols have been used, and, lastly, as it has been suggested that aberrant beta-
catenin activation is manifested in a heterogeneous intratumoural distribution of 
nuclear beta-catenin expression [268,269], TMA-based analyses may not be 
optimal. 

As with MSI, significant clinicopathological and molecular correlates of beta-
catenin overexpression were in line with the expected [139,170,172]. Moreover, 
the finding of MSI being inversely associated with beta-catenin overexpression is 
also expected, as beta-catenin overexpression, caused by aberrant APC activation 
or by mutation, is associated with CIN [46,174,270], thus representing a 
distinctively different pathway to CRC carcinogenesis than MSI.  

Both MSI and beta-catenin overexpression were associated with an improved 
survival, which might be perceived as contradictory. However, beta-catenin 
overexpression is not exclusive for CIN [155,175], and, furthermore, CIN and 
MSI are not mutually exclusive pathways [265]. 

In conclusion, the results in this paper demonstrate that MSI is an independent 
prognostic factor in CRC, but not in localized disease, and does not predict 
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response to adjuvant chemotherapy. Despite the inverse correlation with MSI, we 
also observed an association between beta-catenin overexpression and prolonged 
survival from CRC. 
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Paper III 

Aims 

Activating mutations of the proto-oncogenes KRAS and BRAF are common in 
CRC, and indicate resistance to anti-EGFR drugs. Though most previous studies 
link KRAS and BRAF mutations to a poor prognosis, the prognostic relevance of 
these mutations has not yet been fully clarified. Further, KRAS protein 
functionality may vary, depending on the specific codon harboring a mutation.  
Here, we aimed to further investigate the correlations of KRAS codons 12 and 13, 
and BRAF mutations with clinicopathological factors and survival, overall and in 
subgroups according to gender and MSI status. 

Summary of results 

KRAS and BRAF mutational status was analyzed using pyrosequencing, and 
could be assessed in 525 and 524 cases, respectively. A total of 334 (63.7%) 
tumours were KRAS wild-type, and 191 (36.4%) were mutated. In specific, 156 
(29.8%) cases harbored a mutation in KRAS codon 12, 34 (6.5%) in KRAS codon 
13, and 1 (0.2%) in both KRAS codons 12 and 13. Further, 446 (85.1%) of the 
tumours were BRAF wild-type, 76 (14.5%) were BRAF V600E mutated and 2 
(0.4%) were BRAF K601E mutated, with a total of 78 (14.9%) cases harboring a 
BRAF mutation. KRAS and BRAF mutations were mutually exclusive.  

Looking at clinicopathological and molecular correlates, KRAS codon 13 
mutation was associated with advanced M-stage (p=0.018), and inversely 
associated with p27 expression (p=0.018). KRAS codon 12 mutated tumours 
displayed a higher proportion of mucinous histology, compared to tumours that 
were either KRAS wild type (p=0.032) or codon 13 mutated (p=0.024). A 
significant correlation between KRAS wild-type and MSI (p<0.001) was further 
observed. 

BRAF mutation was associated with older age (p=0.017), female sex (p=0.031), 
proximal tumour location (p<0.001), advanced T-stage (p=0.001), low 
differentiation grade (p<0.001), mucinous tumour type (p=0.001), MSI (p<0.001), 
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and expression of cyclin D1 (p=0.003), and further inversely associated with beta-
catenin overexpression (p<0.001), p53 expression (p<0.001) and p27 expression 
(p<0.001). 

Cox regression revealed that patients with KRAS wild-type and codon 12 mutated 
tumours had a similar prognosis, whereas KRAS codon 13 mutation was 
significantly associated with a reduced CSS in the full cohort (HR=1.94; 95% 
CI=1.18-3.19) and in women (HR=2.58; 95% CI=1.31-5.09), but not in men. 
Significance was not retained when adjusting for age, sex, TNM-stage, 
differentiation grade, vascular invasion and BRAF mutation. Moreover, BRAF 
mutation was significantly associated with an inferior CSS in men (HR=3.50; 95% 
CI=1.41-8.70) in adjusted, but not in unadjusted, analysis. No significant 
associations between BRAF mutation and survival were observed in the full 
cohort or in women.  

We further investigated the impact of KRAS codons 12 and 13, and BRAF 
mutations on survival in subgroups according to MSI status, and in strata 
according to gender. Hereby, we observed that BRAF mutation was overall 
associated with a significantly shorter CSS in patients with MSS tumours 
(HR=2.36; 95% CI=1.44-3.86), however not independently. In men with MSS 
tumours, BRAF mutation was associated with an inferior CSS, both in unadjusted 
(HR=3.46; 95% CI=1.78-6.47) and adjusted analysis (HR=4.91; 95% CI=1.99-
12.12). BRAF mutation was not prognostic in MSS tumours or in women, 
irrespective of MSI status. 

Discussion 

We here demonstrate that KRAS codon 13 mutation predicts a poor prognosis in 
female CRC, although not independently. KRAS codon 13 mutation was further 
associated with the presence of distant metastases at diagnosis, further supporting 
its association with a more aggressive tumour phenotype. Notably, the prognosis 
was similar for KRAS wild-type and codon 12 mutated tumours. Apparently, 
codons 12 and 13 mutations have different impact on KRAS protein functionality, 
and, hence, clinical outcome. Previous studies on the prognostic significance of 
KRAS mutations in CRC have reported conflicting results, although the majority 
link KRAS mutation (any mutation or in specific codons) to inferior survival 
[67,123,189,191-195]. Further, associations of KRAS codon 13 mutation with a 
poor prognosis [191,197] and advanced M-stage [191] have been reported 
previously, which validates our findings. The frequency and distribution of KRAS 
mutations were also in line with the expected [49], and revealed no sex 
differences. 
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Of note, KRAS mutation was inversely associated with MSI, which in turn is 
associated with a good prognosis and female sex [53,55]. Thus, a reasonable 
question is whether the poor survival observed in women with KRAS codon 13 
mutated tumours merely represents the absence of MSI. KRAS mutation has 
further been associated with CIMP-low, CIN and aberrant MGMT methylation 
[51,60,61], and thus may indicate a distinct subgroup of CRC with a poor 
prognosis [51]. These studies did however not consider mutations in specific 
codons, and it would be of interest to investigate the associations between CIMP 
and specific KRAS mutations in future studies.  

Moreover, we observed that BRAF mutation is an independent predictor of a poor 
prognosis in male, but not in female, CRC. Of note, this association was not 
significant in unadjusted analysis, which might be explained by a strong 
dependency between covariates, e.g. the particularly strong prognostic impact of 
BRAF mutation in lymph node positive disease in men. 

Subgroup analysis according to MSI status revealed that BRAF mutation was not 
prognostic in patients with MSI tumours, neither in the full cohort nor in strata 
according to gender, and that the lack of prognostic value for BRAF mutation in 
women did not differ by MSI status. However, in male patients with MSS 
tumours, BRAF mutation was an independent predictor of a poor prognosis. These 
findings are in line with several previous studies reporting a particularly poor 
survival in patients with BRAF mutated, MSS, CIMP-high tumours 
[67,212,213,216,271]. Thus, it is becoming increasingly evident that it may not be 
the BRAF mutation per se that confers a poor prognosis. Rather, the effects of a 
BRAF mutation seem to differ depending on the genetic background in which it 
occurs, and perhaps, the oncogenic pathway that led to the development of the 
cancer. In this context, the results from our study suggest that sex may be another 
important determinator of the prognostic impact of BRAF mutation.  

The clinicopathological and molecular correlations of BRAF mutation were in line 
with the expected [215,272]. Notably, BRAF mutation was significantly 
associated with MSI. Further, BRAF mutated tumours were, similarly to MSI 
tumours, associated with proximal tumour location, older age, female sex, 
advanced T-stage, low differentiation grade, mucinous histology, expression of 
cyclin D1, and inversely associated with beta-catenin overexpression, p53 
expression and p27 expression. 

BRAF mutations are frequently present in sporadic CRC with MSI, but almost 
never in HNPCC [273,274]. This indicates a connection between BRAF mutation 
and hypermethylation / CIMP, which has been confirmed in several studies 
[67,275,276].  

KRAS and BRAF mutations were, as expected [207,277], mutually exclusive. 
Thus, while both factors seem to contribute equivalently to colorectal 
carcinogenesis, they represent different pathways to malignant progression. 
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Due to the EGFR-independent activation of KRAS and BRAF upon mutation, it is 
not surprising that these events indicate resistance to anti-EGFR drugs [125,208-
210,278]. Thus, testing for KRAS and BRAF mutations has become clinical 
routine before administrating such drugs. Of note, the proportion of patients in our 
study that may have received anti-EGFR treatment upon relapse should be 
negligible. Therefore, it is not likely that our results regarding the prognostic 
impact of the investigative mutations have been confounded by effects of such 
treatment. 

The sex-related differences in the prognostic value of KRAS codon 13 and BRAF 
mutations have, to our best knowledge, not been previously reported. These novel 
findings may indicate a hormonal involvement, and it would therefore be of great 
interest to further investigate the possible associations of KRAS and BRAF 
mutations with hormonal, anthropometric and lifestyle factors in CRC. 

Taken together, the findings from this study further indicate that sex should be 
taken into consideration when evaluating biomarkers in CRC.  
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Paper IV 

Aims 

Upstream of KRAS and BRAF in the Ras/Raf/MEK/MAPK signaling cascade, the 
epidermal growth factor receptor (EGFR) plays an important role in regulating cell 
growth and differentiation. Commonly observed in CRC, EGFR protein 
expression, and EGFR gene copy number (GCN) alterations, have been linked to 
inferior survival from CRC and sensitivity to anti-EGFR drugs, respectively. In 
paper IV, our main ambition was to explore the impact of EGFR protein 
expression and GCN alterations on survival from CRC and on chemotherapy 
response. We further studied the interrelationship between EGFR protein 
expression and GCN alterations, and their correlations with clinical and 
investigative factors. 

Summary of results 

Expression of EGFR protein was evaluated with two different antibodies and 
systems, e.g. Zymed and Ventana (see Table 6). Membranous IHC staining 
intensity was recorded as 0 to 3 according to previous protocols [279]. Out of 553 
cases evaluable with the Zymed antibody, 179 (33.6%) were denoted as having 
positive EGFR expression (1-3), and 114 (21.4%) as having high EGFR 
expression (2-3). Using the Ventana antibody, a total of 531 cases could be 
evaluated, of which 155 (29.2%) were EGFR positive and 103 (20.4%) displayed 
high EGFR expression.  

EGFR gene amplification was assessed using brightfield double-in situ 
hybridization (BDISH), and was considered to be present when the EGFR / CEN7 
ratio was ≥2 within 20 non-overlapping tumour cell nuclei. Ratios between 2 and 5 
were considered as low-level amplification, and >5 as high-level amplification. 
Polysomy was defined as EGFR gene amplification as well as CEN7 signals with 
a ratio >2. GCN could be evaluated in 498 cases, of which 240 (48.2%) were non-
amplified, 117 (23.5%) displayed low-level amplification, 41 (8.2%) high-level 
amplification and 100 (20.1%) polysomy. 



57 

Concordance between the two antibodies was good (p<0.001), with 95.5% of 
tumours being negative in both assays, and no tumour being negative with one 
antibody and scoring 3 with the other. There were further significant correlations 
between EGFR protein expression, assessed by both antibodies, and EGFR GCN 
variations denoted as non-amplified, amplified (any GCN) or polysomic, with the 
strongest correlation for the Zymed antibody (p=0.008). All p-values and hazard 
ratios below refer to analysis with the Zymed antibody, though similar results 
were obtained with the Ventana antibody.  

EGFR protein expression, dichotomized as high (2-3) vs. low (0-1), was 
significantly associated with proximal tumour location (p=0.004), advanced T-
stage (p<0.001), N-stage (p=0.002), M-stage (p=0.003), low differentiation grade 
(p<0.001), vascular invasion (p=0.003), BRAF mutation (p<0.001), and inversely 
associated with beta-catenin overexpression (p=0.015) and p27 expression 
(p<0.001). 

Furthermore, EGFR gene amplification and polysomy correlated significantly with 
distal tumour location (p=0.005), MSS (p<0.001), p53 expression (p<0.001), and 
BRAF wild-type tumours, and an increased EGFR GCN was associated with 
distant metastasis (p=0.037). 

Survival analysis showed that high EGFR protein expression was significantly 
associated with a reduced CSS in the full cohort (HR=2.04; 95% CI 1.50-2.78), in 
stage I-II disease (HR=2.30; 95% CI 1.16-4.53) and in stage III-IV disease 
(HR=1.54; 95% CI 1.08-2.19). After adjustment for established prognostic factors, 
significance was retained in the full cohort (HR=1.60; 95% CI 1.11-2.31) and in 
stage III-IV disease (HR=1.73; 95% CI 1.14-2.64), but not in stage I-II disease. 
Increased EGFR GCN was significantly associated with a reduced survival in the 
full cohort (HR=1.65; 95% CI 1.20-2.26) and in stage III-IV disease (HR=1.56; 
95% CI 1.07-2.64), but neither in stage I-II disease, nor in adjusted analysis. 
Subgroup analysis revealed no sex-related differences in the prognostic 
significance of EGFR expression or GCN alterations. 

We further examined the impact of EGFR expression and GCN alterations on 
chemotherapy response in curatively treated patients with stage III-IV disease. 
Here, we observed that in patients receiving adjuvant oxaliplatin 
(FLOX/XELOX), both high EGFR protein expression and GCN alterations were 
associated with a significantly reduced CSS (HR=7.46; 95% CI 1.19-46.61 and 
HR=6.16; 95% CI 1.03-36.69, respectively). A borderline significant interaction 
for oxaliplatin treatment (vs. no treatment or FLV/Xeloda) was observed for high 
EGFR protein expression (p=0.057), whereas no significant interaction was 
observed for EGFR GCN alterations. 
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Discussion 

In this study, we have demonstrated that both EGFR protein expression and GCN 
alterations are associated with a poor prognosis in CRC. EGFR protein expression, 
in particular, was an independent predictor of a poor prognosis in the full cohort, 
and in stage III-IV disease. In addition, EGFR protein expression correlated 
significantly with adverse clinicopathological factors, such as advanced T-, N- and 
M-stage, low differentiation grade and vascular invasion. Several previous studies 
have come to similar conclusions, linking EGFR expression to advanced disease 
stage [218,222], adverse characteristics such as tumour budding [223], and inferior 
survival [220,223,224,226,280]. Altogether, our findings add further weight to the 
feasibility of EGFR as a predictor of poor prognosis in CRC. 

Interestingly, EGFR expression has been associated with a poor response to 
radiation therapy (RT) of rectal cancer [224,281,282], although the mechanisms 
remain unclear [283]. Nevertheless, this may further contribute to the poor 
prognosis associated with high EGFR expression. 

The association of EGFR expression with advanced T-stage is not surprising, 
considering the important role of EGFR in cell proliferation and cell cycle 
progression [284,285]. In this context, the inverse association between expression 
of EGFR and the cell cycle inhibitor p27 was also expected [220]. Nonetheless, 
we found no significant associations between EGFR alterations and cyclin D1 
expression.  

An increased EGFR GCN has been suggested to predict responsiveness to anti-
EGFR drugs [228,230,235,286], but has to our best knowledge not previously 
been reported as a prognostic marker in CRC. 

Even though the correlation between EGFR protein expression and EGFR GCN 
alterations was statistically significant, there was a substantial discrepancy in their 
interrelationship. For example, only 55.1% of tumours being negative for EGFR 
protein expression were also non-amplified. Similar discrepancies have been 
previously reported in CRC [230,231,233]. Moreover, there was a discordance in 
the correlations of EGFR expression and GCN alterations in that EGFR expression 
was associated with proximal tumour location and BRAF mutation, whereas GCN 
alterations correlated with distal tumour location and BRAF wild-type tumours. 
There is no obvious explanation for this discrepancy, but, of note, elevated EGFR 
protein expression may occur due to other mechanisms than gene amplification; 
e.g. activating mutations, increasing EGFR transcription or translation, decreased 
protein destruction, and overexpression of receptor ligands [287].   
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As it has been proposed that EGFR mutation precedes gene amplification, both 
steps resulting in EGFR protein expression, in a sequential tumour progression 
model [288], it would also be of interest to analyze EGFR mutation status of the 
herein investigated tumours in future studies.   

Moreover, the lack of standardization of detection methods and interpretation of 
results may also explain the divergent results in the literature [236], with reported 
EGFR expression rates from 16 to 97% in CRC [218]. Intratumoural heterogeneity 
of EGFR expression may also be an interfering factor [280]. 

Of note, an increased EGFR GCN can be caused by either gene amplification or 
polysomy of chromosome 7, and both seem to be relevant when predicting 
response to anti-EGFR drugs [235]. Our findings further support that both EGFR 
gene amplification and chromosome 7 polysomy have a similar prognostic impact, 
and similar clinicopathological correlations. Thus, the dichotomized cutoff applied 
in the survival analyses should be justified. 

Interestingly, our results also indicate that EGFR expression and GCN alterations 
are associated with an impaired response to oxaliplatin. This finding is, to our best 
knowledge novel, and may be of clinical importance. It should however be pointed 
out that the subgroups available for analysis were rather small, thus limiting 
statistical power. Therefore, these results need additional validation, preferably in 
randomized treatment trials. 

Another observation of potential clinical relevance is that the prognostic value of 
EGFR alterations was strongest in stage III-IV disease, also including palliatively 
treated patients. According to current treatment protocols, anti-EGFR treatment is 
only given in late palliative situations or as neoadjuvant therapy, and in 
combination with irinotecan- or oxaliplatin based chemotherapy. Given that EGFR 
expression indicates responsiveness to anti-EGFR treatment, and further, 
resistance to oxaliplatin, it can be assumed that patients with KRAS wild-type and 
EGFR overexpressing / amplified tumours benefit from combination therapy with 
an anti-EGFR agent and irinotecan.  
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Conclusions 

In brief, the results in this thesis can be summarized as follows: 

 

• Nuclear cyclin D1 expression is less frequently expressed in male, 
compared with female, CRC. 

• Nuclear cyclin D1 expression is associated with a favorable prognosis, 
however not independently, in stage III-IV male CRC. 

• MSI is associated with distinctive clinicopathological features, cyclin D1 
expression, and independently predicts a good prognosis in stage III-IV 
CRC. 

• Beta-catenin overexpression correlates independently with a prolonged 
survival from stage III-IV CRC, and is associated with MSS tumours. 

• KRAS codon 13 mutation predicts a poor prognosis in female CRC, but 
not independently of established prognostic factors. 

• KRAS and BRAF mutations are mutually exclusive, and correlate with 
MSS and MSI, respectively. 

• BRAF mutation is independently associated with a reduced survival in 
male patients with MSS CRC. 

• EGFR protein expression is an independent factor of poor prognosis in 
stage III-IV CRC. 

• An increased EGFR GCN is associated with a reduced survival from 
CRC, but not independent of established prognostic factors. 

• EGFR protein expression correlates significantly with EGFR GCN 
alterations, although a substantial proportion of EGFR expressing tumours 
display a normal GCN, and vice versa. 

• EGFR alterations are significantly associated with a reduced survival in 
curatively treated patients with stage III-IV disease receiving adjuvant 
oxaliplatin. 
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Future perspectives 

Despite substantial advancements in the management of CRC during the recent 
decades, the disease still harvests more than 600000 lives globally each year. 
Moreover, it is becoming increasingly evident that CRC is a heterogenous disease, 
which affects survival and adjuvant treatment response beyond what can be 
predicted by conventional clinicopathological factors. Hence, an essential 
challenge in the ongoing efforts to combat CRC is to find new biomarkers to better 
predict the prognosis and stratify patients for adequate adjuvant treatment. 

To date, KRAS mutation is the only biomarker implemented in clinical practice, as 
a predictor of resistance to anti-EGFR treatment in the palliative setting. 
Hopefully, more biomarkers will prove to be clinically relevant in the near future.  

In this thesis, we have observed several sex-related differences in the distribution, 
clinicopathological associations, and impact on survival of the investigated 
biomarkers. These findings demonstrate that sex should always be considered 
when evaluating putative biomarkers in CRC, and that hormonal factors have 
considerable influence on the pathogenesis and progression of the disease.  

To better understand the observed association of cyclin D1 with a favorable 
prognosis in male CRC, it would be of interest to study potential sex differences in 
the prevalence, clinicopathological correlates and prognostic significance of cyclin 
D1 polymorphisms in this cohort. As previously mentioned, the cyclin D1 G870A 
polymorphism has been suggested as a low penetrant risk factor for CRC [255]. 

Another relevant avenue of research would be to assess CIMP status of the 
tumours in this cohort, and to study the associations of CIMP with BRAF and 
specific KRAS mutations. KRAS mutation, without consideration of the specific 
codon, has previously been linked to CIMP-low [61], but, to our best knowledge, 
the associations of specific KRAS mutations with CIMP have not yet been 
reported. 

The observed discrepancy between EGFR protein expression and GCN alterations 
indicates that EGFR signaling may be increased by a number of mechanisms. 
Since EGFR mutation has been demonstrated to precede gene amplification 
sequentially [288], it would be of interest to analyze EGFR mutation status of the 
tumours in this cohort, with particular reference to its associations with EGFR 
expression, alterations and clinical outcome. 
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In paper IV, we also observed that EGFR alterations indicate resistance to 
oxaliplatin. This finding is of potential clinical importance, and merits further 
investigation, preferably in randomized clinical trials. 
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Populärvetenskaplig sammanfattning 

Tjock- och ändtarmscancer är en av de vanligaste cancerformerna, med mer än 1 
miljon nya fall varje år globalt. Bara i Sverige insjuknar mer än 6000 individer 
årligen. Merparten av de drabbade är över 65 år och tjocktarmscancer, men inte 
ändtarmscancer, är något vanligare hos män. Både livsstilsfaktorer, såsom en 
västerländsk diet, och ärftlighet i samspel antas ligga bakom utvecklingen av 
tjock- och ändtarmscancer. Sambanden är dock långt ifrån klarlagda. Endast i ca 
5% av fallen är sjukdomen direkt ärftlig.  

Tack vare framsteg inom diagnostik och behandling har dödligheten minskat de 
senaste decennierna, men alltjämt dör över 600000 individer av sjukdomen varje 
år. Den enda botande behandlingen är kirurgi, som ibland åtföljs av 
tilläggsbehandling med cytostatika (cellgifter) för att minska risken för återfall.  

För att kunna bedöma prognosen, och ännu viktigare avgöra vem som ska få 
tilläggsbehandling med cytostatika, delar man in sjukdomen i kliniska stadier från 
I-IV beroende på hur djupt tumören växer in i tarmväggen samt förekomsten av 
spridning till lymfkörtlar och andra organ. Prognosen varierar från mycket god när 
tumören är begränsad till tarmen, till dålig vid spridd sjukdom.  

Det är dock uppenbart att den konventionella stadieindelningen är otillräcklig för 
att förutspå sjukdomsförloppet hos enskilda patienter. I vissa fall växer och sprider 
sig tumören snabbt, även om den upptäckts i ett tidigt stadium, medan förloppet i 
andra fall är mer beskedligt och långsamt, trots att sjukdomen hunnit sprida sig till 
andra organ vid diagnos. Det står också klart att utvecklingen från normal 
tarmslemhinna till cancer kan ske på olika sätt, och att de genetiska förändringar 
som cellerna samlar på sig under denna process påverkar tumörens aggressivitet 
och beteende. Att identifiera biomarkörer, vanligen proteiner som uttrycks av 
tumörerna, för att bättre kunna identifiera patienter med en mer aggressiv sjukdom 
och på så vis ge rätt behandling till rätt patient, är alltså av yttersta vikt. 

I denna avhandling har vi studerat förekomsten av ett antal olika potentiella 
biomarkörer i tumörer från drygt 500 patienter med tjock- och ändtarmscancer, 
samtliga deltagare i den befolkningsbaserade studien Malmö Kost Cancer. Den 
gemensamma nämnaren för de biomarkörer som studerats är att alla är proteiner 
med en central roll i olika aspekter av omvandlingen från normal cell till cancer. 

I första delarbetet analyserades förekomsten av proteinet cyclin D1 i tumörernas 
cellkärnor. Cyclin D1 reglerar celldelning och ses ofta överuttryckt i olika 
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cancerformer. Metoden vi använde, immunohistokemi, går kortfattat ut på att 
målsökande antikroppar binder till proteinet, vilket ger en färgreaktion som sedan 
kan studeras i mikroskop. Vi kunde konstatera att tumörer från män hade ett 
starkare uttryck av cyclin D1 jämfört med tumörer från kvinnor. Vidare kunde vi 
se att uttryck av cyclin D1 var kopplat till en bättre överlevnad hos män, men inte 
hos kvinnor.  

I nästa delarbete undersökte vi med hjälp av immunohistokemi förekomsten av 
mikrosatellitinstabilitet och förändringar av beta-cateninuttryck i tumörerna. 
Mikrosatellitinstabilitet innebär att tumörcellerna har nedsatt förmåga att korrigera 
de fel som uppstår i samband med DNA-replikation och celldelning, vilket 
resulterar i frekventa felaktigheter i DNA-sekvensen. Beta-catenin i sin tur är ett 
protein som dels reglerar bindningen mellan celler och dels förmedlar signaler från 
cellytan in mot cellkärnan. Vi kunde här konstatera att mikrosatellitinstabilitet var 
kopplat till en god prognos. Vidare var mikrosatellitinstabila tumörer, som ofta var 
stora, lokaliserade till höger sida av tjocktarmen, samt slembildande, 
överrepresenterade hos äldre kvinnor. Även ett ökat uttryck av beta-catenin var 
kopplat till en bättre överlevnad, om än inte lika tydligt som för 
mikrosatellitinstabila tumörer.  

I det tredje delarbetet utforskade vi mutationer i två gener som heter KRAS och 
BRAF. Båda kodar för proteiner som har en viktig funktion i att vidarebefordra 
signaler från receptorer på cellytan in till cellkärnan och mutationer i dessa gener, 
som leder till ohämmad cellsignalering och därmed tumörcellstillväxt, är vanliga 
vid tjock- och ändtarmscancer. Med hjälp av pyrosekvensering, som är en metod 
för att bestämma DNA-sekvenser, kunde vi identifiera vilka tumörer som var 
muterade och vilka specifika mutationer ifråga det rörde sig om. Här kunde vi 
observera att en viss typ av KRAS-mutationer, men inte alla, var kopplade till en 
dålig prognos, framför allt hos kvinnor. Mutationer i BRAF var förknippade med 
en dålig prognos hos män vars tumörer inte uppvisade mikrosatellitinstabilitet. 

I det sista delarbetet intresserade vi oss för EGFR (epidermal growth factor 
receptor), en viktig tillväxtfaktorreceptor som sitter på cellytan och känner av yttre 
kemiska signaler. Vid stimulering fortplantar EGFR signalerna in till cellkärnan, 
och KRAS och BRAF fungerar som viktiga ”strömbrytare” i denna process. Vi 
analyserade dels uttrycket av proteinet EGFR med hjälp av immunohistokemi, och 
dels studerade vi antalet kopior av EGFR-genen med hjälp av s.k. in situ 
hybridisering, en metod som är principiellt snarlik immunohistokemi, men där 
man istället använder målsökande s.k. prober mot en viss DNA-sekvens eller gen. 
Resultaten visade att högt uttryck av proteinet EGFR var kopplat till en dålig 
prognos. Detta gällde även ett ökat antal EGFR-genkopior, om än sambandet inte 
var lika starkt. Vi såg däremot ett klart samband mellan EGFR proteinuttryck och 
ett ökat genkopieantal, även om många tumörer som uttryckte EGFR proteinet 
hade ett normalt antal genkopior och vice versa. Slutligen tittade vi på hur EGFR 
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proteinuttryck och genkopieantal påverkar överlevnaden hos patienter som 
behandlats med cytostatika. Det visade sig att såväl högt EGFR proteinuttryck som 
ökat genkopieantal var kopplat till sämre svar på behandling med en viss typ av 
cytostatika (oxaliplatin).  

Sammanfattningsvis kan vi med detta avhandlingsarbete konstatera att tumörer i 
tjock- och ändtarm i många avseenden skiljer sig åt mellan kvinnor och män. Detta 
gäller inte bara risken att drabbas av sjukdomen utan även hur prognosen 
avspeglas i uttrycket av olika biomarkörer. Därutöver har vi identifierat nya 
biomarkörer som kan förutspå effekt av cytostatikabehandling, oberoende av kön. 
Det behövs dock ytterligare studier innan dessa biomarkörer är redo att tas i 
kliniskt bruk.  
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