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Linköping University, SE–581 83 Linköping, Sweden
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Abstract—There is currently a strongly growing interest in
obtaining optimal control solutions for vehicle maneuvers, both
in order to understand optimal vehicle behavior and to devise
improved safety systems, either by direct deployment of the solu-
tions or by including mimicked driving techniques of professional
drivers. However, it is nontrivial to find the right mix of models,
formulations, and optimization tools to get useful results for the
above purposes. Here, a platform is developed based on a state-
of-the-art optimization tool together with adoption of existing
vehicle models, where especially the tire models are in focus. A
minimum-time formulation is chosen to the purpose of gaining
insight in at-the-limit maneuvers, with the overall aim of possibly
finding improved principles for future active safety systems.
We present optimal maneuvers for different tire models with
a common vehicle motion model, and the results are analyzed
and discussed. Our main result is that a few-state single-track
model combined with different tire models is able to replicate

the behavior of experienced drivers. Further, we show that the
different tire models give quantitatively different behavior in the
optimal control of the vehicle in the maneuver.

I. INTRODUCTION

Optimization of vehicle trajectories can be motivated from

different perspectives. One objective is to develop improved

active safety systems for standard customer cars. The Elec-

tronic Stability Program (ESP) systems, see [1] and [2], of

today are still behind the maneuvering performance achievable

by professional race car drivers in critical situations, but the

vision for improvement is there, see [3]. A recent survey on

optimal control in automotive applications [4] points out:

Most often, the optimal control itself will be interest-

ing mainly insofar as it enables the discovery of the

best possible system performance. Occasionally, the

optimal control will provide a basis for the design

and operation of practical systems.

Further, the survey points out that finding the right balance be-

tween models, correct formulations, and optimization methods

is nontrivial, and that the state-of-the-art today is hampered

by long simulation runs. The goal in this paper, regarding

methodology, is to develop and investigate a platform for

useful solutions to these problems.

It is a common observation that the criterion of time-

optimality in aggressive vehicle maneuvers, combined with

input and state constraints, often results in control signals

using the extremal cases of the input and state regions. It is

therefore crucial how, e.g., the tires are modeled outside their

normal range of operation.

Fig. 1. An example of a hairpin turn. Photo courtesy of RallySportLive.

The interaction between tire and road is complex, and differ-

ent tires have different characteristics. Even when only consid-

ering the longitudinal stiffness, the experimental values differ

considerably between tires, and the variability can typically be

20–100 %, see [5]. Further, in addition to the differences in

stiffness—i.e., the slope of the longitudinal force-slip curve—

there are also differences between the characteristic shape of

the curve at the maximum force, where the peak can be more

or less accentuated. This is illustrated for Pacejka’s Magic

Formula and the HSRI model in [5]. The complete tire model

capturing both longitudinal and lateral forces can thus be

expected to have large variability both in shape, parameters,

and parameter irregularity.

The control oriented goal of this paper is to find a formula-

tion that gives insight into improved safety systems; e.g., future

ESP systems performing closer to what the most experienced

drivers can do. To that end we study a time-optimal maneuver

in a hairpin turn, an interesting situation testing the limits

of maneuverability of a car in a certain situation. In [6]

we reported that simplified vehicle models identified from

experimental data managed to replicate the behavior of real

vehicles. However, this was based on less aggressive driving

situations, and not using optimization. Previous work in the

subject of optimal control of vehicles in certain time-critical

situations such as T-bone collisions and cornering can be found

in, e.g., [7], [8], [9]. In [10], [11], methods for constraint-

based trajectory planning for optimal maneuvers are presented.

Further, the papers [12], [13] discuss optimal control of over-
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actuated vehicles, where similar optimization tools as those

used in the present paper are utilized.

This paper is outlined as follows: The problem description

and overall aim of the paper are discussed in Sec. II. Vehicle

and tire modeling and the specific models investigated in this

study are presented in Sec. III, followed by the formulation

and solution of the studied time-optimal maneuvering problem

in Sec. IV. Optimization results and a subsequent discussion

of the obtained results are provided in Sec. V. Finally, con-

clusions and aspects on future work are given in Sec. VI.

II. PROBLEM DESCRIPTION

The goal of the work presented in this paper is twofold. The

first goal is to find the time-optimal vehicle trajectory when

maneuvering through a hairpin turn, see Fig. 1 for an example,

with the vehicle being subject to various constraints.

Another aim of the study is to explore whether different

vehicle models yield fundamentally different solutions, not

only in the cost function but also in the internal behavior

of the vehicle. Hence, a part of the work is devoted to

investigating how the models differ. We consider differential-

algebraic models of the form

ẋ(t) = G(x(t), y(t), u(t)),

0 = h(x(t), y(t), u(t)),

where G(x(t), y(t), u(t)) and h(x(t), y(t), u(t)) are twice

continuously differentiable nonlinear functions of the vehicle

differential variables x, algebraic variables y, and control

inputs u. The models used are based on the same vehicle

model, but differ in the tire modeling aspects.

The motivation for the twofold goal is that, to the best of our

knowledge, most model comparisons in literature are based

on simulation rather than optimization. Since time-optimal

optimization problems tend to push the vehicle more to the

extremes than simulations do, it is plausible that different

conclusions about model behavior can be made from such an

analysis.

III. MODELING

The vehicle dynamics modeling in this section incorporates

the vehicle motion modeling and the tire force modeling, with

emphasis on the latter. Further, calibration of the tire models

is discussed and a subsequent investigation of the qualitative

behavior of the models studied is presented.

A. Vehicle Modeling

As a basis for the vehicle dynamics model, a two-

dimensional single-track model, with two translational and

one rotational degrees-of-freedom, was used, see Fig. 2. The

motion equations are expressed by, see [14], [15],

v̇x − vyψ̇ =
1

m
(Fx,f cos(δ) + Fx,r − Fy,f sin(δ)), (1)

v̇y + vxψ̇ =
1

m
(Fy,f cos(δ) + Fy,r + Fx,f sin(δ)), (2)

Izψ̈ = lfFy,f cos(δ)− lrFy,r + lfFx,f sin(δ), (3)

δ

lf lr

x

y

vf vr

Fx,r

Fx,f

Fy,r
Fy,f

ψ̇αf αr

Fig. 2. The single-track model considered in this paper.

TABLE I
VEHICLE MODEL PARAMETERS USED IN (1)–(10).

Notation Value Unit

lf 1.3 m
lr 1.5 m
m 2100 kg

Iz 3900 kgm2

Re 0.3 m
Rw 0.3 m

Iw 4.0 kgm2

g 9.82 ms−2

where m is the vehicle mass, Iz is the vehicle inertia, ψ̇
is the yaw rate, δ is the steering wheel angle, vx,y are the

longitudinal and lateral velocities, lf,r are the distances from

center-of-gravity to the front and rear wheel base, and Fx,y
are the longitudinal and lateral forces acting on the front and

rear wheels. The slip angles, αf,r, and slip ratios, κf,r, are

described by

αf = δ − arctan

(

vy + lf ψ̇

vx

)

, (4)

αr = − arctan

(

vy − lrψ̇

vx

)

, (5)

κf =
Reωf − vx,f

vx,f
, (6)

κr =
Reωr − vx,r

vx,r
, (7)

vx,f = vx cos(δ) + (vy + lf ψ̇) sin(δ), (8)

vx,r = vx, (9)

where Re is the effective wheel radius and ωf,r are the

front and rear wheel angular velocities. The wheel dynamics,

necessary for slip ratio computation, is given by

Ti − Iwω̇i − Fx,iRw = 0 , i = f, r. (10)

Here, Ti is the driving/braking torque, Iw is the wheel inertia,

and Rw is the loaded wheel radius. The numerical values for

the vehicle model parameters used in this study are provided

in Table I.

B. Tire Modeling

When developing a platform for investigation of optimal

maneuvers, it is of interest to be able to handle and compare
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different tires, and thus to cope with different tire models.

We have considered two different model categories for tire

modeling, whose characteristics are described next.

The nominal tire forces—i.e., the forces under pure slip

conditions—are computed with the Magic Formula model

[16], given by

Fx0,i = µxFz,i sin(Cx,i arctan(Bx,iκi)), (11)

Fy0,i = µyFz,i sin(Cy,i arctan(By,iαi)), (12)

Fz,i = mg(l− li)/l, i = f, r. (13)

In (11)–(13), µx and µy are the friction coefficients, B and

C are model parameters, l = lf + lr, and g is the constant of

gravity .

Under combined slip conditions—i.e., both κ and α are

nonzero—the longitudinal and lateral tire forces will depend

on both slip quantities. How this coupling is described can

have immense effect on the vehicle dynamics. In an optimal

maneuver, the solution will use the best combination of

longitudinal and lateral force, and these forces are, of course,

coupled via the physics of the tire. In order to compare differ-

ent models, plotting of the resulting tire force is illustrative,

c.f. Figs. 3–6, to visualize the interaction between longitudinal

and lateral force.

Even though detailed experiments, like the ones in [5]

for longitudinal stiffness, are lacking for the complete

longitudinal-lateral tire interaction, there is a vast plethora of

characteristics, see [1], [16], [17], and [18]. We have chosen

two different tire models for our study, described below.

1) Friction Ellipse: A common way to model combined

slip is to use the friction ellipse, described by

Fy,i = Fy0,i

√

1−

(

Fx0,i
µxFz,i

)2

, (14)

where Fx is used as an input variable. However, we have opted

for using the driving/braking torques as input, see (10), since

this is a quantity that can be controlled in a physical setup of

a vehicle.

2) Weighting Functions: Another approach described in

[16] is to scale the nominal forces, (11)–(12), with weighting

functions, Gxα,i and Gyκ,i, which depend on α and κ. The

relations in the x-direction are

Bxα,i = Bx1,i cos(arctan(Bx2,iκi)), (15)

Gxα,i = cos(Cxα,i arctan(Bxα,iαi)), (16)

Fx,i = Fx0,iGxα,i. (17)

The corresponding relations in the y-direction are given by

Byκ,i = By1,i cos(arctan(By2,i(αi −By3,i))), (18)

Gyκ,i = cos(Cyκ,i arctan(Byκ,iκi)), (19)

Fy,i = Fy0,iGyκ,i. (20)

C. Calibrating Tire Models for Comparison

When comparing an optimal maneuver based on two differ-

ent tire models, it is not obvious how to calibrate the models to
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Fig. 3. Resultant tire force Fres for a friction ellipse model parametrized to
give isotropic behavior.

get comparable solutions. For example, in Fig. 3 and Fig. 6 we

show two different types of tire models. In order to equalize

these models in comparative studies, one way would be to

have the same average resultant force, whereas another way

would be to equalize the longitudinal stiffness. In this study,

the same parameters have been used for the nominal lateral

force; i.e., the lateral force characteristics are the same for all

models when considering pure lateral slip.

D. Qualitative Behavior of Tire Models

In Figs. 3–6 it is shown how the resulting force, defined by

Fres =
√

F 2

x,i + F 2

y,i, i = f, r,

for the above tire models varies over slip angle and slip ratio

with the parameters presented in Table II. Studying Figs. 3–6

gives a basis for discussion of the behavior of the tire models

in an optimal maneuver.

Figure 3 displays the friction ellipse model, and Fig. 4

shows the weighting functions model for an isotropic

parametrization. These are both considered isotropic in the

sense that they have the same properties in the lateral and

longitudinal directions. The most obvious difference in these

figures can be seen for large slip angles, where an increase in

the slip ratio will increase the resulting force for the friction

ellipse model and, on the contrary, decrease it for the model

based on weighting functions.

In contrast, considering the nonisotropic models, Figs. 5

and 6, different force characteristics are obtained in the

longitudinal and lateral directions. The model based on the

weighting functions is parametrized according to the Pacejka

model in [16], thus representing a realistic tire behavior. The

friction ellipse model also uses the Pacejka parameters in [16]

for the nominal tire forces. Hence, both of the nonisotropic

models will exhibit equivalent tire characteristics for pure
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Fig. 4. Resultant tire force Fres for a weighting functions model parametrized
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Fig. 5. Resultant tire force Fres with a friction ellipse model with
experimental parameters from [16] (µx = 1.2, µy = 1.0).

slip conditions. Further, the characteristic peaks in Fres—not

visible in the isotropic models—influence the behavior of the

tire force model significantly.

IV. OPTIMIZATION

Based on the dynamics described in the previous section,

the time-optimal maneuver for the hairpin turn is to be

determined. This is expressed as an optimization problem, and,

considering the physical setup of the problem, it is clear that

an optimal solution exists. The resulting optimization problem

is more challenging than thought at first sight, since the time-

optimality implies that the tire friction model operates on the

boundary of its validity. Also, solving dynamic optimization

problems where the final time is free, is more demanding than
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Fig. 6. Resultant tire force Fres for a weighting functions model with the
same friction coefficients as in Fig. 5.

TABLE II
TIRE MODEL PARAMETERS FOR FRICTION ELLIPSE WITH ISOTROPIC

BEHAVIOR (FE-ISO), NONISOTROPIC BEHAVIOR (FE-NONISO), AND

WEIGHTING FUNCTIONS WITH ISOTROPIC BEHAVIOR (WF-ISO),
NONISOTROPIC BEHAVIOR (WF-NONISO).

Parameter FE-Iso FE-Noniso WF-Iso WF-Noniso

µx 1.0 1.2 1.0 1.2
µy 1.0 1.0 1.0 1.0

Cα,f 1.09e5 1.09e5 1.09e5 1.09e5
Cα,r 1.02e5 1.02e5 1.02e5 1.02e5
Cκ,f 1.09e5 2.38e5 1.09e5 2.38e5
Cκ,r 1.02e5 2.06e5 1.02e5 2.06e5
Cx 1.3 1.7 1.3 1.7
Cy 1.3 1.3 1.3 1.3

Bx1,f - - 8.55 11.23
Bx2,f - - 8.33 10.80
Cxα,f - - 1.03 1.14
By1,f - - 8.63 6.37
By2,f - - 8.35 2.64
By3,f - - 0 0
Cyκ,f - - 1.03 1.03
Bx1,r - - 9.28 11.71
Bx2,r - - 9.04 11.61
Cxa,r - - 1.03 1.14
By1,r - - 9.38 5.88
By2,r - - 9.08 2.98
By3,r - - 0 0
Cyκ,r - - 1.02 1.08

a problem with fixed end time. Further, we have found that

numerical issues easily arise and that the optimization does

not converge without proper initialization. In order to make

the convergence more robust from a numerical point of view,

scaling of the optimization variables is essential.

A. Formulation of Optimization Problem

Consider the time horizon t ∈ [0, tf ], where tf is the

free final time to be determined as part of the solution

procedure. Express the vehicle dynamics (1)–(3) and (10) as

ẋ(t) = G(x, y, u), where x are the differential variables and y
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are the algebraic variables. The wheel driving/braking torques

T =
(

Tf Tr
)

and the steering angle δ are considered as the

input variables, u = (T δ)T. Further, express (4)–(9), (11)–

(13), and (14) or (15)–(20), depending on the friction model

considered, as 0 = h(x, y, u). The dynamic optimization

problem to be solved can then be stated as follows:

minimize tf (21)

subject to Ti,min ≤ Ti ≤ Ti,max, i = f, r (22)

|δ| ≤ δmax, |δ̇| ≤ δ̇max (23)

|Fx,i| ≤ Fx,i,max, i = f, r (24)

|Fy,i| ≤ Fy,i,max, i = f, r (25)
(

Xp

Ri
1

)6

+

(

Yp
Ri

2

)6

≥ 1 (26)

(

Xp

Ro
1

)6

+

(

Yp
Ro

2

)6

≤ 1 (27)

x(0) = x0, y(0) = y0 (28)

x(tf ) = xtf , y(tf ) = ytf (29)

ẋ(t) = G(x, y, u), 0 = h(x, y, u), (30)

where (x0, y0) are the initial conditions for the differen-

tial/algebraic variables, (xtf , ytf ) are the desired values at

the final time t = tf , and (Xp, Yp) is the position of the

center-of-gravity of the vehicle. Note that the path constraint

is formulated using super-ellipses and the shape of the path is

determined by the radii Ri1, Ri2, Ro1, and Ro2.

B. Solution of Optimization Problem

Because of the complex nature of the nonlinear and non-

convex optimization problem in (21)–(30), analytical solutions

are intractable. Instead, we utilize numerical methods based

on simultaneous collocation [19]. Direct collocation is used,

where all state and input variables, originally described in

continuous time, are discretized prior to the optimization. This

results in a discrete-time nonlinear program (NLP). The collo-

cation procedure transforms the original infinite-dimensional

problem to a finite-dimensional problem with a large, however

finite, number of optimization variables, on which numerical

optimization methods are applied.

C. Implementation and Solution

The vehicle and tire dynamics are implemented using the

modeling language Modelica [20]. Utilizing Optimica [21],

which is an extension of Modelica for high-level description

of optimization problems based on Modelica models, the

implementation of the vehicle and tire dynamics described in

Sec. III and the optimal control problem is straightforward.

The collocation procedure and solution of the optimization

problem are performed using the open-source software plat-

form JModelica.org [22], [23]. In JModelica.org, orthogonal

collocation is implemented, where Lagrange polynomials are

used for representation of the state profiles in each element

and the location of the collocation points are chosen as the

corresponding Radau points. The resulting NLP is solved

internally using the numerical solver Ipopt [24], which is a
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−5 0 5 −5 0 5 −5 0 5
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[m

]

X [m]X [m]X [m]X [m]
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Fig. 7. Initialization procedure for solving the time-optimal hairpin turn
maneuver problem. The whole problem is solved by stepwise solving four
successive problems. The black rectangles in the figure indicate the position
and direction of the vehicle at the initial and final state in each problem.

solver based on interior-point methods opted for large, but

sparse, optimization problems.

D. Initialization Procedure

Robust convergence to a solution of the NLP in Ipopt relies

on proper initialization. Two approaches are available to this

purpose: Simulation of an initial guess using driver models and

division of the problem into smaller subproblems, respectively.

In this paper, the latter approach is utilized. Consequently,

the hairpin turn problem is solved in four steps, see Fig. 7.

The results from the solution of each subproblem is used

for initialization of the subsequent problem. Hence, the final

optimal maneuver is determined stepwise.

V. RESULTS

For the evaluations we set the maximum allowed wheel

angle, δ, and wheel-angle change rate, δ̇, to 30 deg and

60 deg/s, respectively, which are reasonable parameters, both

seen from physical and driver limitations. Also, constraints on

the driving/braking torques and tire forces were introduced:

Tf ≤ 0, (31)

Tf ≥ −µxFz,fRw, (32)

|Tr| ≤ µxFz,rRw, (33)

|Fx,i| ≤ µxFz,i, i = f, r, (34)

|Fy,i| ≤ µyFz,i, i = f, r. (35)

We let the road be 5 m wide. Further, the start, (X0

p , Y
0

p ), and

final vehicle position, (X
tf
p , Y

tf
p ), were set to be in the middle

of the road. The initial velocity was v0 = 25 km/h. Figures 8–

11 show the vehicle trajectory together with the most relevant

states for all four models. Note that the vehicle is rear-wheel

driven. All models have similarities: The vehicle starts with
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giving full engine torque while turning to allow for wider curve

taking. When entering the curve the vehicle starts to break with

both wheels, which it does approximately until reaching the

half-way point. Furthermore, all models give rise to vehicle

slip. The trajectory plots show that the slip—i.e., the angle

between the velocity vector and the longitudinal direction

of the vehicle—is significant, exceeding 30 deg in the most

critical parts of the maneuver. The maneuvering achieving

this behavior is very similar to drifting techniques, where the

rear wheel driving/braking torque is used to control the rear

lateral tire force. The front wheels are only controlled with the

steering angle, utilizing counter steering if necessary. Also, the

qualitative slip behavior is congruent with the driving behavior

often seen when rally drivers perform similar maneuvers,

indicating that the obtained optimization results manage to

replicate behavior utilized in reality. Furthermore, it also shows

that even a few-state single-track model using the friction

ellipse for tire modeling manages to capture fundamental

and relevant behavior, even for minimum-time optimization

problems.

For the four parameter sets in Table II, the final time

values are for the respective column: tf ≈ 8.82, tf ≈ 8.42,

tf ≈ 8.80, and tf ≈ 8.44. Hence, the objective function, tf ,

deviates approximately 0.4 s when comparing all four model

configurations. Comparing the isotropic and nonisotropic mod-

els, the deviation in final time between the friction ellipse

model and the weighting functions model is less than 0.02 s.

A. Comparison of Isotropic Models

Studying the obtained results closer, we see that Figs. 8

and 9 only have minor differences, if any. This should,

of course, come as no surprise since the two models are

parametrized to be isotropic, c.f. Figs. 3–4. This is a veri-

fication that the optimization tool is able to handle both of

these models, and also that two completely different model

categories, parametrized to achieve equivalent resultant force

characteristics, give similar results for the optimal maneuver.

Figures 12 and 13 show the force trajectories as functions of α
and κ, corresponding to Figs. 8 and 9. By inspection we note

that the α and κ trajectories, and consequently the resulting

tire force trajectory, vary more for the rear wheels, which is

caused by the vehicle being rear-wheel driven. Further, when

comparing the force curves for the rear wheel it is clear that

the friction ellipse model seems to penalize combined slip

more throughout the turn. This can be explained by that the

lateral tire force decreases faster with increasing slip ratio for

the friction ellipse than for the weighting functions model. For

example, when the longitudinal force approaches its maximum

value, the lateral force tends to zero. For the corresponding slip

ratio, the weighting functions model predicts a larger lateral

force than the friction ellipse model does.

B. Comparison of Nonisotropic Models

When investigating Figs. 10 and 11 we see that there are

fundamental differences. First, the maximum steering angle,

δ, in Fig. 11 is twice as large as δ in Fig. 10. Second, the
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the blue curves visualize the front wheel and the red curves the rear wheel.
The black rectangles in the XY -trajectory plot show the sideslip angle each
second of the maneuver.
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Fig. 9. Optimization result for weighting functions model with isotropic
behavior with parameters as in column four in Table II. Same notation and
colors as in Fig. 8.

maximum yaw rate is larger for the weighting functions model,

see Fig. 11, but the yaw rate when in the turn (between

t ≈ 3.5–4.5 s) is smaller. Third, the weighting functions model

seldom uses the rear wheel for braking. Rather, it maximizes

the braking force on the front wheel instead of distributing the

braking force to both wheels. We believe that this behavior

stems from that the weighting functions model provide, in

addition to the low-slip solution, a large-slip alternative—

i.e., does not penalize combined slip—for a given resulting

force. The force trajectories in Figs. 14 and 15 verify this

claim. These observations indicate that this behavior is model
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dependent rather than parameter dependent.

Another interesting behavior can be seen when studying the

slip ratios, κ. For the weighting functions model, a large peak

occurs when increasing the yaw rate at t ≈ 2.3 s. At this stage,

when trying to turn quickly, it is desired to have a small lateral

force at the rear, which, in the weighting functions model, can

be achieved by increasing the slip ratio as much as possible. In

the isotropic weighting functions model, this tendency can also

be seen. However, since the force decrease in the longitudinal

direction is comparatively small, only a modest peak in the

slip ratio appears. Studying the friction ellipse model instead,

no such peak in slip ratio can be seen. Also, the friction ellipse

model as it is implemented here, will increase the lateral force

if the slip ratio exceeds the maximum longitudinal force.

C. Comparing the Isotropic and Nonisotropic Models

When comparing the friction ellipse model for the two

different parameter sets—i.e., Figs. 8 and 10—we note a

couple of discrepancies. The peak of δ is more accentuated

in Fig. 10. Also, the longitudinal force, and thereby the

longitudinal velocity, is larger in magnitude. This is attributed

to the larger longitudinal friction coefficient, µx, see Table II.

This, in turn, is a result of the fitting procedure used, described

in Sec. III-C. The difference in steering angle can, most

probably, also be deduced to this, since a larger velocity

will demand more aggressive steering to counteract the larger

forces. When comparing the force trajectories for the same

models, Figs. 12 and 14, we see that they are very similar.

The weighting functions have more pronounced differences:

First, δ in Fig. 9 hardly exceeds 0 rad. Moreover, the yaw

rate is larger in Fig. 11. Third, the forces differ significantly.

Partly, the differences can be attributed to the difference in

longitudinal friction coefficient. We believe that a contributor

is the significant differences between the maxima and minima

in Fig. 15.

VI. CONCLUSIONS AND FUTURE WORK

This paper aimed at using vehicle and tire models frequently

encountered in literature to give insight into improved safety

systems. We presented a comparison of vehicle behavior for

minimum-time optimization of a hairpin maneuver, where

different tire models were used. We exploited a single-track

model for vehicle modeling. Although the results differed in

some respects, the qualitative behavior was similar for all

models. We showed that even a few-state single-track model

using the friction ellipse for tire modeling managed to capture

fundamental and relevant behavior. This implies that for future

optimization-based safety systems rather simple models may

suffice. However, the friction ellipse model and weighting

functions model showed some dissimilarities; e.g., the braking

behavior was different. This might have impact on model

choice, especially considering safety systems such as yaw rate

controllers where the brakes typically are the actuators.

For the future we plan to do a similar investigation for

different tires and surfaces, which provides insight into optimal

control of maneuvers under different road conditions. Further,
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Fig. 10. Optimization results for friction ellipse model with parameters as
in column three in Table II. Same notation and colors as in Fig. 8.
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Fig. 11. Optimization results for weighting functions model with parameters
as in column five in Table II. Same notation and colors as in Fig. 8.
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Fig. 12. 3D plot of force curve for friction ellipse model with isotropic
behavior corresponding to Fig. 8. Blue (front wheel) and red curves (rear
wheel) are the trajectories generated by optimization.
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Fig. 13. 3D plot of force curve for weighting functions model with isotropic
parameters corresponding to Fig. 9.
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Fig. 14. 3D plot of force curve for friction ellipse model with parameters
corresponding to Fig. 10.

investigating optimal path tracking is a natural extension

of the work presented in this paper; in this context other

optimization criteria than time-optimality, such as deviation

from the specified path or energy consumption, are of interest.
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[21] J. Åkesson, “Optimica—an extension of Modelica supporting dynamic

optimization,” in 6th Int. Modelica Conf. 2008. Modelica Association,
Mar. 2008.
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