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Abstract

Proportional-integral-derivative (PID) controllers are very common in the process
industry. In a regular factory there may be hundreds or thousands of them in use.
Each of these controllers needs to be tuned, and even though the PID controller
is simple, tuning the controllers still requires several hours of work and adequate
knowledge in order to achieve a desired performance. Because of that, many of the
operating PID controllers today are poorly tuned or even running in manual mode.
Methods for tuning the controllers in an automated fashion are therefore highly
beneficial, and the relay autotuner, that was introduced on the market in the 1980’s,
has been listed as one of the great success stories of control.

The technology development since the 1980’s, both concerning PID control and
available computing power, gives opportunities for improvements of the autotuner.
In this thesis three new autotuners are presented. They are all based on asymmetric
relay feedback tests, providing process excitation at the frequency intervals relevant
for PID control. One of the proposed autotuners is similar to the classic relay
autotuner, but provides low-order models from which the controllers are tuned by
simple formulas. The second autotuner uses the data from a very short relay test
as input to an optimization method. This method provides more accurate model
estimations, but to the cost of more computing. The controller is then tuned by
another optimization method, using the estimated model as input. The principle of
the third autotuner is similar to the second one, but it is used to tune multivariable
PID controllers for interacting processes. In this case a relay feedback experiment is
performed on all loops simultaneously, and the data is used to identify the process
transfer function matrix. All of the proposed autotuners strive to be user-friendly
and practically applicable.

Evaluation of the three autotuning strategies are done both through simulation
examples and on experimental processes. The developed autotuners are also com-
pared to commercially available ones, and the study shows that an upgrade of the
industry standard to the newly available autotuners will yield a significant perfor-
mance improvement.

3





Acknowledgments

First of all I want to thank everyone at the Department of Automatic Control for
providing a really inspiring and delightful working environment. My supervisors
Tore Hägglund, Karl Johan Åström and Kristian Soltesz are worth a lot of thanks. It
is every PhD student’s dream to have a supervisor that is truly interested in her/his
research, enthusiastic and available for questions and discussions. I do not know
what I have done to deserve not just one, but three such supervisors. You have
always encouraged me, no matter if I wanted to do something different in a method
or paper, wanted to write a fairytale about my research, or wanted to leave work for
a couple of months to go to the other side of the world and help out with the local
kids. Your support in these, sometimes rather odd, ideas have meant a lot to me.

Martin, Olof and Andreas, thanks for head-hunting me to the best office! You
made the first three years of my PhD studies a really fun time, and I still think you
finished your theses way too early. Luckily for me, Marcus TA, Giulia, Morten and
Marcus G, stepped in, filled up the empty spots and continued to make it fun to come
to the office every morning (or lunch), thanks a lot for that!

A lot of thanks to the administrative staff, Eva, Ingrid,Mika, Cecilia andMonika.
Not only for your amazing work and help with all kind of work-related things, but
mainly for the joy and good spirit you all bring to this department. It would not be
the same without you and I hope you know how appreciated you are. The same goes
for the technical staff, Anders x 2, Pontus and Leif. Thanks for always helping out
when a computer stops working, a lab process is broken or a latex document won’t
compile.

Tove Sörnmo, thanks for illustrating my fictive control engineer Kontroll-Kalle.
Even though I hope that some people will read and enjoy at least parts of this thesis,
which improved by appreciated help from Tommi and Gustav with comments and
corrections, I do believe that Kontroll-Kallewill continue to bemymost downloaded,
used and appreciated publication.

Richard, thanks for trying to invade the fortress of Carcassonne with me! Car-
olina, thanks for excellent cooperation in the last years of Flickor på Teknis. Fredrik
bänk-Bagge, thanks for introducing the concept of Bänktorsdag. Gautham, thanks
for bringing food from the Indian lady and for organizing a lot of boardgame nights.

5



Michelle, thanks for introducingme to the massage-chair at Actic. Thanks Gustav for
keeping us all up-to-date with the latest gossip. Thanks to Christian for organizing
betting each major football championship, and to Mariette for doing the same for
Sommar i P1.

Even though I really like my workplace, not everything in life is connected to
work. All my life, sports has occupied most of my spare time, and here in Lund
I’ve been lucky enough to find two of the absolute best clubs and teams I have ever
been a part of, my football team in Hallands Nations FF and my handball team in
Botulfsplatsens BK. We are not winning every game, far from it, but the team spirit,
respect and joy that we share make me proud of calling you my team.

Linnea and Madeleine, thanks for being amazing! The two of you have made my
life so much better for so many years now, and I’m looking forward to doing many
more fun/crazy/important things with you in the future.

Teresia, thanks for not only being a good friend and an inspiring person, but also
for reminding me time after time how lucky I am to do my PhD at such a nice and
well-functioning department. I wish that would be the situation for everyone! I also
want to thank you and Ellinor for our very irregular TV-series nights every couple of
months when all three of us happen to have a free evening at the same time. Maybe
it will be easier now?

And to my other friends, I will not mention you all, I’m already failing to keep
this short, but take some pages of this thesis and consider them as your contribution,
because I would not have made this without you.

Apart from my lovely friends I am also fortunate enough to have an amazing
family. All the way from my grandparents who all inspired me a lot, to my nieces
and nephews who let me bring out my inner child in a legitimate way. Mum, dad,
Anna, Karin and Ellen, as my family you have been a constant source of inspiration
(and frustration) for me. I am happy to have grown up in your company, you have all
been a part of shaping me into the person I am today, you are always there if I need
you, and I love you all!

And to Tommi, kämpa på himmelsblå!

Financial support

The following are acknowledged for financial support: The Swedish Research Coun-
cil through the LCCC Linnaeus Center, and the ELLIIT Excellence Center.

6



Contents

Nomenclature 11
1. Introduction 13

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Aim of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Contents and Contributions of the Thesis . . . . . . . . . . . . . 14
1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2. Background 19
2.1 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 PID Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 PID Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5 Automatic Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 The Relay Autotuner . . . . . . . . . . . . . . . . . . . . . . . . 32

3. Three Versions of the Autotuner 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 The τ-tuner . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 The NOMAD Autotuner . . . . . . . . . . . . . . . . . . . . . . 41
3.4 The Multi-NOMAD Autotuner . . . . . . . . . . . . . . . . . . 42
3.5 Why Three Autotuners? . . . . . . . . . . . . . . . . . . . . . . 43
3.6 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . 45

4. Future Work 48
Bibliography 49
Paper I. Improved Relay Autotuning using Normalized Time Delay 55

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Asymmetric Relay Feedback . . . . . . . . . . . . . . . . . . . 59
4 Estimation of Normalized Time Delay . . . . . . . . . . . . . . 60
5 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6 Tuning Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 64

7



Contents

7 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8 Industrial Experiment . . . . . . . . . . . . . . . . . . . . . . . 68
9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Paper II. Asymmetric Relay Autotuning – Practical Features for
Industrial Use 73
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2 Automatic Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 75
3 Asymmetric Relay Feedback . . . . . . . . . . . . . . . . . . . 76
4 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . 80
5 Industrial Experiments . . . . . . . . . . . . . . . . . . . . . . . 95
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
A Default Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 107
B The Test Batch . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Paper III. Short and Robust Experiments in Relay Autotuners 111
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 122
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 128
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Paper IV. An Experimental Comparison of PID Autotuners 131
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
2 The Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
3 The Autotuners . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4 Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 140
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 152
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Paper V. Autotuner identification of TITO systems using a single relay
feedback experiment 155
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8



Contents

Paper VI. Practical Evaluation of a Novel Multivariable Relay
Autotuner with Short and Efficient Excitation 171
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
3 Example Processes . . . . . . . . . . . . . . . . . . . . . . . . . 175
4 Modifications to Experiment . . . . . . . . . . . . . . . . . . . 176
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9





Nomenclature

Notation Description
C(s) Controller transfer function
γ Asymmetry level of the relay
d Load disturbance
d1 Positive relay amplitude
d2 Negative relay amplitude
e Control error
F(s) Filter transfer function
h Hysteresis of the relay
K Proportional gain of PID controller
kc Critical gain
Kp Static gain of process
kv Gain of integrating process
L Time delay of process
MS Maximum of the sensitivity function
MT Maximum of the complementary sensitivity function
n Measurement noise
P(s) Process (model) transfer function
ρ Half-period ratio
r Reference value, setpoint
T Time constant of process
Td Derivative time of PID controller
Tf Filter time constant
Ti Integral time of PID controller
τ Normalized time delay
u Control signal, relay output
ωc Critical frequency
y Process output
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Nomenclature

Abbreviation Description
DFA Describing function approximation
ECA An industrial autotuner from ABB, full name ABB ECA600
FFT Fast Fourier Transform
FOTD First-order time-delayed (model)
IAE Integrated absolute error
IE Integrated error
ITD Integrating time-delayed (model)
IFOTD Integrating plus first-order time-delayed (model)
MIMO Multiple-input multiple-output (system)
MPC Model predictive control
NOMAD Noise-robust optimization-based modeling and design (autotuner)
PID Proportional integral derivative (controller)
SISO Single-input single-output (system)
SOTD Second-order time-delayed (model)
TITO Two-input two-output (system)
τ-tuner An autotuning procedure using τ
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1
Introduction

1.1 Motivation

PID control has been the backbone of the process industry for many decades. Despite
its success, many control loops are still run in manual mode or perform poorly due
to bad tuning [Desborough and Miller, 2002]. Since the introduction of the relay
autotuner [Åström andHägglund, 1984] in the 1980’s the situation has improved, but
still the number of poorly performing controllers is significant. The relay autotuner
has the benefits of being fast, simple and not requiring any a priori information.
However, the early autotuner was restricted to use simple design rules due to com-
putational limitations at the time. With those computational limitations long gone,
and some increased insight gained in controller tuning, the time has come to revisit
the relay autotuner to see if it can be improved.

In many applications the process variables interact with each other. Hence there
is also a desire to investigate if the relay autotuner could be extended to handle
multivariable systems. Some previous research has been addressing this problem,
but to the author’s knowledge the feature is not provided in commercial control
systems today.

1.2 Aim of Thesis

The work in this thesis explores the possibilities of developing improved PID auto-
tuners, using the last decades’ advances in controller tuning and computing power.
The aim is to maintain the benefits of the classic relay autotuner, such as it being
simple to use, fast, and automatically exciting the process in a frequency interval
relevant for PID control. The work also aims to have a strong focus on practical usage
of the autotuner; developed procedures should not only be applicable for academic
simulation examples.

13



Chapter 1. Introduction

1.3 Contents and Contributions of the Thesis

The main contributions of this thesis are three new versions of relay autotuners. The
autotuning procedures are developed, described and evaluated in the papers. The
evaluations have been made through simulations, tests on laboratory equipment and
by industrial experiments. The thesis contains four chapters and six papers. This
section gives an overview of the chapters and describes the contributions of each
paper as well as what role the author had in the different papers.

Chapter 1 - Introduction
In this introductory chapter the scope of the thesis is presented. A motivation to the
research problem, the contributions of the thesis, and delimitations of the work are
presented.

Chapter 2 - Background
The background chapter provides definitions and descriptions of some of the relevant
concepts for this thesis. This chapter is completely based on previous knowledge
and is included to give a common ground to the readers. It also gives the necessary
background to put the findings of the thesis into a historical context. Parts of the
background chapter are reused from the background chapter in the author’s licentiate
thesis [Berner, 2015].

Chapter 3 - Three versions of the autotuner
This chapter describes the work presented in this thesis. It relates the results in the
different papers to each other and to work done by others. This chapter motivates
the need of the different autotuners proposed in the thesis, and summarizes their
functionality, benefits and drawbacks. The chapter also gives examples of when the
proposed autotuners have been used in different settings, and discusses some of the
obtained results.

Chapter 4 - Future work
Here some additional ideas, which have not yet been investigated, are listed as
possibilities for future work.

Paper I
Berner, J., T. Hägglund, and K. J. Åström (2016). “Improved Relay Autotuning

using Normalized Time Delay”. In: 2016 American Control Conference (ACC).
IEEE, pp. 1869–1875.

In this paper it is shown that the normalized time delay has an important role
in the model and controller selections made in the relay autotuner. A simple way of
finding the normalized time delay from an asymmetric relay experiment is provided.

14



1.3 Contents and Contributions of the Thesis

The proposed autotuner obtains first-order models with time delay of the process.
These models are obtained from analytic equations including a few properties mea-
sured from the experiment. The used properties are robust to noise. The model
and controller selections, based on the estimated normalized time delay, are evalu-
ated through simulations. The paper also shows some experimental results from an
industrial testing facility at Schneider Electric Buildings AB in Malmö, Sweden.

Most of the ideas in the paper were obtained from discussions between all
authors. The idea to use the normalized time delay came from K. J. Åström. The
relation between the normalized time delay and the half-period ratio was found by J.
Berner, with some assistance from former colleague M. Hast. All simulations were
performed by J. Berner. The manuscript was mainly written by J. Berner with input
and comments from the co-authors. The industrial experiments were performed by
J. Berner and T. Hägglund in cooperation with M. Grundelius at Schneider Electric
Buildings AB. The implementation of the autotuner in Schneider’s software was
made by J. Berner.

Paper II
Berner, J., T. Hägglund, and K. J. Åström (2016). “Asymmetric relay autotuning–

Practical features for industrial use”. Control Engineering Practice 54, pp. 231–
245.

This paper investigates practical aspects of the autotuner in Paper I. It provides a
strategy to fully automate the parameter choices, steps and selections performed by
the autotuner. Features including a startup procedure and adaptive relay amplitudes
are proposed and described. The paper also shows experimental results from an
industrial testing facility at Schneider Electric Buildings AB in Malmö, Sweden.

Suggestions on how to solve some practical issues were made based on previous
experience by T. Hägglund and K. J. Åström, and all simulations and investigations
were made by J. Berner. The industrial experiments were performed by J. Berner
and T. Hägglund in cooperation with M. Grundelius at Schneider Electric Buildings
AB. The implementation of the autotuner in Schneider’s software was made by J.
Berner. The manuscript was written by J. Berner with input and comments from the
co-authors.

Paper III
Berner, J. and K. Soltesz (2017). “Short and robust experiments in relay autotuners”.

In: 2017 IEEE Conference on Emerging Technologies and Factory Automation
(ETFA). Limassol, Cyprus.

This paper proposes a more advanced version of the autotuner. It uses shorter
experiments and allows the experiment to start with non-stationary initial states of
the dynamics to be identified. First-order and second-order models with time delay
are obtained and an existing selection method of choosing between them is used.

15



Chapter 1. Introduction

The short experiments were used already in [Soltesz et al., 2016a], but were
modified here by J. Berner to include the automated startup procedure. The major
part of the paper, which is the identification method, builds on previous work by
[Åström and Bohlin, 1966]. The identification was implemented in [Soltesz et al.,
2016a], but was extended in this paper to include the estimation of the initial states. It
wasmodified, implemented and described in themanuscript by K. Soltesz with some
remarks and changes by J. Berner. The initialization of the identification method, as
well as the model selections were implemented by J. Berner. The simulation study
and the experiment section were performed and written by J. Berner with input
from K. Soltesz. The remaining parts of the manuscript were written in cooperation
between the authors.

Paper IV
Berner, J., K. Soltesz, T. Hägglund, and K. J. Åström (2017). “An experimental

comparison of PID autotuners”. Manuscript submitted to journal.

This paper compares industry standard autotuners with the two novel tuning
strategies proposed in Paper I–II and Paper III. In total, four autotuners are evalu-
ated on three laboratory processes with different characteristics. The identification
method in Paper III is extended with an existing controller design method, and both
our proposed procedures are extended with a controller filter in order to get complete
autotuners. The results from the comparison show that the industrial standard could
definitely be improved by incorporating the recent research advances.

The idea to perform this study came from J. Berner. The selection of suitable
autotuners and processes was made by all authors. Experiment setups and designs
were made in collaboration between the authors. Most experiments were carried
out by J. Berner, sometimes in company of one or more of the co-authors. The
manuscript was written by J. Berner with input and comments from the co-authors.

Paper V
Berner, J., K. Soltesz, T. Hägglund, and K. J. Åström (2017). “Autotuner identifica-

tion of TITO systems using a single relay feedback experiment”. In: 2017 IFAC
World Congress. Toulouse, France.

This paper provides an extension of the relay autotuner to multivariable (two-
input two-output) systems. First-order time-delayed models for all subsystems are
obtained from one single experiment where all loops are closed simultaneously. The
method does not make any assumptions on the coupling level of the system and does
not need to wait for convergence of limit cycles, which makes the procedure both
generally applicable and fast. The method is evaluated in simulations.

The identification method was jointly developed by K. Soltesz and J. Berner.
Decisions on the relay experiment design, as well as the simulations, were performed
by J. Berner after discussions with the other authors. The identification section of

16



1.4 Delimitations

the manuscript was written in cooperation between K. Soltesz and J. Berner. The
rest of the manuscript was written by J. Berner with input and comments from the
co-authors.

Paper VI
Berner, J., K. Soltesz, K. J. Åström, and T. Hägglund (2017). “Practical evaluation

of a novel multivariable relay autotuner with short and efficient excitation”. In:
2017 IEEEConference onControl Technology and Applications (CCTA). Kohala
Coast, Hawaii.

In this paper the multivariable autotuner is extended with the possibility to
find second-order models for the subsystems. The experiment is modified to do
an amplitude change of the relay after a few switches to increase low-frequency
excitation and improve the model quality. The experiment design and identification
method are combined with an existing, but slightly modified, multivariable PID
tuning algorithm to provide a complete autotuner. The autotuner is evaluated in
simulations as well as on a laboratory quadruple tank process.

The modification of the experiment was an idea from discussions between all
authors. The implementation of the more advanced identification method was made
by J. Berner and K. Soltesz. The simulations and quadruple tank experiments were
performed by J. Berner. The manuscript was written by J. Berner with input and
comments from the co-authors.

Additional Publications
The following publications by the author are not included in the thesis

Berner, J. (2015). Automatic Tuning of PID Controllers based on Asymmetric Relay
Feedback. Licentiate Thesis ISRNLUTFD2/TFRT--3267--SE. Dept. Automatic
Control, Lund University, Sweden.

Berner, J., K. J. Åström, and T. Hägglund (2014). “Towards a New Generation of
Relay Autotuners”. IFAC Proceedings Volumes 47:3, pp. 11288–11293.

Theorin, A. and J. Berner (2015). “Implementation of an Asymmetric Relay Au-
totuner in a Sequential Control Language”. In: 2015 IEEE International Con-
ference on Automation Science and Engineering, pp. 874–879. doi: 10.1109/
CoASE.2015.7294191.

1.4 Delimitations

The autotuners developed in this thesis mainly focus on experiment design and
model identification. Different controller tuning methods and filter designs have
been applied in order to get the complete autotuning functionality, but not much
effort has been put into selection, development or evaluation of tuning methods.
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Chapter 1. Introduction

The autotuners proposed in this thesis mainly target the process industry, and
typical process types for that setting. Fast, highly oscillating processes, like the ones
commonly encountered in robotics, have not been evaluated. Also, all processes that
have been used in simulations and experiments are either stable or integrating.

As is claimed in Section 1.2, the thesis work aims to maintain the benefits of the
relay autotuner. The relay autotuner has been the basis of the work, and alternative
autotuning methods have not been investigated.
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2
Background

Automatic tuning of a controller requires some different steps to be performed. An
experiment is made to retrieve process data, which can then be used to find some
kind of model or description of the process. The estimated model is then used by the
tuning method to find appropriate controller parameters. This thesis mainly focuses
on how the experiment should be designed in order to obtain the necessary process
data, and how to use that data to get a good model description of the process.
However, this chapter gives some necessary background to all of the required steps.

In Section 2.1 the process control environment, that the autotuner is aimed for,
is described. The controller structure that is used most in process industry, and
throughout this thesis, is the PID controller. The PID controller is described in
Section 2.2. Different model structures are described in Section 2.3, and methods
of tuning the PID parameters from these models are given in Section 2.4. The
automatic tuning procedure is described in Section 2.5, where it is also motivated
why the autotuner is needed. The chosen autotuning strategy is the relay autotuner,
which is described in Section 2.6. The chapter also contains explanations of some
important concepts, and alternatives and motivations to the selected procedures.

2.1 Process Control

In process industries raw materials are physically or chemically transformed, or
material and energy streams interact and transform each other [Craig et al., 2011].
Areas in process industry include for instance chemical industries, pulp and paper,
minerals and metals, heating, ventilation and air conditioning (HVAC), pharmaceu-
ticals, petrochemical/refining, and power generation. Almost all control loops in the
process industry can be classified as either flow, pressure, liquid level, product qual-
ity or temperature control [Shinskey, 1996]. The goal of process control is to bring
about and maintain the conditions of a process at desired or optimal values [Craig
et al., 2011]. In order to keep the process condition at the desired value, feedback
control loops are used. A typical feedback control loop is shown in Figure 2.1. The
controller, C(s), compares the reference value, r , to the measured process value,
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C(s)+ + P(s) + F(s)

−1

u
d

e yr
n

Figure 2.1 An illustration of a typical feedback control loop. The process, modeled
by the transfer function P(s), is controlled by the controller C(s) to keep the mea-
surement value y close to the reference value r . Disturbances d may affect the control
signal u and noise n may affect the measurement value. A low-pass filter F(s) can be
included to reduce the influence of measurement noise. Note that the arrows in the
block schedule are denoting the information flow and not necessarily a physical flow.

y, and based on the error, e, between them calculates a control signal, u, that is
applied to the process, P(s). Disturbances may occur at several places in the feed-
back loop. The ones that are considered here are a load disturbance, d, affecting the
process input, and noise, n, affecting the measurement value. The influence of the
measurement noise can be decreased by including a suitable low-pass filter F(s) in
the loop.

The controller objectives are, as stated earlier, to bring the process to the desired
condition and to keep it there. This could also be stated as being able to handle
changes in setpoint (or reference value), as well as staying at the desired setpoint,
even in the presence of disturbances.Usually in a process control setting, the setpoints
are infrequently changed, and the main focus of process control should therefore be
to decrease the influence of load disturbances [Shinskey, 2002].

The absolute majority of controllers used in process industry are PID controllers
[Desborough andMiller, 2002], and this thesis will therefore focus on that controller
structure. The PID controller will be further described and motivated in Section 2.2.
Over the last few decades more advanced control solutions, such as model predictive
control (MPC), have started to become a standard in several industries and are
routinely offered by many vendors [Craig et al., 2011]. The MPC controllers are
usually used on a higher level, to control economical objectives for the factory.
Some examples on economical motivations for improvements in process control,
from [Craig et al., 2011], are that it can increase the throughput, reduce the fuel
consumption and emission levels, and reduce the quality variability. When MPC is
implemented, its manipulated variables are typically the setpoints of existing PID
controllers [Desborough andMiller, 2002]. Hence the introduction of MPC does not
decrease the importance of PID control. In fact, much of the improvement accredited
toMPC in the process industry actually comes from the improved tuning of the basic
loops [Åström and Hägglund, 2001].
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2.2 PID Control

The PID controller is by far the most common controller type in industry [Desbor-
ough and Miller, 2002]. In an investigation made in the MCC Mizushima plant in
Japan in 2010 it was found that the ratio of applications of PID control, conventional
advanced controller structures like e.g. feedforward control, and modern advanced
control likemodel predictive control (MPC), was 100:10:1 [Kano andOgawa, 2010],
and numbers like 90-97% are commonly used to describe the dominance of PID con-
trollers [Åström and Hägglund, 2001; Ender, 1993; Desborough and Miller, 2002].
In a recent survey of industry impact, all the respondents considered PID control to
have "High multi-industry impact: Substantial benefits in each of several industry
sectors; adoption by many companies in different sectors; standard practice in in-
dustry." fromwhich the authors draw the conclusion that "90 years after its invention
(or discovery), we still have nothing that compares with PID!" [Samad, 2017]. Some
reasons for the large dominance of the PID controller is that it is easy to understand,
with only three parameters to tune, but at the same time complex enough to yield
sufficient control performance for most applications. Another reason is that it is
pre-programmed in every commercial control system, hence not requiring extensive
implementation time [Desborough and Miller, 2002].

The PID controller contains three parts, the proportional (P) part, the integral
(I) part and the derivative (D) part. The control signal is calculated as a combination
of these parts. The proportional part looks at the current error between reference
value and measurement value. The integral part looks at the cumulative error up
until the current time. The derivative part looks at the change of the error, i.e., if the
error is increasing or decreasing and how fast. The PID controller can be expressed
in different formats, depending on how one wants to specify the parameters. In this
thesis the parallel form will be used, in which the control signal is calculated as

u(t) = K ©«e(t) + 1
Ti

t∫
0

e(θ)dθ + Td
de(t)

dt
ª®¬ . (2.1)

Here the proportional gain K , the integral time Ti , and the derivative time Td are the
controller parameters. The corresponding transfer function for this PID controller is

C(s) = K
(
1 +

1
sTi
+ sTd

)
. (2.2)

In order to be practically useful, the PID controller has to be combined with a
low-pass filter. The reason for this is that the derivative part has very high gain for
high frequencies and hence is largely affected bymeasurement noise. Some common
choices of filters are the first-order filter

F(s) = 1
1 + sTf

, (2.3)
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or a second-order filter

F(s) = 1
1 + sTf + (sTf )2/2

, (2.4)

where Tf is the filter time constant. Second-order filters have the benefit of ensuring
that the magnification decreases for higher frequencies, a property referred to as
high frequency roll-off, while first-order filters only keep it bounded. The low-pass
filter F(s) could either be added to the derivative part only, in which case there is
no high frequency roll-off, or to the entire controller. Filter design is an essential
part of the controller design and the two should be performed simultaneously, since
they affect each other. One common way of choosing the filter time constant is to
make it a fraction of the derivative time constant, i.e., Tf = Td/N . More elaborate
procedures for how to choose Tf are presented in e.g. [Segovia et al., 2014; Soltesz
et al., 2016b].

There are more parameters that are needed for a complete PID controller imple-
mentation. For instance the integral part needs to have some anti-windup scheme
containing parameters, and the proportional part usually includes setpoint weighting
with a parameter that should be set. These parameters will, however, not be con-
sidered in this thesis. Neither will implementation issues concerning for instance
discretization, and how to switch between automatic and manual mode in a smooth
way. Further information about these parameters and issues can be found in for
example [Åström and Hägglund, 2006].

2.3 Modeling

For control purposes, all physical processes have to be approximated by simple
models. Most controller design methods rely on a dynamic model of the process to
be controlled. Often the overall dynamics of the process is modeled by a transfer
function, as for instance the process model P(s) in Figure 2.1. This section will list
the model descriptions used for controller tuning in this thesis, and comment on
some important aspects of the models needed for control.

System dimensions
When one input signal is used to control one process variable it is said to be a
single-input single-output (SISO) system. This could for instance be the case when
one pump is used to control the water level of one tank, where the control signal is
the power to the pump and the process variable is the water level. If on the other hand
multiple input signals are used to control multiple interacting process variables, the
system is said to be multivariable or multi-input multi-output (MIMO). Instead of
a scalar transfer function, the multivariable process can be described by a transfer
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function matrix relating all inputs with all outputs

©«
y1
...
yn

ª®®¬ =
©«

P11 . . . P1m
...

. . .
...

Pn1 . . . Pnm

ª®®¬
©«

u1
...

um

ª®®¬ , (2.5)

where y1 . . . yn are the outputs, u1 . . . um the inputs, and Pi j the transfer function
between input u j and output yi . Note that the number of outputs and the number of
inputs do not have to be the same, it could be that n , m.

A special case of MIMO is the two-input two-output (TITO) system, shown in
Figure 2.2, where n = m = 2. An example of a TITO system could be if both the level
and the temperature of a water tank should be controlled using two pumps, providing
hot and cold water respectively. If the interaction between the variables is not large,
that is if the P-matrix in (2.5) can be made (almost) diagonal, a MIMO system can
be treated as multiple SISO systems. Which controller that should be connected
to which measurement, i.e., how the pairing should be made, can be selected by
calculating the relative gain array (RGA), described in e.g. [Åström and Hägglund,
2006]. If the interactions, or couplings, are strong, then treating the system as separate
SISO loops is not recommendable, and may even cause instability of the feedback
loops. Some alternatives are then to either make a static or dynamic decoupling of
the systems, or to use a multivariable controller that calculates all control signals
based on all measured process values. Decoupling methods are presented in many
textbooks on control, for instance [Åström and Hägglund, 2006]. In [Boyd et al.,
2016] one option of a multivariable PID controller is proposed, which will be used
later on in this thesis.

C2(s)

C1(s)

P

+ + F2(s)

−1

+ + F1(s)

−1

d

u1
y1

r1
n1

u2 y2r2
n2

Figure 2.2 Schematics of a TITO system controlled by two separate controllers.
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Model orders
The process models, or elements of the process transfer function matrix, that will be
used in this thesis are integrating, first-order or second-order models with time delay.
Even though the physical processes may have more complex or non-linear dynamics,
many of them can be adequately described by one of these simple models, at least
in a region close to a desired working point. The phase loss from the higher-order
dynamics is approximated by an increase in the time delay of the model.

The integrating model with time delay (ITD) that will be used in the thesis is
defined as

P(s) = kv
s

e−sL, (2.6)

where kv is the integrator gain, and L the time delay of the process. For first-order
models with time delay (FOTD) the parametrization

P(s) = Kp

1 + sT
e−sL, (2.7)

where Kp is the static gain and T the time constant of the process, will be used in
some papers, and the alternative formulation

P(s) = b
s + a

e−sL, (2.8)

where b = Kp/T and a = 1/T , in others. The second order models used are the
integrating plus first-order time-delayed (IFOTD) model

P(s) = kv
s(1 + sT) e

−sL, (2.9)

and the second-order time-delayed (SOTD) model

P(s) = Kp

(1 + sT1)(1 + sT2) e
−sL (2.10)

or alternatively on the form

P(s) = b
s2 + a1s + a2

e−sL . (2.11)

The parametrizations in (2.7) and (2.10) have the benefit of immediately showing
the static gain and time constants of the process, but they cannot be used to describe
integrating processes. Hence the need of the separate ITD and IFOTD models. The
parametrizations in (2.8) and (2.11) include the integrating models, but can on the
other hand not be used to describe pure time-delays. These parametrizations are
more convenient to use for optimization purposes, but lack the immediate display of
static gain and time constants.
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Normalized Time Delay
The normalized time delay is a measure of the relative importance of the time delay,
L, in comparison to the dynamics of the process, represented by a time constant T .
It is defined as

τ =
L

L + T
, 0 ≤ τ ≤ 1. (2.12)

The concept of normalized time delay can be generalized to processes of higher
order dynamics by considering the apparent time constant and apparent time delay.
These are obtained from an FOTD approximation of the process, obtained from step
response analysis.

Processes with a large value of τ, that is τ ≈ 1, are said to be delay-dominated
since the time delay is much larger than the time constant. Processes with a small
value of τ are said to be lag-dominated and are more influenced by their dynamics
due to the comparatively large time constant T . Processes with intermediate values
of τ are said to be balanced.

The classification of processes into lag-dominated, balanced or delay-dominated
is useful when it comes to the tuning of PID controllers. It was shown in [Åström
and Hägglund, 2006] that delay-dominated systems (large τ) do not benefit much
from derivative action, while lag-dominated processes can gain a lot in performance
by using the derivative part. It was also shown that while an FOTD model is usually
sufficient to describe delay-dominated systems, lag-dominated systems can be much
more appropriately described by increasing the model order. The selection of model
orders and controller parameters are major ingredients in the design of an autotuner,
and the knowledge of the normalized time delay is therefore highly beneficial.

The idea to use the information from the τ-value in a relay autotuning procedure
is not new. In [Luyben, 2001] a so called curvature factor and its relation to the ratio
L/T was calculated and used to select tuning method, and to find an FOTD model
from the relay experiment. Paper I proposes a simpler method to find and use this
information. There are also discussions on using the τ-value for model selection for
the autotuner in Paper III.

2.4 PID Tuning

Tuning the PID controller consists of selecting the parameter values K , Ti and Td

in (2.2). It could be done manually by modifying the parameter values to see if
certain requirements are satisfied or not. There are several basic rules of thumb one
can apply, for example, if the response to setpoint changes is too slow you may
need to increase the proportional part K , if the attenuation of load disturbances is
too slow you need to decrease the integral time Ti etc. More intuition about how
the parameters should be changed to achieve the wanted behavior is given in any
classic book on PID control, like for instance [Åström and Hägglund, 2006]. In
order to reduce the amount of manual tuning and better utilize the knowledge of PID
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tuning, a vast number of different tuning rules have been developed during the years.
This section will present some of them, and also give some examples of common
requirements for the control loop.

Requirements
Typical requirements on the control loop are related to load disturbance attenuation,
and robustness to process variations and measurement noise. A measure of load
disturbance attenuation is the integrated absolute error, IAE-value, defined as

IAE =
∞∫

0

|e(t)|dt, (2.13)

where e(t) is the error due to a unit step change, at t = 0, in the load disturbance d,
entering at the process input as in Figure 2.1.

Robustness to process variations can be described by the sensitivity function

S(s) = 1
1 + P(s)C(s), (2.14)

and complementary sensitivity function

T(s) = P(s)C(s)
1 + P(s)C(s) . (2.15)

Restrictions on the maximum values of these sensitivities,

MS = max
ω
|S(iω)|,

MT = max
ω
|T(iω)|, (2.16)

are common to ensure robustness. In this thesis the combined maximum value,

MST = max(MS, MT ), (2.17)

will be used as a robustness measure.
In addition to the requirements on IAE and MST , many other performance

requirements could be added. For example the controlled system should be able to
follow setpoint changes in a satisfactory way. This could be measured by the rise
time, settling time, overshoot and steady-state error. There are also alternatives to
IAE, like for example the integral error, IE, or the integral squared error, ISE. The
integral error,

IE =
∞∫

0

e(t)dt, (2.18)
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is used for the optimization-based controller tunings in [Hast et al., 2013] and [Boyd
et al., 2016], that are used in Paper IV and Paper VI. Minimizing IAE is usually
preferred to minimizing IE, since IE may be small even when the load response
is highly oscillatory. The IE is, however, more computationally tractable from an
optimization point of view, since minimizing IE is equivalent to maximizing the
integral gain of the controller [Åström and Hägglund, 2006]. In [Hast et al., 2013]
the authors discuss this issue and state that if the minimization of IE is combined
with requirements on robustness, it usually gives controllers with good properties.
Apart from the tuning strategies in Paper IV and Paper VI, which are using IE, the
performance and robustness measures in this thesis will be restricted to IAE and
MST .

Tuning Methods
There are numerous methods for tuning of PID controllers, ranging from the simple
classic rules proposed in [Ziegler and Nichols, 1942], to advanced solutions based
on optimization. In [O’Dwyer, 2009] about 1700 different PID tuning rules are listed
based on different model structures and performance requirements. It is common to
compare new tuning methods for both PID controllers and other control structures
to the Ziegler-Nichols rules. That is, however, not always a fair comparison, since
they are known to perform poorly in many situations and many better PID tuning
algorithms exist. According to [Åström and Hägglund, 2001] it is very easy to
demonstrate that any controller with reasonable tuning will outperform a PID with
Ziegler-Nichols tuning for most processes.

Some existing tuning rules based on an FOTD model of the process are λ-
tuning [Dahlin, 1968; Sell, 1995], the SIMC [Skogestad, 2003; Skogestad, 2006] and
AMIGO [Åström and Hägglund, 2006]. Different tuning rules are derived to satisfy
different performance requirements, or suit different process types. The choice of
tuning methods has not been the focus of this thesis, but since the controller tuning
step is required for a complete autotuner, a selection of methods are provided. The
selected methods are similar to each other and applicable to the models at hand.

In Paper I and Paper II the AMIGO tuning rules from [Åström and Hägglund,
2006], and the optimization-based tuning described in [Garpinger and Hägglund,
2008], are the two methods used. The AMIGO rules are based on an approximation
of the optimization method MIGO, also described in [Åström and Hägglund, 2006],
that minimizes the integral error (IE) with restrictions on the maximum sensitivities
MS and MT . The AMIGO rules were derived from the test batch from [Åström and
Hägglund, 2006], which is listed in Appendix B of Paper II. The AMIGO method
provides tuning rules for PI controllers based on FOTD and ITD models, as well
as PID controllers based on FOTD, ITD, SOTD and IFOTD models. The method
from [Garpinger and Hägglund, 2008] minimizes IAE with constraints on MST . In
Paper IV the tuning method described in [Hast et al., 2013], using a convex-concave
method to minimize IE with constraints on MS and MT , is used. For the TITO-
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autotuner proposed in Paper VI, a multivariable extension of the [Hast et al., 2013]
method, described in [Boyd et al., 2016], is used. However, since all the proposed
autotuners in this thesis provide FOTD or SOTD models, the use of other tuning
methods is straightforward.

2.5 Automatic Tuning

Despite the low complexity of the PID controller and the many available tuning
methods, it is still common that control loops in the process industry are not working
satisfactory. Reports are stating that more than 30 % of the process controllers
installed operate in manual mode [Ender, 1993], and in the study presented in
[Desborough and Miller, 2002] the numbers are that 36 % of the controllers are
operated in open loop (manual), 32 % are performing poor or fair, and 32 % perform
acceptable or excellent. In the more recent study in [Kano and Ogawa, 2010], a
focused project on improving the performance of PID control systems resulted in
an increase to 90 % of the PID controllers in the participating factories operating
in automatic mode. The study showed that there is a great interest in the control
performance activity from the chemical and petroleum refining enterprises in Japan,
which the authors take as an indication that the process control section had not
realized that the operation section was dissatisfied with the control performance
[Kano and Ogawa, 2010]. Hence, the need of improving the PID controller tuning
in industry is still highly relevant.

In an oil refinery, chemical plant, paper mill, or another continuous process in-
dustry facility, there are typically between five hundred and five thousand regulatory
controllers [Desborough and Miller, 2002]. Tuning all these by hand would require
a lot of man-hours and a lot of knowledge. Only the modeling part typically has
an engineering cost of $250-$1000 per SISO loop [Desborough and Miller, 2002].
Being able to find a decent controller tuning in an automated way is therefore highly
beneficial, and autotuning of PID controllers is listed as one of thirty examples on
"Success stories for control" in [Samad and Annaswamy, 2014]. Due to the impor-
tance of the problem, a very large variety of PID autotuners have been developed
and are currently available on the market [Leva et al., 2002].

Common for what we define as autotuners is that they go through the different
steps in Figure 2.3. First they perform some kind of experiment to retrieve process
data. The retrieved process data is used to create a description of the process, a
model, that in the next step can be used to find appropriate controller parameters.
The last step depicted in Figure 2.3, the evaluation step, is usually not performed by
the autotuner but rather by the user who has to make the decision if the obtained
controller performance is sufficient or if any step has to be redone. The evaluation
step is important since no autotuner will ever be perfect. As was stated in [Leva et al.,
2002] "[...] it must be made clear that a sufficiently skilled human with sufficient
process knowledge, data and time available can outperform any autotuner in any
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Experiment Model Controller Evaluation

Figure 2.3 Steps to be designed and performed in an automatic tuning procedure.
The dashed lines show the steps that involve the user. Figure from Paper II.

situation.". The aim of an autotuner is to give decent controller performance for a
wide range of processes, and in that way significantly decrease the amount of time
needed for manual tuning. It is important that an autotuner is easy to use, also for
users not that familiar with control theory. It is also important that the autotuner
is widely applicable, removing the need of switching between different autotuning
tools depending on the type of process to be controlled. Or as it was stated in [Craig
et al., 2011], "Industry could live with 95% optimality but not with five different
optimization tools in one plant.".

Alternative procedures
The autotuners in this thesis have experiment designs based on asymmetric relay
feedback, a methodology that will be described and motivated further in Section 2.6.
From the experiment data one of the low-order transfer function models listed in
Section 2.3 will be estimated, either by simple formulas or by optimization methods
depending on which autotuner version that is used. The controller tuning methods
used to find controller parameters from the estimated models also depend on the
autotuner version. These methods and choices will be explained in Chapter 3.

Of course it exists other approaches to the experiments, modeling and controller
design. Some alternative strategies to do the experiment and modeling part, or the
system identification as it is usually referred to, will be briefly described in this
section. All system identification methods start with the design of the input signal to
the process. Experiments could be performed either in open loop or in closed loop.
The relay feedback is an example of closed-loop identification. Some examples
of common input signals for open-loop identification are Filtered Gaussian White
Noise, Pseudo-Random Binary Signals (PRBS), or Chirp Signals. Details about
these signal types can be found in e.g., [Ljung, 1999]. The input signal should
excite the process in the frequency range where good model accuracy is required.
The frequency range will depend on the use of the model. For PID control the
frequencies where the process has a phase lag of 90◦ − 180◦ are of particular
interest. When the experimental data has been obtained, it needs to be analyzed to
find the desired model. A common way is to use some parameter estimation method
to obtain process models, and then apply various testing methods like estimation
error, Akaike’s Information Criterion [Akaike, 1974], parameter variances, etc., to
determine a proper model structure.
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Another common and simple open-loop identification method is to look at a
step response. By identifying the steepest slope of the step response, as well as its
rise time, stationary value and apparent time delay, the first-order models given in
Section 2.3 can be estimated. Some difficulties with step-response identification are
to decide the amplitude of the input step, and to determine when the process has
reached its steady state. It can also be difficult to determine the wanted quantities
and slopes from the experiment data accurately.

All the mentioned signal types for open-loop identification have the drawback
that process information is needed, in order to design the input signals to give the
desired excitation. Knowledge about time scales, frequency ranges, and/or ampli-
tudes is required. This is, however, not a problem for the relay feedback experiment
since it will provide excitation in the interesting frequency range for PID control
automatically. The reason for this is that the relay feedback causes the process to
oscillate with the critical frequency ωc , that is, the frequency where the phase lag of
the process is 180◦. More details about the relay feedback experiment will be given
in Section 2.6.

The selected approaches for the autotuners in this thesis follow the lines of tradi-
tional system identification, but are guided by the fact that we want models suitable
for design of PID controllers. Due to the low complexity of the PID controller,
it is reasonable to restrict the model selections to the low-order model structures
described in Section 2.3. Two important aspects of the system identification process
are discussed in further detail in the remaining parts of this section. The first is
whether the excitation of the data is good enough to estimate the desired model. The
second is how to decide if the obtained model is sufficiently good.

Excitation of input data
The excitation of the input data is important. The excitation needs to be in the right
frequency range, and it also needs to be exciting enough to permit estimation of the
desired number of model parameters. A signal is persistently exciting of order n if a
model with n parameters can be reliably determined from the data. To find out how
many parameters that can be estimated, the singular values of the input covariance
matrix are considered. The number of singular values above a certain threshold gives
the number of parameters that can be estimated. For more details, see [Ljung, 1999].
Some examples are that white noise is persistently exciting of any order, a step input
is persistently exciting of order 1, a sinusoid input is persistently exciting of order 2,
and a PRBS input is persistently exciting of order M , where M is the period of the
PRBS.

For a symmetric relay experiment the excitation is considered close to a sinu-
soidal, which gives that approximately two parameters can be estimated. For the
asymmetric relay the excitation can be interpreted as two different sinusoids plus a
step, which would give that approximately five parameters could be estimated from
the experiment data. An example of the frequency content for a symmetric and an
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Figure 2.4 Frequency spectra for two relay experiments on the process
P(s) = e−sL/(s + 1), which has a critical frequencyωc ≈ 2. The notationU is used for
the Fourier transform of u. The blue curve shows the spectrum for a symmetric relay
experiment. The red curve shows the spectrum for an asymmetric relay experiment,
where one of the relay amplitudes were five times the size of the other.

asymmetric relay is shown in Figure 2.4. The process simulated in this figure is

P(s) = 1
s + 1

e−s (2.19)

which has the critical frequency ωc ≈ 2 rad/s. The figure shows that both the relays
have most of their frequency content around ωc . As was mentioned before, this is
within the interesting frequency interval for PID control. However, the asymmetric
relay has a more spread-out frequency content, hence covering more of the interval.

Model evaluation
To evaluate whether the obtained model describes the real process well or not is a
difficult issue. A number of different measures can be used to compare the models.
One common way is to compare the step response of the model with the one of the
real process. This is simple, but can also be misleading since there are processes
with very similar open-loop step responses that differ significantly when the loop is
closed and vice versa, see e.g., [Åström and Murray, 2008]. The optimization-based
autotuners in this thesis, estimate their models by minimizing the error between the
measured process output and the output from the model fed with the same input
data. This comparison is, as well as the step response, made in open-loop. Other
common ways to evaluate the model in open loop is to look at the Nyquist and/or
Bode diagrams, however, those evaluations require the diagrams of the true process
to compare with.

One way to compare two models P1 and P2 in closed loop, is given by the
Vinnicombemetric or ν-gapmetric [Vinnicombe, 2001]. The ν-gap provides an upper
bound on how much a specific stability margin would be decreased if a controller
designed for P1 is applied on process P2 [Vinnicombe, 2001]. This property makes
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Figure 2.5 The setup for the relay feedback experiment.When the experiment starts,
the PID controller is disconnected, and instead the process output y is controlled by
a relay function. When the experiment is done and the PID controller parameters are
tuned, the system switches back to PID control.

the Vinnicombe metric a good measure for an autotuner, since what is interesting
is not the estimated model itself, but rather that the controller obtained from the
model gives satisfactorily results when controlling the true process. However, as for
the Bode and Nyquist evaluations, the ν-gap metric requires that you know the true
process model. Since you do not have access to that when you use the autotuner, this
measure would mainly be useful for evaluation in an autotuner-development phase
using well-defined simulations.

2.6 The Relay Autotuner

The relay autotuner was first described in [Åström and Hägglund, 1984]. The idea
is to find the critical gain and critical period used by [Ziegler and Nichols, 1942]
in an automated and controlled way. By introducing a relay function in the control
loop, as shown in Figure 2.5, most processes will start to oscillate. From these
oscillations the critical frequency ωc and the critical gain kc can be retrieved and
used for controller tuning. A typical output from a relay experiment is shown in
Figure 2.6. The main advantage with this method is that it is easy to use, and
that no a priori information about the process is needed; the relay feedback finds
the interesting frequency range automatically. In the experiment in [Åström and
Hägglund, 1984] the zero-crossings and the peak amplitudes of the process output
were measured. The describing function approximation (DFA) was then used to find
kc and ωc . For an explanation of describing functions, see e.g. [Khalil, 2000]. The
proposed controller tuning was based on a combination of the specified amplitude
and phase margin. A relay with hysteresis was introduced to deal with measurement
noise. With hysteresis the obtained point is no longer the critical point, but instead
the point where the Nyquist curve intersects the negative inverse of the describing
function for the relay with hysteresis. However, for a small hysteresis this point is
close to the critical point.
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−d2

0

d1

Figure 2.6 Output from a typical (asymmetric) relay feedback experiment. The
relay function (gray) switches between d1 and −d2 every time the process output
(red) leaves the hysteresis band (dashed black). The working point (u0, y0), around
which the oscillations occur, has been normalized and denoted by 0 in this figure.

The relay autotuner has since its introduction been widely used in industry.
Variations on the relay method have become a de facto standard for commercial
autotuning controllers, though vendors rarely mention which technology they use
[VanDoren, 2006]. Apart from that no prior information about the process is needed,
some additional benefits of the relay autotuner have ensured its successful use in
process industry. One advantage is the rather short experiment time. The fact that
the relay experiment is performed in closed loop and does not make the process
drift away from its setpoint is another advantage. This makes it a good identification
method for nonlinear processes, since it stays in the linear region for which the
transfer function is wanted, something emphasized in [Luyben, 1987], where the
relay experiment was used as a part in finding low-order transfer function models
for nonlinear distillation columns.

During the years since the original relay autotuner was proposed, many modifi-
cations and improvements of it have been suggested in literature. In [Leva, 1993], a
time delay was added to adjust the obtained critical point. In [Yu, 2006], the relay
function was saturated to produce more sine-like output curves and in that way
improve the estimation of ωc and kc . In [De Keyser et al., 2012], restrictions on MS

were used instead of phase or amplitude margins providingmore reliable controllers.
The most common modification is, however, to find one of the low-order models
described in Section 2.3 from the experiment. This is not done in the original auto-
tuner since the single frequency point, given by ωc and kc , only allows estimation of
two parameters. A thorough review of the advances in model estimation from relay
feedback experiments has been presented in [Liu et al., 2013]. In the review they
separate the relay experiments according to two different aspects. The first is whether
a symmetric or asymmetric relay function is used. The other aspect is whether the
modeling is based on the describing function approximation (DFA), a curve-fitting
approach, or some frequency response estimation. The original autotuner in [Åström
and Hägglund, 1984] falls into the category of a symmetric relay autotuner that uses
DFA. The autotuners presented in this thesis would instead fall into the category of
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curve-fitting based on an asymmetric relay feedback experiment.
The use of an asymmetric relay function has the benefit of better excitation of

the process, which allows estimation of the static gain from the relay experiment.
The asymmetric relay test was first presented in [Shen et al., 1996], where the
asymmetry was introduced in the switching conditions of the relay. In most later
versions of asymmetric relay functions, including the one used in this thesis, the
asymmetry is instead introduced in the relay amplitudes, as is seen in Figure 2.6
where d1 , d2. For a complete definition of the relay function used in this thesis, see
Paper I. The possibility to estimate the static gain from the relay experiment provides
a way to get an FOTD model from the experiment, instead of a single point on the
Nyquist curve, which was obtained in the classic version. Some attempts of finding
an FOTD model from the symmetric relay experiment was done in [Luyben, 1987],
where it was assumed that the static gain was either known or estimated through a
separate experiment, and in [Li et al., 1991] where an extra relay experiment, with
different parameters, was made to remove the need of knowing the static gain a
priori. However, the extra relay experiment doubles the experiment time which is
an obvious drawback. Since the asymmetric relay gives the static gain and the two
other FOTD parameters from a single relay experiment, that is preferred.

The asymmetric relay autotuner in [Shen et al., 1996] used DFA, which is not
recommendable when the relay is asymmetric. The reason for this is that the asym-
metry deteriorates the accuracy of the obtained critical point, since the oscillation is
no longer close to a sine wave. The choice of asymmetry level is therefore a trade-off
between getting a good value of the critical point and getting a good estimate of
the static gain. To avoid this trade-off, either the curve-fitting approach, or some
improved frequency response estimation, could be used instead of the DFA. Two
examples of improved frequency response estimation are presented in [Friman and
Waller, 1997] and [Wang et al., 1997a]. In [Friman andWaller, 1997] multiple relays
in parallel were used to find more than one frequency point on the Nyquist curve,
and then fit a model to the obtained points. In [Wang et al., 1997a] the approach is
instead to use a single relay, and then multiply the input and output with a decay
exponential and Fourier transform them to get G(iωi) for some different frequencies
ωi .

The approach for the autotuner presented in Paper I and II in this thesis is
to use curve-fitting to find the model parameters from the experiment. The main
reason is that it permits modeling based on clearly visible characteristic features
of the oscillation. Some curve-fitting features that can be used are the time period
of the oscillation, the amplitudes of the oscillation, the times when the maximum
amplitudes occur, maximum slope of the output data, and the time from the relay
switch to the turning of the output signal. If noise-free simulations are performed,
all of these measures are easy to obtain. But if the autotuner is used in an industrial
setting, measures that are easily and robustly determined even in the presence of
noise are required. Because of that, the only data used from the relay experiment in
those papers, are the integral of the output signal during one period of oscillation,
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and the half-periods of the oscillation given by the relay switching times. Some
alternative ways of finding low-order models from curve-fitting of asymmetric relay
data are given in [Wang et al., 1997b], [Kaya and Atherton, 2001], [Lin et al., 2004]
and [Liu andGao, 2008]. All of thesemethods use the half-periods and the integrated
output signal as well. In addition to these measures, [Wang et al., 1997b] and [Lin
et al., 2004] have expressions for the output amplitudes for an FOTD model under
asymmetric relay feedback. In [Liu and Gao, 2008] they also measure the time delay
as the time between the relay switch and the amplitude peak. This measurement
is, however, quite sensitive to noise and in the results they used an average of 10
limit-cycle oscillation periods to obtain their values when noise was added. This
gives a rather long experiment time, which is not useful in practice.

Multivariable Relay Autotuning
Given the benefits of the relay autotuner it is tempting to extend it to handle inter-
acting systems. The aim of a multivariable relay autotuner could either be to tune a
number of SISO PID controllers by using a suitable pairing or decoupling strategy,
or to tune a multivariable PID controller as in e.g. [Boyd et al., 2016]. There has
been some interest in the extension of relay autotuning to multivariable systems,
even if the literature on the subject is much more limited than for the SISO case.
One study comparing different multivariable relay autotuning methods available at
the time was presented in [Menani and Koivo, 2001], where benefits and drawbacks
of the methods were listed together with the performance results.

One thing that differs when extending the relay feedback tomultivariable systems
is the concept of the critical point. In the SISO relay autotuner the principle is that
the critical gain and frequency are found from the oscillations. When a multivariable
system is considered there is no longer one critical point, there are multiple points, or
rather a critical surface [Campestrini et al., 2006]. Which critical point that is found
will depend on the relay settings, and the obtained point will influence the achieved
tuning. This issue complicates the tuning procedure for multivariable systems.

Alternative methods to relay feedback exist also for autotuning of TITO systems.
One recent option is described in [Pereira et al., 2017], where they use closed-loop
setpoint step responses to estimate the process parameters. The method requires at
least two setpoint steps and has to ensure that steady-state is reached in between. It
also requires PID controllers at start, which is problematic if it is used for start-up of
a process when no such information is available. The nominal PID controllers only
need to be stabilizing and will not affect the end-result, but they will influence the
duration of the overall experiment. Since this thesis focuses on relay experiments,
other options will not be described further.

As was stated in [Wang et al., 1997c], there are three main alternatives when it
comes to relay autotuning of multivariable systems. Either you could do an indepen-
dent tuning of each loop, a sequential tuning or use decentralized relay feedback. The
multivariable autotuner presented in this thesis is based on a decentralized feedback
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experiment, but each of these procedures will be described further in the following
corresponding subsections.

Independent tuning The first option that comes to mind is probably to tune each
loop independently while leaving the others in manual. This gives the possibility to
treat the MIMO system as a number of SISO systems and use the well-established
SISOmethods on each loop. However, that strategy will not take any cross-couplings
into account, whichmight give really poor controller performances if the interactions
in the system are strong. A commonly referred version of independent tuning is to
do relay experiments on each loop, where the pairing between inputs and outputs are
decided on beforehand, and then use the biggest log modulus tuning (BLT) method
proposed by [Luyben, 1986], to tune the decentralized controllers. The BLT method
introduces an appropriate detuning factor to the controller to keep the system stable
in spite of interactions.

Another way of using independent tuning is made in [Menani and Koivo, 2003],
where not only the diagonal elements, but also the interactions, are obtained from
independent relay experiments. This allows them to tune amultivariable PI controller
for the system. The interactions are obtained from measurements of the amplitudes
of all outputs at each single relay experiment. This gives information about all n× n
elements from n experiments. It is, however, required that all loops are made to
oscillate with the same frequency in order for the method to work, therefore the
procedure is divided into four stages where the first two are conducted to find the
appropriate design frequency, and the last two are used to get the wanted process
data and controller design. The method hence requires numerous experiments.

One could of course also do independent relay tests on every input-output com-
bination, requiring n × m separate experiments for a system with n outputs and m
inputs, to get information about all cross-couplings. Normally, when referring to
independent tuning, the assumed controller structure consists of decentralized SISO
PID controllers without any decoupling strategy. In that case the cross-coupling in-
formation would not be of any use, and only requiring additional experiments. If one
would use a MIMO PID, or some decoupling strategy based on the cross-coupling
information it could, however, be a solution to the interaction.

Sequential tuning The second option is to do a sequential tuning, where the first
loop is tunedwhile the other loops are inmanual, and then the next controller is tuned
with the first loop closed and the rest in manual, and so on until all controllers are
tuned. Thismethodwas first proposed by [Loh et al., 1993]. The sequential procedure
gives controllers that are tuned with the information up until that loop available, but
no information about the coming loops. Therefore the procedure is normally iterated
a couple of times until the controller settings converge. According to e.g. [Shen
and Yu, 1994; Yu, 2006], it typically takes three to four relay experiments before
a 2 × 2 system, with a known input-output pairing, converges. A sequential tuning
method that does not require multiple iterations was proposed in [Koo et al., 2004].
There FOTD models for all elements in the transfer function matrix are estimated
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from the n sequential experiments for an n × n system. Since it provides all process
information, it can be used to change controller tuning or incorrect pairings without
requiring more field-experiments, which is a clear benefit. The question of whether
or not the entire transfer function matrix should be estimated is addressed in for
instance [Shen and Yu, 1994], where it was argued that one of the benefits of the
sequential design is that it only identifies the transfer functions really needed for (the
decentralized) controller design.

A recent sequential tuning method was introduced in [Ionescu et al., 2016],
where relay experiments with and without an extra delay are iterated to find PID
controllers from moving the critical point to ensure a desired MS as in [De Keyser
et al., 2012].

The experiment data from sequential relay feedback could also be used for other
identification methods, not relying on critical points. In [Wang and Zhang, 2001],
the sequential relay feedback was used as one possible way of providing sufficient
excitation to anFFTmethod estimating the parameters of the transfer functionmatrix.
In [Toh and Rangaiah, 2002], extra short sequential relay tests were performed to
estimate FOTD or SOTDmodels using curve-fitting and then tune the corresponding
PID controllers from these models. The curve-fitting was made by minimizing the
sum of squares of the error between the actual and calculated closed-loop responses.

Decentralized relay feedback The third alternative is to tune all control loops
simultaneously. This means that all loops are closed with relay functions at the same
time. This is a completely closed-loop experiment, meaning that all cross-couplings
will influence the results. This strategy is the one selected for the multivariable
(TITO) autotuner in this thesis. Decentralized relay feedback was first proposed in
[Palmor et al., 1993], where a desired critical point as well as the steady-state gains
were found from n decentralized relay experiments and then Ziegler-Nichols rules
were used to find controller parameters for a decentralized PID controller.

The first to use the decentralized relay experiment to tune a full multivariable
controller were [Wang et al., 1997c]. They obtained the frequency response P(iω) at
two points,ω = {0, ωc}, from n decentralized experiments with slight modifications
of the relay amplitudes for the different experiments. In [Chidambaram and Sathe,
2014] the method of [Wang et al., 1997c] was extended to find FOTD and SOTD
models from the experiments. A modified version of the decentralized relay exper-
iment was used in [Wang et al., 2003]. There only the first oscillation was used of
each of the n experiments, and instead of using critical point information, the exper-
iment data was used to find the transfer function matrix from Fourier analysis. In a
recent paper by [Nikita and Chidambaram, 2017], a decentralized relay experiment
was used to find the ultimate values. The ultimate gain value was then modified by
higher order harmonic terms if the wave-form of the process output was close to
triangular.

One drawback with the decentralized relay feedback is that it has to consider
the multivariable system and can not rely on SISO methods as the other methods.
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Apart from the existence of multiple critical points discussed earlier, analysis of
limit cycles has to be extended to multivariable systems. In [Palmor et al., 1995]
methods for determining the periods and stability of limit cycles in decentralized
relay systems were presented. It was assumed that limit cycles exist, are symmetric,
and that all loops oscillate with the same frequency. In [Lin et al., 2003] alternative
conditions were given that are also valid for asymmetric limit cycles, while the rest
of the assumptions were still the same.

The assumption that all loops are oscillating with the same frequency is made
in almost all existing papers on decentralized relay feedback. If the interactions in
the system are large enough this will be true, and attempts to find conditions for this
have been made in [Loh and Vasnani, 1994]. However, to my knowledge there are no
simple universal conditions available. This issue and its implications are discussed
further in Paper V.
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3
Three Versions of the
Autotuner

3.1 Introduction

This thesis proposes three different novel autotuners. The first autotuner is called
the τ-tuner, since the normalized time delay τ plays a crucial role in its procedure.
The second one is called the NOMAD autotuner, where NOMAD is short for
Noise-robust, Optimization-based Modeling And Design. The third one is called
multi-NOMAD, since it is a multivariable extension of the NOMAD autotuner.
Those names were not assigned to the procedures in the original papers, but were
introduced to simplify the comparisons in Paper IV and in this thesis. In this chapter
the three autotuners will be described, and their differences and similarities will
be commented upon. Drawbacks and benefits of the different versions will also be
discussed.

3.2 The τ-tuner

The τ-tuner is described thoroughly in Paper I–II. It is an autotuner for SISO systems
that uses asymmetric relay feedback to create limit cycle oscillations. It uses the half-
periods, i.e., the time between two consecutive relay switches, and the integral of
the process output to calculate an ITD model or an FOTD model from analytic
equations. The measurements of these features are robust to noise, which makes the
τ-tuner more practically applicable than many other autotuners in literature that can
find more exact models, but require numerous oscillations in order to ensure good
quality of their measurements. Some examples of other relay autotuners were given
in Section 2.6.

The τ-tuner finds the normalized time delay from the simple relationship,

τ(ρ, γ) = γ − ρ
(γ − 1)(0.35ρ + 0.65) (3.1)
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Figure 3.1 Decision scheme based on the estimated normalized time delay. Figure
from Paper I.

between the half-period ratio ρ and the asymmetry level γ of the relay, derived in
Paper I. The estimated normalized time delay, τ, is used tomakemodel and controller
selections, and is also included in the derived model equations. The decision scheme
based on τ is shown in Figure 3.1. The version referred to as the τ-tuner in this thesis
is the simple version in this figure where only FOTD or ITD models are calculated
and used for controller tuning. In the papers the τ-tuner uses the AMIGO tuning
method [Åström and Hägglund, 2006]. The AMIGO was chosen since it provides
simple tuning rules for the model types that were estimated. Any other method with
those features could also have been chosen, and since tuning rules are specialized
for a certain modeling method [Garpinger et al., 2014], an option could be to derive
a specific tuning rule to combine with these experiments. Since PID controllers with
a derivative part need to be filtered in order to be practically useful, a filter design
was added to the τ-tuner in Paper IV.

The τ-tuner has the same benefits as the classic relay autotuner from [Åström and
Hägglund, 1984] in that it is easy to implement, understand and use. The τ-tuner has
been implemented in Matlab/Simulink, the in-house software at Schneider Electric,
in the sequential programming language JGrafchart [Theorin and Berner, 2015],
and in the simulation environment Modelica/Dymola in [Björk and Levenhammar,
2017]. Apart from being evaluated in simulation studies, the τ-tuner was evaluated in
an industrial setting at Schneider Electric Buildings AB in Malmö, Sweden. There it
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was used to find controller parameters for a pressure control loop and a temperature
control loop in an air handling unit. The results from these experiments are shown in
Paper I and Paper II. The τ-tuner was also evaluated for three laboratory processes
with different dynamic characteristics in Paper IV.

The τ-tuner is similar to the classic autotuner in experiment lengths and the
amount of information retrieved from the experiment. However, the asymmetry of
the relay provides the possibility to estimate better models, and hence opens up new
and better possibilities for the controller tuning.

Unfortunately, the τ-tuner also shares some drawbacks with the classic autotuner.
It is crucial that the process is in (or close to) steady-state when the experiment is
started, since any drifting will cause erroneous asymmetry levels. Uncertainties in
asymmetry level will influence the estimation of τ in (3.1) causing problems in the
decision making and model estimations. For the same reason the τ-tuner is sensitive
to disturbances entering during the experiment, and to low resolution in AD/DA
converters. These practical issues are discussed in Paper II.

3.3 The NOMAD Autotuner

The NOMAD autotuner uses a short asymmetric relay feedback test as a convenient
way of getting experiment data with good excitation to use in a model parameter
optimization method. The experiment design and model identification procedure is
an extension of the work presented in [Soltesz et al., 2016a], and is described in
Paper III. A gradient-descent method is used to estimate FOTD and SOTD models
from the data. The model selection is made using the Akaike Information Criterion
[Akaike, 1974]. The selected model is then used by a convex-concave optimization
method, described in [Hast et al., 2013], to obtain PID controller parameters that
minimize the integral error (IE) with constraints on the maximum sensitivities MS

and MT . The controller design, as well as a filter design, was added to the NOMAD
autotuner in Paper IV. In that paper the complete NOMAD autotuner was also
evaluated on three laboratory processes with different dynamic properties, showing
very good performance.

One of the main features of the NOMAD autotuner is that it uses the entire
experiment data set, instead of retrieving a number of specific points or intervals
from the experiment. Since it does not need accurate measurements of period times
or oscillation amplitudes, it does not need to wait for convergence of the limit cycle
oscillations. Hence the experiment can be made much shorter, and is terminated
after only 3 relay switches, i.e., one oscillation period. The short experiment time
is a great advantage compared to other relay autotuners, partly since it increases
the operating availability of the control loop, but mainly since it reduces the risk of
disturbances entering during the experiment, deteriorating the results.

A similar approach is taken in [Viswanathan and Rangaiah, 2000] where an
SOTD model is identified from closed-loop experiments. The procedure in that
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paper also benefits from short asymmetric relay experiments that do not require
steady oscillations. The benefit of using an asymmetric relay is emphasized in their
study, where they try some different asymmetries, or input biases as they call it,
and conclude that symmetric relays (no input bias) was inadequate for identify-
ing an SOTD model. Their studies also showed that while the experiment duration
only had marginal effect on the obtained model parameters and IAE value, the
accuracy generally improved with input bias. Some differences between the proce-
dure in [Viswanathan and Rangaiah, 2000] and the NOMAD autotuner are that in
[Viswanathan and Rangaiah, 2000] they only consider the experiment design and
model identification, while NOMAD has a full autotuner capability. The NOMAD
also handles the situation when the experiment is started in non-steady state by
estimating the initial conditions in addition to the model parameters. This is not
done in [Viswanathan and Rangaiah, 2000], and provides a great benefit compared
to the τ-tuner and the classic relay autotuner in [Åström and Hägglund, 1984], that
are highly dependent on stationary starting conditions.

The NOMAD estimates both an FOTD and an SOTD model and then uses
the Akaike Information Criterion to decide which model structure to use, while
[Viswanathan and Rangaiah, 2000] always finds an SOTD model. Also, the
parametrization of their SOTDmodel restricts them fromfinding integratingmodels.
The procedures use similar cost functions, but different optimization methods for the
model estimation. Both, however, have problemswith localminima. In [Viswanathan
and Rangaiah, 2000] this is handled by first applying a global optimization method
followed by a local more efficient method, while the NOMAD uses a local efficient
method from the start, but initiates it from several random starting points. A better
solution to this issue would be beneficial for both approaches.

3.4 The Multi-NOMAD Autotuner

The multi-NOMAD is an extended version of the NOMAD autotuner, implemented
for TITO systems. Somemodifications were needed to make it suitable for multivari-
able systems. First of all the experiment used has been extended to a decentralized
relay experiment. The selection of this simultaneous approach was mainly motivated
by the possibility of sticking to one single experiment, hence reducing the total ex-
periment duration. A difference between the multi-NOMAD and the decentralized
methods described in e.g. [Wang et al., 1997c; Chidambaram and Sathe, 2014] is
that multi-NOMAD does not assume anything about the level of interaction. The
multi-NOMAD, like the NOMAD, uses the entire data set and does not use any
critical point, which makes it unaffected by the difficulties with selecting which
critical point to use that were described in [Campestrini et al., 2006]. It also allows
for shorter experiments, which do not require steady oscillations. These issues are
discussed in the first paper on the multi-NOMAD, Paper V.

In the second paper, Paper VI, the decentralized relay experiment was modified
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slightly. The reason for this was that it turned out that the static gain of some
processes were not estimated accurately. Usually for relay autotuners the estimation
of the static gain is not crucial, since the required information is the behavior close to
the critical frequency. However, in the tuning method selected, the static gain matrix
plays an important role and hence there was a need for better estimates. Another
option would be to modify the tuning method, but since we wanted to get models
that would be useful independent of tuning method, improving the model accuracy
was considered a better option. To increase the excitation at low frequencies the
relay amplitudes were changed in the middle of the experiment. This step change in
relay output allowed for better static gain estimations. It also made the experiment
duration a little longer, instead of using one oscillation period as in the NOMAD
autotuner, the multi-NOMAD requires 5 relay switches before terminating. Worth
mentioning is also that the experiment is terminatedwhen both loops have completed
5 relay switches, which implies that one loop may have completed more switches at
that time. However, that is still a short experiment, comparable or shorter than the
ones that have to wait for convergence of limit cycles. In Paper VI the preliminary
model identification method from Paper V was exchanged for a version with the
same functionality that the SISO version NOMAD has. The multi-NOMAD was
also equipped with a filter design and a MIMO PID controller optimization-based
tuning method from [Boyd et al., 2016]. The resulting autotuner implementation
was tried on a quadruple tank process to evaluate its applicability in practice with
satisfactory results.

The multi-NOMAD provides FOTD or SOTD models for all elements of the
transfer function matrix. Depending on chosen controller structure and tuning
method this could be considered unnecessary, as it was by [Shen and Yu, 1994]
in their sequential design method. To design a full multivariable controller this in-
formation is usually necessary, while a decentralized (diagonal) PID controller may
not use all of it. If a decoupling scheme is used one may only need static information
of the cross-couplings and not the full dynamics. However, since it is possible to get
all the dynamics from one single experiment, and it is desirable with flexibility in
controller choices, the author considers this to be a benefit of the multi-NOMAD.

In the work and evaluation of the multi-NOMAD it is assumed the input-output
pairing is already at place. However, since all cross-couplings are excited and re-
garded in the estimation, it is not very sensitive to an inaccurate pairing. As long
as the system is oscillating the information can be used. If the experiment does
not induce the wanted oscillations, the pairing should probably be changed and the
experiment redone.

3.5 Why Three Autotuners?

To have one autotuner for MIMO systems and another for SISO systems may not
be that controversial, but why do we have two different SISO versions? As is seen
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Figure 3.2 Performance comparison of load disturbance attenuation between two
industrial autotuners, the τ-tuner and NOMAD. Figure from Paper IV.

in Figure 3.1, already in the work with the τ-tuner the thought appeared of a more
advanced version, giving better models and controllers for those processes that
benefit from it. In addition to the development of the τ-tuner we therefore thought
about what changes we could do to get even better performance. The main objectives
were to get better models and be able to use stronger tuning methods. The NOMAD
autotuner was developedwith this inmind. To evaluate the performance of the simple
τ-tuner and the more advanced NOMAD autotuner, and to compare them both to
industrial standard autotuners, we performed the study in Paper IV. The results from
the study show that the τ-tuner gives reasonable controllers for all processes, but
does not provide the same performance as NOMAD for lag-dominated systems. This
can be expected by looking at the decision scheme in Figure 3.1 and the discussions
about the normalized time delay in Paper I, where it is claimed that lag-dominated
processes may gain a lot in performance by more advanced modeling. For the delay-
dominated process, shown in Figure 3.2, the performance difference is not so large,
and the τ-tuner is outperforming the two industrial autotuners for this process.

While the NOMAD provides better models, better controller tuning and also
provides a shorter and more robust experiment, the τ-tuner has the benefit of being
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Figure 3.3 Schematics of the quadruple tank described in [Johansson, 2000].

easy to implement and understand. Hence the τ-tuner is a good option if the extra
computations required by the NOMAD are not possible to include in the control
system.

The need of a specific autotuner for multivariable systems can be understood
by considering the following example. A quadruple tank, with schematics seen in
Figure 3.3, is used in its non-minimum phase configuration, that is, when most of
the water enters through the upper tanks [Johansson, 2000]. The most appropriate
input-output pairing, which is u1− y2 and u2− y1, was chosen before the experiment,
and each loop was tuned independently by the NOMAD autotuner. The resulting
control performance is shown in Figure 3.4.

As can be seen the results for each individual loop are really good while the other
loop is in manual, but when both loops are run at the same time they counteract each
other, causing large oscillations in the system. If the interactions in the multivariable
system are small you may get decent results also from independent tuning, but if
they are large you can get this type of undesirable behavior.

3.6 Additional Remarks

One of the major issues for process control is to obtain control-relevant process
models at a low cost [Craig et al., 2011]. Depending on the process complexity and
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Figure 3.4 Performance results for the quadruple tank tuned as two separate SISO
loops by the NOMAD autotuner. Note that this system is paired u1 − y2 and u2 − y1.
At t = 200 a step is made in the setpoint for y1 and at t = 300 a step is made in the
setpoint for y2. Load disturbances enter at t = 400 and t = 600. When the loops are
run one by one, with the other controller in manual, the results are fine. When both
loops run simultaneously, the controllers interact with each other, causing unstable
behavior of the system.

how advanced control algorithms that should be used, the proposed autotuners will
not be the solution for all, but they are sufficient for many processes and may be a
step in the right direction for others. Especially the NOMAD autotuner showed very
promising results in the comparative study in Paper IV and will hopefully be made
into an industrial product.

All the proposed autotuners strive to be simple and user-friendly. The user should
not need to make extensive settings before any experiment can be run, and neither
should she or he have to understand in detail how things are done in the autotuner.
It is, however, beneficial if the main principles are easy to grasp so that it does not
feel like the autotuner performs some kind of magic. The user has to be able to trust
the autotuner in making the appropriate decisions.

The selection of controller tuning methods has not been the main focus for
the work in this thesis. Since all the proposed autotuners provide models of the
processes, a change of tuning method is straightforward if desired.

Apart from the use for the autotuner in a process industry setting, there is also a
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3.6 Additional Remarks

need of including autotuning functionality in large simulation environments. When
simulating large systems with many sensors and actuators the focus is often on a
few critical control loops, while a number of auxiliary variables have to be kept at
constant values. The auxiliary signals can be controlled by simple feedback loops
with PID controllers. Use of automatic tuning of the auxiliary loops can simplify
the work significantly. The autotuner can also be beneficial when there are hidden
or complicated dynamics between the input and output of the simulation model.
The autotuner can then find a (simplified) model that can be used for controller
design. The issue of autotuning for simulation environments was targeted in the
Master’s Thesis by [Björk and Levenhammar, 2017], where an implementation of
the τ-tuner was made in the Modelica/Dymola environment. Evaluations were made
on a few thermodynamic processes, which represented the type of systems that could
be encountered in process industry, but also on for instance an airplane model with
unstable dynamics. All these models were non-linear and of higher orders, still the
controllers obtained from the autotuner achieved good performance.
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4
Future Work

The main thing that could be done as future work is to try to get the proposed
autotuners into industrial products. In order to do that, all optimizations should be
implemented in an efficient way. The problem with local minima and initialization
of the model identification method should be solved more satisfactorily. Another
thing is that all parameter choices should be evaluated further. For instance, the
evaluations in Paper IV indicated that the threshold value for when the τ-tuner
classified a process as integrating, i.e., the α in Figure 3.1, was set a bit too high in
Paper I. During implementation and experimental evaluation more practical issues
usually need to be handled. One thing that needs to be regarded is how and when to
stop the tuning phase and change to new controller parameters in a smooth way. Also,
the controller implementations should include anti-windup strategies and setpoint
weighting, and it would be beneficial if the autotuner could provide the parameters
required for these. If the autotuners should be used in production it is also important
to consider their user-friendliness. Suitable interfaces and what information the user
wants to retrieve, are some aspects that need to be developed and evaluated in any
industrial implementation of the autotuner.

For all three autotuner versions additional evaluation of controller designs and
filter designs could be performed. The autotuners could also be evaluated on addi-
tional process types, like for instance unstable systems. Extensive studies on what
type of systems that can be handled satisfactory by the autotuners are always benefi-
cial, even though it will never take away the need of user evaluation of the results. It
would also be interesting to see if the multi-NOMAD can be scaled to larger dimen-
sions, or if the experiment has to be modified further to provide enough excitation
for that.

In the implementation of the τ-tuner in a simulation environment in [Björk and
Levenhammar, 2017], the problem of how to bring the system to its desired working
point before the experiment starts was addressed. In an industrial setting the process
is usually already at its working point, or brought there by manual interaction of the
user, but for the simulation models it was desired to have an automated procedure.
Some attempts on solving this issue was made, but this is a subject that should be
investigated further.
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Paper I

Improved Relay Autotuning using
Normalized Time Delay

Josefin Berner Tore Hägglund Karl Johan Åström

Abstract

The relay autotuner provides a simple way of finding PID controllers of suffi-
cient performance. By using an asymmetric relay function the excitation of the
process is improved. This gives better models, and hence a better tuning, with-
out increasing the time consumption or complexity of the experiment. Some
processes demand more accurate modeling and tuning to obtain controllers of
sufficient performance. These processes can be singled out by their normalized
time delays and be subject to further modeling efforts. The autotuner proposed
in this paper provides a simple way of finding the normalized time delay from
the experiment, and uses it for model and controller selection. The autotuner
has been implemented and evaluated both in a simulation environment and by
industrial experiments.

© AACC. Originally published in Proceedings American Control Conference
(ACC), IEEE, pages 1869-1875, Boston, July 2016. Reprinted with permission.
The article has been reformatted to fit the current layout.
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1. Introduction

An industrial process facility may contain hundreds or thousands of control loops.
The majority of these are using PID controllers. Even though the PID controller is
simple, many of the controllers operating in industry today are performing unsat-
isfactory due to poor tuning of the controller parameters. This can be due to either
lack of time, or lack of knowledge in control theory, among the staff. To have an
automatic method of finding satisfactory controller parameters is therefore highly
desirable. The method should ideally be fast and reliable, and not require an exten-
sive control education for the users. One such method, which has been successful in
industry, is the relay autotuner. The main advantages of the relay autotuner are that it
is simple, fast, and does not require any (or little) prior process knowledge, since the
relay feedback automatically excites the process in the frequency range interesting
for PID control. The short experiment time is essential, not only to reduce the overall
time-consumption, but also to minimize the risk of disturbances entering during the
experiment.

Since the original relay autotuner was presented in the mid-eighties [Åström
and Hägglund, 1984], the increase in computational power as well as new insights
into PID control, has provided the possibility to improve the relay autotuner. The
modification to find a low-order model from the relay experiment was proposed in
[Luyben, 1987], where the static gain was assumed to be known and in [Li et al.,
1991], where an additional relay experiment was performed. The relay autotuner
proposed in this paper uses an asymmetric relay function to increase the excitation
in the experiment. A version of the asymmetric relay function was used in [Shen
et al., 1996], and later on investigated in e.g. [Kaya and Atherton, 2001], [Lin et al.,
2004] and [Berner et al., 2014]. For a more thorough review of the advances in
modeling from relay feedback experiments, see [Liu et al., 2013].

The asymmetric relay function gives better models without increasing the com-
plexity or time consumption of the tuning procedure. A low-order transfer function
model is obtained from the proposed autotuner, while the original autotuner only
yields the gain and phase of one frequency point. Another improvement is that the
proposed autotuner uses a classification measure of the process to make automatic
choices on model and controller selection. For many industrial processes low-order
models are sufficient. To put more time and effort to the modeling of all processes
is therefore unnecessary. The process classification provides information on which
processes may benefit significantly from more advanced modeling. The extra effort
could then be restricted to these processes, if the performance of the control loops
is crucial.
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2 Background

2. Background

2.1 PID Tuning
There are many methods for tuning of PID controllers, ranging from the classic
rules proposed in [Ziegler and Nichols, 1942], to advanced optimization programs.
Examples of existing tuning rules based on a low-order model of the process are
λ-tuning [Sell, 1995], the SIMC [Skogestad, 2003; Skogestad, 2006] and AMIGO
[Åström and Hägglund, 2006]. The different tuning rules all have their benefits and
drawbacks.

The aim of the controlled system is to have good load disturbance attenuation,
while being robust against process variations and measurement noise. In this paper
the performance measure used is the integrated absolute error, or IAE-value, defined
as

IAE =
∫ ∞

0
|e(t)|dt . (1)

Here e(t) is the error from a unit step change in the load. The robustness criterion
used is

MST = max(MS, MT ) (2)
where MS and MT are the maximum sensitivities, i.e., the largest absolute values, of
the sensitivity function S and the complementary sensitivity function T respectively.

In this work the AMIGOmethod and the optimization based tuning described in
[Garpinger and Hägglund, 2008], where IAE is minimized with constraints on MST ,
are the two methods used. Modification to another tuning method is straightforward.

2.2 Models
Many existing tuning rules for PID controllers rely on a model of the process.
Even though processes can be of high complexity, many of them can be controlled
sufficiently well by a PID controller based on a low-order approximation of the
process dynamics. One of the most common low-order model approximations is a
first order system with time delay, or shortly an FOTD model, defined as

P(s) = Kp

1 + sT
e−sL . (3)

Another common, slightly more advanced, low-order model approximation is
the second order time delayed model, or SOTD model. This model is defined as

P(s) = Kp

(1 + sT1)(1 + sT2) e
−sL . (4)

Neither the FOTD model in (3) nor the SOTD model in (4) can be used to
describe integrating processes. Therefore the integrating time delayed model, ITD
model,

P(s) = kv
s

e−sL, (5)
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and the integrating plus first order time delayed model, IFOTD model,

P(s) = kv
s(1 + sT) e

−sL, (6)

will be used as alternatives for integrating processes.

2.3 Normalized Time Delay
The normalized time delay, τ, for an FOTD process is defined as

τ =
L

L + T
, 0 ≤ τ ≤ 1. (7)

The normalized time delay characterizes whether the behavior of the process is most
influenced by its time delay L, or the dynamics described by its time constant T . If τ
is close to one, the time delay is much larger than the time constant, and the system
is said to be delay dominated. If the time constant is much larger than the time delay,
τ will be small and the process is said to be lag dominated. For intermediate values
of τ, the system is said to be balanced. For a process of higher order dynamics,
the normalized time delay is given from the apparent time constant and apparent
time delay. These are obtained from an FOTD model approximation of the process,
obtained from step response analysis.

Depending on the classification of the process, some tuning choices can be
made. One is that it has been shown [Åström and Hägglund, 2006] that derivative
action can be very beneficial for processes with small τ, but will only give marginal
improvement for τ close to one. It is also shown that while an FOTD model is
sufficient for controller tuning for processes with large τ, processes with small τ can
gain a lot frommore accurate modeling. The reason for this is that the true time delay
gives a fundamental limitation, and the apparent time delay in the FOTD model is
a combination of the true time delay and the neglected dynamics. The dynamics
added to the time delay can make the difference between the true time delay and the
apparent time delay quite large for lag-dominated systems. To be able to design a
high-performance controller it is important to get as close to the true time delay as
possible, hence the need of better modeling for those processes. This knowledge of
τ is essential for making choices in the autotuner procedure, and will be discussed
further in Section 6.

The idea of using information from τ in a relay autotuning procedure is not new.
In [Luyben, 2001], a so called curvature factor and its relation to the ratio L/T was
calculated and used for decisions on which tuning method to use, and to find an
FOTD model from the relay test. This paper proposes a simpler method to find this
information, which will be described in Section 4.
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3 Asymmetric Relay Feedback

−d2

0

d1

±h

ton toff

Figure 1. An example of the signals from the asymmetric relay feedback experi-
ment. The relay output u is shown in blue, the process output y is shown in red. The
black dashed lines show the hysteresis levels, ±h. The relay output switches between
uon and uoff every time the process output leaves the hysteresis band.

3. Asymmetric Relay Feedback

It is assumed that the system is at equilibrium at the working point (u0, y0) before the
relay experiment is started. The asymmetric relay function used for the autotuner in
this paper is

u(t) =


uon, y(t) < y0 − h,
uon, y(t) < y0 + h, u(t−) = uon,
uoff, y(t) > y0 − h, u(t−) = uoff,
uoff, y(t) > y0 + h,

(8)

where h is the hysteresis of the relay and u(t−) is the value u had the moment before
time t. The output signals of the relay, uon and uoff, are defined as

uon = u0 + sign(Kp)d1, uoff = u0 − sign(Kp)d2. (9)

The name asymmetric relay reflects that the amplitudes d1 and d2 are not equal.
This creates the asymmetric oscillations. The asymmetry level of the relay is denoted
γ and defined as

γ =
max(d1, d2)
min(d1, d2) > 1. (10)

An illustrative example of the inputs and outputs of the asymmetric relay feed-
back is shown in Figure 1. The half-periods ton and toff are defined as the time
intervals where u(t) = uon and u(t) = uoff respectively.

The implementation of the relay feedback experiment contains features such
as automatic choice of hysteresis level, detection of the sign of the process gain,
soft startup and adaptive relay amplitude. Details about the implementation and
parameter choices are found in [Berner, 2015].
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Figure 2. Validation results of the equation for τ, stated in (12). The figure shows
the results for γ = {1.2, 1.5, 2, 3, 5, 7, 8, 10} in different colors from left to right.
The solid lines show τ-values calculated from (12), while the dots show the relation
between ρ and the true τ-values for the processes in the test batch.

4. Estimation of Normalized Time Delay

It turns out that asymmetric relay feedback offers an effective way of estimating τ.
This is due to the fact that the half-period ratio ρ, defined as

ρ =
max(ton, toff)
min(ton, toff) , (11)

is related to the normalized time delay of the process. If the system is delay dom-
inated, τ close to one, the time intervals will be more or less symmetrical even
though the amplitudes are asymmetric. When the process is lag dominated, i.e., if τ
is small, the half-period ratio instead reflects the asymmetry of the amplitudes. This
was shown for FOTD processes under asymmetric relay feedback with no hysteresis
in [Berner et al., 2014]. Results which are only valid for FOTD processes and a relay
without hysteresis are of limited practical use. However, the observation is valid for
a wide range of process types. Figure 2 shows simulation results for a test batch
[Åström and Hägglund, 2006] consisting of 134 different processes typical for the
process industry. From the simulation data, an expression for τ, as a function of the
asymmetry level γ and the ratio ρ, was fitted under the constraints that the endpoints
should be τ(ρ = 1, γ) = 1 and τ(ρ = γ, γ) = 0. The result is the following equation
for the normalized time delay

τ(ρ, γ) = γ − ρ
(γ − 1)(0.35ρ + 0.65) . (12)

The equation was validated against the test batch, for some different asymmetry
levels γ, and the results are shown in the solid lines in Figure 2.

The errors in determining τ using (12) are shown in Figure 3 for γ = 2. For
all processes in the batch, the estimate stays within 8 % of the correct value, and
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Figure 3. Results of τ-estimation for the processes in the test batch. The left plot
shows estimated τ in red, and the true values in black. The right plot shows a boxplot
of the absolute errors of the τ-estimation.

the median error is about 2 %. The obtained results are accurate enough to use
the estimated τ to classify the process, and to use it as an information source for
decision-making in the autotuner.

5. Modeling

Once the experiment is performedwewant to find the parameter values for the model
structures listed in Section 2.2. Modeling from an asymmetric relay experiment can
be done in many ways. Some examples are by using the describing function as in
[Shen et al., 1996], by using the A-locus method as in [Kaya and Atherton, 2001], by
using the relation between the Fourier series coefficients and the model parameters
as in e.g. [Srinivasan andChidambaram, 2003] or by using a curve fitting approach as
in e.g. [Liu and Gao, 2008]. For additional relevant references on different modeling
strategies, see [Liu et al., 2013].

The modeling in this work is based on a curve fitting approach, and the focus
has been on finding simple, intuitive equations that use measurements robust to
noisy data. To find the FOTD and ITD models we use equations where the only
measurements needed are the durations ton and toff, and the integral of the process
output, Iy , defined as

Iy =
∫
tp

(
y(t) − y0

)
dt. (13)

Here tp = ton + toff is the period time of the oscillation and y0 is the stationary
operation point we started the experiment at. All these parameters are easy to
measure from the experiment data, and they show small sensitivity to noise. In
addition to these values, the equations also contain the relay amplitudes d1 and d2,
the hysteresis h, the normalized time delay τ which is derived in Section 4, and the
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integral of the relay output Iu , which analogously to Iy is defined as

Iu =
∫
tp

(
u(t) − u0

)
dt. (14)

This integral, however, does not need to be measured from the experiment since it
is given by

Iu = (uon − u0)ton + (uoff − u0)toff. (15)

5.1 FOTD Models
The FOTD model defined in (3) has three parameters: Kp , T and L. One benefit of
using the asymmetric relay, is the possibility to calculate the static gain, Kp , from

Kp =
Iy
Iu
. (16)

Note that this does not apply to the symmetric relay, where Iu would always be zero.
It follows from (15) that Iu can become zero with the asymmetric relay as well, but
only if toff/ton = d1/d2. This means that ρ = γ, which implies that τ = 0, and for
those processes we will use the ITD model.

To find T and L we use the equations for ton and toff

ton = T ln
h/|Kp | − d2 + eL/T (d1 + d2)

d1 − h/|Kp | , (17)

toff = T ln
h/|Kp | − d1 + eL/T (d1 + d2)

d2 − h/|Kp | , (18)

given in [Berner, 2015]. Since Kp can be found from (16), the results in (17) and
(18) give two equations for the two unknown process parameters T and L. However,
these equations can not be solved analytically for T and L. They can be solved
numerically, but that requires proper initial guesses. Our approach is instead to find
the normalized time delay τ as in Section 4, which gives the ratio between L and T
as

L/T = τ

1 − τ . (19)

Knowing this ratio, T can be found from either of the two equations (17) or (18), or
from an average of both. With T known, it is straightforward to get L from (19).
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−d2

0

d1
ton

toff

Figure 4. An example of the signals from a relay experiment with an ITD process.
The blue line shows the relay output u, the red line shows the process output y.
The dashed black lines show the hysteresis. Note the triangular shape of y that is
characteristic for an ITD process.

5.2 ITD Models
An integrating process on the form

P(s) = kv
s

e−sL (20)

can be written as the differential equation

Ûy(t) = kvu(t − L). (21)

Since u(t) is piecewise constant, so is Ûy(t), and hence the shape of ywill be triangular,
see Figure 4. By considering the output curves, equations for kv and L can be
obtained, see [Berner, 2015] for full derivation. The equations are

kv =
2Iy

tontoff(uon + uoff) +
2h

uonton
, (22)

L =
uonton − 2h/kv

uon − uoff
. (23)

5.3 SOTD and IFOTD Models
To obtain the somewhat more advanced SOTD and IFOTDmodels we use the entire
experiment data set. Themodel parameters are estimated from a system identification
method based onNewton’smethod, as in [Berner et al., 2014]. To assure convergence
in the iterative method, appropriate initial parameter values are needed. These are
obtained from the calculated FOTD or ITD model.
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Figure 5. Decision scheme based on the estimated normalized time delay.

6. Tuning Procedure

6.1 Model Design
As stated previously, the aim with this autotuner is to get a low-order model describ-
ing the process. Different model types of interest were listed in Section 2.2. The
choice of model structure is based on the normalized time delay, τ. The resulting
decision scheme is shown in Figure 5. If τ is close to one, it has been shown [Åström
and Hägglund, 2006], that an FOTD model is sufficient to describe the process for a
control purpose. If τ is smaller, higher-order models can give significantly better re-
sults, motivating estimation of an SOTDmodel. If τ is really small, the time constant
is much larger than the time delay. The process can then be considered an integrating
process, which implies that an ITD or IFOTD model should be estimated. In this
autotuner implementation the limits α and β, shown in Figure 5, are α = 0.1 and
β = 0.6.

The low-order models defined in Section 2.2 are obtained as described in Sec-
tion 5. If it is crucial that we get a really good model we might consider estimating
higher-order models. However, that implies that we may need an additional exper-
iment to get even better excitation. This is illustrated in the advanced branch in
Figure 5. Information from the relay experiment already performed, can be used to
design the additional experiment.

64



7 Examples

6.2 Controller Design
The choice of controller design is restricted to PID controllers. The low-order mod-
els in Section 2.2 were chosen since there exists simple tuning rules for them. This
implementation of the autotuner uses the AMIGO tuning rules [Åström and Häg-
glund, 2006], but it could easily be changed to another tuning rule if desired. If
the advanced branch is used to find higher-order models, there are no simple rules,
and the PID tuning would instead need to be performed through for example the
optimization method in [Garpinger and Hägglund, 2008].

In [Åström and Hägglund, 2006], it was shown that the derivative part of the
controller was beneficial for small values of τ, but not so much if τ is close to one.
Therefore a PI controller is tuned for large τ, and a PID controller otherwise as
shown in Figure 5.

7. Examples

To demonstrate the results of the autotuner we consider the three processes

P1(s) = 1
(s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1),

P2(s) = 1
(s + 1)4 ,

P3(s) = 1
(0.05s + 1)2 e

−s,

(24)

where P1 is lag dominated, P2 balanced, and P3 delay dominated. All simulations in
this section have been performed with the Matlab/Simulink implementation of the
autotuner described in [Berner, 2015].

The experiment output for the three processes are shown in Figure 6. Some
implementation features like the adaptive relay amplitude and soft startup are clearly
visible in the figure. It is also worth noting the difference in half-period ratios. For the
upper (lag-dominated) process the difference between ton and toff is large, while for
the lower (delay-dominated) process the time intervals are more or less equal. For P1
the normalized time delay is calculated to τ = 0.04. Since τ is so small it corresponds
to the left branch in Figure 5 and the choice of the autotuner is to calculate an ITD
model or estimate an IFOTD model. P2 has τ = 0.37 and ends up in the middle
branch. For P3 τ = 0.93, which puts it in the right branch and indicates that an
FOTD model describes the process sufficiently. However, for comparison reasons
an estimated SOTD model is presented as well. The resulting model parameters are
listed in Table 1.

Since the most interesting part is not the models in themselves, but rather how
good the controllers obtained from these models are, a comparison of five different
controllers were made for each process. PI controllers were tuned for the FOTD/ITD
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Figure 6. Signals from the relay experiment for P1 (top), P2 (middle) and P3
(bottom). The blue lines show the relay output u, and the red lines show the process
output y. Note the different scales on the axes.

Table 1. Resulting model parameters

Model kv Kp T(1) T2 L

P1 ITD relay 0.73 0.09
τ = 0.04 IFOTD est 0.68 0.04 0.04

P2 FOTD relay 0.99 3.23 1.89
τ = 0.37 SOTD est 1.05 1.76 1.76 1.00

P3 FOTD relay 1.00 0.08 1.04
τ = 0.93 SOTD est 1.00 0.05 0.05 1.00
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Figure 7. Step responses from a load disturbance on the process input, shown
for the closed-loop systems containing the true processes and the different obtained
controllers. The green curves show controllers tuned for the ITD/FOTDmodels, blue
shows controllers tuned for IFOTD/SOTD models, red shows controllers tuned for
the true processes. The dashed lines indicate the PI controllers, while the solid lines
show the PID controllers.

model and the true process. PID controllers were tuned for the FOTD/ITD model,
the SOTD/IFOTD model and the true process. The controllers based on models
were obtained using the AMIGO rules, while the controllers from the true processes
were obtained using the optimizationmethod described in [Garpinger andHägglund,
2008] where IAE is minimized with the constraint that MST ≤ 1.4. The obtained
controller parameters, performance and robustness measures are listed in Table 2.
Control performances for a step in load disturbance are illustrated in Figure 7.

The results verify the statements made for small values of τ. The derivative part
is beneficial, the PID controllers perform much better than the PI controllers, and

67



Paper I. Improved Relay Autotuning using Normalized Time Delay

Table 2. Controller parameters.

Controller K Ti Td MST IAE

ITD PI 5.48 1.18 1.34 0.215
ITD PID 7.04 0.70 0.04 1.15 0.100

P1 IFOTD PID 15.3 0.47 0.04 1.23 0.031
Optimal PI 4.20 0.49 1.40 0.118
Optimal PID 89.5 0.09 0.05 1.40 0.001

FOTD PI 0.36 3.02 1.24 8.487
FOTD PID 0.98 2.85 0.80 1.35 2.906

P2 SOTD PID 1.19 2.35 1.11 1.37 2.348
Optimal PI 0.43 2.25 1.39 5.208
Optimal PID 1.33 2.11 1.34 1.40 2.134

FOTD PI 0.17 0.37 1.44 2.158
FOTD PID 0.24 0.48 0.11 1.41 2.014

P3 SOTD PID 0.22 0.45 0.13 1.40 2.069
Optimal PI 0.16 0.37 1.40 2.313
Optimal PID 0.20 0.40 0.14 1.40 1.988

better modeling can increase the performance significantly. For the lag-dominated
process P1, the PID controller tuned for the ITD model is a factor 100 worse in
performance than the optimal PID controller. However, even the simple models
obtained from this experiment give low values of IAE, and both the PID controllers
for the simple models are performing better than the optimal PI controller. So the
results are not bad, they could just be made even better by more advanced modeling
and tuning. Notable are also the gains of the PID controllers, especially the optimal
one, that may prove to be too high for noisy applications.

For the delay-dominated system on the other hand it is clear that neither the
derivative part nor more advanced modeling gives better performance than a PI
controller tuned from an FOTD model.

8. Industrial Experiment

The autotuner was implemented and tested on an air handling unit provided by
Schneider Electric Buildings AB inMalmö, Sweden. The implementation was made
in Schneider Electric’s software StruxureWare Building Operation. The implemen-
tation uses the simplest version of the autotuner, where the experiment data is used
to find an FOTD or ITD model, and parameters for a PI/PID controller are tuned by
the AMIGO rules.

Pressure in an air duct was controlled by changing the speed of a supply air fan,
positioned before the duct. The control signal was normalized to a percentage of the
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Figure 8. Experiment data from the pressure control loop. The normalized fan
speed is shown in blue, the pressure measurement in red. Note the different scales
and units on the axes.

full speed of the fan, while the pressure was measured in Pascal. The reference value
of the pressure was set to 250 Pa. A relay experiment performed on the system is
shown in Figure 8. The asymmetry level, convergence limit, maximum andminimum
deviations and the maximum relay deviation, were set according to the default values
in [Berner, 2015]. The sample time used during the experiment was ts = 0.1 s.

The experiment startedwith 40 smeasurement of the noise. The figure shows that
the signal is noisy, in this experiment the noise was measured to 13 Pa peak to peak.
The experiment converges within 45 s, or two and a half oscillation periods, which
is fast for this process. The normalized time delay calculated from the experiment
was τ = 0.77. Since it was large, an FOTD model was estimated and a PI controller
selected. Calculation of the FOTD model parameters, as in Section 5, gave Kp =

2.29, T = 1.92 and L = 6.31. The obtained controller parameters were K = 0.088,
Ti = 2.92. These parameters were used to investigate the control performance. The
controller was already present in the system. It had a sampling time of 1 s, and a
dead zone of 5 Pa. Results from step changes in the reference value are shown in
Figure 9. The step response results are satisfactory. There is an overshoot, but it can
be reduced by filtering the setpoint. The dead zone is clearly visible through the
long periods of constant control signal, despite process output deviations from the
setpoint.

By manually adjusting a damper, step load disturbances of unknown sizes were
added, the response to these are shown in Figure 10. This also shows satisfactory
results. The effect of the load disturbances is removed completely in approximately
20-25 s with rather small overshoots.
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Figure 9. Response to setpoint changes for the system with the controller tuned
from the experiment. The upper plot shows the measured pressure in red, and the
setpoint in black. The lower plot shows the control signal.
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Figure 10. Response to load disturbances. The upper plot shows the measured
pressure in red, and the setpoint in black. The lower plot shows the control signal.
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9 Conclusions

9. Conclusions

This paper shows that the asymmetric relay autotuner gives good results in both
simulations and real experiments. The asymmetric relay feedback experiment pro-
vides an easy way of finding the normalized time delay. The results in the example
section clearly strengthens the proposition that the normalized time delay is useful
in the tuning procedure. It is clear that the derivative part is most useful for processes
with low values of τ. Even though the obtained controllers from the simple version
of the autotuner show satisfactory results, it is clear from the examples that better
modeling, together with better tuning can be very useful for processes with a small
normalized time delay.

From the experimental results it is concluded that the relay autotuner works
satisfactory also in practice. Despite a noisy signal, a model of the process was
obtained fast and accurately. The industrial implementation only contained the most
simple version of the autotuner, and should be extended with at least the possibility
to estimate SOTD and IFOTD models. Different tuning methods could also be
considered.
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Paper II

Asymmetric Relay Autotuning – Practical
Features for Industrial Use

Josefin Berner Tore Hägglund Karl Johan Åström

Abstract

The relay autotuner provides a simple way of finding PID controller param-
eters. Even though relay autotuning is much investigated in the literature, the
practical aspects are not that well-documented. In this paper an asymmetric
relay autotuner with features such as a startup procedure and adaptive relay
amplitudes is proposed. Parameter choices and handling of noise, disturbances,
start in non-steady state and other possible error sources are discussed. The
autotuner is implemented and tested on an industrial air handling unit to show
its use in practice. The experiments show good results, and prove that the pro-
posed simple autotuner is well-suited for industrial use. But the experiments
also enlighten possible error sources and remaining problems.

Keywords: Asymmetric RelayAutotuning, PIDControl, Practical features,
Industrial experiment, Air handling unit

© Elsevier. Originally published inControl Engineering Practice, Volume 54, 2016,
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1. Introduction

In an industrial process facility with hundreds of control loops, the benefits of a
simple, reliable, automatic way of tuning the controllers are obvious. The relay
autotuner has proven to be a good candidate for automatic tuning of PID controllers.
Some advantages of the relay autotuner are that it is fast, operates in closed loop and
does not disturb the process more than necessary. Another main advantage is that it
does not require any knowledge about the process a priori, since the relay feedback
experiment automatically excites the process in the frequency range interesting for
PID control. The short experiment time is essential, not only due to the overall
time-consumption, but also since it reduces the risk of disturbances entering during
the experiment.

Since the relay autotuner was introduced in the 1980’s [Åström and Hägglund,
1984], many modifications of it have been proposed. Finding a low-order model
from the relay experiment was proposed in [Luyben, 1987], where the static gain
was assumed to be known and in [Li et al., 1991], where an additional relay ex-
periment was performed. In this paper an asymmetric relay function is used. The
asymmetric relay provides a better excitation of the process at lower frequencies than
its symmetric counterpart, without making the experiment any more complicated
or time-consuming. The original autotuner only gave two parameters, but with an
asymmetric relay the low-order models found in e.g. [Luyben, 1987] and [Li et al.,
1991] could be found from a single relay experiment without any prior process
knowledge. A version of the asymmetric relay function was used in [Shen et al.,
1996b], and later investigated in e.g. [Kaya and Atherton, 2001b], [Lin et al., 2004]
and [Berner et al., 2014]. For a more thorough review of the advances in modeling
from relay feedback experiments, see [Liu et al., 2013].

Although much research has been done on both symmetric and asymmetric
relay autotuners, our experience is that focus is seldom on the practical use of the
autotuner. Instead exactness or closeness to the true model under ideal simulation
conditions is often considered. In this paperwe aim for amore practical approach.We
use simple low-order models that will of course never describe the true processes
exactly. However, the aim is not to get perfect models, but rather to get a good-
enough model for tuning a well-performing controller. The focus of this paper is
more on practical aspects such as how to choose the experiment parameters and
how the models are affected by noise or other disturbances entering the experiment.
These investigations are mainly made in a simulation environment and described
in Section 4. The autotuner is also tested in a real industrial setting, which is
documented in Section 5. The industrial tests were performed on two subsystems of
an air handling unit. The experiments were exposed tomany of the problems thatmay
be encountered in practice, but still gave overall good results with well-performing
controller tunings.
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Experiment Model Controller Evaluation

Figure 1. Steps to be designed and performed in an automatic tuning procedure.
The dashed lines show the steps that involve the user.

2. Automatic Tuning

The purpose of the autotuner is to give satisfactory controller parameters for a
process with completely unknown dynamics. To do this, the autotuner goes through
the different steps shown in Figure 1, where each step contains actions and decisions
to be performed.

The first step is the Experiment, where it has to be decided what type of ex-
periment should be done, and how it should be designed. It is also decided what
experiment parameters should be used, and what data should be extracted from the
experiment. In this paper the experiment is the asymmetric relay feedback experi-
ment, described further in Section 3.

TheModel step includes decisions on what model structure to use. It should also
contain a method to obtain the desired model parameters. In this work, the estimated
model structure depends on the value of the normalized time delay τ, defined as

τ =
L

L + T
, 0 ≤ τ ≤ 1, (1)

where L is the apparent time delay andT is the apparent time constant of the process.
The model structure choice is made according to the decision scheme in Figure 2,
proposed in [Berner, 2015; Berner et al., 2016]. This paper focuses on the simple
version where either a first order model with time delay, FOTD model

P(s) = Kp

1 + sT
e−Ls, (2)

or an integrating model with time delay, ITD model

P(s) = kv
s

e−Ls, (3)

is calculated from the experiment.
When the model is found a Controller should be designed. This step includes

decisions about what controller type to use and how to choose its parameter values.
In this paper we use the PID controller on the form

C(s) = K
(
1 +

1
sTi
+ sTd

)
(4)
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Find τ

Relay experiment

α < τ < βτ < α τ > β
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Tune PID

Calculate
FOTD or

estimate SOTD

Tune PID

Calculate
ITD or

estimate
IFOTD

Tune PID

Calculate
FOTD

Tune PI

Figure 2. Decision scheme based on the normalized time delay τ. The limits for
low and high values of τ are set to α = 0.1, β = 0.6 as in [Berner, 2015].

tuned from the AMIGO rules [Åström and Hägglund, 2006] for the obtained models.
Changing to another tuning method is straightforward. The choice of whether or not
to use the D-part of the controller can be based on the scheme in Figure 2.

The final step is theEvaluation of the results. Here it is decided if the performance
of the obtained controller is satisfactory, or if something should be changed in the
previous steps. This is mainly a task for the user. One possibility is to use the transient
after the experiment as validation data, to see if it agrees with the expected behavior
of the obtained process model. Separate evaluation experiments of the controller
performance, measuring for instance the integrated absolute error for an added load
disturbance, could also be performed.

3. Asymmetric Relay Feedback

The experiment sequence is shown in Figure 3. This section describes the two last
steps, the relay feedback and the retrieval of data, while the practical issues of the
first steps are described in Section 4.

Let u denote the output signal from the relay function, and y denote the process
output signal. The asymmetric relay experiment is started when the system is at
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Initialization

Measure noise

Ramp up relay amplitudes

Relay feedback

Set control signal
If switching

Check amplitudes

Update relay amplitudes

Check if converged

Repeat until convergence

Experiment done
Retrieve experiment data

Noise level
Hysteresis
Warnings if noise is too large
or parameters need to change

Sign of process gain
Starting amplitudes for relay

ton, toff, Iy, u, y

Figure 3. The different sequences of the relay feedback experiment. Also shown
are the variables and parameters obtained in that sequence.

equilibrium at the point (u0, y0). The asymmetric relay function proposed is

u(t) =


uon, y(t) < y0 − h,
uon, y(t) < y0 + h, u(t−) = uon,
uoff, y(t) > y0 − h, u(t−) = uoff,
uoff, y(t) > y0 + h,

(5)

where h is the hysteresis of the relay and u(t−) is the value u had the moment before
time t. The output levels of the relay, uon and uoff, are defined as

uon = u0 + d1 sign(Kp), uoff = u0 − d2 sign(Kp). (6)

The sign of the process gain Kp (or kv if the process is integrating) is determined
during the startup of the experiment, as will be described in Section 4.2.

The name asymmetric relay reflects that the amplitudes d1 and d2 are not equal.
This creates the asymmetric oscillations. The asymmetry level of the relay is denoted
γ and defined as

γ =
max(d1, d2)
min(d1, d2) > 1. (7)
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−d2

0

d1

±h

ton toff

Iy

Time

u,
y

Figure 4. An example of the signals from the asymmetric relay feedback exper-
iment. The relay output u is shown in blue, the process output y is shown in red.
The black dashed lines show the hysteresis levels, ±h. The experiment starts with the
system in equilibrium at the point (u0, y0), which in the figure is only denoted with
a zero. The relay output switches between uon and uoff every time the process output
leaves the hysteresis band.

An illustrative example of the inputs and outputs of the asymmetric relay feed-
back is shown in Figure 4. The half-periods ton and toff are defined as the time
intervals where u(t) = uon and u(t) = uoff, respectively.

3.1 Modeling
Once the experiment has converged we want to find the parameter values for the
desired model structure. We have focused on finding simple equations that are robust
to noisy data. To find the FOTD and ITD models we use equations where the only
measurements needed are the durations ton and toff, and the integral of the process
output, Iy , shown in Figure 4 and defined as

Iy =
∫
tp

(
y(t) − y0

)
dt. (8)

Here tp = ton + toff is the period time of the oscillation and y0 is the stationary
operation point we started the experiment at. Both ton, toff and Iy are easy to measure
from the experiment data, and they show small sensitivity to noise. In addition to
these values, the equations also contain the relay amplitudes d1 and d2, the hysteresis
h, the normalized time delay τ and the integral of the relay output Iu defined in (11).

The normalized time delay can be found from the relay experiment by

τ(ρ, γ) = γ − ρ
(γ − 1)(0.35ρ + 0.65), (9)
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as described in [Berner, 2015; Berner et al., 2016], where ρ is the half-period ratio
defined as

ρ =
max(ton, toff)
min(ton, toff) . (10)

The integral of the relay output

Iu =
∫
tp

(
u(t) − u0

)
dt (11)

does not need to be measured from the experiment since it is given by

Iu = (uon − u0)ton + (uoff − u0)toff. (12)

FOTD Models The FOTD model (2) has three parameters: Kp , T and L. One
benefit of using the asymmetric relay, is that the static gain, Kp , can be determined
and is given by

Kp =
Iy
Iu
. (13)

Note that this does not apply to the symmetric relay, where Iu is always zero. It
follows from (12) that Iu can become zero with the asymmetric relay as well, but
only if toff/ton = d1/d2. This means that ρ = γ, which implies that τ = 0, and for
those processes we will use the ITD model, as indicated in Figure 2.

To find T and L we use the equations for ton and toff

ton = T ln
h/|Kp | − d2 + eL/T (d1 + d2)

d1 − h/|Kp | (14)

toff = T ln
h/|Kp | − d1 + eL/T (d1 + d2)

d2 − h/|Kp | (15)

given in [Berner, 2015]. Since Kp can be found from (13), the results in (14) and
(15) give two equations for the two unknown process parameters T and L. However,
these equations can not be solved analytically for T and L. They can be solved
numerically, but that requires proper initial guesses. Our approach is instead to use
the normalized time delay τ given by (9), and find the ratio between L and T from
(1) as

L/T = τ

1 − τ . (16)

Knowing this ratio, T can be found from either of the two equations (14) or (15), or
from an average of both. With T known, it is straightforward to get L from (16).

ITD Models The integrating process (3) can be described by the differential equa-
tion

Ûy(t) = kvu(t − L). (17)
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Figure 5. An example of the signals from a relay experiment with an ITD process.
The blue line shows the relay output u, the red line shows the process output y.
The dashed black lines show the hysteresis. Note the triangular shape of y that is
characteristic for an ITD process.

Since u(t) is piecewise constant, so is Ûy(t), and hence the shape of ywill be triangular,
see Figure 5. By considering the output curves, equations for kv and L can be
obtained, see [Berner, 2015] for full derivation. The equations are

kv =
2Iy

tontoff(uon + uoff) +
2h

uonton
, L =

uonton − 2h/kv
uon − uoff

. (18)

Higher Order Models If the normalized time delay τ is not large, the control
requirements are high, and the implementation and computing power permit it, the
parameters of a higher order model can be estimated. To obtain the second order
time delayed (SOTD) or integrating plus first order time delayed (IFOTD) models,
shown in the decision scheme in Figure 2, we use the entire experiment data set.
The model parameters are estimated from a system identification method based on
Newton’s method, as in [Berner et al., 2014]. To assure convergence in the iterative
method, appropriate initial parameter values are needed. These are obtained from the
calculated FOTD or ITDmodel, see [Berner, 2015] for details. Parameter estimation
methods can be used to find othermodel structures aswell, or to improve the accuracy
of the obtained models. However, that is not the focus of this paper where we stick to
the simple FOTD and ITDmodels obtained as described in the previous subsections.

4. Practical Considerations

When the autotuner is used in an industrial setting, the conditions may be very
different from the ideal simulation environment where the development has been
done. In this section some of the practical issues for the autotuner will be presented
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and discussed. The first part goes through the choice of relay parameters. The rest
of the section discusses how the results from the autotuner are affected by practical
issues like noise, load disturbances and low resolution in converters. The evaluation
in this section has been performed on a test batch from [Åström andHägglund, 2006]
containing 134 processes representative for many systems in the process industry.
All the processes of the test batch are listed in Appendix B.

4.1 Parameter Choices
The relay experiment contains several parameters that have to be chosen. This is
done in the implementation of the autotuner and nothing that needs to be done in
every new setup. Some of the parameters could, however, be changed by the user
if desired. Default values for all parameters are listed in Appendix A, and some of
the parameter choices are explained and discussed in further detail in the current
section.

Noise level and hysteresis As shown in Figure 3, the first step of the autotuning
experiment, after the initialization, is to measure the noise level of the signal. This
is done during a specified time interval when the maximum and minimum values
of the process output, ymax and ymin, are stored. The noise level, n0, is calculated
as n0 = (ymax − ymin)/2. The hysteresis is then chosen to be about 2-3 times the
noise level. The reference value y0 is set during the noise measurements by taking
the average of the measured y-values. If the noise level is too large, the signals need
to be filtered before starting the relay experiment, otherwise the output amplitudes
required for the experiment will be too large. In a noise-free simulation environment
the hysteresis could be chosen arbitrarily.

Relay amplitudes The question of how to choose the relay amplitudes is subject
to some different aspects. For minimal disturbance of the process, the amplitudes
should be as small as possible. However, it is necessary that |Kp min(d1, d2)| > h for
the output to reach outside the hysteresis band and create oscillations. Some margin
to this limit, which could be stated as

min(d1, d2) ≥ µh
|Kp | (19)

where µ > 1 is a constant, is required to get good results. In Figure 6 the accuracy of
the estimated τ for the processes in the test batch is shown for some different values
of µ. The plot shows that the results improve a lot up to µ = 3, are slightly better for
µ = 5 and after that stay more or less the same.

Since Kp is not known beforehand, the relay amplitudes can not be set according
to the constraint (19) directly. Instead we consider the smallest peak deviation of the
process output, yspd , which is constrained to yspd ≤ Kp min(d1, d2). By introducing
a lower limit ymindev = µh on the peak deviation we can guarantee that (19) is
satisfied since

|Kp |min(d1, d2) ≥ yspd ≥ ymindev = µh. (20)
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Figure 6. Mean andmaximum errors of the τ-estimations, shown for some different
values of µ. During these simulations, the relay amplitudes were fix, with the small
amplitude min(d1, d2) = µh/|Kp | and the large amplitude a factor γ = 2 larger.
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Figure 7. Boxplots of the absolute errors of τ, shown for different values of the
asymmetry level γ. On each box, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, and the whiskers extend to the most extreme data
points. Outliers are plotted individually.

How the lower limit is accomplished in practice is described by the amplitude
adjustment in Section 4.2. Note that since there are multiple inequalities in (20) such
a large value of µ as in (19) might not be necessary to get good results. With the
default parameters listed in Appendix A, the maximum error of τ is 0.08 for the test
batch, using the small value ymindev = 2h.

The asymmetry level γ, i.e., the ratio between d1 and d2 is also something to
consider. Figure 7 and Figure 8 show the results of the estimates of τ and Kp for
different values of γ. For the estimates of τ the results from the entire test batch are
plotted. For the estimates of Kp only the processes that were estimated as FOTD
processes, and hence have a finite Kp value, are shown. Note that all the non-
integrating processes in the test batch have Kp = 1, see Appendix B. The results
indicate that as high asymmetry as possible should be chosen to get good estimates
of Kp , but that the estimates of τ do not depend that much on γ.

By forcing yspd to be large, and using a high γ, the results are more accurate. If
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Figure 8. Boxplots of the absolute errors of Kp , shown for different values of the
asymmetry level γ. All processes, classified as non-integrating, from the test batch
are included.

the autotuner is to be used in simulation environments you could therefore use high
values. However, if the autotuner is used on real processes in an industrial setup
there will be upper constraints as well. There will be limitations on the deviations of
both the process output, ymaxdev, and the control signal, umaxdev. These constraints
may force you to use lower values of γ and/or ymindev than you would prefer to. How
the upper limits enter into the process of choosing the relay amplitudes is explained
in Section 4.2.

Convergence of limit cycles If an FOTD system under asymmetric relay feedback
has a limit cycle, it will converge to it after the first switch of the relay, see [Lin et al.,
2004]. However, for other processes or with noise, it is not certain that the limit cycle
will be reached that fast. One issue to consider in the relay experiment is therefore
to decide when convergence to the limit cycle has been achieved. One method is to
compare the time one period takes, tp , with the time the previous period took, t∗p . If
the relative difference between the period times is smaller than a certain threshold
ε , i.e., ���� tp − t∗p

t∗p

���� ≤ ε (21)

the system is considered to have reached the limit cycle. Alternatively the oscillation
amplitudes could be considered instead of the period times, but that approach was
not chosen in this paper.

To investigate the effect of ε , the processes in the test batch were simulated
with the different values ε = {0.005, 0.01, 0.05}. To make the situation a little more
realistic, band-limited white noise with a measured noise level of n0 = 0.12 was
added to the process output. The resulting accuracy of τ and Kp , for the different
choices of ε , are shown in Figure 9 and Figure 10.

The figures show that the accuracy of τ is more or less identical for all three
values, but that the estimation of Kp is improved for smaller convergence limits.
Since the experiment should ideally be short, a comparison of the convergence
times was performed for the entire batch. The mean convergence time for ε = 0.05
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Figure 9. Boxplots of the absolute errors in the estimation of τ, for the three
different convergence limits ε = {0.05, 0.01, 0.005}.
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Figure 10. Boxplots of the absolute errors in the estimation of Kp , shown for the
three different convergence limits ε = {0.05, 0.01, 0.005}. All processes, classified
as non-integrating, from the test batch are included.

was 0.31 periods shorter than for ε = 0.01, while the convergence time for ε = 0.005
was in mean 0.52 periods longer than for ε = 0.01. At most, ε = 0.05 gave a 2.5
periods shorter convergence time, while ε = 0.005 made one process take 9 periods
more to converge than it did with ε = 0.01. Since the accuracy was more or less the
same for ε = 0.01 and ε = 0.005 there is no need to use the lower value, since that
increases the experiment time. Increasing the limit to ε = 0.05makes the experiment
a little shorter, but the obtained values of Kp are also somewhat worse. Considering
the results, the default value ε = 0.01 was chosen.

Sampling times The question of how to choose the sampling time for the relay
experiment is not trivial, since no information about the process is available when
designing the experiment. Note that the sampling time during the experiment is not
necessarily the same as the sampling time for the controller. The experiment typically
requires a shorter sampling time to get good accuracy. The discussion of sampling
times in this section is for the experiment. However, the autotuner could after the
experiment also give a suggestion of a suitable sampling time for the controller.
A discussion on how to choose sampling time for the controller, based on process
information, is given in e.g. [Isermann, 1989, Ch. 5].
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Figure 11. Estimates of τ for two different sampling times. The upper plot shows
the absolute error of the estimated τ, as a function of the estimated τ. The red circles
show the results for ts = 0.01 s, and the blue stars show the results for ts = 0.001 s.
The lower plot shows the corresponding boxplots of the absolute errors.

In the simulation experiments in this paper a fixed sample time of ts = 0.01 s was
used as default value. The test batch consists of processes with very different time
constants, so for some processes that sampling time is unnecessarily small, while
for others it is too large. An indication of this can be seen by looking at the results of
Kp and τ for the two different sampling times, ts = 0.01 s and ts = 0.001 s, shown
in Figure 11 and Figure 12.

The results for τ in Figure 11 are more or less the same, so estimation of τ seems
to be quite insensitive to the choice of sampling time. Looking at the results for Kp

in Figure 12 two things can be noticed. The first observation is that the estimation of
Kp deteriorates with lower values of τ. This could be explained by the fact that the
integral of the control signal Iu , given in (12), goes towards zero as τ decreases, and
a small difference in its measurement gives a greater impact on the result. The other
observation is that the worst estimates are much improved when the sampling time is
decreased. The processes that get a bad value of Kp with the default parameters are
all very fast processes, with time periods in the order of 1 s. They behave much better
when the sampling time is reduced to 0.001 s. For most of the processes, however,
the result is more or less the same, since the default sampling time was sufficient.
For these processes the main difference is that the time it takes to simulate is much
longer and the amount of data storage needed is increased a factor 10. One of the
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Figure 12. Estimates of the process gain Kp for two different sampling times. The
upper plot shows the estimates as a function of the estimated τ. The red circles show
the results for ts = 0.01 s and the blue stars show the results for ts = 0.001 s. The
lower plot shows boxplots of the absolute error of Kp . In both the upper and lower
plot the only processes shown are the ones with an estimated τ > 0.05.

very slow processes could not be simulated with ts = 0.001 s since it would not have
time to converge before the data storage ran out of space. That process is therefore
not included in the figure for ts = 0.001 s. For this reason a shorter sampling time is
not always preferred.

One way to solve the problem of a poorly chosen sampling time is to adjust the
sampling time after the first half-period when the approximate speed of the process
is known. Another way is to always sample as fast as the hardware permits during
the experiment, and then double the sample time and start overwriting samples if
the buffer gets full.

4.2 Startup and Amplitude Adjustments
Since the process gain may not be known in advance, a strategy to find adequate
relay amplitudes has to be implemented in the autotuner. The startup procedure in
this paper is inspired by earlier versions of industrial autotuners [ABB, 2010]. The
control signal is increased exponentially until one of two things happens. Either the
control signal reaches its maximum allowed value, umaxdev, or the process output
reaches the hysteresis limit. When the hysteresis limit is reached, the sign of the
process gain is determined based on which limit that is broken, and the initial relay
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Figure 13. Oscillation restrictions for the process output y. The peak values ylpd
and yspd should both stay within the gray-marked areas. To get good results it is
necessary that ymindev is a bit larger than the hysteresis level h. The limit ymaxdev is
due to the fact that the process should not be disturbed too much, this limit may be
set by the operator.

amplitudes are set according to the current level of the control signal. In the case
where the control signal reaches its maximum value it stays at that level until the
process output reaches the hysteresis limit. Then the sign of the process gain and the
relay amplitudes are set as in the first case. If either the sign of the process gain, or
its approximate absolute value, is known in advance this information can be used to
set the initial relay amplitudes.

During the experiment the relay amplitudes are adjusted to get the oscillation in
the desired amplitude interval. The lower limit on the small peak deviation, yspd ,
was explained andmotivated in Section 4.1. The upper limit ymaxdev on the large peak
deviation, ylpd , can either be a default value or specified by the user. The desired
amplitude interval is shown in Figure 13. The amplitude adjustment is described in
Algorithm 1, but there is some additional logic to make sure that the relay amplitudes
never exceed umaxdev.

To exemplify, consider a situation when the lower limit is set to ymindev = 2h, the
upper limit is set to ymaxdev = 6h and γ = 2. If the relay would have been symmetric
we would aim for the peak values, y∗

spd
and y∗

lpd
to reach 4h, but in an asymmetric

relay the asymmetry level γ needs to be taken into consideration as in Algorithm 1.
The desired amplitudes in this case are

y∗spd = (ymindev + ymaxdev/γ)/2 = (2h + 6h/γ)/2 = 2.5h,

y∗lpd = (ymaxdev + ymindevγ)/2 = (6h + 2hγ)/2 = 5h.

The obtained update factor adjusts the measured amplitudes towards the desired val-
ues. An example of the startup and amplitude adjustments is illustrated in Figure 14.
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if switching AND not changed in last switch then

if max(ydev) > ymaxdev then
y∗
lpd
= (ymaxdev + ymindevγ)/2

ϕu = y∗
lpd
/max(ydev)

else if max(ydev) < ymindev then
y∗
spd
= (ymindev + ymaxdev/γ)/2

ϕu = y∗
spd
/max(ydev)

else
ϕu = 1

end
d1 = d1ϕu
d2 = d2ϕu

end
Algorithm 1:Amplitude adjustments. Here ydev stands for the process value’s deviation
from the setpoint, y∗

spd
and y∗

lpd
stand for the wanted small peak deviation and large

peak deviation respectively. The amplitude update factor is denoted ϕu .
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Figure 14. An example of the startup and amplitude adjustments. Here umaxdev =
10, γ = 2, ymindev = 2h, ymaxdev = 6h. The gray areas show the allowed areas for
the peak values yspd and ylpd .

It follows from the equations in Algorithm 1 that the value of γ is restricted to

γ ≤ ymaxdev
ymindev

, (22)

otherwise both limits can not be satisfied at the same time. Either the experiment will
then not converge at all, or the converged limit cycles will not satisfy the limitations.
An example of when γ is too large in comparison to the upper limit ymaxdev is shown
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Figure 15. An example of the problems obtained if γ is larger than ymaxdev/ymindev.
The gray areas show the allowed areas for the peak values yspd and ylpd . The
algorithm will never find relay amplitudes that satisfy both limits and will keep
changing the amplitude.

in Figure 15. As can be seen the experiment will never converge with these parameter
settings and program logic warning for this situation has to be a part of the autotuner
implementation.

4.3 End of Experiment
When the experiment has converged, as described in Section 4.1, the controller is
reconnected. In this implementation the relay is disconnected as soon as the new
controller parameters are calculated. This happens right after the last switch of the
relay, and the new controller parameters are used immediately. The last switch of the
relay is seen clearly in some of the experiment figures as a spike before the controller
starts. Reconnecting the controller immediately after the last relay switch may not
be the best option. In [Theorin and Berner, 2015] another implementation choice
was made called the graceful shutdown that gives a smoother transition.

Another practical issue concerning the ending of the experiment is that the
convergence check cannot be performed at the first relay switches since there is no
previous time period to compare with until three half-periods have passed. Neither
can the convergence check be performed when the relay amplitudes are adjusted,
since the amplitude change influences the period times. The convergence check is
restarted three half-periods after the last amplitude adjustment in order to compare
the time period tp to the appropriate t∗p .

4.4 Measurement Noise
To demonstrate the experiment’s robustness to measurement noise, the test batch was
simulated with some different noise levels. To introduce noise to the simulations,
band-limited white noise was added to the process output. As was mentioned in
Section 4.1 the relay experiment starts by measuring the noise level, and a suitable
hysteresis level for the experiment is then chosen. The noise level for the different
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Figure 16. Results for the different noise levels n0 = 0 in green plus signs, n0 = 0.12
in red circles, and n0 = 0.38 in blue stars. The upper plot shows the estimated values
of Kp and the lower plot shows the error in the estimated τ. In this figure they are
plotted as a function of the true normalized time delay τs instead of the estimated τ.
In the plot for Kp , only the processes classified as non-integrating are included. Note
that this means that there should ideally only be points for τs > 0.1. However, in
the noisiest experiments some processes were wrongly classified as non-integrating
which gives the problematic blue stars with τs < 0.1 in the upper plot.

simulations in the batch was the same since the same seed was used by the noise
block in all simulations. The accuracy of Kp and τ for different noise levels is shown
in Figure 16, and the corresponding boxplots are shown in Figure 17 and Figure 18,
respectively.

Figure 16 shows that the processes with small τ give the worst estimates. This
emphasizes that it could be worthwhile to put some extra effort in modeling these
processes. The figures forKp only contain the processes classified as non-integrating,
i.e., with an estimated τ > 0.1, but Figure 16 shows that some of the processes get
such a large error in τ that they are wrongly classified to have τ > 0.1 in the most
noisy simulation. These are the same processes that deviate a lot in their estimates
of Kp . The results for the different noise levels do, however, not differ that much if
the few miss-classified outliers are disregarded.
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Figure 17. Boxplots of the absolute errors of Kp , shown for different noise levels.
All processes, classified as non-integrating, from the test batch are included.

n0 = 0.38 n0 = 0.12 n0 = 0
0.00

0.05

0.10

0.15

E
rr

or
in

τ

Figure 18. Boxplots of the absolute errors of τ, shown for different noise levels.

To further illustrate the effect of a noisy experiment, we take a closer look at
Figure 19 where one of the processes from the test batch, namely

P(s) = 1
(s + 1)5 , (23)

has been simulated with and without noise. The noise level in the upper plot was
measured to n0 = 0.38 and the estimates were Kp = 0.95 and τ = 0.45, which
can be compared to the noise-free estimates Kp = 1.01 and τ = 0.44. Hence,
the introduction of noise did not deteriorate the accuracy of the estimates in this
example.

Worth noting is that in the upper plot the hysteresis level is h = 2n0 = 0.76
instead of the default value h = 0.1 used in the noise-free case. Since the default
values of both the upper and lower limit on the deviations of the process signal are
set proportional to the hysteresis level, the amplitude is both forced and allowed to
be much larger when noise is added. This is the reason why the noisy experiment is
faster, since it doesn’t have to adjust the relay amplitudes due to the larger deviations
allowed. In reality the upper limit on the deviation may not be allowed to be so large.
This implies that it may be necessary to filter the signal before performing the relay
experiment if the noise level is too large.

91



Paper II. Asymmetric Relay Autotuning – Practical Features for Industrial Use

0 10 20 30 40 50 60 70
−5

0

5

10

u,
y

0 10 20 30 40 50 60 70
−5

0

5

10

Time [s]

u,
y

Figure 19. Relay experiment for the process P(s) = 1/(s + 1)5. The upper plot
shows the signals when noise is added to the process output, while the lower plot
shows the corresponding noise-free simulation. The blue line shows the relay output,
the red line shows the process output.

4.5 Effects of Quantization
The resolution of A/D and D/A converters may influence the autotuner performance.
The largest issue is the resolution in the D/A converter, since it will change the
asymmetry level of the relay. A small unknown change in relay asymmetry can give
large deviations in the calculations of τ and Kp . To see the effect of quantization,
the test batch was simulated with a D/A converter that had a resolution of 10 bits
on the control interval [0,100]. The errors in τ are shown in Figure 20, where the
results are compared to a continuous D/A converter.

The results are worse for the less resolved D/A converter. The reason to the
difference can be understood from the example shown in Figure 21. This example
shows the worst case achieved in the test batch simulation. The process in the
example,

P(s) = e−0.7s

s(0.3s + 1), (24)

is an integrating process that should have τ = 0, but due to the quantization the
estimated value is τ = 0.16. The oscillations in the figure look fine, but still the
resulting model is bad. The relay amplitude before the D/A converter is shown in
blue while the actual control signal that enters the system is the turquoise line. The
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Figure 20. Boxplots of the absolute errors of τ, shown for two different resolutions
of the D/A converter.
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Figure 21. The effect of quantization in the D/A converter. The calculated control
signal u is shown in blue, while the output from the 10 bit D/A converter, uq , is
shown in turqoise. The process output y is shown in red. The final relay amplitudes
are d1 = 0.88, dq1 = 0.88, d2 = 0.44, dq2 = 0.49.

levels in this example are d1 = 0.88, dq
1 = 0.88, d2 = 0.44, dq

2 = 0.49, where the q
denotes that it is the quantized level. This gives that γ = 2 while γ q = 1.8. So we
think that we have an asymmetry level of 2 but in reality it is 1.8. Figure 22 shows
the implications of this on the estimated τ. Since the actual asymmetry level is
γ q = 1.8, the integrating system gets the half period ratio ρ = γ q = 1.8. Assuming
the curve where γ = 2 gives τ = 0.16 when the true τ-value is 0.

The problem with quantization can be resolved by having a higher resolution of
the converters, or by knowing the control signal levels that are actually sent to the
process. If we had known, in the example above, that the true value was γ = 1.8 and
used that in the calculations there would have been no problem.

4.6 Load Disturbances
Load disturbances that enter the system during the relay experiment can create prob-
lems. If the load disturbance is large, it may stop the process from oscillating and
no result is obtained. This will be obvious to the user and the experiment can be
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Figure 22. The τ curves corresponding to (9), plotted for the different asymmetry
levels γ = {1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4}. The points marked with red circles show the
difference between the value we should have obtained if we knew that γ = 1.8 and
the value we get when we think that γ = 2.

restarted, hopefully without any disturbances. If the load disturbance is small, we
get a problem similiar to the quantized D/A converter described in Section 4.5. Bad
parameter estimates are obtained, since the desired relay signal is not what actually
enters the process. If this is not noticed in the validation phase, bad controller param-
eters may be used on the process. It is therefore desirable to be able to detect if a load
disturbance is present. With a symmetric relay, load disturbances are easily detected
since the oscillations will become asymmetric. The magnitude of the disturbance
could be determined and the relay experiment could then either be restarted with a
bias to compensate for the load, or calculations could be modified to take account of
the disturbance. Some different approaches to handle load disturbances for symmet-
ric relay feedback are described in [Hang et al., 1993], [Shen et al., 1996a], [Park
et al., 1997] and [Sung and Lee, 2006].

When an asymmetric relay is used, the detection of static load disturbances is
more difficult, since there is no way to determine whether the asymmetry in the
oscillations comes from the relay or from a disturbance. In [Kaya and Atherton,
2001a] a method to find the parameters of a stable or unstable FOTD or SOTD
model with an asymmetric relay and a static load disturbance is presented. However,
the method requires knowledge of the static gain of the process in order to calculate
the magnitude of the load. The same methodology is used to estimate the parameters
of an IFOTD model in [Kaya, 2006]. Hence, a small static load disturbance is not a
big problem, if either the magnitude of the load disturbance or the process gain is
known. Usually that is not the case though, which makes a short experiment time of
the relay experiment even more important, since that decreases the risk of having a
load disturbance entering during the experiment.

4.7 Start in Non-Steady State
As stated earlier, it is assumed that the process is at the steady-state level (u0, y0)
when the experiment is started. In this section it is investigated how the results are
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affected if this assumption is violated. To make the investigations, a step change
in the reference signal was conducted with a reasonably well-tuned controller. The
relay experiment was started when the process output y had almost reached its
reference value. The error between the reference value and y at the starting point of
the experiment is denoted ye. After the relay experiment was done a load disturbance
was added to see the achieved controller performance. The controller in this case
was a PI controller tuned with the AMIGO rules [Åström and Hägglund, 2006] for
the obtained FOTDmodel. The results of the experiments are shown in two different
figures. In Figure 23 the relay experiment starts immediately when the error is small
enough. In Figure 24 the experiment starts with measurement of the noise level, as
described in Section 4.1.

As can be seen fromFigure 23 the resulting controller parameters are good for the
first two cases where the starting error was ye = 0.001 and ye = 0.01 respectively,
slightly worse for ye = 0.1 and really bad for ye = 0.5. In Figure 24 the results
for ye = 0.5 is much better. In this case the process reaches a steady-state during
the noise measurement phase. The reason why the result is still slightly worse than
for the upper plots is that the reference value used in the relay experiment is an
average of the y-values measured during the entire noise measurement phase and
hence slightly different from the steady-state level obtained.

To conclude the results for start in non-steady state, it is clear that you want the
system to have reached its equilibrium before starting the experiment. However, if
the system is almost at steady-state the results are still reasonable. From the lower
plots in Figure 23 and Figure 24 where ye = 0.5 it is obvious that the process is not
in steady-state and that the experiment should not yet be started, still we may get
reasonable results if the process is fast enough to reach steady-state during the noise
measurement phase.

5. Industrial Experiments

After the investigations of practical issues performed in simulations, it was time to try
the usefulness on an industrial system. The autotuner was implemented and tested
on an air handling unit provided by Schneider Electric Buildings AB in Malmö,
Sweden. Experiments were performed on two subsystems of the air handling unit,
one subsystem that controls the pressure in the supply air duct, and another subsystem
that controls the air temperature in the same duct.

5.1 Integration of the Autotuner in an Industrial System
To test the autotuner on the air handling unit, it was first implemented in Schneider
Electric’s software StruxureWareBuildingOperation. The autotuner implementation
was made as a script program in the Building Operation server. In the implementa-
tion phase, the inputs and outputs from the script program were connected to a test
system implemented as a function block program in the same server. This provided
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Figure 23. Results when the relay experiment is started at a non-steady state. The
error at the experiment start is ye = {0.001, 0.01, 0.1, 0.5}, listed from the top figure to
the bottom one. The resulting PI controller parameters achieved from the experiment
are K = {0.26, 0.26, 0.24, 0.75} and Ti = {3.38, 3.38, 4.05, 171}, listed from top to
bottom. At time 175 s a step load disturbance is added and the control performance
can be seen.
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Figure 24. Results when the relay experiment is started at a non-steady state. In this
figure the experiment starts with measuring the noise level for 10 s before the relay
starts. The error at the experiment start is ye = {0.001, 0.01, 0.1, 0.5}, listed from the
top figure to the bottom one. The resulting PI controller parameters achieved from the
experiment are K = {0.26, 0.26, 0.27, 0.24} and Ti = {3.38, 3.38, 4.03, 4.40}, listed
from top to bottom. At time 175 s a step load disturbance is added and the control
performance can be seen.
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Figure 25. Schematics of the air handling unit.

the possibility of code development and testing by simulations. The autotuner im-
plementation includes all the sequences of the relay feedback experiment shown in
Figure 3. The implementation uses the simple version of the autotuner, where the
experiment data is used to find an FOTD model or an ITD model, and parameters
for a PI/PID controller are tuned by the AMIGO rules.

An implementation of the PID controller already existed in the system. The
obtained controller parameters were manually entered into the PID controller during
operation. To use the implemented autotuner on the air handling unit, the inputs and
outputs from the script program, as well as the controller, were connected to the
physical inputs and outputs instead of the simulation model.

5.2 System Description
The schematics of the air handling unit is shown in Figure 25, and pictures of the
system are shown in Figure 26 and Figure 27. Outside air enters the system through
the duct with the blue arrow sign, to the left in Figure 26. This corresponds to
the lower left duct in the schematics. The air temperature in that duct is measured
by sensor T43. The air then enters a box consisting of filters, the rotational heat
exchanger and the fans shown in Figure 27. The heated air is then led through the
duct with the red arrow sign to the right in Figure 26, and enters the room from
the white outlet vents in the roof. The air temperature and pressure in that duct are
measured by sensors T11 and P11. If the temperature T11 is not sufficiently high
when the heat exchanger runs at full speed, there is an additional pumping system
circulating hot water to heat up the air. This system contains the pump P1 and valve
V21, but was not used during the experiments.

The exhaust air follows a similar path, but in the opposite direction. The air is
taken from the room through an intake in the roof. It then flows through the upper
duct that enters the box in Figure 26 from the right. The temperature and the pressure
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Figure 26. The air handling unit.

Table 1. Parameters from the pressure control experiment.

τ [-] Kp [Pa] T [s] L [s] K [1/Pa] Ti [s]

Exp. 1 0.71 3.56 2.50 6.07 0.059 3.23
Exp. 2 0.77 2.29 1.92 6.31 0.088 2.92

of the exhaust air are measured by the sensors T41 and P12. The exhaust air flows
through the heat exchanger where its temperature is used to heat up the inlet air, and
the exhaust air then leaves the building through the duct with the brown arrow sign
in Figure 26.

5.3 Pressure Control
The pressure control loop consists of the supply air fan SF1, positioned inside the
box, and the pressure sensor P11, positioned in the duct a few meters away from the
box. The term pressure in this paper refers to the gauge pressure, not the absolute
pressure. The control signal is normalized to a percentage of the full speed of SF1,
while the pressure is measured in Pascal. The reference value of the pressure was
250 Pa. Two relay experiments were performed on the system. The calculated model
and controller parameters for the two experiments are listed in Table 1. The data
from the second experiment is also shown in Figure 28. The experiment started with
40 s measurement of the noise. The figure shows that the signal is quite noisy, in
this experiment the noise level was measured to n0 = 6.51 Pa. With this noise level,
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Figure 27. The box contains the heat exchanger, filters and fans. The supply air
passes in the lower part, while the exhaust air passes in the upper part. The rotational
heat exchanger in the middle transfers heat from the exhaust air to the supply air.
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Figure 28. Experiment data from the pressure control loop. The normalized fan
speed is shown in blue, the pressure measurement in red. Note the different scales
and units on the axes.

the hysteresis value was set to h = 2n0 = 13.02 Pa. The sampling time used during
the experiment was ts = 0.1 s. The asymmetry level, convergence limit, maximum
and minimum deviations and the maximum relay deviation, were set according to
the default values in Appendix A.

Table 1 shows that the results of the different experiments are quite similar, with
the largest difference in the estimates of Kp . Since τ was large, a PI controller was
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Figure 29. Response to setpoint changes for the system with the controller tuned
from the experiment. The upper plot shows the measured pressure in red, and the
setpoint in black. The lower plot shows the control signal.

tuned, according to the scheme in Figure 2. The second experiment gave a somewhat
more aggressive controller tuning than the first one.

The controller parameters from the second experiment were used to investigate
the obtained controller performance. The controller used a sampling period of 1 s,
and had a dead zone of 5 Pa. Results from step changes in the reference value are
shown in Figure 29. The step response results are satisfactory. There is an overshoot,
but that can be reduced by filtering the setpoint. The presence of the dead zone is
clearly visible from the long periods of constant control signal and process output
deviations from the setpoint.

Step load disturbances of unknown sizes were introduced by manually adjusting
a damper. The response to these, shown in Figure 30, are also satisfactory. The effect
of the load disturbances are removed completely in approximately 20-25 s with small
overshoots.

5.4 Temperature Control
In the temperature control experiment the supply air temperature T11 is controlled by
the rotational heat exchanger HEX. The control signal is normalized to a percentage
of the full rotation speed of the heat exchanger, and the temperature is measured
in ◦C. The temperature of the inlet air was measured by T43 and varied a lot
depending on the outdoor temperature. The temperature control experiments were

101



Paper II. Asymmetric Relay Autotuning – Practical Features for Industrial Use

0 20 40 60 80 100 120 140 160 180

220

250

280
y

[P
a]

0 20 40 60 80 100 120 140 160 180

75

80

85

Time [s]

u
[%

]

Figure 30. Response to load disturbances. The upper plot shows the measured
pressure in red, and the setpoint in black. The lower plot shows the control signal.
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Figure 31. The temperature of the inlet air, Tin, measured by sensor T43.

made between 10.30 AM and 1.30 PM on a sunny spring day. During this time
period the inlet air temperature measured by T43 varied according to Figure 31.
This temperature deviation is treated as a load disturbance and caused some trouble
during the experiments.

One relay experiment is shown in Figure 32. The noise was measured for 40 s
and the measured noise level was n0 = 0.045◦C. This gave a hysteresis level of
h = 0.09◦C. The same default values as for the pressure control experiment were
used, except for a change in the convergence limit from ε = 0.01 to ε = 0.05.
The reason for this change is that the varying load from the inlet air temperature
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Figure 32. A relay experiment performed on the temperature control loop. The
blue line shows the normalized speed of the heat exchanger, and the red line shows
the supply air temperature. Note the different scales and units on the axes.

makes it even more crucial to keep the experiment time short. However, the higher
steady state level after the experiment shows that the drift in temperature has still
influenced the result. The measurements from the experiment gave that τ = 0.20
and the estimated FOTD model was

P(s) = 0.035
35.8s + 1

e−8.8s . (25)

From this model the parameters for a PI controller were calculated to K = 26.6◦C−1

and Ti = 29.2 s. The PI controller was then connected and some setpoint changes
were performed to check the obtained controller performance. During the step tests
the controller had a sampling time of 1 s and the dead zone was 0.025◦C. The
results from the step tests are shown in Figure 33. The reason why the setpoint is not
constant during the steps is that it is continuously updated by an equation related to
the outdoor temperature. The results from the step responses show that the obtained
controller performs reasonable, even though the experiment was disturbed by the
load that may have deteriorated the accuracy of the estimated model.

As an attempt to decrease the effect of the load disturbance, another relay
experiment was done with higher allowance on the relay amplitudes, umaxdev = 20.
The data from this experiment is shown in Figure 34. This experiment showed
another problem with the process. The behavior of the heat exchanger is not linear,
so increasing the speed from 60% to 80% does not double the effect compared to
the previous increase from 60% to 70%. This nonlinearity is also seen in the step
responses in Figure 33. The last step change, which is in the higher control signal
range, demands much more control signal than the previous three steps, even though
the steps are of the same size. In the relay experiment this nonlinearity changes the
“true asymmetry level”. In the experiment we used the asymmetry level γ = 2, but
since the step of 20 units up does not have the double effect of 10 units down, the
true value of γ is less than 2. This decrease in true asymmetry level is reflected in
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Figure 33. Response to setpoint changes. The upper plot shows the supply air
temperature in red, and the setpoint in black. The lower plot shows the control signal.

the half-period ratio ρ, and as can be seen in Figure 34, the half-periods ton and toff
are more or less equal in this experiment. Using this data, assuming γ = 2, would
give a value of τ close to 1 as for a delay dominant process. Since our previous
experiments had shown that this wasn’t correct, the model was disregarded.

5.5 Discussion
The experiments on the air handling unit gave satisfactory results for the pressure
control loop. For the temperature control loop some problems occured due to load
disturbances and nonlinearities in the system. The obtained controller did, however,
show good results for the setpoint changes. The experiments also gave some new
insights. One obvious insight is that default values cannot be used unless all signals
are normalized. As an example consider the hysteresis value, which default value
used in simulations was h = 0.1. In these experiments the scales of the physical
entities were very different and in the pressure control the noise level was measured
to n0 = 6.51 Pa, while in the temperature control the noise level was n0 = 0.045◦C,
where parts of it probably were subject to drift in inlet air temperature rather than
noise. To use the same hysteresis level for both these experiments would not make
sense.

Another remark is the use of dead zones, instead of low-pass filters, to han-
dle noise in many industrial controllers. The dead zone and controller need to be
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Figure 34. A relay experiment that suffers from the nonlinearities in the system.
The blue line shows the normalized speed of the heat exchanger, and the red line
shows the supply air temperature.

matched to give good results. However, the autotuner could give suggestions of
either a suitable dead zone or low-pass filter time constant for the controller. In the
temperature control loop the initial controller had a dead zone of 0.5◦C, this was
way too high for the rather fast PI controller obtained from the experiment, and the
system started to oscillate due to the dead zone. The dead zone was then adjusted
to the typical noise levels, and the same controller showed no sign of oscillatory
behavior in the experiment with the setpoint changes.

The temperature control experiments indicate that it would be valuable to add
gain scheduling to deal with the nonlinearity in the heat exchanger. The temperature
experiments also show the importance of evaluation by the operator. If the experiment
with the higher relay amplitudes would have been performed without any evaluation,
completelywrongmodel parameterswould have been obtained.Now the nonlinearity
in the system was discovered by the step responses, and other relay experiments gave
very different model parameters. Of course the aim of the autotuner is that the results
will be good at the first attempt, but with unknown load disturbances or nonlinearities
that may not be the case, and some kind of test of the obtained controller performance
is therefore necessary.

6. Conclusions

This paper proposes a simple asymmetric relay autotuner for use in the industry. The
asymmetric relay function, together with some added practical features, results in
an improved version of the classic relay autotuner. The improvement does not come
with any added complexity or time-consumption compared to the original one. The
autotuner could be further improved, at the cost of more computation, by using
an advanced version with more complex modeling through parameter estimation
methods and controller design by optimization. The improved excitation provided
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by the asymmetry is beneficial also for the parameter estimation methods. However,
the simple version used in this paper showed good results both in simulations and
industrial tests.

The main disadvantage of the proposed autotuner is that it can be sensitive to
uncertainties in the asymmetry level. These could be caused by either load distur-
bances, nonlinearities or quantization in converters. The way to handle this is to
keep the experiment times short, the amplitudes small and to know the actuation
levels. It, however, emphasizes the need to evaluate the obtained controller tuning.
The need for short experiment times to avoid load disturbances is very important,
and something that is sometimes forgotten in methods that require tens of oscillation
periods in order to get the perfect model. Those algorithms are not useful in practice.

The proposed autotuner contains logic and algorithms to automatically set all
parameters, find out the sign of the process gain and adapt the relay amplitudes to
appropriate levels. It is shown that the results are good even in noisy environments
and if the system has not really reached steady-state when the experiment is started.
The tuner uses a decision scheme based on the normalized time delay to decide
on model structure and controller type (PI or PID). The autotuner could also sug-
gest sampling intervals, appropriate dead-zones or filter constants for the obtained
controller from the information achieved in the experiment.

All in all, this paper provides a simple, yet fully functional, autotuner that gives
well-performing PID controllers both in simulations and for real industrial systems.
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A. Default Parameters

This section lists the parameters used for the relay experiment if nothing else is
stated. Most of the parameters are discussed and explained earlier in the paper, but
some parameters need to be commented here. The Large process value decides
whether it is desired to have a larger process deviation up or down. The Ramp up
time is the time it takes for the relay amplitude to ramp up to the maximum amplitude
during the startup.

Explanation Notation Value

Asymmetry level γ 2
Convergence limit ε 0.01
Hysteresis h 2n0
Hysteresis noise-free h 0.1
Large process value Up
Maximal control signal deviation umaxdev 10
Maximal process deviation ymaxdev 12h
Minimal process deviation ymindev 2h
Noise level n0 0
Noise measurement time [s] 10
Ramp up time [s] 5
Sample time [s] ts 0.01

B. The Test Batch

The test batch used is the one described in [Åström and Hägglund, 2006]. The
processes in the batch are representative for many of the processes encountered in
the process industry. The batch contains both integrating, lag-dominant and delay-
dominant processes. In total the batch consists of 134 processes, divided into nine
different process types. All the processes included in the batch are listed below.

P1(s) = e−s

1 + sT
,

T = 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3, 1.5, 2,
4, 6, 8, 10, 20, 50, 100, 200, 500, 1000
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P2(s) = e−s

(1 + sT)2 ,

T = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 1, 1.3,
1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

P3(s) = 1
(s + 1)(1 + sT)2 ,

T = 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 2, 5, 10

P4(s) = 1
(s + 1)n ,

n = 3, 4, 5, 6, 7, 8

P5(s) = 1
(1 + s)(1 + αs)(1 + α2s)(1 + α3s)

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

P6(s) = 1
s(1 + sT1) e

−sL1, T1 + L1 = 1

L1 = 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9, 1.0

P7(s) = 1
(1 + sT)(1 + sT1) e

−sL1, T1 + L1 = 1

T = 1, 2, 5, 10
L1 =0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

P8(s) = 1 − αs
(s + 1)3 ,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1

P9(s) = 1
(s + 1)((sT)2 + 1.4sT + 1),

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
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Paper III

Short and Robust Experiments in Relay
Autotuners

Josefin Berner Kristian Soltesz

Abstract

This paper demonstrates how second-order time-delayed models adequate for
PID controller synthesis can be identified from significantly shorter relay ex-
periments, than used in previous publications to obtain first-order time-delayed
models. Apart from having good noise robustness properties, the proposed
method explicitly addresses non-stationary initial states of the dynamics to be
identified, and handles constant load disturbances.

© 2017 IEEE. Originally published in IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA) , Limassol, Cyprus, September 2017.
Reprinted with permission. The article has been reformatted to fit the current layout.
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1. Introduction

1.1 Background
PID control is a widespread, well-studied, and well-understood technology, and its
applications include almost all areas where closed-loop controllers are employed.
There exist several text books (see for example [Åström and Hägglund, 2006]) on
the topic, and several tuning rules, ranging from simple rules of thumb [Ziegler
and Nichols, 1942], to optimization-based alternatives like e.g. [Garpinger and
Hägglund, 2008].

All commonly used PID tuning rules rely on dynamic models of the process
to be controlled. These models are almost always assumed to be linear (or local
linearizations of nonlinear dynamics). Tuning of the PID controller consists in the
choice of three parameters. Due to its low complexity, the controller is most often
used for processes that can be adequately described by low-order models, such as
the first-order time-delayed (FOTD) or second-order time-delayed (SOTD) models.
If the dynamics cannot be adequately approximated by second order dynamics, it is
advisable to use a more advanced controller type.

Since the tuning of PID controllers is a well-studied problem, the main chal-
lenge is often the acquisition of a model of the dynamics to be controlled. The
main approaches for arriving at process models are first principle modeling, system
identification, or a combination of the two. The former requires insight, while the
latter relies on proper experiment design. For these reasons both approaches tend to
be expensive, in terms of (experienced control engineer) man hours.

The above has motivated the development, and subsequent success, of automatic
tuning procedures, which rely on automatic generation of a system identification
experiment, matched to the dynamics of the process to be modeled. The most
wide-spread approach is the relay auto tuner, introduced in [Åström and Hägglund,
1984]. The experiment is achieved by closing a negative feedback loop over a relay
nonlinearity, as illustrated in Figure 1. In its original form, this provides an estimate of
the critical frequency of the process, and its associated gain. This information is used
to find controller parameters. Several extensions to the relay experiment procedure

Relay+ P + F(s)

−1

u
d

yr
n

Figure 1. Block diagram of the identification setting, showing process P, asym-
metric relay, filter F, identification input u and output y, load disturbance d, and
measurement noise n.
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have been proposed to identify FOTD models (and sometimes also SOTD models)
in for instance [Kaya and Atherton, 2001; Lin et al., 2004; Luyben, 1987]. By using
all data points, rather than only peak values and associated times, it is possible to
successfully identify the models in a more noise-robust way. It was demonstrated
in [Soltesz et al., 2016] that it suffices to use very short experiments – even under
significant measurement noise – if the experiment starts in stationarity, and executes
in the absence of load disturbances. These assumptions limit the applicability, as it
is hard to ensure perfect stationarity prior to starting the relay experiment. It is also
generally hard to safeguard for the presence of load disturbances during the relay
experiment.

In this paper we present an identification procedure, which explicitly takes non-
stationary initial states into account. It also handles the presence of constant load
disturbances during the experiment. Thus, it provides a practically applicable exten-
sion to the relay autotuner, allowing for the identification of both FOTD and SOTD
models under realistic experiment conditions, while keeping the experiment time
short, and the number of heuristically determined experiment parameters low. Paired
with a PID synthesis method of the user’s choice, the presented method provides a
complete autotuner.

1.2 Setting and Assumptions
It is assumed that the process dynamics P, to be identified, can be adequately
modeled by an SOTD system P̂, see (2).

Without loss of generality it can be assumed that y = 0 and u = 0 at the operating
point of interest. Other operation points can be handled after an affine transformation.
We also assume that the signals are normalized. Usually that refers to both 0 < y < 1
and 0 < u < 1, but since we will be oscillating around our operating point zero, we
instead rescale the interval to −5 < y < 5 and −5 < u < 5. The time units are also
just a matter of scaling, in this paper we will consider time units to be seconds, but
it could just as well be minutes or hours depending on the application.

Both u and y are synchronously zero-order-hold sampled, with period ts . The
choice of ts is made so that the total experiment will consist of approximately 250
samples. This is done to show that a small data buffer size is sufficient to perform
the experiment, but faster sampling could of course be used if possible. Effects of
discretization are neglected based on the assumption that a modern AD converter,
typically with at least 16 bit resolution, is used.

2. Experiment

2.1 The relay
An asymmetric relay function, as defined in [Berner et al., 2016a] with an asymmetry
level γ = 2, is used in this paper. The experiment will cause y to vary within an
interval around 0. A large interval increases the signal-to-noise ratio, which is
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obviously positive. However, there are several situations where it is not tolerable to
move y arbitrarily far from 0 (due to constraints on the process state). For nonlinear
processes, large variations may take y outside the interval around 0, within which the
process can be adequately described by linear dynamics. Ideally, it would therefore be
preferable to specify bounds on the admissible interval. However, this is not possible
since P of Figure 1 is unknown. Consequently, we will instead specify an admissible
interval for u. The relay amplitudes are set in the startup of the experiment, as in
[Berner et al., 2016a], but are restricted to the admissible interval. In this paper
we have used maximum values of u that correspond to a control signal interval of
umax − umin = 1, i.e., 10% of the control signal range. Consequently the larger relay
amplitude is restricted to 0.67 and the smaller to 0.33 for the given asymmetry level
γ = 2. For a well-designed process the steady-state gain between actuator and sensor
should be close to unity, which would result in y varying within 10% as well. The
startup procedure is supposed to take care of the cases where the process is not as
well-designed. However, if the user has other information or restrictions, it could be
used to set the admissible interval of u accordingly.

The main experiment used throughout this paper starts with measuring the noise
level and setting a hysteresis band, and is terminated once the relay has switched
M = 3 times. The number of relay switches constitutes a trade-off between input
excitation (both in term of spectral concentration and signal-to-noise ratio) and
experiment duration. A motivation to the short experiment duration is given in
Section 4.

2.2 Noise and Disturbances
The sensor model consists of an additive noise source n, which can be regarded
stationary and white in the frequency band of interest for identification. The noise
assumption is motivated by the nature of commonly occurring (thermal) sensor
noise. The noise is measured during the startup of the experiment, and the hysteresis
level h is then set to 3 times the noise level to prevent the noise from causing the relay
to chatter. Since a sufficiently high signal-to-noise ratio is required, and the signal
is restricted to lie within the admissible interval, there may be a need of filtering
the noise if its amplitude is too high. This could be done by introducing a low-pass
filter F(s), as in Figure 1. By using the filtered output signal, together with the input
signal run through the same filter, the identification could be performed in the same
way as for the unfiltered case.

Ever since the introduction of the relay autotuner in [Åström and Hägglund,
1984] it has been assumed and required that the user starts the experiment when the
system is in steady-state. In [Berner et al., 2016a] it was shown that small deviations
from steady-state did not deteriorate the resulting models that much, as long as
steady-state was reached during the startup of the experiment. To ensure that the
system is started in total stationarity is not practically possible, and to know what is
a sufficiently small deviation is hard. Therefore a way of taking care of initial states
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Table 1. Experiment parameters used in simulation.

Parameter Value Description

γ 2 Relay asymmetry

∆umax 1 Control signal interval, umax − umin

M 3 Number of relay switches

N ≈ 250 Number of samples per experiment

ts Sample time, adjusted to get N ≈ 250

h 3 Hysteresis to noise ratio

σn 0.1 Noise standard deviation

v0 0.08 Offset in control signal for initial state x0

separate from zero is added to the identification method in this paper and described
in Section 3.4.

Unknown load disturbances are a large problem for relay experiments. This is the
main motivation for keeping the experiment time as short as possible. This method
is, however, not as sensitive to load disturbances as for instance the one in [Berner
et al., 2016a]. If the constant load disturbance has been present for a long time it will
only change the nominal control signal level, which will not affect the experiment
at all. If the load disturbance enters just before (or exactly at) the starting point of
the experiment, it will have the same effect as a change in initial state, which the
proposed method handles explicitly. If, on the other hand, the load disturbance enters
or changes during the experiment it will still cause problems. The risk for this to
occur is limited by the very short experiment duration.

2.3 Experiment parameters
The parameters used for the experiments in Section 4 are listed in Table 1. In addition
to the parameters in the table, initialization of the experiment consists of u = 0 during
one time unit, to characterize measurement noise, followed by u being exponentially
increased towards umax during the next time unit. Those timings differ from the
parameters used in [Berner et al., 2016a] but are reasonable for these experiments.

The initial state is set to

x0 = −A−1Bv0∆umax, (1)

where v0 is the control signal corresponding to x0 in stationarity, and A and B are
the state space matrices of the processes used in the simulation examples.
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3. Identification

3.1 Model Parametrization
The models we consider in this paper are of the form

P̂(s) = b1sm−1 + b2sm−2 + ... + bm
sn + a1sn−1 + ... + an

e−sL, (2)

where 1 ≤ m ≤ n ≤ 2. The restriction n ≤ 2 allows FOTD models, SOTD models,
as well as second-order time-delayed models with a zero (SOTDZ). With the chosen
parametrization all these model types could be integrating by setting an = 0.

As motivated in Section 2.2, we want to estimate the initial state(s) x0 in addition
to the model parameters, to be robust toward not starting in total stationarity. The
parameters that will be estimated are therefore θ =

[
b a L x0

]
, where a =[

a1 . . . an
]
, b =

[
b1 . . . bm

]
, and x0 =

[
x1(0) . . . xn(0)

]
.

3.2 Output Error Formulation
The output data from the experiment on the process P is collected in y =[
y1 . . . yN

]>, and the corresponding output data vector for the estimated process
P̂ is denoted ŷ.

In this paper an output error (L2) method is employed to identify a θ, which
(locally) minimizes the cost

J(θ) = ts
2
ε>ε, (3)

where ε = ŷ − y. An interior-point method1 [Byrd et al., 2000] is employed to
find a (local) minimum of (3). Like most local optimization methods, convergence
properties of the proposed method are significantly improved if exact expressions
for the Jacobian

∇J(θ) = tsε(∇ ŷ)>, (4)
and corresponding Hessian

∆J(θ) = ts
2
∆

(
ε>ε

)
= ts(∇ ŷ)>∇ ŷ + tsε>∆ ŷ, (5)

are available (as opposed to finite-difference approximations). In the context of this
paper, the nabla operator is defined as

∇ =
[
∇b ∇a ∂

∂L
∇x0

]
, (6)

where
∇b =

[
∂

∂b1
. . .

∂

∂bm

]
, (7)

1 The method has been invoked from the Matlab fmincon function with solvers trust-region-
reflective and sqp for results in this paper.
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and where ∇a and ∇x0 are defined analogously. The Laplace operator is defined
through the outer product ∆ = ∇>∇.

Based on the reasonable assumption that ε and ∆ ŷ are generally uncorrelated,
while (∇ ŷ)>∇ ŷ � 0, it was suggested in [Åström, 1980] to approximate the Hessian
by the positive semi-definite term, when considering output error L2 problems. We
will adopt this approximation, and with a slight abuse of notation (re)define

∆J(θ) = ts(∇ ŷ)>∇ ŷ. (8)

3.3 State-space formulation
To find the gradients needed for the Jacobian (and Hessian) for the identification
method we will consider a state-space representation of an augmented system, with
output

ŷe =

[
1 ∇b ∇a ∂

∂L

]
ŷ, (9)

that is, a system that in addition to ŷ also outputs its gradients with respect to the
model parameters.

We will be using the notation 0i×j for the zero matrix with i rows and j columns,
and Ii×j for the identity matrix where, assuming i ≤ j, the last j − i rows have been
removed. If only one index is given, the matrix is assumed to be square.

The un-delayed version of the original system (2) can be written in state-space
form as 

A B

C D

 =

−a 1

In−1×n 0n−1×1

b̃ 0


, (10)

where
b̃ =

[
01×n−m b

]
(11)

is a zero-padded version of b, matching the dimension of a.
Since the experiment data u and y are zero-order-hold sampled, it will suffice

to consider the correspondingly discretized version of (10), with system matrices
{Φ, Γ, b̃, 0}, where

{Φ, Γ} =
{
eAts ,

∫ ts

0
eAtdtB

}
. (12)

Our model is thus given by

x(k + 1) = Φx(k) + Γud(k), x(0) = x0,

ŷ(k) = b̃ (x(k) − x0) ,
(13)

where ud(k) are elements of
ud = q−kL u. (14)
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In (14), q−1 is the (non-circular) backward shift operator, and kL the integer closest
to L/ts .

The contribution b̃x0 from the initial state to the output y is subtracted, to be
consistent with the experiment described in Section 2, which is expected to start
with the output of P being 0.

The initial state estimate x0 lacks interpretation, as generally, the structure (or
even order) of our model (13) does not match that of the process P to be identified.
In fact, the only use of x0 is to improve the other parameter estimates.

Expressions for the sensitivities with respect to the model parameters have
been presented previously in [Soltesz et al., 2010]. Results for the discrete time
counterparts are found in [Åström and Bohlin, 1966]. In this paper, simplified
expressions of those in [Soltesz et al., 2010], valid under the equi-temporal zero-
order-hold sampling assumption, are used. To make the sensitivity computations
tractable, we assume that u is independent of x. This is a fair approximation, given
the experiment of Section 2, where the process operates in open-loop, except at the
time instances when the relay switches.

The matrix
ŷe =

[
1 ∇b ∇a ∂

∂L

]
ŷ (15)

is obtained as the output of the system

z(k + 1) = Φe z(k) + Γeud(k),
ŷe(k) = Ce(z(k) − z0) + Dew(k),

(16)

where the extended state vector z is

z =

[
x
−∇a y

]
, (17)

z0 is the zero padded initial model state

z(0) =
[
x0

0n×1

]
, (18)

and the system matrices of (16) are the discretized counterparts of


Ae Be

Ce De

 =



A 0n B[
b̃

0n−1×n

]
A 0n×1

C 01×n D[
0m×n−m Im

]
0m×n 0m×1

0n −In 0n×1

r̃ 01×n q



. (19)

118



3 Identification

The extended system matrices {Φe, Γe} relate to {Ae, Be} as {Φ, Γ} relate to {A, B},
see (12). The row vectors q and r̃ in (19) are used in the computation of ∂ ŷ/∂L.
They are defined through the quotient q and remainder r of the polynomial division,
or equivalently the deconvolution, of the vectors

[−b̃ 0
]
and

[
1 a

]
, where r̃ is r

with its first element removed. The origin of these expressions is found in [Soltesz
et al., 2010].

3.4 Initial State Sensitivity
By definition ∇x0 x(0) = In. The assumption made in Section 3.3, that u is indepen-
dent of x, results in ∇x0ud being uniformly zero, and from the state update equation
of (13) we consequently obtain ∇x0 x(k) = Φk . Combining this with the output
equation of (13), and again utilizing that ∇x0 x(0) = In, yields ∇x0 ŷ(k) = b̃Φk − b̃.
This expression can be obtained recursively through simulation of the system

w(k + 1) = Φ>w(k), w(0) = b̃
>
,

∇x0 ŷ(k) = w>(k) − b̃.
(20)

3.5 Calculating the gradient expressions
The expressions for the gradients have been previously derived in [Soltesz et al.,
2010], but to make it clearer for the readers we exemplify the calculations in a
slightly different way here. The SOTDZ case, where n = m = 2, gives

Y =
b1s + b2

s2 + a1s + a2
Ud, (21)

where the delayed input is defined as Ud = e−sLU. By introducing the states

X1 =
s

s2 + a1s + a2
Ud, (22)

X2 =
1

s2 + a1s + a2
Ud, (23)

(21) can be written on state-space form as

Ûx =
[−a1 −a2

1 0

]
x +

[
1
0

]
ud

y =
[
b1 b2

]
x,

(24)

which corresponds to the system in (10). To find the gradients we extend the state-
space system to get the output vector

ye =

[
y ∇b y ∇a y ∂y

∂L
∇x0 y

]
. (25)

119



Paper III. Short and Robust Experiments in Relay Autotuners

The gradient with respect to b is given by

∂Y
∂b1
=

s
s2 + a1s + a2

Ud = X1,

∂Y
∂b2
=

1
s2 + a1s + a2

Ud = X2,

(26)

hence the state-space representation for the output ∇b y is the same as for y with
exception that the C-matrix is now I2.

The gradient with respect to a is given by

∂Y
∂a1
= −s

b1s + b2

(s2 + a1s + a2)2
Ud = − s

s2 + a1s + a2
Y,

∂Y
∂a2
= − b1s + b2

(s2 + a1s + a2)2
Ud = − 1

s2 + a1s + a2
Y .

(27)

By introducing the additional states

z1 = − ∂y
∂a1

, z2 = − ∂y
∂a2

,

we get
Ûz1 = −a1z1 − a2z2 + y = −a1z1 − a2z2 + b1x1 + b2x2

Ûz2 = z1.
(28)

The state-updates in (28) coincides with those for z in (19), and since the output
equals −z the C-matrix is −I2.

The gradient with respect to L is

∂Y
∂L
= −s

b1s + b2

s2 + a1s + a2
e−sLU (29)

The numerator can be rewritten as

b1s2 + b2s = b1(s2 + a1s + a2) + b2s − b1a1s − b1a2 (30)

resulting in
b1s2 + b2s

s2 + a1s + a2
= b1 +

(b2 − b1a1)s − b1a2

s2 + a1s + a2
. (31)

This gives the following expression for the gradient:

∂Y
∂L
= −b1Ud − (b2 − b1a1)s − b1a2

s2 + a1s + a2
Ud

= −b1Ud − (b2 − b1a1)X1 + b1a2X2. (32)

The quotient b1 becomes part of a direct term, while the remainder from the poly-
nomial division enters as the C-matrix of the original states x. Since the polynomial
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division in (31) is equal to the deconvolution of the vectors
[−b̃ 0

]
and

[
1 a

]
this is in accordance with (19).

The gradient with respect to x0 is simulated from a separate system, as described
in Section 3.4.

3.6 Intializing the identification
The identification method needs to be started with an initial guess of the parameter
vector θ. Unfortunately, starting from the zero-vector, as would be the first attempt,
does not always work out well. Most of the times a good model is found from
that starting vector, but sometimes the algorithm get stuck in another point. By
using two different solvers in the Matlab fmincon method some of these problems
were removed, but still there is a need for initializing the identification differently.
We have chosen to initialize the system by starting the FOTD estimation from the
zero-vector, as well as a number (in this study 30) of randomly chosen

[
b a L

]
vectors. The reason for taking random points instead of a grid of the parameters, is
that some parameters may bemore significant than others, and the random pick gives
more options for each parameter, as described in [Bergstra and Bengio, 2012]. The
interval for the random choices were restricted with help from the maximum time
delay Lmax, and normalized time delay τ, which can both be roughly estimated from
the obtained half-period intervals. Lmax is simply chosen as the shortest duration
between two consecutive relay switches. For the estimate of τ we refer to [Berner
et al., 2016b]. However, that method requires convergence of the experiment, and
does not support x0 , 0, which suggests that the value of τ we obtain here is very
approximate.

The initialization of the SOTD model is based on the obtained FOTD model,
and the initialization of the SOTDZ model is based on the obtained SOTD model.

The estimate of the initial state x0 is initialized to zero for the FOTD model, and
then either started from zero, or based on the obtained x0-estimate, for the higher
order models.

3.7 Model Selection
Both an FOTD, an SOTD and an SOTDZ model are estimated for each process.
The choice of which model to use is then based on the Akaike Information Criteria
(AIC) [Akaike, 1974]. The chosen model is the one with lowest value of

JAIC = log(J) + 2p
N
, (33)

where p is the number of model parameters and N the number of data samples. The
AIC is known to sometimes choose over-parametrized models, and there may be
better model selection tools, but that is not the focus of this paper.
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Experiment

• Asymmetric relay function
• 3 switches - really short!
• Possible to start from non-steady

state
• Automated startup and parameter

choices

Identification

• Estimates model parameters and
initial states, θ =

[
b a L x0

]

• Minimizing the cost (3) using an
interior point method, with gradients
obtained from simulation of the
extended system (19).

• Model selection is based on Akaike
Information Criteria.

Outcome
• Datasets of t, u,

and y

Outcome
• Models: FOTD,

SOTD, SOTDZ,
Best

Figure 2. Schematic summary of the proposed experiment and identification
method.

4. Simulation Study

The proposed method, briefly summarized in Figure 2, is evaluated by four example
processes from the test batch in [Åström and Hägglund, 2006], namely:

P1 =
1

(s + 1)(0.1s + 1)(0.01s + 1)(0.001s + 1), (34)

P2 =
1

(s + 1)4 , (35)

P3 =
1

(0.05s + 1)2 e−s, (36)

P4 =
1 − 0.5s
(s + 1)3 . (37)

These examples were chosen due to their differing properties. P1 is lag-dominated,
P2 is balanced, P3 is delay-dominated, and P4 is non-minimum phase. P1–P3 have
been used as example processes in several other papers, for instance [Berner et al.,
2016b].

The outputs from the experiments are shown in Figure 3. As can be seen, the
experiments are short and noisy, but the obtained models fit the data very well.
It can be seen for P2 and P4 that the FOTD models do not perfectly fit the data,
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Figure 3. Outputs from the experiments and identified models. The different sub-
plots show P1, P2, P3, and P4 from top down.
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while the best models seem to do. The "best model" was chosen using AIC, see
Section 3.7. Figure 4 shows Bode plots of the different estimated models, together
with those of the processes. The estimated models constitute good approximations
of the processes, for frequencies up to phase lags of −180◦, which are the relevant
frequencies for PID control. The only exception is that the FOTD model is chosen
as the best model for P1 even though it is seen that the SOTD model follows the
magnitude curve much better. This issue will be discussed further in Section 5.

The benefit of using the initial state estimation is demonstrated in Figure 5. Here
the best models obtained when x0 is being estimated are compared to the best models
when it is not. While the assumption that x0 = 0 yields acceptable results in some
cases, the models generally improve when x0 is explicitly estimated.

Estimation of the initial state(s) could introduce problems, since it adds more
parameters to be estimated, and model dynamics may be wrongly interpreted as ini-
tial state(s). Therefore we also investigated the case where the initial state estimation
was active while the experiment started in stationarity. The results from this test
showed a slight deterioration in one of the obtained models, while the other three
were satisfactory. To avoid this possible problem the models could be identified both
with and without the initial-state estimation active, and then the best model could
be picked according to AIC, as is done for the different model orders.

Another issue to consider is whether the experiments are sufficiently long or if
the results would improve from longer experiments. In Figure 6 the obtained results
are compared to those from experiments utilizing 5 relay switches. As can be seen
the difference in obtained models between the different experiment lengths are very
small.

5. Discussion

The simulation study shows that FOTD and SOTDmodels can be verywell estimated
even in the presence of noise and non-stationary starting conditions, including
constant load disturbances. The limits for the initial states are mainly that they
cannot be so large that the "true" nominal level is close to (or outside) the hysteresis
limits. If it is, the output may leave the hysteresis band on the wrong side, which
could cause a non-oscillating experiment.

The model selection by AIC does not always give the best result. As shown in
Figure 4, P1 gets an FOTD as its best model, while P2 − P4 get SOTD models.
For P1 the plot indicates that the SOTD model is actually better and should have
been chosen. On the other hand, P3 would be just as good with the FOTD model,
but there the SOTD model is chosen instead. A large part of the obtained cost
is due to the large noise level, which makes the relative difference between the
obtained models rather small, and sometimes that results in the "best" model not
being picked. A possible way to handle this more robustly is to include information
about the normalized time delay in the model choice. In [Åström and Hägglund,
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Figure 4. Bode plots of the processes and identified models. The true process is
shown in solid black, the FOTD model is shown in dashed-dotted blue, the SOTD
model in dashed cyan, and the SOTDZmodel in dashed-dotted green. The best model
according to AIC is shown in dashed red.
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Figure 5. Bode plots of obtained models for the example processes. The estimation
of the initial state(s) x0 was active in the red dashed model and inactive in the blue
dashed-dotted model. The true process is shown in solid black.
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Figure 6. Bode plots of the obtained models for the example processes. The best
model from an experiment of 3 switches is shown in dashed-dotted blue, and 5
switches shown in dashed red. The true process is shown in solid black.
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2006] and [Berner et al., 2016b], it is discussed how delay-dominated systems like
P3 are sufficiently described by an FOTD model, while lag-dominated systems like
P1 could sometimes be much better described by SOTD models.

One would think that P4 should get an SOTDZ model as it can capture the non-
minimum-phase zero. However, the cost was exactly the same for the SOTDZmodel
as for the SOTD model, and hence not low enough to make it the chosen model
since it has more parameters. Apparently the experiment is not showing the non-
minimum-phase behavior enough, or its influence is instead interpreted as a different
initial state or included in the time-delay. Since the output data fit of the SOTDmodel
is already more or less perfect, the feeling is that it cannot be improved much by
the SOTDZ model, and additional tests on finding zeros from the experiment are
not showing very promising results. Due to this, our recommendation is to stick to
estimating FOTD and SOTD models only. If an SOTDZ model is really needed, for
instance if the process has slow zeros that need to be cancelled out by the controller,
the experiment needs to be re-designed to better capture the characteristics of the
zeros.

We want the experiment to contain at least an entire oscillation period, and
increasing the experiment length did not change the obtained models much, which
implies that a duration of three switches is sufficient. The short experiment length
prevents the risk of disturbance changes during the experiment and is therefore
important.

6. Conclusions and Future Work

The proposed method works well in finding FOTD and SOTDmodels from short ex-
periments. The experiments can be started without waiting for steady-state since we
estimate the initial states, and are ended without waiting for limit cycle convergence.
Constant load disturbances that enter before the experiment are taken care of, but if
something happens during the experiment we could still be in trouble. That’s why
the really short experiment time is beneficial. The obtained models are sufficient for
PID control. By improving the model selection, the proposed method could yield
even better results.

The proposed experiment and identification needs to be combined with a tuning
method to result in a complete autotuner. This should then be evaluated and compared
to other autotuners, preferably on real-world processes.
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Paper IV

An Experimental Comparison of PID
Autotuners
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Abstract

In this paper two novel autotuners are compared with two industrially available
ones. The aim is to see if the research frontline can improve the industry
standard of today. Experiments are made on three laboratory processes with
different characteristics. Two lag-dominated processes of which one is a level
control problem with fast dynamics, and one a temperature control problem
with slow dynamics, as well as one delay-dominated level control process.
Both the experiments and the obtained controller performances are evaluated
and discussed. The results show that the performance of the state-of-the-art
industrial autotuners can be significantly improved.

Keywords: PID control, Automatic tuning, Process industry, Relay feed-
back, Comparative study.
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1. Introduction

Automatic tuning of PID controllers is a useful feature for any user who does not have
the time, knowledge or desire to manually tune his or her control loops. Especially
in the process industry, where a factory may have hundreds or thousands of different
flows, levels, temperatures, concentrations etc. that need to be controlled, the benefit
of a fast and reliable way of finding appropriate controller parameters is large. One
such procedure that is common in industry is the relay autotuner.

The principle of relay autotuning is as follows. By closing the feedback loop with
a relay function, that switches between two values depending on the process output,
the process is forced into oscillations. See Figure 1 for the setup and Figure 2 for a
typical experiment output. From the oscillations process data can be obtained and
used to tune a PID controller. The original relay autotuner [Åström and Hägglund,
1984] uses the period time and amplitude of the induced oscillations in order to find
the critical point where the process Nyquist plot intersects the negative real axis. If
a hysteresis band is added to reduce shattering due to noise, a slightly different point
is obtained. The controller parameters are then found by moving this point to give
the open-loop system specified amplitude and phase margins.

The autotuner from [Åström and Hägglund, 1984], that was developed in the
1980’s, is probably still the most common one in industrial DCS systems today.
Several of themajor vendors use this procedure. It has been implemented in industrial

Relay+ P

−1

ue yr

Figure 1. Setup for the relay feedback experiment, where r is the reference value,
e is the control error, u is the relay output and y is the process output.

Figure 2. Outputs from a relay feedback experiment. The relay output (blue)
switches between its two values every time the process output (red) leaves the hys-
teresis band (dashed black), causing the process to oscillate. If the amplitudes of the
relay function are different, as in this figure, the relay is said to be asymmetric.
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control systems such as the ABB ECA600, the ABB 800 XA and it is also the
base of the autotuner feature in e.g. Emerson Delta V. Even though the knowledge
about PID control has been improved and the available computing power of control
systems has increased dramatically since the 1980’s, it does not seem to have affected
available industrial autotuners much. In academic literature many modifications and
improvements have been suggested to the relay autotuner. For instance [Luyben,
1987; Li et al., 1991; Friman and Waller, 1997] have modified the autotuner to
find first- or second-order models with time delay of the process instead of a single
frequency point. The excitation of the process has also been improved by the usage
of asymmetric relay functions in e.g. [Shen et al., 1996; Kaya and Atherton, 2001].
A review of the current state of process modeling from relay experiments can be
found in [Liu et al., 2013]. However, these improvements do not seem to have made
their way out to the industrial products.

The question we aim to answer in this paper is whether this is since the old
autotuners are performing well-enough, or if they could actually be significantly
improved by including recent scientific development. In order to do that, we compare
two new autotuners developed by the authors, to the ABB ECA600 [ABB, 1999]
containing the traditional autotuner [Åström and Hägglund, 1984] and the more
recent autotuning algorithm Accutune III™ provided in the Honeywell UDC3200
[Honeywell, 2012]. Since the autotuners are mainly used in industrial settings, a
simulation study would not cover typical problems. Consequently the comparisons
will be performedon laboratory processes that featuremany of the issues encountered
in practice like noise, non-linearities, disturbances, low converter resolutions etc.

Even if the autotuning possibility has been available in most control systems
for some decades it is not always used, resulting in unnecessarily poor control
performances in many systems [Ender, 1993; Desborough and Miller, 2002; Kano
and Ogawa, 2010]. Reasons for this may be that the users are either not aware of
the feature or do not feel confident in using it. Therefore it is important to ensure
that the autotuners, apart from giving satisfactory results, are easy to understand
and use also for non-experienced users. In this study we will therefore do as few
manual interactions as possible with the autotuner settings, and will not assume any
knowledge of neither the process nor control theory.

2. The Study

This study compares and evaluates four different autotuners, described in Section 3,
on three processes that are described in Section 4. The autotuners are evaluated
on their experiment duration, their user-friendliness, and on the performance of the
obtained controllers. Since the industrial autotuners do not provide the user with
any models that they base the controller designs on, no comparison can be made
between estimated models.

Three experiments are run by each autotuner, and a representative controller
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setting is chosen for comparison to the other autotuners. The multiple experiments
are performed in order to reduce the risk of disturbances affecting the result of one
of the autotuners causing an unfair comparison. All obtained controller parameters
are presented in Section 5, along with the performance experiments.

Themost important aim for a controller in process industry is to be able to handle
load disturbances, and the performance tests in this comparison are therefore focused
on load disturbance attenuation. The disturbances were designed and controlled to
ensure that identical disturbances affected each of the controllers on the specified
process.

3. The Autotuners

The four autotuners used in this study are presented in this section. As stated in
the introduction the aim is to compare industrial standard autotuners to recent
developments in academic literature. The selection of industrial autotuners include
the ABB ECA600 further described in Section 3.1 and the Honeywell UDC3200
described in Section 3.2. A motivation to this choice is that we wanted one autotuner
containing an implementation of the original procedure from [Åström andHägglund,
1984], which is still the most common one, as well as one more recent version of
a relay autotuner available on the market today. By this choice we want to find out
what improvements have been made in the industrial controllers during the last 30
years. There are of course other brands and procedures that could have been chosen,
as well as completely different autotuning principles based on step responses or
other open-loop experiments. We did, however, restrict this study to only contain
relay autotuners.

The academic autotuners we selected are implementations of two versions devel-
oped by the authors. The τ-tuner, described further in Section 3.3, is procedure-wise
very similar to the original autotuner, but has some modifications to obtain better
models. The NOMAD autotuner, described in Section 3.4, utilizes more data and
requires more computational power, but allows for shorter experiment times. We
could have chosen to include many other academic autotuners in this study, e.g.
the ones presented in [De Keyser et al., 2012; Chidambaram and Sathe, 2014; Yu,
2006]. Since we did not have any implementations of these autotuners, and since we
wanted to find out how our proposed autotuners compared to the industry standard,
we decided to restrict ourselves to this selection.

3.1 ABB ECA600
The ABB ECA600 controller, in this paper referred to as ECA, is shown in Figure 3.
The operator’s manual [ABB, 1999] describes it as "... a dual loop controller with
advanced control functions. In addition the ECA600 has comprehensive logical and
arithmetical data processing facilities. Its five analog inputs, three analog outputs,
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Figure 3. The ABB ECA600 controller.

four digital inputs and six digital outputs can be used to solve almost any process
control problem."

The built-in autotuner is based on [Åström and Hägglund, 1984] and provides
PID parameters for a controller on serial form immediately from the experiment. The
autotuner is accessible after enabling it in the configuration menu. Before starting
the tuning the user has to make sure that the process value is in steady state close
to the setpoint, otherwise the tuning may fail. The autotuner starts by measuring the
noise level for 5 s to set an appropriate hysteresis level. The relay amplitudes are
restricted to be less than 10 % of the control interval by default. If the autotuner
notices that the process variable deviations are too large (or too small) during the
experiment it will adjust the relay amplitudes if the restrictions allow it. The PID
controller includes a first-order filter for the derivative part of the controller with a
filter time constant Tf = Td/8.

There is an option to tell the autotuner whether the controller dynamics should
be Normal, DeadTime, PI or pPI. Since this study focuses on how an inexperienced
user would be able to use the autotuners, we do not assume to have this kind of
knowledge and hence always use the default Normal.
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3.2 Honeywell UDC3200
To compare with a more recent controller we chose the Honeywell UDC3200 (re-
ferred to as Honeywell) with the autotuning feature Accutune III™. According to its
manual [Honeywell, 2012] it is "... an ideal controller for regulating temperature
and other process variables in numerous heating and cooling applications, as well as
in metal working, food, pharmaceuticals, semiconductor, testing and environmental
work". In spite of being mainly considered as a temperature controller, the manual
[Honeywell, 2012] also claims that "This standard feature [read: Accutune III™]
provides a truly plug and play tuning algorithm, which will, at the touch of a button
or through a digital input, accurately identify and tune any process including those
with deadtime and integrating processes"

The tuning can be started whenever TUNE has been enabled in the setupmenu, but
to start the autotuner the controller must be switched to automatic mode. A choice
between SLOW and FAST tuning can be made. This does not affect the experiment,
but calculates the controller parameters differently. Since we do not assume to
know anything about the process we used the SLOW option for all experiments.
The autotuner switches the relay output two full cycles between the maximum and
minimum control output levels, independent of the setpoint value. PID parameters
for a controller on serial form are obtained from the experiment and immediately
used. As far as we know, this autotuner does not design any filter for the controller,
and the only filter used in our experiments is a noise filter with the default time
constant value 1 s.

3.3 τ-tuner
The autotuner described in [Berner et al., 2016b; Berner et al., 2016a] is here denoted
as the τ-tuner. It uses an asymmetric relay function with adjustable amplitudes and
runs until limit cycle convergence is reached. From the relay oscillations it uses the
half-period times and the integral of the process output over one cycle, to calculate
an integrating or first-order model with time delay of the process. It then uses the
AMIGO [Åström and Hägglund, 2006] tuning rules to obtain parameters for a PI or
PID controller on parallel form. It uses the normalized time delay, τ, to select model
and controller structure. The normalized time delay is defined as

τ =
L

L + T
, (1)

where L is the deadtime and T is the time constant of the process dynamics. More
details about how the autotuner utilizes τ can be found in [Berner et al., 2016b]. The
τ-tuner is simple to implement and use, but as was stated in [Berner et al., 2016a]
it can be quite sensitive to quantization, non-linearities and non-stationary starting
conditions. The autotuner setup in these experiments uses a restriction on the large
relay amplitude to be maximum 10% of the available control range, it uses 10 s in
the beginning of the experiment to measure noise and decide on a hysteresis level,
but also has a minimum hysteresis level of 0.5% of the process output range.
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Figure 4. The Honeywell UDC3200 controller.

In the papers [Berner et al., 2016b; Berner et al., 2016a], no filter was designed
for the controller. Since we need some roll-off for high frequencies to reduce the
impact of noise, we let the autotuner design a second order filter on the form

F(s) = 1
1 + sTf + (sTf )2/2

. (2)

The filter time constant Tf is chosen as

Tf =
1

5ω180
, (3)

where ω180 is the frequency where the estimated process model has a phase lag of
180◦. The filter F(s) is used on the entire controller, not only the derivative part.

The model, filter, controller parameters and some additional experiment data are
available to the user of this autotuner.

3.4 NOMAD-autotuner
The experiment andmodeling part of theNoise-robust Optimization-basedModeling
And Design Autotuner (NOMAD) is described in [Berner and Soltesz, 2017]. This
autotuner performs the same experiment as the τ-tuner, with two exceptions. The
first exception is that it does not have to be initiated in steady-state, since it estimates
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the initial conditions. The second exception is that it does not wait for convergence
of the limit cycle oscillations but instead stops the experiment after three relay
switches. It then uses a gradient-descent algorithm to find first-order or second-
order time-delayed models from the entire data set. It chooses which model to use
by the Akaike Information Criteria [Akaike, 1974]. The usage of the entire data
set distinguishes the NOMAD-autotuner from the ECA and τ-tuner, that only use
certain time intervals, amplitudes etc. to get their models. It can be argued that the
need of less data is a benefit of these other methods, but it is also what causes their
need to wait for limit-cycle convergence as well as making them more sensitive to
noise.

No controller tuningmethod was specified for the method in [Berner and Soltesz,
2017] so for this paper we added that to get a complete autotuner. The filter design
was chosen the same way as for the τ-tuner, hence described by (2) and (3). The
controller tuning chosen is the convex-concave optimization method described in
[Hast et al., 2013]. Here the integrated error

IE =

∞∫
0

e(t)dt (4)

from a step load disturbance on the process input, is minimized with constraints on
the maximum values of the sensitivity function

S(s) = 1
1 + P(s)C(s), (5)

and complementary sensitivity function

T(s) = P(s)C(s)
1 + P(s)C(s) . (6)

The process P(s) that is entered to the optimization program is the filtered process,
since the controller design and the filter design are connected. The PID parameters
obtained are for a controller on parallel form.

Since both the modeling and controller design are optimization-based, this au-
totuner requires a lot more computations than the original autotuner. However, the
calculations performed are rather cheap, and with an efficient implementation and
the computing power available today they can be made in the order of seconds.

4. Processes

To evaluate the autotuners on different types of dynamics we chose three processes
with different characteristics. Two lag-dominated processes, where one has fast
dynamics and one is slow, as well as one process that is delay-dominated. This
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Figure 5. The quadruple tank used for level control experiments on the lower tank
and the delayed upper tank.

information about the process dynamics was only used to choose suitable processes
and was assumed to be unknown throughout the tuning experiments. The process
hardware consisted of a quadruple tank and a batch tank available at the control
laboratory at Lund University. The input and output signals of the processes were
normalized to u ∈ [0, 10] and y ∈ [0, 10]. The processes will be described further in
their respective subsections.

4.1 The quadruple tank
The quadruple tank shown in Figure 5 is a version of the one described in [Johansson,
2000]. The tank can be used as both a single-input single-output system and as a
multivariable system. For the experiments in this paper only one side of the quadruple
tank was used, in order to get the single-input single-output configuration. This
system consists of a pump that pumps water into the upper tank, which then flows
through down to the lower tank. For the first experiment, called Level control, the
measured process variable is the water level of the lower tank. The dynamics can
be described by a second-order lag-dominant system with time constants T1 and T2,
and an average residence time Tar = T1 + T2 ≈ 20 s.

The quadruple tank was also used for the delay-dominant process. For the De-
layed tank experiment, the measured variable was the water level of the upper tank.
The dynamics of this process can be described by a first-order system with a time
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Figure 6. The batch tank used for temperature experiments.

constant T ≈ 10 s. To get it delay-dominated a time delay of 20 s was added to the
control signal.

4.2 The batch tank
The batch tank is shown in Figure 6. It consists of one inflow pump, one outflow
pump, a heater, a cooler, and an agitator. Measurements of the water level and tem-
perature are available. For the experiment on this process, referred to as Temperature
control, we used a fix water level, with both pumps turned off. The agitator was on
all the time and a split-range controller was used to control the heater and cooler.
The control range of 0-10 was split up so that u = 0 − 5 corresponded to Cooler =
100% − 0% and u = 5 − 10 corresponded to Heater = 0% − 30%. The restriction on
the heater was made to balance the heating and cooling capacities of the process.

5. Experiments and Results

The results from the three processes are illustrated by plots of the relay experiments
as well as the obtained controller performance for load disturbances acting on the
process inputs. Before the experiments were started the processes were brought to
steady-state at the desired setpoint levels. This startup phase has been discarded in
order to only show the actual experiments.
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For each process three experiments were made with each autotuner to see how
consistent they were. Obtained PID controller parameters for the different experi-
ments are listed in Table 1-3. Since both the parametrization and the filter design
differ between the controllers, a comparison of the bode plots of the resulting (fil-
tered) controllers are shown for each process. From these results a representative set
of parameters was chosen and used for the controller performance experiments. The
performance experiments are shown, and the integrated absolute error

I AE =

tend∫
0

|r(t) − y(t)|dt, (7)

for each performance experiment, where tend is the experiment duration, is listed
along with the controller parameters in the respective table.

5.1 Level control of the lower tank
A representative relay experiment for each of the autotuners is shown in Figure 8.
Note the differences in experiment duration and signal deviations. This is a rather fast
process, hence the short experiment duration. The resulting controller parameters are
listed in Table 1 and Bode plots of the (filtered) controllers are shown in Figure 7.
It can be seen that ECA, Honeywell and the τ-tuner are very consistent, while
NOMAD is varying a bit more due to differences in the estimated models. However,
the performance was still similar between the obtained NOMAD controllers.

To evaluate the controller performance two step load disturbances, of equal
magnitude but opposite sign, were added to the input of the process. This was done
by opening a valve at t = 100 s, decreasing the inflow to the upper tank with 50 %,
and then closing that valve again at t = 300 s so that all the pumped water once again
entered the tank. The performance of the obtained controllers are shown in Figure 9.

Two versions of the τ-tuner is shown in this plot. As was described in [Berner
et al., 2016b] this autotuner makes some decisions based on the estimated value of
the normalized time delay τ. In this case the estimated value was low, τ = 0.07,
and the process was wrongly classified as an integrating model with time delay.
The dashed curve shows what the controller performance would have been if the
process would instead have been classified as a first-order model with time delay,
and the controller tuning would have been based on that. The results indicate that
the threshold value for this classification should be reconsidered.

The results show that the NOMAD responds much faster and outperforms the
others. The ECA controller comes in second place while the Honeywell controller
has too little integral action and recovers very slowly. The τ-tuner is about as bad as
Honeywell for the solid curve, but improves a bit for the dashed curve.

5.2 Temperature control of the batch tank
An illustrative relay experiment for each of the autotuners is shown in Figure 11. Note
that the time scale for this process is in minutes since it is a much slower process than
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Table 1. PID parameters and IAE values from the level control experiments. The
chosen parameters for each autotuner are marked with bold text. Note that ECA and
Honeywell are on serial form, while τ-tuner and NOMAD are on parallel form.

Autotuner K Ti Td IAE

2.06 12.8 3.20
ECA 2.24 12.1 3.00

2.22 12.2 3.00 145

1.52 24.6 6.00
Honeywell 1.41 24.0 6.00 453

1.40 24.0 6.00

1.52 29.7 1.86
τ-tuner 1.44 30.7 1.92

1.47 30.8 1.92 518

4.08 7.07 4.01
NOMAD 12.8 5.33 3.19

5.77 8.09 3.66 51
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Figure 7. Bode plot of the obtained controllers for the level control of the lower
tank. The different autotuners are ECA (green), Honeywell (black), τ-tuner (red) and
NOMAD (blue).
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Figure 8. Relay experiments on the level control of the lower tank for the four
autotuners. Note the short experiment time of the NOMAD autotuner and the large
control and process deviations of the Honeywell autotuner.

the level control. From the experiment plots it is clear that the Honeywell controller
is fastest for this process due to its larger relay amplitudes. The ECA controller
is also fast, while the other two are slower. In this case it is not the number of
relay switches that influences the experiment duration the most, but rather the time
period of the oscillations. Why the different experiments get different time periods
is discussed further in Section 6. It is also very clear from the experiment plots that
the resolution of the AD-converters is low for this process, the quantization levels
are clearly visible.

The controller parameters obtained from the experiments are listed in Table 2,
andBode plots of the controllers are shown in Figure 10. As can be seen the industrial
controllers are both very consistent while the τ-tuner andNOMADare varyingmore.

The controller performances for the respective autotuners are shown in Figure 12.
The Honeywell controller performs well on this process, while the ECA is slow
and almost not reaching steady-state within the 700 s shown in the plots. The
NOMADand τ-tuner performance are quite similar, but the high gain of theNOMAD
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Figure 9. Controller performance for level control of the lower tank. At t = 100 s a
step load disturbance was added to the process input and at t = 300 s that disturbance
was removed. The τ-tuner has two versions in this plot, one controller based on an
integrating model with time delay (solid), and one version tuned from a first-order
model with time delay (dashed).

controller makes it saturate the control signal for a short while in the beginning of
the disturbance. They both yield a small overshoot, but recover from it much faster
than the ECA does. It can also be noted that even if the Honeywell controller does
not have as high gain as the NOMAD and hence rises slightly slower and without an
overshoot, the control signal is at least as varying as for the NOMAD controller due
to the large derivative part that is affected by the quantization noise.

5.3 Level control of the delayed upper tank
The relay experiments for the delayed tank are shown in Figure 14. Worth noting
in the figure is that both the ECA controller and the τ-tuner are adjusting their
relay amplitudes during the experiment to decrease the process deviation. This
increases the experiment time for them by a few half-periods. It is also clear from
the figure that the Honeywell controller does not perform a good experiment on this
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Table 2. PID parameters and IAE values for the temperature control experiments.
The chosen parameters for each autotuner are marked with bold text. Note that ECA
and Honeywell are on serial form, while τ-tuner and NOMAD are on parallel form.

Autotuner K Ti Td IAE

10.10 174.7 0
ECA 10.36 170.7 0 33

11.12 166.4 0

33.60 111.6 28.2
Honeywell 33.86 111.6 28.2 15

34.62 109.8 27.6

38.16 88.09 5.51
τ-tuner 24.75 46.23 6.94

30.16 118.8 7.43 18

106.2 39.14 17.2
NOMAD 74.02 45.17 20.0 13

61.39 48.01 20.5
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Figure 10. Bode plot of the obtained controllers for the temperature control of the
batch tank. The different autotuners are ECA (green), Honeywell (black), τ-tuner
(red) and NOMAD (blue).
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Figure 11. Relay experiments for the temperature control of the batch process.
Note that the time scale is in minutes for this process. Also note the different exper-
iment duration that is a consequence of the different oscillation periods, this will be
discussed further in Section 6.

process. Its large relay amplitudes make the tank overflow and then become empty
at every second relay switch. This makes the result from the Honeywell controller
very unreliable for this process, and only one experiment was performed, but the
resulting controller parameters will still be used and evaluated for comparison. The
obtained controller parameters are listed in Table 3 and Bode plots of the controllers
are shown in Figure 13. From the parameters it is seen that the τ-tuner chooses a
PI controller since it classifies the process as delay-dominated, see [Berner et al.,
2016b] for details on this choice.

The controller performances are shown in Figure 15. A step load disturbance was
introduced at t = 100 s by adding an additional constant flow of water to the tank.
The additional flow was removed again at t = 800 s. The NOMAD and τ-tuner are
showing very good control results for this process, while the ECA is really slow and
Honeywell is both oscillating and slow. Comparing the IAE values gives a different
message, since the IAE for the Honeywell controller is slightly smaller than for the
τ-tuner. This implies that IAE should be combined with restrictions on robustness.
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Figure 12. Controller performance for the temperature control of the batch tank.
At time 50 s a load disturbance was introduced by changing 20 ml of the heated water
to ambient tempered water in the tank.

6. Discussion

The results show that ECA is performing well for the level control of the lower tank,
but is slow for the other two processes. The autotuner is easy to use, but the user
has to ensure that the process is in steady-state before starting the experiment in
order to get good results. If the process value is far from the setpoint when starting
the experiment, the system will issue a warning, but apart from that it is the user’s
responsibility to ensure stationarity.

The Accutune III™ in the Honeywell controller works very well for the tem-
perature control process, but yields very slow controllers for the other processes. Its
large experiment amplitudes are a problem, especially for the time-delayed process,
where they cause the process value to saturate at every switch, resulting in unreliable
results and causing operational problems. The Honeywell controller is branded as
a temperature controller so it is not surprising that it gives the best results for the
temperature control process. However, since it claims to give good results for any

147



Paper IV. An Experimental Comparison of PID Autotuners

Table 3. PID parameters and IAE values from the experiments on the upper tank
with delay. The chosen parameters for each autotuner are marked with bold text.
Note that ECA and Honeywell are on serial form, while τ-tuner and NOMAD are
on parallel form. Since the Honeywell controller was not able to do the experiment
without overflowing the tank and emptying it, only one experiment was performed
on it.

Autotuner K Ti Td IAE

0.23 61.0 15.2
ECA 0.29 48.0 12.0

0.28 57.4 14.3 379

Honeywell 0.49 36.0 9.00 218

0.11 12.3 0
τ-tuner 0.11 11.8 0 224

0.32 8.88 0

0.20 14.7 8.24
NOMAD 0.21 14.6 8.44

0.21 14.7 8.32 152
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Figure 13. Bode plot of the obtained controllers for the level control of the delayed
upper tank. The different autotuners are ECA (green), Honeywell (black), τ-tuner
(red) and NOMAD (blue).
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Figure 14. Relay experiments for the level control of the delayed tank. The Hon-
eywell controller is overflowing and emptying the tank at every switch, which make
its experiment results unreliable.

process including those with deadtimes the performance for that process is rather
unsatisfactory. The autotuner feature is quite easy to use, and it is not as sensitive to
starting in steady-state as the ECA since the experiment is the same no matter if the
process value is at the setpoint or not. Since the relay always uses the maximum am-
plitudes the experiment becomes more or less asymmetric depending on the chosen
setpoint. The need to put it in automatic before starting the experiment seems a bit
strange since it does not have any appropriate controller parameters for the process
yet. However, since the user is supposed to start the tuning procedure right after and
it does not have to be steady it does not matter that much.

The τ-tuner has an experiment very similar to ECA, except for the asymmetry in
the relay. They sometimes differ a few relay switches before convergence is reached,
but both the process deviations, amplitude restrictions, and amplitude adjustments
are similar. Theway of findingmodels and controller parameters are different though.
The results from the τ-tuner are slightly worse than ECA for the level control of the
lower tank, (especially for the version where the process is classified as integrating),
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Figure 15. Controller performance for the delayed tank process. A step load dis-
turbance is added to the input at time 100 s and then removed at time 800 s.

but better than Honeywell. For the temperature control the τ-tuner is worse than
Honeywell but better than ECA, and for the time-delayed system the τ-tuner is much
better than both ECA and Honeywell. Overall it can be argued that the τ-tuner
gives a rather consistent performance. It may not be the best, but it gives acceptable
controllers for all the tried processes. The τ-tuner, however, suffers the same problem
as ECA by requiring the system to be in steady-state before the experiment starts.
This is even more crucial for the τ-tuner since the asymmetry level of the relay
will not be correct if the output is drifting, causing erroneous model estimations.
This may be the reason why the controller parameters sometimes differ between
consecutive experiments for the τ-tuner.

The NOMAD autotuner gives best controller performance for all tested pro-
cesses. The increase in computing to get more accurate models allows for more
aggressive controller designs, which is clearly seen for instance in Figure 9. Apart
from the good performance, the short duration and low process deviations of the
experiment are also great benefits of the method. The experiment can also be started
with non-stationary initial conditions, so the problem encountered in ECA and the
τ-tuner to ensure steady state before starting the autotuner is removed. The benefit
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of short experiment duration is especially useful since it reduces the risk of distur-
bances entering during the experiment, which is one of the largest risks of failure
for the relay autotuners. The experiment is similar to those of both ECA and the
τ-tuner, but with approximately half the number of relay switches.

As can be seen in Figure 11, the number of relay switches are not always what is
most significant for the experiment duration. If therewould have been no hysteresis in
the relays, they would all oscillate with the same frequency. With hysteresis the relay
amplitudes and hysteresis amplitudewill have a large impact on the oscillation period
for certain processes. This could be understood by looking at the Nyquist curve in
Figure 16. The approximative describing function method tells that a system under
symmetric relay feedback will oscillate with a frequency decided by the intersection
of the process’ Nyquist curve with the horizontal line with imaginary part

Im = −πh
4d
, (8)

where h is the hysteresis of the relay and d is the relay amplitude. The hysteresis
levels seem to be quite similar between the different autotuners, but since the relay
amplitude is about five times larger for the Honeywell controller than the others
it will oscillate with a much higher frequency and shorter period time. The ECA
controller has a slightly higher amplitude than the τ-tuner and the NOMAD since
it allows 10 % both up and down, while they have 10 % as their large amplitude.
Hence ECA gets a faster oscillation than they do. To exemplify, consider the τ-
tuner. The average relay amplitude is 7.5 % and the hysteresis 0.5 %. This would
give an intersection with imaginary part Im = −0.5π/(4 · 7.5) ≈ 0.05. Looking in
Figure 16 this implies an oscillation period a bit larger than 300 s, which seem to
be a reasonable approximation. For processes that do not change so drastically in
frequency in this area the difference between oscillation periods are barely noticeable
and for the other experiments in this paper the oscillation periods are therefore more
or less the same.

A fundamental benefit of the τ-tuner and NOMAD compared to the others is the
provision of explicit process models. That makes it possible to change tuningmethod
and filter design without having to perform a new experiment. However, that is
mainly a benefit for experienced users or developers. Productified autotuners need to
be user-friendly in order to be used. Decisions should be made automatically, maybe
allowing, but not requiring, user inputs. Ideally, good results should be provided
every time without any manual interaction. The τ-tuner and NOMAD-tuner aim for
this by making both model and controller selections automatically.

Another feature we propose for the autotuners is that they provide a suitable
filter in addition to the controller parameters, since they are strongly connected.
ECA does that, and filter designs were included in the implementations of the τ-
tuner and NOMAD. The autotuner could also propose set-point weighting constants,
anti-windup tracking constants and other parameters connected to the PID controller.
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Figure 16. Nyquist plot of the model obtained from the NOMAD autotuner for the
temperature control process. Depending on the ratio between relay amplitude and
hysteresis, different points on the curve will be intersected by the relay describing
function, causing different oscillation periods. Frequencies corresponding to oscilla-
tion periods Tp={100 s, 200 s, 300 s} are marked in the figure.

7. Conclusions and Future Work

It is time to update the industrial standard autotuners from the 1980’s technology
to the 21st century. The enormous increase in computing power and data storage
provides the possibility to use much more data than just a handful of values from an
experiment. By using optimization methods on the entire data set, the experiments
can be made shorter and still provide more accurate models, resulting in controllers
with better performance. Even though the ECA gives functioning controllers for all
processes evaluated in this study, the results show that the NOMAD improves the
performance significantly. The NOMAD autotuner also decreases the twomain risks
of failure for the ECA controller. The first risk is that the process is not in steady-
state when the experiment is started. This is handled by the optimization method
in NOMAD, that allows non-stationary initial conditions in its estimations. The
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second main risk is that some disturbance enters the system while the experiment is
ongoing, deteriorating the obtained controller. This risk is reduced significantly by
the much shorter experiments used in the NOMAD. The short experiments are also
very beneficial for the availability of the control loop.

The benefits of the NOMAD autotuner clearly motivates that procedures like it
should be productified. The product should have good and fast implementations of
the optimization algorithms, as well as a clear user-friendliness in mind. Because it
does not matter how good the autotuner is if it is not used!
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Paper V

Autotuner identification of TITO systems
using a single relay feedback experiment

Josefin Berner Kristian Soltesz Tore Hägglund

Karl Johan Åström

Abstract

Relay autotuning has proven very successful for single-input single-output sys-
tems. This paper proposes an identification method for relay autotuning of
systems with two inputs and two outputs (TITO systems). The combination of
asymmetric relay feedback and output error identification admits short tuning
time, without the need for limit cycle convergence. The method is successfully
demonstrated on relevant systemmodels, including theWood-Berry distillation
column.
Keywords: Multivariable autotuning, decentralized relay experiment, output
error identification.

© IFAC. Originally published in 2017 IFACWorld Congress, Toulouse, France, July
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layout.

155



Paper V. Autotuner identification of TITO systems...

1. Introduction

Relay autotuning for single-input single-output (SISO) systems has been widely
used since its introduction in the 1980’s. The closed-loop identification automat-
ically excites the system in the frequency interval relevant for PID control, and
the amplitudes of the oscillations can be kept small as to not disturb the process
more than necessary. The relay autotuner in [Åström and Hägglund, 1984] has been
modified by e.g. [Luyben, 1987] where a first-order model with time delay (FOTD
model) of the system was derived, by [Shen et al., 1996] where an asymmetric relay
was used, and in more recent work as [Berner et al., 2016b] where the normalized
time delay was used to classify the system during tuning and [Berner et al., 2016a]
where parameter choices and other practical issues were discussed. A recent review
of the advances in identification from relay experiments is given in [Liu et al., 2013].
Several books on relay autotuning, like [Yu, 2006; Chidambaram and Sathe, 2014],
also give good overviews.

Even though much has been written about relay autotuning almost all of it
considers SISO systems only. Since many industrial processes are of multi-input
multi-output (MIMO) type, there is a need of finding multivariable models of them.
These models can then be used to either tune a number of SISO PID controllers by
picking a suitable input-output pairing or by decoupling the system. Or a multivari-
able PID controller could be tuned as in [Boyd et al., 2016]. The choice of tuning
method is not the subject of this paper, but by obtaining a full transfer function
matrix, many tuning options are possible. In this paper we will restrict ourselves to
two-input two-output (TITO) systems. This is a common subclass of MIMO systems
that shows up in many places both in literature and in industrial processes.

Relay autotuning of multivariable systems could be done in three different ways,
[Wang et al., 1997]. The first way is to tune each loop independently while leaving the
others in manual. This method does not take any of the cross-couplings in the system
into account, and hence is not a good option for coupled systems. The secondmethod
is sequential tuning, where the first loop is tuned while the others are in manual, and
then the next loop is tuned with the first one closed, and so on until all loops are
tuned. With this method the controllers are tuned based on all the information up to
that point, but the loops that are still open do not influence the behavior. Therefore
the method is usually iterated a number of times with the loops closed, which results
in a total of mk relay experiments for k iterations of an m × m process. The third
option, which we will use in this paper, is decentralized relay feedback, where all the
loops are tuned simultaneously. This is a completely closed-loop method where all
cross-couplings will influence the result. In [Wang et al., 1997] m decentralized relay
tests were needed in order to obtain the transfer functions. It was also needed to wait
for convergence of the limit cycle oscillations. Another drawback of that method is
the assumption that the systems are coupled strongly enough to oscillate with the
same fundamental period. Attempts to find the conditions for when this happens has
been made in e.g. [Loh and Vasnani, 1994], but to our knowledge no simple full
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Figure 1. Setup of the decentralized relay experiment.

conditions have been published. In [Campestrini et al., 2006], problems with using
the ultimate frequency as a tuning parameter for MIMO systems have been remarked
upon. For MIMO systems there is not an ultimate point as in the SISO case, but
rather an ultimate surface, and which point that will be found from the experiment
depends on the settings. This makes simple methods like Ziegler-Nichols, based on
the ultimate gain and frequency, inappropriate for the MIMO case.

What we want is a relay autotuner for MIMO systems that is fast, does not
require numerous experiments, that works for both weakly and strongly coupled
processes, and that does not rely on only an ultimate point to get the process models.
The autotuner in this paper aims to identify the transfer function matrix for a TITO
system from one single decentralized relay experiment. It does not need to wait
for convergence, which makes it fast. The models are estimated by output error
minimization, which does not require the loops to oscillate with the same frequency
and does not use the ultimate frequency in any calculations. The method will be
described and some examples demonstrating the potential of the method will be
given. The controller tuning, and some practical issues of the experiments are left
as future work.

2. Method

2.1 Experiment
The experimental setup is shown in Figure 1 and based on the decentralized relay
feedback experiment proposed in [Wang et al., 1997]. Both loops are closed with
relay feedback simultaneously. Even though it is a closed-loop experiment, the input-
output noise correlation is negligable since the input signal is kept constant except at
the switching instances of the relay. Hence, the system can be viewed as open-loop
for identification purposes. The relays used are asymmetric, and implement most
practical features from the one described in [Berner et al., 2016a]. To get as much
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excitation as possible the asymmetry level γ (i.e., the ratio between the on and off
amplitudes) is different for the two relays. In this paper the asymmetries were set
to γ = 1.5 in relay 1 and γ = 2 in relay 2, but this choice should be investigated
more in future work. The amplitudes are set automatically during the startup phase.
The identification method that will be used in this paper does not require limit cycle
convergence, hence the experiments can bemade short. In this paper the experiments
are stopped when both loops have undergone four relay switches. For the simulations
in this paper, the control signal is set to its stationary level immediately when the
experiment stops. If this is the best way of shutting down the experiment, and when
to connect the new controller, needs to be investigated in future work.

2.2 Coupling level
As has been described in [Loh and Vasnani, 1994], there are three possible limit
cycle behaviors of the decentralized relay feedback experiment of the TITO system.
The separate behaviors depend on the strength of the cross-couplings in the process.
An illustration of the possible outcomes is given by looking at the system

Gε (s) =
©«

1
s + 1

e−s
ε

s + 1
e−s

ε

s + 1
e−s

1
0.1s + 1

e−s

ª®®®®¬
(1)

with ε = {0, 0.3, 0.8} shown in Figure 2-4. For the purpose of this illustration the
decentralized relay experiment has been run until convergence of the time periods
of the limit cycles, or in the intermediately coupled case for 10 switches since it will
not converge. If the coupling of the system is sufficiently strong, like in Figure 4,
both loops will oscillate with the same frequency, the half-periods may, however,
be separate. If the coupling is weak (or non-existent), as in Figure 2, the loops will
oscillate with different frequencies like two separate SISO systems. If the coupling
is intermediate, see Figure 3, the loops will have a more complex limit cycle with
multiple relay switches within the fundamental period.

Most literature on decentralized relay autotuning like e.g. [Wang et al., 1997]
assumes the strongly coupled case with equal fundamental periods. We would,
however, like a method that can handle all coupling levels. The uncoupled system
could just as well be treated as two SISO systems and use methods for that, but the
possibility to handle it in the same framework as the others is desirable since the
coupling level is not necessarily known on beforehand.

Figure 3 and Figure 4 show that the waveforms of the limit cycles can be quite
complex, and to use simple equations from a few significant data points, as is usually
done in the SISO autotuner, is not straightforward. Instead we use all data points to
identify model parameters, as described in the following section.
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Figure 2. Decentralized relay experiment for the uncoupled system, Gε=0. The two
loops converge to limit cycles with different periods tp = 3.26 and tp = 2.19.

−1.0

0.0

1.0
u1
y1

0 5 10 15 20 25 30
−0.5

0.0

0.5

1.0

Time [s]

u2
y2

Figure 3. Decentralized relay experiment for the intermediately coupled system,
Gε=0.3. The loops converge to limit cycles that contain multiple relay switches.
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Figure 4. Decentralized relay experiment for the strongly coupled system, Gε=0.8.
The loops converge to limit cycles with identical periods tp = 2.76.

2.3 Identification method
The elements of the transfer function matrix in Figure 1 will be estimated on the
form

Pi, j(s) =
bi, j

s + ai, j
e−sLi, j , i, j ∈ {1, 2}, (2)

that is, first order systems with time delay (FOTD). The parameter vector defining
each element (2) is θi, j =

[
bi, j ai, j Li, j

]>.
For our purposes the system can be decomposed into two parts yi = Pi,1u1 +

Pi,2u2, with parameter vectors θi =
[
θ>
i,1 θ>

i,2
]>. Denoting by u1, u2, yi and ŷi ,

the sampled process inputs, output, and the model output, respectively, we pose the
parameter identification problem as minimization of theL2 norm of the output error
ei = yi − ŷi

J(θi) = ts
2

e>i ei, (3)

where ts is the sampling period of the signals. Since ŷi is not convex in θi , a local
second-ordermethodwill be used. Its SISO counterpart for discrete time systemswas
described in [Åström and Bohlin, 1966], and it was adopted to relay identification of
continuous time systems in [Soltesz et al., 2010]. In the SISO case, the essence of the
method lies in constructing a continuous time state space system S : {A, B,C,D}.
The system S is parametrized in θ, and is designed to have a certain structure such
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that its delayed output contains both the estimated output ŷ and its gradient ∇θ ŷ,

Xts Cx(t + L) = [
ŷ> ∇θ ŷ>

]>
,

where Xts denotes the sample operator of period ts . The (un-delayed) output of S
is cheap to compute by simulation of the discrete time system {Φ, Γ,C,D} obtained
through zero-order hold sampling of S, with period ts . A subsequent shift by bL/tsc
produces the desired output and associated gradient. For the FOTD SISO case, a
minimal realization of S is given by

[
A B

C D

]
=



−a 0 1
b −a 0
b 0 0
1 0 0
0 −1 0

ab 0 −b


. (4)

See [Soltesz et al., 2010] for the general order SISO case, and its derivation.
Use of (4) enables computation of the Jacobian

∇θ J = tse>∇θ ŷ,

and an approximation of the associated Hessian

∆θ J ≈ ∇θ ŷ>∇θ ŷ.

The approximation consists in keeping quadratic terms ∂2/∂2θi , but discarding cross
terms ∂2/(∂θi∂θ j) – which are negligible unless e and ∇θ ŷ are strongly correlated.

Using the Jacobian and Hessian information, the optimization problem can be
solved (to a local minimum) by standard means. (The trust-region-reflective solver
bundled with Matlab has been used here.) Each iteration only involves a simulation
of S and a gradient descent step, making the identification method computationally
cheap.

Extension to the TITO case is straightforward as the output yi = Pi,1u1 + Pi,2u2
is the sum of outputs yi,1 = Pi,1ui and yi,2 = Pi,2u2. Two instances of (4) are
constructed for yi,1 and yi,2, respectively. From their outputs it is straightforward to
assemble ∇θi ŷi =

[∇θi,1 ŷi ∇θi,2 ŷi] , which enables computation of the Jacobian
and Hessian associated with (3).

It can be noted that the identification method is readily extendible to higher order
systems, as put forth in [Soltesz et al., 2010]. It is also straightforward to apply it
to transfer matrices of arbitrary input and output dimensionality. The ability of the
proposed method to identify parameters under such conditions, depends on howwell
the identification input excites the dynamics, and will be investigated in future work.
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Figure 5. Power spectra of the relay signals in the decentralized relay experiment
for the process Gε=0.3. The upper plot shows an experiment with symmetric relays.
The lower plot shows an experiment with the asymmetry levels γ1 = 1.5 and γ2 = 2.

Excitation As was just stated, it is crucial to excite the process sufficiently to be
able to find all unknown process parameters. In Figure 5 the power spectra of the
input signals are shown for two decentralized relay feedback experiments. These
specific experiments were done on Gε=0.3, as defined in (1), with symmetric relay
functions in the upper plot and asymmetric relay functions in the lower plot. As
can be seen the signal power is much more spread out for the asymmetric relay
functions. The frequency plots of course depend on the processes. The large peaks
in the frequency plots are from the main oscillation periods, so for strongly coupled
systems, e.g. Gε=0.8, that oscillates with the same frequncy, the two curves will more
or less be on top of each other.

Initialization The described identification method sometimes converges to a local
minimum. Initialization is therefore important. Since the computations are cheap
and fast, and this paper is a proof of concept rather than a complete algorithm,
we chose to initialize in multiple points and then pick the best solution. The first
attempts indicated that the time delay L is the most crucial parameter to have a good
initial value of, therefore we start with L gridded between 0 and Lmax that is here
set to the time period of the oscillation. The initial values of a and b are set to 0.
If the grid is very dense this methodology will require a lot of combinations which
will make the overall computing time larger than necessary. Therefore a more clever
way of initializing the system should be found in the future.
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3. Results

To evaluate the method we explored the three Gε in (1), representing different
coupling levels, and the Wood-Berry distillation column, [Wood and Berry, 1973].
The dynamics of this common benchmark process is given by

GWB(s) =
©«

12.8e−s

1 + 16.7s
−18.9e−3s

1 + 21s

6.6e−7s

1 + 10.9s
−19.4e−3s

1 + 14.4s

ª®®®®®¬
. (5)

White noise with a peak-to-peak-amplitude of 0.9 was added to the simulations.
The experiments for the three Gε are shown in Figure 6-8, and the experiment for
Wood-Berry is shown in Figure 9. The figures show that the black estimated output
curves follow the true (noisy) red curves very well. The obtained model parameters
are listed in Table 1. They are all close to their true values. The estimate of GWB is
comparable to the one obtained in [Chidambaram and Sathe, 2014]. Our parameters
are slightly worse, but obtained from one noisy experiment instead of two noise-free.
Since the method in [Chidambaram and Sathe, 2014] assumes strong coupling all
Gε cannot be compared.

To this point all examples have been processes that are of the model order we are
estimating, and the good accordance of the estimated models is therefore possible.
To explore what happens if the process is of higher order we investigated the second
order TITO process

GSOTD(s) =
©«

1
(s + 1)2 e−s

0.3
(s + 1)2 e−s

0.3
(s + 1)2 e−s

1
(0.1s + 1)2 e−s

ª®®®®¬
. (6)

The results for this process are shown in Figure 10 and the Bode plots for the true
and estimated models are shown in Figure 11. There is a very good match between
the estimated and the true Bode plots up to frequencies where the phase lag is−180◦,
which means that good PID controllers can be designed based on the FOTDmodels.
The Bode plots naturally differ at high frequencies due to the differences in high
frequency roll off. The estimatedmodel parameters forGSOTD are listed in the bottom
of Table 1. Notice that the estimated time delays L̂ are significantly larger than the
true time delays L. This is because the extra time constant of the SOTD model is
split between the time constant and the time delay of the estimated FOTD model.
The large difference in true and estimated time delays indicates that, even though a
good PID controller for the FOTD model could be obtained, the performance could
be improved significantly by basing control design on a model of higher order. This
since the time delay causes fundamental limitations on the achievable bandwidth of
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Table 1. Estimated model parameters K̂ , T̂ , L̂, as well as the true parameters K , T ,
L, for the five example processes. The rows are ordered P11, P12, P21, and P22 for
each process.

Process K̂ T̂ L̂ K T L

0.99 1.00 1.00 1 1 1
Gε=0 0.01 0.99 1.15 0 - -

0.00 0.09 0.03 0 - -
1.00 0.10 1.00 1 0.1 1

0.98 0.99 1.00 1 1 1
Gε=0.3 0.32 1.02 1.02 0.3 1 1

0.25 0.68 1.12 0.3 1 1
1.02 0.11 1.00 1 0.1 1

0.97 0.96 0.99 1 1 1
Gε=0.8 0.85 1.17 1.00 0.8 1 1

0.76 0.98 1.01 0.8 1 1
1.03 0.13 0.99 1 0.1 1

15.9 21.0 1.03 12.8 16.7 1
GWB -18.2 20.7 3.00 -18.9 21.0 3

5.84 9.62 7.02 6.6 10.9 7
-20.2 15.1 2.99 -19.4 14.4 3

1.13 2.09 1.43 1 {1,1} 1
GSOTD 0.32 2.17 1.33 0.3 {1,1} 1

0.32 1.90 1.47 0.3 {1,1} 1
1.02 0.17 1.04 1 {0.1,0.1} 1

the system, and a robust control design has a constant product of the time delay and
gain crossover frequency.

4. Discussion

The proposed method shows that good process models of a TITO system of FOTD
subprocesses can be identified by one single decentralized relay experiment. There
is no need to wait for convergence of the limit cycle oscillations and neither to fully
understand the conditions for when the different limit cycles occur. The method is
shown to work well for the investigated FOTD examples. The result for the SOTD
system is also satisfying in the sense that it provides good FOTD approximations of
the processes. However, better control performance can be obtained if a higher order
model was estimated instead. As stated in Section 2.3 the method can be extended to
estimate higher ordermodels, and a generalization of themethod to both higher order
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Figure 6. Experiment data and model fit for the weakly coupled example Gε=0.
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Figure 7. Experiment data and model fit for the intermediately coupled example
Gε=0.3.
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ŷ2

Figure 8. Experiment data and model fit for the strongly coupled example Gε=0.8.
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GWB.

166



4 Discussion

−4

−2

0

2

4 u1
y1
ŷ1
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Figure 11. Bode plots for the true SOTD TITO process in blue, and the estimated
FOTD TITO model in red.
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models as well as arbitrary MIMO systems to see how it scales, and if the excitation
from one single experiment is sufficient, are interesting continuations of this work.
Practical issues like parameter choices, experiment start-up and termination, and
of course how the controllers should be tuned from the obtained models, are other
aspects that should be explored further. Noise has been considered in this paper, but
the method’s sensitivity to other disturbances has not yet been investigated.
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Paper VI

Practical Evaluation of a Novel Multivariable
Relay Autotuner with Short and Efficient

Excitation

Josefin Berner Kristian Soltesz Karl Johan Åström

Tore Hägglund

Abstract

In this paper we propose an autotuning method that combines a setup for decen-
tralized relay autotuning of two-input two-output systems with an identification
method that uses short experiments to estimate up to second-order time-delayed
systems. A small modification of the experiment gives better low-frequency ex-
citation and improved models. The method is successfully demonstrated in
simulations and on a quadruple tank process.

© 2017 IEEE. Originally published in IEEE Conference on Control Technology
and Applications (CCTA), Kohala Coast, Hawaii, August 2017. Reprinted with
permission. The article has been reformatted to fit the current layout and the notation
of the filter time constant has been changed for consistency.
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1. Introduction

PID controllers are, and will probably remain, the most common controller type
used in industry. Since the commonly used PID tuning rules rely on dynamic models
of the processes to be controlled, automatic methods of obtaining these models are
of practical value. For single-input single-output (SISO) systems, the introduction
of the relay autotuner [Åström and Hägglund, 1984] proved to be a successful way
to do this. The relay autotuner has since then been improved and modified in e.g.
[Luyben, 1987; Shen et al., 1996; Kaya and Atherton, 2001; Berner et al., 2016]. A
review of identification from relay experiments, written a few years ago, is found in
[Liu et al., 2013].

Not all industrial systems are, or can be approximated by, SISO systems. This
motivates an extension of automatic tuningmethods to handlemultivariable systems.
The literature on this subject is not as extensive as for the SISO case, but there are
some papers written on multivariable autotuning, of which [Wang et al., 1997]
should be mentioned as it proposed the decentralized relay experiments that we will
use in this paper. In [Chidambaram and Sathe, 2014] this method was the basis for
a method to find FOTD or SOTD models from the experiments. Other papers have
been published where each sub-loop is tuned individually, or where a sequential
tuning procedure is used [Yu, 2006; Loh et al., 1993]. All these methods require
several experiments, which is a drawback. A decentralized method that only needs
one short experiment, without any assumptions on coupling-level of the subsystems,
was proposed in [Berner et al., 2017]. In this paper we extend and improve that
method. This is done by modifying the experiment to increase the low-frequency
excitation, and by using an improved identificationmethod from [Berner and Soltesz,
2017] where both first-order time-delayed (FOTD) and second-order time-delayed
(SOTD)models are found, even in the presence of non-stationary starting conditions.
The proposed method is evaluated by simulations, and is also tested on a physical
two-input two-output (TITO) process, a quadruple tank process available in our
control laboratory.

2. Method

The proposed method consists of combining the SISO-autotuner from [Berner and
Soltesz, 2017] with the decentralized framework from [Berner et al., 2017] to get
a well-functioning autotuner for TITO-systems that provides FOTD and SOTD
models from a short experiment. The experiment is slightly modified to increase
low-frequency excitation, as will be described in Section 4. From the obtained
models, a centralized PID controller is designed, based on the optimization method
described in [Boyd et al., 2016]. The obtained controller performance is evaluated
in Section 5.
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Figure 1. Setup of the relay experiment for the two-input two-output process P,
with optional noise filters F1 and F2.

2.1 Decentralized asymmetric relay experiment
The experiment setup used in this paper is shown in Figure 1. In the decentralized
relay experiment both loops are closed with relay feedback simultaneously. The
relays used are asymmetric, with different asymmetry levels, and more extensively
described in [Berner et al., 2016]. The relay feedback will cause both loops to
oscillate, exciting the output signals in frequency intervals relevant for PID control.
The original decentralized method proposed in [Wang et al., 1997] was modified in
[Berner et al., 2017] to use an identification method that do not require limit cycle
convergence of the experiment, which allowed a significantly shorter experiment
time.

2.2 Identification of models
As was described in [Berner et al., 2017], each of the output ports consist of a sum
of the subsystem outputs. For the TITO case this means that the output signals are
y1 = P11u1 + P12u2, and y2 = P21u1 + P22u2. Thus, we can identify the subsystems
related to one output separately from the subsystems related to the other output. The
sub-models estimated in this work are FOTD and SOTD models of the form

Pi, j(s) = b
sn + a1sn−1 + ... + an

e−sL, (1)

where 1 ≤ n ≤ 2. The model parameters are estimated along with the initial state(s)
x0 to get the parameter vector θ =

[
b a L x0

]
, from an output error minimiza-

tion described in [Berner and Soltesz, 2017]. If desired, stability of the model can be
enforced by introducing constraints on the parameters in the minimization method.
Since the output data is the sum of the output of two subsystems it means that both
θ1 and θ2 should be found simultaneously. The strategy used in this paper is to first
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find an FOTD or SOTD model P̂11, assuming that y1 = P11u1, and a model P̂12 as-
suming that y1 = P12u2, where the model selection is done according to the Akaike
Information Criteria [Akaike, 1974]. A second set of models is then estimated from
the alternative assumption that y1 − P̂12u2 = P11u1 and y1 − P̂11u1 = P12u2. Combi-
nations of these separate models are used as starting values for the estimation of the
combined parameter vector θ =

[
θ1 θ2

]
.

2.3 MIMO PID tuning
In this paper we use the multi-input multi-output (MIMO) PID tuning method
described in [Boyd et al., 2016], with some small modifications. The idea of the
method is to find controller matrices KP , KI and KD by solving an optimization
problem, where

| |(P(0)KI )−1 | |∞ (2)

is minimized subject to constraints on the maximum sensitivities | |S | |∞ and | |T | |∞,
as well as a constraint on the control signal. In the proposed version in the referred
paper, a first order filter is applied to the derivative part of the controller. We have
chosen to instead use one of the suggested modifications, and use a second order
filter on the full controller. Hence our controller structure is

C(s) = 1
1 + sTf + (sTf )2/2

(
KP +

1
s

KI + sKD

)
, (3)

where Tf is the filter time constant, in this paper chosen as

Tf =
1

k max(ωc), (4)

where k is a factor chosen to be 5, and max(ωc) is the largest crossover frequency of
the obtained sub-models. By introducing this filter, and sending the filtered process
output to the optimization method, we no longer need the restriction on the control
signal, and that constraint is hence removed.

For a TITO (or general MIMO) system there could be a lot of questions asked
about the controller structure. For example, should it be centralized like this? Should
you really have integral parts on all entries in the controller matrix? Should the same
filter be used for all input-output-pairings? Since the focus of this paper is not
MIMO PID design, but rather how to obtain good enough models for PID design,
these questions will not be answered here. We merely use the described MIMO
PID design as an example of what results could be obtained from our autotuning
method. The models we obtain could just as well be used to tune decentralized PID
controllers with or without decoupling, or by any other method preferred by the user.
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3. Example Processes

Wewill evaluate the proposedmethod on theWood-Berry distillation column [Wood
and Berry, 1973], commonly used as a benchmark process for TITO control, and
a modified version of the quadruple tank, described in [Johansson, 2000], used in
many control laboratories. The dynamics of the Wood-Berry distillation column are
given by

GWB =

©«
12.8e−s

1 + 16.7s
−18.9e−3s

1 + 21s

6.6e−7s

1 + 10.9s
−19.4e−3s

1 + 14.4s

ª®®®®¬
. (5)

The quadruple tank in our control lab, shown in Figure 2, has been modified from
the one in [Johansson, 2000] to get faster dynamics. The linearized minimum-phase
configuration for this tank process can be modeled by

GQT =

©«
0.14e−s

s + 0.043
0.0088e−s

s2 + 0.19s + 0.0061

0.0088e−s

s2 + 0.19s + 0.0061
0.14e−s

s + 0.043

ª®®®®¬
, (6)

where the time delay is a simplification of the dynamics in the pumps and sensors.
Some characteristics of the example processes are worth mentioning. TheWood-

Berry distillation column has only FOTD entries and should be well-estimated by the
method in [Berner et al., 2017], while the quadruple tank is a mix of first-order and
second-order systems, and could therefore be improved by the SOTD estimations
from [Berner and Soltesz, 2017]. GWB has high and negative gains, which puts
requirements on the generality of the autotuner implementation. The quadruple tank
model is linearized around a working point at half the tank height, so in order to do
experiments it is first required to bring the system up to the operating point. This
startup raises the question of when the system is in steady-state, and the estimation
of initial states from [Berner and Soltesz, 2017] is useful to avoid that problem. The
quadruple tank model is symmetric, which means that if the asymmetry levels in
the two relays were the same, the input-output data from the two loops would be
identical. That would reduce the information for the identification process, so the
different asymmetry levels used by this method are very beneficial for this process.

3.1 Experiment settings
For the quadruple tank the working point was chosen as half-full tanks, and the
nominal control signals were adjusted to achieve this. In all simulation plots, these
working points has been subtracted from the result to get a system oscillating around
zero. The Wood-Berry column was assumed to oscillate around a working point
normalized to zero. The data sequences used by the identification method only
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Figure 2. The quadruple tank used for experiments. The inputs are the signals to
the two pumps that pump water to both the upper and the lower tanks in different
proportions depending on the configuration. The output signals, y1 and y2, are the
water levels in the two lower tanks.

contain the actual experiments, and the plots in this paper only show this, and not
the part where the system is brought to its working point or where the noise level is
measured. The sample time was ts = 0.005 s, and the hysteresis level in noise-free
simulations was h = 0.4. The asymmetry levels of the two relays were set to γ1 = 2
and γ2 = 1.5.

4. Modifications to Experiment

The examples in [Berner et al., 2017] showed a very good fit of the model output
data from short experiments consisting of three relay switches. However, additional
experiments indicated that the obtained models sometimes gave poor estimates of
the static gains. For the classic SISO relay autotuner the static gain is irrelevant since

176



4 Modifications to Experiment

−1
−0.5

0
0.5

1 u1
y1
ŷ1
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Figure 3. Simulation results for GQT from original experiment.
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Figure 4. Simulation results for GQT from modified experiment.
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it only uses the critical point. However, a good estimate of the static gain matrix
is needed for the multivariable design used in this paper, see (2). This motivated a
slight modification of the experiment. Simply increasing the experiment length did
not help much, as illustrated for the quadruple tank in Figure 3, where the obtained
model output fits the data extremely well, but the models are not that satisfactory.
Instead we decided to increase the low-frequency excitation of the experiment by
changing the on and off amplitudes of the relay in order to induce a step in uref.
By doing this small modification we get the results in Figure 4. As can be seen
the experiment lengths are more or less the same, the process output still oscillates
around the same level, but the obtained models are much better.

5. Results

5.1 Simulations
In the simulation study we compare the controller performance for the autotuner,
to a PID controller tuned by the same method, but from the true process model. To
make the simulations a bit more realistic we added band-limited white noise with
the standard deviation σn = 0.1 for Wood-Berry, and σn = 0.035 for the quadruple
tank. The reason for the different levels are that the processes are not normalized to
the same scale and hence have very different gains.

The Wood-Berry Distillation Column The simulation data for GWB is shown in
Figure 5. The output data fit is very good, and the obtained model is essentially
identical to the true model. Since the models are identical, so are the optimized
controllers. The response from the controllers to setpoint changes is seen in Figure 6.

Quadruple tank model The simulation data for the quadruple tank model, GQT ,
is shown in Figure 7. Bode plots of the obtained models are shown in Figure 8, the
controller performance for a step in setpoint, and a step in input load disturbance,
is shown in Figure 9 and Figure 10 respectively. The model is good, but the small
difference in gain of G21 results in somewhat differing behavior to the controller for
that subsystem. However, the performance is still satisfactory.

5.2 Quadruple tank experiment
The proposed method was also evaluated on a real quadruple tank process in the
control lab at Lund University. The sensors were too noisy to perform the experiment
in a good way, so a low-pass filter

F(s) = 1
0.1s + 1

(7)

was added to each output, as in Figure 1. To get a model of the unfiltered dynamics
from the identification, the input identification data was run through the same filter.
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Figure 5. Simulation data for GWB , along with the output data ŷ resulting from
the obtained model.
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Figure 6. Controller performance for a step change in setpoint for GWB . The
controller tuned from the true model is shown in solid black, and the controller tuned
for the estimated model in dashed red.
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Figure 7. Simulation data for GQT , along with the output data ŷ resulting from the
obtained model.

Hence, the filters do not affect the obtained model, but they slightly change the
experiment excitation.

To evaluate the method we performed 10 experiments. Data (filtered) for one of
these is shown in Figure 11, and Bode plots for the resulting models are shown for all
of them in Figure 12. AMIMO PID controller was designed for each of the obtained
models. The controller performance for the model obtained from the experiment in
Figure 11 (the one showed by a thick red line in Figure 12) is shown in Figure 13. At
time 120 s a step change in the setpoint for y1 was made, followed by a step change
for y2 at 180 s. At time 250 s, a load disturbance was added by manually pouring 0.5
dl water to the tank with output y1, and at 350 s a corresponding load was put on y2.

6. Discussion

The simulation study shows that good models are obtained for the example systems,
using the proposed method with the modified experiment, even with the addition of
noise. The need for the extra stepmore or less doubles the experiment time compared
to the SISO experiments in [Berner and Soltesz, 2017] and the first TITO tests in
[Berner et al., 2017]. However, the experiment is still short since it does not have to
wait for limit cycle convergence and only runs for a total of 5 switches.

The results were improved by the increased low-frequency excitation. This in-
creased excitation can be achieved in many ways, but by changing the setpoint for u
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Figure 8. Bode plots of the obtained models for GQT . The true model is shown in
black, the estimated model in dashed red.

instead of taking a step in y, we do not cause the process to drift away from its work-
ing point, which is an advantage. The exact size of the step in uref could be further
investigated, but by moving in the direction from the high relay amplitude towards
the low relay amplitude, a larger step can be taken without risking to terminate the
oscillations.

From the experiments on the quadruple tank it can be noted that the experiment
seems to work very well. All obtained models are similar to each other, even if one or
two differ slightly in static gain ofG21, or for large phase lags. The obtained controller
shows satisfactory responses to both setpoint changes and load disturbances. The
obtained model is not symmetric, and neither is therefore the controller. This is due
to uneven wear in the process and can be seen by the somewhat different responses
in y1 and y2. Another thing worth noting from the experiments, is the characteristics

182



6 Discussion

−0.5

0

0.5

1

1.5
To

:O
ut

(1
)

From: In(1)

0 50 100
−0.5

0

0.5

1

1.5

Time [s]

To
:O

ut
(2

)

From: In(2)

0 50 100
Time [s]

Figure 9. Controller performance for a step change in setpoint for GQT . The
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Figure 11. Experiment data from the quadruple tank process. Both the input and
output have been filtered by F(s), and the working point of approximately u = 5,
y = 5, has been subtracted.

of the noise. It is clearly seen from y1 in Figure 11 that the noise is much larger
on the way up (that is, when more water is pumped in to the tank) than on the way
down. It is also clear by comparing the noise in Figure 11 with the one in Figure 7
that the real noise is not at all as white and even as in the simulations. This does,
however, not seem to deteriorate the results of the proposed autotuner.

7. Conclusion

We have proposed an autotuner for TITO systems that gives FOTD or SOTDmodels
for each sub-model. The experiment is extended by a step in the relay amplitudes,
which allows better models to be obtained. The method handles start from non-
stationarity, and the experiment duration is short. The results are good for the
evaluated simulation examples, as well as for the experiments on the quadruple tank
process. This shows that the proposed extended version of the fast and simple relay
autotuner can be succesfully used also for TITO systems, and that more advanced,
time-consuming system identification methods are unnecessary in this case.
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