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Preface 

One of the big obstacles for understanding the nervous system is its inherent 
complexity. It poses problems when interpreting both experimental and theoretical 
studies since we are currently forced to consider only reduced variants of the actual 
circuitry of the brain. Since there exist problems that do not appear until a system is 
sufficiently complex, there are no guarantees that the results stemming from such 
reduced studies can be extrapolated to actually apply to the real brain.  

The initial part of the thesis investigates the properties of the spinocerebellar circuitry 
of the nervous system, and its role in motor control. Especially the cerebellum has 
been shown to play an important role in the coordination of fast movements, such as 
reaching and pointing. Paper I uses theoretical reasoning based on previously found 
experimental studies to show that the cerebellar circuitry should not be studied in 
isolation if the aim is to explore cerebellar function. The inputs provided by the pre-
cerebellar circuits in the spinal cord and brain stem can significantly reduce the 
complexity of the problem that the cerebellar circuitry needs to solve. 

Papers II, IV and V investigate the properties of the mossy fiber pathways. Both the 
spinal border cell neurons that ascend the ventral spinocerebellar tract with 
sensorimotor information related to locomotion and the neurons of the cuneate 
nucleus that process tactile information are studied using behavioral stimulation, 
either in vivo (Paper V) or through modeling (Paper IV). The results indicate both 
that the overall activity of the circuitry provides the cerebellum with an easy to 
interpret encoding, but the individual neurons can at the same time segregate 
underlying features and details of the stimulus. This result can be seen as a parallel to 
the found statistics of spike generation in Paper III. Even though the neurons have 
complex electrodynamic properties, their average activity, described by their firing 
statistics is surprisingly similar between neurons with vastly different morphology. 

Paper VI reviews the theoretical grounds for sparse coding, and compares them to 
recent experimental findings, both in the cerebellum and the neocortex. While there 
are beneficial properties of certain sparse codes, the experimental results rather 
indicate that the circuitry both in the cerebellum and the neocortex do not actively 
maintain a sparse population code. 
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Introduction 

It is hard to not be impressed by the capabilities of the human mind, hidden within 
the complex information processing machine that is the brain. In fact, even what 
could be considered lower level functions, such as reaching to grasp something, or 
even just maintaining balance, are complex problems of movement control that the 
brain can manage with surprising ease. Much of the current research effort in robotics 
is focused on describing so called anthropomorphic control methods, i.e. mimicking 
principles from human biomechanics and the nervous system. From the perspective 
of these efforts, a crude definition of what the brain does is simply regulation of 
motor action. That is, from the outside of a creature with a brain, its nervous system 
could almost completely be described as a black box controller whose only purpose is 
to control the creature’s movements. All the complexity of the brain is conveniently 
hidden away inside the black box and in its absence we can allow ourselves to 
consider to what extent we can currently describe how the nervous system actually 
works and what problems we need to consider in order to formulate such a 
description. In order to do this, there are principles that apply to all systems that 
process complex information that need to be considered. Two of these are presented 
next, and they form a backbone or thread that connects the various parts of this 
thesis. 

The curse of dimensionality 

The biomechanics of the human body contain over  bones and  skeletal 
muscles that are under voluntary control. The human hand alone includes  bones 
that are actuated by  muscles through a complex network of tendons. 
Consequently, the hand is by itself a complicated kinematic system, with at least  
degrees of freedom (Santello et al., 2013). Each degree of freedom provides the 
nervous system with at least a single intrinsic dimension of sensory input. Due to 
non-linearities (e.g. hysteresis), noise, and the possible need to sample not only the 
state, but also its velocity and acceleration, an abundance of sensory input dimensions 
per degree of freedom is most likely reaching the nervous system. Considering the 
motor control of for example the hand, the nervous system potentially has to 
separately control each of the  muscles in order to make use of the hand. 
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The ‘Curse of dimensionality’ (COD) refers to the problems that arise when any 
process or system tries to make sense of high-dimensional information. Whereas it is 
not primarily a problem of the high-dimensional data, the problems arise when the 
algorithms or analysis methods that are used do not scale well in relation to the 
number of dimensions. The COD, as it is used in the thesis, follows from the rate of 
growth of the space that is spanned by the dimensions of the input to the system. 
Figure 1 tries to illustrate the growth using points randomly distributed across spaces 
with increasing number of dimensions. In principle, each time a dimension is added 
to the total input that the system receives the size of the input space will grow in 
proportion to the distinct states of the added input, or the size of the range of possible 
input values. This is a geometric rate of growth, or in other words an exponential 
relationship between the number of input dimensions and the size of the input space. 

Figure 1. Illustrating the curse of dimensionality. 
The curse of dimensionality is related to the number of possible permutations of input values that reach 
a system. The number of combinations is in turn related to the size of the space that is defined by all the 
input dimensions. It is not obvious how to compare the size of spaces with varying number of 
dimensions, but one way is to consider  points that have a uniform random distribution across the 
space in e.g. (A) 1 dimension, (B)  dimensions and (C)  dimensions. It is clear from the figure that 
the distance between the points increases from the cramped  dimensional line in (A) into the spacious 
-dimensional square in (B). Due to the  dimensional space being projected onto a -dimensional 
paper in (C) the distances looks the same, even though they are actually larger than in the -dimensional 
case. (D) If the number of dimensions is increased further, the distance between each of the points will 
continue to grow. The growth is so fast that it becomes almost impossible to counter the increase in 
distance, even if the number of distributed points is increased  or  fold (to , and , 
respectively). In fact, the number of points that are necessary in this example will increase approximately 
 fold for each new dimension introduced. Comparing the -dimensional case in (C) to the -
dimensional case in (D), the -dimensional case would require approximately  points to reach the 
same small distance. If the randomly distributed points are for example considered to be points within 
the input space where a neural circuitry has learned how to respond correctly, it is quite clear that it is 
unreasonable to get the same density of knowledge in the -dimensional space as in the -dimensional 
by simply increasing the number of examples (i.e. points in this case) that the circuitry can learn from. 
Avg. min. distance, the average minimum distance denotes the distance to the closest neighbor averaged 
across  of the points.  
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As a result, it will also lead to an exponential growth in the number of dynamic states 
or execution time of the used algorithm in the worst case scenario.  

The term COD is commonly attributed to have been coined in relation to dynamic 
programming by Bellman (1957). Dynamic programming ― a name that has an 
intriguing story of its own (Dreyfus, 2002) ―  is a method to solve complex optimal 
decision problems by dividing them to a series of less complex subproblems. Bellman 
used the COD to describe the problems arising with large state spaces of these 
subproblems. In the context of the nervous system this is comparable to a high 
dimensionality of the motor output, and how to activate the motor output to reach a 
certain target. In the thesis however, it will more commonly be used to describe the 
problems that arise with a large input space, while the motor problem is only alluded 
to. 

In the context of the input space of the nervous system, each sensor in the periphery 
could in principle be considered a single dimension, providing unique afferent 
information. In this view, with millions of input dimensions, the circuits of the 
nervous system must have found effective ways of sidestepping the COD. Otherwise, 
the number of neurons in the brain would be far from enough to store enough 
information in order to cover only a fraction of the total sensory input space, and the 
experience we would gain during a lifetime would similarly only be enough to give 
meaning to an extremely small subset of all the possible combinations of inputs that 
potentially exist.  

Minsky and Papert investigated the properties of artificial neural networks in their 
seminal book ‘Perceptrons’ (Minsky and Papert, 1969). The focused on the 
computational properties of the perceptron model that had been discovered by 
Rosenblatt (1958). He had in turn used it to describe the properties of sensory 
processing by reproducing the network topology of the retina. Note that what 
Rosenblatt investigated and called a perceptron would today be considered a 
multilayered network of several units, each called a single perceptron, while Minsky 
and Papert considered only the properties of a single such unit in their book. They 
realized that it was not possible to solve to classification problems with classes that are 
not linearly separable using such a single unit or perceptron alone. The results 
presented in ‘Perceptrons’ were part in a sudden widespread realization that the field of 
artificial intelligence had promised more than it could deliver. It led to a decline in 
research of artificial neural networks that lasted for a decade if not more (Russell and 
Norvig, 2009). Eventually it was realized that the constraints using a single 
perceptron could be easily overcome by adding layers to the networks, essentially 
returning to the model of Rosenblatt (Rumelhart et al., 1985). In addition, the 
rediscovery of the backpropagation algorithm gave the artificial intelligence 
community a tool with which it was possible to train the multilayered networks.  
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A second point of ‘Perceptrons’ does however still remain valid. Minsky and Papert 
found an exponential complexity of the synaptic weights, number of neurons, and 
number of training examples needed in relation to the dimensionality of the input 
space of various classification problems. They pointed out that in order to solve a 
specific high-dimensional problem using a neural network and avoid the COD, the 
network should be custom made to handle the specific problem (Minsky and Papert, 
1987). While they recognized the capabilities of the multilayered networks,  they 
meant that the examples presented by Rumelhart et al. (1985) where custom designs 
that solved specific problems and did not take the exponential complexities into 
account. Minsky would later write: “What magical trick makes us intelligent? The 
trick is that there is no trick. The power of intelligence stems from our vast diversity, 
not from any single, perfect principle” (Minsky, 1988).  

Following from their description of the undesirable complexities of shallow neural 
networks, Minsky and Papert cautioned against the use of what they called toy 
problems. The term describes a reduced variant of a complex problem that can be used 
to investigate a certain limited set of features of the original problem. If the toy 
problem is scaled up to the size of the original problem however, there are little 
guarantees that the found properties will be useful to describe the high-dimensional 
problem. In the original problem formulation, the limiting constraints could be 
something that had no influence over the toy problem, but which due to exponential 
complexity has enormous consequences in the high dimensional setting. 

 

The bias-variance dilemma 

The obvious first approach to avoid the COD of a high-dimensional problem is to 
reduce the problem that needs to be solved into a toy problem, and by that simply 
give up on handling all the details of the original problem. By stripping as many 
dimensions from the input to the system as possible, the consequences of the 
exponential complexities can be dramatically reduced. The number of dimensions 
could be reduced either by simply ignoring them using some heuristic (Gigerenzer 
and Brighton, 2009), or through the means of a component analysis method that can 
find the most important or informative intrinsic dimension within the input (Oja et 
al., 1995). It will however most likely also reduce the possible performance of the 
system, leading to a trade-off between the negative consequences of a high 
dimensional system versus the negative consequences of a system that by design can 
only learn or compute a subset of all possible input-output relations that might be 
useful.  



5 

To formalize this trade-off, the error of a system that is supposed to produce a specific 
response in a certain situation can be divided into two parts. The first part is the error 
that arises due to imperfections of the model that the system uses to internally 
represent the relationship between a situation and the correct response. Such an error 
is termed the bias error, since the internal model of the system will have a systematic 
error due to its limitations representing the actual relationship. With a more complex 
internal model, the bias error can be reduced as the model will be able to represent 
more and more details. With a sufficiently high level of complexity, the bias error 
could in principle be completely removed. 

The second part of the error, called the variance error, is related to the system’s 
capability to generalize its current knowledge to handle novel situations. In contrast 
to the bias error, which is reduced with a high model complexity, the error that relate 
to the system’s ability to generalize will commonly increase after a certain degree of 
complexity (see Figure 2A). Somewhat counterintuitively, an increase in the 
complexity of the model will thus degrade the performance of the system. The 
underlying cause is the COD and the fact that we have to train the system by 
examples. To understand why, consider the points in Figure 1 as the locations within 
the input space of the examples that have been given to the system so far. As the 
complexity of the system increase, e.g. by including more dimensions of the system’s 
environment, the provided examples will be increasingly sparsely distributed within 

Figure 2. Illustrating the bias-variance dilemma. 
(A) The bias-variance dilemma is the trade-off between a low model complexity leading to a high bias 
error, and a high model complexity leading to a high variance error. In many cases there is a minimum 
combined error where the model complexity is optimal. (B) Points sampled with noise from the gray 
line. The colored lines indicate the best polynomial fit to the sampled points of a th order (red) and a 
th order (blue) polynomial. The th order polynomial is better at interpolating the actual points, but 
end up a longer distance from the underlying relationship. (C) The relationship between the bias error 
and variance error of polynomials of order -. The bias error decreases monotonically while the 
variance error increase when polynomials of order  or more are used. Each bar represents  different 
polynomials each fitted to a random noisy sample, similar to the points in (B). The bias and variance 
errors are presented as means, th percentiles, and th percentiles of the  polynomials. 
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the space of all possible configurations of the input to the system. The consequence 
for the system will be that the likelihood of it finding the actual relationship between 
input and desired response will be significantly reduced. Instead, underlying noise or 
random coincidences will be interpreted as the actual relationships. The system will 
still respond correctly to the situations that it has encountered and learned from so 
far, but as soon as it is presented to a novel situation, it will use the erroneous 
relationships it has learned and produce an erroneous response to the novel situation. 

The trade-off between a bias error due to low model complexity and a variance error 
due to exaggerated model complexity is commonly called the ‘Bias-Variance dilemma’  
(Geman et al., 1992). It is illustrated with an example in Figure 2 using polynomials 
of increasing degree that represent models of varying complexity. The polynomials of 
high degree will in general be better at interpolating the sampled points, but above a 
degree of , they see a decreased ability to generalize to new samples. It might seem 
that the cause of the degraded performance using higher-order polynomials in the 
example is only due to the noise that is introduced during the sampling of the points. 
Since noise is present in the nervous system, one might ask whether the variance error 
could be removed by efficient noise reduction. 

Figure 3. Even meaningful information may degrade performance. 
Consider that a system should classify situations encoded in two input dimension into two distinct 
classes – I and II.  (A) The 2-dimensional area defined by the two input dimensions and the regions of 
the area that should be classified as either class I or II. (B) The system is only given access to the 
dimension that has the largest influence upon the correct classification. If the system is given two 
examples of inputs and the correct class of that input (red crosses) in the middle of each class area, the 
system can manage to learn a close to ideal classification rule indicated by the black vertical line, even 
without access to the second dimension. The areas that will give erroneous classification results are 
indicated by red stripes. (C) If the system is given access to the second dimension as well without 
additional examples, it has no way of knowing whether it should care more about the first or second 
dimension. As a consequence, the best the system can do is to divide the area by a diagonal line, leading 
to a much larger portion of the total area that will give erroneous classification results, even though the 
second dimension also contains relevant information. With additional examples, the system could of 
course learn the exact shape of the areas, but with only 2 examples the best approach is to simply to 
ignore the second dimension of the input.  
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The simple example in Figure 3 shows that this is not the case. Even the addition of 
noise-free and relevant information can degrade the performance of the system since 
it increases the complexity of the model. The bias-variance dilemma arises due to the 
exponential growth of the number of situations the model can represent in its naïve 
state, compared to the amount of training situations available. In principle, the 
consequence is that there is always a fundamental motivation to keep the model 
complexity as low as possible, e.g. by using different heuristics to reduce the 
complexity of the model (Gigerenzer and Brighton, 2009). 

Complexity of the nervous system 

One of the main impediments to our understanding of the brain is the difficulties 
that exist in describing the properties of complex (high-dimensional) information, 
and how it can be processed and used by any system. In a description of how the 
brain works, such an understanding needs to be incorporated. However, the current 
lack of a useful theoretical framework does not exclude research into the brain, but it 
should caution us when we design experiments, interpret data and build models of 
brain circuitry. In all three cases, it is currently not possible to avoid having to reduce 
the complexity of the studied system. By carelessly doing such a reduction, the 
consequence might be that the system that is studied is no longer relevant in the 
context of the original system of high complexity. Simply put, it is not by guarantee 
possible to study how a system copes with high complexity using a similar low 
complexity system, such as in a reduced experimental setup, or in far from natural 
behavioral settings. The low-complexity variant of the same system might completely 
lack fundamental features that are necessary for the high complexity system to 
function. 

One method to reduce the complexity of the nervous system in order to study it in a 
functionally relevant way might be to mimic the process of development of a brain 
from birth to adult state. Unlike many artificial systems, the brain of an animal needs 
to be functional to some extent already before it reaches its adult state, in certain cases 
already minutes after birth (Roberts and Rubenstein, 2014). A consequence of this 
requirement is that the nervous system and the biomechanics of the young animal 
cannot have the full complexity of the adult animal. The peripheral nervous system 
and the biomechanics of the body should be constructed in a way so that it is 
relatively simple to build a primitive controller, which subsequently can become 
increasingly complex during development. This could be the process that give rise to 
postural synergies of the hand during grasping (Santello et al., 1998), for example. 
Due to the complex web of tendons that connect the joints of the hand, the 
individual degrees of freedom of the hand and joints cannot be controlled in 
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isolation. Instead, the postures of the human hand when it performs grasping tasks 
can be relatively well described by just a few linear combinations of the available 
degrees of freedom. The three most informative of these linear combinations describe 
basic patterns of hand use, such as opening/closing of the hand involving all fingers 
(Santello et al., 1998). These are at least superficially similar to the grasps elicited by 
the grasp reflex of an early infant (Forssberg et al., 1991). The motor control circuitry 
of the spinal cord and the motor pathways (Santello et al., 2013), support some type 
of synergistic control.  

The following parts of the thesis will explore the original papers in the perspective of 
complexity reduction. To what extent does the nervous system, primarily in the 
periphery, the spinal cord and the cerebellum cope with the COD, and  manage the 
balance between bias and variance? What happens when we apply complex stimuli 
that resemble that which is encountered during natural behavior to systems that have 
previously only been studied using reduced, artificial methods of stimulation? The 
two questions illustrate that we need to consider the complexity both when we 
describe how the brain makes sense of its complex environment, but also when we 
build our models to make sense of the complex brain.  

Outline of the thesis 

The core building block of the nervous system is the neuron. In Paper III we 
investigate the statistical firing properties of a range of neurons in the spinocerebellar 
circuitry, and find that it is possible to reliably emulate at least the first and second 
order statistical properties using a two-parameter model. This is despite the relatively 
complex electrodynamics of a neuron. While the finding does not exclude more 
complex behavior in the individual neuron, it does indicate that the neurons have a 
low complexity foundation in their behavior. 

The real complexity of the nervous system does however arise due to the network of 
billions of neurons that are intricately interconnected. The cerebellum should offer 
interesting insights into how the brain manages this complexity, since it contains a 
majority of all neurons in the brain, and it also has a feed-forward anisotropic 
structure that should make it easier to study than the recurrent networks that make 
up most of the spinal cord and the thalamocortical system. In Paper I, we investigate 
the properties of the spinocerebellar system, and how it seems to be organized to 
avoid the potential explosion of complexity that could arise. We find that the 
cerebellum should not be studied in isolation, but rather together with the systems 
that provide the cerebellar input through mossy fibers. The organization of these 
inputs most likely plays a critical role when the spinocerebellar circuitry avoids the 
COD.  
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In order to study the response and properties of a system that provide input to the 
cerebellum in isolation, the properties of spinal border cell (SBC) input to the 
cerebellar cortex were investigated in Paper II. In line with previous findings 
regarding the specificity and excitability of cerebellar granule cells, the SBC tract 
alone could elicit strong responses not only in granule cells, but also Golgi cells, 
molecular layer interneurons and Purkinje cells. The responses of different granule 
cells were however quite diverse. In order to investigate how the difference in the 
response of the granule cells affected their activity during natural behavior, we 
investigated the response properties of modeled granule cells under locomotion in 
Paper IV. We found that much of the complexity of the responses could be explained 
as variable conduction delays within different fibers in the SBC tract. The difference 
in response seen with the SBC tract stimulation did not seem to influence the overall 
response of the simulated granule cells to the locomotion related input. Instead, the 
granule cells had an activity that was close to linearly modulated by the activity of the 
SBCs. It illustrates that while the system has dynamics that most likely allow complex 
responses, the overall activity will closely resemble the overall input to the network, 
allowing the cerebellum to reliably get an initial estimate of the input without 
considering all the complexity that might be hidden in the details.   

The low-complexity interpretation of a circuitry does sometimes directly limit the 
possibility to transmit complex information along the same channel. The classical 
view of the somatosensory processing of the nervous system has led to such 
limitations in our description of the subcortical processing of tactile afferent 
information. We show in Paper V that the neurons of the cuneate nucleus manage to 
extract fundamental features from the mechanical contact of tactile stimulation from 
the primary afferent. The findings in Paper V challenge the functional interpretation 
of the somatopic map of the primary somatosensory cortex, and also the classical 
description of the function of secondary somatosensory cortex (Kandel and Schwarz, 
2013). The contradicting results stem from the use of a novel spatiotemporal 
mechanical stimulation (Hayward et al., 2014), rather than pointwise mechanical or 
electrical stimulation that is commonly used to map the receptive fields of cortical 
regions. The findings in Paper V illustrate the danger of extrapolating a functional 
interpretation from experimental data, which has been acquired in an experimental 
setting with reduced complexity. 

Similar issues can be found regarding the concept of sparse coding, which is widely 
believed to be present in many separate brain regions. We survey the current 
understanding of sparse coding in Paper VI, in order to investigate the theoretical 
foundation of sparse codes as well as the experimental evidence. While there are many 
theoretical studies that show beneficial properties of a sparse code (at moderate 
sparseness), the experimental results are often built upon reduced experimental 
settings. In studies where the nervous system is exposed to stimulus that resemble 
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what would be experienced during natural behavior, the network activity do quite 
often drastically change into something that rather resemble a dense activity.  
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Single neurons  

Our modern understanding of the nervous system essentially begins with the neuron 
doctrine of Cajal, earning him the Nobel Prize in 1906. He used his exquisitely 
detailed stainings to state that the neuron is the fundamental physiological unit of the 
nervous system. From this doctrine, our knowledge of the electrophysiological nature 
of the neuron developed with the seminal Hodgkin-Huxley model of the giant squid 
axon, presented in a series of publications during 1952 that later lead to another 
Nobel Prize in 1963 awarded to Hodgkin and Huxley together with Eccles. The 
model, with various additions and variants, still serve as the golden standard 
description of how the neuron membrane potential is regulated through the intricate 
behavior of ion-channels that perforate the membrane of the neuron. It is worth 
citing Hodgkin and Huxley (1952) describing one of their figures: “Only one, […], is 
complete; in the other two the calculation was not carried beyond the middle of the 
falling phase because of the labor involved …” to illustrate their impressive feat in a 
time when the abundance of computing power we have today did not exist.  

Modeling the neuron 

Neurons communicate with action potentials or electric pulses that propagate along 
the neuron’s axon to synaptic terminals and synapses made onto other neurons. By 
modeling neurons, we try to describe this process at a particular level of detail, which 
suits our current needs. Due to the fact that the signals between neurons are 
transmitted as discrete events, a model does not always need to consider the intricacies 
of the neuron membrane or the complex morphological structure of the neuron. In 
fact, complex models of neurons potentially suffer from the same bias-variance 
dilemma as was described in the introduction. Hence, if the purpose of the modeling 
is anything other than to actually describe all the intricacies in detail, it should not be 
a purpose of its own to always use as complex models as possible. A reduced 
complexity does of course also offer substantial advantages in the form of 
computational cost when the model is actually simulated. The reduced model might 
also benefit from the possibility to find analytical solutions to the questions that are 
investigated, essentially avoiding the simulation step completely.  
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It is however not entirely straight forward to reduce the complexity of a detailed 
model. Consider the neurons in Figure 4. Their morphology is widely different, and 
it has been shown the same holds true when it comes to at least certain aspects of their 
electrophysiological properties (McKay et al., 2005, Molineux et al., 2005, Cesana et 
al., 2006, Zhong et al., 2010). The obvious drawback of using reduced models is that 
it is necessary to make sure that the reduction does not remove features from the 
model, which are essential to the function of the neuron, or at least the properties that 
are being investigated.  

A simple and perhaps crude method of measuring model complexity is by the number 
of parameters of the model. Consider for example the elegant differential equation 
from Hodgkin and Huxley (1952) that describes the membrane potential of the 
neuron: 

 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑔𝑔𝐿𝐿(𝐸𝐸𝐿𝐿 − 𝑉𝑉𝑚𝑚) + 𝑔𝑔𝑁𝑁𝑁𝑁𝑚𝑚3ℎ(𝐸𝐸𝑁𝑁𝑁𝑁 − 𝑉𝑉𝑚𝑚) + 𝑔𝑔𝐾𝐾𝑛𝑛4(𝐸𝐸𝐾𝐾 − 𝑉𝑉𝑚𝑚). 

 

Figure 4. Morphology of cerebellar neurons 
Three distinct morphological types of cerebellar neurons. (A) A Purkinje cell with its large soma and 
even larger dendritic tree, being innervated by hundreds of thousands of parallel fibers. (B) A stellate 
molecular layer interneuron, with its star shaped dendritic tree. (C) A granule cell with its characteristic 
axon that transforms into a parallel fiber as it reaches the molecular layer of the cerebellum (at the top). 
Closer to the soma of the granule cell (the bottom right), at least three dendrites can be seen reaching out 
to separate mossy fiber rosettes. 
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The complete model also contains the following differential equations that describe 
how the time varying states, 𝑚𝑚, 𝑛𝑛, and ℎ change: 
 

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝛼𝛼𝑛𝑛(1 − 𝑛𝑛) − 𝛽𝛽𝑛𝑛𝑛𝑛, 
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ = 𝛼𝛼𝑚𝑚(1 − 𝑚𝑚) − 𝛽𝛽𝑚𝑚𝑚𝑚, 
𝑑𝑑ℎ 𝑑𝑑𝑑𝑑⁄ = 𝛼𝛼ℎ(1 − ℎ) − 𝛽𝛽ℎℎ. 

 
As well as the equations that express the rates at which the three states change: 
 

𝛼𝛼𝑛𝑛 = 0.01(𝑉𝑉𝑚𝑚 + 10) �exp
𝑉𝑉𝑚𝑚 + 10

10
− 1�� , 

𝛽𝛽𝑛𝑛 = 0.125 exp �
𝑉𝑉𝑚𝑚
80

� , 

𝛼𝛼𝑚𝑚 = 0.1(𝑉𝑉 + 25) �exp
𝑉𝑉𝑚𝑚 + 25

10
− 1�� , 

𝛽𝛽𝑚𝑚 = 4 exp�
𝑉𝑉𝑚𝑚
18

� , 

𝛼𝛼ℎ = 0.07 exp �
𝑉𝑉𝑚𝑚
20

� , 

𝛽𝛽ℎ = 1 �exp 
𝑉𝑉𝑚𝑚 + 30

10
+ 1�� . 

 

In total, the original Hodgkin-Huxley model has  parameters and  time varying 
states. For someone not used to reading equations, it is perhaps southing to learn that 
a mathematician would react with the same feeling of fright to the equations above as 
any other person would. The above equations form a complex system of non-linear 
differential equations. They are non-linear since the membrane potential will 
determine the rate at which the time varying parameters 𝑚𝑚, 𝑛𝑛, and ℎ vary, as can be 
seen in the 𝛼𝛼 and 𝛽𝛽 equations. The non-linearity introduces difficulties in 
determining whether or not the membrane potential will remain stable or not, and in 
determining the properties of the possibly many equilibriums of all the time varying 
states. It is for example not obvious how to choose values for the parameters of the 
model in order to avoid the sodium channels being permanently open due to that the 
threshold of the sodium inactivation is set too high, or never open at all due to an 
exaggerated potassium conductance.  

The fact that neurons are as stable and regular in their electrophysiological properties 
as they are, even though the underlying dynamics of the membrane potential are 
described by the complex set of equations above, is fascinating. Since the most violent 
of the dynamics will only be used to generate the action potential when the sodium 
channels open in a cascade as a response to depolarization, it is possible to reduce the 
complexity and construct a simplified model of the neuron without the non-
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linearities and a reduced number of parameters. The action potential can be seen as a 
stereotyped event (see Figure 5E), which allows the model to focus on the 
subthreshold membrane behavior. In fact, such a simplified model was described by 
Lapicque already in 1907, and is now known as the leaky integrate-and-fire (LIF) 
model (Burkitt, 2006). Instead of describing the complex dynamics of the action 
potential explicitly within the model, the neuron is considered to produce an action 
potential whenever the membrane potential reaches a certain threshold, after which it 
is reset to a specified reset membrane potential. The LIF model can be expressed by 
the following single linear differential equation, the fixed spiking threshold, 𝑉𝑉𝑡𝑡ℎ, and 
the reset potential, 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 : 

 

𝐶𝐶𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑑𝑑

= 𝑔𝑔𝐿𝐿(𝐸𝐸𝐿𝐿 − 𝑉𝑉𝑚𝑚),    

fire when  𝑉𝑉𝑚𝑚 > 𝑉𝑉𝑡𝑡ℎ, 
then reset to   𝑉𝑉𝑚𝑚 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

 

The LIF model offers an alternative with only  intrinsic parameters, compared to the 
 parameter non-linear model of Hodgkin-Huxley that was described above. The 
reduction does however come at the expense of the time-dependent and voltage-
sensitive conductances and the dynamic refractoriness that real neurons exhibit 
(Abbott and Kepler, 1990). The choice of model introduces a balance between the 
biophysical accuracy and the practical and conceptual simplicity of using the model. 
Furthermore, both the Hodgkin-Huxley and the integrate-and-fire model have given 
their names to two whole families of models, with various extensions that include 
additional biological features of neurons to the models (Burkitt, 2006).  

 Neural noise 

The spike trains of most neurons in the nervous system are characterized by irregular 
intervals between subsequent spikes (see Figures 5A‒D). Since there is little definite 
knowledge of how information is actually encoded within the spike trains across the 
nervous system, the long standing question to what extent the irregularities are due to 
intrinsic noise of neurons, or external synaptic noise, remain open (Mainen and 
Sejnowski, 1995, Chow and White, 1996, van Vreeswijk and Sompolinsky, 1996, 
Naundorf et al., 2006). For example, irregular but chaotic rather than stochastic spike 
trains can arise from balanced states emerging in large networks that are sparsely 
connected, but have strong synaptic weights (van Vreeswijk and Sompolinsky, 1996).  
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Figure 5. Intracellular spontaneous activity in vivo 
(A-D) Intracellular spontaneous activity of neurons that are modulated with a bias current across the 
membrane. The gray areas indicate when the modulating bias current is applied, while each row 
correspond to a separate amplitude of the applied bias current. (A) Spinal interneuron. (B) Cerebellar 
Purkinje cell. Occasional complex spikes are indicated with asterisks. (C) Cerebellar molecular layer 
interneuron. (D) Cerebellar Golgi cell. Note the irregular firing of all neurons. (E) Two magnified traces 
from the spinal interneuron in (A) where the firing threshold seems to be stochastic, since it significantly 
change between even subsequent action potentials within 50-200 ms. (F) 900 overlaid action-potential 
traces from the same spinal interneuron as in (E). (G) Phase plot of 100 out of the 900 action potentials 
in (F), with three highlighted action potential traces in color. Note the variation of the firing threshold 
shown in the inset histogram. The firing thresholds were found by tracing the phase plot of an initiated 
action potential (dV/dt > 20) back to where it did rise above dV/dt > 2.5. The histogram inset contains 
all 900 original action potentials. 
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Figure 5E shows the membrane potential of a spontaneously active spinal interneuron 
recorded from a decerebrate cat preparation in vivo. The neuron in the figure seems 
to initiate action potential at different thresholds levels, which vary even between 
consecutive spikes. This behavior is in contrast to the properties of rat cortical 
neurons in Mainen and Sejnowski (1995), where they find neurons with a nearly flat 
threshold in a rat cortical slice preparation. It has been proposed that the stochastic 
firing threshold is due to cooperating sodium channels (Naundorf et al., 2006). If the 
properties of these channels vary considerably between the in vivo and at least some in 
vitro settings, they could perhaps explain the difference in stochastic spike initiation. 
The onsets or thresholds have been found to vary with up to 10 mV in neurons 
recorded in vivo in the cat visual cortex (Naundorf et al., 2006). The same range of 
onset potentials can be found in the phase plot of the action potential traces recorded 
from the spinal interneuron in Figure 5G.  

While measuring neurons in slice preparations in vitro has the advantage that the 
synaptic input to the neuron can be under complete control, it also impose a dramatic 
change to the neuron’s environment that might influence the behavior of the neuron. 
The presence of active synapses does for example to some extent introduce high-
frequency fluctuations to the membrane potential that might influence the properties 
of the spike generation mechanism and the responsiveness of the neuron (Hô and 
Destexhe, 2000, Destexhe et al., 2001). In the in vivo setting, it is not clear to what 
extent anesthetics influence single neurons, and awake animals will have variations of 
the global brain activity that change over time outside of the experimenter’s control. 
The decerebrate preparation that were used to collect the data throughout this thesis 
avoids these issues since the animal is non-anesthetized, the in vivo-like synaptic noise 
is maintained at a steady level, and changes due to global thalamocortical activity over 
time are reduced due to the decerebration.  

Modeling noisy neurons 

Irregular spike trains can be analyzed using the intervals between consecutive spikes 
called the inter-spike intervals (ISIs). If the spike trains were completely regular as in 
so called pacemaker cells, all intervals would be equally long, while irregular spike 
trains lead to distributions of ISIs. The properties of those distributions can be used 
to investigate and describe the point process that generated the spike trains. 

It is possible to model noise, either intrinsic or synaptic, through suitable extensions 
of deterministic models (Burkitt, 2006). LIF models extended with noise has an 
advantage over more complex conductance based models, since the LIF models offer 
analytical solutions that allows it to be fitted to experimental ISI distributions (Rauch 
et al., 2003, Burkitt, 2006, La Camera et al., 2008). Such biophysical models offer 
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direct interpretations to the parameter values as biophysical entities, such as the 
membrane resistance and capacitance. Those interpretations are however only valid if 
the effective values of the biophysical parameters of the model correspond or correlate 
to the actual values of the neurons. In contrast, Rauch et al. (2003) and La Camera et 
al. (2008) found that the parameter values that corresponded to the best fit ISI 
distributions of a neuron were not correlated to the directly measured values of the 
membrane resistance and capacitance of the neuron. It seems that even the relatively 
simple LIF models suffer either from overfitting, or that the subthreshold voltage 
gated conductances and the dynamic refractory processes of real neurons influence the 
firing statistics of the neurons in ways the LIF model cannot emulate (Abbott and 
Kepler, 1990). 

In Paper III, we instead directly investigate the firing statistics of neurons that are 
spontaneously active. By approaching the firing statistics without considering whether 
the noise is intrinsic or synaptic by nature, the complexity of the model can be 
reduced to a minimum. The resulting model will however by design be completely 
phenomenological with no biophysical interpretations of the model parameters. 

By recording the neurons intracellularly, it is possible to inject a current across the 
membrane, which will either excite or inhibit the neuron relative to its resting 
membrane potential in order to investigate how the properties of the firing statistics 
change with various levels of excitation. Figures 5A‒D show how four neurons of 
different types respond to bias currents by changing their average firing rate. The 
statistics of the different spike trains were then investigated using the distributions of 
their ISIs. As long as the point process initiating the spikes is renewal (i.e. no 
correlation between subsequent ISIs) and stationary, the distribution of ISIs will 
completely describe the statistics of the spike firing of the neuron. Figure 6A shows 
the empirical ISI distributions of a cerebellar Golgi cell recording at four different 

Figure 6. The ISI distributions at different stationary states of firing can be approximated by 
lognormal distributions. 
(A) The empirical ISI distributions of a cerebellar Golgi cell are shown as histograms at four different 
levels of excitation. The log-normal distributions with the closest fit to the empirical distributions are 
shown as black lines on top of the histograms. (B) All four of the log-normal distributions in (A) shown 
together to illustrate how the distributions change with varying levels of excitation. 
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levels of excitation. In order to reduce the parameters describing the distributions, 
they can be approximated using a parametric distribution, such as the log-normal 
distribution (see Figure 6B). A log-normal distribution is created by taking the 
logarithm of a normal distribution. The logarithmic properties of the resulting 
distribution makes it positive definite and gives it a skewed shape that resembles the 
properties of empirical ISI distributions, whose skewed shape and positive definite 
properties arise partly due to the refractory period of the neuron. The log-normal 
distribution is commonly parametrized by two parameters 𝜎𝜎 and 𝜇𝜇, which are the 
mean and standard deviation of the underlying normal distribution. Using that 
parametrization, the probability density function of the log-normal distribution is 
defined by the following equation:  

 

𝑓𝑓(𝑡𝑡; 𝜎𝜎, 𝜇𝜇) =
1

𝑡𝑡𝑡𝑡
√

2𝜋𝜋
exp �

−(ln 𝑡𝑡 − 𝜇𝜇)2

2𝜎𝜎2 �. 

 

The mean and standard deviation of the underlying normal distribution can be 
translated into the mean and standard deviation of the log-normal distribution using 
the following equations: 

 

𝐸𝐸 = exp �𝜇𝜇 +
1
2
𝜎𝜎2� , 

𝑠𝑠. 𝑑𝑑. = 𝐸𝐸�exp 𝜎𝜎2 − 1, 

 

where 𝐸𝐸 is the mean and 𝑠𝑠. 𝑑𝑑. is the standard deviation of the distribution. By 
analyzing several regions of spike firing where the neuron exhibit different levels of 
excitation, it is possible to try to describe the relationship between the firing rate 
(𝐸𝐸−1) and the inverse of the standard deviation (𝑠𝑠. 𝑑𝑑.−1) of the ISI distribution as the 
level of excitation changes. The inverse of the standard deviation is used in order to 
have the same unit, Hz, on both measures. In Paper III, we present such an 
approximate relationship. It can be summarized by the following three equations:  

 

𝐸𝐸−1 = 𝑐𝑐𝑥𝑥 ln[1 + exp(𝑥𝑥 − Δ𝑥𝑥)], 
𝑠𝑠. 𝑑𝑑.−1 = exp 𝑥𝑥, 

𝑥𝑥 = 𝑐𝑐𝐼𝐼𝐼𝐼 − Δ𝐼𝐼, 
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where 𝐼𝐼 is the bias current input to the neuron. 𝑐𝑐𝐼𝐼  and Δ𝐼𝐼  are two parameters that 
relate the bias to the dimensionless state 𝑥𝑥 that determine the level of excitation of the 
model. Finally, 𝑐𝑐𝑥𝑥 and Δ𝑥𝑥 are the parameters that regulate the relationship between 
𝑠𝑠. 𝑑𝑑.−1 and 𝐸𝐸−1. 

The lack of any parameters within the exponential relationship between 𝑠𝑠. 𝑑𝑑.−1 and 𝑥𝑥 
allows it to be used as a method to validate the fit of the relationship to experimental 
data. With a logarithmic scale, the data should always align along the same straight 
line regardless of the parameter values of the fitted model. In Figure 7 the fit of the 
model to experimental data is illustrated using  different neurons of  types. Of all 
the  tested neurons in Paper III, only two cerebellar Golgi cells failed the statistical 
test of whether the data aligned along the straight line used as validation (Figure 7C). 

Considering the differences in morphology of the neurons (see Figure 4 on page 12) 
and their differing electrophysiological properties (McKay et al., 2005, Molineux et 
al., 2005, Cesana et al., 2006, Zhong et al., 2010), it is surprising that the firing 
statistics (i.e. the relationship between 𝑠𝑠. 𝑑𝑑.−1 and 𝐸𝐸−1) of all the neurons could be 
fairly well described by the same rudimentary two-parameter equation. It has 

Figure 7. In vivo data from four distinct types of neurons fitted to the model 
Model fit of (A) 3 Purkinje cells, (B) 3 Molecular layer interneurons, (C) 3 Golgi cells and (D) 3 spinal 
interneurons. The top row compares the predicted relationship between the internal parameter x, and 
the inverse standard deviation of the ISI distribution. Each point in the figure corresponds to a single 
region of spontaneous activity containing 50 action potentials. The neuron exhibits a good model fit if 
the data align with the line (𝐼𝐼𝐼𝐼𝐼𝐼 𝑠𝑠𝑠𝑠𝑠𝑠)−1 =  exp 𝑥𝑥. The bottom row shows the relationship between x and 
the firing frequency of the neuron. The two Golgi cells in (C) that failed the statistical test (p < 0.05) of 
the residuals compared to the line in the top row are marked with asterisks in the bottom figure. 
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previously been shown that it is possible to classify the type of neuron according to 
their spontaneous firing rate at rest together with the entropy of the ISI distribution 
(Van Dijck et al., 2013). Since the entire operative range of the neurons is given by 
the phenomenological model, it allows the same comparison to be made across the 
operative range, instead of just at their natural resting state. The first two moments of 
the firing statistics of all the neuron models across their firing range are shown in 
Figure 8. The variation between the neurons of the same type is comparable to the 
variation between the different types. The results indicate that it would not be 
possible to distinguish the neurons using the first two moments of their ISI 
distributions alone if they were not at their natural resting firing rate.  

The use of stationary firing levels does in principle limit the models applicability to 
situations with homogeneous firing or a static input to the model. It is however 
possible to create an escape rate model using the hazard functions of the current ISI 
distribution using the following equation:  

 

Figure 8. Comparing the firing statistics of different neurons 
Comparing the predicted firing statistics of models fitted to the empirical ISI distributions of spinal 
interneurons (n=9), Purkinje cells (n=3), molecular layer interneurons (n=3) and Golgi cells (n=3). There 
is no obvious difference between the neuron types when the firing statistics is investigated across the 
range of activity. (A) The relationship between the mean and standard deviation of the underlying 
normal distributions that define the log-normal distributions. (B) The relationship between ISI and the 
coefficient of variation. (C) The asymptotic coefficient of variation as the ISI grows to infinity. The 
numbers in parentheses indicate if there is more than one value that overlaps in the figure. 
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𝜆𝜆(𝑡𝑡; 𝜎𝜎, 𝜇𝜇) =
𝑓𝑓(𝑡𝑡; 𝜎𝜎, 𝜇𝜇)

1 − 𝛷𝛷 �ln 𝑡𝑡 − 𝜇𝜇
𝜎𝜎 �

, 

 
where 𝜆𝜆 is the instantaneous firing rate, 𝑓𝑓  is the probability density function and 𝛷𝛷 is 
the cumulative density function. As long as the input is slowly modulated, the hazard 
rate could be used to handle also inhomogeneous situations. In contrast to slow 
modulation, transient synaptic inputs could cause significant non-renewal behavior, 
such as spike rate adaptation, that the model cannot handle. In Figure 9, the response 
of the model during fictive locomotion is compared to both a DSCT and a VSCT 
spinal neuron that is adopted from spinal neurons recorded during fictive locomotion 
in vivo (Fedirchuk et al., 2013). The model managed to reproduce the behavior both 
of DSCT neuron with a slowly modulated firing rate (up to ~ Hz), and that of the 
VSCT neuron, which has much higher firing rate (up to ~ Hz) and a far more 
transient behavior.  

Figure 9. Predicted response by the inhomogeneous model during fictive locomotion. 
The response of the inhomogeneous model compared to the actual instantaneous firing rate of a spinal 
neuron. The black lines show the recorded instantaneous firing rate (IFF)(Fedirchuk et al., 2013) and 
the gray areas indicate the  confidence bounds of the model. The models were driven by the 
recorded intracellular membrane potential of the same neuron that was also used to measure the 
extracellular spike trains used for the IFF (Fedirchuk et al., 2013). Just like the experimental IFF, the 
model output from  trials was binned into  bins. The simulation was repeated  times to compute 
the confidence intervals. (A) DCST neuron. The inset compares the ISIs of the experimental data (gray 
bars) to the ISIs of the model (black line). (B) VSCT neuron. Note that the model manages to reproduce 
the fast initial transient from 0-300 Hz, and the following slow decay of the IFF. It should be noted that 
in both (A) and (B) the input to the model and the measured firing frequencies where naturally not 
from the same step cycles, which means that perfect fit of model and the experimental data cannot be 
expected.  
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Simple in general, but complex in principle 

It is fascinating and somewhat surprising that the empirical ISI distributions of such a 
large set of different neurons can be approximated by the log-normal distribution. 
Note that the log-normal distribution is not special in this sense. Similar results can 
be achieved using gamma distributions and inverse Gaussian distribution (Paper III 
includes a more thorough examination), both of which are commonly used to 
describe ISI distributions (Kostal and Lánský, 2007). The fascination does rather 
come from the fact that neurons, at least at a glance, behave similarly despite rather 
different morphology, anatomical location and assumed function within the nervous 
system. The fact that the two parameter model presented in Paper III can describe the 
firing statistics of the neurons across their operative range is fueling the same 
fascination.  

It seems as if the nervous system does its best to not overuse the complexity that is 
inherent in the biophysical nature of the neuron. The basic response to stimuli is 
rather a close to linear translation from stimulus strength to firing rate in many of the 
investigated neurons, across most of their operative range. In another view, if we as 
observers do not know the details of what the neuron is signaling, the average 
response of the neuron to relatively slowly modulated inputs can be seen as the first 
order approximation of the information content. This could perhaps give a 
developmental advantage since the neuron on the receiving end of the axon can 
directly make some crude sense of the information it receives without learning the 
intricacies of the encoding.  
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Cerebellum 

Compared to other regions of the nervous system, the cerebellum has an almost 
crystalline and uniform structure. The same salient pattern of neurons is repeated over 
and over across the cerebellar cortex. Furthermore, compared to most of the 
thalamocortical system and circuitry of the spinal cord, the cerebellum is distinctly 
anisotropic. The only input to the cerebellum is relayed through two distinct 
pathways – the mossy fibers and climbing fibers, and the only output projections 
from the cerebellum originate from the deep cerebellar nuclei (DCN).  

Despite being smaller in volume than the neocortex, the cerebellum houses the 
majority of all neurons in the nervous system in the form of cerebellar granule cells. It 
also seems to play a ubiquitous role in the nervous system, since it both receives input 
and relays its output from/to almost all other brain regions. It is more or less involved 
in as diverse tasks as the timing of eye blink conditioning, motor control of both 
relatively low-dimensional task such as the vestibulo-ocular reflex (VOR) as well as 
complex motor coordination (Ito, 2006), and higher cortical functions (Ito, 2008). 
The regular structure of the cerebellar circuitry, and its involvement in many diverse 
brain functions, has commonly been attributed to a general functionality, where the 
cerebellum is thought to learn to correlate input to and correct errors that the body 
and brain encounters. As a heritage of the early ideas of Marr (1969) and Albus 
(1971), the input via the climbing fibers is assumed to serve as an error signal to the 
Purkinje cells. Based on this error signal the cerebellum will learn to avoid repeating 
the same error by correlating the error signal to input it received from the parallel 
fibers being active when the error occurred. It would allow the cerebellar circuit to 
preemptively regulate the activity of downstream neurons the next time the circuitry 
encounters the same combination of inputs.  

The combination of the feed-forward structure of the cerebellum, and the separate 
input pathway of the climbing fibers serving as an error signal, resemble that of a 
single hidden layer artificial neural network with an external error or teaching signal. 
While the similarity is striking, it also poses a risk that all experimental findings are 
interpreted in this context without considering alternatives. There are in fact several 
experimental studies that indicate that the Marr-Albus view of the cerebellar circuitry 
might not be enough to explain all the details of how the cerebellum is used by the 
nervous system.  
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The cerebellar circuitry that is involved in both eye-blink conditioning and the VOR 
is particularly well studied, including the pre-cerebellar circuitry that is involved and 
the pathways that lead out of the cerebellum from the vestibular nucleus and the 
anterior interpositus nucleus (Ito, 2006). The plasticity processes of both these 
systems, which allow the cerebellum to learn how to respond, do not harmonize with 
the plasticity rule of the Marr-Albus type of models, where the difference between 
potentiation and depression of the parallel fiber to Purkinje cell synapse completely 
depend on the signaling of the climbing fibers. In the case of eye-blink conditioning, 
recent evidence suggest that rather than synaptic plasticity at the parallel fiber to 
Purkinje cell synapse, the Purkinje cell itself has an intrinsic mechanism that allows it 
to learn the interval between a parallel fiber activation and a subsequent climbing 
fiber activation (Johansson et al., 2014). In contrast, the change in synaptic efficacy of 
the parallel fiber to Purkinje cell synapse during VOR training is strongly correlated 
to the climbing fiber activity, but only during VOR-increase training (Kimpo et al., 
2014). During VOR-decrease training there is no such correlation, even though over 
time the synaptic efficacy still changes. 

The placement of the cerebellum within the neural circuitry that control voluntary 
movements allows it to take two different roles in order to facilitate the motor 
control, by learning either the dynamics or the inverse dynamics of the controlled 
limb (Kawato et al., 1987, Ito, 2006). The dynamics in the forward model would 
allow the cerebellum to predict the outcome of a motor command, presenting the 
motor cortex with an artificial feedback signal without the delay of the actual sensory 
feedback. In contrast, the inverse dynamics in the inverse model could be used to 
transform the motor command of the motor cortex into suitable torques or muscle 
activations. The cerebellum could thus be used both in a feed-forward controller as an 
inverse model, or in a feedback controller by providing the motor cortex with the 
predicted consequences of a motor command. 

It is interesting to note that the Marr-Albus model of cerebellar function potentially 
fails to explain various different features within VOR and eye-blink conditioning. It is 
also questionable whether the slow firing rate of the climbing fibers can contain 
enough information to be a reliable source of an error signal when it comes to more 
complex voluntary motor control, involving for example coordination. The local 
spillover plasticity between parallel fiber synapses that has been described by Wang et 
al. (2000) could for example mean that the plasticity of individual synapses is 
governed also by the population activity of the parallel fibers, and not only the 
climbing fiber activity. The differences between the circuits involved in the VOR, 
eye-blink conditioning, and voluntary movement control, indicate that the three tasks 
seem to make use of the cerebellar circuitry in distinctly different ways. Also from the 
complexity perspective, it is perhaps necessary to shift the view of the cerebellum from 
that of a general-purpose machinery with unlimited capability to learn how to react to 
any combination of input patterns. A general-purpose structure would assume that 
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most if not all of the signal processing, such as feature extraction, takes place within 
the cerebellar circuitry. In the Marr-Albus model, the feature extraction would take 
place within the granule layer through a massive expansion recoding of the incoming 
mossy fibers. In their view, each granule cell is assumed to receive a unique (or 
random) set of approximately 4 mossy fibers, and the granule cell will only be active 
whenever a majority or all of the mossy fibers are activate simultaneously. However, if 
the cerebellum is not considered to be a separate structure that has to manage itself, 
but rather a component in the larger circuitry, the properties and “knowledge” 
already in the larger circuit could be used to guide the cerebellar circuit. The purpose 
would be to reduce the possible permutations of mossy fiber to granule cell 
connections towards combinations of inputs that are functionally relevant to the 
cerebellar circuit. This would offer a substantial advantage since random 
combinations of mossy fiber inputs would almost always lead to combinations that 
has no functional significance to the system due to the astronomical number of 
combinations that are possible following from the high dimensionality of the input. 
Even the vast number of granule cells would be far from enough to naively encode the 
complete input space in any detail. Paper I use this perspective in order to analyze the 
role of the cerebellum in the circuitry that enable the nervous system to control the 
movements and the coordination of multi-segmented limbs. 

Key experimental findings in the literature 

There are at least three classes of experimental evidence that support the view of the 
pre-cerebellar circuit as a vital part of the cerebellar circuit: 

1. There is convergence of different inputs to pre-cerebellar neurons 

2. The inhibition of granule cells from Golgi cells is mostly tonic 

3. Many granule cells seem to receive functionally similar inputs from more than 
one, and at least in some cases all four mossy fibers that innervate the granule 
cell. 

The experimental data corresponding to the first point show that the pre-cerebellar 
circuitry at least has the means to find functionally relevant combinations of different 
inputs that the cerebellum can use. A large proportion of the mossy fibers that reach 
the cerebellar regions that contribute to motor control originate from the spinal cord 
(Oscarsson, 1973). Many of these spinal systems receive both sensory feedback and 
descending motor commands, either directly or mediated via other spinal 
interneurons (Jankowska et al., 2010, Hammar et al., 2011, Jankowska et al., 2011a, 
Jankowska et al., 2011b, Krutki et al., 2011, Shrestha et al., 2012a, Shrestha et al., 
2012b). These observations offer an alternative view of where the multi-modal 
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combination of inputs occurs. Rather than taking place within the granule layer due 
to random convergence of mossy fibers, it can take place already in the spinal 
circuitry. The selection of functionally relevant combinations could potentially even 
be a main function of the neurons that project to the cerebellum. It is not clear how 
these combinations would be selected, but there are experimental results that indicate 
the presence of more complex features being available already at the spinal level 
(Bosco et al., 1996, Poppele et al., 2002). It is also known that the spinal circuitry is 
established during development and that the underlying plasticity processes take the 
sensorimotor apparatus into account (Holmberg et al., 1997, Petersson et al., 2003). 

The second point considers the properties of the feedback inhibition from Golgi cells 
to granule cells. The granule cell layer, including the feedback inhibition of the Golgi 
cells is conspicuously similar to the network structure proposed by Földiak (1990). 
However, in order for the Golgi cells to actively influence the encoding of the granule 
cell population, the feedback inhibition should act on the same timescale as the mossy 
fiber excitation of the granule cells. In contrast, in the adult cerebellum the inhibition 
is to a large extent carried by a slowly modulated tonic inhibition (Wall and Usowicz, 
1997, Jörntell and Ekerot, 2006). Even in juvenile animals up to  of the charge is 
carried by the tonic component (Duguid et al., 2012). Fast inhibitory post-synaptic 
potentials on the other hand are weak or absent (Jörntell and Ekerot, 2006). Phasic 
inhibition is still present in young animals, but it is gradually lost at the same time as 
the tonic component develops (Brickley et al., 1996, Wall and Usowicz, 1997). In 
line with these findings, in vivo studies of the inhibitory response show a presence of 
tonic inhibition (Jörntell and Ekerot, 2006, Bengtsson et al., 2013), but fast 
inhibitory post-synaptic potentials are difficult to detect (Chadderton et al., 2004). 
The lack of fast phasic inhibition in the juvenile and adult animal questions the 
encoding capabilities of the granule layer during fast movements, which is when feed-
forward coordination of the movement by the cerebellar circuit is most likely critical. 

The third point considers the focal termination of mossy fibers upon the granule layer 
of the cerebellum (Alisky and Tolbert, 1997, Garwicz et al., 1998, Tolbert and 
Knight, 2003, Gebre et al., 2012). The termination pattern of the incoming mossy 
fiber pathways forms discontinuous sharp clusters, rather than diffuse continuous 
patterns. These studies are at odds the proposal that granule cells as a rule sample 
functionally dissimilar mossy fibers. Hence, the topology of the mossy fiber 
innervation patterns questions the expansion recoding that was proposed by Marr and 
Albus, where the role of the mossy fiber to granule cell divergence was to decorrelate 
the granule cell population activity through sampling of randomly combined mossy 
fibers. Furthermore, individual granule cells receiving cutaneous input have also been 
reported receiving functionally equivalent input from more than one and sometimes 
all of the incoming mossy fibers (Jörntell and Ekerot, 2006, Bengtsson and Jörntell, 
2009). The third point rather strongly indicates that if there is any substantial 
combination of different inputs, it often has to take place prior to the granule layer. 
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The focal termination is not a strict rule however, since there are separate mossy fiber 
systems that converge on single granule cells, at least in fringe zones of the separate 
mossy fiber areas (Huang et al., 2013). It is however not clear if and to what extent 
they mediate functionally dissimilar inputs. 

Redundant granule cells in piecewise linear approximations 

If the massive population of granule cells is not used for the commonly proposed 
expansion recoding, what use does the brain have of them? Some redundancy might 
be necessary for noise reduction, allowing the Purkinje cell to average across several 
granule cells transmitting the same information, cancelling out noise. The granule 
cells do however differ considerably with regard to their resting membrane potential 
(Chadderton et al., 2004), and most likely also the amount of tonic inhibition from 
the Golgi cells. As a consequence, each granule cell will reach its firing threshold at 
different levels of input excitation. Consequently, due to their non-linear firing 
threshold, each granule cell will still transmit separate information to the Purkinje 
cell, even compared to other granule cells receiving the exact same inputs. In other 
words, the granule cells would still perform an expansion recoding of the inputs, and 

Figure 10. Potential use of the linear rectified response of granule cells 
(A) Granule cell recorded in vivo which exhibits a linear relationship between firing frequency and 
injected bias current. The inset shows the response of the granule cell to injected currents of +/-  pA. 
(B) Simplified view of the cerebellar circuitry between granule cells and Purkinje cells. The granule cells 
form parallel fibers that innervate the Purkinje cell either directly with an excitatory synapse (3,4), or 
through an inhibitory molecular layer interneuron (1,2). (C) The thresholds of granule cells vary both 
due to intrinsic mechanisms and tonic inhibition from Golgi cells. In the example all four granule cells 
are innervated by the input to the cerebellum, but have their firing thresholds at different levels of input 
intensity. (D) The combined modulation of the Purkinje cell can be shaped to approximate an arbitrary 
non-linear function with a piece-wise linear function. The thresholds of the granule cells correspond to 
the knots of the piece-wise linear approximation.   
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it does not require that each granule cell is innervated by a unique combination of 
mossy fibers. Viewing the cerebellum as an adaptive filter (Dean et al., 2010), the 
non-linear thresholds of the granule cells would allow the granule cell population to 
act as a bank of filters that transform the incoming mossy fiber information before it 
reaches the Purkinje cells. 

Compared to the other cerebellar neuron types (see Figure 7 in the previous chapter), 
granule cells have a fairly sharp firing threshold (see Figure 10A for an example), 
followed by an almost completely linear response to additional input excitation. This 
response is similar to that of linear rectified units, which have recently been found to 
have beneficial properties when used in large artificial neural networks (Glorot et al., 
2011). In addition, the bidirectional plasticity and the complementary location of the 
receptive fields in the PCs and interneurons indicate that the interneurons at least 
approximately act as inhibitory relays of the granule cell activity to the Purkinje cells 
(Jörntell and Ekerot, 2002, 2003, Ito, 2006, Dean et al., 2010). The inhibitory relay 
allows the granule cell to both excite and inhibit a Purkinje cell, as illustrated in 
Figure 10B. This allows the Purkinje cell to combine the activity of several granule 
cells with varied thresholds into piecewise linear approximations of non-linear 
functions (see Figures 10C‒D).  

In order to understand how the population activity of the granule cells can be useful 
during coordination, it is necessary to also consider the multidimensional case. 
Instead of approximating a non-linear one-dimensional curve as in Figure 10D, 
combining two or more projections allow the Purkinje cell to approximate non-linear 
surfaces as in Figure 11B. Due to the restriction that several granule cells will be 
aligned along the input dimension defined by the combination of inputs within the 
incoming mossy fiber, not all surfaces can be approximated given any such 
combination of inputs. Furthermore, the direction of the projections is not oblivious 
to the actual non-linear surface that should be approximated. Figure 11C displays the 
ideal projections across three non-linear surfaces that were approximated by a 
population of 60 model granule cells. The surfaces were chosen since they appear in 
the inverse dynamics of double-joint limbs (Hollerbach and Flash, 1982, Kawato et 
al., 1987), and must somehow be represented by the cerebellum in order for it to 
perform efficient feed-forward control (Kawato et al., 1987). Figure 11D compares 
the accuracy of the approximations, given - mossy fiber projections. Note that the 
accuracy of the approximations can be fairly good already with two projections, as 
long as they are not randomly selected. Also note that the accuracy differs significantly 
between the three surfaces, even though they are superficially very similar. It 
illustrates the need to consider the very details of the functionality in order to evaluate 
a model or describe the detailed function of a neural circuitry. 
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Figure 11. Multidimensional piece-wise linear approximations from projections in input space 
(A) The cerebellar input layer together with precerebellar spinal neurons that project to the cerebellum 
through mossy fibers. Note that signals of different origin can combine already at the spinal level to form 
projections through the input space. Granule cells receive approximately 4 mossy fibers that often share 
the same modality, and there are several granule cells per mossy fiber. This means several granule cells 
might align along each projection from the spinal cord (compare to Figure 10 D). By innervating the 
same Purkinje cell with granule cells that align along more than one projection, the Purkinje cell can 
learn multidimensional approximations (B). (C) Example of approximations of the -dimensional 
surfaces sin(𝜃𝜃)𝜃𝜃2̇, 𝜃𝜃𝑒̇𝑒𝜃𝜃𝑠̇𝑠, and 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃)𝜃𝜃 ̈(see Paper I for details). The top row illustrates the best 
approximation using two projections and 60 granule cells along each projection. The dashed lines show 
the direction of the two optimal projections. (D) Percentage of the root mean squared error (RMSE) 
compared to the maximal error using 1 to 5 projections and a total of 60 granule cells divided among the 
projections. The distribution of the error is due to the random sampling of projection directions. The 
RMSE of the optimal directions in (C) are indicated by in C and the RMSE of using signals without 
spinal convergence is indicated by raw signals. The boxes indicate the mean, and the - 
percentiles, and the whiskers extend to the most extreme data that is not considered to be outliers. 



30 

Moving down the hierarchy 

In order to make efficient use of the cerebellar circuitry, the pre-cerebellar circuits 
could maneuver the cerebellum, using it as an extension to for example coordinate the 
abilities of the pre-cerebellar circuitry. The most basic method would be to send 
selective projections within the input space through the mossy fibers. The projections 
should correspond to the functionality that the cerebellum is supposed to learn in the 
context of that pre-cerebellar circuit. Actively selecting good projections reduces the 
number of mossy fibers that are necessary, and consequently enables the cerebellar 
circuitry to put most of the granule cells to good use instead of being ignored after 
receiving functionally irrelevant combination of mossy fiber inputs. 
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The mossy fiber systems 

Considering the cerebellum as general-purpose computational machine, the spinal 
part of the spinocerebellar circuitry could just directly relay afferent and efferent 
information to the cerebellum, assuming the cerebellar part of the circuitry would be 
able to learn all the intricacies necessary for coordination by itself. The spinal circuitry 
does however already contain circuitry that performs some level of motor control. 
From the perspective of the spinal cord it would make more sense to view the 
cerebellum as an extension of its functionality, to which the spinal circuitry would 
offer inputs that have functional significance. Such an organizational principle would 
offer a tremendous benefit to the system from a complexity standpoint, since the 
cerebellum would not have to re-learn what the spinal circuitry (and potentially also 
other pre-cerebellar circuits) have already figured out.  

The spinocerebellar and spino-reticulo-cerebellar systems are major sources of input 
to the regions of the cerebellar cortex that have direct connections to the motor 
systems, the corticospinal, rubrospinal, reticulospinal, tectospinal and vestibulospinal 
tracts. The input originates from spinal neurons that ascend the spinocerebellar tracts 
(SCTs). These consist of the ventral spinocerebellar tract (VSCT) neurons including 
spinal border cells (SBCs), the dorsal spinocerebellar tract (DSCT) neurons, the 
rostral spinocerebellar tract (RSCT) neurons as well as the spino-reticulo-cerebellar 
tract (SRCT) neurons. All of these SCT/SRCT neurons receive sensory afferent 
signals, either directly or via other spinal interneuron circuits. They also receive direct 
and indirect descending motor commands. The neurons of SCT/SRCT that project 
to cerebellum are also involved in the local motor control circuit within the spinal 
cord, as they sometimes project directly to alpha motorneurons and the motor nuclei 
of the spinal cord (Alstermark et al., 2007). The end result is that the information 
that the cerebellum receives from these systems is neither distinct sensory feedback, 
nor efferent motor commands, but a combination that is most likely functionally 
relevant, since it is in some cases even directly involved in the motor control of the 
local spinal circuit. 

The spinocerebellar pathways can further be subdivided into one direct and one 
indirect path (Jiang et al., 2015). The indirect path is relayed through the lateral 
reticular nucleus (LRN). Four separate ascending spinal and brainstem systems 
converge at the LRN neurons (Alstermark and Ekerot, 2015). The extra pre-cerebellar 
convergence might be used to allow the cerebellar regions that receive the LRN input 
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to learn to coordinate these functions, including posture (bilateral ventral flexor reflex 
tract), reaching (C3-C4 propriospinal systems), and grasping (ipsilateral forelimb 
tract).  

Spinal border cells  

The SBC compartment of the VSCT offers a unique possibility to study the influence 
a single spinocerebellar tract in isolation has upon the neurons of the cerebellar 
cortex. This is possible since the SBC neurons are the only SCT neurons which 
ascend the contralateral lateral funiculus (coLF) (see Figure 12B), and have 
terminations within sublobulus C1 of the paramedian lobule in the posterior 
cerebellum (Matsushita et al., 1979, Matsushita and Ikeda, 1980, Matsushita and 
Yaginuma, 1989). When the coLF is stimulated while recording the response of 
cerebellar neurons within sublobulus C1, at least the early recorded responses can be 
expected to be caused by the SBC mediated inputs alone.  

The possibility of activating the ascending SBC fibers through coLF stimulation was 
verified in Paper II, by first identifying spinal neurons that had an antidromic 
response to stimulation of the cerebellar cortex (Figure 12A). The region with the 
lowest threshold for successful antidromic stimulation of the spinal neurons was 
always found to be within the granule cell layer of the medial part of sublobulus C1, 
 

Figure 12. Identifying spinal border cells. 
(A) An example of an extracellular recording of a spinal border cell with an antidromic response 
(indicated by asterisks in the figure) to stimulation in sublobule C1 in the cerebellum. The arrow 
indicates the stimulation artifact. The inset show a cross-section of the L4 segment indicating two 
alternative orientations of the electrode tracks and the depths at which the spinal border cells where 
found. (B) An example of a spinal border cell with an antidromic response from the contralateral lateral 
funiculus (coLF). The coLF was stimulated with a triple pulse, indicated by the three arrows. The target 
location of the stimulation electrode is indicated with a dashed line in the inset showing a cross-section 
of the Th8 segment. 
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Figure 13. Cerebellar responses to SBC stimulation 
(A) Sagittal section of the cerebellum. Microelectrodes and patch clamp recording electrodes were 
inserted along the dashed lines, at an angle of -º relative to the surface of sublobule C1-C3, B1-B3 
indicate the sublobules in the paramedian lobule.  (B) Surface view of the posterior part of the 
paramedian lobule. Sublobulus C1, B3 and B2 from (A) is indicated to the left. All recordings were 
made within the C1 zone (different from sublobulus C1) indicated by the arrow. The horizontal line 
indicates the limit of the forelimb representation of the C1 zone. (C) Four morphologically identified 
granule cells recovered from sublobule C1. (D) Peristimulus histograms showing the typical response of 
a granule cell to single pulse (top) and triple pulse stimuli (bottom) to the coLF. The arrows indicate the 
time of each stimulation pulse. (E) Another typical granule cell response that manages to capture the 
timing of the three stimulations during the triple-pulse protocol in the peristimulus histogram. (F-H) 
The response evoked by a triple-pulse stimulus to coLF from two Golgi cells in (F), 2 Purkinje cells in 
(G), and 2 molecular layer interneurons in (H). All histograms have 1ms binwidth. 
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as expected if the neurons were indeed SBCs. The viability of using coLF stimulation 
to evoke responses within the cerebellar cortex was further verified by also measuring 
the antidromic response to coLF stimulation (Figure 12B). The response latency 
variation was found to be negligible indicating that it was indeed antidromic and not 
synaptic activation. Using coLF stimulation should therefore resemble synchronous 
activation of almost the complete SBC population. 

The synchronous activation of an entire population of neurons within a single tract is 
of course an extremely artificial stimuli, far from the patterns of activity that could be 
expected during any type of natural behavior. However, as long as the results are 
treated with caution, they could provide an alternative to purely anatomical studies, 
where the functional connectivity (e.g. silent synapses) can also be included. 
Interpreted together with other findings it is also possible to deduce the influence the 
single spinal system can have on the upstream neurons within the cerebellar circuitry. 

When the granule cells located within sublobulus C1 (see Figures 13A‒C) were 
recorded during the coLF stimulation, only a relatively small subset (~, N=) 
had a measurable response. The granule cells that did respond could be classified 
broadly into two classes. The first had a relatively unspecific response with variable 
spike response times (see Figure 13D), while the second class had one or two spikes at 
regular response latencies, giving rise to sharp peaks in the peristimulus histograms 
(see Figure 13E). The relatively strong response of many of the granule cells indicate 
that more than one of the mossy fibers that innervated the granule cell had a SBC as 
its origin. Previous studies have additionally found that synchronous activity in three 
or four of the mossy fibers that innervate a granule cell were required to get a reliable 
response (Jörntell and Ekerot, 2006, Bengtsson and Jörntell, 2009), suggesting that a 
majority or even all of the mossy fibers innervating the granule cells that responded 
strongly to coLF stimulation were SBCs.  

Despite the relatively small fraction of the recorded granule cells that had a coLF 
response, more than  of the recorded Purkinje cells (n=/) were modulated by 
the stimulation, even though some of them only had a small modulation. Figure 13G 
illustrate the difference with peristimulus histograms from two Purkinje cells with 
detectable modulation – one which was strongly modulated by the coLF stimulation 
and the other with only a small modulation. Also the fraction of Golgi cells (, 
n=/) and molecular layer interneurons (, n=/) that exhibited responses to 
the stimulation were considerably larger than that of the granule cells. The fact that 
the population of granule cells that receive SBC input could elicit a response in a 
small majority of the Purkinje cells, indicate that the SBC neurons provide relatively 
important input to the C1 zone of sublobulus C1. The strong response of some 
Purkinje cells further indicate that a single component of the SCT input to the 
cerebellum can have a large influence upon the cerebellar output mediated via the 
Purkinje cells. 
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Modeling the spinocerebellar system 

In order to investigate the behavior of the cerebellar input layer during more natural 
conditions than the synchronous coLF stimulation, a model of the SBC 
spinocerebellar circuit was developed in Paper IV, including a LIF granule cell model. 
Similar to other components of the VSCT, it is likely that the SBCs participate in the 
control of locomotion (Arshavsky et al., 1972, Fedirchuk et al., 2013). Hence, the 
activity of the model granule cells was investigated during afferent and efferent input 
to the model SBCs that have been recorded during fictive locomotion.  

Figure 14. Simulated granule cell responses to coLF stimulation. 
Simulated peristimulus response to single (top) and triple (bottom) pulse stimulation to the coLF of two 
granule cell models - (A,C) vs. (B,D) -  compared to the actual response of two granule cells in vivo. The 
granule cells were modeled as exponential integrate-and-fire models, with four incoming mossy fibers 
from coLF with varying conduction delays. The only difference between the two models is the neuron 
resting potential and the conduction delays between coLF and the cerebellum of the four mossy fibers. 
(A,C) The diffuse but strong response of the neuron to the left could be modeled using highly diverse 
conduction delays. See the simulated synaptic input and granule cell model response in the insets. The 
left inset shows the synaptic input and the right the simulated membrane potential of the granule cell 
model. (B,D) The sharp response that manages to retain the tripe pulse shape (D) could in contrast be 
modeled using synchronized conduction delays. Note that the late component of the response in vivo 
most prominent in (A) is most likely due to recurrent spinal connections that were also activated during 
the stimulation of the coLF in vivo. The model has no such connections, which means it is not expected 
to reproduce the late component of the response.    
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The granule cells were simulated as LIF neuron models with an additional 
exponential part that mimic the spike generation of the neuron (Fourcaud-Trocmé et 
al., 2003). The model also included a stochastic component adding noise to the 
simulated membrane potential. The model parameters were selected to reproduce the 
behavior of the recorded granule cells in Figures 13D‒E when exposed to single and 
triple pulse stimuli. Each pulse of the stimulus was delivered as one post-synaptic 
current to the LIF model from each of the four mossy fibers that were assumed to 
innervate the model. Two sets of model parameters allowed the model to reproduce 
both the sharp response of the neuron in Figure 13D and the indistinct response of 
the neuron in Figure 13E. Figure 14 illustrate the behavior of the two models during 
the two stimulation patterns, compared to the experimental in vivo recordings. 

Despite the distinct difference between the responses of the two granule cells, the two 
models could capture the difference with using slightly different resting potential (- 
mV compared to - mV) and by varying the synchronization between the four 
incoming mossy fibers. It is plausible that this is in fact the difference between the 
recorded neurons as well, since the conduction delays of the SBCs were found to vary 
considerably, comparable to those of other parts of the VSCT (Geborek et al., 2013). 
The influence of the synchronization can be seen in the synaptic input to the neuron 
models, shown in the insets of the panels in Figure 14. 

The spinal border cells were modeled using the inhomogeneous point process 
described in Paper III, using the model that reproduced the behavior of a VSCT 
neuron in Figure 9B on page 21. The reasons for not using the same type of model 
for both SBCs and granule cells were twofold. Firstly, VCST neurons (and thereby 
the SBCs) have been found to operate as rate coders during fictive locomotion 
(Fedirchuk et al., 2013), whereas the distance to the firing threshold (Chadderton et 
al., 2004, Jörntell and Ekerot, 2006) as well as the sharp non-linear onset of the f-I 
curve (see Figure 10A on page 27) allow the granule cells to respond to fast transient 
events that the model in Paper III cannot handle with certainty. Secondly, the 
experimental data describing the behavior of spinal neurons comes as slowly 
modulated membrane potentials or spike trains from massive input populations with 
small unitary synaptic inputs that suits the escape rate model, while the single pulse 
and triple pulse stimulation suits a model with explicit spike generation, which can 
handle the large unitary synaptic inputs that are normally delivered from mossy fibers 
to granule cells (Cathala et al., 2003, Chadderton et al., 2004, Jörntell and Ekerot, 
2006).  

SBCs receive efferent motor command from a large population of neuron descending 
the reticulospinal tract (RST). They also receive Ib afferent input mediated via 
inhibitory interneurons, as well as excitatory input from group II and possibly group 
Ia afferents (Jankowska et al., 2011b, Shrestha et al., 2012a, Shrestha et al., 2012b). 
About half the population does however not receive any excitatory group I input, 
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even though the inhibitory Ib input remains from combinations of synergistic 
muscles (Burke et al., 1971, Lundberg and Weight, 1971, Oscarsson, 1973). This 
subpopulation of the SBCs was used as a prototype to model the input that was 
provided to the SBC models.  The Ib convergence from synergistic muscles was also 
limited to that of the vastus lateralis/quadriceps and the sartorius muscles. 
Convergence of Ib inhibition of these muscles has been shown for the subset of SBC 
neurons that lack group I excitation (Burke et al., 1971).   

The structure of the simulated circuitry, from the RST and Ib input that converge on 
the SBC to the granule cells in the cerebellar input layer, is illustrated in Figure 15A. 

Figure 15. Simulating cerebellar granule cells with spinal border cell input during locomotion. 
(A) The network structure of the model that was used to simulate the granule-cell response to spinal 
border cell input. The granule cells were modeled as in Figure 12, with four mossy fibers relaying spike 
trains from four spinal border cells that were modeled using escape rate models. The activity of the spinal 
border cell models were modulated by simulated input from the reticulospinal tract (B) and various 
degree of Ib inhibition from the Sartorius and Vastus lateralis muscles (C). (B) The activity of three 
different resticulospinal tract neurons during a single step cycle adopted from Matsuyama and Drew 
(2000a, b). (C) The constructed activity of Ib interneurons carrying afferent Ib sensor information from 
the Sartorius and Vastus lateralis muscles during a single step cycle. Constructed using data from 
Matsuyama and Drew (2000a) (D) The response histogram of the first granule cell model (see Figure 12 
A and C). The gray histograms correspond to increasing Ib inhibition from the vastus lateralis muscle, 
going from none (light gray) to maximal (black). (E) The response histogram of the second granule cell 
model (see Figures 12B,12D). Note that while the granule cell models had distinct responses to the 
single and triple-pulse coLF stimulation, they only vary with regard to their firing rate amplitude when 
exposed to slowly modulated mossy fiber inputs. IFF, instantaneous firing frequency determined by the 
frequency of spikes within each bin of the histograms. 
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Due to the massive number of synaptic inputs to each SBC, both excitatory via the 
RST (approximately ) and a comparable amount of inhibitory synapses from 
spinal interneurons (Shrestha et al., 2012a, Shrestha et al., 2012b), each synaptic 
event most likely have a very small amplitude. Given that the maximum 
depolarization reaches  mV and the maximum hyperpolarization - mV (Hammar et 
al., 2011, Shrestha et al., 2012a, Shrestha et al., 2012b), the synaptic events will have 
an average amplitude in the order of µV, which is comparable to the synaptic 
strengths found in other synapses of the cat spinal cord (Jankowska, 1992). The sum 
of the population activity will however give rise to large modulation of the membrane 
potential of the SBCs. Such modulations under fictive locomotion have been shown 
for VSCT neurons in general, where the maximal depolarization during a step cycle 
was . mV (Fedirchuk et al., 2013). 

The total RST and Ib inhibitory input the SBC model could therefore be modeled as 
a single synaptic input current that combine the average input from all the excitatory 
and inhibitory synaptic inputs. The time courses of the RST input was constructed 
using the activity of three RST neurons adapted from Matsuyama and Drew (2000a, 
b). Their activity during a step cycle of fictive locomotion can be seen in Figure 15B. 
The simulated Ib inhibitory input was adapted from EMG recordings from the 
specific muscles from Matsuyama and Drew (2000a). The time course of the 
simulated Ib activity is shown in Figure 15C. The EMG data could be used instead of 
neural activity, since it has been shown that the Ib activity essentially mirrors the 
EMG activity of a muscle (Prochazka and Gorassini, 1998).  

The instantaneous firing frequency of the two granule cell models during one step 
cycle can be seen in Figures 15D‒E. Note that the responses of both the granule cells 
share the same topology despite their different transient responses, while their 
maximum firing rate differ slightly. In order to investigate the influence from varying 
amount of Ib inhibition of the SBCs, the simulation was repeated with amplitudes of 
the inhibition corresponding to , , , ,  and  of the maximal 
inhibition. Such a change of the relative contribution from the efferent motor 
commands from the RST and the inhibitory Ib sensory feedback correspond to 
changing the direction of the projections that were described in the previous chapter.  

The simple fact that the efferent commands and afferent feedback converge already at 
the spinal level, allow the cerebellar circuitry to learn non-linear interactions between 
the afferent and efferent signals. Through the indirect pathway via LRN, these non-
linear interactions could also be between higher level aspects of motor control, such as 
reaching, grasping and keeping posture (Alstermark and Wessberg, 1985). The 
predicted activity of the granule cell model can also be compared to the activity of 
granule cells of awake mice under locomotion. As is the case in Figure 15, the granule 
cells seem to have a dense activation profile that is modulated according to the step 
cycle (Powell et al., 2015), possible due to the feedback from individual muscles.  
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The cuneate nucleus  

The cuneate nucleus lies anatomically close to the LRN, which can be seen in the 3D 
reconstruction of the cat brainstem in Figure 16A. Like the LRN, it also projects to 
the cerebellum, but unlike LRN, the cuneate nucleus only processes input from tactile 
primary afferents. The nucleus is in principle structured as a feed-forward network of 
inhibitory interneurons and projection neurons. The afferents that reach the cuneate 
nucleus innervate both the projection neurons and the inhibitory interneurons. The 
inhibitory interneurons do in turn innervate the projection neurons, which send 
axons both to the cerebellum and the thalamus. In contrast to studying the 
fundamental processing of spinal circuits which was done with the SBC system in 
Paper II and Paper IV, where both efferent motor commands and antagonist Ib 
inhibition were involved, the feed-forward network structure, and the fact that the 
cuneate nucleus receives only tactile primary afferent inputs allows an experimental 
setup where complex stimuli that resemble what would be encountered during natural 
behavior can be used. As will be shown further down, it is possible to reliably 

Figure 16. Anatomy and connectivity of the cuneate nucleus. 
(A) 3D reconstruction of the caudal brainstem of a cat, indicating the anatomical location of the cuneate 
nucleus in relation to other structures and nuclei. The large green volume indicate the main cuneate 
nucleus, while the smaller red volume just lateral of the cuneate nucleus indicate the external cuneate 
nucleus, which is a separate structure. The gracile nucleus (yellow), the trigeminal nucleus (blue) and the 
lateral reticular nucleus (large red) are also indicated as colored volumes. Adopted from Geborek et al. 
(2012). (B) The stimulation site upon one of the digits of the paw. The stimulated skin regions will 
contain the receptive fields of 100s of primary afferent sensors that sample the relevant mechanoreceptor 
population. (C) Each afferent make approximately 1000 synapses within the cuneate nucleus. The 
cuneate neurons then project to the neocortex via thalamus and to the cerebellum as mossy fibers. It is 
possible to make both intracellular and extracellular recordings of the cuneate neurons using patch clamp 
electrodes. 
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mechanically stimulate the receptive field of cuneate neurons, and record a highly 
reproducible response. Furthermore, studying the cuneate nucleus serves a twofold 
purpose, since it relays the tactile information not only to the cerebellum, but also to 
the neocortex via thalamus. The details of the information processing of the cuneate 
nucleus could therefore not only provide information about the functionality of the 
cerebellum, but also the properties of the somatosensory areas of the neocortex.  

Classically, the cuneate nucleus can be described as overlooked, at most credited to 
perform some type of contrast enhancement of the primary afferent information via 
lateral inhibition from the local inhibitory interneurons (Kandel and Schwarz, 2013). 
The assumed role of the cuneate nucleus follows directly from the classical view of 
primary sensory cortex (S1). There is supposed to be a close to one-to-one mapping 
from primary afferent sensors and a column of S1, organized as a somatotopic map 
(Zachariah et al., 2001, Kandel and Schwarz, 2013). The one-to-one mapping does of 
course not allow that any relay between the sensors and the cortical area performs any 
complex processing of the primary afferent data. Instead, such processing is not 
thought to take place until the secondary somatosensory areas (Kandel and Schwarz, 
2013). While there are experimental evidence for this view of the early somatosensory 
processing, most of it has been produced in a reduced experimental setting, which 
fails to reproduce the complex dynamics of both the skin and the contact 
deformations that arise during natural use of the skin area. The purpose of most 

Figure 17. Spatiotemporal mechanical stimulation patterns 
Drawings illustrating the stimulus patterns that were delivered using the tactile display. Contact on 
illustrates the initiation of a contact, characterized by an area of strained tissue that increase over time. 
Slip, correspond to a narrow area of strained skin that moves across the fingertip, while roll correspond to 
a broader area with lower strain. The quadrant stimulus was used as a control stimulus, and activates a 
small region of skin (1mm2) with fast stretch (5 ms), a subsequent delay (5 ms), followed by a fast 
relaxation of the stretch (5 ms). The quadrant stimulus could be delivered at one location within a 3x3 
grid covering the tactile display  (A) The surface displacement of the fingertip/digit during the actual 
stimulus. (B) The corresponding time evolution of the surface strain along one single somatotopic 
coordinate.   
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studies so far, has been to characterize the receptive fields and tactile submodalities 
using single punctate stimuli (Mountcastle, 1997, Friedman et al., 2004, Johansson 
and Flanagan, 2009). The results from such studies indicate a somatotopic map, but 
should perhaps be considered more of description of the average connectivity than the 
fundamental functional principle of S1. 

Mechanical spatiotemporal stimulation 

In a description of somatosensory processing it is necessary to include the 
contribution from contact mechanics during the skin-object interaction that define 
touch. Using this view, it is clear that any mechanical stimulation that lead to  
deformation of the skin will be non-local with respect to the receptive fields of 
individual receptors (Hayward, 2011). The processing of such non-local sensory data 
would likely integrate the information from several receptive fields and submodalities. 
The integrated information of the skin-object interaction could subsequently be used 
to extract important features of the touched objects, i.e. texture, shape, friction and 
similar properties. In Paper V, the response of cuneate projection neurons to 
fundamental components of such mechanical skin-object interactions are investigated 
using a tactile display that can deliver patterns of strain to the skin that resemble the 
strain patterns during natural moving skin-object interactions (Hayward et al., 2014). 
The stimulation patterns that were delivered using the tactile display are illustrated in 
Figure 17, and include contact initiation, contact cessation as well as sliding object 
interactions at various speeds. Together these stimuli excite what can be considered 
fundamental features of spatiotemporal skin-object interactions (Hayward, 2011, 
Hayward et al., 2014). 

Initially the intracellular membrane potential of five neurons was recorded using 
whole-cell patch-clamp electrodes. Since the purpose was to initially examine the 
synaptic input to the neurons, action-potentials were avoided by applying a 
hyperpolarizing current over the membrane. Samples of the intracellular results are 
shown in Figures 18A‒B. Note the silence of the primary afferents between 
stimulations, and the reliability of the synaptic input during stimulations. As is shown 
by example in Figure 18B, both the pattern of synaptic input to a single neuron 
during the different stimulation patterns, and the response of each neuron to a single 
stimulus were easily discernable (see Paper V for details).  

Figure 18C illustrate the similarity between the intracellular response to a stimuli and 
the peristimulus histogram created from spike times extracted from extracellular 
recordings of the same neuron. The close resemblance motivated the use of 
extracellular recordings to obtain data from an additional  neurons (in total n=), 
available due to the relative simplicity of maintaining an extracellular recording. This 
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allowed the number of repeated stimulations per stimulus and neuron to be increased 
from  to , since the same neuron could be recorded for a significantly longer 
period of time. 

In order to investigate the information content of the extracellular spike trains, the 
spikes evoked during a response were counted and binned into non-overlapping spike 
bins. Binned spikes were used because it cannot be assumed that the exact timing of 
each spike is preserved and is available to cortical regions that process the cuneate 
input, since the signal is indirectly relayed to there through the thalamus. The average 
spike frequency during one of the bins is however more likely to reach the cortex 
unperturbed. As a consequence of the binning, the granularity of the possible 
information is reduced, but this should in principle only mean that it is theoretically 
possible to reach even better classification results using another better encoding. 

The resulting features of the spike trains, i.e. the approximate spike counts during 
each bin, were evaluated using a classifier. It was given the task to correctly classify the 
responses of the stimuli using the responses from a population of cuneate neurons. 
The classification results are presented in Figure 19A, where it can be seen that when 
the full ms observation period was used, the correct classification rate approached 
, even when using as few as  out of the  neurons. When all  neurons where 
used, the correct classification rate reached above  already after ms. In addition 
to the labeled classification, the heterogeneity of the responses to the different stimuli 
was investigated using unlabeled clustering of the responses (see Figure 19B). The fact 

Figure 18. Response of cuneate neurons to spatiotemporal tactile stimulation 
(A) Example of an intracellular recording of a cuneate neuron. The membrane potential is significantly 
modulated by excitatory synaptic input during stimulations to the receptive field of the neuron. (B) 5 
overlaid traces of intracellular synaptic responses from two neurons responding to three of the applied 
stimulation patterns. Note the reliability of the synaptic responses and the quality of the recording 
indicated by the shape of the rare spike of neuron 1. (C) Overlaid intracellular response traces to a 
quadrant stimulus (top), and 5 example extracellular recordings of spike trains from the same neuron 
and stimulation pattern (middle). The average intracellular response (red line) closely resembles the 
peristimulus histogram of the extracellular spike trains (bottom). 
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that the unlabeled method managed to segregate the responses without knowledge of 
the underlying stimuli indicate that the population response of the cuneate nucleus is 
tuned to segregate the fundamental features of the skin-object interactions that were 
used to construct the different stimulus patterns. 

A common principle of the pre-cerebellar circuits 

The spinocerebellar system, including the LRN and cuneate nucleus in the brainstem 
were carelessly grouped under the same label in this chapter. It is obvious by 
considering the biomechanics they interact with, that the separate systems have 
different roles and detailed functionality. The VSCT and DSCT do for example seem 
to be interested in rhythmic movements, while the indirect relay through the LRN 
sample the state of execution of voluntary movements together with posture 
(Alstermark and Ekerot, 2013).  

These systems have previously been overlooked, perhaps due to a seeming simplicity 
in their behavior that can be seen in Paper II and Paper IV for the SBC system and 
Paper III for the individual spinal interneurons. It is possible to only consider their 
rate code and still deduce the strength of a stimuli or the phase of a step cycle. Overall 
they also seem to relay a mapping from distal location within the biomechanics to 
somatotopic and motor maps in the motor cortex and the primary somatosensory 
cortex. 

Figure 19. Population response and segregation capabilities 
(A) Classification result using linear classification and binned spikes. The figure illustrates the 
relationship between the length of time used for analysis after stimulation onset and the correct 
classification rate. (B) Unlabeled clustering of the population response to all stimuli using curvilinear 
component analysis. Almost all the patterns could be discriminated already after 30 ms. At 150 ms the 
segregation was perfect, even for the different speeds of roll, which proved to be the least informative 
stimulus family. 
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The complex response of the cuneate neurons to natural stimuli adds another layer to 
their story. While the rate code or topological map can be useful for the brain, it is 
likely that the individual neurons within the rate code also signal complex features of 
the biomechanical state, but without ways of delivering natural stimuli that excite 
these features, they remain hidden. Paper V illustrate how a close to natural stimulus, 
delivered as patterns of strains to the skin reveals this encoding in a circuitry that was 
previously though to perform little complex processing of the incoming sensory 
information.  
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Sparse coding 

Searching for coding principles offers the tempting possibility to find general-purpose 
methods that the brain can utilize to encode and decode data within the nervous 
system. Investigating such coding principles also offers the possibility to study circuits 
before descriptions of the actual detailed content of the incoming signals exist, or 
before the detailed functionality of a circuit is known.  

Sparse coding is one such encoding principle that is explored in Paper VI, and follows 
from the spike threshold that all neurons have. Since single neurons can be inhibited 
from generating action potentials, it is possible to have inactive neurons within a 
population of neurons that do not signal any information other than that they are 
inactive. The most extreme population code that utilizes inactive neurons is the local 
code (see Figure 20A, left). In a local code only a single or small subset of all neurons 
in a population is active at any time. Furthermore, these same neurons are only active 
during a single pattern of input or context. Since there is no interference between the 
active neurons during different contexts using a local code, it is possible to learn how 
to respond to a certain context encoded via a local code after a single presentation of 
that context. The consequence of this simplicity is that the population of neurons can 
at most encode a single context per neuron.  

With no inactive neurons, the code of the neural population activity is called a dense 
code (see Figure 20A, middle). Using a dense code the population activity is allowed 
to use any combination of neural activity to encode a context. In general, this means 
that it is possible to encode an exponential number of contexts in relation to the 
number of neurons included in the population. At the same time, the interference 
between the representations of different contexts leads to an enormous increase in 
complexity, leading to a slow learning rate. 

The region of population activity between the local and dense code is in principle a 
sparse code. The idea is to find the ideal trade-off between the benefits and drawbacks 
of the local and dense code. The idea of utilizing a sparse activity in a neural encoding 
to increase beneficial properties has a long history in the theoretical descriptions of 
both the cerebellar cortex (Marr, 1969, Albus, 1971) and the neocortex (Barlow, 
1972). It is straight forward to understand why a sparse code provides benefits when 
the population activity needs to be decoded. With fewer active neurons in any given 
situation, it is not necessary to consider all the quiet neurons when the correct 
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decoding or response is learned. A sparse code can thus in principle reduce the 
complexity of the population activity, by reducing the number of combinations of 
neurons that are allowed to be active simultaneously.  

Theoretical considerations 

From a complexity perspective, a sparse code can efficiently reduce the possible 
complexity of the encoding since it essentially reduces the number of possible 
combinations of activity that are allowed within the population of neurons. At the 
same time, it is almost always necessary to have additional circuitry to construct the 
sparse representation of the incoming information. That circuitry could in principle 
introduce additional complexity to the circuitry. Hence, not only the level of 
sparseness, but also the method to enforce or create the sparse representation most 
likely matters. 

In an artificial setting, where each neuron is active or inactive independently of each 
other, the sparseness of the encoding is directly influencing the maximum 
convergence rate of a decoder that is using a gradient descent method to learn to 
decode the population activity (Schweighofer et al., 2001). The convergence rate of a 
gradient descent method determines how far it is possible to move towards the correct 
configuration of synaptic weights from the current configuration, given one step of 
learning. In Paper VI, these results are expanded upon and it turns out that while a 
sparser code will indeed increase the maximum convergence rate, it is not the ratio of 

Figure 20. Sparse code 
(A) A sparse code (right) can be considered to be any code with an activation ratio between that of a 
local code (left) and a dense code (middle). The sparse code to the right is an example with an activation 
ratio of approximately 10%. (B) Note the difference between a dense code with binary activation 
functions (neurons that are either on or off) and continuous thresholded activation functions. In the 
binary setting, a dense code will have an average activation ratio of 50%, while it will have a 100% 
activation ratio in the continuous setting. 
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active neurons that matters, but the number of active neurons. It means that in order 
to get the same beneficial properties with a large neural population as with a smaller 
one, the sparseness must increase in proportion to the population size. 

Results obtained using models with only a few neurons compared to the actual 
circuitry in the real nervous system, might therefore not be applicable. One could 
consider to simply increase the sparseness to compensate for the increase in 
population size, but this might lead to unrealistically low activity ratios bordering the 
local code scheme. Concrete image classification studies have shown that the model 
accuracy of the constructed classifiers decrease significantly when the activation ratio 
gets less than - (Glorot et al., 2011, Thom and Palm, 2013). Interestingly, the 
variation in the threshold activity where the decrease occur depend strongly on the 
method that was used to enforce the sparseness of the code (Thom and Palm, 2013). 
A sparseness of - can also be compared to the 1% activation ratio that was 
assumed in the cerebellar model of Albus (1971).  

Sparseness in the cerebellar cortex 

Sparse coding has been proposed as one of the dominant encoding principles of the 
both the cerebellar input layer, and multiple cortical circuitries including primary 
visual cortex. In the framework of the Marr-Albus theory of cerebellar cortex, Albus 
hypothesized that the population of granule cells had binary activation functions and 
a  activity ratio (Albus, 1971). The low activity ratio was chosen to allow the 
granule cells to differentiate between similar mossy-fiber patterns, and Albus also 
noted that it should also facilitate learning speed due to less interference between 
different patterns. In contrast to Albus, Marr assumed that only the excitatory parallel 
fiber to Purkinje cell synapses carried information to the Purkinje cells. This led him 
to conclude that the granule cell activity had to be sparse in order to encode the 
necessary amount of patterns (Marr, 1969). Like Albus, Marr also assumed a rather 
sparse activity of the incoming mossy fibers in order to reach the necessary low 
activity ratio of the granule cells. Marr did however underestimate the ratio of silent 
synapses to be approximately , which is much lower than the recent estimate of as 
much as - (Ito, 2006, Dean et al., 2010). Increasing the fraction of silent 
synapses to  will lead to that the calculated necessary sparseness using the 
equations of Marr would drop to  in order to store a single pattern, or . in 
order to store as little as  separate patterns (see the separate box on the next page for 
details). While the overall functionality of the cerebellar circuitry most likely 
correspond to the role it has in the Marr-Albus models, the assumptions regarding 
whether the granule cell population activity is sparse or not should be used with 
caution.  
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Analysis of Marr (1969) 
Marr used common combinatorics to investigate the proportion of active granule cells, and the 
subsequent influence that the level of activity should have upon the memory capacity of a cerebellar-
like circuit. While the reasoning is completely sound, Marr made assumptions regarding the activity 
patterns of the mossy fibers and the fraction of silent parallel fiber to Purkinje cell synapses that has 
since been disproven. Using Marr’s model to motivate a sparse activity of the granule cell layer 
should therefore be avoided.  

The mossy fiber activity is sparse 
Marr assumed that the number of active mossy fibers out of the  whose activity reach a single 
Purkinje cell is sparse. “The essential point is that the numbers are all nearer  than  (on an 
arithmetical scale)”.  Marr used the following equation to calculate the sparseness of the granule cells 
using the number of active mossy fibers: 

where R is the firing threshold of the granule cells, C the number of mossy fibers innervating a single 
granule cell, and L the number of active mossy fibers.  Using R=, C= and R =, the activity 
ratio of the granule cell population will reach , far above the activity ratio that is required below.  

95% rather than 30% silent synapses 
Marr used the following equation to investigate the influence of silent synapses upon the number of 
patterns the Purkinje cell could learn: 

where , is the number of granule cells, n is the number of active granule cells, x is the number 
of patterns that are stored, and p is the fraction of silent synapses. The following table shows the 
number of patterns that can be stored at different levels of sparseness (𝑛𝑛’ = 𝑛𝑛/200,000): 

n n' x (p=95%) x(p=75%) x (p=30%) 

500 0.25% 20 64 481 
1000 0.5% 10 32 240 
2000 1% 5 16 120 
5000 2.5% 2 6 48 

10000 5% 1 3 23 
20000 10% 0,5 1,5 11 

Using a realistic fraction of silent synapses, Marr’s model would require an unrealistic high sparseness 
in order to store more than a few patterns. 
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cerebellar-like circuitry that enforces optimal memory capacity, assuming there are no 
inhibitory interneurons that contribute with more than a modulatory blanket 
inhibition upon the Purkinje cells (Clopath and Brunel, 2013). The same circuitry 
would also exhibit the distribution of synaptic weights, including the large fraction of 
silent synapses that have been observed in the cerebellum (Brunel et al., 2004). The 
model does however also predict that the granule cell activity should be binary, which 
does not seem to be the case (see Figure 10A on page 27). Detailed granule cell 
models have also been found to reliably transmit modulated signals (Rössert et al., 
2014). The properties of the molecular layer interneurons also indicate that they do 
transmit detailed parallel fiber information, rather than act through a modulatory 
blanket inhibition (Jörntell and Ekerot, 2002, 2003, Dean et al., 2010).  

An alternative explanation of the large fraction of silent synapses is the co-variance 
learning rule (Sejnowski, 1977, Porrill and Dean, 2008). In this view, uncorrelated 
synaptic inputs will decay to zero. It is however possible that the cerebellum utilize 
the possibility of silent synapses as a method to reduce the complexity. Compared to 
the co-variance rule, which may still be the underlying rule used to update the 
informative neurons, the cerebellum would actively force a large fraction of the 
synaptic weights to be zero. This is a common method to keep the model complexity 
low of artificial neural networks (Hastie et al., 2009), sacrificing some bias to keep the 
variance error low. In fact, enforcing silent synapses is comparable in efficiency to the 

Figure 21. Experimental considerations. 
Reduced stimuli can in some cases indicate a sparser code than a natural stimulation. (A) Stimulating a 
single receptive field with focal termination within the population of neurons will yield a sparse code if 
the receptive fields are stimulated individually. However, during natural behavior the receptive fields 
might never be stimulated in isolation. The code would thus be much less sparse during natural behavior 
than during the reduced experimental setting. (B) Example of cerebellar granule cells and tactile 
stimulation of individual receptive fields, compared to a natural passive movement of the entire paw. 
Note that the passive movement seems to engage receptors within receptive fields across the entire paw, 
and not only those closely related to the joint. The gray lines under the bottom row indicate the stimulus 
duration. 
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use of sparse coding (Thom and Palm, 2013), and might be a method the cerebellum 
utilizes to retain the relatively dense activity of the granule cell population. 

The experimental findings that contradicts many of the predictions made from the 
sparse coding hypotheses of granule layer of the cerebellar cortex has already been 
mentioned in the previous chapter concerning the cerebellum. In particular, many of 
the models require fast inhibitory feedback from the Golgi cell in order to maintain 
the sparse code also under conditions where a large portion of the mossy fibers are 
active. The mostly tonic inhibition that has been found experimentally contradicts 
this requirement. It is however possible to produce a sparse code with mostly tonic 
inhibition (Billings et al., 2014). Like the Marr-Albus model, it would require that 
each granule cell would be innervated by functionally dissimilar mossy fibers. As was 
described, such combinations of mossy fiber input are implausible, not only from a 
complexity view-point, but also considering the termination patterns of the incoming 
mossy fiber pathways. 

In addition, direct measurements of granule cells show that many granule cells do not 
require unique combinations of input to respond (Chadderton et al., 2004, Jörntell 
and Ekerot, 2006), there seems to be a redundancy of granule cells that respond to 
the same input (Garwicz et al., 1998, Jörntell and Ekerot, 2006). As was shown with 
the SBC tract in Paper II, it is possible to drive granule cells stimulating a single 
mossy fiber tract. The stimulus of a single tract can also significantly modulate the 
activity of individual Purkinje cell, indicating that the fraction of the granule cell 
population that does respond is not insignificant. Individual granule cells can also 
respond strongly to low intensity stimulation from distinct receptive fields. Such 
responses could be misinterpreted as sparse codes when point-wise stimuli of 
individual receptive fields are used, while a natural stimulus would rather give rise to a 
dense code (see Figure 21). Granule cells in particular seem to have a behavior with 
generally low spontaneous activity, that seem to be strongly regulated even by 
intrinsic mechanisms in the absence of other inhibition (Brickley et al., 2001). In line 
with this, the population activity of granule cells in awake mice under locomotion 
were found to be quiet at rest, but have a dense activity during behavior, modulated 
in phase with the step cycle (Powell et al., 2015). The activity can be compared with 
the dense activity predicted by the model of the SBC system in Paper IV (see Figure 
15 on page 37). 

Sparseness in the neocortex 

Similar to the random combinations of mossy fiber input to granule cells, Barlow 
(1972) proposed that neurons in the visual cortex act as spurious coincidence 
detectors. The organizational principle said that the higher up the hierarchy of the 
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cortical areas the neuron was located; the coincidence the neuron was interested in 
should become more and more specific. The ideas of Barlow have given rise to sparse 
coding models of the visual cortex that reproduce the properties of the receptive fields 
of the cortical neurons that have been found experimentally (Olshausen, 1996, Vinje 
and Gallant, 2000, Olshausen and Field, 2004, Zylberberg and DeWeese, 2013). 
Both the models and the experiments do however lack the influence from motor 
activities, and assumes that vision is a passive process, at least at the initial cortical 
areas of the visual cortex. It is for example common to only include experimental data 
where the eye remains fixed (Vinje and Gallant, 2000). Saccades and eye movements 
are instead introduced using a moving stimulus delivered to a fixed eye. It is however 
clear from recent studies that motor activity strongly influences the firing of neurons 
in V1 (Keller et al., 2012, Ayaz et al., 2013, Saleem et al., 2013, Erisken et al., 2014), 
and even changes the structure of their receptive fields (Ayaz et al., 2013). From these 
studies, it seems that the natural stimuli of V1 neurons should include motor activity. 
It is also unclear whether sparseness is an epiphenomenon in this circuit, or whether 
the circuitry actively tries to enforce it. Recent studies suggest that the sparseness of 
V1 decrease during development (Berkes et al., 2009, Berkes et al., 2011), which 
would require that the circuitry does not strive to reduce sparseness, but rather 
uphold a homeostatic equilibrium (Zylberberg and DeWeese, 2013). It can be 
questioned whether the sparse activity of the resulting circuitry should be used as a 
defining property of the circuitry in that case.  

Sparseness to describe population activity 

It should be clear that the activation ratio of the neural population influence several 
key properties of the encoding. It is at the same time not possible to fully describe a 
coding scheme and its beneficial or detrimental properties using only the activation 
ratio. In order to compare the results of both experimental and modeling studies in a 
meaningful way, at least the size of the population, the method to enforce the 
sparseness and the spatial structure of the input termination should always be 
considered. The focus upon the sparseness or activation ratio as the fundamental 
underlying feature of the encoding might lead to that completely disparate coding 
schemes, models, or experimental setups are compared simply because they have a 
similar sparseness. The wide definition of a sparse code (i.e. anything between a dense 
and local code), further complicates such comparisons. 
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Conclusions 

From an experimental perspective, the complexity of the nervous system leads to 
difficulties to map the functional properties of different neural circuitry components. 
Simple point-wise stimuli might provide a functional connectivity map, but it is not 
possible to extrapolate such data to the functional properties of the circuitry without 
further data. Paper V illustrates the problem using natural mechanical stimuli to 
investigate the processing capability of the cuneate nucleus. Classically the cuneate 
nucleus has been overlooked, mostly due to stimuli that failed to reproduce natural 
spatiotemporal strain pattern of the skin. Similar problems also arise when the 
response of granule cells of the cerebellum is investigated using point-wise stimuli (see 
Figure 21 on page 49), and in the primary visual cortex where the activity and the 
receptive field properties of the cortical neurons change when motor activity is also 
included in the stimulation protocol. 

The theoretical perspective of Paper I, the modeling perspective of Paper IV and the 
experimental results of Paper II and V, all indicate the importance of the 
biomechanics, spinal cord and brainstem for a complete description of the nervous 
system. In a sense, behavior is shaped already at these levels, before it reaches the 
cortex or cerebellum. Despite of this, it is unclear what these regions actually do in 
any detail. Recent models and interpretations of experimental data is however 
working on constructing functional models of different spinal systems and nuclei in 
the brainstem (Azim et al., 2014, Alstermark and Ekerot, 2015, Jiang et al., 2015), 
which together with studies of the spinal circuitry using natural complex stimuli as in 
as in Paper V could provide more insights into the detailed properties of these 
systems. In parallel to these studies, the capabilities of the spinal circuitry can be 
explored through detailed circuitry models. Such models have already shown that the 
spinal circuitry alone seems to be capable facilitating the control of multi-segmented 
limbs (Raphael et al., 2010). A fundamental limitation with the decerebrate 
preparation that was used throughout the thesis is the obvious lack of descending 
motor command to the spinal and cerebellar circuits. It is known that for example 
active versus passive touch impose different cortical activity patterns (Ackerley et al., 
2012), similar to how motor command or sensory feedback strongly influence the 
activity of visual processing in V1(Keller et al., 2012, Ayaz et al., 2013, Saleem et al., 
2013), including an effect that can be traced as early as the dorsolateral geniculate 
nucleus of the thalamus (Erisken et al., 2014). From the opposite point of view, the 
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sensory processing and active exploration might prove to be a fundamental 
component in motor control (Loeb and Fishel, 2014), where the goal of the motor 
behavior is not simply to move a limb or grasp an object, but rather to efficiently 
explore features of the limb’s surroundings. It bears close resemblance to the 
organization of the visual system, where motor activity through saccades and other 
eye movements are integral in our exploration of our visual environment, even though 
it is something we barely consciously perceive. 

It is perhaps also possible to approach the subcortical circuitry from a developmental 
perspective. It is clear that simple but useful behavior must arise quickly, and 
subsequently be increasingly refined during development. Can this perhaps be 
formulated to a principle of information organization in ascending pathways? 
Consider the somatotopic map for example. Even though the activity of the cortical 
neurons must also reflect the complex features of the mechanical touch that were 
found already in the cuneate nucleus in Paper V, the average activity resembles a 
mapping of where upon the body the mechanical contact was located. The same is 
true for the neuronal activity described in Paper III. The neurons have the possibility 
to have complex response to stimuli, yet they have a regular and reliable underlying 
activity that can be described by the relatively simple model in Paper III. Neurons do 
however also process data with impressive detail in their spike timing, which the 
intracellular and extracellular responses of the cuneate neurons in Paper V show (see 
Figure 18 on page 42). The ability to encode from a coarse to an increasingly detailed 
message within the same population activity might be one way of avoiding 
unnecessary complexity. Initially the receiving end would care only about the average 
population activity and the overall firing frequency modulation of the incoming 
signals. Through development, this crude decoding could become increasingly 
granular, caring about the activity of a decreasing number of neurons with an 
increasing time resolution of the firing frequency modulation. The useful nature of 
such an organization in relation to motor control and the inherent complexity has 
previously been described by Loeb (1983).  

The findings in all six papers of the thesis encourage the use of both the following 
perspectives when the circuits of the nervous system and the biomechanics of the 
body are explored: 

 Inside out: How can the central parts of the nervous system shape itself, both 
evolutionary and during development, in order to make sense of the afferent input 
it receives? 

 Outside in: How is the biomechanics, afferent sensors, peripheral nervous system, 
spinal and brainstem circuitry shaped, and the information they convey further up 
the hierarchy of the nervous system organized, in order to allow the subsequent 
circuitry to make as much sense of the afferent/ascending input it receives as 
possible? 
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The central structures of the nervous system should perhaps not be considered 
general-purpose computational structures that can resolve any type of input they 
receive, but rather a structure with constraints on the maximal possible complexity it 
can handle. Crucially, the brain has coevolved together with the rest of the body. The 
properties of the afferent input encoding then becomes at least as important as the 
central circuitry, a sort of preprocessing that enables the hierarchy of the brain, from 
sensors, through spinal cord, brainstem and the cortex, to efficiently decode and 
correlate the incoming information. Just as the brain can evolve to improve how 
efficient it can be controlling the biomechanics, the biomechanics and the periphery 
of the nervous system can evolve to make itself more accessible to the developing 
brain. 
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Populärvetenskaplig sammanfattning 

Ett utav de stora hinder som fortfarande ligger i vägen för våra försök att beskriva 
hjärnan, är hur komplex den är. En människohjärna består av miljarder nervceller och 
sinsemellan är de sammankopplade i nätverk med trillioner kopplingar. Komplexitet 
behöver i allmänhet inte vara ett problem. Vi kan till exempel beskriva hur gaser och 
vätskor fungerar, trots att det ofta rör sig om ofattbart många atomer som interagerar 
och samverkar för att gasen eller vätskan ska få sina egenskaper. Problemet med att 
reducera hjärnans komplexitet på samma sätt är att när vi reducerar komplexiteten 
hos något, förutsätter det att det inte är själva komplexiteten vi är intresserade av. 
Tyvärr gäller inte det hjärnan. 

Det som är så imponerande med en hjärna är nämligen att den klarar av att ge 
mening och interagera med vår omvärld. För om det är något som är mer komplext 
än vår hjärna, så är det vår omvärld. I den finns ju trots allt tusentals andra hjärnor 
som man kan interagera med. Komplexiteten i omvärlden ligger emellertid också 
närmre hjärnan än så. I vår egen kropp finns hundratusentals sensorer utspridda som 
mäter temperatur, ljus (och bilder!), ljud, beröring – till och med hur spänd varje 
enskild muskelfiber är i varenda muskel i kroppen. Inte nog med att hjärnan belastas 
med information från alla dessa sensorer, den styr samtidigt en komplex kropp med 
över  ben och  skelettmuskler. 

Sanningen är att vi inte riktigt vet hur man ska göra för att hantera något så 
komplext. Robotforskare bygger till exempel numera robotar vars mekanik försöker 
härma människokroppen för att försöka lista ut vilka knep som döljer sig bakom alla 
senor och muskler. Sanningen är också att vi måste försöka förstå ändå. Antalet 
sjukdomar som har kopplingar till nervsystemet där vi hade haft nytta av att veta hur 
det faktiskt fungerar är många.  

Den här avhandlingen försöker hitta metoder med en reducerad komplexitet, men 
med vilka man kan undersöka hjärnan utan att man förlorar möjligheten att förutsäga 
hur den egentligen fungerar. Ett viktigt perspektiv är att en hjärna själv måste 
reducera komplexiteten i det den gör. Antalet sensorer och muskler är så många att 
hjärnan inte räcker till annars. Genom att försöka hitta de sätt som hjärnan själv 
använder för att hantera omvärldens komplexitet, kan det möjligtvis gå att beskriva 
hur det går till när hjärnan växer från något enkelt till något komplext. Den andra 
observationen man kan göra är nämligen att det tar tid för en hjärna att bli färdig, 
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men trots det måste den fungera på en grundläggande nivå redan vid födseln. Vi 
förutsätter inte att en nyfödd ska kunna spela piano, men den kan redan från början 
kontrollera en relativ komplicerad kropp. 

Genom att undersöka egenskaperna hos nervsystemet nedanför själva hjärnan, i 
hjärnstammen, ryggmärgen och lillhjärnan, kan man försöka hitta de principer som 
hjärnan använder för att organisera informationen som når hjärnan, för att redan ett 
nyfött djur kan börja dra nytta av den. I de sex delarbetena i den här avhandlingen 
visar vi exempel på hur hjärnan tjänar på att utnyttja de ofta förbisedda delarna av 
nervsystemet som finns under hjärnan. Vi ger också exempel på hur det i 
hjärnstammen finns nervceller som utför uppgifter som man tidigare trott skett först 
uppe i hjärnan.  

I) Det första delarbetet handlar om lillhjärnan, som volymmässigt är stor som en 
knytnäve och därmed ganska liten jämfört med neocortex eller ’storhjärnan’. Trots sin 
lilla volym finns här en majoritet av alla nervceller. Den gängse bilden av vad 
lillhjärnan gör är bland annat att förbättra koordination mellan funktioner i andra 
delar av nervsystemet. Att det finns så många nervceller just här skulle i sådana fall 
kunna beror på att många utav hjärnans andra delar skickar information hit, som 
måste kombineras på olika sätt för att lillhjärnan ska kunna använda dem effektivt. 
Det visar sig emellertid att om man inte kombinerar alla signaler som kommer från 
vitt skilda håll i nervsystemet på ett smart sätt, kommer det bli för komplext att 
hantera till och med för lillhjärnan, trots alla miljarder nervceller som finns till hands. 
En del av lösningen som vi föreslår är att informationen kombineras redan innan den 
når lillhjärnan, i de nätverk av nervceller som redan finns i ryggmärg och hjärnstam. 

II) Det andra delarbetet handlar om precis ett sådant nätverk av nervceller som 
skickar signaler från nedre delen av ryggmärgen till lillhjärnan. Det visar sig att det 
räcker med att stimulera och aktivera bara ett enskilt knippe av nervceller för att en 
oväntat stor andel av nervcellerna i lillhjärnan ska reagera. Precis som förväntat om 
den mesta av informationen kombineras redan innan lillhjärnan. När man en gång 
spelat in hur nervcellerna i lillhjärnan svarar på stimuleringen av nervcellsknippet i 
ryggmärgen, kan man försöka bygga matematiska modeller som förklarar varför 
cellerna svarar på ett visst sätt, eller som helt enkelt klarar av att reproducera liknande 
svar. Sedan kan man använda modellerna som beskriver hur en enskild nervcell beter 
sig som byggstenar i en nätverksmodell som i sin tur beskriver hur sammankopplade 
nervceller beter sig.  

III) Många nervceller i nervsystemet är spontant aktiva. Det betyder att de skickar 
signaler till varandra även om ingen stimulerat dem. På sidan 15 i Figur 5 finns 
exempel på fyra sådana spontant aktiva nervceller som spelats in. Trots att de inte 
stimuleras aktivt skickar de iväg en puls av aktivitet till andra nervceller då och då. 
Närbilden i Figur 5E visar dessutom hur spontanaktiviteten ser ut när den tas emot av 
en nervcell. I stort sett allt det brus som man kan se mellan pulserna beror på att 
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tusentals andra nervceller hela tiden bombarderar den inspelade nervcellen med sin 
spontanaktivitet. Genom att stimulera en spontanaktiv nervcell kan man modulera 
den spontana aktiviteten så att den skickar signaler mer eller mindre sällan. Det tredje 
delarbetet handlar om hur nervcellers spontanaktivitet ser ut. Trots väldigt skilt 
utseende (se till exempel Figur 4 på sidan 12) och därmed många andra skilda 
egenskaper, tyder resultaten på att de nervceller från ryggmärgen och lillhjärnan som 
undersöktes har ett grundläggande beteende som inte skiljer sig särskilt mycket mellan 
de olika nervcellstyperna. 

IV) I det fjärde delarbetet användes beskrivningen av nervcellers spontanaktivitet från 
delarbete tre, tillsammans med hur nervcellerna i lillhjärnan beter sig från delarbete 
två, för att bygga en modell som simulerade hur nervcellerna i lillhjärnan, som tar 
emot signalerna från ryggmärgen, beter sig när vi promenerar. Resultaten visar att den 
genomgripande aktiviteten på ett enkelt sätt återspeglar grundläggande egenskaper i 
stegcykeln. Nervcellskretsen verkar alltså på det övergripande planet försöka undvika 
att göra informationen som kommer in mer komplicerad än vad som behövs. 
Anledningen till att vi inte hittade något mer komplext beteende host nervcellerna var 
kanske helt enkelt att vi undersökte dem i ett sammanhang som inte kräver särskilt 
mycket komplexitet. 

V) Eftersom hjärnan trots allt måste klara av komplicerade beräkningar måste 
nervcellerna också klara av att skicka detaljerade signaler. Anledningen till att det inte 
dök upp några sådana tecken i delarbete fyra kan helt enkelt vara att kretsen i det läget 
inte hade någon nytta av komplicerade signaler och därför undvek dem. I det femte 
delarbetet användes istället en mekanisk display som kan simulera att huden som rör 
vid displayen istället tar på ett föremål. Med denna typ av stimulering visade det sig 
ske informationsbearbetning redan i hjärnstammen, där nervcellerna kunde urskilja 
egenskaperna hos olika typer av mekanisk kontakt med huden. Den klassiska bilden 
är att sådana saker inte sker förrän tre steg senare i en del av neocortex som heter 
sekundära somatosensoriska cortex. Om de beräkningarna kan utföras redan i 
hjärnstammen innebär det att delarna av neocortex där man tidigare trodde 
beräkningarna gjordes kan användas till annat.  

VI) I det sjätte delarbetet undersöks huruvida grupper av nervceller har som mål att 
vara så lite aktiva som möjligt. Tanken är att om man som nervcell bara är aktiv i vissa 
speciella situationer, kan man undvika att störa andra nervceller när de är aktiva. Det 
är en princip som kallas sparse coding (gles kodning på svenska). Problemet är att det 
finns nackdelar med en för gles aktivitet, framför allt när det gäller hjärnans förmåga 
att generalisera redan inlärd kunskap till nya situationer. För att uppnå de positiva 
egenskaperna av en gles aktivitet måste dessutom aktiviteten bli mer och mer gles ju 
fler nervceller som är inblandade. Det innebär att man i nätverk som är lika stora som 
de som finns i hjärnan måste ha en extremt gles kod. Sammantaget tyder det på att 
hjärnan har hittat andra sätt än en gles aktivitet för att undvika problemen med 
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komplexitet. Slutligen verkar det som om de experimentella observationer som är 
gjorda när nervcellskretsarna utsätts för situationer som liknar naturligt beteende inte 
har en gles aktivitet under tiden de stimuleras.  

De sex delstudierna tillsammans inbjuder till en syn där man ser på hjärnan från ett 
annat perspektiv än som är vanligt. Istället för att hjärnan finns för att lära sig för att 
förstå allt som sker i omvärlden och hur den egna kroppen fungerar, kan man snarare 
vända på det och ge kroppen och de tidiga delarna av nervsystemet uppdraget att 
forma hjärnan med hjälp av de sensoriska signaler som genereras ute i muskler och 
hud, som sedan moduleras i ryggmärg och hjärnstam. I grunden handlar det om att 
kropp, ryggmärg, hjärnstam och hjärna utvecklats evolutionärt ihop. Lika gärna som 
hjärnan kan vara byggd för att förstå sig på kroppen, kan kroppen vara byggd för att 
göra sig mer förståelig för resten av nervsystemet. 
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