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Preface 

When I started my work on this thesis in 2013, the double edged sword of the 
prostate specific antigen (PSA) screening test was one of the main issues being 
discussed. Early detection of prostate cancer (PCa) can be crucial for the survival 
of the patient, but can also lead to over-diagnosis and overtreatment of men, who 
should perhaps never had become PCa patients as they would never have noticed 
their tumor during their life-time, had it not been for the increased PSA 
concentration in their blood. 

In addition, the role of testosterone in the etiology and progression of PCa was 
debated, as was the benefit-risk ratio of testosterone supplementation to men with 
low testosterone. 

Being able to find commonalities between unique patients can hopefully reduce 
their suffering by reducing their risk of aggressive disease and reducing their 
treatment related side-effects by creating a tailor-made risk profile for each 
individual patient based on the knowledge gathered on a population level. 

The aim of my work has been to investigate whether genetic variants of the 
androgen receptor or levels of testosterone in younger men could affect the risk of 
PCa with the hope that the identification of preexisting variables affecting PCa 
risk in the future could be used to adjust the diagnostic tests and make the 
diagnosis more specific. 
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 MrOS Osteoporotic fractures in men study 
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NR Nuclear receptor 
NTD Amino-terminal domain 
OR Odds ratio 
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TURP Transurethral resection of the prostate 
UTR Untranslated region 
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Review of the literature 

 

Part I: Androgens  

Short history of testosterone 

The effect of testosterone deficiency has in an indirect way been known for a long 
time. Castration, which in older times meant removal of the testes, was historically 
used in wartime to prevent the defeated group of men to carry on their lineage and 
is often seen as a way to humiliate the castrate. In ancient China for instance, several 
criminal offenses were punished by castration and thereafter enslavement, to create 
obedient servants, unable to have offspring and thereby unable to compete with the 
lineage of the emperor1. Castration could also be performed to create servants able 
to perform a specific social function, e.g. as guardians of harems or as castrate 
singers. 

Even though the effect of the removal of the testes was well-known, the cause of 
the changes in the men who had been castrated wouldn’t be identified until much 
later. 

The first clue came in 1771, when the English surgeon John Hunter transplanted the 
testicles from a rooster into a hen, with masculinization of the hen as a result. In 
1849, the experiment was repeated, but with castrated roosters (capons) acting as 
the transplant receivers, and results were published by Arnold A. Berthold 2.  

In the late 1800s, Dr. Brown-Séquard, a physician known to perform experiments 
on himself in order to understand human biology became interested in the effect of 
castration on Eunuchs. In particular, he was interested in the behavior and health of 
these men, as he saw the same symptoms in older non-castrated men3. To investigate 
whether the testicles contained a substrate, potent enough to rejuvenate older men, 
he created an elixir containing extracts of newly removed testicles. At first he tried 
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the extracts on elderly dogs, and thereafter he tried it on himself with an increase in 
strength and energy as the result 3.  

 

Although the results of Brown-Séquard soon were found to be most likely the effect 
of placebo (a recent study showed that the method of extraction he used resulted in 
a testosterone concentration four orders of magnitude lower than that required to 
give a biological effect4), the hypothesis behind the experiment still was valid. 
However, it wasn’t until 1927, when McGee and Koch extracted the lipid fraction 
of bull testicles and injected capons with the extract, resulting in secondary sexual 
characteristics developing in the capons, similar to those from a non-castrated 
rooster. The extraction process, however, required 29 kg of bull testes to produce 
20 mg of the substance5  which deemed it impractical for isolation aimed for medical 
use, but pharmaceutical companies had become interested and initiated steroid 
research laboratories in the early 1930s. 

In 1931 Butenandt was able to isolate 15 mg of an androgen from 15 000 l of urine 
from German policemen which was named androsteron6. This androgen was 
however not as powerful as the previously extracted substance and was later found 
to be one of the most common metabolites of testosterone. 

Pure testosterone was first isolated and named by the Laquer laboratory in May of 
19357, and a few months later, in September 1935, two groups independently 
published methods for synthesis of testosterone8,9. The two researchers responsible 
for the two latter studies, Butenandt and Ruzicka, were rewarded the Nobel Prize in 
medicine in 1939 for their work. 

Soon after, in 1937, testosterone was introduced to the pharmaceutical market10 and 
nowadays, perhaps due to increased incidence of subnormal testosterone, higher 
awareness or the large influence of pharmaceutical companies, men are prescribed 
testosterone for symptoms such as fatigue and loss of libido at an increasing rate. 

 

Testosterone synthesis 

Testosterone is synthesized in the Leydig cells of the testes and, to a smaller extent, 
in the adrenal cortex located above the kidneys. Synthesis starts when luteinizing 
hormone (LH) binds to its receptor (LHR) in the cell membrane of the Leydig cells. 

The LHR is a transmembrane, G protein-coupled receptor, and upon binding of LH 
in the Leydig cell membrane a chain of reactions is started with the activation of 
adenylyl cyclase (AC; Figure 1). The activated AC will catalyze the conversion of 
ATP to cyclic adenosine monophosphate (cAMP), an important second messenger, 
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which triggers the activation of protein kinase A (PKA)11. This in turn will 
phosphorylate the Steroidogenic Acute Regulatory Protein (StAR) in the 
mitochondrial membrane, which activates it and allows it to transport the severely 
hydrophobic cholesterol molecule across the outer and inner mitochondrial 
membrane.  

The transportation of cholesterol into the mitochondrion is considered to be one of 
the rate-limiting step in the steroidogenesis process. Inside the mitochondrion, the 
CYP11A1 enzyme transforms cholesterol into pregnenolone, a progestogen which 
after formation exits the mitochondrion and enters the smooth endoplasmic 
reticulum where it, through the steroidogenic cascade, is further altered until it 
becomes testosterone.   

Figure 1. The mechanism behind testosterone formation after LH stimulation in the
Leydig cells of the testes. 
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The hypothalamic-Pituitary-Gonadal (HPG) axis 

The production of testosterone is strongly regulated by the Hypothalamus-Pituitary-
Gonadal axis (Figure 2). The Hypothalamus synthesizes and releases 
Gonadotropin-releasing hormone (GnRH) in a pulsatile fashion, which will 
stimulate the anterior pituitary to release LH and follicle stimulating hormone (FSH) 
into the blood stream12. When LH and FSH reaches the testes, LH will bind to the 
LH receptors on the Leydig cells, stimulating testosterone synthesis, while FSH will 
bind to the FSH receptors on the Sertoli cells, stimulating sperm production.  

Following synthesis, testosterone will diffuse out if the Leydig cells and fill up the 
interstitial compartment, from which it can diffuse into the blood stream and act on 
distant androgen responsive targets or into the closely located Sertoli cells.  

The Sertoli cells are responsive for sperm production, a process that is dependent 
on testosterone and FSH but also release Inhibin B and Follistatin upon testosterone 
stimulation which, together with testosterone, will downregulate the release of 
GnRH, and thereby also the release of FSH and LH.  

The Sertoli cells require extremely high concentrations of intratesticular 
testosterone13 to stimulate full spermatogenesis and therefore also secrete androgen 
binding protein (ABP), a glycoprotein consisting of a slightly altered sex hormone 
binding globulin (SHBG), which binds androgens to stabilize a high androgen 
concentration in the seminiferous tubules and epididymis and thereby ensure 
spermatogenesis. 

Figure 2 The regulatory pathways of the Hypothalamic-Pituitary-Testis axis. Red dotted lines
indicate negative feedback. 
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The importance of testosterone 

In males, androgens are crucial for the development and maintenance of both the 
primary and secondary sex characteristics and will affect the general well-being and 
sexual health from cradle to grave.  

Upon formation, in general, only about 2% of testosterone will circulate freely, the 
rest will to a large extent be bound with high affinity to SHBG, deeming it basically 
bio-unavailable, and with a lower affinity to albumin, from which it can easily 
disengage and become free, bio-available testosterone. 

Testosterone is capable of inducing androgenic response in peripheral target cells 
on its own, by binding to the androgen receptor (AR), a ligand dependent 
transcription factor capable of inducing expression of androgen response genes. 
However, much of the seen testosterone effects can also be attributed to its 
metabolites, 5α-dihydrotestosterone (DHT) and estradiol (E2) (Figure 3). 

During fetal development, testosterone is in general considered to be responsible for 
the development of in internal male genitalia, with the exception of the prostate 
gland. During puberty and adult life, testosterone stimulates skeletal muscle growth 
and the elongation of the larynx causing the deeper voice in males. The anabolic 
features of testosterone has been abused in the form of anabolic steroids, due to its 
ability to stimulate muscle growth and performance.  

In some specific androgen target cells, e.g. in the prostate, skin and hair follicles, 
the enzyme 5-alpha reductase is expressed, and in these cells a large part of the 
testosterone will be converted to the more potent DHT, with a higher affinity for the 
AR and a higher capacity for induction of androgen response13. During fetal 
development, DHT is important for the development of the external male genitalia 
but it is also important for much of the development and function of the prostate. In 
older men, suffering from benign prostate hypertrophy (BPH), treatment often 
consists of 5-alpha reductase inhibitors such as finasteride and dutasteride, which 
block the conversion of testosterone to DHT and relieve the symptoms by reducing 
prostatic growth. The 5-alpha reductase inhibitors are also used by dermatologists 
to prevent and treat male pattern baldness, androgenetic alopecia, as the main factor 
involved in the progression of male pattern baldness is DHT.  
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Testosterone can also be converted into the estrogen E2 in a reaction catalyzed by 
the enzyme CYP19A1. Although estrogens are generally described as the female 
sex hormone, E2 plays an important role also in men14, as it stimulates epiphyseal 
closure during puberty and maintains bone mass in adult life but also maintains 
spermatogenesis and libido. One of the E2 target organs in males, expressing the 
estrogen receptors to which E2 binds, is the prostate. 

 

 

  

Figure 3 Effect of testosterone, dihydrotestosterone and estradiol on the development and maintenance
of the male phenotype 
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Low testosterone 

Factors affecting testosterone secretion and blood concentration is glucose load15, 
diurnal variation, with highest concentrations in the morning, and an almost 50% 
lower concentration in the evening for younger men16-18 and age, as testosterone 
levels are lower in older men19-21. The age-dependent decrease in testosterone in 
combination with the rapid growth of the older population size has made 
testosterone deficiency and subsequent co-morbidities a large field of interest in the 
medical community and testosterone measurements and prescribed testosterone 
replacement therapies have reached new heights in the last decade22,23. 

As an inter-individual difference in androgen sensitivity exists, dependent on for 
instance the concentrations of aromatase, SHBG and 5-alpha reductase, low 
testosterone in itself is not always problem but when the testosterone concentrations 
are not sufficient to carry on androgen dependent processes in the body, testosterone 
deficiency can become symptomatic. 

Low testosterone, also called hypogonadism can be divided into several 
categories24. Primary hypogonadism, where testosterone concentrations are low and 
LH concentrations are high, is usually a sign that the testes are not responding 
efficiently to the LH-signaling25. A similar more recently described condition is the 
compensated hypogonadism, where testosterone concentrations are kept at normal 
or low normal levels by high concentrations of LH, These men often present as a 
mild hypogonadism and a less distinct clinical profile. If the hypogonadism is 
characterized by low testosterone as well as low LH and FSH, as in the case of 
secondary hypogonadism, the problem usually resides in the signaling between the 
hypothalamus and the pituitary. 

Symptoms of hypogonadism are different depending on the severity and the age of 
onset but usually include sexual problems such as loss of libido, impotence, and 
infertility but also low muscle mass, anxiety, depression and osteoporosis26,27.  

Hypogonadism appear to not only affect quality of life but has also been associated 
with several conditions such as metabolic syndrome, diabetes mellitus type 2 and 
cardiovascular disease28-33. Additionally, low testosterone has been associated with 
an increased risk of all-cause mortality34,35, but whether low testosterone is causing 
these conditions or the other way around is still not known. 
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Part II: The androgen receptor   

Short history of the discovery of the androgen receptor and androgen 
receptor related diseases and disorders 

As long as there have been humans, a small proportion of children have most likely 
been born with ambiguous genitalia. These people have historically been called 
hermaphrodites after the Greek god Hermaphroditus, the son of Hermes and 
Aphrodite in Greek mythology. According to the myth, he was a remarkably 
beautiful boy who attracted the love of the water nymph Salmacis, who in turn 
prayed to be united with him forever. When her prayers were answered by the gods, 
the two were transformed into one androgynous form. 

Historical records on intersex people are surprisingly common, and mentions can be 
found both in laws and myths. Depending on cultural perception and religious 
beliefs, they are sometimes described as godlike with fortunetelling abilities and 
sometimes as monsters36. The law usually cover whether they should inherit as men 
or women and which sex they should be penalized as, should they commit crimes37. 
With 20th century medicine came surgical measures to “cure” the state of 
intersexuality in an attempt to avoid later gender identity confusion, an action that 
in recent years have been questioned38.  

At the same time, researchers had begun to investigate the scientific explanations 
for these traits. In 1942, Fuller Albright described the concept of peripheral hormone 
resistance, opening up a new field of research on tissue response to hormones39. In 
1947, Reifenstein, a student of Albright, reported on a family with hereditary 
pseudohermaphrodism, which subsequentially led to the condition being named 
after him40, but also made researchers interested in the genetics behind the 
syndrome. 

Since the severity of the symptoms of Reifenstein syndrome were ill-defined, 
several reports on different degrees of hermaphrodism were published, giving the 
syndrome several names, e.g. Gilbert-Dreyfus syndrome (1957)41, Lub’s syndrome 
(1959)42 and Rosewater syndrome (1965)43. 

In 1970, Lyon and Hawkes published a study were they described X-linked 
testicular feminization in mice44 and 4 years later the research community debated 
the pattern of inheritance after Bremner published a study describing a family 
displaying autosomal inherited pseudohermaphrodism45. The same year, Wilson 
suggested that pseudohermaphrodism should be divided into the autosomally 
inherited Type 2 and the X-linked inherited Type 146. Wilson also concluded that 
the syndromes described by Rosewater, Lubs, Gilbert-Dreyfus and Reinfenstein all 
were caused by the same genetic defect and belonged to the X-linked androgen 
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resistance type 1 and that the families did not appear to be affected by defects of 
androgen synthesis, but instead defect androgen action. 

In 1977 the X-linked Riefenstein syndrome was renamed androgen insensitivity 
syndrome (AIS) after Amrhein had reported differences in cytoplasmic DHT-
binding, further strengthening the hypothesis that deficiency in androgen action is 
the underlying cause47. The patients in the study could be divided into three 
categories; weaker DHT-binding (partial AIS), no DHT binding (complete AIS) and 
normal binding, where the cause of the androgen insensitivity was unknown. 

In 1979, the partial AIS and complete AIS categories were complemented with a 
third category, when Aiman et al. described mild AIS as a cause of infertility in 
otherwise healthy men48. 

While AIS by now was believed to be caused by a deficiency in androgen binding, 
the genetic locus of the receptor for androgens was not yet known. In 1981, Migeon 
et al were able to narrow down the location to Xq11-Xq1349. Seven years later, two 
groups independently reported successful cloning of the AR50,51, and the first 
mutations of the AR, causing AIS were described52. 

In 1989. Brown et al. reported the exact locus of the AR 53 while Lubahn et al added 
a description of the sequence of the intron/exon junctions within the AR 54. 

The detection of the AR gene also led to the finding by La Spada et al in 1991; that 
Kennedy’s disease, a slowly progressing muscular atrophic disease with patients 
often displaying symptoms of mild AIS, is caused by an increased size of the 
polymorphic tandem CAG repeat, located in exon 1 of the AR gene55.  

The number of published mutations in the AR or AIS patients quickly grew, and in 
1994 a web based database collecting all published mutations of the AR was 
launched56. In 2012 the AR gene mutations database reported 1,209 registered 
mutations found in both AIS and PCa patients 57.  
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Nuclear receptors 

Transcription factors 
Transcription factors are regulators of gene expression, and are thereby crucial in 
all cellular processes from conception and birth, until the death of an organism. 
Cellular differentiation, development, DNA repair and morphogenesis are all 
processes that are dependent on a complex chain of responses to internal or external 
stimuli causing gene expression, and thereby protein synthesis, to be turned on or 
off (Figure 4). 

 

 

Nuclear receptor superfamily 
The AR is part of the nuclear receptor (NR) superfamily58, one of the largest 
transcription factor groups. The nuclear receptor superfamily in humans contains 
both receptors that are activated upon binding of a specific ligand and orphan 
receptors, for which specific ligand have not been identified so far. In humans, 49 
genes for nuclear receptors have been identified and 48 of these are expressed59. Of 
these, 20 are considered orphans with no known ligand60. 

The other 28 nuclear receptors are known to recognize certain small hydrophobic 
ligands in the form of endogenous hormones and vitamins or xenobiotic endocrine 
disruptors. In common they all (with a few exceptions) have a certain structure in 
the form of regulatory domains. The N-terminal domain (NTD), the DNA-binding 
domain (DBD), the hinge region, the Ligand binding domain (LBD). Upon ligand 
binding to the LBD, the receptors form homodimers or heterodimers and activate 
transcription by the DBD binding to hormone responsive elements of the target 
gene. 

The structural similarities of the NRs indicate a common ancestral NR, from which 
all NRs have evolved61. The evolution of the nuclear receptors is considered to have 

Figure 4 Schematic view of the mechanism of transcription factors.  
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happened in two waves of duplications61. Nuclear receptors are absent in plants and 
fungi but are present in animals, and the first NR is considered to have appeared 
around the emergence of the kingdom Animalia. In the first wave of duplication, the 
ancient NR gave rise to precursors of the seven large subgroups of NRs. The second 
duplication wave, that gave rise to the multiple variants of each subgroup and is 
considered to have taken place with the emergence of vertebrates.  

The AR belongs to NR group 3, the Estrogen receptor-like receptors, based on 
phylogenetic resemblance62 (Table 1). Within this group resides three estrogen 
receptor related orphan receptors that are not activated by estrogen but bind to 
estrogen response elements, and six steroid hormone receptors divided into two 
groups; the estrogen receptors (or 3-hydroxysteroid receptors) and the 3-Ketosteroid 
receptors. The steroid receptors are believed to be the products of the same ancestral 
estrogen activated steroid receptor that after a duplication event gave rise to an 
estrogen receptor and a 3-Ketosteroid receptor. Further duplication events later 
formed the six, now existing nuclear steroid hormone receptors. 

Like the other nuclear receptors, the steroid hormone receptors share a similar 
functional structure, organized by domains (Figure 5).   

 

  

Figure 5 The difference in length of protein domains, the N-terminal (A/B), the DNA-binding (C), the 
hinge region (D), the ligand binding (E) and the C-terminal (F) domain in estrogen receptor alpha and 
beta (ER alpha, ER beta), glucocorticoid receptor (GR), mineralocorticoid receptor (MR),
progesterone receptor (PR) and androgen receptor transcript variant A ( AR A) and B (AR B). 
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Table 1 The phylogenetic relationship between the members of the nuclear receptor family, as well as 
their ligands if known.   

 Gene Group Alt name  Ligand Size  

 

NR0B1 Miscellaneous DAX1  Orphan 470 
NR0B2 Miscellaneous SHP  Orphan 257 
NR2C1 Retinoid X Receptor-like TR2  Orphan 603 
NR2C2 Retinoid X Receptor-like TR4  Orphan 596 
NR2F1 Retinoid X Receptor-like COUP-TFI  Orphan 423 
NR2F2 Retinoid X Receptor-like COUP-TFII  Orphan 414 
NR2F6 Retinoid X Receptor-like EAR-2  Orphan 404 
NR2E1 Retinoid X Receptor-like TLX  Orphan 385 
NR2E3 Retinoid X Receptor-like PNR  Orphan 410 
NR2A1 Retinoid X Receptor-like HNF4α  Orphan 474 
NR2A2 Retinoid X Receptor-like HNF4γ  Orphan 408 
NR2B2 Retinoid X Receptor-like RXRβ  Retinoic acid 533 
NR2B1 Retinoid X Receptor-like RXRα  Retinoic acid 462 
NR2B3 Retinoid X Receptor-like RXRγ  Retinoic acid 463 
NR5A1 Steroidogenic Factor-like SF1  Orphan 461 
NR5A2 Steroidogenic Factor-like LRH-1  Orphan 541 
NR6A1 Germ Cell Nuclear Factor-like GCNF  Orphan 480 
NR1A1 Thyroid Hormone Receptor-like TRα  Thyroid hormone 490 
NR1A2 Thyroid Hormone Receptor-like TRβ  Thyroid hormone 461 
NR1B3 Thyroid Hormone Receptor-like RARγ  Retinoic acid 454 
NR1B1 Thyroid Hormone Receptor-like RARα  Retinoic acid 462 
NR1B2 Thyroid Hormone Receptor-like RARβ  Retinoic acid 455 
PPARG Thyroid Hormone Receptor-like PPARγ  Fatty acids, prostaglandin J2 505 
NR1C1 Thyroid Hormone Receptor-like PPARα  Fatty acids, leukotriene B4, fibrates 468 
NR1C2 Thyroid Hormone Receptor-like PPAR-β/δ  Fatty acids 441 
NR1D1 Thyroid Hormone Receptor-like Rev-ErbAα  Orphan 614 
NR1D2 Thyroid Hormone Receptor-like Rev-ErbAβ  Orphan 579 
NR1F3 Thyroid Hormone Receptor-like RORγ  Retinoic acid 518 
NR1F1 Thyroid Hormone Receptor-like RORα  Cholesterol. Cholesteryl sulphate 523 
NR1F2 Thyroid Hormone Receptor-like RORβ  Retinoic acid 470 
NR1I1 Thyroid Hormone Receptor-like VDR  1,25-dihydroxy vitamin D3, litocholic acid 427 
NR1I2 Thyroid Hormone Receptor-like PXR  Xenobiotics, PCN 434 
NR1I3 Thyroid Hormone Receptor-like CAR  Xenobiotics, phenobarbital 352 
NR1H4 Thyroid Hormone Receptor-like FXR  Bile acids, Fexaramine 486 
NR1H3 Thyroid Hormone Receptor-like LXRα  Oxysterols, T0901317, GW3965 447 
NR1H2 Thyroid Hormone Receptor-like LXRβ  Oxysterols, T0901317, GW3965 460 
NR4A1 Nerve Growth Factor IB-like NGFIB  Orphan 598 
NR4A2 Nerve Growth Factor IB-like NURR1  Orphan 598 
NR4A3 Nerve Growth Factor IB-like NOR1  Orphan 626 
NR3C4 Estrogen Receptor-like AR Testosterone, flutamide  920 
NR3C3 Estrogen Receptor-like PR Progesterone, RU486, medroxyprogesterone acetate 933 
NR3C1 Estrogen Receptor-like GR Cortisol, dexamethasone, RU486 777 
NR3C2 Estrogen Receptor-like MR Aldosterone, spirolactone 984 
NR3B1 Estrogen Receptor-like ERRα  Orphan 423 
NR3B2 Estrogen Receptor-like ERRβ  DES, 4-OH tamoxifen 433 
NR3B3 Estrogen Receptor-like ERRγ  DES, 4-OH tamoxifen 458 
NR3A1 Estrogen Receptor-like ERα  Oestradiol-17β, tamoxifen, raloxifene 595 
NR3A2 Estrogen Receptor-like ERβ  Oestradiol-17β, various synthetic compounds 530 
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The androgen receptor gene 

The androgen receptor gene 
The AR gene consists of eight exons spanning over more than 90 kb54,63 (Figure 6). 
It is the only steroid receptor located on the X-chromosome (Xq11-12) leaving the 
typical male karyotype (46XY) hemizygous for the AR. The genomic region where 
the AR resides is highly conserved between species64 and has also been found to be 
the most divergent genomic segment between African and East-Asian populations65 
with a high frequency of derived alleles found in the African populations66. In 
humans, the X-chromosome has been suggested to have experienced an accelerated 
genetic drift post dispersal from Africa67 with strong signals of positive selection in 
the genomic segment where the AR is located68,69. 

Several mutations in the AR have been described in AIS patients57. While the female 
carriers of these mutations have unaltered phenotype, the male carriers, who only 
carry one X-chromosome will be affected. These mutations alter the protein 
structure and function and thereby deem the male patients unresponsive to 
androgenic signaling, leading to symptoms ranging from mild AIS, with patients 
presenting with somewhat impaired spermatogenesis and reduced development of 
secondary sexual characteristics, to complete AIS, with patients presenting with 
female habitus but with absent ovaries70.  

The large first exon of the AR encodes the entirety of the N-terminal domain63 and 
holds three common polymorphisms, the CAG-repeat, the GGN-repeat and the 
single nucleotide polymorphism (SNP) rs6152. 

The CAG repeat 
The CAG-repeat is as the name suggests, a long stretch of the bases C, A, and G 
repeated tandemly, encoding for a chain of glutamines, and the number of repeats 
is variable in humans71, but also in other primates72-74. In humans, the average 
lengths and the range of the CAG-alleles differ between populations (Figure 
7)71,75,76 with a normal range between 10 and 30 repeats.  
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Longer repeats (>40) is known to cause the rare late-onset progressive motor-neuron 
disease Spinal and Bulbar Muscular Atrophy (SBMA) also called Kennedy’s 
disease77,78. The length of the CAG-repeat is correlated with the severity of the 
disease and negatively correlated with the age of onset79. SBMA patients often also 
display endocrine symptoms of mild AIS such as subfertility, erectile dysfunction 
and gynecomastia80.   

Although the neurotoxic function of the AR harboring extreme CAG-lengths 
appears to be due to AR aggregation the AIS-symptoms of SBMA patients led to 
the theory that CAG-repeats length also in normal ranges is inversely correlated to 
androgen sensitivity, with the main focus often being aimed at the transactivation 
capacity of the AR81-83 and association studies regarding CAG-repeat length and risk 
of a long range of conditions84 such as infertility85-88and testicular cancer89,90 but also 
sex hormone concentrations91,92. 

Also, as African populations display shorter CAG-repeat alleles and African-
American men have the highest PCa incidence and mortality, in combination with 
the assumed inverse linear association between CAG length and androgen 
sensitivity, the CAG-repeat length in relation to PCa risk has been studied 
thoroughly with various results (for details regarding PCa risk and AR-variants, see 
page 29). 

The GGN repeat 
The second repeat polymorphism in the N-terminal domain is located downstream 
of the CAG-repeat and is called the GGN-repeat (Figure 6).  This repeat is more 
complex in its structure with the consensus sequence (GGT)3GGG(GGT)2(GGC)n 
encoding for a glycine stretch93. As with the CAG-repeat, also the GGN-repeat 
length differs between human populations although the normal alleles are of much 
less variable lengths, with the most common alleles (23 and 24) covering 84% in 

Figure 7 CAG-repeat length distribution in different populations (Adapted from Ackerman, C. M. et
al 2012) 
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Sweden76,94. Association studies regarding the GGN-repeat are not at all as many as 
for the CAG-repeat but also these studies have associated the different lengths with 
reproductive parameters95-97 

rs6152 
Located in between the two repeat polymorphisms in exon 1 is the SNP rs6152, a 
synonymous variant encoding for glutamic acid (E213). The frequency of the two 
alleles of rs6152 differs significantly between world populations, where 100% of 
the members of the East-Asian (EAS) populations in 1000 genomes are carriers of 
the G-allele, while only 35% of African (AFR) populations are G-allele carriers 
(Figure 8). European (EUR) populations place in between with a G-allele frequency 
of 86%. Although this variant does not change the protein (Figure 9), the variant 
has been associated with differences in sex-hormone levels98,99 and the G-allele is 
one of the strongest genetic risk markers for androgenetic alopecia in 
Caucasians69,100-103.  

 

 

 

Figure 9 The synonymous SNP rs6152 does not affect the amino acid sequence of the translated
protein 
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Figure 8 The proportion or rs6152 A- and G-allele carriers in the different 1000 genomes
superpopulations 
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Genetic variants of the androgen receptor and prostate cancer 
All the three genetic variants of the AR have been investigated in relation to risk of 
PCa with conflicting results.  

The CAG repeat is most often studied with the presumption of linear relationship, 
with shorter alleles being tested against longer alleles, where the cut-off differs 
between studies. A compilation of odds ratios (OR) and 95% confidence intervals 
(CI) from Caucasian studies with the CAG-repeats defined as short <22 and long 
>22104-126 derived from a large recent meta study127 can be seen in (Figure 10). This 
meta study concluded, upon inclusion of studies also including  non-Caucasian 
subjects that men carrying CAG-repeat lengths <22 had an elevated risk of 
developing PCa. The same meta study also investigated the PCa risk in carriers of 
short <16 GGC-repeats, corresponding to <22 GGN-repeats in relation to carriers 
of long (>22 GGN) and the pooled analysis revealed an increased risk for carriers 
of short GGN-repeats. The ORs for shorter GGN-repeat lengths in relation to PCa 
risk for the Caucasian populations106-109,113,121,123,128 derived from the meta study can 
be seen in Figure 11. 
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Figure 10. Odds ratios and 95% confidence intervals for PCa for carriers of short (<22) CAG repeats
compared with carriers of CAG repeat lengths >22 (as indicated by the red line). Data derived from
Weng, H. et. al. 2017 
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Reports on AR SNPs have also been conflicting. For rs6152 some studies have 
found an increased risk or PCa for the G-allele129,130 whereas others have not131,132.  

Transcription of the AR 
The AR mRNA is expressed in several different tissues, but has highest expression 
in the liver, prostate and testes (https://www.ncbi.nlm.nih.gov/gene/367). 

The AR promoter region lacks TATA and CCAAT boxes that are generally 
recognized by the transcription machinery and instead appears to attract the 
transcription factor specificity factor 1 (SP1) to GC-rich regions in at least two 
transcription initiation sites located ~1.1 kb upstream of the transcription initiation 
codon133-136. The expression is regulated by androgens, but the complexity of the 
regulation is not fully understood as both up- and down-regulation has been reported 
in different cell-types in the presence of androgens137. In addition, the AR protein 
translation can also be regulated by the additional factor of mRNA-stability. In 
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Figure 11 Odds ratios and 95% confidence intervals for PCa for
carriers of short (<22) GGN repeats compared with carriers of GGN
repeat lengths >22 (as indicated by the red line). Data derived from
Weng, H. et. al. 2017 
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LNCaP cells for instance, the presence of androgens suppressed the mRNA 
transcription, but increased the half-life of the mRNA which subsequently led to a 
stable AR protein abundance138. 

The AR mRNA has long 3’- and 5’-untranslated region (UTR) sequences, harboring 
sequence elements that appear to interact with RNA-binding proteins and affect the 
turn over-rate of the mRNA139. Part of the differences ascribed to the CAG and GGN 
repeat lengths has also been hypothesized to be due to changes in mRNA stability, 
as for instance the stability of the CAG-hairpin formation is altered by the number 
of repeats139-144. 

The androgen receptor protein 

The AR gene encodes an approximately 2760 bp open reading frame which is 
translated into a ~920aa long protein with an approximate mass of 100 kDa54,63. 
The length of the protein varies slightly depending on the two variable repetitive 
regions in exon 1. The protein consists of four functional domains, NTD, the 
DBD, the hinge region and the LBD (Figure 6). 

The AR in its unliganded state is primarily located in the cytoplasm in a 
monomeric form, where it is associated with heat-shock proteins (HSP) and other 
chaperone proteins, which stabilize the protein in a conformation that allows for 
ligand binding145,146. Several post-translational modification sites are present in the 
AR (Figure 6), and regulation occurs by the action of for instance 
phosphorylation, methylation, acetylation and sumoylation147. 

The amino terminal domain 
The NTD, or the transactivating domain, is the largest of the protein domains of 
the AR, and the domain that differs most from the NTDs of the other steroid 
receptors148,149. This domain harbors two areas responsible for transactivation 
function, activation function (AF) 1 and AF-5, where AF-1 has the strongest 
transactivation properties and is the main factor of ligand-dependent transcription 
activity150-152.  

A motif within the NTD, 23FQNLF27, is conserved across several species, and is 
thought to be essential in the activation of the AR upon ligand binding, as it 
interacts with the LBD but the exact mechanics of the interaction is not completely 
elucidated149,150,153-155.  
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The DNA-binding domain 
The DBD of the AR has the organization of two cysteine rich zinc-finger motifs, 
both of which consist of four cysteines binding a zinc-ion, and is encoded by exon 
2 and 3 of the AR gene54,156. The most N-terminal zinc-finger includes a sequence 
element that is identical to the corresponding element in the other 3-ketosteroid 
receptors, called the proximal box (P-box). The P-box consists of a sequence of 
five amino acids and enables interaction between the AR and specific DNA-
segments, androgen response elements (ARE), in promoters or enhancers of genes. 
The other zinc-finger has a distal box (D-box) which recognizes the D-boxes of 
another monomeric AR and enables dimerization of the two proteins. This 
dimerization reconfigures the protein so that the P-box is able to bind to AREs in 
the DNA of target genes (Figure 12). 

 

The hinge region 
The hinge region of the AR is a short stretch that separates the DBD and the LBD. 
It holds the nuclear localization signal (NLS) that is necessary for binding to the 
importin alpha, which mediates the transportation of the AR into the nucleus from 
the cytoplasm154,157 (Figure 13) 

Figure 12 The binding of the androgen receptor to an androgen responsive
element (ARE) is enabled by the dimerization of two ARs 
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The ligand binding domain 
The LBD of the AR consists of 12 alpha-helices which form a ligand-binding 
pocket by folding into an alpha helical sandwich148,153. When a ligand binds to the 
LBD of the AR, helix 12 folds over the pocket and encloses the ligand, resulting in 
a conformational change in the protein, which exposes a hydrophobic cleft, the 
AF-2, allowing AF-2 to bind to amino acid sequences, such as the previously 
mentioned 23FQNLF27 motif of the NTD158,159.  

In summary, upon ligand binding the AR protein changes conformation, allowing 
dimerization, and thereby releases the chaperone proteins that kept the structure 
open for ligand interaction. In the process, the protein gets phosphorylated, 
dimerized and thereafter transported into the nucleus, where it attaches to an ARE. 
Upon binding to the ARE, several cofactors are recruited and transcription is 
initiated (Figure 13).  

 

  

Figure 13 Schematic view of the ligand activation of AR, followed by dimerization and translocation
into the nucleus, where binding to AREs of androgen response genes takes place, cofactors are
recruited and transcription is initiated. 
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Part III: Prostate cancer 

Short history of prostate cancer 

While PCa today is the most common cancer in Swedish men and the leading cause 
of cancer related death in these men160, it was historically considered a very rare 
disease and first described by the English physician J. Adams in 1853161. The 
absence of PCa descriptions in historical records and the rapid increase of PCa 
incidence in the past century has led to a common belief that PCa is a modern 
phenomenon caused by modern dietary and lifestyle factors.  

While evidence of PCa in ancient remains are hard to detect, unless the tumor had 
advanced into skeletal metastases, paleopathologists have identified signs of PCa in 
2000 years old skeletal remains of a cremated man162, of a Scythian king from 
Siberia163 and in a man from the Roman period found in Hungary164 but also in an 
Egyptian mummy indicating that PCa is not a modern man-made disease165. 

The absence of descriptions of the disease before 1853 is partly explained by the 
use of indistinct terminology166. PCa was rarely distinguished from BPH as both 
conditions presented with the same symptoms, namely difficulties to urinate as the 
enlarged prostate pressed against the bladder or the urethra. The treatments of the 
patients diagnosed with prostate hypertrophy were mainly symptom relieving 
regardless of the malignancy of the hypertrophy.  

PCa is known to be an old man’s disease, affecting mainly men aged 55 or older. 
The rapid increase of PCa incidence in the Western world can therefore probably to 
a large extent be explained by the increased life expectancy, but also by increased 
use of diagnostic markers. 

The first diagnostic marker for PCa was presented in 1938, when it was reported 
that elevated concentrations of acid phosphatase could be detected in the serum of 
patients with metastasized PCa167. A few years later, in 1941 , Huggins and Hodges 
proved that androgen suppressing therapy by orchiectomy or estrogen injections led 
to PCa regression, validated by measurements of the serum levels of acid 
phosphatase168. The report by Huggins led to one of the most important methods to 
treat PCa patients, the androgen deprivation therapy, and in 1966 Huggins was 
awarded the Nobel Prize in physiology.  

The hunt for diagnostic markers with both high sensitivity and specificity for PCa 
was, however, not over with the clinical introduction of acid phosphatase. Elevated 
concentrations of acid phosphatase with prostatic origin is often seen also in benign 
prostatic conditions169 and at first the test was not specific for prostatic acid 
phosphatase (PAP) but with a few modifications to the measuring methods to 
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increase specificity, PAP was the best available marker of PCa for several decades 
to come.  

With the emergence of new biochemical methods, antigens were discovered at a 
high rate, and several different research groups independently discovered an antigen 
specific for the prostate in the late 1960’s and 1970’s. When a correlation between 
the antigen amount in blood and the concentration in the prostate was described, a 
new PCa marker was born 170,171 

The healthy prostate 

The prostate is an exocrine gland which in humans have the shape and size of a 
walnut. It is located below the bladder and surrounds the urethra, acting as the 
junction between the urethra and the ejaculatory ducts (Figure 14). The 
development, growth and function of the prostate is highly dependent on androgens, 
most importantly DHT, and the absence of androgens quickly leads to a reduction 
in prostate size172. 

The prostate is a reproductive organ with the main function to secrete prostatic fluid 
into the seminal fluid upon ejaculation. The prostatic fluid makes up around 20% of 
the ejaculate and contains several compounds, for instance citric acid, zinc, prostatic 
acid phosphatase, electrolytes such as K+ and Na+, and PSA173.  

Figure 14. The location and appearance of the prostate gland 
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The prostatic fluid is important for in vivo fertilization174. The seminal vesicles 
produce coagulation factors which allow the semen to become gelatinous soon after 
ejaculation, restricting the movement of spermatozoa. The enzymatic properties of 
the prostatic fluid allows the seminal coagulate to slowly liquefy, and allow for 
optimized spermatozoa exposure to factors enhancing their motility and survival 
within the female genital react, increasing the chance of fertilization. The smooth 
muscle contraction of the prostate also helps eject the semen. 

The prostate is made up of ~70% glandular tissue and ~30% stromal tissue and can 
be divided into zones, based on morphology, pathology and function (Figure 
15)175,176. The peripheral zone makes up ~70% of the glandular volume and is 
located in the base of the gland, allowing it to be felt though digital rectal 
examination. The embryologic origin of this zone is the urogenital sinus. 
Approximately 75% of prostate tumors originate from the peripheral zone. 

The transition zone is also derived from the urogenital sinus. It surrounds the urethra 
as it enters the prostate from the bladder and makes up only ~5% of the prostate 
volume. With age, this part of the prostate often enlarges and makes the passage of 
urine from the bladder through the prostate harder, a condition called BPH177. 
However, roughly 20% of PCa originate in the transition zone. 

The central zone surrounds the ejaculatory ducts leading from the two seminal 
vesicles into the urethra and makes up ~25% of the prostate volume. This zone 
differs from the transitional and peripheral zones in its embryonic origin as it is 
derived from the Wollfian ducts, but also in its lower proportion (~5%) of PCa 
originating in this zone. 

Figure 15. Schematic view of the zones of the prostate 
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Prostate cancer 

Androgens and the AR are not only essential for normal prostate growth but also to 
some extent for the growth of PCa. Since the report by Huggins and Hodges, where 
androgen ablation was found to shrink the PCa, it has been one of the main methods 
to treat PCa that cannot be cured by radiation or surgery alone although the pathway 
that the medications target have been refined since the 1940’s168,178. While estrogens 
and orchiectomy previously were the most common way to block the androgen 
production, today a large variety of GnRH analogs, GnRH antagonists and 
antiandrogens can be found on the market and can be used in different combinations 
to shrink the tumor and treat PCa140. 

However, PCa often becomes castration resistant (CRPC), deeming it unresponsive 
to androgen ablation and able to progress into lethal disease, illustrating the 
complexity of PCa progression and the difficulties in PCa treatment. The 
mechanisms behind CRPC is not fully understood, although some insights into the 
progression has revealed a continued AR activity albeit ligand independent, and 
several truncated AR variants, missing parts of the LBD, have been found in PCa179. 

The importance of AR and androgens in PCa has sometimes been interpreted as if 
higher testosterone concentrations could be a risk factor for PCa. 

Testosterone concentration and prostate cancer 

The relationship between testosterone concentrations and PCa risk is a complicated 
field of research with many studies reporting contradictory results.  

While an activated AR in vitro appears to enhance proliferation in stromal cells, and 
promote PCa progression in epithelial luminar cells it appears to inhibit metastasis 
in basal cells180. Many PCa cell-lines respond to androgens and androgen ablation 
send them into programmed cell death181-183. It has been suggested that a 
subpopulation of androgen independent tumor cells, for instance malignant 
epithelial stem-cells, are present in the prostate at early disease, and that they upon 
androgen withdrawal and subsequent cell death of other PCa cells, are able to grow 
into CRPC184-186.  

Although it is scientifically established that PCa progression initially appears 
androgen dependent, the concentration of testosterone as a risk factor for PCa 
appears difficult to elucidate, as only few longitudinal studies on the subject exist. 
Population based studies have shown an increased PCa risk both in men with higher 
testosterone187-189 and in men with lower testosterone190. Other studies report no 
correlation between testosterone concentrations and PCa risk191-193.  
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However, autopsy studies have shown a large number of clinically indolent PCa in 
men who had died of unrelated causes194-196, and although testosterone 
concentrations seem irrelevant in the de novo tumorigenesis it is possible that a 
certain amount of androgens are needed for the tumor to grow. The ”saturation 
model” has been suggested to describe the androgen sensitivity of the PCa, where 
extremely low androgen levels are enought to saturate the prostatic AR, and 
androgen concentrations above the saturation level will not lead to any additional 
growth197.  

Risk factors, incidence and mortality 

PCa incidence and mortality increased steadily during the 20th century, and Sweden 
is no exception (Figure 17 and Figure 16). A large part can be attributed to the 
increased life expectancy in humans. Age is one of the strongest risk factors for PCa, 
where the disease is rare in men younger than 50, after which the risk will increase 
quickly198. Additionally, the use of transurethral resection of the prostate (TURP) 
for men with BPH increased the number of spontaneous PCa discoveries and the 
largest incidence increase occurred after the introduction of the PSA-test198.  

Family history has also been strongly implicated in individual risk of PCa with the 
highest risk in men with relatives suffering from early-onset disease and men with 
more than one affected relative199,200. Part of this increased risk is due to one of 
several mutations identified in genes such as BRCA1 and 2201 but the rarity of 
identified high-penetrance gene variants point to other factors or an additive effect 
of several susceptibility loci being more important in the family history risk 
increase202. 

Another important factor is ethnicity, where African-American men have both 
higher incidence and higher mortality rate compared to other American populations 
(https://www.cdc.gov/cancer/prostate/statistics/race.htm), and the lowest risk seen 
in Asian countries203. 
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Prostate specific antigen 

The PSA, also known as kallikrein-3 (KLK3), is an enzyme mainly secreted by the 
epithelial cells of the prostate gland, but low concentrations of the enzyme have also 
been detected in other tissues204. At least three AREs have been identified in the 
KLK3 gene promoter205-208, and the expression of PSA is stimulated by the presence 
of androgens and the AR, making PSA a useful tool for monitoring of advanced PCa 
cases treated with androgen ablation. Initially, as the androgen concentration drops, 
so does the PSA concentration. However, if the PCa goes into CRPC, the PSA 
concentration often starts to rise again, as the AR activity no longer is ligand 
dependent209,210. 

The PSA is not in itself a tumor-specific enzyme. In the prostate it is present in an 
inactive form, but upon ejaculation it is cleaved into its active form by KLK2, 
another member of the same family. The activated PSA in turn liquefies the 
gelatinous semen matrix by cleaving the matrix upholding seminogelin proteins into 
smaller peptides, slowly releases the spermatozoa211,212.  

When the epithelial cells of the prostate are disrupted, due to inflammation or PCa, 
PSA leaks into the blood stream, making serum PSA concentrations a valuable tool 
in the diagnosis of prostatic disease213-215. 

Although PSA has been found to be a better prognostic tool for PCa than the 
previously utilized PAP-test216-218, it is not a PCa-specific marker and large 
screening programs have been criticized as not all men with PCa are found based 
on their serum PSA while many insignificant tumors are discovered219-221. The 
diagnosis and treatment of these tumors, which might have never grown enough to 
become a problem for the patient, is a large problem222,223 but should be weighed 
against the PCa mortality reduction in patients with aggressive non symptomatic 
tumors discovered through PSA-screening224. 

In a twin-study, 45% of the total PSA variability could be explained by inherited 
factors225 and intra-individual PSA fluctuations have been reported226,227 which has 
led to several studies regarding screening with other PSA thresholds228 based on for 
instance age229 or incorporation of other markers to increase the specificity of the 
test230. 
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Aims 

 

Although the role of testosterone in the growth of the PCa was well-established at 
the start of this thesis project, the androgen hypothesis; stating a role of 
testosterone in the etiology of the cancer, had begun to be questioned. Most studies 
on the subject were however conducted on older men with a short time to follow-
up. At the same time, several reports regarding the association between low 
testosterone and mortality had been published but as the time to follow-up also in 
these studies were relatively short, the direction of the association was not known. 
Is severe illness a risk factor for low testosterone, or is low testosterone a risk 
factor for severe illness?  

Genetic markers of the AR had also been studied extensively in relation to PCa, 
but the study designs often differed and the results often were inconclusive or 
contradicting each other making researchers questioning the role of genetic 
variants of the AR in the role of PCa231 and suggesting a paradigm shift in the 
interpretation of the results232. Also, although genetic variants of the AR is 
believed to have different transactivation capacities, the role of AR in the 
concentrations of PSA, an androgen induced gene, in the serum of men without 
PCa was not elucidated. 

Our general object of this work was to elucidate the combinatory inheritance of 
genetic variants of the AR, and to investigate how these markers could modulate 
the androgenic response to testosterone, or the risk of PCa in European men. Our 
hypothesis was that as genetic variants of the AR appear to modulate the 
transcription of PSA in vitro, they could also modulate the expression in vivo 
(Figure 18). Additionally, we wanted to investigate possible associations between 
genetic variants of the AR in relation to PCa with the combinatory effect of the 
genetic markers in mind. Finally, as testosterone, which act through the AR, has 
been suggested to have a role in the etiology of PCa, we wanted to investigate 
whether high testosterone concentrations were a risk factor of PCa, and if low 
testosterone was a risk factor for all-cause mortality. 
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In summary, our specific aims were to investigate: 

1) The association between genetic variants of the AR and PSA concentrations in 
men without PCa 

2) The association between genetic variants of the AR and PCa risk 

3) The association between lifetime exposure to different testosterone 
concentrations and risk of PCa in later life 

4) The association between subnormal and supranormal testosterone 
concentrations and risk of all-cause mortality 

Figure 18 Mindmap describing how the testosterone concentrations and variants of the AR could 
modulate the risk of PCa 
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Materials and Methods 

Subjects for genetic associations   

To investigate genetic variants of the AR in relation to risk of PCa and 
concentrations of PSA in men without PCa, the following cohorts were used.  
(A more detailed introduction of these men can be found in the materials and 
methods section of study I, II and V). 

European Male Ageing Study (EMAS) 
The European Male Ageing Study was initiated in 2002 with the aim to study the 
ageing process in men by documenting hormonal status and symptoms related to 
ageing233. In the period between 2003 and 2005, eight European centers collected 
baseline information from 3369 men, aged 40-79 years, belonging to the general 
population. After a median of 4.3 years after enrollment, a postal questionnaire was 
sent out where the men would self-assess their health. Blood samples were collected 
both at baseline and at follow-up and amongst other clinical compounds, PSA was 
measured. As one of the aims of the study where EMAS was used was to investigate 
whether AR-variants were associated with concentrations of PSA in men without 
PCa, the presence of baseline PSA measured regardless of any symptoms of 
prostatic disease was the main motive for the selection of this cohort. All self-
reported PCa cases, both prevalent and incident, were excluded for PSA 
calculations, as it is likely that they have undergone treatments affecting their 
testosterone concentrations and subsequently their PSA concentrations. Thereafter 
the risk of having a PSA concentration above the clinically utilized thresholds of 3 
or 4 ng/ml for men carrying AR gene variants, was calculated. The information 
regarding prostatic disease was collected at follow-up, assuring the absence of 
disease influencing the PSA concentrations at baseline.  

The PCa cases were thereafter included again, and used to investigate the 
association between AR-variants and risk of PCa (Figure 19).  
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Malmö Diet and Cancer Study (MDCS) nested case-control subset 
The Malmö Diet and Cancer Study was initiated by the Swedish Cancer Society 
(Cancerfonden) in the early 1990’s, as a part of the European Prospective 
Investigation into Diet and Cancer (EPIC), with the aim to study dietary and lifestyle 
factors in relation to cancer. In the period 1991-1995, n=42 624 women born 
between 1923 and 1950 and n= 31 514 men born between 1923 and 1945, all 
residents of Malmö, Sweden were invited to participate, and of these ~40 % were 
recruited to the study234. 

In 2006, a nested case-control study regarding subfertility and PCa risk was 
performed on the MDCS material235. In this study, all prevalent PCa cases still alive 
as of 2006 (n=661) were identified and matched to controls (n=661) based on age 
(±90 days) and date of enrollment (±90 days) resulting in a subset of n=1322 eligible 
men. These men were contacted, and those who agreed to participate (n=975), were 
asked to fill out a questionnaire regarding their fertility. 

In order to validate the findings from study I, regarding AR-variants and PCa risk, 
this subset of the MDCS, consisting of all living PCa cases as of 2006 identified 
through the Swedish National Cancer Registry was utilized. The inclusion criteria 
for the nested case-control study, including only men alive at PCa data retrieval was 
similar to that of EMAS (Figure 19).  

Swedish Osteoporotic Fractures in Men Study 
The Swedish Osteoporotic Fractures in Men Study (MrOS) is part of a collaborative 
effort including Hong Kong and USA, with the objective to study the epidemiology 
of bone mineral density, osteoporosis and fractures in ageing men236. The Swedish 
MrOS consists of n=3014 men, aged 69 to 81 years, who were randomly identified 
using national population registries and enrolled from centers in Malmö, Uppsala 
and Gothenburg between October 2001 and December 2004. 

In this thesis, these men were combined with the MDCS cohort, in order to increase 
the power of the analysis by increasing the sample size. However, the follow-up 
procedure for this study differed from the two other cohorts, as PCa diagnoses were 
registered also for men who had died at follow-up. In order to ensure similar cohort 
structures, the deceased men were excluded for the work in this thesis (Figure 19). 
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Scandinavian Testicular Cancer Patients (TC) & Swedish Military Conscripts (M) 
All men younger than 50 years with a testicular germ cell cancer (TGCC) diagnosed 
at the Department of Oncology, Lund University Hospital between March 1996 and 
October 2006, and at the Department of Oncology, Radiumhemmet and 
Södersjukhuset, Karolinska University Hospital between November 1998 and 
October 2006 (n=460) were invited to participate in a study regarding genetic 
variants and TGCC risk237.  

In addition, from a cohort of 300 men from a Danish TGCC study collected at the 
Department of Oncology and the Department of Growth and Reproduction, 100 
samples were randomly selected and added to the Swedish TGCC cohort to create 
a Scandinavian TGCC cohort. 

The controls for the TC cohort was made up of Swedish Military Conscripts, aged 
18-20 years, initially recruited between 2000 and 2001 for a study on reproductive 
function in young Swedish men238. 

Figure 19 Flowchart describing the inclusion procedure in each genotyped cohort 



MM A T E R I A L S  A N D  M E T H O D S  

46 

Genotypes 

All the above mentioned cohorts had previously been genotyped for SNPs in the AR 
(Figure 20, Table 2). The genotyping methods differed between the different 
studies and more detailed information can be found in previously published works 
regarding EMAS239, MrOS240, TC & M241 and MDCS242 

In short, the SNPs in EMAS, TC & M and MDCS were genotyped using MALDI-
TOF mass spectrometry using Sequenom MassARRAY technology (Sequenom 
Inc., San Diego, CA, USA), while the Gothenburg part of MrOS was genotyped 
and imputed using the Illumina HumanOmni1 Quad v1.0 BeadChip and the 
Malmö part of MrOS was genotyped using the Illumina HumanOmniExpress-12 
v1 BeadChip (Illumina, Inc., San Diego, CA). 
The repetititive regions were amplified by PCR and analysed by sequencing on an 
ABIPRISM 3100 Genetic Analyser and genotyped using Genescan (ABI, Foster 
City, CA) for the CAG-repeat in the EMAS cohort, and on a Beckman Coulter 
CEQ 2000XL sequencer (Beckman Coulter, Bromma, Sweden) for the CAG and 
GGN-repeat in the TC & M cohorts. 
 
The genotyped SNPs varied in each cohort and therefore, in order to combine the 
datasets, the linkage disequilibrium (LD) between the SNPs was investigated, to 
identify proxies for each SNP. 

The pairwise LD (D’ and r2) was calculated using the EUR population of 1000 
genomes, through the webpage LDlink (https://analysistools.nci.nih.gov/LDlink/). 

The r2 value is a stricter measurement of LD, and a high r2 value indicates that the 
alleles are more or less in complete linkage, so that variant A is always inherited 
with variant B and vice versa, while a high D’ but a low r2-value usually occurs in 
the case of rare alleles, where the rare allele is commonly inherited with a more 
common allele of another SNP, but the more common allele does not always come 
with the rare allele. 

Figure 20 Location of the genotyped SNPs in relation to the AR gene 
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Several of the SNPs were in high LD (r2>0.9) and could be considered to be 
representational of each other (Figure 21). These SNPs could be divided into two 
SNP-proxies, where the first one consisted of the SNPs rs6152, rs1204039, 
rs1204038, rs2255702, rs7061037, rs5918760 and rs6624304 and the second 
consisted of the SNPs rs7064188 and rs12014709. The other SNPs were not co-
inherited with each other. 

 
Figure 21 Heatmap of r2 values for the pairwise comparison between SNPs genotyped in at least one 
of the datasets used in this thesis 
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Table 2 Genotyping frequencies for each SNP in each of the cohorts 

AR Variant EMAS MrOS MDCS TC M 

rs962458 - 1115 (99.6) 876 (99.2) 379 (99.2) 212 (99.1) 

rs6152 1732 (96.0) 1110 (99.1) - 347 (90.8) 210 (98.1) 

rs2207040 - 595 (53.1) 874 (99.0) 378 (99.0) 213 (99.5) 

rs1204039 - 1111 (99.2) - 361 (94.5) 210 (98.1) 

rs1204038 1797 (99.6) 1111 (99.2) - 379 (99.2) 212 (99.1) 

rs2255702 1759 (97.5) 1110 (99.1) - - - 

rs7061037 1765 (97.8) 1110 (99.1) - 361 (94.5) 210 (98.1) 

rs5918760 1796 (99.6) 1113 (99.4) - - - 

rs2361634 - 1038 (92.7) - 380 (99.5) 212 (99.1) 

rs6624304 - 1120 (100.0) 883 (100.0) - - 

rs7064188 - 1120 (100.0) 871 (98.6) - - 

rs12014709 - 1120 (100.0) - 378 (99.0) 212 (99.1) 

rs5031002 - 1103 (98.5) - 380 (99.5) 212 (99.1) 

CAG 1804 (100.0) - - 379 (99.2) 214 (100.0) 

GGN - - - 355 (92.9) 213 (99.5) 

 

Haplotype construction 

Based on the LD between the SNPs, five haplotype designating nodes were defined 
(Figure 22a). The seven SNPs with co-inherited alleles were used as the first node, 
and could divide the datasets into two level 1 haplotypes; H1 and H2, with 
frequencies of ~85% and ~15%, respectively, in the EUR dataset. The other nodes 
were used to divide the H1 and H2 haplotypes into sub-haplotypes (Figure 22b). 

As all SNPs genotyped in the EMAS cohort were in linkage and belonged to node 
1, this haplotype level was the only one that this dataset could be divided into (Table 
3). The MrOS dataset had been genotyped for the SNPs used for division into level 
2 and 3 haplotypes, but as the quality of imputation was too low (R2-quality quality 
metric < 0.3) the data for the SNPs rs2207040, rs2361634 and rs5031002 were 
excluded from the analyses, leaving MrOS available only for division into 
haplotypes H1 and H2, as well as subdivision of H2 into H2a and H2b (Table 3). 
The MDCS SNP data allowed for division into all level 2 haplotypes, while the TC 
and M datasets, which also included CAG and GGN-data, allowed for complete 
division into level 3 haplotypes. 
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Using these haplotypes, the linkage between AR-haplotype and CAG-repeat length 
could be investigated in the EMAS, TC and M cohorts and the linkage between AR-
haplotype and GGN-repeat length could be investigated in the TC and M cohorts. 

Thereafter, the association between the AR-haplotypes and risk of PCa was 
investigated in the EMAS, MDCS and MrOS cohorts and in EMAS, the association 
between AR-variants and serum PSA was also investigated. 

The haplotype frequency was also compared to the five super-populations of 1000 
genomes; AFR, Ad mixed American (AMR), EAS, EUR and South Asian (SAS), 
as the CAG-repeat length previously has been described to differ between 
populations, as has the PCa risk. 

Further on, in order to find a potential cause for the differences in PCa risk, the LD 
between the risk haplotype and other genetic variants located in exonic regions were 
investigated using SNAP and LDlink and the results were compared with results 
from studies regarding androgenetic alopecia, another androgen driven condition. 

Finally, using publicly available fold prediction software, RNAstructure, other 
potential causes for the differences were investigated.  

 

 

 

 

 

 

 

 

 Figure 22 a) Flowchart describing the division into level 1, level 2 and level 3 haplotypes,
and b) the haplotypes constructed in a European dataset based on the SNPs in the flowchart.
Minor alleles are represented by lighter background color. 

a 

b 
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Table 3. The number of subjects in each dataset successfully genotyped for each of the SNPs used to 
divide the men into haplotype carriers, as well as the haplotype level into which the men in each dataset 
could be divided into based on the genotyped SNPs. 

Node  EMAS MrOS MDCS TC M 

1  1797 (99.6)a 1120 (100.0)b 883 (100.0)b 379 (99.2)a 212 (99.1)a 

2 rs962458  1115 (99.6) 876 (99.2) 379 (99.2) 212 (99.1) 

3 rs2207040  c 874 (99.0) 378 (99.0) 213 (99.5) 

4 rs2361634  c  380 (99.5) 212 (99.1) 

5 rs5031002  c  380 (99.5) 212 (99.1) 

 CAG 1804 (100.0)   379 (99.2) 214 (100.0) 

 GGN    355 (92.9) 213 (99.5) 

Haplotype level 1 1 2 3 3 

a) rs1204038 b)rs6624304 c)Excluded due to low quality imputation 

Subjects without genotype information   

Testosterone studies 

In order to investigate the association between testosterone concentrations in 
younger men, and long term risk of PCa and all-cause mortality, all testosterone 
measurements performed at the Department of Clinical Chemistry, Skåne 
University Hospital Malmö, Sweden between November 23, 1987 and July 29, 1992 
were collected and using the personal identification number, the data was linked to 
the Swedish Cancer Registry, the Swedish Cause of Death Registry, and the 
Population Registry as of December 2013.  

Between 1987 and 1992, serum levels of total testosterone were measured using 
the same radioimmunoassay with within and between assay variations of 6% and 
9%, respectively243. 

In total, 10 540 testosterone measurements from 7 277 individuals were registered 
(Figure 23). All female patients (n=2 999) were excluded from the statistical 
analysis as were men who were diagnosed with PCa prior to their first registered 
testosterone measurement as it is likely that these men were under androgen 
suppressive therapy. In addition, all children and men younger than 20 years at the 
time of measurement were excluded since they were less likely to have completed 
pubertal development at the time of measuring. 
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Men who did not have a valid personal identification number or had disappeared 
from the population registry for unknown reasons were excluded, as were men 
who had had more than two testosterone measurements performed within two 
years, as there was high probability that those men were on androgen replacement 
therapy or had a chronic disease affecting their hormone levels. Finally, in order to 
assure that testosterone levels were not an effect of general morbidity, men who 
died within a year from their measurement were excluded resulting in a final 
dataset of n=3084 men with a mean and median age of 47 and 48 years, 
respectively (range: 20-87 years).  

 
Figure 23 Flowchart describing the inclusion process of the testosterone cohort 

As there is no consensus regarding the threshold for low and high testosterone, 
respectively, and as testosterone concentration is known to be negatively 
associated with age and the age-range in the dataset was large, age-normalized z-
score was used for stratifying the cohort into low, middle and high testosterone 
concentration.  

The first registered testosterone measurement in the database was used for the 
analyses. Twenty roughly equally sized groups were generated based on age and 
within each age group, the mean and standard deviation for testosterone was 
calculated. The age-normalized z-score was created by calculating the difference 
between the individual testosterone value and the mean testosterone concentration 
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within the specific age group to which the man belonged and then dividing this 
value by the standard deviation within the specific group.  

The distribution of testosterone by age and z-score category is presented in Figure 
25.  

 
As this dataset consisted of patients with unknown medical history, in order to 
estimate whether this cohort was roughly representative for the general age 
matched population, the dataset was compared with the reference values of the 
laboratory; (8-30 nmol/L for men <50 years and 5-30 nmol/L for men >50 years; 
http://www.analysportalen-labmedicin.skane.se/viewAnalys.asp?Nr=2423) under 
the assumption that these values represented the 5th and 95th percentile in a normal 
healthy population and the concordance between the low and high groups defined 
by the thresholds used at the Department of Clinical Chemistry and the 5% 
lowest and highest z-score groups in our cohort was 98% after exclusion 
(Figure 24). 

 
Figure 24 The proportion of men having testosterone concentrations in high, low and normal range 
based on the reference thresholds used at the Department of Clinical Chemistry at Skåne University 
Hospital before and after exclusion criteria were executed. 
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Figure 25 Testosterone concentration by age for each age-adjusted z-score category, as well as the 
men excluded from the analysis. 

Men with a registered PCa-diagnosis (ICD7: 177; ICD9: 185; ICD10: C61) were 
considered PCa-cases. For men who were deceased at the time of data requisition, 
the underlying cause of death was categorized based on the ICD9 and ICD10 
diagnoses. To gain power for the statistical analyses, general chapter categories, 
e.g. chapter IX: diseases of the circulatory system comprising all cardiovascular 
diseases (ICD9-codes 390-459 and ICD10-codes I00-I99 were used for the 
calculations regarding underlying cause of death in relation to testosterone.  
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Statistics 

Study I: The CAG length was trichotomized into groups of similar sizes containing 
short (≤20CAG, n=520), average (21-23CAG, n=592) and long (≥24CAG, n=575) 
alleles. The CAG-groups and the haplotype tagging SNP alleles were tested 
independently, but they were also combined into 6 groups, rs1204038G or 
rs1204038A combined with short, average or long CAG-groups. 

The difference in CAG repeat length for the two haplotypes was tested using the 
T-test, The association between ln-transformed PSA concentration and genotype 
was investigated using a  univariate linear regression model. All analyses 
regarding PSA included center as covariate, as the different centers measured PSA 
using different measuring methods. 

The risk of having PSA above clinically used thresholds for referring patients for 
urological examination, 3ng/mL or 4ng/mL, was analysed using logistic regression 
both with and without age as a covariate. 

Finally, using the information from the follow-up questionnaire, the ORs for ever 
having been diagnosed with PCa for different genotypes was calculated by means 
of logistic regression analysis with center and age as covariates. This was done to 
deduce if carriers of the variant with increased PSA levels were more prone to be 
diagnosed with PCa. Among the 2736 men with follow-up data available, 932 
were excluded due to lack of DNA for genetic analysis or lack of baseline PSA 
data.  

In order to test the robustness of the association between genotype and PSA levels 
in relation to previous risk of being diagnosed with PCa, thereby ensuring that the 
difference in PSA levels was not due to a larger number of men with PCa being 
excluded from one group, the analysis of the association between genotype and 
PSA was repeated for men younger than 50 years (n=440), since no men in this 
age span had been diagnosed with PCa.  

Study II: Logistic regression was used to calculate the OR and 95%CI for having 
PCa in relation to the rs6624304 genotype. All calculations were performed both 
with and without age-adjustment. In the MDCS study, calculations were done for 
the whole cohort as well as for those born in Sweden only.  
Only men alive in December 2013 were used in the calculations on PCa risk in the 
MrOS cohort. For this cohort, additionally, the genotype-related OR for dying 
during the period between study initiation and December 2013, was calculated. As 
cause of death was not available, to rule out that carriers of one haplotype had a 
more aggressive PCa than the other one, the number of days between PCa 
diagnosis and death was investigated using linear regression.In addition, for the 
included cases, tumor data (Gleason, PSA, Metastasis, Nodes, Tumor stage) at the 
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time of diagnosis for the two haplotypes was compared using Mann Whitney U-
test and Pearson’s chi-square test.  
Comparison of haplotype frequencies in the different cohorts to the European 
subpopulation from 1000 genomes was done using Fisher’s exact test. 
 

Study III and IV: Cox proportional hazards regression was performed to calculate 
the hazard ratio (HR) and 95% CI for PCa and all-cause mortality. For the 
deceased men, HR was also calculated for the cause of death-categories that had a 
frequency of >3%.  

Since, in the older age group, there is a higher probability that low testosterone 
levels might be caused by an underlying condition, the analyses for associations 
between testosterone levels and risk of, as well as cause of, mortality were also 
performed separately for men >50 years and men <50 years at measurement, 
respectively. For the calculations regarding PCa and mortality, the groups used 
were based on following z-score percentile intervals: 0-5%, 5-10%, 10-90%, 90-
95% and 95-100%. For the calculations of underlying cause of death the same 
groups were used, but as the number of cases in each cause of death was 
comparably low, to increase the statistical power tests were also performed with 
the z-score percentile intervals 0-10%, 10-90% and 90-100%.  

 

Study V: Logistic regression was used to calculate the OR and 95% CI for having 
PCa for each of the haplotypes, using the most prevalent haplotype as reference. 
To further investigate the extent of the  LD in the genomic region surrounding the 
AR, the web-based LDlink application 244 was used to identify SNPs with a high 
D’ (>0.95) both up and downstream of the AR.  

Thereafter, the genomic region with a high D’ value identified via LDlink was 
investigated more thoroughly using the human genome browser 245 to identify 
common SNPs in exons, promoters or UTRs of nearby genes. Haplotype data 
regarding these SNPs and the AR haplotype-tagging SNPs were then downloaded 
for the five different 1000 genomes superpopulations using LDlink. 

 

Statistical analyses were conducted using the SPSS v. 20-v.22 software (SPSS, 
Inc., Chicago).  
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Results and discussion 

Testosterone concentrations and risk of PCa 

In the investigation regarding serum testosterone and risk of PCa after 20-years, 
with the 10-90% group as the reference, no statistically significant difference in 
PCa occurrence was observed in any of the z-score groups (Table 4). However, 
while the 5-10% and 90-95% groups both had HRs for PCa similar to the 
reference, the highest and lowest 5% were consistently lower, although not 
statistically significantly so. High testosterone was not a risk factor for PCa. On 
the contrary, men with the 5% highest testosterone concentrations, as well as men 
with the 5% lowest concentrations, seemed to be at a slightly reduced risk 
compared to those in the middle group, although the difference did not reach 
statistical significance.  

These results were in accordance with a previous report by Muller et al. who in the 
placebo arm of the Reduction by Dutasteride of Prostate Cancer Events 
(REDUCE) trial found that testosterone levels were unrelated to PCa detection or 
grade after four years of follow-up193. However, in a secondary analysis in the 
same article of the data from the REDUCE trial, those with low baseline 
concentrations (<10nmol/L) had the lowest PCa risk, as had men with very high 
serum testosterone, although not statistically significantly so.  

Low testosterone is associated with reduced fertility, and in two large national 
registry-based studies on more than 50 000 men, using fertility as a proxy for 
androgenicity, childless men had a significantly reduced risk of PCa compared to 
men who had fathered a child246-248. In a subsequent population based nested case 
control study, infertile men were at 50% reduced risk for PCa compared to fertile 
men235, and a previous study found impaired Leydig cell function with lower 
testosterone concentrations in a larger proportion of infertile men compared to 
fertile men249. 
Taken together, it seems possible that men with particularly high or low testosterone 
levels could have slightly reduced PCa risk, but that the effect is too weak to detect 
even in a cohort of this size and even when two decades have passed between 
hormone measurement and PCa analysis. 
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Table 4 Testosterone concentrations and age, as well as the hazard ratio and 95% confidence intervals 
for prostate cancer for the different age normalized z-score groups. 
   

Testosterone Age  Prostate cancer 

  n (%) median (range) 
mean 
(SD) 

 
n (%) HR(95%CI) p HR(95%CI) padj 

Al
l a

ge
s 5% lowest 156 (5) 5.4 (0.5-8.7) 49 (16)  6 (4) 0.54 (0.24-1.23) 0.142 0.53 (0.23-1.19) 0.122 

6-10% lowest 153 (5) 9.0 (6.8-11.2) 47 (14)  12 (8) 0.98 (0.55-1.76) 0.958 1.03 (0.57-1.84) 0.931 
Middle 11-90 % 2466 (80) 17.1 (7.8-28.3) 47 (15)  189 (8) Ref Ref Ref Ref 
6-10% highest 156 (5) 28.2 (25.0-31.8) 49 (14)  12 (8) 1.05 (0.59-1.88) 0.874 1.01 (0.56-1.80) 0.984 
5% highest 153 (5) 33.9 (29.0-51.0) 47 (16)  8 (5) 0.70 (0.35-1.42) 0.324 0.68 (0.33-1.38) 0.282 

Ag
e 

<5
0 5% lowest 83 (5) 5.9 (0.7-8.7) 36 (9)  1 (1) 0.42 (0.06-3.03) 0.387 0.47 (0.07-3.43) 0.458 

6-10% lowest 87 (5) 9.0 (6.8-11.2) 37 (8)  4 (5) 1.43 (0.51-3.98) 0.495 1.19 (0.43-3.32) 0.740 
Middle 11-90 % 1358 (80) 17.6 (9.7-28.3) 35 (8)  44 (3) Ref Ref Ref Ref 
6-10% highest 73 (4) 29.0 (26.9-31.8) 36 (8)  0 (0) - - - - 
5% highest 86 (5) 34.3 (30.2-51.0) 36 (9)  1 (1) 0.37 (0.05-2.69) 0.326 0.33 (0.05-2.36) 0.266 

Ag
e 

>5
0 5% lowest 73 (5) 4.8 (0.5-8.3) 63 (8)  5 (7) 0.56 (0.23-1.36) 0.200 0.56 (0.23-1.35) 0.195 

6-10% lowest 66 (5) 8.8 (6.8-10.6) 60 (7)  8 (12) 0.83 (0.41-1.70) 0.614 0.90 (0.44-1.83) 0.767 
Middle 11-90 % 1108 (79) 16.6 (7.8-26.9) 62 (8)  145 (13) Ref Ref Ref Ref 
6-10% highest 83 (6) 27.6 (25.0-30.3) 61 (7)  12 (14) 1.15 (0.64-2.07) 0.650 1.22 (0.67-2.19) 0.517 
5% highest 67 (5) 32.2 (29-0-47.9) 62 (8)  7 (10) 0.85 (0.40-1.81) 0.668 0.82 (0.38-1.75) 0.602 

Adj) adjusted for age 

Testosterone concentrations and risk of mortality 

Testosterone concentrations and risk of all-cause mortality 
The risk of all-cause mortality was significantly higher for men in the 0-5% group ( 

Table 5). However, when the men were divided into younger and older than 50 
years of age, the significant difference was seen only in younger men with the 5% 
lowest testosterone, no difference was seen in older men. 

This finding is in accordance with several previous studies, reviewed in250. The 
results however, indicates that this increased risk was restricted to younger men, 
which suggests that low testosterone might be the cause of increased mortality rather 
than a consequence of a concomitant life-threating disease.   

Testosterone concentrations and risk of mortality: chapter categories 
Out of the 14 cause of death chapter categories present in the database, six 
occurred with a frequency above 3%, the most frequent being chapter IX; diseases 
of the circulatory system, to which n=475 (40%) of the underlying cause of deaths 
belonged (Table 5). No significantly increased risks were found for the two 
groups of men with low testosterone when all deceased men were analyzed. 
However, when divided into two groups, <50 and >50 years at time of testosterone 



RR E S U L T S  A N D  D I S C U S S I O N  

58 

measurement, the younger men in the 6-10% group had a statistically significantly 
increased risk of chapter IX; diseases of the circulatory system. 

Using the 10% lowest and highest groups, no statistically significant differences 
were detected when all men were analyzed, but when split into older and younger 
men, a statistically significantly increased risk was detected for chapter IX; 
diseases of the circulatory system in the younger men from the 10% lowest group. 

While the dataset consisted of testosterone measurements ordained by a medical 
professional, it is likely that the results from this study would not be representable 
for a normal population without the strict inclusion criteria. As is seen in Figure 
24, a large part of the initial cohort consisted of men with testosterone levels 
below the clinical criteria for normal concentrations. As a decrease in testosterone 
concentrations can be a consequence of medication or severe illness, the exclusion 
of all men dead within a year and men with a previous PCa-diagnosis made the 
cohort more comparable to a general population. Additionally, even though the 
younger men with low testosterone concentrations had a larger proportion of 
mortality, the age at death and the time between testosterone measurement and 
death was similar in this group when compared to the other groups, indicating that 
severe illness at the time of testosterone measurement is not the underlying cause 
of the increased proportion of deaths (Figure 26). 

Together, the results from the testosterone study indicate that although androgen 
replacement therapy could push men in the lowest testosterone range into a PCa 
risk similar to those seen in normal men, many low testosterone associated deaths 
could be avoided251. 

 
Figure 26. Average age at death  with standard deviations for each z-score group for older (Age > 50 
at testosterone measurement) and younger (Age < 50 at testosterone measurement), as well as 
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average time between testosterone measurement and death date with standard deviations for each age 
and z-score group. 

Table 5. Hazard ratios and 95% confidence intervals for all-cause mortality and the ICD chapter IX: 
Diseases of the circulatory system for the men in the different z-score groups 

  
      Age normalized Z-score group 
    Total Lowest 5 Lowest 6-10 Lowest 10 Middle Highest 10 Highest 6-10 Highest 5 

Al
l-c

au
se

 m
or

ta
lit

y 

Al
l a

ge
s 

Deceased, 
n(%) 1200 (39) 76 (49) 59 (39) 135 (44) 937 (38) 128 (41) 64 (41) 64 (42) 

HR (95% CI)  1.41 (1.11-
1.78) 

0.94 (0.73-
1.23) 

1.16 (0.87-
1.39) ref 1.14 (0.95-

1.37) 
1.11 (0.86-
1.44) 

1.17 (0.91-
1.50) 

p  0.004* 0.667 0.112 ref 0.167 0.406 0.234 

HR (95% CI)  1.39 (1.10-
1.75) 

0.98 (0.75-
1.27) 

1.17 (0.98-
1.41) ref 1.09 (0.91-

1.31) 
1.06 (0.82-
1.37) 

1.13 (0.88-
1.45) 

pa  0.006* 0.875 0.084 ref 0.354 0.663 0.355 

Ag
e 

<5
0 

Deceased, 
n(%) 243 (14) 22 (27) 17 (20) 39 (23) 182 (13) 22 (14) 9 (12) 13 (15) 

HR (95% CI)  2.22 (1.43-
3.46) 

1.42 (0.86-
2.33) 

1.78 (1.26-
2.52) ref 1.06 (0.68-

1.65) 
0.91 (0.47-
1.78) 

1.19 (0.68-
2.09) 

p  <0.001* 0.169 0.001* ref 0.803 0.783 0.540 

HR (95% CI)  2.31 (1.48-
3.60) 

1.27 (0.77-
2.10) 

1.71 (1.21-
2.41) ref 1.04 (0.67-

1.62) 
0.92 (0.47-
1.80) 

1.14 (0.65-
2.01) 

pa  <0.001* 0.343 0.003* ref 0.860 0.813 0.643 

Ag
e 

>5
0 

Deceased, 
n(%) 957 (69) 54 (74) 42 (64) 96 (69) 755 (68) 106 (71) 55 (66) 51 (76) 

HR (95% CI)  1.19 (0.90-
1.57) 

0.80 (0.59-
1.10) 

0.98 (0.79-
1.22) ref 1.10 (0.90-

1.35) 
0.99 (0.76-
1.31) 

1.26 (0.95-
1.67) 

p  0.225 0.171 0.983 ref 0.340 0.962 0.117 

HR (95% CI)  1.19 (0.90-
1.57) 

0.91 (0.67-
1.25) 

1.05 (0.85-
1.30) ref 1.10 (0.90-

1.35) 
1.09 (0.83-
1.44) 

1.12 (0.84-
1.48) 

pa  0.219 0.562 0.653 ref 0.347 0.539 0.446 

Ch
ap

te
r I

X:
 D

ise
as

es
 o

f t
he

 ci
rc

ul
at

or
y 

sy
st

em
b  

Al
l a

ge
s 

Yes, n (%) 475 (40) 31 (41) 24 (41) 55 (41) 372 (40) 48 (38) 26 (41) 22 (34) 
No, n (%) 725 (60) 45 (59) 35 (59) 80 (59) 565 (60) 80 (62) 38 (59) 42 (66) 

HR (95% CI)   1.12 (0.77-
1.61) 

0.82 (0.54-
1.24) 

0.97 (0.73-
1.28) ref 1.11 (0.82-

1.50) 
1.23 (0.82-
1.83) 

1.00 (0.65-
1.54) 

p   0.557 0.351 0.805 ref 0.490 0.318 0.988 

HR (95% CI)   1.21 (0.84-
1.75) 

0.90 (0.59-
1.36) 

1.05 (0.79-
1.40) ref 1.13 (0.84-

1.53) 
1.24 (0.83-
1.85) 

1.03 (0.67-
1.58) 

pa   0.307 0.607 0.735 ref 0.417 0.291 0.895 

Ag
e 

<5
0 

Yes, n (%) 53 (22) 6 (27) 8 (47) 14 (36) 35 (19) 4 (18) 2 (22) 2 (15) 
No, n (%) 189 (78) 16 (73) 9 (53) 25 (94) 146 (81) 18 (82)  7 (78) 11 (85) 

HR (95% CI)   1.94 (0.81-
4.64) 

2.52 (1.16-
5.47) 

2.23 (1.19-
4.19) ref 1.45 (0.51 

(4.13) 
1.73 (0.41-
7.30) 

1.24 (0.30-
5.21) 

p   0.138 0.020* 0.012* ref 0.491 0.453 0.769 

HR (95% CI)   2.03 (0.84-
4.89) 

2.49 (1.15-
5.42) 

2.27 (1.21-
4.27) ref 1.41 (0.49-

4.02) 
1.61 (0.38-
6.83) 

1.25 (0.30-
5.26) 

pa   0.144 0.021* 0.011* ref 0.522 0.517 0.757 

Ag
e 

>5
0 

Yes, n (%) 422 (44) 25 (46) 16 (38) 41 (43) 337 (45) 44 (42) 24 (44) 20 (39) 
No, n (%) 536 (56) 29 (54) 26 (62) 55 (57) 419 (55) 62 (58) 31 (56) 31 (61) 

HR (95% CI)   1.09 (0.72-
1.63) 

0.64 (0.39-
1.06) 

0.86 (0.62-
1.19) ref 1.04 (0.76-

1.43) 
1.11 (0.73-
1.69) 

0.97 (0.62-
1.53) 

p   0.693 0.084 0.347 ref 0.790 0.614 0.902 

HR (95% CI)   1.11 (0.74-
1.67) 

0.69 (0.42-
1.15) 

0.90 (0.65-
1.25) ref 1.12 (0.82-

1.53) 
1.23 (0.81-
1.86) 

1.01 (0.65-
1.59) 

pa   0.622 0.155 0.521 ref 0.486 0.340 0.952 
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Androgen receptor haplotypes 

Frequencies in European populations 
When the haplotype frequencies in TC+M were compared to the frequencies in the 
EUR subset of 1000 genomes to ensure that the frequencies were representable of a 
European cohort, the frequencies were similar (Figure 27). However, a slightly 
higher proportion of the H2b haplotype was present in the TC+M cohort. 

Frequencies in world populations 
The largest difference in haplotype proportion was between the EAS and the AFR 
populations, where the EAS population almost exclusively presented with the H1a1 
haplotype to only 5% of the AFR population.  

Haplotypes and CAG/GGN repeat lengths 
The CAG and GGN repeat lengths in the TC+M cohort can be seen in Figure 28a, 
and Figure 29a, respectively.  

A significant difference in CAG-repeat lengths was observed between the H1 and 
H2 haplotype in the EMAS cohort, and the same was observed in the TC+M cohort 
where the H1 and H2 haplotypes had an average CAG of 22.2 and 20.1, respectively 
(Table 6, Figure 28b). Additionally, GGN-length differed with 85% of the H2-
carriers having 24 repeats and 64% of the H1-carriers having 23 repeats (Table 6, 
Figure 29a-f). When the haplotypes were divided further into level 3 haplotypes, 
the CAG-allele spread in the H1 sub-haplotypes was large, with the H1b-haplotypes 
standing out with 63% of the H1b2 haplotype carriers presenting with 18 CAG-
repeats and the H1b1 haplotype having its mode at 24 CAG-repeats (Table 6, 
Figure 28c, e &f). The same bimodal CAG distribution seen in the EMAS cohort 
was observed in the TC+M. 

The H2-haplotypes were not as variable but the two allele peaks seen in Figure 28b 
were found to represent the two sub-haplotypes as 70% of H2a haplotype carriers 
had 21 CAG repeats and 46% of H2b carriers had 18 CAG repeats (Table 6, Figure 
28d). As association studies regarding repeat variants in the AR are conducted with 
long alleles being compared to short alleles in order to gain statistical power, and 
the repeat cut-offs differ between studies it is possible that adding the haplotype 
tagging SNPs into the study could add more statistical power, and also reveal certain 
sub-groups with an increased risk, as for instance the GGN24-allele consists of 
~50% of H1 and ~50% H2, and the H2-alleles differ in their CAG-repeat lengths.  
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Table 6. The average CAG and GGN repeat length, as well as the most common allele (mode)  for all 
haplotypes in the TC+M cohort. 

Haplotype level  CAG  GGN 
1 2 3 

 
Genotyped 

n (%) 
Average 

(SD) 
Mode 
(n; %)  

Genotyped 
n (%) 

Average 
(SD) 

Mode 
(n; %) 

H1 
   

479 (99) 22.2 (3.0) 21 (70; 15) 
 

456 (95) 22.7 (2.2) 23 (291;64)  
H1a 

  
459(99) 22.3 (3.0) 21 (9; 15) 

 
437 (95) 22.6 (2.3) 23 (272; 62)   

H1a1 
 

415 (99) 22.2 (2.9) 20 (60; 14) 
 

395 (94) 22.8 (1.7) 23 (241; 61)   
H1a2 

 
30 (100) 23.1 (3.3) 21 (9; 30) 

 
29 (97) 20.9 (5.5) 23 (22; 76)   

H1a3 
 

14 (100) 23.2 (3.1) 21 (6; 43) 
 

13 (93) 21.5 (3.0) 23 (9; 69)  
H1b 

  
20(100) 21.2 (3.6) 18 (5; 25) 

 
19 (95) 23.0 (0.0) 23 (19; 100)   

H1b1 
 

12 (100) 23.8 (1.6) 24 (4; 33) 
 

11 (92) 23.0 (0.0) 23 (11; 100)   
H1b2 

 
8 (100) 17.1 (1.3) 18 (5; 63) 

 
8 (100) 23.0 (0.0) 23 (8; 100) 

H2 
   

101 (100) 20.1 (2.1) 21 (34; 34) 
 

99 (98) 23.7 (1.3) 24 (84; 85)  
H2a 

  
47(100) 21.4 (1.7) 21 (33; 70) 

 
46 (98) 23.6 (1.5) 24 (39; 85)  

H2b 
  

54(100) 19.0 (1.7) 18 (25; 46) 
 

53 (98) 23.7 (1.0) 24 (45; 85) 

 

 

 

AFR AMR EAS SAS TC+M EUR
H2B 65% 8% 0% 5% 9% 6%
H2A 30% 8% 0% 4% 8% 8%
H1B2 0% 0% 0% 0% 1% 2%
H1B1 0% 1% 0% 1% 2% 2%
H1A3 0% 1% 0% 0% 2% 3%
H1A2 0% 1% 0% 1% 5% 5%
H1A1 5% 80% 100% 82% 72% 73%
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Figure 27 Haplotype proportion in each superpopulation of 1000 genomes as well as in the TC+M
dataset. Haplotypes were constructed based on the SNPs rs962458, rs2207040, rs1204038,
rs2361634 and rs5031002. 



RR E S U L T S  A N D  D I S C U S S I O N  

62 

 

 

Figure 28 CAG repeat allele frequency distribution in a) All men, b) the H1 and H2 haplotypes, c) all 
haplotypes. Furthermore, the distribution in d) the two H2 haplotypes e) all the level 3 H1 haplotypes and 
f) in all level 3 H1 haplotypes excluding the most common H1a1. 
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Figure 29 GGN repeat allele frequency distribution in a) All men, b) the H1 and H2 haplotypes, c) all 
haplotypes. Furthermore, the distribution in d) the two H2 haplotypes e) all the level 3 H1 haplotypes 
and f) in all level 3 H1 haplotypes excluding the most common H1a1. 
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AR-haplotypes, CAG and serum PSA concentrations 
The transcription of PSA is androgen regulated and in study I the PSA concentration 
in men without PCa was tested against CAG-repeat length and against haplotype.  

Regarding CAG and PSA no statistically significant differences were observed but 
when the H2 haplotype was tested against the H2 haplotype, the A-allele had 14% 
higher PSA concentrations (p=0.045 with outliers included and p=0.007 with 
outliers removed, both adjusted for center). The proportion of H2 and H1 carriers 
with PSA >3 ng/ml was 14% and 9%, respectively, and the proportion of H2 and 
H1 carriers with PSA >4 ng/ml was 9% and 5%, respectively (Table 7). 

 
Table 7 Odds ratio and 95% confidence intervals for PSA above clinically utilized thresholds for 
carriers of H2 with H1 carriers as reference. 

 PSA<3 ng/ml 

n (%) 

PSA>3 ng/ml 

n (%) 

OR (95%CI) p PSA<4 ng/ml 

n (%) 

PSA>4 ng/ml 

n (%) 

OR (95%CI) p 

H1 1309 (91) 128 (9) ref ref 1371 (95) 66 (5) ref ref 

H2 234 (86) 38 (14) 1.69 (1.13-2.52) 0.011 248 (91) 24 (9) 1.99 (1.21-3.29) 0.007 

All analyses adjusted for age at first visit and center with outliers excluded. 

 

Studies regarding AR haplotype and PSA concentration in men without PCa are 
few, but in association studies regarding CAG-repeat length and PSA 
concentrations, shorter CAG-repeat lengths have been found to be associated with 
high serum PSA in older men252 and with higher seminal PSA in younger men253. 
Since the H2-haplotype more often have short CAG-alleles it is possible that the 
correlation between PSA and CAG is capturing the same population as the H2 
haplotype in our studies and that we would have seen the same correlation had more 
men been elderly in the EMAS cohort. 

Another study in elderly men without PCa, but with urinary tract symptoms did not 
find an association between CAG and PSA254. 

Interestingly, another study of men without histologic evidence of PCa but with PSA 
above 4 ng/mL, African American men had significantly higher PSA levels when 
compared with White men255, and the H2 allele is the most common haplotype in 
African and African American populations. 

However, more longitudinal studies regarding PSA concentration in men and AR 
variants are needed, as it could be a valuable tool for adjustment in PSA screening, 
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AR-haplotypes and PCa risk 
In study I the association between AR-haplotype and PCa-risk was also tested, and 
to some surprise, the H2 variant that presented with higher PSA had a lower risk of 
PCa. In a follow up study regarding PCa risk and haplotype, the same association 
was statistically significant in the MDCD dataset, but not in the MrOS dataset, 
possibly due to the smaller number of PCa cases in this cohort. However, the 
tendency in the MrOS dataset was the same and when the two datasets were pooled 
the results showed a statistically significant risk reduction for the H2-haplotype 
(Table 8, Figure 30). 
 
In the MrOS and MDCS datasets additional SNPs had been genotyped, allowing for 
sub-group analyses. As the CAG-repeat length differs between the two H2 
haplotypes a difference in risk reduction could be possible. However, while both H2 
haplotypes displayed the same tendency towards decreased PCa risk, the results 
were not statistically significant in MDCS or MrOS alone, or when the two datasets 
were pooled (Table 8, Figure 30). 
 
In addition, as all three datasets (EMAS, MDCS and MrOS) had level 1 haplotype 
information, all three datasets could be pooled, allowing for the PCa risk in the H2 
haplotype to be approximated to an OR (95%CI) of 0.70 (0.54-0.91), with a p-value 
of 0.007, based on a cohort of n=689 PCa cases and n=3214 men without PCa.  
 
A limitation to the PCa association is that only men alive at inclusion were used, 
introducing a risk of survivor bias to the results. It is possible that carriers of the H2-
haplotype are more likely to suffer from more aggressive PCa with an earlier age-
of-onset. While we did not find a difference in the cancer staging of the PCa patients, 
the reported data was not sufficient to carry out dependable statistical analysis.  
The haplotype proportion in the datasets did not differ between our datasets and the 
EUR dataset of 1000 genomes, and in the MrOS-dataset, we could not see a 
genotype difference between the men who had died and the ones left in the study. 
However, we did not have cause of death for the deceased men and it is possible 
that a larger proportion of the deaths would be PCa in one of the haplotype carriers.  
 
Based on our results, with the reservation that more longitudinal studies have to be 
performed taking into account information regarding for instance medication, 
smoking and drinking habits and diet, the 15% of European men who are carriers 
of the H2 haplotype appear to have a reduced risk of being diagnosed with PCa, 
but at the same time are more likely to present with a PSA above clinically utilized 
thresholds for the suspicion of PCa, and it is possible that the genotype 
information should be taken into account when PSA is being tested. 
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Table 8 OR and 95% CI for PCa in carriers of the H2-haplotypes in each individual cohort, as well as 
the pooled cohorts where possible 

       Haplotype   
      H1 H2 H2a H2b   
       Case Control Case Control Case Control Case Control   
  

EM
AS

 

n (%)  57 (4) 1459 (96) 3 (1) 278 (99)           
  OR (95%CI)  ref 0.28 (0.09-0.89)           
  p  ref 0.031*           
  Age Mean (sd)  68 (8) 59 (11) 79 (7) 59 (11)           
  OR (95%CI)

adj
  ref 0.27 (0.08-0.88)           

  p
adj

  ref 0.030*           
  

M
DC

S 

n (%)  400 (54) 347 (46) 58 (43) 78 (57) 30 (43) 39 (57) 28 (42) 38 (58)   
  OR (95%CI)  ref 0.65 (0.45-0.93) 0.67 (0.41-1.10) 0.64 (0.38-1.06)   
  p  ref 0.020* 0.111 0.085   
  Age Mean (sd)  74 (6) 74 (6) 74 (6) 73 (6) 75 (5) 72 (6) 73 (6) 73 (6)   
  OR (95%CI)

adj
  ref 0.65 (0.45-0.94) 0.67 (0.41-1.10) 0.64 (0.39-1.07)   

  p
adj

  ref 0.021* 0.113 0.087   

Da
ta

se
t  

M
rO

S 

n (%)  150 (16) 801 (84) 21 (12) 148 (88) 9 (10) 78 (90) 12 (15) 67 (85)   
OR (95%CI)  ref 0.76 (0.47-1.24) 0.62 (0.30-1.26) 0.96 (0.51-1.81)   

p  ref 0.226 0.182 0.891   
Age Mean (sd)  74 (3) 74 (3) 73 (3) 75 (3) 72 (3) 75 (3) 73 (3) 74 (3)   

OR (95%CI)
adj

  ref 0.76 (0.47-1.24) 0.62 (0.30-1.26) 0.95 (0.50-1.81)   
p

adj
  ref 0.275 0.189 0.884   

  

M
er

ge
d 

(a
ll)

 

n (%)  607 (19) 2607 (81) 82 (14) 504 (86)           
  OR (95%CI)  ref 0.70 (0.54-0.90)           
  p  ref 0.005*           
  Age Mean (sd)  74 (6) 66 (11) 74 (5) 66 (11)           
  OR (95%CI)

adj
  ref 0.70 (0.54-0.91)           

  p
adj

  ref 0.007*           
  

M
er

ge
d 

(M
rO

S 
&

 
M

DC
S)

 

n (%)  550 (32) 1148 (68)     39 (25) 117 (75) 40 (28) 105 (72)   
  OR (95%CI)  ref     0.70 (0.48-1.01) 0.80 (0.55-1.16)   
  p  ref     0.059 0.235   
  Age Mean (sd)  74 (5) 74 (4)     75 (5) 74 (5) 73 (5) 74 (5)   
  OR (95%CI)

adj
  ref     0.70 (0.48-1.01) 0.79 (0.54-1.16)   

  p
adj

  ref     0.058 0.229   
 Adj) Adjusted for age 
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Figure 30. OR (95%CI) for PCa before (in pink) and after (in green) adjustment for age for the H2 
haplotype in each dataset alone, as well as the combined datasets where division into the different
subhaplotypes was possible after combination (for subanalysis of the H2a and H2b-haplotypes, the
EMAS dataset was not included).  
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Potential causes for haplotype risk differences 

The AR haplotypes identified in this thesis contains a combination of intronic and a 
synonymous SNP and would therefore not alter the amino acid sequence of the 
protein. However, other factors could still be at work. 

As the SNP haplotypes appear to be linked to differences in CAG and GGN-repeat 
length, it is possible that the risk associations are due to specific combinations of 
repeat lengths.   

mRNA stability 
The CAG-repeat has been found to form a semi-stable hairpin in the AR mRNA, 
which is further stabilized by its flanking regions140. The difference in free energy 
changes depending on whether the CAG-repeat is an even or un-even number as the 
hairpin loop of the AR mRNA will consist of four or seven nucleotides in uneven 
and even repeats, respectively141,142. Additionally, each increment will  grow the 
hairpin formation longer, which increases the stability of the GC-rich hairpin, and 
could affect for instance the translational speed and efficiency, but also the 
interaction between RNA-binding proteins and the mRNA140. In a study by Ding et. 
al., the calculated free energy for the GGN repeat was investigated, as they found 
that GGN length was inversely correlated with protein amount, and found that 
longer GGN repeats had a lower negative free energy that shorter GGN repeats144. 

Using the RNA-fold predictor software RNAstructure256, the combined effect of 
rs6152, CAG and GGN-repeat length could be tested (Figure 31) and both an 
increased number of CAG-repeats and GGN-repeats lowered the negative free 
energy, meaning they increased the mRNA stability. I addition, the presence of the 
rs6152 G allele, present in the H1 haplotype further increased the stability. 

As the most common combination of alleles were for H1; rs6152G, GGN23 and 
CAG24, or CAG21, and for H2; rs6152A, GGN24 and CAG21, the combinatory 
effect of these variants was tested specifically (Figure 32). This experiment 
suggested that the A-allele would be less stable in all combinations, except for when 
combined with long CAG and long GGN, where instead the G-allele in combination 
with short CAG and short GGN was slightly less stable. The stability of mRNA and 
its effect on protein translation is a fairly recent research area, and one of the factors 
thought to influence the stability is codon optimization257, where two codons, 
although they are translated into the same amino acid, appear to have effect on the 
translation efficiency. These synonymous variants were previously considered 
inconsequential but studies on for instance synonymous variants in the dopamine 
receptor258, psoriasis susceptibility variants259, and the combinatory effect of 
synonymous and non-synonymous variants in the COMT-gene260 have opened up 
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new possibilities to understand the dynamics of mRNA-folding and protein 
translation261. 

Therefore, it seems possible that the synonymous variant rs6152 could affect mRNA 
stability and thereby AR protein concentrations in the cells. However, as the mRNA 
stability is calculated in silico, in vitro experiments are needed to confirm the results. 

Figure 31 The calculated negative free energy for different CAG- and GGN-repeat lengths and the rs6152
SNP. Both longer CAG- and GGN repeats appears to increase the stability of the mRNA, as do the G-allele
of rs6152. Yellow indicates lower mRNA stability and purple indicates higher mRNA stability. 

Figure 32 The combinatory effect of the most common CAG-repeat lengths, the most common GGN-
repeat lengths and the two rs6152 variants. Each line shows the decrease in negative free energy sorted 
in order on one of the variants followed by a second and then third variant. The leftmost is for instance 
sorted first by CAG-repeat length, then by the SNP allele and then by GGN-repeat. 
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Linkage to genes further upstream and downstream 
The genomic location where the AR resides has been suggested to have experienced 
an accelerated genetic drift after the human dispersal out of Africa67,68, with a large 
number of derived allelic variants in the chromosomal region in European and Asian 
populations69. As the linkage distribution is somewhat high across the region, with 
several SNPs located upstreams and downstreams of the AR having high D’, exonic 
SNPs in the genes surrounding AR were investigated in relation to the AR-
haplotypes in the EUR superpopulation of 1000 genomes. 

The upstream genes are HEPH, encoding for hephaestin, a copper dependent 
ferroxidase involved in the absorption of iron by the small intestines262 and EDA2R, 
encoding for ectodysplasin A2 receptor, which bind the EDA-A2 isoform of 
transcripts of the anhidrotic ectodermal dysplasia (EDA) gene, involved in the 
development of skin, hair and teeth. This gene together with the EDAR gene were 
found to have undergone a recent natural selection in Asia68. The OPHN1 gene 
located downstream of the AR, encodes oligophrenin-1, which stimulates GTP 
hydrolysis of members of the Rho family. The frequency of the major allele of 
exonic SNPs were found to differ between the different haplotypes (Figure 33). 

The EDA2R SNP rs1385699C>T (R57K) which has been suggested to be the main 
driver of the positive selection seen in the chromosomal region69 is found at a lower 
frequency in carriers of the H2a, H2b and H1a3 haplotypes. Although a direct 
association to PCa is not evident in these genes, further studies into the genomic 
location might reveal clues to why the H2 haplotype is associated with a reduced 
risk of PCa. 

 

Figure 33 The major allele frequency of exonic SNPs in genes located near the AR gene divided by 
each haplotype.   
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Populärvetenskaplig sammanfattning 

Prostatacancer är den vanligaste cancertypen hos män i Sverige, och ungefär var 
åttonde man diagnosticeras med sjukdomen innan sin 75-årsdag. Efter Charles B. 
Huggins nobelprisbelönade upptäckt att kastration, som markant sänker mängden 
testosteron i  kroppen, kan förhindra prostatacancerns tillväxt har testosteron 
räknats som en bidragande faktor till cancerns bildande.  

Testosteron, och en testosteronvariant som bildas i vissa delar av kroppen, 5-
alfadihydrotestosteron (DHT), fungerar genom att koppla sig samman med 
androgenreceptorn (AR), som aktiveras av testosteronet och därefter slår igång 
processer som ger de egenskaper som vi oftast förknippar med testosteron, 
exempelvis skäggväxt, ökad muskelmassa, sexualdrift och mörkare röst.  

Prostatan är en testosteronberoende körtel som tillverkar och utsöndrar 
prostatasekret som blandas med sädescellerna vid utlösning. Det innehåller flera 
viktiga beståndsdelar, bland annat enzymet prostataspecifikt antigen (PSA), som 
bidrar till att spermierna lättare kan nå kvinnans ägg. 

Ofta förknippas PSA med PSA-testet, det blodprov som läkare tar när de 
misstänker prostatacancer. Vanligtvis finns bara väldigt låga nivåer av PSA i 
blodet men vissa prostatasjukdomar, däribland prostatacancer, kan göra så att PSA 
sipprar ut från prostatan och ökar koncentrationen av PSA i blodet. En hög PSA-
koncentration i blodet kan alltså ibland vara ett tecken på prostatacancer, men 
tyvärr är inte testet perfekt. Många män diagnosticeras i onödan medan några 
mäns prostatacancer inte upptäcks förrän den har utvecklat metastaser och blivit så 
svårbehandlad att den ofta leder till döden. 

För att PSA ska bildas krävs det att testosteron eller DHT binder till AR så att den 
kan sätta igång produktionen av PSA. Många studier har dock visat att det finns 
skillnader i hur effektivt AR fungerar, beroende på genetiska varianter i AR-
genen. Dessutom har de olika genetiska varianterna i flera studier kopplats till 
olika risker för att utveckla prostatacancer, på samma sätt som olika 
testosteronnivåer har kopplats till prostatacancerrisk.  
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Trots att många studier gjorts i ämnet har forskare hittills inte kommit fram till 
något riktigt svar på om, och i så fall hur, testosteron och AR-varianter  påverkar 
prostatacancerrisken. 

För att vi skulle kunna se om testosteron i unga år påverkade den framtida risken 
för prostatacancer använde vi oss av de ca 4000 testosteronmätningar som gjordes 
på män av okänd anledning vid Skånes universitetssjukhus i Malmö mellan 1987 
och 1992. Efter att vi tagit bort de som vi misstänkte hade prostatacancer eller blev 
behandlade med testosteron hade vi 3000 män kvar, som vi matchade med cancer- 
och dödsorsaksdatabaser för att ta reda på om låga eller höga testosteronnivåer 
utgjorde en risk för prostatacancer. Vi hittade ingen ökad risk för 
prostatacancerdiagnos hos de män som hade extremt höga eller låga 
testosteronkoncentrationer efter att de följts i ungefär 25 år men vi hittade istället 
en ökad risk för dödsfall hos de män som var yngre än 50 år när de mätte sitt 
testosteron och som visat sig ha låga testosteronnivåer. 

Vi undersökte också genetiska varianter i AR hos ca 1800 Europeiska medelålders 
män som hade mätt sitt PSA. När vi tagit bort de män som hade haft 
prostatacancer ur beräkningen hittade vi där att risken att ha en PSA-koncentration 
som var högre än 4 ng/ml, ett gränsvärde som används kliniskt vid misstanke om 
prostatacancer, var dubbelt så hög hos de ca 15% av männen som hade ett A 
istället för ett G på plats 639 i den genetiska koden för AR, trots att de inte hade 
prostatacancer. Dessutom, när vi lade till ytterligare män, totalt 689 män med 
prostatacancer och 3214 män utan prostatacancer, såg vi att de män som hade ett A 
på plats 639 hade ungefär 40% lägre risk för prostatacancer. 

Eftersom de 15% av Europeiska män som har ett A på plats 639 i AR-genen 
verkar ha en lägre prostatacancerrisk men samtidigt en högre risk att ha PSA-
nivåer över kliniska gränsvärden så är det möjligt att de oftare blir upptäckta vid 
PSA-tester trots att de inte är sjuka. Samtidigt verkar män med G-varianten ha en 
ökad risk för prostatacancer men lägre PSA-nivåer vilket kan bidra till att deras 
cancer inte upptäcks i tid. Även om ytterligare studier krävs för att validera 
resultaten och undersöka orsaken bakom sambanden så är vår förhoppning att den 
genetiska varianten kan användas för att förbättra och precisera PSA-testet så att 
de män som behöver behandling upptäcks i tid. 

Samtidigt indikerar våra resultat att höga testosteronnivåer inte innebär någon 
ökad risk för prostatacancer, men att män med låga testosteronnivåer verkar löpa 
en ökad risk att avlida i förtid. Det innebär att läkare i framtiden bör vara mer 
uppmärksamma på symptom på lågt testosteron även hos yngre män för att 
förbättra livskvaliten men också livslängden hos dessa män. 
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