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Extending the Relay Feedback

Experiment

Kristian Soltesz ∗ Tore Hägglund ∗

∗ Department of Automatic Control, Lund University, Sweden; e-mail:
{kristian.soltesz, tore.hagglund}@control.lth.se

Abstract: An augmented version of the traditional relay feedback experiment is proposed. It
aims at producing an input with energy concentrated to a frequency band, corresponding to a
certain phase sector of the Nyquist curve of the process to be identified. A non-convex problem
is formulated. Sub-optimal, but efficient, algorithms are developed.

1. INTRODUCTION

1.1 The Role of the Input Spectrum

When performing frequency domain system identification,
it is well-known that higher spectral content (magnitude)
of a certain frequency in the input generally yields bet-
ter model accuracy of the obtained model around that
frequency. To motivate this, consider estimation of LTI
parameters θ = [b a L]T (a ∈ Rn, b ∈ Rn, L ∈ R+) of the
strictly proper continuous time transfer function process
model

P (s) =
B(s)

A(s)
e−Ls =

∑n
j=1 bjsn−j

sn +
∑n

i=1 aisn−i
e−Ls, (1)

from sampled input and output data u(kh), y(kh), k =
0, . . . , N − 1, where h is the sampling period. One identi-
fication method, presented in Soltesz et al. [2010], is the
minimization of the squared output error

J(θ̂) =
1

2

∫ tf

t0

(ŷ(t) − y(t))2dt, (2)

where y is the output of P generated by u while ŷ is
the corresponding output of the model P̂ . The sampled
equivalent of (2) is given by

Jh(θ̂) =
1

2

N−1
∑

j=0

(ŷ(kh) − y(kh))2. (3)

By Parseval’s theorem, applied to the DFT of ŷ− y, (3) is
equivalent to

Jh(θ̂) =
1

2

N−1
∑

j=0

|∆P (ωj)|
2|U(ωj)|

2, (4)

where ∆P (ω) = P̂ (iω) − P (iω), U is the N -point DFT of
u and ωj = 2π

Nh
j.

From (4) it can be readily seen that the cost component
associated with a certain frequency is proportional to the
input power of that frequency. It is therefore natural to
ask what input spectrum should be chosen and how to
synthesize the corresponding signal in the time domain.
⋆ This work was supported in part by PICLU, the Process Industrial
Centre at Lund University.

This paper addresses these questions in the context of
system identification for PID tuning.

1.2 Input Spectrum for PID Tuning

The herein described input signal generation is intended to
be the first link in a PID auto-tuning tool chain, outlined
in Fig. 1.

Input
generation

System
identification

Robust PID
tuning

Fig. 1. PID auto-tuning tool chain.

Fig. 2 shows the Nyquist curve of a low pass, time delayed,
process typical to process industry. The tuning of a PID
controller can be interpreted as moving points of the
process Nyquist curve by means of the P, I and D parts,
according to the labeled arrows in Fig. 2, cf. Åström and
Hägglund [2006].
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Fig. 2. Nyquist curve interpretation of robust PID tuning.

Conventional methods for robust PID tuning, such as
Hägglund and Åström [2002] and Garpinger and Hägglund
[2008], ensure robustness by keeping the open loop transfer
function outside a region surrounding −1. Avoiding the
interior of the circles in Fig. 2 ensures sensitivity ||S||∞ <
Ms and complementary sensitivity ||T ||∞ < Mt.

Both the I and D parts introduce 90◦ phase shifts (in
opposite directions). Hence it is desirable to have accurate
models in different frequency regions, depending on which
subclass of PID controller is synthesized. E.g., the model
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should be accurate around the negative real axis for P
controllers, in the third quadrant for PI controllers and
in the union of the second and third quadrant for PID
controllers.

In this paper we will focus on the PI case, which is the
industrially most common. The method can, however,
be used for any combination of P, I and D. Hence, we
seek an identification input with energy content concen-
trated to frequencies corresponding to the phase interval
(−180◦,−90◦) of the process to be identified.

1.3 The Use of Relay Feedback

In Åström et al. [1995], it is concluded that stable, well
damped LTI systems generally result in stable limit cycle
oscillations, under relay feedback. A complete analysis for
FOTD (first order plus time delay) systems is given in Lin
et al. [2004]. According to describing function analysis,
the fundamental harmonic of the oscillation occurs at the
frequency ω180, corresponding to the phase ϕ = −180◦

of the LTI system. This motivated the original relay
feedback tuning method, Åström and Hägglund [1984].
Fig. 3(a) shows the experimental setup, with process P
and nonlinearity N.L. Fig. 3(b) shows the input signal
ua,180, corresponding to 6 switches of the relay, with

P (s) =
1

(s + 1)(s + 2)
e−s. (5)

The corresponding power spectrum, plotted against the
phase frequencies of (5) is shown in Fig. 3(c). The vertical
lines mark the frequencies corresponding to ϕ = −180◦

and ϕ = −90◦.

N.L. P

(a) Experimental setup.
0 15.9

0

(b) Input signal ua,180 over time
[s].

0
0-90-180-360

(c) Input power spectrum |Ua,180|2 over process
phase ϕ [◦].

Fig. 3. Traditional relay experiment and corresponding
input power spectrum.

As expected, energy is concentrated around ϕ = −180◦,
rather than distributed over (−180◦,−90◦), which would
be desirable.

By introducing an integrator in the loop, the oscillation
frequency is shifted to ϕ = −90◦, ω90. Fig. 4 shows a
nonlinearity described in Friman and Waller [1997], with
describing function

N(a) =
4hp

πa
−

4hi

πa
i, (6)

corresponding to limit cycle oscillations at

ϕ = arctan
(

hi

hp

)

. (7)

It may be used to shift the energy peak, but does not
address the issue of energy distribution over a frequency
interval.

Fig. 4. Two channel relay (Simulink implementation).

2. PROBLEM FORMULATION AND APPROACH

We will now present the input design problem and investi-
gate some approaches. The notation, used throughout the
remainder of the paper, is introduced below.

2.1 Notation

Denote by U
∆
= Fu the DFT of u and by

Uj , j ∈ [0, . . . , N −1] its jth component. The DFT matrix
F is defined through

Fk,l = ωkl, ω = e
−2πi

N . (8)
Let

ωj =
2π

Nh
j, aj = |Uj |, Pj = |Uj |

2, φj = ∠Uj (9)

be the corresponding angular frequency, amplitude, power
and phase respectively.

The sample operator associated with sample period h is

Xh(t) =
∞
∑

k=−∞

δ(t − kh). (10)

2.2 Two Stage Experiment

The aim is to obtain a power spectrum similar to that
of Fig. 5 by extending the experiment of Fig. 3(a), while
keeping experiment duration short and input power low.

0
0-90-180-360

Fig. 5. Reference input power spectrum Q over process
phase ϕ [◦].

A first step in this direction is obtained by conducting a
two stage experiment, using the two channel relay. Stage
one, yielding ua,180, shown in Fig. 3(b), consists in 6
switches with hp = 1, hi = 0 (ϕ = −180◦). Stage two,
yielding ua,90, consists in 4 switches with hp = 0, hi = 1
(ϕ = −90◦) and is shown together with ua,180 in Fig. 6(a).
The number of switches were empirically decided, based
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on experiments with P , commonly occurring in process
industry and listed in Hägglund and Åström [2002]. In
order to find the peak frequencies, the two sequences are
individually normalized with respect to energy, forming

u′
a =

[

ua,180

uT
a,180ua,180

ua,90

uT
a,90ua,90

]T

. (11)

The power spectrum |U ′
a|

2 is shown in Fig. 6(b). Two

0 15.9 31.8

0

(a) Input signal ua over time [s].

0
0-90-180-360

(b) Power spectrum |U ′

a|
2 over process phase ϕ

[◦].

Fig. 6. Two stage relay experiment and corresponding
(modified) input power spectrum.

distinct peaks lie close to the frequencies corresponding
to the desired phase angles. Experiments show that this
is generally true for FOTD and SOTD (second order
plus time delay) processes, which is indicated by results
presented later in the paper.

The final stage consists in augmenting the experiment in
order to obtain a magnitude spectrum similar to that of
Fig. 5.

2.3 General Signal Augmentation Problem

An initial experiment has provided a zero order hold
input sequence ua = [uT

a,180 uT
a,90]

T with sample period
h and length Na, as shown in Fig. 6(a). Using the power
spectrum |U ′

A|
2, the desired power spectrum Q, shown in

Fig. 5, can be determined and approached by augmenting
ua with ub, forming

u =

[

ua

ub

]

. (12)

Assuming fixed length Nb of ub, we can formulate the
synthesis problem

min
ub

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
Q − diag

(

F

[

ua

ub

] [

ua

ub

]T

F ∗

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
R

︸ ︷︷ ︸

J(u)

, (13)

where R is some vector norm. It is also natural to impose
||ub||∞ ≤ ||ua||∞. (14)

The problem, given by (13) is generally not convex in ub,
which can be deduced from e.g. the setup Na = 0, Nb =
2, ub = [ u1 u2 ]

T
, Q = 0 and R = 2 resulting in

min
u1,u2

√

2(u4
1 + 6u2

1u
2
2 + u4

2) ⇔ min
x1,x2

x2
1 + 6x1x2 + x2

2, (15)

where the equivalence follows from the substitution x1 =
u2

1, x2 = u2
2. The eigenvalues of the objective Hessian are

given by

sp(H(x2
1 + 6x1x2 + x2

2)) = sp

(

2

[

1 3
3 1

])

=

[

−4
8

]

. (16)

(The objective is not convex, since its Hessian is indefi-
nite.)

Further, there does generally not exist ub, which bring the
norm of (13) to 0. For instance, if ua ̸= 0 and Q = 0, this
would result in ub of negative energy.

2.4 Particular Problem

Here, without further motivation, the norm R of (13) was
chosen to be a weighted Euclidean norm. The weighting
was chosen 1 for elements j ∈ I corresponding to frequen-
cies ωj between the two peaks of |Ua,180| and |Ua,90| and
0 for all other elements. All elements of Q were chosen as
maxj |(Ua)j |, corresponding to the flat energy spectrum
in the third quadrant, shown in Fig. 5. For notational
convenience, the sequence ub was chosen to be of the same
length as ua, i.e., Na = Nb = N/2.

2.5 Optimization

We have not found any convexifications of (13), without
introducing relaxations resulting in suboptimality. The
proposed optimization strategy consists in two iterative
stages. During the first stage, the error J(uk) is mono-
tonically non-increasing in the iterations k. The second
stage lacks this property, but has shown good results in all
experiments. The solution is chosen as

u∗
k, k∗ = arg min

k
J(uk), (17)

and is obtained either from the last iteration of stage one
or any (usually among the last) iteration of stage two.

Stage One Each iteration of the algorithm consists in
sorting the frequencies ωj , between the |Ua,180| and |Ua,90|
peaks with respect to corresponding magnitude error.
Starting with the wj corresponding to the largest error, a
sinusoid ∆ub in phase with the existing wj component in
u is added to ub. The amplitude is chosen to minimize the
norm in (13). If the norm cannot be decreased by ϵ = 5%,
∆ub is discarded, and the next ωj from the sorted list is
assessed. If the norm cannot be decreased by ϵ for any ωj ,
stage one is terminated. Else, a new iteration is executed,
now with u replaced by u + [0 · uT

a ∆uT
b ]T .

An algorithmic presentation is given in Algorithm 1. For
notational convenience, we introduce

∆u0,b = [0 · uT
a ∆uT

b ]T (18)
and

Wb = θ(Na + 1) − θ(N), (19)
where θ(k) is the Heaviside step at k.

The problem of minimizing J over a is given by

min
a

∑

j∈I

|Qj − |Fj(u + a∆u0,b)|
2|2

︸ ︷︷ ︸

M1(a)

, (20)
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Algorithm 1 Synthesis of ub, stage one.
repeat

flag = false
queue = sortj |Qj − Pj |
for all j in queue do

∆u0,b = WbXh(t) cos(ωjt + φj)
a = arg minj J(u + a∆u0,b)
∆u0,b ∗ = a
if J(u + ∆u0,b)/J(u) < 1 − ϵ then

u = u + ∆u0,b

flag = true
else

flag = false
break

end if
end for

until not flag

where M1(·) is a forth order polynomial with known
coefficient. Hence the solution of (20) is given by

min
a∈A

M(a), A =

{

a;
dM1

da
= 0

}

. (21)

Fig. 7(a) shows the result, when the algorithm is applied
to u from Fig. 6(a). The corresponding power spectrum is
shown in Fig. 7(b).

0 15.9 31.8 63.5

0

(a) Input u over time [s].

0
0-90-180-360

(b) Power spectrum |U |2 over process phase ϕ

[◦].

Fig. 7. Input signal and corresponding power spectrum
after first optimization stage.

Stage Two This stage is similar to stage one, but rather
than minimizing the error norm, the magnitude error at
ωj is brought to 0 in each iteration. Due to spectral
leakage, however, the magnitude errors at ωl ̸=j might
simultaneously increase. An algorithmic presentation is
given in Algorithm 2.

Algorithm 2 Synthesis of ub, stage two.
repeat

j = arg minj |Qj − Pj |
∆u0,b = WbXh(t) cos(ωjt + φj)
a = arg mina |Qj − |Fj(u + a∆u0,b)|2|
u = u + a∆u0,b

until |Qj − Pj | < ϵ

The minimization step is similar to that of Stage one, with
(20) replaced by

min
a

|
√

Qj − |Fj(u + a∆u0,b)||
︸ ︷︷ ︸

M2(a)

, (22)

where M2(·) is a third order polynomial with known
coefficients.

Fig. 8(a) and 8(b) correspond to Fig. 7(a) and 7(b). The
error J(uk) over iterations k is shown in log scale in Fig. 9.
The vertical line indicates the boundary between stages
one and two.

0 15.9 31.8 63.5

0

(a) Input u over time [s].

0
0-90-180-360

(b) Power spectrum |U |2 over process phase ϕ

[◦].

Fig. 8. Input signal and corresponding power spectrum
after second optimization stage.

0 12 51

1

9e-2

5e-7

Fig. 9. Normalized error J(uk)/J(u0) over optimization
iterations k. Vertical line marks boundary between
stage one and two. Logarithmic scale.

2.6 Practical Considerations

Limiting Leakage In addition to parametrizing ub in
sinusoids, with phases chosen to be consistent with u,
one might consider various windows, to reduce spectral
leakage. However, practical experience has shown that win-
dowing does not contribute significantly to the convergence
of the presented algorithms.

The amplitude constraint (14) can be incorporated in the
algorithms by limiting |a| in each iteration, to a value
where the constraints are met. Naturally, this imposes
suboptimality. The level of suboptimality can be decreased
by increasing the length of ub, Nb.

Depending on how the signal pair u, y will be used, one
may or may not care about the magnitude spectrum
outside the reference window. One way of avoiding spectral
leakage from the optimization to form peaks at the edges
of the window is to begin each optimization iteration by
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detecting the largest peak outside the window and add an
out of phase sinusoid, reducing it to a tolerable value. This
method was used when generating the results, presented
below.

Noise and Relay Hysteresis It is not desirable to trigger
subsequent relay switches at zero crossings, due to noise.
A straight forward method for avoiding this is the intro-
duction of hysteresis, which can be either in the signal
magnitude or time domain. Here, signal magnitude is
advantageous, since the time scale is unknown a priori.

Adapting the Sample Period Since the experiment du-
ration is unknown a priori, the approach has been to
introduce a buffer of fixed length Na = 210. The system
is then sampled with period h0 (as fast as the hardware
allows) until the buffer is filled. The sample period is
updated h1 = 2h0 and every second sample is overwritten,
corresponding to a down sampling of a factor 2. If the
experiment is not completed when the end of the buffer is
reached anew, the procedure is repeated with hk+1 = 2hk.

Meeting the Real-Time Constraint Since the optimiza-
tion needs to be conducted online, it starts executing at the
second last switch of ua in Fig. 6(a). Stage one is associated
with a halting criterion, while stage two executes until the
last switch of ua. The time between the second last and
last switch is assumed to be the same as that between the
third and second last.

3. SIMULATION RESULTS

The algorithms described above have been evaluated on a
large set of FOTD and SOTD processes of the forms

P1(s) =
e−s

1 + sT1
, P2(s) =

e−s

(1 + sT1)(1 + sT2)
, (23)

with varying Tk, k = 1, 2 corresponding to normalized time
delay in the range 0.17 < τ < 0.98.

Fig. 10 shows the power spectra (cf. Fig. 8(b)) resulting
from applying the method to the batch. The spectra have
been normalized w.r.t. Q in (13), to facilitate visualization.
Algorithm 2 was limited to run kmax = 100 iterations.

0
0-90-180-360

Fig. 10. Power spectra |U |2 over process phase ϕ [◦] for a
FOTD and SOTD batch.

4. PHYSICAL EXAMPLE

Once the input has been applied to the system, the
recorded input and output data is used to fit a FOTD or
SOTD model. This is done in two stages. The first stage
consists in obtaining initial parameters and deciding model

order, using a vector-fitting approach, under current devel-
opment. The second stage is a gradient based optimization,
described in Soltesz et al. [2010], minimizing

J(θ) =
1

2

∫ tf

t0

[y(t) − ŷθ(t)]
2dt, (24)

where y is the recorded output and ŷθ the output of a
simulation using a transfer function parametrized in θ.

Once the model is obtained, it is used as the basis for
choosing PID parameters. The method of choice is one
by Garpinger and Hägglund [2008], where the integrated
absolute error (IAE) from a load step disturbance is min-
imized, subject to sensitivity, complementary sensitivity
and control signal variance constraints, as outlined in (25).
Cf. Fig. 2, where C is the transfer function of the PID
controller.

min
K,Ti,Td∈R+

∫ ∞

0
|e(t)|dt (25)

s.t.
|S(iω)| ≤ Ms, |T (iω)| ≤ Mt,∀ω ∈ R

+,

||C(s)S(s)||22 =
σ2

u

σ2
n

≤ Vk.

Without going into further detail regarding the two last
blocks of Fig. 1, the operation of the auto-tuner is demon-
strated, using a lab scale tank process. A schematic sketch
is shown in Fig. 11(a). Fig. 11(b) shows a photo of the
actual process.

l

u hLT

(a) Schematic sketch. (b) Photograph.

Fig. 11. Tank process. Dashed region in photo marks
sketch.

First principle modeling, Bernoulli [1738], yields the ODE
dh

dt
= −

a

A

√

2gh + αu, (26)

where h [m] is the (measured) water level, u ∈ (0, 1) is
the input, proportional to the inflow through α [m3·s−1].
l [m3·s−1] is an uncontrolled and unmeasured disturbance
flow. A, a [m2] are the tank and outlet cross sections,
respectively. The delay L [s] is due to the actuating pump
and (intentionally) slow communications.

Linearizing around a nominal level h0 [m] and introducing
y = βh ∈ (0, 1), where β [m−1] is the sensor gain, an
FOTD model is obtained:

∆Y (s) =
Ke−sL

sT + 1
∆U(s), K =

α

a

√

2x0β

g
, T =

A

a

√

2x0

gβ
.

(27)

The ∆:s denote deviation from the linearization point.
Note however that the available signals are u, y rather
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than ∆u,∆y. Also note that only non-negative inflow is
possible, i.e., α = 0 when u < 0.

Fig. 12(a) shows the input signal generated by the pro-
posed method together with that of a traditional relay
experiment. The signals are of equal duration and energy.
The corresponding power spectra are shown in Fig. 12(b).
Here process phase is that obtained when inserting numer-
ical measurement values of a, A, α, β, h0, L into (27).

0

0 40
(a) Input signal ua over time [s].

0
0-90-180-360

(b) Power spectrum |U ′

a|
2 over process phase ϕ

[◦].

Fig. 12. Input signal and corresponding power spec-
trum from tank experiment. Relay (dashed), extended
(solid).

From Fig. 12(a) it is obvious that fitting the three FOTD
parameters to the input-output data of the traditional
relay comes with numerical difficulty, since virtually all
energy is concentrated to a narrow spectral peak, yielding
only one complex number, i.e., two parameters.

Based on the input-output data from the extended relay
experiment, PI parameters were obtained using Garpinger
and Hägglund [2008] with Ms = Mt = 1.4, Vk = 4.
Fig. 13(a) shows the plant output of experiments where
a reference step from r = 0.8h0 to h0 occurred at t = 5 s,
followed by a load step at t = 30 s. At t = 70 s, white zero
mean measurement noise, with variance 0.005, was added.
Fig. 13(b) shows the corresponding u.

5. CONCLUSION

The paper addresses the problem of input magnitude
spectrum shaping, in the context of PID auto-tuning.

A two stage optimization method, for magnitude spectrum
shaping was presented and demonstrated. It shows satis-
factory result for the class of processes (FOTD and SOTD)
interesting from a PID tuning perspective.

The algorithm was applied to physical data and the auto-
tuning procedure, of which the algorithm is a part, was
outlined and demonstrated.

6. FUTURE WORK

A natural question is if the problem formulation (13) can
be relaxed into a convex program (without introducing
suboptimality). It is also of interest to see if this can be
done when the second part, ub, of the input is constrained
according to (14), which defines a convex region.

0 5 30 70 85
0.4

0.5

0.55

(a) Ref. r and output y over time [s].

0 5 30 70 850

0.15

0.47

0.69

(b) Input u and load l over time [s].

Fig. 13. Closed loop response to reference step, load step
and measurement noise. (There is a 5 s transport
delay on the disturbance step, due to the hardware.)

From a signal generation perspective it would be even
more beneficial if ub was only allowed to take binary
values ∈ {umin, umax}, as is the case for ua. This results
in a binary program of high dimensionality, which is not
tractable without further reformulation or relaxation.

It is desirable to choose magnitude ||ua||∞, resulting in
cl ·σn < ||ya||∞ < chσn, where σn is the standard deviation
of the output ya due to measurement noise. cl ≈ 1 and
c2 ≈ 2 are constants. This is a feedback problem, since the
process gain is unknown before the experiment.

In addition, several issues concerning the two rightmost
blocks in Fig. 1, remain to be addressed before the PID
tuning chain functions reliably enough for industrial use.
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