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Abstract

Non-stationary signals are very common in nature, e.g. sound waves such as
human speech, bird song and music. It is usually meaningful to describe a signal
in terms of time and frequency. Methods for doing so exist and are well defined.
From the time representation it is possible to see the oscillations or waves of the
signal and if the signal changes over time. From the frequency representation,
obtained from the Fourier transform, the frequency decomposition of the signal
can be seen, i.e. which frequencies the signal contains.

However the time and frequency representations are not unique for any given sig-
nal, i.e. the transformation from time to frequency is not injective. It is therefore,
especially for non-stationary and multi-component signals, important to study a
joint time-frequency (TF) representation, which shows how the frequency con-
tent of the signal varies with time. This is done in the field of time-frequency
analysis, which is the topic of this thesis.

There exist many different joint TF representations for any given signal and
choosing an appropriate representation is most often not straight forward. Unfor-
tunately there exist no optimal TF representation for all signals and finding good
representations, especially for multi-component signals is a complex problem.

In this thesis, methods for obtaining good TF representations, for two types of
non-stationary and multi-component signals, and for extracting meaningful in-
formation from these representations, are developed. The two types of signals are
long, frequency modulated signals and short, transient signals. Even though the
types of signals are very different and require very different TF representations,
the aim is to resolve components that are close in time, frequency or both. This
requires TF representations with high resolution.

For the long, frequency modulated signals, a signal adaptive method, which en-
ables automatic comparison between different TF representations, is proposed.
For the short, transient signals, a method which finds the TF centres of transient
pulses and counts the number of pulses in a signal is presented. An approach for
determining the (time) shape of transient pulses is also given.

Keywords: time-frequency analysis, non-stationary signals, multi-component
signals, IF estimation, reassignment
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Popular summary in English

Non-stationary signals are very common in nature, e.g. sound waves such as
human speech, bird song and music. In the fields of mathematical statistics and
signal processing, it is interesting to study how these signals look and behave in
time and frequency. The time representation shows when something happens in
the signal. An example can be a recording of a person speaking, from the time
representation it is possible to see when the person starts to talk and when it
stops. The frequency representation shows which frequencies are present in the
signal, but not when. The frequency decides how something sounds, e.g. a person
can have a deep voice and another a shrill voice, they then speak with different
frequencies even if they say the same things.

This thesis is in the field of time-frequency analysis, which means that it aims to
study signals in time and frequency at the same time. If the joint time-frequency
representation is studied, it can be seen when something happens in the signal
and what happens at that time, i.e. what frequencies appear at any given time in
a signal.

The start of frequency analysis of signals can be traced to the beginning of the
1700s with Sir Isaac Newton (1642-1727), and the modern frequency analysis of
measured signals was invented in the late 1800s. The discoveries that made joint
time-frequency analysis possible were done in the mid-1900s and since then it
has been a field of interest for many mathematicians and other scientists working
with signal processing.

It is perhaps a hint, since the field has existed for almost a hundred years, that
representing a signal in time and frequency at the same time is not simple or
straight forward. There exist no optimal representation for all non-stationary
signals, or even for specific types of non-stationary signals. It is therefore possible
to still make contributions to this interesting and complex field.

In this thesis a few of the applications of time-frequency analysis are detailed.
The results in paper A are used to better characterise measured heart rate variab-
ility signals. These signals are the variation of inter-heartbeat intervals, which are
measured non-invasively using ECG, and can be used to see if a person suffers
from some health issues. Improved characterisation of these signals can result in
better medical care, especially for very small babies.
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The results in papers B and C are used to study the echolocation signals of dol-
phins and with the methods presented, especially in paper B, it is possible to get
a more accurate picture of how the echolocation signals behave. This is useful
information for understanding how the signal is generated by the dolphin.

The method in paper B, can also be used for improved characterisation of similar
signals, i.e. signal that have very, very short duration, which are common in fields
such as ultrasonic signal analysis machine fault diagnosis and biomedical signal
processing. Essentially fields that focus on ”looking” at something, e.g. a machine
or human, using signals and recordings of the reflections, instead of opening that
something up and actually looking at it.
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Populärvetenskaplig sammanfattning på svenska

Icke-stationära signaler är väldigt vanliga i naturen, t.ex. ljudvågor så som
mänskligt tal, fågelsång och musik. Det är inom fälten matematisk statistik och
signalbehandling intressant att studera hur dessa signaler beter sig i tid och fre-
kvens. Tidsrepresentationen visar när något händer i en signal. Ett exempel kan
vara en inspelning av en person som pratar, från tidsrepresentationen är det då
möjligt att se när personen börjar och slutar prata. Frekvensrepresentationen vi-
sar vilka frekvenser som finns i en signal, men inte när de finns. Frekvensen
bestämmer hur något låter, t.ex. kan en viss person ha en djup röst medan en
annan har en gäll röst, de personerna pratar med olika frekvenser, även om de
säger samma sak.

Denna avhandling ligger inom fältet för tids-frekvensanalys, vilket betyder att
målet är att studera signaler i tid och frekvens samtidigt. Om den gemensamma
tids-frekvensrepresentationen studeras, så är det möjligt att se när något händer
i en signal och vad det är som händer vid den tiden, alltså vilka frekvenser som
finns vid en given tidpunkt i signalen.

Frekvensanalysens uppkomst kan spåras till 1700-talets början och Sir Isaac
Newton (1642-1727), medan den moderna frekvensanalysen med uppmätta sig-
naler tog vid på sent 1800-tal. Upptäckterna som banade väg för en gemensam
tids-frekvensanalys gjordes under mitten av 1900-talet och sedan dess har fältet
varit av intresse för många matematiker och andra forskare som arbetar med sig-
nalbehandling. Att fältet har existerat i nästan hundra år kan vara en ledtråd om
att det inte är ett helt trivialt att uttrycka en signal i tid och frekvens samtidigt. Det
existerar ingen optimal representation för alla icke-stationära signaler, eller ens för
specifika typer av icke-stationära signaler. Därför är det fortfarande möjligt att
bidra till detta intressanta och komplexa fält.

Några tillämpningar för tids-frekvensanalys presenteras i den här avhandlingen.
Resultaten i artikel A används till att bättre beskriva uppmätta HRV-signaler, som
mäter variationer mellan hjärtslag. Dessa signaler mäts med EKG och kan visa
om en person lider av vissa åkommor. En förbättrad beskrivning av dessa signaler
kan innebära bättre medicinsk vård, speciellt för spädbarn. Resultaten i artiklarna
B och C används för att studera ekolokaliseringssignaler från delfiner, och med
metoden som presenteras i artikel B, så är det möjligt att få en tydligare bild av
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hur ekolokaliseringssignaler beter sig. Detta är viktigt för att förstå hur delfinerna
generar sina ekolokaliseringssignaler.

Metoden i artikel B kan också användas för att på ett bättre sätt beskriva liknan-
de signaler, alltså signaler som är väldigt, väldigt korta. Dessa signaler är vanliga
i fält som berör ultraljudsanalys, diagnos av fel i maskiner och biomedicinsk sig-
nalbehandling. Med andra ord fält som ”tittar” på objekt, t.ex. maskiner eller
människor, med hjälp av signaler och de reflektioner signalerna ger upphov till,
istället för att faktiskt öppna upp och titta i objektet.
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Summary of notations

In this thesis the following notations are used:

Integrals without limits if no limits are given for an integral, they are −∞,∞∫
≡
∫ ∞
−∞

Fourier transform pairs if a signal is denoted s(t), its Fourier transform is
denoted S(f )

S(f ) ≡
∫

s(t)e−i2πftdt, s(t) ≡
∫

S(f )ei2πftdf

Imaginary unit if nothing else is stated, i denotes the imaginary unit

i2 ≡ −1

Complex conjugate for any function denoted f (t), its complex conjugate is
denoted f ∗(t)

f (t) = a(t) + ib(t)⇐⇒ f ∗(t) = a(t)− ib(t)

Convolution for any two functions f (t), g(t), their convolution is denoted
f (t) ∗ g(t)

f (t) ∗ g(t) ≡
∫

f (τ)g(t − τ)dτ
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High resolution time-frequency
representations

1 The need for time-frequency analysis

It is generally meaningful to describe a signal in terms of time and frequency.
Methods for doing so exist and are well defined. From the time representation it
is possible to see the oscillations or waves of the signal and if the signal changes
over time. From the frequency representation, invented by Fourier (1807) and
developed by Bunsen and Kirchhoff (around 1865), the frequency decomposition
of the signal can be seen, i.e. which frequencies the signal contains.

A signal can have a constant frequency for its whole duration or the frequency
could change over time, if the frequency changes with time the signal is called
non-stationary. These signals are very common in nature, for example sound
waves such as human speech, bird song and music are all signals which usually
vary in frequency. Non-stationary signals can take any shape or form and have
very complex natures, while there of course also exist fairly simple signals.

Figures 1 illustrates two such simple signals, a chirp with linearly increasing fre-
quency

s(t) = a1 cos
(
2π
(
f0 + fI t

)
t
)
, t ≥ 0, (1)

and a sinc

s(t) =
a2 sin(πt)
πt

, t ≥ 0, (2)

where ak is a constant amplitude, f0 a constant frequency and fI a constant fre-
quency increase. The time representations of the chirp and sinc are shown in
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Figure 1: Separate time and frequency representations of two signals; (a) time-
domain representation of a chirp; (b) time-domain of a sinc; (c) frequency-
domain representation of the chirp; (d) frequency-domain representation of the
sinc.

Figure 1 (a) and (b) respectively, they are clearly different as the chirp has one
specific frequency at any given time, while the sinc has many frequencies at any
given time. Especially for the sinc it will be hard, even impossible, to estimate
the frequency content by only studying the time representation, it is therefore
important to look at the frequency representations of the signals, shown in Figure
1 (c) and (d). It can be seen that the signals have the same frequency content
and the only difference between these signals is when in time certain frequencies
occur.

From these two examples it is also apparent that the frequency representation is
not unique for any given signal, i.e. the transformation from time to frequency
is not injective. It is therefore important to study both the time and frequency
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Figure 2: Joint time-frequency representations of two signals; (a) representation
of a chirp; (b) representation of a sinc. Light yellow represents high energy density
and dark blue low.

representations of a signal. However sometimes this is not enough, it is still not
clear when in time certain frequencies occur. To know this, a joint time-frequency
(TF) representation would have to be studied.

Figure 2 (a) shows a joint TF representation of the chirp and (b) of the sinc. From
these representations, the frequency at any given instant in time can be known.
A TF representation shows the distribution of signal energy for its time duration
and frequency bandwidth, in the figure, light yellow represents a high energy
concentration and dark blue a low concentration. In Figure 2 (a), the chirp, it
can be seen that the frequency increases linearly with time and that the signal has
the same signal energy for the whole signal duration. In Figure 2 (b), the sinc,
most of the signal energy is concentrated at the midpoint of the duration and all
frequencies within the signal occurs at that one time instant.

There exist many different joint TF representations for any given signal and
choosing an appropriate representation is most often not straight forward. Some
of the challenges can be seen in Figure 2. The linear chirp has the same signal
energy for its whole duration, however it can be seen i Figure 2 (a) that the en-
ergy seem to be the highest midway through the signal. This is due to that the
signal duration is not infinite. There is also an uncertainty in time and frequency,
illustrated by the width of the high energy lines in the TF representations, even
though the uncertainty is not huge for these simple signals. Smaller oscillations
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outside the main, high energy line can also be seen, these so called side lobes are
also a result of the finite signal length. When a signal has non-linear behaviour or
discontinuities in time and/or frequency, or is disturbed by noise, more problems
arise.

Non-stationary and multi-component signals, i.e. signals that vary in frequency
over time and has discontinuities in time and/or frequency, can be modelled in
different ways. It is natural to imagine a real valued signal

s(t) = A(t) cos
(
φ(t)
)

= A(t) cos
(
2πf (t)t

)
, t ≥ 0, (3)

where A(t) is an amplitude function and φ(t) = 2πf (t)t denotes the different
frequencies present in the signal. A complex valued signal, on the other hand
is less intuitive, while still useful. The complex signal can be separated into an
amplitude function and a phase function according to

s(t) = A(t)eiφ(t) = A(t)ei2πf (t)t , t ≥ 0. (4)

It is also possible to model a non-stationary and multi-component signal as a sum
of time, frequency and phase shifted functions

s(t) =

K∑
k=1

akxk(t − tk)ei2πfktei2πφk , t ≥ 0, (5)

where ak are amplitudes, tk and fk are time and frequency centres, φk phase shifts
and xk(t) some appropriate functions, perhaps the Hermite functions. The sum is
in this case a complex valued signal, but can be made real valued by simply taking
the real value of the whole signal or individual signal components. Regardless
of how the signal is modelled or looks, the goal of TF analysis is to accurately
represent it in the TF plane.

Unfortunately there exist no optimal TF representation for all signals. Finding
good representations, especially for multi-component signals, is a complex prob-
lem and still a large field of research [1, 2, 3, 4, 5]. Good TF representations are
also useful in many applied fields, e.g. in biomedical fields accurate TF represent-
ations can result in better medical diagnoses using non-invasive procedures [6, 7],
faults in machines can be detected and diagnosed [8, 9] and the acoustic pathway
of echolocation dolphins can be understood [10, 11, 12].

4



2 Fundamental ideas for joint time-frequency
representations

A joint TF representation could be a two dimensional density, that is a measure,
P(t, f ), of the amount of something per unit t and per unit f at the point (t, f ).
The normalised total amount of the something is∫ ∫

Ρ(t, f )dtdf = 1. (6)

In the area of TF analysis the terms density and distribution are used interchange-
ably and a two dimensional TF density is usually called a TF distribution (TFD).
The density Ρ(t, f ) is by definition always non-negative.

The something that Ρ(t, f ) measures, is the intensity of the signal at the point
(t, f ). The total energy of the signal, i.e. the amount of energy required to
produce the signal, is calculated by integrating over the whole time and all fre-
quencies. If the total energy is normalised according to equation (6), then Ρ(t, f )
is the fraction of energy at that time and frequency.

For a signal s(t) its Fourier transform t → f can be called S(f ). Then |s(t)|2
is the intensity per unit time at time instant t and |S(f )|2 is the intensity per
unit frequency at frequency instant f . For a TFD it is not always true that the
total energy of the distribution equals the total energy of the signal, i.e. that the
following equalities hold

Etot =

∫ ∫
Ρ(t, f )dtdf =

∫
|s(t)|2dt =

∫
|S(f )|2df , (7)

where Etot is the total energy of the signal. If the above equalities hold however,
the TFD is said to fulfil the total energy requirement. This requirement is weak
and many TFDs which do not fulfil the total energy requirement still give a good
representation of the TF structure of the signal.

2.1 Desired characteristics

Some fundamental properties are desired for a TFD that stem from the nature of
signals. Since a signal easily can be translated in time or frequency, it is desired
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for a TFD to be time and frequency shift invariant so that

s(t)→ s(t − t0) =⇒ Ρ(t, f )→ Ρ(t − t0, f ),

S(f )→ S(f − f0) =⇒ Ρ(t, f )→ Ρ(t, f − f0),

s(t)→ ei2πf0t s(t − t0) =⇒ Ρ(t, f )→ Ρ(t − t0, f − f0).

(8)

Signals can also be scaled and as the Fourier transform of a scaled signal is

s(t)→ s(at) =⇒ S(f )→ 1
a

S(f /a), a > 0, (9)

a signal which is compressed in time will have a Fourier transform which is ex-
panded. The TFD should fulfil

s(t)→ s(at) =⇒ Ρ(t, f )→ Ρ(at, f /a), (10)

to have the same properties as the time representation and Fourier transform of
the signal.

For the TFD to be a good representation of the signal, it is desired that it at least
has weak finite support, i.e. so that

s(t) = 0, for t outside (t1, t2) =⇒ Ρ(t, f ) = 0, for t outside (t1, t2),

S(f ) = 0, for f outside (f1, f2) =⇒ Ρ(t, f ) = 0, for f outside (f1, f2).
(11)

A TFD with weak finite support is thus zero outside the time duration and fre-
quency bandwidth of a signal. Strong finite support is also desired, although many
TFDs do not fulfil this requirement. Strong finite support is fulfilled if

s(t1) = 0 =⇒ P(t1, f ) = 0,

S(f1) = 0 =⇒ P(t, f1) = 0.
(12)

In order to have strong finite support, the TFD then needs to be zero for all time
and frequency instants that do not exist in the signal. This requirement is relevant
for multi-component signals, which has gaps in time and/or frequency, i.e. areas
s(t) = 0 or S(f ) = 0, surrounded by areas where the signal energy is not zero.
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2.2 Marginals

It is possible to get the one dimensional densities Ρ(t) and Ρ(f ) from a two
dimensional density Ρ(t, f ). The density Ρ(t) describe the density of energy per
unit t irrespective of f and similarly for Ρ(f ). The one dimensional densities are
obtained by integrating over the other variable

Ρ(t) =

∫
Ρ(t, f )df , Ρ(f ) =

∫
Ρ(t, f )dt. (13)

These densities are called marginals, however the above equalities are not satisfied
for all TFDs. A TFD is said to fulfil the marginals if it fulfils the equalities.

For a TFD that fulfils the marginals, the integral over all frequencies of the density
equals the intensity per unit time at time instant t. The integral over the whole
time similarly equals the intensity per unit frequency at frequency instant f . This
can be expressed∫

Ρ(t, f )df = |s(t)|2,
∫
Ρ(t, f )dt = |S(f )|2. (14)

If a TFD fulfils the marginals, it also fulfils the total energy requirement, however
the converse is not true.

2.3 Uncertainty principle

An essential fact in signal processing is that a signal can not both have finite
duration and limited bandwidth. This is the reason for the smaller oscillations,
side lobes, in the TFDs of Figure 2. The signals used for the TFD calculations are
obviously finite in time, since they are sampled, which means that they can not
be limited in frequency, even if that perhaps was intended, resulting in relatively
small, but infinite, oscillations in both time and frequency.

It is possible to calculate the time and frequency standard deviations for a signal

T 2 =

∫
(t − t̄)2 |s(t)|2dt,

B2 =

∫ (
f − f̄

)2 |S(f )|2df ,
(15)
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Figure 3: Two different signals with equal time and frequency marginals.

where t̄ and f̄ are the mean time and frequency. The uncertainty principle is then
defined by

TB ≥ 1
4π

, (16)

and this applies to all signals [13]. A signal can thus not be constructed to have
both standard deviations, T and B, arbitrarily small. The lower bound can be
reached in theory using a Gaussian signal since it has the optimal concentration
in time and frequency [14].

The uncertainty principle only depends on the marginals, |s(t)|2 and |S(f )|2, and
not the whole density Ρ(t, f ). This means that even if there are restrictions on
the smallness of T and B, there is possibility for infinite variations of signals,
since the marginals will not show how time and frequency are correlated. Thus
two different signals might have the same marginals, a simple example is shown
in Figure 3.
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For a TFD the standard deviations are obtained by

σ
2
t =

∫ ∫
(t − t̄)2

Ρ(t, f )dt =

∫
(t − t̄)2

Ρ(t)dt,

σ
2
f =

∫ ∫ (
f − f̄

)2
Ρ(t, f )df =

∫ (
f − f̄

)2
Ρ(f )df .

(17)

This means that the correct uncertainty principle is obtained if the TFD fulfils
the marginals.

2.4 Instantaneous frequency

With the complex valued signal it is possible to define an operatorW such that

W s(t) =WA(t)eiφ(t) =
1
i

d
dt

A(t)eiφ(t) =

(
φ
′(t)− i

A′(t)
A(t)

)
s(t). (18)

This can be used to calculate the mean frequency

f̄ =

∫
f |S(f )|2df =

∫ ∫ ∫
f s∗(t)s(τ) ei2π(t−τ)f df dτ dt

=
1

i2π

∫ ∫ ∫
s∗(t)s(τ)

∂

∂t
ei2π(t−τ)f df dτ dt,

(19)

for the equality it was used that

∂

∂t
ei2π(t−τ)f = i2πf ei2π(t−τ)f , (20)

and since

δ(t − τ) =

∫
ei2π(t−τ)f df , (21)

the mean frequency is

f̄ =
1

i2π

∫ ∫
s∗(t)s(τ)

∂

∂t
δ(t − τ)dτdt. (22)

Now it can be utilised that∫
s(τ)

∂

∂t
δ(t − τ) dτ =

d
dt

s(t), (23)
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which gives

f̄ =
1

2π

∫
s∗(t)

1
i

d
dt

s(t)dt

=
1

2π

∫
s∗(t)

(
φ
′(t)− i

A′(t)
A(t)

)
s(t)dt

=
1

2π

∫
|s(t)|2

(
φ
′(t)− i

A′(t)
A(t)

)
dt,

(24)

here the second term is zero, easily realised since it is imaginary and the mean, f̄ ,
is real valued. This means that

f̄ =
1

2π

∫
φ
′(t)|s(t)|2dt, (25)

which says that the average frequency is given by integrating the derivative of the
phase with the density over all time. The derivative of the phase must then be the
instantaneous value of the frequency, it is therefore appropriate to call

fk(t) =
φ
′(t)
2π

, (26)

the frequency at each time or, the instantaneous frequency (IF).

The conceptual idea of IF is rather intuitive, as it would be the frequency of a
signal at a given time instant. However the mathematical description and under-
standing of IF is not equally simple, e.g. for a general real valued signal the IF
would be zero, since it does not have the phase signal eiφ(t). This absurd result can
be rectified by defining a complex valued signal that corresponds to a given real
valued signal, this is done in the next section. The mathematical definition of the
IF also gives paradoxical results for multi-component, complex valued signals, and
the IF can sometimes extend outside the bandwidth of the signal. Nevertheless
the term IF is widely used in signal processing when estimating the frequencies in
signals for any given time instant.

2.5 The analytic signal

In TF analysis it is useful to define a complex valued signal that corresponds to a
given real valued signal. Such a complex valued signal would be

z(t) = sr(t) + si(t), (27)
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where sr(t) is the real valued signal and si(t) is an imaginary part. A property of any
real valued signal can be utilised for a good choice of si(t). The Fourier transform
of a real valued signal is symmetric, Sr(f ) = Sr(−f ), thus the real valued signal
contains more information of the frequency than is needed. If the imaginary part
is chosen so that

Z (f ) = 0, f < 0, (28)

then

z(t) = 2
∫ ∞

0
S(f )ei2πftdf = s(t) + i

(
1
πt
∗ s(t)

)
, (29)

which is called the analytic signal. It is very useful when calculating some of the
most common TFDs and can also be obtained from a general complex valued
signal using equation (29).

3 Spectrogram and quadratic time-frequency
distributions

One of the most common TFDs is the spectrogram, which is obtained from the
short-time Fourier transform (STFT). The idea of the STFT is simple, it breaks
the signal into small time segments and Fourier transforms those segments. This
means that the STFT is defined as

F h
s (t, f ) =

∫
s(τ)h∗(τ− t)e−i2πf τdτ, (30)

where s(t) could be a real or complex valued signal and h(t) is a time window,
centred at time t. The length of the window, decides the length of the time
segments used for the Fourier analysis. Usually an even, positive, unit energy
time window, centred around zero, is used.

The spectrogram is defined as

Sh
s (t, f ) =

∣∣∣F h
s (t, f )

∣∣∣2 , (31)

which makes it a non-negative measure of the intensity of a signal at the point
(t, f ). There are many advantages to using the spectrogram, it is time and fre-
quency shift invariant, easy to implement and fast to use, it is also easily related
to the periodogram. The spectrogram also has little interaction, i.e. artefacts or
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Figure 4: The spectrogram of a multi-component signal, with different time win-
dow lengths; (a) too short window length; (b) appropriate window length; (c) too
long window length.

cross-terms, between signal components in multi-component signals, therefore it
is mostly zero when the signal has no frequency contribution at a given time.

However the spectrogram does not fulfil the marginals, and its main problem is
the trade-off between resolution in either time or frequency. The length of the
time window, for the STFT, decides this trade-off, which can be seen in Figure
4. Other popular TFDs have better TF resolution compared to the spectrogram,
and the spectrogram will not be able to resolve signal components that are close
in time and frequency.

Another frequently used TFD is the Wigner-Ville distribution (WVD), which is
defined using the analytic signal. If the analytic signal is not used, the Wigner
distribution is obtained instead, which is much harder to interpret for multi-
component signals. The WVD is defined as

Wz(t, f ) =

∫
z
(
t + τ

2

)
z∗
(
t − τ2

)
e−i2πf τdτ, (32)

where it can be noted that Kz(t, τ) = z
(
t + τ

2

)
z∗
(
t − τ2

)
is an estimate of the

auto-correlation function of the signal, called the instantaneous auto-correlation
function (IAF). This results in the WVD giving exactly the IF for mono-
component signals, and when compared to other TFDs it achieves the best energy
concentration around the signal IF law [15]. The WVD is time and frequency
invariant and fulfils the marginals, thus also the total energy requirement.
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Figure 5: The WVD of two multi-component signals; (a) signal with two com-
ponents and one resulting cross-term; (b) signal with three components and three
resulting cross-terms.

The problem with the WVD occurs when dealing with multi-component signals
or signals with noise. For such signals the WVD is not always zero when the signal
has no frequency contribution at a given time, this can be seen in Figure 5. When
the signal only has two components, Figure 5 (a), it is still possible to distinguish
the two pulses, even though there is a cross-term midway between them which
has twice the magnitude. In Figure 5 (b) the signal has three components, and
the interpretation of the WVD is harder, since there now are three cross-terms.
However the figure also shows that the energy concentration of the WVD is much
better compared to the spectrogram, the signal in (b) is the same as in Figure 4.

3.1 Relationship between the spectrogram and the Wigner-Ville
distribution

The spectrogram and the WVD are both so called quadratic TFDs, i.e. they
are quadratic in the signal. This is the reason for the appearance of cross-terms,
an interference midway between any two signal components in the TFD. Cross-
terms can have twice the amplitude of the signal components, which can make
interpretation of the TFD very hard. The presence of noise in a signal, and the
additional cross-terms from noise components, can easily make it impossible to
interpret the TFD.
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The appearance of cross-terms is much more prevalent in the WVD compared to
the spectrogram, even though both are quadratic. This is because the spectrogram
can be seen as a smoothed version of the WVD, the smoothing removes most of
the cross-terms, however it is also the reason for the loss in resolution or energy
concentration, which can be seen when comparing Figures 4 and 5.

With the introduction of a time-lag kernel G(t, τ) it is possible to write both the
WVD and the spectrogram as Fourier transforms of the convolution (in time) of
the kernel and the IAF

G(t, τ) ∗
t

Kz(t, τ). (33)

Since the WVD is calculated directly from the Fourier transform of Kz(t, τ),
clearly the kernel is G(t, τ) = δ(t).

Finding the kernel for the spectrogram requires more calculations. Using the
definition of the spectrogram with an analytic signal z(t) it is possible to write

Sh
z (t, f ) =

∣∣∣∣∫ z(t1)h∗(t − t1)e−i2πft1dt1

∣∣∣∣2
=

∫ ∫
z(t1)h∗(t − t1)z∗(t2)h(t − t2)e−i2πf (t1−t2)dt1dt2.

(34)

With the variable changes t1 = u + τ

2 and t2 = u− τ2 the spectrogram is

Sh
z (t, f ) =

∫ ∫
h(t − u + τ

2 )h∗(t − u− τ2 )z(u + τ

2 )z∗(u− τ2 )e−i2πf τdudτ

=

∫ (
h(t + τ

2 )h∗(t − τ2 )
)
∗
t

(
z(t + τ

2 )z∗(t − τ2 )
)

e−i2πf τdτ,

(35)

the equality uses the evenness of the window function h(t). This means that the
time-lag kernel for the spectrogram depend on the time window used for the
spectrogram, G(t, τ) = h(t + τ

2 )h∗(t − τ2 ).

It is possible to design kernels with specific types of signals in mind. The kernels
are usually designed to suppress cross-terms and noise, while keeping most of the
resolution of the signal components. There is always a trade-off between suppress-
ing interference and maintaining resolution. The kernels can be designed so that
the TFD fulfil the marginals, like the WVD, or not, like the spectrogram. As there
are many types of signals, there are many types of TFDs which smooths the WVD
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via the use of a kernel. Probably the most common is the Choi-Williams distri-
bution (CWD) [16], there also exist signal adaptive or optimal kernels [17, 18]
and many others [13, 15].

Outside of the large class of quadratic distributions, with adapted kernels for
desired TD characteristics, there exist other well used TF methods, such as the
Gabor expansion [14], which was related to the STFT and spectrogram by Basti-
aans [19], and wavelet based algorithms, developed by e.g. Haar (early 1900s),
Zweig, Morlet, Grossmann and Daubechies (1970-1980). For these methods the
aim is to find the analysis window achieving the best TF resolution. In a similar
way, the Stockwell transform estimates the width of a Gaussian window function
using a concentration criterion [20].

4 Resolution and localisation

Real, measured signals are always of finite duration and disrupted by noise. This
makes TF characterisation of real, measured signals a difficult task. Even if a TFD
has strong finite support, noise and the finite signal duration will be a problem
for the interpretation of the density. This means that in practice, there has to
be compromises between resolution and localisation of signal components, i.e.
how dense the signal energy is close to the true frequencies for all time instants,
and the level of suppression on undesired energy dense areas in the TFD. The
theoretical bases of desired characteristics for a TFD might not be enough for easy
interpretation of TFDs for measured signals. In some applied fields of research it
might not be important that the TFD fulfils the marginals, but instead something
else might be desired.

4.1 Defining good resolution

Studying different TFDs, for examples the TFDs in Figure 6, which shows the
spectrogram (a), the WVD (b), the spectrogram with a matching window (c)
and (d) the CWD, it is perhaps possible to say that one looks cleaner and thus
better than the others. In Figure 6 it seems obvious that the spectrogram with
matched window, i.e. the spectrogram with a time window that matches the signal
components in both shape and duration, is better compared to the spectrogram
without the matching window. However it is harder to determine if the CWD
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Figure 6: Four different TFDs of the same multi-component signal, disturbed
by noise; (a) spectrogram; (b) Wigner-Ville distribution; (c) spectrogram with
matching window; (d) Choi-Williams distribution.

is better than the spectrogram with matching window. Even though the noise
and cross-terms make interpretation of the WVD hard, it has the most localised
signal components, which might be the most important characteristic in certain
situations.

In reality most would probably agree that either the spectrogram with matched
window (c) or the CWD (d) it the best TF representation for the signal. It would
however be nice if this comparison could be done (semi) automatically or without
a subjective eye. There exist some methods for this.

If the analysed signal is known beforehand, the optimal TFD can be calculated
and the other TFDs can be compared, by least squares, or another measure, to
find the deviation from the optimal TFD. The TFD with smallest deviation, or
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highest likeness, would then be the best. For known signals it is also possible
to compare different TFDs by calculating the TFDs for many realisation of the
known signal, the robustness to random noise, phase or other important variables
could be measured. This can be done by studying if the high energy areas in the
TFDs correspond to signal content. Results from these types of evaluations can
be expanded to signals similar to the known one.

For a unknown signal it is possible to use the Rényi entropy [21]. It measures
the energy concentration, when the concentration is high, the Rényi entropy will
be small. However it is only appropriate to use on single signal components,
otherwise the measure might be smallest when the resolution is very low and two
(or more) components have leaked into each other. It is possible to use the Rényi
entropy locally.

It is also possible to measure TFD performance for unknown signals by a quantit-
ative performance measure presented by Boashash and Sucic [22]. The perform-
ance measure aims to resolve two close components and requires some method to
find the components in each time or frequency slice of the TFD. It has been used
om both simulated and measured signals [2, 23].

4.2 Reassignment

A technique to improve the localisation of single TF components and enhance
the readability of the spectrogram of multi-component signals was introduced by
Kodera et al. [24] and later reintroduced by Auger and Flandrin [25]. The method
reassigns signal energy to the centre of gravity, giving higher energy concentra-
tion at the instantaneous frequencies of the signal. A similar method, the syn-
chrosqueezing transform by Daubechies et al. [26], related to the empirical mode
decomposition [27], reassigns all energy in frequency at a certain time point.

The reassigned spectrogram is defined by

ReSh
s (t,ω) =

∫ ∫
Sh

s (τ, ξ)δ
(
t − t̂s(τ, ξ),ω− ω̂s(τ, ξ)

)
dτdξ, (36)

where the two-dimensional Dirac impulse is defined as∫ ∫
f (t,ω)δ(t − t0,ω− ω0)dtdω = f (t0,ω0). (37)
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Figure 7: Illustration of reassignment for a linear chirp; (a) time representation;
(b) spectrogram; (c) reassigned spectrogram.

The reassignment thus maps signal energy from a point (t0,ω0) to the point
(̂tx(t0,ω0), ω̂x(t0,ω0)) in the spectrogram. The new coordinates can be calcu-
lated using the phase of the STFT

t̂s(t,ω) =
t
2
− ∂

∂ω
φ(t,ω),

ω̂s(t,ω) =
ω

2
+

∂

∂t
φ(t,ω).

(38)

The reassigned spectrogram has the same smoothing as the spectrogram, given by
the time window, which suppresses oscillating interference and widens the signal
components. Then the reassignment compress the signal components to be more
localised, by moving signal energy that is left after the smoothing. Figure 7 illus-
trates the reassignment of a linear chirp. The spectrogram, Figure 7 (b), of the
chirp, smooths the TFD, suppressing the side lobes but also making the IF estima-
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tion less accurate, thus widening the high density area in the TFD. The reassigned
spectrogram, Figure 7 (c), has the same smoothing as the spectrogram, with no
visible side lobes, however the energy is moved to be more localised around the
IF, making the high density area more narrow.

The reassignment method, as well as the synchrosqueezing transform, works well
for longer chirps and constant frequency signals. They are based on the assump-
tion of a linear frequency modulation, essentially of infinite length. This means
that the methods do not work for signals with short duration, i.e. transient sig-
nals.

The reassignment method has been adapted for transient signals by Hansson-
Sandsten and Brynolfsson [3]. The adaptation allows the length of the reassign-
ment to be scaled and not fixed to one, as for the traditional reassignment spectro-
gram. By allowing the signal energy to move further when reassigned, it is possible
to get good resolution and localisation for very short signals. The reassignment
operators for this adapted reassignment are

t̂s(t,ω) =
t
2
− ct

∂

∂ω
φ(t,ω),

ω̂s(t,ω) =
ω

2
+ cω

∂

∂t
φ(t,ω),

(39)

where ct and cω are the scaling factors. The reassignment coordinates has to
be calculated for every set of signal and window type. Hansson-Sandsten and
Brynolfsson [3] presents the coordinates when the signal and window are both
Gaussian shaped. The calculations show that for a single component signal with
no noise, all energy is then reassigned to the TF centre.

Figure 8 illustrates the normal and adapted reassignment for a signal with two
Gaussian shaped, transient components. While the spectrogram, Figure 8 (b),
resolves the two components, the smoothing of the window that suppress the
side lobes also smooths the energy of the signal components. The reassigned
spectrogram, Figure 8 (c), should localise the signal energy, however since it as-
sumes linear frequency modulation, the result is not as desired and the energy is
scattered. The reassigned spectrogram for transient signals, Figure 8 (d), obtains
good energy localisation around the IF of the transient components.
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Figure 8: Illustration of reassignment for a transient signal; (a) time representa-
tion; (b) spectrogram; (c) reassigned spectrogram; (d) reassigned spectrogram for
transient signals.

In order to achieve faster computations of the reassignment coordinates a different
formulation can be used

t̂x(t,ω) = t + ctR

(
F th

x (t,ω)
F h

x (t,ω)

)
,

ω̂x(t,ω) = ω− cωI

(
F dh/dt

x (t,ω)
F h

x (t,ω)

)
,

(40)
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where R and I represents the real and imaginary parts and F h
x , F th

x and F dh/dt
x are

the STFTs with different time windows. The formulation, without the scaling
factors, is presented in [25].

An other adaptation of the reassigned spectrogram was presented by Auger et al.
[28], it uses the Levenberg-Marquardt algorithm [29, 30], to allow for a weak or
strong reassignment. The reassignments coordinates are derived from the second-
order partial derivatives of the phase of the STFT, and it is possible to get good
localisation of long or short signal by adjusting a dampening parameter. The
method requires the additional calculation of one more STFT with the time win-
dow t2h(t). A recursive implementation of the Levenberg-Marquardt reassign-
ment has also been proposed recently [1].
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5 Main results of the research papers

All three papers in this thesis concern the TF analysis of non-stationary and multi-
component signals. The aim of the papers involve finding high resolution TF rep-
resentations of different signals. Paper A and B have more practical applications
and paper C is more theoretical. This section outlines the papers.

Paper A: Optimal time–frequency distributions using a novel signal
adaptive method for automatic component detection

Paper A presents a signal adaptive method for automatically detecting signal com-
ponents in two-component signals. The method is based on, and outperforms, a
method presented by Sucic and Boashash [31]. In the paper the new method is
used with a quantitative performance measure presented by Boashash and Sucic
[22] with the aim of finding the optimal, high resolution TFD for long duration,
frequency modulated (FM) signals with two close components.

The proposed method is shown to accurately detect signal components for dif-
ferent types of two component FM signals. The evaluation is done on simulated
signals with white Gaussian noise, and the method is found to be insensitive to
amplitude differences of the components, frequency distance between the com-
ponents and smoothing of the TFD. Since the method is robust to the level of
smoothing of the TFD, a large range of TFDs can be tested, lowering the risk of
erroneous conclusions to be drawn of the optimal TFD.

To illustrate the use of the method, with the performance measure, the paper
shows how the optimal kernel parameters for the modified B-distribution [32] of
an example set of heart rate variability (HRV) signals with a non-linear compon-
ent can be obtained. HRV, which is the variation of inter-heartbeat intervals, is
measured non-invasively using ECG and is a sensitive indicator of compromised
health [7, 33]
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Paper B: Objective detection and time-frequency localization of com-
ponents within transient signals

Paper B presents a method that automatically detects and counts transient signal
components in a signal with an unknown number of components. The paper
also thoroughly investigates the reassigned spectrogram for transient signals [3],
which is used in the detection method. The TFD is found to have good TF
resolution even for noisy signals, i.e. it resolves heavily overlapping components.
The method is unique in that it is developed for short transient signals, other
component detection methods are designed for longer signals.

The aim of the automatic detection method is to give the TF centres of all
components within a multi-component, transient signal. The evaluation of the
method shows that the estimated TF centres have good accuracy and that the cor-
rect number of components almost always are detected for a variety of transient
signals with white Gaussian noise. For the evaluation, the transient components
are Gaussian shaped, which is an usual assumption for transients.

Promising results are shown when the method is tested on measured data from
a laboratory pulse-echo set-up and from a dolphin echolocation signal measured
simultaneously at two different locations in the echolocation beam. This is of
great interest since transient signals are common in several fields, e.g. ultrasonic
and marine biosonar signal analysis, machine fault diagnosis and biomedical sig-
nal processing [8, 9, 34, 35, 36].

Paper C: The scaled reassigned spectrogram adapted for detection and
localisation of transient signals

Paper C builds on the reassigned spectrogram for transient signals [3] and presents
the reassignment coordinates for when the signal and time window of the spec-
trogram are combinations of the first and second Hermite functions. The aim of
the paper is to show that it is possible to get perfect localisation, i.e. that all signal
energy is reassigned to the TF centre of the signal, not only for signals that are
Gaussian shaped.

It has previously been shown that for a transient, Gaussian (first Hermite func-
tion) shaped signal it is possible to get perfect localisation after reassignment if
a Gaussian shaped window is used for the spectrogram [3]. This paper shows
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that perfect localisation is also possible for a signal with the shape of the second
Hermite function, if the time window used for the spectrogram is also a second
Hermite function. It is also shown that perfect localisation is not possible to
achieve if matching a Gaussian signal with a second Hermite window, or a second
Hermite signal with a Gaussian window, then instead the signal energy is scattered
in ellipses. The Hermite functions are analysed since they can be combined lin-
early to model transient signals [37, 38, 39, 40].

Perfect localisation is only possible for single component signals without noise,
however the signal energy for multi-component signals with noise is still local-
ised after reassignment if the signal and window shapes match. When the signal
and window shapes do not match, the signal energy will appear more scattered.
This can be used to detect the shape of and localise the TF centres of individual
transient components in a non-stationary signal.

The results from simulated multi-component signals with white Gaussian noise
show that close components can be resolved and correctly identified as being
either Gaussian or second Hermite shaped. Good results are obtained even for
signals heavily disturbed by noise. For a measured dolphin echolocation signal, it
appears that two Gaussian-like components can be detected.
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Optimal time–frequency distributions
using a novel signal adaptive method for
automatic component detection

Isabella Reinhold, Maria Sandsten

Mathematical Statistics, Centre for Mathematical Sciences, Lund University,
Sweden.

Abstract

Finding objective methods for assessing the performance of time-frequency
distributions (TFD) of measured multi-component signals is not trivial.
An optimal TFD should have well resolved signal components (auto-
terms) and well suppressed cross-terms. This paper presents a novel signal
adaptive method, which is shown to have better performance than the ex-
isting method, of automatically detecting the signal components for TFD
time instants of two-component signals. The method can be used together
with a performance measure to receive automatic and objective perform-
ance measures for different TFDs, which allows for an optimal TFD to be
obtained. The new method is especially useful for signals including auto-
terms of unequal amplitudes and non-linear frequency modulation. The
method is evaluated and compared to the existing method, for finding the
optimal parameters of the modified B-distribution. The performance is
also shown for an example set of Heart Rate Variability (HRV) signals.

Keywords: time-frequency, multi-component signal, detection,
performance measure, Heart Rate Variability
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1 Introduction

There are many types of non-stationary signals, most of which are multi-
component. These signals need to be visualised in time and frequency
simultaneously to characterise their time-varying nature. To do this the
distribution of the signal energy over the time-frequency plane, i.e. the
time-frequency distribution (TFD), can be studied.

The Wigner-Ville distribution (WVD) is a common TFD. For mono-
component, linear frequency modulated (FM) signals the WVD gives ex-
actly the instantaneous frequency (IF) making it the optimal TFD for such
signals. The problem with the WVD occurs when dealing with multi-
component signals or signals disturbed by noise. For such a signal the
WVD is not always zero when the signal has no power for a given time-
frequency instant. These contributions are called cross-terms and can have
twice the amplitude of the signal components. This makes it difficult to
distinguish the actual signal components, also called auto-terms, from the
cross-terms, [1].

There exist many TFDs which aim to suppress cross-terms by means of fil-
tering the WVD with a kernel, such as Choi-Williams, Zhao-Atlas-Marks
[1] and modified B-distribution [2]. However suppression of the cross-
terms can also result in loss of resolution of the signal components. Find-
ing good representations of multi-component signals is a complex problem
and is still a large field of research [3, 4]. When looking at different TFDs
for multi-component signals it might be possible to say that some plots
look cleaner and thus better. However, assessing the performance based
only on this visual comparison is very subjective and finding the optimal
parameter for a specific kernel would be very tiresome if not impossible.
Not many methods exist, for assessing which TFD is the best for a given
signal, especially when dealing with measured signals.

A quantitative performance measure for TFDs of two-component signals,
called normalised instantaneous resolution (NIR) performance measure,
was presented in [5]. The NIR performance measure makes it possible
to compare different TFDs and optimise kernel parameters which control
the tradeoff between signal component resolution and cross-term suppres-
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sion. The NIR performance measure can be used for simulated as well as
measured signals and was recently used in [6, 7] to find optimal TFDs for
different multi-component signals. However, the measure relies on para-
meters connected to correct detection of the signal components for each
time instant of the TFD, and the method used for automatic detection of
auto-terms is the one presented in [8]. One restriction of this method is the
requirement that the amplitudes of the two signal components are (approx-
imately) equal, which is an assumption that limits the use of the method.
The method also fails when signal components are close to each other or
has components with non-linear FM law [9], which is a well known re-
striction of many methods [3]. These restrictions in the detection method
narrows the use of the NIR performance measure as the choice of analysed
kernel parameters needs to be made with care. This limits the use of the
performance measure for automatic optimisation of signal adaptive ker-
nels, compared to other methods such as [10]. A large number of methods
for identification of signal components exist, e.g. [11, 12, 13], who re-
quire that cross-terms are well suppressed and locates the maximum peaks
as signal components. Other methods such as [14] which uses a method
called non-linear squeezing time-frequency transform exist as well. How-
ever, these methods require already optimised or semi-optimised TFDs or
are more complex and computationally heavy.

This paper presents a new signal adaptive method for automatically de-
tecting signal components in two-component signals which outperforms
the method in [8]. The new method is not limited by requiring that the
signal components have equal amplitudes. Additionally, the method suc-
ceeds in detecting components with non-linear FM laws. Further, the
new algorithm overcomes one of the main drawbacks when the estimated
parameters are used in the NIR performance measure, as it successfully
identifies auto-terms for a larger interval of kernel parameters, allowing
for a more objective kernel optimisation. It is also feasible that for two-
component signals the new automatic detection method can be used to
find the direction of the auto-terms which is used to create an adaptive
directional kernel [15, 16]. This kernel smooths at each point in the time-
frequency domain based on the direction of the energy distribution of the
signal.
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To illustrate the use of the new signal adaptive automatic detection method
together with the NIR performance measure, this paper shows how the op-
timal kernel parameters for the modified B-distribution [2] of an example
set of Heart Rate Variability (HRV) signals with a non-linear component
can be obtained. HRV, which is the variation of inter-heartbeat intervals, is
measured non-invasively using ECG. It provides information on the auto-
nomic regulation of the cardiovascular system. This means that the HRV
is a sensitive indicator of compromised health [17, 18]. The HRV has a
non-stationary nature, however only recently methods which do not as-
sume stationarity have been evaluated for HRV [19, 20]. It is common
to study HRV during treadmill running [21, 22], making the need for
methods of studying HRV in time and frequency concurrently even more
important.

The paper is organised as follows. Section 2 provides an introduction to
the basics of time-frequency analysis. Section 3 shortly presents the NIR
performance measure which will be used and details the new signal adapt-
ive method for automatic detection of the signal components. In Section
4 the performance of the new automatic detection method is evaluated
and compared to the performance of the method in [8]. The basis for the
evaluation is simulated signals and an example set of HRV signals. The
optimal modified B-distributions of the example HRV signals are presen-
ted in Section 5. Sections 6 and 7 finish the paper with discussion and
conclusions.

2 Time-frequency methods

The Wigner-Ville distribution (WVD),

Wz(t, f ) =
∫ ∞
−∞

z
(
t + τ

2

)
z∗
(
t − τ

2

)
e−i2πf τdτ, (1)

where ∗ represents the complex conjugate, is a TFD defined using an ana-
lytic signal, z(t). The analytic signal is defined such that Z (f ) = 0 if
f < 0, where Z (f ) = F{z(t)}, is the Fourier transform of the signal. The
quadratic class of TFDs, a subclass of TFDs where the signal kernel is of
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quadratic form, can be written as

ρz(t, f ) =
∫ ∞
−∞

∫ ∞
−∞

G(t − u, τ)z
(
u + τ

2

)
z∗
(
u− τ

2

)
e−i2πf τdudτ, (2)

where the time-lag kernel G(t, τ) is specific for each different quadratic
TFD. The convolution of the kernel in (2) is (in most cases) equal to a
2D filtering of the TFD and is used to suppress cross-terms. The design of
the kernels is usually done in the ambiguity (doppler-lag) domain, where
auto- and cross-terms are more easily differentiable [1].

2.1 Separable and lag-independent kernels

One simple, yet useful, class of kernels is the separable kernels. With the
separable kernel the TFD can be written

ρz(t, f ) = g1(t) ∗
t

Wz(t, f ) ∗
f

G2(f ). (3)

The convolutions in time and frequency can now be made in either order
which simplifies the calculations. It also means that the design of the kernel
will be greatly simplified, the 2D filtering operation is replaced by two
consecutive 1D filtering operations. A special case of the separable kernel
is the lag-independent (LID) kernel. It is obtained by setting

G2(f ) = δ(f ), (4)

which means that the kernel only will depend on time t. The calculations
for the TFD then only require one convolution, in the time direction only

ρz(t, f ) = g1(t) ∗
t

Wz(t, f ). (5)

Since the LID kernel only applies one 1D filtering, the resulting TFD will
be smoothed in the time direction only. This property makes the LID
kernel suitable for slowly varying frequency modulated signals or other
signals where cross-terms exist mainly some frequency distance from the
auto-terms and single auto-terms do not vary much in frequency. LID-
TFDs have been shown to have better performance in characterising HRV
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signals, compared to other time-frequency methods [23]. The LID ker-
nel can have different distributions, one is the modified B-distribution
(MBD), which has been shown to be suitable for HRV signals [24]. The
MBD kernel is defined as

gMBD(t) =
cosh−2β (t)∫∞

−∞ cosh−2β (ξ)dξ
, (6)

where β is the scaling parameter which determines the trade-off between
resolution of signal components and cross-term suppression. The MBD,
designed specifically for multi-component IF estimation, is almost cross-
term free and has high resolution of signal components in the time-
frequency plane [2].

3 Performance measure and a novel signal adaptive
method for automatic detection of auto-terms

The NIR performance measure, which combines the concepts of high en-
ergy concentration around the IF laws and clearly resolved signal com-
ponents is presented in [5]. The measure doesn’t take into account some
properties usually demanded for TFDs, which impose strict constraints on
the TFD design, such as satisfying the marginals [1]. Instead it focuses
on resolution of signal components and suppression of cross-terms and
sidelobes, which are important for practical use. The measure is defined as

P(t) = 1− 1
3

(
AS(t)
AM (t)

+
1
2

AX (t)
AM (t)

+ (1− D(t))
)
, 0 ≤ P(t) ≤ 1, (7)

where AS(t) is the average absolute amplitude of the largest sidelobes,
AM (t) the average amplitude of the auto-terms (mainlobes), AX (t) the ab-
solute amplitude of the cross-term and D(t) a measure of the separation of
the signal components’ mainlobes. It is defined as

D(t) =

(
f2(t)− V2(t)

2

)
−
(
f1(t)− V1(t)

2

)
f2(t)− f1(t)

, (8)
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where f1(t) and f2(t) are the centres of the mainlobes and V1(t) and V2(t)
are the instantaneous bandwidths of the auto-terms, calculated at

√
2/2 of

the height of the mainlobe.

For this measure a value close to 1 is a good performance. The perform-
ance measure is calculated for a time instant (slice) of the TFD. If P(t) is
calculated for several time instants, an estimate of the performance for the
whole TFD can be formed [5]. This measure works well for signals with
both linear and non-linear FM components [8, 9]. The only restriction is
that the signal should have only two components where the performance
measure is calculated.

3.1 A novel signal adaptive method for automatic detection of auto-
terms

In order to use the resolution performance measure on signals there is
a need for a signal adaptive method which automatically detects auto-,
cross-terms and sidelobes for a TFD time slice. Such a method for two-
component signals is proposed by Sucic et al. [8]. However, the difficulty
lies within detecting the auto-terms and a restriction is the assumption that
the signal components have equal amplitudes. The algorithm for Sucic’s
automatic detection of auto-terms (ADAT) follows these steps:

1. Normalise the time slice such that the absolute maximum is equal to
1.

2. Determine the three largest maxima (peaks) of the slice.

3. The cross-term is located between the auto-terms, so initially set the
middle peak to be the cross-term and the remaining as auto-terms.

4. Make sure that the ratio between the amplitudes of remaining two
peaks is close to 1, and that the peak chosen as the cross-terms is close
to the middle point between the centres of the other two peaks. This
checks whether the assumption in the previous step is correct. If not,
select the two largest peaks of the slice as the auto-terms.
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This method is simple and does in many cases successfully identify the
auto-terms. However, the requirement that the amplitudes of the two
signal components are (approximately) equal limits its use. Another draw-
back is that the method has a degraded performance for signals contain-
ing components with non-linear frequency modulated (FM) law [9]. The
novel method presented here does not require the signal component amp-
litudes to be equal, instead it relies on sidelobes and noise peaks of re-
stricted amplitudes. The steps of the novel Reinhold’s ADAT algorithm
are:

1. Normalise the time slice such that the absolute maximum is equal to
1.

2. Determine an amplitude threshold, λ, for the auto-terms.

3. Determine between which frequencies all peaks above λ are located.
This is the estimated frequency distance between the auto-terms,
Δ̂fa. Set δ ≈ Δ̂fa/2 as the minimum allowed frequency distance
between the auto- and cross-terms.

4. Identify the largest peaks above the threshold λ, which are separated
with at least δ. These are the only peaks which will be considered
when identifying auto-terms. Select the peaks furthest away from
each other as the auto-terms.

The minimum distance δ is set as approximately half the estimated fre-
quency distance between the auto-terms since theoretically within Δfa
there should be three peaks, the two auto-terms and the cross-term. It is
reasonable to choose it as δ = Δ̂fa/2−ε, where ε is a small error tolerance.
This allows for some error in the estimation ofΔfa and small deviations of
the placement of the cross-term.

The selection of the parameter λ could also be made automatically and
should be allowed to vary with each time slice for optimal results. This
paper proposes to let λ = cA2, where A2 is the amplitude of the second
largest peak and c is some scale factor, 0 < c < 1. This means that λ
always will relate to the amplitudes of the signal content. For simulations
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Figure 1: Time slice of the WVD of a two-component linear FM signal, with
IFs 0.15 and 0.22; (a) Potential auto-terms detected with Sucic’s ADAT, marked
with circles; (b) Detected auto-terms with Reinhold’s ADAT, the auto-terms are
marked by circles and the labels f1 and f2 respectively. The horizontal line shows
the threshold λ and the dashed lines are δ away from each identified auto-term.

in this paper λ = 0.5A2, if nothing else is stated. Other choices of c can
be used and Section 4.1 will evaluate how robust the novel ADAT is to
different λs.

3.2 Motivation for new automatic detection method

This section will motivate the need for a new ADAT by studying two
example time slices from TFDs of two-component signals. The examples
demonstrate situations when Sucic’s ADAT fails to correctly detect the
auto-terms, whereas Reinhold’s ADAT is successful. The first example is
a time slice of a WVD of a signal with components of equal amplitude.
Sucic’s ADAT initially identifies the three largest peaks, if these peaks are
close in amplitude, two of them are identified as auto-terms. Figure 1(a)
shows the identified three peaks. The ratio between any two of these peaks
is close to one and thus two of the three peaks are identified as auto-terms,
which two depend on implementation choices for the algorithm. However
since the first auto-term is not among these peaks Sucic’s ADAT fails to
correctly identify the auto-terms.
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Figure 2: Time slice of a LID-TFD of a two-component non-linear FM signal,
with IFs 0.15 and 0.19; (a) Auto-terms detected by Sucic’s ADAT, marked by
circles; (b) Auto-terms detected by Reinhold’s ADAT, marked by circles and the
labels f1 and f2 respectively. The horizontal line shows the threshold λ and the
dashed lines are δ away from each identified auto-term.

In this example only four peaks are above the threshold λ, marked by a
horizontal line in Figure 1(b). The peaks of maximum distance are initially
identified as the auto-terms, which gives an estimate of Δfa. Reinhold’s
ADAT will then detect three peaks above λ which are separated by at least
δ, the auto-terms and one of the dual peaks of the cross-term. The distance
between the dual peaks of the cross-term is (much) smaller than δ, hence
only one of the peaks are detected. Of the three detected peaks, the two at
maximum distance are finally identified as the auto-terms. These two are
the actual auto-terms and they are marked in the figure by the labels f1 and
f2. The figure also shows, in dashed lines, f1 ± δ and f2 ± δ.

The second example is a time slice from a LID-TFD of a signal with non-
linear FM law for one component, where the signal components have
equal amplitude. However, for some time slices of the TFD, there will
be poor energy concentration around the non-linear component’s IF law,
which will result in differences in the amplitudes of the auto-terms. Ac-
cording to Sucic’s ADAT, after identification of the three largest peaks, if
the ratio between the two outer peaks is not close to one, the two largest
peaks are chosen as auto-terms. Figure 2(a) shows how these steps identi-
fies the wrong peaks as auto-terms.
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Reinhold’s ADAT correctly identifies the auto-terms of this time slice,
which is shown in Figure 2(b). As seen in the figure, only three peaks
are above the threshold λ, the outermost are the auto-terms and those are
identified as auto-terms. Figure 2(b) also shows f1 ± δ and f2 ± δ.

3.3 Signals with more than two components

The purpose of the NIR performance measure is to resolve two compon-
ents which are close in frequency, however it can still be interesting to re-
solve close components in a signal with more than two components. There
are two kinds of signals which are particularly interesting to consider, both
has three components, however one has only two components present in
the signal at any given time. For such a signal there is no theoretical prob-
lem using the ADAT algorithms, since the signal’s TFD is analysed at each
time instant. Therefore it does not matter how long time duration signal
components have or how many signal components the signal has, as long
as there are at maximum two for any given time instant.

An example of the other type of three component signal is defined by

s(n) = cos
(
2π
(
0.15 + 0.04

(
n

256

))
n
)
+ cos

(
2π
(
0.24− 0.04

(
n

256

))
n
)

+ cos(2π0.3n), 0 < n ≤ 256,
(9)

and shown in Figure 3, it has three components which are all present at the
same time. This signal presents a problem for both ADAT methods, since
they are designed to find only two auto-terms separated by some frequency
distance in each time instant, and both methods usually fail to identify the
desired auto-terms for such a signal.

However the NIR performance measure and ADAT algorithms can still be
used for such signals if only the possibly known frequency band containing
the two close components are considered. The ADAT methods will then
only be applied to that frequency band and this requires omitting parts of
the TFD beforehand. In this example the NIR performance is calculated
in the frequency band 0 - 0.25. Figures 4(a) and (b) shows the detected
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Figure 3: MBD of the signal (9), which is a three component signal with two
close components and one further away.

Figure 4: Detection of auto-terms in the example three-component signal (9),
when only considering the frequency band 0 - 0.25 in the ADAT algorithms; (a)
Sucic’s ADAT; (b) Reinhold’s ADAT.

auto-terms on top of the TFDs for Sucic’s and Reinhold’s ADAT respect-
ively. The methods perform similarly and identifies the correct auto-terms
for most time instants. The added disturbance of more cross-terms can
decrease the performance of both ADAT algorithms and some initial fil-
tering with an appropriate kernel might be needed to suppress cross-terms.
An indication that filtering by a kernel is needed is if the auto-terms are
hard to distinguish by eye. The suggestion is then to apply a wide kernel
to get a TFD which closely resembles the WVD, keeping the resolution of
the auto-terms, but with cross-terms slightly suppressed. In this example
a wide MBD-kernel (β = 0.5) is used, the performance of both meth-
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ods increase if the kernel is more narrow. If the kernel is instead made
more wide, the middle auto-term will be very hard to distinguish from the
cross-term which intercepts it.

4 Detection of auto-terms

To compare the performance of Sucic’s and Reinhold’s ADAT, the rate of
detection for different two-component signals and TFDs have been stud-
ied. The rate of detection is measured by checking if the detected auto-
terms are close to the signal component IFs in each time slice of the TFD.
The detection for each time instant can be either successful or unsuccess-
ful. If the frequencies of both the detected auto-terms vary no more than
Δfa/4 from the respective signal component IF, the detection is called suc-
cessful. Every successful detection yields a value 1 and every unsuccessful
a 0. The detection results for each time instant of the TFD is then added
together and the sum is divided by the number of time instants, this gives
a rate of detection in the interval [0, 1] for the whole signal.

In this section the rate of detection will be examined for signals with addit-
ive Gaussian white noise, with signal-to-noise ratio (SNR) 5 dB. The rate
of detection for a given signal will vary with different noise simulations.
Thus to give an accurate description of the rate of detection, 500 differ-
ent noise simulations will be used to find the average rate of detection for
a given signal and kernel parameter. The lower bound of the one sided
confidence interval with 5% significance is also presented.

When computing the TFD of a (finite) signal, there will be some effects
around the edges, in time and frequency. In this section, the middle 2/3
time slices of the TFD will be evaluated when calculating the rate of de-
tection, where the initial and end time slices are ignored. The simulated
signals are 256 samples, which gives 256 · 2/3 = 172 evaluated time in-
stants for each TFD.

47



Table 1: Setup parameters for calculation of rate of detection. Parameters a0, f0, fI
and k are the variable amplitude, starting frequency, frequency increase and factor
for the signal in (10). β is the scaling parameter for the MBD kernel (6).

Setup a0 f0 fI k β

1 [0.6, 1.4] 0.17 0.06 1 0.30
2 1.0 [0.16, 0.21] 0.04 1 0.50
3 1.0 0.19 0.07 3 [0.08, 0.20]

Three different setups of TFDs will be evaluated, the parameters for these
are shown in Table 1. The parameters refer to the general signal

s(n) = a0 cos(2π0.15n) + cos
(

2π
(

f0 + fI
(

n
256

)k
)

n
)
+ e(n),

0 < n ≤ 256,
(10)

where e(n) is stationary Gaussian white noise, and to the kernel parameter,
β , of the MBD kernel in (6).

The first setup calculates the rate of detection when the components have
linear FM laws. The amplitude of one of the components is varied, in
accordance to Table 1. The kernel parameter is chosen so that the cross-
term and noise peaks are slightly suppressed, whilst the signal components
should be relatively unaffected by the filtering. Figures 5(a) and 5(b) show
two examples of the evaluated MBDs of signals with the smallest (a0 =
0.6) and largest (a0 = 1.4) component amplitudes. The results for Sucic’s
and Renhold’s ADAT are presented in Figure 6(a) and it can be seen that
Reinhold’s ADAT performs better than Sucic’s for all values of a0. In fact
the lower bound of Reinhold’s ADAT is in all cases higher than the average
detection rate for Sucic’s.

Sucic’s ADAT performs poorly for low and high a0, i.e. when the difference
in amplitude of auto-terms is significant, which is in accordance of the
results presented in [9]. Especially notable is, that the rate of detection is
as low as around 0.50 for a0 = 0.6, this would make any evaluation of the
performance using (7) very unreliable. Reinhold’s ADAT however has a
detection rate of around 0.75 for the same amplitude, which although not
perfect is considerably better.
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Figure 5: Some MBDs of the signal in (10) with parameters according to the
setups in Table 1 evaluated when calculating the rate of detection. The figures
show the part of the distribution which is assessed; (a) Setup 1 with a0 = 0.6; (b)
Setup 1 with a0 = 1.4; (c) Setup 2 with f0 = 0.16; (d) Setup 2 with f0 = 0.21;
(e) Setup 3 with β = 0.08; (f ) Setup 3 with β = 0.20.

The second setup, Table 1, varies the frequency distance of the two com-
ponents of the signal. The kernel parameter for this setup is chosen large so
that much of the cross-term and noise remains, making the auto-term de-
tection difficult. This setup will thus show how the two methods perform
for quite challenging TFDs. Figures 5(c) and 5(d) show the MBD when
the signal components are closest together (f0 = 0.16) and furthest apart
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Figure 6: The average rate of detection for the ADAT algorithms according to the
three setups in Table 1. The lower bound is a one sided confidence interval with
5% significance. The results are obtained from 500 simulations with different
realisations of stationary Gaussian white noise with SNR 5 dB; (a) Setup 1; (b)
Setup 2; (c) Setup 3.

(f0 = 0.21). In Figure 6(b) it can be seen that both ADAT methods have
the highest rate of detection when the signal components are furthest apart
and the average detection rate is rather high. However Reinhold’s ADAT
still outperforms Sucic’s, again the lower bound for Reinhold’s ADAT is
higher than the average value for Sucic’s ADAT.

The third setup, Table 1, uses the same signal and instead varies the scaling
parameter β of the MBD kernel, making this test different from the other
two. The signal has one component with a non-linear FM law. A MBD
of the signal with the smallest scaling parameter (β = 0.08) is shown
in Figure 5(e), in this TFD much of the noise and cross-term have been
suppressed. Figure 5(f ) shows a MBD with the largest scaling parameter
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Figure 7: The average rate of detection for Reinhold’s ADAT according to the
setups in Table 1. The lower bound is a one sided confidence interval with 5%
significance. The results are obtained from 500 simulations with different real-
isations of stationary Gaussian white noise with SNR 5 dB; (a) Setup 1 with
a0 = 0.8; (b) Setup 2 with f0 = 0.16.

(β = 0.20), this TFD has some noise peaks and quite high cross-terms.
Figure 6(c) shows the resulting average rates of detection for Sucic’s and
Reinhold’s ADAT. It can be seen that the performance of Sucic’s ADAT
decreases when β increases, however for Reinhold’s the average rate of de-
tection is 1 for all evaluated β . This suggests that Reinhold’s ADAT is
robust to different levels of filtering of the TFD.

4.1 Robustness to choices of amplitude threshold

The amplitude threshold used for Reinhold’s ADAT in this paper is λ =
0.5A2, where A2 is the amplitude of the second largest peak. This section
evaluates how robust Reinhold’s ADAT is to other choices of λ. Different
thresholds are tested by letting λ = cA2, 0 < c < 1, and letting the scale
factor c vary.

To evaluate the robustness, the average rate of detection is calculated for
500 simulations of the signal (10), using the first setup with a0 = 0.8
and the second setup with f0 = 0.16, with Gaussian white noise, SNR
5 dB. The results for the signal with different amplitudes of the signal
components are shown in Figure 7(a), all average detection rates are around
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0.9 or higher, which can be compared to the average detection rate for the
same setup using Sucic’s ADAT which is under 0.8.

The results for the signal with close components and large kernel para-
meter are shown in Figure 7(b). It can be seen that choosing c = 0.3 gives
the worst performance for this signal, which is not surprising since there
are much high-amplitude disturbance in the signal and a low λwould allow
such peaks to be identified as auto-terms. The average rate of detection for
Sucic’s ADAT of the same signal is almost 0.95, which is higher than for
Reinhold’s when c = 0.3, however for other choices of c the performance
of Reinhold’s ADAT is equivalent or superior.

4.2 Detection of auto-terms on real HRV data examples

The strength of the NIR performance measure (7) is that it can be used to
asses the performance of different TFDs of measured signals [5]. However,
for the performance measure to be as accurate as possible, the signal adapt-
ive method for automatic detection of the auto-terms need to detect the
correct IFs of the signal for as many time instants of the TFD as possible.
When using measured signals, the signal IFs are unknown, which makes
the rate of detection more difficult to calculate. This section will instead
show the detected auto-terms on top of the TFDs.

The signals in this section is the Heart Rate Variability (HRV) signals from
adult humans which have been asked to breathe with the same frequency as
a metronome. The frequency of the metronome was increased non-linearly
over time, and thus the breathing frequency is increased non-linearly with
time. This gives a HRV signal with two components, one assumed station-
ary low frequency (LF) and and one high frequency (HF) with non-linear
FM law, approximately following the breathing frequency.

Figure 8 shows the MBDs, β = 0.08, of four HRV signals and the detected
auto-terms using Sucic’s and Reinhold’s ADAT. Figures 8(a), 8(c), 8(e) and
8(g) show the detected auto-terms using Sucic’s ADAT. Figures 8(b), 8(d),
8(f ) and 8(h) show the detected auto-terms using Reinhold’s ADAT.
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Figure 8: Detection of auto-terms in measured HRV using Sucic’s and Reinhold’s
ADAT; (a) subject 1, Sucic’s ADAT; (b) subject 1, Reinhold’s ADAT; (c) subject
2, Sucic’s ADAT; (d) subject 2, Reinhold’s ADAT; (e) subject 3, Sucic’s ADAT; (f )
subject 3, Reinhold’s ADAT; (g) subject 4, Sucic’s ADAT; (h) subject 4, Reinhold’s
ADAT.

As seen in Figures 8(a) and 8(b) both methods fail to identify the auto-
terms when the stationary signal component is corrupted by much noise,
around t ∈ [80, 120]. The noise peaks in this region have high amplitudes
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and are close to the signal component in frequency, so identification is
expected to be hard. However Reinhold’s ADAT performs over all much
better.

In Figures 8(c) and 8(d) it can be seen that Sucic’s ADAT fails much more
than Reinhold’s. This is because the stationary signal components has a
low amplitude compared to the non-stationary component. Figure 8(e)
shows that Sucic’s ADAT detects the incorrect peaks as auto-terms when
the (almost) stationary signal component is noisy, at t ∈ [100, 140]. Rein-
hold’s ADAT however identifies the correct peaks as auto-terms, see Figure
8(f ), this is because the noise peaks around the (almost) stationary sig-
nal component are close in frequency to the actual IF of the component,
the least distance allowed between peaks, δ, is large enough to avoid these
peaks being identified as auto-terms.

The non-stationary signal component in Figures 8(g) and 8(h) seems to
have strong inner artifacts [1] at t ∈ [30, 80], i.e. peaks due to the non-
linear frequency increase. This makes detection hard and both methods
fail sometimes, however over all the performance of Reinhold’s ADAT is
much higher.

5 Optimal parameter estimation of kernels for HRV
signals

A method for finding the optimal TFD for a given multi-component sig-
nal is presented in [5]. The basic steps are to define a set of criteria for
comparison of TFDs, then define a quantitative measure for evaluating
TFD performance based on these criteria. This quantitative measure can
be the NIR performance measure (7). After choosing a measure the TFDs
should be optimised to match the comparison criteria as close as possible.
When looking at the MBD this means that one chooses an initial value of
the kernel parameter β and calculates the MBD for this. Then the per-
formance is calculated for each time instant within some time interval of
interest. The average of all instantaneous measures is the interval perform-
ance measure of the MBD for the given β . This procedure is repeated
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Table 2: The evaluated time intervals when finding the optimal MBDs for the
HRV signals of four subjects, together with the resulting optimal kernel paramet-
ers and the interval performance measures.

Subject Time interval Optimal parameter
Interval

performance measure
1 (0, 85] β = 0.053 0.7860
2 (0, 120] β = 0.056 0.8193
3 (25, 95] β = 0.047 0.8035
4 (70, 170] β = 0.061 0.8190

for an interval of β with an appropriate length of the increments. The
optimal kernel parameter β is the one which gives the best interval per-
formance measure. Other TFDs could be optimised in the same manner
by comparing the NIR interval performance measures while varying one
or several parameters connected to the relevant TFD.

When the optimal parameters has been found for several different TFDs,
the TFDs can be compared. The TFD with the maximum interval per-
formance measure is the optimal TFD for the given signal. In this section
the optimal MBDs, obtained by the above described method using the
NIR performance measure, will be found for the four example HRV sig-
nals presented in the previous section. The choice to optimise the MBD
for the HRV signals is because this TFD has been shown suitable for HRV
signals [24].

The interval performance measure is calculated for different time intervals
for the four HRV signals using the measure in (7). This gives an interval
performance measure [0, 1], where 1 is optimal performance. The time
intervals are chosen such that Reinhold’s ADAT detects the correct auto-
terms for each time instant for all the evaluated β . The time intervals for
each subject is shown in Table 2, which also shows the resulting optimal
parameters and interval performance measure. The optimal MBDs are
shown in Figure 9.

Longer time intervals can be used when calculating the interval perform-
ance measure with Reinhold’s ADAT compared to Sucic’s, since it correctly
identifies the auto-terms for more time instants and longer compact time
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Figure 9: Optimal MBD for four examples of HRV signals; (a) subject 1; (b)
subject 2; (c) subject 3; (d) subject 4.

intervals of the HRV signals. The resulting performance measure will thus
more accurately describe the performance of the TFD, thus giving a more
correct estimate of which parameter and corresponding TFD is the op-
timal.

6 Discussion

The novel Reinhold’s ADAT presented in this paper relies less on the amp-
litudes of the auto-terms being equal compared to Sucic’s ADAT presented
in [8]. For Reinhold’s ADAT to succeed in each TFD slice, λ and δ need
to fulfil the following:
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• Outer peaks which have a distance larger than δ to their closest auto-
term are smaller than λ.

• Peaks with less distance than δ to their closest auto-term have smaller
amplitudes than that auto-term.

• If the cross-term is the largest peak, the parameter δ is smaller than
the actual distance between the cross-term and auto-terms.

It is therefore important that λ and δ depend on the examined TFD time
slice. It is reasonable to choose δ = Δ̂fa/2 − ε, where ε is a small error
tolerance as discussed in Section 3.1. This paper suggests choosing λ =
cA2 and Section 4.1 shows that Reinhold’s ADAT is robust for such λs.
The scale factor c can be adapted to increase performance if there exist
some knowledge of the signal, such as the relative amplitudes of the signal
components or the abundance of noise peaks, however c = 0.5 is shown
to give a good over all performance.

Reinhold’s ADAT, as well as Sucic’s ADAT, is designed to find two auto-
terms some frequency distance apart in each time instant of a TFD. If a
signal has more than two components, Reinhold’s ADAT can be used with
the NIR performance measure to get good resolution between two signal
components which are close. As discussed in Section 3.3, this requires cut-
ting away the TFD which is outside the relevant frequency bandwidth, i.e.
where the two close components are. This should be done before applying
the ADAT algorithm and can be done manually, however an automatic
and adaptive method to select the bandwidth is suggested for further re-
search.

7 Conclusion

This paper presents a novel signal adaptive method for automatic detection
of auto-terms in time slices of TFDs for two-components signals. This
method performs better than the existing method for several types of sig-
nals and is less dependent on signal components to have equal amplitudes.
Since the new method is shown to be more robust to the choice of kernel
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parameter, a larger range of kernel parameters can be tested, lowering the
risk of erroneous conclusions to be drawn of the optimal TFD. This novel
detection method can successfully be used together with a performance
measure for TFDs to find optimal TFDs.
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ović, and M. Daković, “Instantaneous frequency in time-frequency
analysis: Enhanced concepts and performance of estimation al-
gorithms,” Digital Signal Processing, vol. 35, pp. 1–13, December
2014.

[4] F. Auger, P. Flandrin, Y.-T. Lin, S. McLaughlin, S. Meignen,
T. Oberlin, and H.-T. Wu, “Time-frequency reassignment and
synchrosqueezing,” IEEE Signal Processing Magazine, pp. 32–41,
November 2013.

[5] B. Boashash and V. Sucic, “Resolution measure criteria for the ob-
jective assessment of the performance of quadratic time-frequency
distributions,” Signal Processing, vol. 51, pp. 1253–1263, 2003.
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Abstract

An automatic component detection method for overlapping transient
pulses in multi-component signals is presented and evaluated. The utilized
time-frequency representation is shown to have the best achievable resol-
ution for closely located Gaussian shaped transient pulses, even in heavy
disruptive noise. As a result, the method automatically detects and counts
the number of transients, giving the center times and center frequencies of
all components with considerable accuracy. The presented method shows
great potential for applications in several acoustic research fields, where
coinciding Gaussian shaped transients are analyzed. The performance is
tested on measured data from a laboratory pulse-echo set-up and from a
dolphin echolocation signal measured simultaneously at two different loc-
ations in the echolocation beam. Since the method requires little user
input, it should be easily employed in a variety of research projects.

Keywords: reassignment, non-stationary signals, time-frequency analysis,
pulse-echo
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1 Introduction

The time-frequency (TF) characterization of transient signals is of interest
in many different research areas, such as ultrasonic and marine biosonar
signal analysis as well as machine fault diagnosis and biomedical signal pro-
cessing. In these fields, the measurement signal is often of short duration,
includes several closely spaced or even coinciding components, and can be
heavily disturbed by noise [1, 2, 3, 4, 5]. Methods which are tailored to
signals of this type are scarce and not conclusively investigated, in com-
parison to methods for longer signals. This paper thoroughly investigates
a TF representation, optimal for transient signals, and presents an auto-
matic method for counting and characterizing the individual components,
in terms of TF localization, within a signal.

Transient signals are by nature harder to characterize, compared to longer
signals. The short, sometimes extremely short, duration of the pulses im-
plies that the uncertainty in frequency is high according to the Heisenberg
uncertainty principle [6]. Still, these signals are essential in fields such
as ultrasonic analysis where pulse reflections are located closely in the TF
domain, and for the ultrasonic biosonar analysis of several toothed whale
species, where the broadband signals (30-60 kHz) are only a few periods
long [7, 8]. The sonar beam of toothed whales contains signal compon-
ents from various acoustic pathways inside the animals’ forehead. These
pathways affect the emitted signal in different directions, however to what
extent the signal can be controlled by the animal and what functions it
serves, are not yet fully understood [9, 10].

Well known TF techniques can successfully be applied for relatively simple
transient signals of narrowband excitation, however for broadband excita-
tions where the multiple components appear very close in the TF domain,
the signals are increasingly difficult to analyze [11]. The TF representa-
tions employed in previous studies of broadband echolocation signals can
often be used in the off-axis part of the echolocation beam where the com-
ponents are more separated in time. Along the beam axis, the time and fre-
quency information of possible individual components, are still unknown
since all previously used methods are unable to resolve these signal com-
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ponents [2], and the topic is currently a research field of great importance
[1].

A technique to improve the localization of single TF components and en-
hance the readability of the TF representation of multi-component signals
is introduced by Kodera et al. [12] and later reintroduced by Auger and
Flandrin [13]. The method reassigns signal energy to the center of gravity,
giving higher energy concentration at the instantaneous frequencies of the
signal. A similar method, the synchrosqueezing transform by Daubechies
et al. [14], related to the empirical mode decomposition [15], reassigns all
energy in frequency at a certain time point. However these methods only
work well for longer chirps and constant frequency signals, and are based
on the assumption of a linear frequency modulation, essentially of infinite
length. Methods exist that convert the possible non-linear instantaneous
frequency into a linear one and in Wang et al. [16] a nonlinear squeezing
transform, especially designed for weak signal detection, is proposed.

Short transient signals can often be assumed to have a Gaussian like shape
in time, and modern algorithms that resolve the parameters of a Gaussian
shaped function in time have been described by Guo [17] and Kheirati
Roonizi [18]. However for components that overlap heavily in time, TF
based methods, such as Gabor and wavelet based algorithms have been
applied to a larger extent, for which the main aim is to find the analysis
window achieving the best TF resolution. Similarly the signal adaptive
Stockwell transform estimates the width of a Gaussian window function
using a concentration criterion [19]. The Gabor and Stockwell transforms
are widely used and adapted in many fields of research, e.g. estimating
the direction of arrival [20], automatically adapting the TF resolution of
transients [21], detecting epileptic seizures [22] or double-talk in acoustic
echo cancellation [23].

A method tailored to very short transients, which goes beyond the lower
bound of the Gabor transform and the reassignment of longer lasting tran-
sients, is presented in Hansson-Sandsten and Brynolfsson [24]. This re-
assignment technique, the scaled reassigned spectrogram, (ReSTS) finds
the TF centers of individual signal components by utilizing that many
transients have a Gaussian like shape in time. The ReSTS is a high TF res-
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olution method and is therefore well suited for detection and localization
of transient signal components, also when they are closely located in the
TF domain. There exist many methods for localizing and counting signal
components, e.g. [25, 26, 27, 28], however these methods are developed
for longer lasting signals.

In this paper we present a novel method for objective detection, count-
ing and TF localization of components within transient signals. We also
present a thorough evaluation of the novel method and the resolution of
the suggested TF representation. Our method is unique in that it is de-
veloped for short transient signals, it exploits the high resolution of the
ReSTS and can be adapted to signals with heavy disruptive noise. The
paper offers an comprehensive evaluation of the method on simulated sig-
nals, and shows results for measured ultrasound pulse-echoes and marine
biosonar signals. The results are of importance especially to the acoustic
research community.

2 The reassigned spectrogram for transient signals

In order to detect and localize individual transient pulses in a multi-
component signal, there is a need for a TF representation with appropriate
resolution. Figure 1 shows the time signal and a joint TF representation,
the spectrogram, of three different signals with decreasing time distance
between the component TF centers. For the first two signals, Figure 1 (a)
and (b), the spectrogram has adequate resolution and separates the com-
ponents, but for the last signal, Figure 1 (c), the overlap in time is too large
and as a result the spectrogram does not fully resolve the two components.

However the components of the last signal can be resolved using the reas-
signed spectrogram for transient signals (ReSTS) [24], which is an adapt-
ation of the reassigned spectrogram [12, 13]. The ReSTS can in theory
give perfect TF localization to transient signals and is obtained by first
calculating the spectrogram of a signal x(t) using a desired time window
h(t)

Sh
x (t,ω) =

∣∣F h
x (t,ω)

∣∣2 = ∣∣∣∣∫ x(s)h∗(s − t)e−iωsds

∣∣∣∣2 , (1)
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Figure 1: Illustration of a transient signal with two Gaussian pulses with different
TF centers; (a) pulses clearly separated in time and frequency; (b) pulses overlap-
ping in time but clearly separated in frequency; (c) pulses overlapping so much in
time that the frequency separation is not clear.

where ∗ denotes complex conjugate, ω = 2πf and the integral runs from
−∞ to∞. The signal energy is then reassigned by introducing the reas-
signment coordinates t̂x(t,ω) and ω̂x(t,ω) and the two-dimensional Dirac
impulse,

∫ ∫
f (t,ω)δ(t− t0,ω−ω0)dtdω = f (t0,ω0). The ReSTS is then

defined as

ReSh
x (t,ω) =

∫ ∫
Sh

x (s, ξ)δ
(
t − t̂x(s, ξ),ω− ω̂x(s, ξ)

)
dsdξ, (2)

and thus maps signal energy from a point (t0,ω0) to the point (̂tx(t0,ω0),
ω̂x(t0,ω0)) in the spectrogram. The reassignment coordinates need to be
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calculated for each selection of signal and time window according to

t̂x(t,ω) = t + ctR

(
F th

x (t,ω)
F h

x (t,ω)

)
,

ω̂x(t,ω) = ω− cωI
(

F dh/dt
x (t,ω)
F h

x (t,ω)

)
,

(3)

where R and I represents the real and imaginary parts and F h
x , F th

x and
F dh/dt

x are the short-time Fourier transforms (STFTs) with different time
windows. The included scaling factors ct and cω makes the ReSTS ad-
aptable to transient signals, and separates it from the normal reassigned
spectrogram that have ct = cω = 1 [13, 24, 29].

Transient signals are often assumed to be Gaussian shaped in time, it is
thus interesting to consider the unit energy Gaussian function

xG(t) = σ−1/2
π
−1/4e−

t2

2σ2 , (4)

and multi-component signals constructed by time, frequency and phase
shifted Gaussian shaped pulses

x(t) =
K∑

k=1

akxG(t − tk)ei2πfktei2πφk , (5)

where ak is the amplitude, tk and fk = ωk/2π are the time and frequency
centers and φk ∈ [0 1) the phase shift.

Hansson-Sandsten and Brynolfsson [24] calculated the reassignment co-
ordinates for a Gaussian signal with time-frequency center at the origin,
and a matching Gaussian time window

t̂xG (t,ω) = t − ct
t
2
,

ω̂xG (t,ω) = ω− cω
ω

2
.

(6)

Perfect TF localization is then achieved when ct = cω = 2, thus giving
the reassignment coordinates (̂txG (t,ω), ω̂xG (t,ω)) = (0, 0), i.e. the cor-
rect time-frequency center. This result can easily be expanded to Gaussian
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Figure 2: Illustration of the reassignment of signal energy and the resulting TF
representation, adapted for transient signals, for the signal in Figure 1 (c). The
signal has two transient pulses which overlap heavily in time, however when the
signal energy is reassigned to the center of mass, the ReSTS shows two clear peaks
at the correct TF centers.

signals with other TF centers since the spectrogram obeys time-frequency
shift-invariance and due to the linearity of the Fourier transform, the reas-
signment coordinates are linear [29].

For multi-component signals (5), there will be some interaction between
the components after reassignment. However it is still possible for the
ReSTS to show clearly separated components, Figure 2, to be compared
with the spectrogram in Figure 1 (c). The figure illustrates the reassign-
ment of the signal energy to the new TF coordinates, according to (6)
with ct = cω = 2, shown by the arrows in the spectrogram contour plot
to the TF centers of the two pulses. The resulting ReSTS has two clear
peaks at the correct TF centers of the pulses and very little scattered signal
energy.
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3 Automatic component detection algorithm

This section proposes an algorithm that automatically counts the number
of signal components in the ReSTS. The algorithm will enable users to
automatically find the number of transient pulses in a signal and the in-
dividual TF locations of the pulses. It will thus be possible to objectively
and efficiently analyze transient signals. To our knowledge there exist no
researched methods for finding multiple peaks in a matrix.

The ReSTS consists of high energy peaks in a low energy surrounding.
Both signal components and noise will form peaks after the reassignment,
however peaks will have more energy, and thus higher amplitude, if they
are the result of signal components. The algorithm therefore assumes that
any local maxima is a peak, either from a signal components or from noise,
and that the amplitudes of the peaks will differ between signal components
and noise.

A pseudo code of the proposed algorithm is presented. It uses the discrete
time and discrete frequency ReSTS matrix, denoted ReS, as TF represent-
ation. The user decides a maximum number of components for the signal,
Kmax, the guess can be much larger than the expected number of compon-
ents without compromising the performance, however very large numbers
would increase the computational time. The user also sets an area around
a local maximum, 2δt wide in time and 2δf wide in frequency, that will be
assumed not to include more than one local maximum. The choices of δt

and δf depend on the resolution of the ReSTS which will be evaluated in
Section 4.1.

The constant 0 < ρ ≤ 1 is set by the user and allows the algorithm to be
used for signals with relatively low SNR. Depending on the SNR, all noise
peak amplitudes could be low and relatively constant or some noise peak
amplitudes could be rather high and close in amplitude to the signal peaks.
A large ρ assumes high SNR, where signal and noise peak amplitudes are
clearly separated, a small ρ assumes low SNR and allows the algorithm to
find relatively smaller signal peaks. The output from the algorithm is the
time locations T1,T2, . . . ,TK and the corresponding frequency locations,
and F1, F2, . . . , FK , of the estimated signal peaks.
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Algorithm 1 Pseudo code
Input: ReS, Kmax , δt , δf , ρ
Output: T1,T2, . . . ,TK , F1, F2, . . . , FK

ReS : The ReSTS matrix
Kmax : Initial guess of maximum number of signal components
δt : Smallest time separation
δf : Smallest frequency separation
ρ : Normalizing constant for the noise amplitudes
T1,T2, . . . ,TK : Time centers of the signal components
F1, F2, . . . , FK : Frequency centers of the signal components

1: N = 3Kmax

2: for n=1:N do
3: find coordinates of maximum in ReS, (T (n), F (n)
4: save maximum amplitude in vector, A(n)
5: define the rectangle area, BTF , with center (T (n), F (n)) and area 2δt ·2δf
6: set the area BTF in ReS to 0
7: end for
8: K = Kmax + 1
9: repeat

10: K = K − 1
11: Δn = ρ (A(K + 1)− A(N ))
12: Δs = A(1)− A(K )
13: Δ = A(K )− A(K + 1)
14: if Δ > Δs then
15: peak K is a signal component
16: else if Δ < Δn then
17: peak K is a noise component
18: else
19: if Δ/Δn > Δs/Δ then
20: peak K is a signal component
21: else
22: peak K is a noise component
23: end if
24: end if
25: until peak K is a signal component
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The algorithm runs as described below:

• N = 3Kmax peaks are located to always include an adequate number
of noise peaks.

• The maximum peaks are estimated sequentially and the area of size
2δt · 2δf around the current maximum peak is set to zero. Then the
next maximum peak can be located. The identified local maxima
of the ReSTS can be assumed to be peaks because of the proper-
ties of the ReSTS, and due to the structure of the algorithm, the N
identified peaks are sorted with descending order of amplitude in all
relevant vectors.

• The number of assumed signal peaks among the N maximum peaks
is set to K = Kmax + 1 and is then decreased with one for each
iteration the repeat loop. Δn is the difference in amplitude of all
known noise peaks, normalized with the constant ρ. Δs is the differ-
ence in amplitude of all the possible signal peaks. Δ is the difference
in amplitude of the smallest possible signal peak and largest known
noise peak.

• In each iteration of the repeat loop (line 9 - 25), it is determined
if peak K is a signal or noise component. If peak K is determined
to be from a signal component, all peaks with larger amplitude are
assumed to also be signal peaks and the algorithm has finished its
search for signal peaks.

• Peak K will be determined to be from a signal or noise component
depending on how much its amplitude deviates from the amplitude
slope created by the known noise peaks.

• If the testΔ > Δs (line 14) is passed, peak K should be a clear signal
component as its difference in amplitude to the largest noise peak is
larger than its difference in amplitude to the largest identified peak.

• If the testΔ < Δn (line 16) is passed, peak K should be a noise peak
as Δ will be relatively small.

• Note that bothΔ > Δs andΔ < Δn can be true, then peak K is as-
sumed to be from a signal component, however the SNR is probably
very low for such a signal.
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• If none of the testΔ > Δs andΔ < Δn are true, then bothΔ/Δn ≥
1 andΔs/Δ ≥ 1. The testΔ/Δn > Δs/Δ (line 19) is true ifΔs/Δ
is closer to 1 compared to Δ/Δn. This means that the amplitude
of peak K deviates from the amplitude slope of the noise peaks, and
peak K is assumed to be a signal component.

4 Resolution of the reassigned spectrogram for transient
signals

The proposed automatic component detection algorithm is designed to be
used with the ReSTS, which means that the TF resolution of the ReSTS
is of importance. In theory the ReSTS with Gaussian window can give
perfect TF localization to Gaussian signal components, however the resol-
ution of components in signals disrupted by noise needs to be evaluated in
order for the proposed algorithm to be usable in practice.

We consider the signal x(t) in (5) that is a linear combination of Gaus-
sian pulses (4) and add white Gaussian noise. For such a signal with two
components, that have the same frequency centers and amplitudes, but
different time centers, the components can be moved closer together in
time to examine when different TF distributions no longer can resolve the
components.

In this section the simulated signals have sampling frequency 100 MHz
and the scaling of the Gaussian pulses (4), σ = 0.5 μs, which gives an
approximate signal length of 1.2 μs, full width at half maximum, or ap-
proximately 5 periods. The evaluated time distances range from to 0.5 μs
to 2.0 μs, this means that the signal components will heavily overlap for
some test signals. White noise is additively disturbing the signals, with
SNR = 5 dB, defined as averaged total signal energy to variance of the
noise.

Figure 3 shows a realization of the signal when (t1, t2) = (4.00, 5.50) μs
and it can be seen that for this noisy signal, the overlap of the components
is noticeable in time, Figure 3 (a), as well as in the spectrogram, Figure
3 (b) and in the Choi-Williams distribution (CWD), [30], Figure 3 (c).
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Figure 3: Illustrations for a realization of the simulated signal (5) with (t1, t2) =
(4.00, 5.50) μs, white Gaussian noise and SNR = 5 dB; (a) the time signal; (b)
the spectrogram; (c) the Choi-Williams distribution; (d) the ReSTS.

However, in the ReSTS, Figure 3 (d), the components are clearly separ-
ated, showing the TF centers as clear peaks. Important to note is that the
scaling parameter for the CWD, α = 0.2, is evaluated and chosen so that
it balances the suppression of interference and loss of resolution.

The three different TF distributions, the spectrogram and the ReSTS with
a matched Gaussian window, σ = 0.50 μs, and the CWD, are evalu-
ated by simulating 200 realizations of each test signal with different time
distances between components. Each simulation has different noise dis-
turbance realizations and phase shifts for both signal components. The TF
distributions are calculated for each realization and the maximum in an
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Table 1: Mean and standard deviation of the estimated time centers from 200
simulations of the signal (5) with white Gaussian noise, SNR = 5 dB and random
phase for each pulse.

Spectrogram CWD
Mean [μs] SD [μs] Mean [μs] SD [μs]

Test True (t1, t2) t̂1 t̂2 t̂1 t̂2 t̂1 t̂2 t̂1 t̂2

1 (4.00, 6.00) μs 4.01 5.99 0.03 0.03 4.08 5.93 0.05 0.06
2 (4.00, 5.50) μs 4.12 5.37 0.19 0.21 4.13 5.37 0.11 0.10
3 (4.00, 5.00) μs 4.37 4.63 0.24 0.24 4.23 4.78 0.22 0.21
4 (4.00, 4.50) μs 4.23 4.26 0.07 0.07 4.14 4.35 0.16 0.15

ReSTS
Mean [μs] SD [μs]

Test True (t1, t2) t̂1 t̂2 t̂1 t̂2

1 (4.00, 6.00) μs 4.00 6.00 0.02 0.02
2 (4.00, 5.50) μs 4.01 5.50 0.04 0.04
3 (4.00, 5.00) μs 4.02 4.97 0.09 0.10
4 (4.00, 4.50) μs 4.14 4.35 0.12 0.12

area around the true TF center for both components are extracted to cal-
culate the mean estimated TF centers and mean peak amplitudes. These
results are shown in Tables 1 - 2, where the standard deviation (SD) of the
estimated time and frequency centers and coefficient of variation (CV) of
the amplitudes are calculated to show the spread of the estimates and peak
amplitudes.

It can be seen that all three methods separate the signal components when
time distance between the components is 2.00 μs, even though the CWD
gives some deviations in the time centers, see Table 1. When the time
distance is 1.50 μs the spectrogram and the CWD are not able to give
the correct time centers, while the ReSTS gives a good estimate mean and
low standard deviation. This means that for this type of signal with low
SNR and random phase shifts, the spectrogram does not succeed to resolve
the Gaussian pulses that are 2σ = 1.0 μs apart, which is the theoretical
minimum time separation needed between two Gaussian pulses for the
peaks to be resolved [31]. The estimated time centers for the ReSTS are
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Table 2: Mean and coefficient of variation of the peak amplitudes from 200 sim-
ulations of the signal (5) with white Gaussian noise, SNR = 5 dB and random
phase for each pulse.

Spectrogram CWD
Mean CV Mean CV

Test A1 A2 A1 A2 A1 A2 A1 A2

1 89 89 0.04 0.04 192 192 0.11 0.11
2 95 95 0.18 0.18 201 201 0.19 0.19
3 131 131 0.45 0.45 227 227 0.40 0.40
4 169 169 0.61 0.61 268 269 0.61 0.61

ReSTS
Mean CV

Test A1 A2 A1 A2

1 3056 3177 0.33 0.34
2 1079 1077 0.36 0.32
3 384 366 0.48 0.44
4 1250 1310 1.07 1.08

however still very good when (t1, t2) = (4.00, 5.00) μs, it is not until the
time distance is 0.5 μs that the estimates for the ReSTS becomes unreliable.

The signal peak amplitudes of the ReSTS are much higher compared to
the other TF distributions, Table 2. This clearly shows that the signal en-
ergy is more localized to the TF centers of each component in the ReSTS
compared to both the spectrogram and CWD. The peak amplitudes in the
spectrogram and CWD increase when the component separation decrease,
and the energy from the components combine. The amplitudes in the
ReSTS first decrease because reassignment to the correct mass centers be-
comes more difficult for closer components, and some energy is reassigned
to positions in between the true TF centers. For the smallest time distance,
the ReSTS is unreliable and sometimes only gives one strong peak, result-
ing in high mean amplitude but also very high coefficient of variation.

The estimated frequency centers are not presented, as all methods have
good estimations for these signals. This is expected, since the signal com-
ponents have the same frequency, and thus any smoothing of the TF dis-
tributions will be mainly in the time domain.
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4.1 Guidance in parameter choices of δt and δf

The proposed automatic component detection algorithm requires the user
to define the parameters δt and δf , which are signal dependent. Finding
theoretical values for these parameters is an arduous task because of the in-
teraction between close signal components and noise in the ReSTS. Values
can instead be found experimentally and be translated to a general signal.

To achieve the best performance of the proposed automatic component
detection algorithm together with the ReSTS, the parameters δt and δf

should be defined equal to the time and frequency resolution of the ReSTS.
The algorithm will then be able to both resolve, and thus accurately detect,
any two components which are separated by at least δt and δf . We are also
interested in results that can be applied to real, measured signals, therefore
this section will experimentally find the resolution of the ReSTS for noisy,
transient signals.

According to the Heisenberg inequality, even the most optimal resolution
need to fulfill, δtδf ≥ 1/(4π), where δt is the uncertainty in time, i.e. the
length of the pulse, and δf is the uncertainty in frequency. Two Gaussian
pulses of equal amplitude and time length, are separable if

δt[s] = 2σ[s], δf [s−1] = 1/(πσ[s]), (7)

where σ is the scaling parameter of the Gaussian [31]. This means that
these distances correspond to the best resolution the spectrogram can pos-
sibly achieve.

Defining the signals as in (5) with two Gaussian pulse components and
changing the TF center of one component, the minimum time and fre-
quency distances needed to resolve two components for the ReSTS can
be determined. For the used test signals the Gaussian pulses have σ =
0.50 μs, the sampling frequency is 100 MHz and 0.01 μs corresponds to
1 sample. The simulated signals are disturbed by white Gaussian noise,
SNR = 5 dB, which will give δt and δf that can be used when applying the
automatic component detection method on measured data, possibly also
with severe disrupting noise.
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Figure 4: Realizations of the test signals (5) with two Gaussian pulses and white
Gaussian noise, SNR = 5 dB, where f1 = f2 = 4.00 MHz and random phases of
the components. The time signal is shown to the left and the ReSTS is viewed
so that the amplitude and time axes (middle) or amplitude and frequency axes
(right) can be seen; (a) signal with (t1, t2) = (3.00, 4.10) μs; (b) signal with
(t1, t2) = (3.00, 4.00) μs; (c) signal with (t1, t2) = (3.00, 3.90) μs; (d) signal with
(t1, t2) = (3.00, 3.80) μs.

The minimum required time separation is evaluated by keeping the fre-
quency of the two signal components constant and decreasing the time
distance between the TF centers of the components. Figure 4 shows real-
izations of the signals with decreasing time separation of the TF centers,
it shows the time signal (left) and the ReSTS from two viewpoints so that
only the time (middle) or frequency (right) axis is seen. The figure shows
that the signal energy becomes more scattered, as it reassigns to locations
between the components, when the time distance decreases.
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Table 3: Mean and standard deviation of the estimated time centers and the mean
and coefficient variation of the peak amplitudes from 200 simulations of the signal
(5) with f1 = f2 = 4.00 MHz, white Gaussian noise, SNR = 5 dB and random
phase for each pulse.

Mean [μs] SD [μs] Mean CV
True (t1, t2) t̂1 t̂2 t̂1 t̂2 A1 A2 A1 A2

(3.00, 4.10) μs 3.03 4.08 0.08 0.07 6764 6667 0.41 0.38
(3.00, 4.00) μs 3.04 3.97 0.09 0.09 5758 5695 0.47 0.40
(3.00, 3.90) μs 3.06 3.84 0.11 0.11 5314 5261 0.54 0.52
(3.00, 3.80) μs 3.06 3.73 0.12 0.14 5169 5350 0.59 0.67

Table 3 shows the results of 200 simulations of the test signals, with ran-
dom noise and phase shift of the components for each simulation. The
table only shows the estimated time centers and peak amplitudes, since the
estimated frequency centers are consistently reliable for all time distances.
It can be seen that the mean estimates differ at most 6 samples from the
true positions, however when t2 = 3.90 μs the mean of t̂2 is closer to
3.80 μs than the true value. Also when the time distance is less than 1.0 μs
the coefficient variations of the peak amplitudes are more than 50%, which
indicates that the signal energy can be rather scattered, as can be seen in
Figure 4 (c) and (d). It can therefore be safer to set δt corresponding to
1.0 μs even though the estimated time centers for the smaller time dis-
tances are close to the truth. For the chosen signals of this experiment,
1.0 μs corresponds to 2σ, which then can be applied to a general Gaussian
pulse, multi-component, transient signal.

The required minimum frequency distance between two components is ex-
amined by keeping the time centers of the two signal components constant
and decreasing the frequency distance between the TF centers of the com-
ponents. Again, σ = 0.50 μs and the sampling frequency is 100 MHz. For
the calculated ReSTS matrices, the distance between two frequency values
is 0.012 MHz.

Figure 5 shows realizations of the simulated signals for each of the four
chosen frequency separations. The figure shows the time signal and the
ReSTS, first the time signal (left) and then ReSTS from two viewpoints
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Figure 5: Realizations of the test signals (5) with two Gaussian pulses and white
Gaussian noise, SNR = 5 dB, where t1 = t2 = 3.00 μs and random phase of
the components. The time signal is shown to the left and the ReSTS is viewed
so that the amplitude and time axes (middle) or amplitude and frequency axes
(right) can be seen; (a) signal with (f1, f2) = (4.00, 4.70) MHz; (b) signal with
(f1, f2) = (4.00, 4.65) MHz; (c) signal with (f1, f2) = (4.00, 4.60) MHz; (d)
signal with (f1, f2) = (4.00, 4.55) MHz.

so that only the time (middle) or frequency (right) axis is seen. It can be
noted that the energy seem more scattered for smaller frequency distances.

Table 4 shows the estimated frequency centers and peak amplitudes from
200 simulations of the test signals, where the noise and phase shifts of the
components are random for each simulation. The estimated time centers
were all consistent and close to the true value t1 = t2 = 3.00 μs. It can be
seen that the estimated frequency centers over all are reliable, the mean of
the estimates deviates at most 4 samples from the true frequency centers.
The standard deviations for the estimated frequency centers are also rather
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Table 4: Mean and standard deviation of the estimated frequency centers and
the mean and coefficient variation of the peak amplitudes from 200 simulations
of the signal (5) with t1 = t2 = 3.00, white Gaussian noise, SNR 5 = dB and
random phase for each pulse.

Mean [MHz] SD [MHz Mean CV
True (f1, f2) f̂1 f̂2 f̂1 f̂2 A1 A2 A1 A2

(4.00, 4.70) MHz 4.02 4.69 0.05 0.05 6895 6704 0.39 0.38
(4.00, 4.65) MHz 4.02 4.64 0.06 0.06 5831 6126 0.41 0.43
(4.00, 4.60) MHz 4.03 4.58 0.06 0.07 5227 5248 0.50 0.47
(4.00, 4.55) MHz 4.04 4.51 0.07 0.07 5294 5525 0.56 0.51

low, however for f2 = 4.55 MHz the mean of f̂2 is almost 4.50 MHz and
already for f2 = 4.60 the coefficient variation is 50% for one of the peaks.
Thus, a reasonable choice for δf would be somewhere between 0.60−0.65
MHz for this signal and to translate this to a general Gaussian pulse, multi-
component, transient signal, a reasonable choice is 1/(πσ), for this signal
that is approximately 0.64 MHz.

This evaluation is done with rather low SNR, and recommends to chose
δt and δf according to (7). This applies for a general signal which can
be considered to consist of multiple, transient Gaussian pulses and is dis-
rupted by noise. This means that the proposed automatic component
detection algorithm used with the ReSTS can resolve transient signal com-
ponents, which have the smallest time and frequency distance required
for two Gaussian pulses to be separable. The parameters depend on the
length of the Gaussian pulses in the signal and have an inverse relation to
each other, meaning that shorter pulses give a smaller uncertainty in time
but a larger uncertainty in frequency.

5 Performance of the automatic component detection
algorithm

Using the parameter choices found in the previous section, δt = 2σ and
δf = 1/(πσ), the performance of the proposes automatic component de-
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tection algorithm can now be evaluated. This is done using test signals
(5) with the different number of components, TF centers and amplitudes
given in Table 5. Two multi-component signals are used, one with two
and one with five components. The first two presented in Table 5 forms
the two-component signal and the five-component signal includes all five.

The test signals are evaluated with SNR = 5 dB and SNR = 15 dB, where
500 simulations are done for each signal and SNR, with different noise
realizations and random phase shifts for the signal components. The
sampling frequency is 100 MHz and the scaling of the Gaussian pulses
σ = 0.5 μs. The automatic algorithm extracts Kmax peaks of the ReSTS
and determines which peaks that are signal components.

For the evaluation a detection rate is calculated, giving a value 0 - 1. If the
algorithm finds the correct number of signal components, which all are
close to the true TF centers, then the detection is considered correct (1).
In all other cases the detection is incorrect (0). The correct and incorrect
detections from the 500 simulations are averaged to get the detection rate.
Thus 1 means that detection was correct for all 500 simulations and 0 that
detection was incorrect for all simulations.

Table 6 shows the resulting detection rates for six tests. For all tests with
two signal components, the maximum number of peaks parameter is
chosen to Kmax = 5 and when the signal has five components Kmax = 8.
An estimated TF center is considered close enough to the true TF cen-

Table 5: Time and frequency centers and amplitudes for the transient, multi-
component Gaussian signal (5), used for evaluating the performance of the pro-
posed automatic component detection algorithm.

k tk [μs] fk [MHz] ak

1 3.0 2.0 1.0
2 5.0 5.0 0.6
3 3.0 8.0 0.8
4 7.0 2.0 0.6
5 7.0 8.0 0.4
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Table 6: Detection rate of the automatic component detection algorithm for
multi-component, transient signals (5), disturbed by white noise and with para-
meters according to Table 5. The detection rates are obtained from 500 simu-
lations with different noise realizations and where the signal components have
random phase shifts. If all detections for all 500 simulations are correct, the rate
is 1.

Detection rate for
SNR [dB] ρ 2 components 5 components

15 2/3 1 1
5 2/3 1 0.95
5 1/3 1 0.98

ter if the time and frequency difference is less than δt = 2σ = 1 μs and
δf = 1/(πσ) = 0.65 MHz respectively.

It can be seen in Table 6 that for the signals with two components, the
proposed algorithm always detects the correct signal components. For the
signals with five components, the detection rate is 0.95 when the SNR
is low, however the result can be improved to 0.98 by lowering the nor-
malization constant ρ. When the SNR is higher, the algorithm correctly
identifies all components even for the five components signals.

Since there, to our knowledge, exist no other researched methods, the per-
formance of our algorithm can not be compared to other known methods.
However when considering the ReSTS matrix, two other, perhaps simpler,
approaches seem natural. The first approach is to calculate some threshold
for the noise peak amplitudes. The distribution of the (scaled reassigned)
noise peaks is unknown, however a threshold based on the Gaussian distri-
bution might be reasonable, or the universal threshold for noise reduction
using discrete Wavelet transform [32]. The second approach is to look at
the peaks sequentially from the largest peak and continue until the peak
amplitudes drop and then level out, the peaks after the drop will then be
assumed to be noise peaks.

We have implemented such schemes and evaluated the detection rate for
the same test signals used previously. The Wavelet universal threshold gives
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a detection rate around 0.90, however the detection rate decreases when
SNR increases, which certainly is undesirable. The Gaussian threshold,
has detection rates around 0.25 - 0.30, which also decreases when SNR
increases. The level out approach has a detection rate around 0.60 for the
signals with two components and approximately 0.50 for the signals with
five components.

6 Examples on measured data

This section shows how the proposed automatic component detection al-
gorithm performs on real, measured signals, from two acoustic fields. Be-
fore using the method on measured data, the time window length of the
ReSTS needs to be decided. The time window should have the same length
as, e.g. time duration of, the transient signal components. If the time
duration is not known, an appropriate length of the time window can be
determined by evaluating the local Rényi entropy of the ReSTS for dif-
ferent lengths of the time window [24]. When an appropriate length is
used, the energy concentration will be high and accordingly the Rényi en-
tropy small. It is not essential that the length of the time window exactly
matches the duration of the transient signal components, the ReSTS is
stable for different window lengths.

6.1 Ultrasound pulse-echo measurements

The automatic component detection algorithm was tested on real meas-
urements from a simple pulse-echo measurement setup in water. A 2.1
MHz in-house built transducer functioned as both sender and receiver.
An ultrasonic pulse was generated using a Panametrix Pulse/receiver Model
5072PR device and was measured at 100 MHz sampling rate with a Tex-
tronix TDS 2002C oscilloscope. The reflective object was a plexi glass
phantom with the shape of a solid stairway with step sizes ranging from 2
mm to 0.25 mm. A sketch of the phantom can be seen in Figure 6.

Measurements were taken in each transition between two steps of the plexi
glass phantom. This resulted in a total of four measured time signals con-
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2 mm 1 mm 0.5 mm 0.25 mm

Transducer positions
A. B. C. D.

Figure 6: Setup for the pulse-echo measurement of two surfaces, separated by 2,
1, 0.5 or 0.25 mm (positions A-D).

taining two echo components, one from each of the two adjacent steps.
These components thus had different relative time delays (two way travel
times). The time plots in Figure 7 show the measured reflections and the
red circles indicate where our method detected a signal component. The
time separations of the detected components correspond to an estimation
of the step sizes of the plexi glass phantom, which are shown in the figure
and should be compared with the step sizes in Figure 6.

The simple piezoceramic transducer with an approximate pulse length of
1 μs, full width at half maximum, can resolve surfaces separated by at least
1.5 mm. Thus only for case A, exemplified in Figure 7 (a), it is possible to
detect the two echoes visually. Our algorithm can for this transducer ac-
curately estimate distances between two surfaces if they are larger or equal
to 0.67 mm. This means that for cases A and B, Figure 7 (a) and (b), the
algorithm correctly identifies the TF centers of the two pulses. For case C
shown in Figure 7 (c), the pulses act more like one long pulse, not suited
for the ReSTS, which is adapted for short signals. Still, two components
are detected, although the distance is not correctly identified. For case D,
Figure 7 (d), only one component is detected, which is expected.
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Figure 7: Time signals and peak detections from ReSTS, of pulse-echo measure-
ments of two surfaces that are separated by 2, 1, 0.5 or 0.25 mm (a) - (d). The
red circles indicate the detected time centers, obtained by the automatic detection
method from the ReSTS. The time separation between the pulse centers corres-
pond to an estimation of the step sizes of the plexi glass phantom, Figure 6. The
estimates are shown in red (above), the true step sizes are shown in black (under).

For our algorithm, the parameters were set to δt = 2σ = 0.9 μs, δf =
1/(πσ) = 0.7 MHz, ρ = 1 and Kmax = 4. The length of the signal, and
thus σ, could be estimated studying a single pulse using full width at half
maximum. It is important to note that while we choose to use σ = 0.45 μs,
equivalent results were obtained for σ ∈ [0.38 0.65] μs. Thus for these
signals our method is robust to choices of σ.
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Figure 8: Two dolphin echolocation signals, to the left a bimodal, to the right a
unimodal; (a) time signal; (b) spectrogram; (c) ReSTS representation and detected
signal TF centers; (d) pulse detections.

6.2 Marine biosonar signals

The usefulness of the developed automatic component detection algorithm
is further exemplified by applying it to recorded dolphin echolocation sig-
nals. Recordings were made from different parts of the echolocation beam
main lobe. Details regarding how these recordings were made are explained
by Starkhammar et al. [10].

Figure 8 left hand side, shows recordings from a bimodal transient signal,
expected to contain more than one component. Figure 8 right hand side,
shows recordings from a unimodal transient signal, expected to contain
only one component. The algorithm outcome in Figure 8 (left) shows that
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it detects two signal components separated in both time and frequency,
while in Figure 8 (right) only one component is detected.

For the ReSTS and the automatic component detection algorithm, σ =
6.4 μs, Kmax = 3 and ρ = 2/3 are used. This means that the resolution
in time is δt = 2σ = 13 μs and in frequency δf = 1/(πσ) = 53 kHz.
However similar results are obtained for σ ∈ [5 8] μs, so our method is
robust to choices of σ for these signals.

From a biosonar perspective, it is interesting to compare the signal com-
ponent time and frequency centers in Figure 8. Although such a compar-
ison lies outside the scope of this paper, it brings new information and
insights to how the different parts of the echolocation beam of bottle nose
dolphins (Tursiops truncatus) are generated in terms of suggested internal
frequency filters, acoustic reflection pathways and possibly multiple echo-
location sources [9, 10, 33, 34].

7 Conclusions

In this paper an automatic component detection method for short, multi-
component transient signals has been proposed. The method combines a
novel detection algorithm with a high-resolution TF representation adap-
ted for short transient signals, ReSTS. As a result, the method automat-
ically counts, the beforehand unknown, number of transient components
and estimates the TF centers of individual components with great preci-
sion. The results are also easily visualized by the ReSTS, showing the TF
centers of individual components, marked by the automatic algorithm.

Our proposed automatic component detection algorithm and TF rep-
resentation are useful for severely coinciding Gaussian shaped transients,
where other comparable methods fail to resolve the components. The res-
olution of the suggested TF representation is shown to be the best achiev-
able for Gaussian shaped pulses. In addition, the calculations of time and
frequency centers of the components are robust to noise. The method is
easy to use since the algorithm requires very little user input. The paper
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provides guidelines on how to choose the input parameters, although the
method is quite insensitive to parameter choices.

This new method should be useful in several acoustic research fields, not
the least sonar and biosonar applications, or other fields where coinciding
Gaussian shaped transients are analyzed. In this paper the method shows
promising results on measured data, both from a laboratory pulse-echo
set-up and a dolphin echolocation signal measured simultaneously at two
different locations in the echolocation beam. The method resolves heavily
overlapping pulses from the pulse-echo signals and automatically detects
the expected number of components in the bimodal and unimodal echo-
location signal.
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Abstract

The reassigned spectrogram can be used to improve the readability of a
time-frequency representation of a non-stationary and multi-component
signal. However for transient signals the reassignment needs to be adap-
ted in order to achieve good localisation of the signal components. One
approach is to scale the reassignment. This paper shows that by adapting
the shape of the time window used with the spectrogram and by scaling
the reassignment, perfect localisation can be achieved for a transient sig-
nal component. It is also shown that without matching the shape of the
window, perfect localisation is not achieved. This is used to both identify
the time-frequency centres of components in a multi-component signal,
and to detect the shapes of the signal components. The scaled reassigned
spectrogram with the matching shape window is shown to be able to re-
solve close components and works well for multi-components signals with
noise. An echolocation signal from a beluga whale (Delphinapterus leucas)
provides an example of how the method performs on a measured signal.

Keywords: Hermite functions, non-stationary signals, time-frequency
analysis, reassignment, signal resolution
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1 Introduction

For non-stationary signals the reassigned spectrogram (Re-Spect) can im-
prove the readability of the time-frequency representation [1, 2]. The con-
centration of a component is increased by reassigning mass to the centre
of gravity, squeezing the signal terms to be more localised, while cross-
terms are reduced by a smoothing of the specific distribution. Recently, the
theoretical expressions for the reassigned Gabor spectrograms of Hermite
functions have been derived [3, 4]. Although the Re-Spect gives perfect
localisation of linear chirps, this is not achieved for transient signals which
are common in for example marine biosonar research. Transient signals
can effectively be modelled by a linear combination of Hermite basis func-
tions [5, 6, 7, 8]. Perfect localisation of a Gaussian function (first Hermite
function) can be achieved by the adaptable reassignment methods, the
Levenberg-Marquardt reassignment [9] and the scaled reassigned spectro-
gram (ScRe-Spect) [10].

This paper builds on the ScRe-Spect to show that perfect localisation in
time and frequency can be achieved with reassignment for higher order
Hermite functions. Perfect localisation is possible if the shape of the time
window used with the spectrogram is matched with the shape of the signal
component. It also shows that when the matching shape window is not
used, perfect localisation is not possible with the ScRe-Spect. This can
be used to detect the shape of and localise the time-frequency centres of
individual transient components in a non-stationary signal.

To illustrate the use of the ScRe-Spect with matching shape window this
paper includes an example of an echolocation signal from a beluga whale
(Delphinapterus leucas). In this field, there is a need for signal processing
methods that allows for analysis of the time dependence of each frequency
component within each echolocation signal [11, 12, 13].

In this paper, section 2 calculates the reassignment coordinates for first
and second Hermite signal components with first and second Hermite
time windows. The results are also extended to multi-component sig-
nals. The performance of the ScRe-Spect is evaluated in section 3, by
simulating transient multi-component signals with noise. Section 4 shows
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the performance of the method on a measured echolocation signal from a
dolphin. Section 5 concludes the paper.

2 The scaled reassigned spectrogram

The spectrogram of the signal x(t) using the window h(t) is found from
the short-time Fourier transform (STFT)

Sh
x (t,ω) =

∣∣F h
x (t,ω)

∣∣2 = ∣∣∣∣∫ x(s)h∗(s − t)e−iωsds

∣∣∣∣2 . (1)

The Re-Spect, with reassignment to t̂x and ω̂x, is defined as

RSh
x (t,ω) =

∫ ∫
Sh

x (s, ξ)δ
(
t − t̂x(s, ξ),ω− ω̂x(s, ξ)

)
dsdξ, (2)

where δ(t,ω) is the two-dimensional Dirac impulse defined as∫ ∫
f (t,ω)δ(t − t0,ω− ω0)dtdω = f (t0,ω0). (3)

As shown in [10], the scaling factors ct and cω can be introduced and the
reassignment coordinates can be computed as

t̂x(t,ω) = t + ctR

(
F th

x (t,ω)
F h

x (t,ω)

)
,

ω̂x(t,ω) = ω− cωI
(

F dh/dt
x (t,ω)
F h

x (t,ω)

)
,

(4)

where R and I are the real and imaginary parts respectively and F h
x , F th

x
and F dh/dt

x are STFTs with different time windows. If ct = cω = 1 the Re-
Spect is obtained [4, 14]. Since the reassignment coordinates are calculated
from STFTs using the same signal values needed for the spectrogram and
only differs in the choice of time window, the computational complexity
of the ScRe-Spect is not drastically increased compared the spectrogram.
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2.1 The scaled reassigned spectrogram of multi-component transient
signals

A multi-component transient signal can be modelled as a sum of Hermite
functions

x(t) =
n∑

k=1

akxk(t − tk)eiωkt , (5)

where xk(t) are Hermite basis functions, tk and ωk are the time and fre-
quency centres and ak the amplitudes. Due to the linearity of the Fourier
transform, the reassignment vector is also linear [14]. For the calculations
it is assumed that the reassignment can be calculated for each component
individually. This is true for a signal with somewhat separated compon-
ents, in time or frequency. The spectrogram also obeys time-frequency
shift-invariance, meaning that further analysis can be restricted to signals
of the form xk(t) = gk(t) instead of xk(t) = gk(t − tk)e−iωkt .

This paper analyses the unit energy Gaussian function

x1(t) = σ−1/2
π
−1/4e−

t2

2σ2 , (6)

and the unit energy second Hermite function

x2(t) = 21/2
σ
−3/2
π
−1/4te−

t2

2σ2 , (7)

as the amplitude of the signal has no effect on the reassignment coordin-
ates, compare (4). The ScRe-Spect with perfect localisation of x1(t) using
a Gaussian window is shown in [10]. The next section will show that
the ScRe-Spect of a signal x(t) = x1(t) + x2(t) with a Gaussian window
will only give perfect localisation to x1(t) while the energy of x2(t) remains
scattered, and when a second Hermite window is used, perfect localisation
will be obtained for x2(t) but not for x1(t).
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2.2 Scaled reassignment with a Gaussian window

The reassignment coordinates for x1(t) using a window h1(t) = x1(t),
where the window and signal have the same time length, are

t̂h1
x1

(t,ω) = t − ct
t
2
,

ω̂
h1
x1

(t,ω) = ω− cω
ω

2
,

(8)

and perfect localisation is achieved when ct = cω = 2 [10]. To find the
reassignment coordinates for x2(t) with h1(t), we need to calculate the ne-
cessary STFTs, also assuming that the time length of the signal and window
are the same

F h1
x2

(t,ω) =

√
2

σ2
√
π

∫
se−(s2+(s−t)2)/(2σ2)e−iωsds

=

√
2

σ2
√
π

e−t2/(2σ2)

∫
se−s2/σ2+(t/σ2−iω)sds

=
t − iσ2

ω√
2σ

e−(t2/σ2+σ2
ω

2+i2tω)/4,

(9)

F th1
x2

(t,ω) =

√
2

σ2
√
π

∫
s(s − t)e−(s2+(s−t)2)/(2σ2)e−iωsds

=
2σ2 − t2 − σ4

ω
2

2
√

2σ
e−(t2/σ2+σ2

ω
2+i2tω)/4.

(10)

The derivative of h1(t) is dh1(t)/dt = −th1(t)/σ2, thus

F dh1/dt
x2

(t,ω) = − 1
σ2

F th1
x2

(t,ω). (11)

This gives the reassignment coordinates

t̂h1
x2

(t,ω) = t − ct

(
t
2
− σ

2t
t2 + σ4ω2

)
,

ω̂
h1
x2

(t,ω) = ω− cω

(
ω

2
− σ

2
ω

t2 + σ4ω

)
.

(12)

105



It can be seen that there exist no ct or cω so that
(̂
th1
x2

(t,ω), ω̂h1
x2

(t,ω)
)
=

(0, 0), i.e. the centre of the component, ∀ t,ω. Instead of perfect local-
isation of the component x2(t), the reassigned energy will be located on
ellipses, which is also found for the reassigned Gabor spectrogram in [4].

2.3 Scaled reassignment with a second Hermite window

Using the second Hermite window, h2(t) = x2(t), with the spectrogram,
makes it possible to get perfect localisation to x2(t) with scaled reassign-
ment. For the calculations of the reassignment coordinates it is assumed
that the time length of the window is the same as for the signal,

F h2
x2

(t,ω) =
2
σ3
√
π

∫
s(s − t)e−(s2+(s−t)2)/(2σ2)e−iωsds

=
2σ2 − t2 − σ4

ω
2

2σ2
e−(t2/σ2+σ2

ω
2+i2tω)/4,

(13)

F th2
x2

(t,ω) =
2
σ3
√
π

∫
s(s − t)2e−(s2+(s−t)2)/(2σ2)e−iωsds

=
w(t,ω)− 2σ2t − i6σ4

ω

4σ2
e−(t2/σ2+σ2

ω
2+i2tω)/4,

(14)

where w(t,ω) = t3 + iσ2t2
ω+ σ4tω2 + iσ6

ω
3. Since dh2/dt = h2(t)/t −

th2(t)/σ2, we get

F dh2/dt
x2

(t,ω) =
2
σ3
√
π

∫
se−(s2+(s−t)2)/(2σ2)e−iωsds

− 1
σ2

F th2
x2

(t,ω)

=
6σ2t + i2σ4

ω− w(t,ω)
4σ4

e−(t2/σ2+σ2
ω

2+i2tω)/4.

(15)

This gives the following reassignment coordinates

t̂h2
x2

(t,ω) = t − ct
t
2
,

ω̂
h2
x2

(t,ω) = ω− cω
ω

2
.

(16)
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It can be seen that by choosing ct = cω = 2 indeed
(̂
th1
x2

(t,ω), ω̂h1
x2

(t,ω)
)
=

(0, 0) , ∀ t,ω and perfect localisation in time and frequency is achieved.

Perfect time and frequency localisation is not possible when using the
second Hermite window with the Gaussian component x1(t). This is
shown by calculating the reassignment coordinates,

F h2
x1

(t,ω) = − t + iσ2
ω√

2σ
e−(t2/σ2+σ2

ω
2+i2tω)/4, (17)

F th2
x1

(t,ω) =
2σ2 +

(
t + iσ2

ω
)2

2
√

2σ
e−(t2/σ2+σ2

ω
2+i2tω)/4. (18)

We remind us that dh2/dt = h2(t)/t − th2(t)/σ2, which gives

F dh2/dt
x1

(t,ω) =
2σ2 −

(
t + iσ2

ω
)2

2
√

2σ3
e−(t2/σ2+σ2

ω
2+i2tω)/4. (19)

This gives the reassignment coordinates

t̂h2
x1

(t,ω) = t − ct

(
t
2
+

σ
2t

t2 + σ4ω2

)
,

ω̂
h2
x1

(t,ω) = ω− cω

(
ω

2
+

σ
2
ω

t2 + σ4ω2

)
.

(20)

It can be seen that perfect localisation is not possible, even if small values
of both t̂h2

x1
(t,ω) and ω̂h2

x1
(t,ω) are possible if ct = cω = 1 and t and ω are

assumed not to be large, the signal energy will be located on ellipses.

2.4 Detection and localisation of a multi-component signal

The reassignment coordinates and the resulting ScRe-Spect of a multi-
component signal x(t) = a1x1(t− t1)ei2·f1πt +a2x2(t− t2)ei2·f2πt , where x1(t)
is a Gaussian function and x2(t) a second Hermite function, can easily be
calculated by a linear operation of the reassignment coordinates [14].

An illustration of the reassignment for such a multi-component signal,
with

(
t1, f1

)
= (4, 4),

(
t2, f2

)
= (8, 8) and ct = cω = 2, is shown in Fig.
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Figure 1: Illustration of the spectrogram and the scaled reassignment of a signal
with one Gaussian, (4, 4), and one second Hermite, (8, 8), signal component.
The spectrogram is shown by the gradient lines. The arrows represent the reas-
signment of the signal energy and the red areas show the most energy dense areas
in the ScRe-Spect; (a) scaled reassignment with a Gaussian window; (b) scaled
reassignment with a second Hermite window.

1. The gradient lines show the spectrogram, in Fig. 1(a) with a Gaussian
window and in Fig. 1(b) with a second Hermite window. The arrows
show how the signal energy is reassigned and the red areas mark the most
energy dense parts in the ScRe-Spect. Fig. 1(a) shows that the energy
from the Gaussian component is reassigned to a small area in the centre
of the component, while the energy from the second Hermite component
is reassigned to a circle around the centre of the component. In Fig. 1(b)
the energy from the Gaussian component is reassigned to a circle and the
energy from the second Hermite component is reassigned to a small area
in the centre of the component. There is also some interaction between
the components resulting in some small interference after reassignment.

In Fig. 1(a) it can also be seen that some energy is moved away from
the centre of the second Hermite component. This is due to that the
reassignment coordinates (12) grow large when t,ω→ 0 and ct = cω = 2.
This can also be seen in Fig. 1(b) for the Gaussian component. Similarly
the reassignment coordinates (20) grow when t,ω→ 0 and ct = cω = 2.
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Figure 2: Detection and time-frequency localisation of individual components
in a multi-component transient signal; (a) the spectrogram with Gaussian win-
dow; (b) the spectrogram with second Hermite window; (c) the ScRe-Spect with
Gaussian window; (d) the ScRe-Spect with second Hermite window.

3 Simulations

A multi-component signal with Gaussian and second Hermite compon-
ents can be resolved with the ScRe-Spect using Gaussian and second
Hermite time windows. This is illustrated by the simulated signal

x(n) = x1(n− 80)ei2π0.14n + x2(n− 100)ei2π0.18n

+ x3(n− 60)ei2π0.19n + e(n),
(21)

where x1(n) and x2(n) are Gaussian functions and x3(n) a second Hermite
function, all with lengths around 60 samples, and e(n) is white Gaussian
noise, SNR = 15 dB, where SNR is the average total signal energy to the
variance of the noise. Fig. 2 shows the spectrogram and ScRe-Spect. The
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Figure 3: Two component signal (22), f1 = 0.14, with and without noise, SNR
15 dB.

spectrogram and the ScRe-Spect, the illustrations are made in 3D to clearly
show the difference in amplitude of the peaks, i.e. the energy density. In
Fig. 2(a), showing the spectrogram with a Gaussian window, only one clear
peak is visible and it is located at (n, f ) = (97, 0.167), however in Fig.
2(c), the ScRe-Spect with a Gaussian window, two peaks are clearly seen
at (80, 0.140) and (101, 0.180), which are very close to the true centres of
the two Gaussian components. Fig. 2(b), the spectrogram with a second
Hermite window, shows many peaks and is hard to interpret, however
Fig. 2(d) shows only one large peak at (60, 0.190), also present in the
corresponding spectrogram, which is the true centre of the second Hermite
component.

3.1 Close components

Detection and localisation of components becomes harder if they are close
in time and frequency. For a simulated signal with two components

x(n) = x1(n− 80)ei2πf1n + x2(n− 60)ei2π0.2n + e(n), (22)

where x1(n) is a Gaussian function, x2(n) a second Hermite function and
e(n) is white Gaussian noise, SNR 15 dB, we can vary the normalised
frequency f1 to change the frequency distance between the components.
The components overlap in time, see Fig. 3 where f1 = 0.14.
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Figure 4: The frequency distance between the two components in signal (22)
is varied to get the average sample-frequency centres of the largest peaks in the
ScRe-Spect with Gaussian and second Hermite window respectively, as well as a
95% confidence interval, obtained from 200 noise simulations. The true sample-
frequency centres of both signal components are also marked; (a) the sample
centres of the largest peaks; (b) the frequency centres of the largest peaks.

We let 0.1 ≤ f1 ≤ 0.19 and simulate 200 signals with different noise
for each f1, to find the average sample-frequency (time-frequency) centres
from the ScRe-Spect for both signal components. The sample-frequency
centres are obtained by finding the largest peak in the ScRe-Spect, with a
Gaussian window for the Gaussian component and a second Hermite win-
dow for the second Hermite component. The average sample centres and
the 95% confidence intervals are shown in Fig. 4(a). Fig. 4(b) shows the
average frequency centres and the 95% confidence intervals. It can be seen
that the largest peak in the ScRe-Spect with a matched shape window ac-
curately represents the centre of the signal component until the normalised
frequency distance is only 0.03.

3.2 Noise sensitivity

Detection and localisation of components also becomes harder if the signal
has low SNR. For a sampled signal (22) with f1 = 0.14, the variance of the
white Gaussian noise e(n) can be varied to evaluate the noise sensitivity of
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Figure 5: The SNR of the signal (22), f1 = 0.14, is varied to get the average
sample-frequency centres of the largest peaks in the ScRe-Spect with Gaussian
and second Hermite window respectively, as well as a 95% confidence interval,
obtained from 200 noise simulations. The true sample-frequency centres of both
signal components are also marked; (a) the sample centre of the largest peaks; (b)
the frequency centres of the largest peaks.

the ScRe-Spect. The SNR is varied between 2 and 16 dB and the number
of simulations for each SNR is 200. The average sample centres and 95%
confidence intervals from the ScRe-Spect with matching shape window for
the two components are shown in Fig. 5(a). Fig. 5(b) shows the average
frequency centres and the 95% confidence intervals. It can be seen that
the method becomes unreliable for the second Hermite component around
SNR 6 dB, while the localisation of the Gaussian component remains good
even for low SNR.

4 Transient echolocation signal example

This section provides an example of a transient echolocation signal from a
beluga whale (Delphinapterus leucas). The signal is sampled with 1 MHz
and recorded by one of 47 simultaneously sampling hydrophones as de-
scribed in [15]. The signal was chosen because it is recorded at the centre
of the echolocation beam, based on the peak amplitude level the signal
is sample by the hydrophone closest to the centre beam axis of the an-
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Figure 6: Detection and time-frequency localisation of individual components in
a dolphin echolocation signal; (a) the spectrogram with Gaussian window; (b)
the spectrogram with second Hermite window; (c) the ScRe-Spect with Gaussian
window; (d) the ScRe-Spect with second Hermite window.

imal. Fig. 6(a) shows the spectrogram with a Gaussian window, Fig. 6(c)
the ScRe-Spect with a Gaussian window, Fig. 6(b) the spectrogram with
a second Hermite window and Fig. 6(d) the ScRe-Spect with a second
Hermite window. Fig. 6(c) shows two peaks, one clear at (307 μs, 65 kHz)
and one with smaller amplitude at (338 μs, 53 kHz), these peaks corres-
ponds well to the spectrogram in Fig. 6(a). In Fig. 6(d) the signal energy is
more scattered even if peaks appear, the peaks also do not correspond well
to the spectrogram in Fig. 6(b). This suggests that the signal compon-
ents in the dolphin echolocation signal more closely resembles Gaussian
functions than second Hermite functions.

With additional measurements, this method could determine if the larger
and smaller Gaussian like components originate from two locations within
the sound generation mechanism of the dolphin or are the result of internal
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reflection of the sound wave. Assuming an approximate sound velocity of
1490 m/s in the tissue, the time separation of the components corresponds
to a total difference in sound wave travel distance of approximately 4.6 cm.

5 Conclusions

It is shown that perfect time-frequency localisation of a Gaussian and
second Hermite transient signal component can be achieved by the ScRe-
Spect using a matching shape time window. If a time window which do
not match the shape of the signal component is used, the component en-
ergy is instead scattered in ellipses around the time-frequency centre of the
component. It is shown that this can be used to find the time-frequency
centres and the shapes of the individual transient signal components within
a multi-component signal.

The results from simulated multi-component signals with noise show that
the ScRe-Spect can resolve and correctly identify the time-frequency
centres and component shapes even if the signal components are close
in time and frequency. The ScRe-Spect is also robust to noise disturb-
ances. The performance is evaluated on a measured dolphin echolocation
signal, which gives good time-frequency localisation of what seems to be
two Gaussian-like signal components.
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