
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Integrated Requirements Engineering – Understanding and Bridging Gaps in Software
Development

Bjarnason, Elizabeth

2013

Link to publication

Citation for published version (APA):
Bjarnason, E. (2013). Integrated Requirements Engineering – Understanding and Bridging Gaps in Software
Development. [Doctoral Thesis (compilation), Department of Computer Science]. Department of Computer
Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/77ffcc12-b5f5-44b7-bfae-4e4ad3f6a3ac

Integrated Requirements
Engineering –

Understanding and Bridging Gaps
within Software Development

Elizabeth Bjarnason

Doctoral Dissertation, 2013

Department of Computer Science
Lund University

ii

Dissertation 43, 2013
LU-CS-DISS: 2013-02

ISBN 978-91-7473-732-5 (printed version)
ISBN 978-91-7473-733-2 (electronic version)
ISSN 1404-1219

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: elizabeth@cs.lth.se

Printed in Sweden by Tryckeriet i E-huset, Lund, 2013

© 2013 Elizabeth Bjarnason

You’re blessed when you can show people how to cooperate
instead of compete or fight.

Jesus in Matthew 5:9. The Message, NavPress Publishing Group

iv

ABSTRACT

Software systems are becoming increasingly ubiquitous and can be found in
devices we use every day from mobile phones to cars. As our reliance on
software-based systems increases, our tolerance with software that is ill-fitted to
our needs decreases. We expect these devices to function whenever and however
we need them to. However, developing these (often) large and complex software
systems to meet our needs and to be usable and robust is non-trivial. Yes, it
requires good tools and methods, and competent software engineers that are good
at design, development, testing and debugging. But, equally important is that the
engineers can coordinate their activities and work together on developing the right
thing. Figuring out what the right thing is, i.e. defining the requirements, and then
ensuring that the whole development team joins together in realising this is a
major challenge.

When there are gaps between requirements and other development activities
these gaps have a negative impact on the success of a project and a product.
Similarly when there are no gaps, or they are effectively managed and bridged, the
development process can run more smoothly and the project stands a better chance
of delivering the required functionality, with good quality and on time.

The main topic of this thesis is the collaboration and alignment of
requirements within software development, and how this can enable a
development company to consistently develop and deliver products that are well
received by their users. A number of challenges and practices including factors
contributing to these have been identified through industrial case studies.
Furthermore, this thesis includes two methods for supporting project teams in
improving on their work practices. Both methods have been applied in live
development projects and found to enable teams to reflect on their practices and
consider what gaps there are between people, between activities and between
artefacts. By doing so, they can gain insight into how to improve on their
coordination and alignment of requirements.

The main conclusion of this thesis is that development as a whole can be
improved with an integrated requirements engineering (iRE) approach.
Understanding and bridging gaps, or the level of integration between requirements
and other development activities, helps development teams in achieving the
necessary collaboration to be aligned within the development projects. This then
enhances the efficiency and effectiveness of the development process by ensuring
that the right thing is developed.

CONTENTS
Preface xi
Popular science summary (in Swedish) xv
Acknowledgement xxi

THESIS INTRODUCTION
1 The Role of Requirements in Development 3

1.1 RE in the Development Process 3
1.2 Requirements Communication 3
1.3 Agile RE: Concurrent and Integrated 5
1.4 RE and Test (RET) Alignment 6
1.5 Software Process Improvement 7

2 Research Focus 8
2.1 Research Questions 8
2.2 Outline of Thesis 11

3 Research Methodology 11
3.1 Research Approach 11
3.2 Case Studies: Papers I-III, V-VI 12
3.3 Systematic Literature Study: Paper IV 18
3.4 Theory Generation Study: Gap Model 19

4 The Gap Model: A Theory for iRE 20
4.1 The Case Company 21
4.2 Research Method 21
4.3 Gap Model: RET Practices x RE Distances 24
4.4 Limitations of Gap Model and Future Work 30

5 Research Synthesis 30
5.1 Paper I: Communication Gaps 31
5.2 Paper II: Overscoping 32
5.3 Paper III: Challenges and Practices of RET Alignment 32
5.4 Paper IV: RE Distances 33
5.5 Thesis Introduction: Gap Model 34
5.6 Paper V: Evidence-Based Timeline Retrospective Method (EBTR) 35
5.7 Paper VI: Gap Finder Method 36

6 Future Research Directions 37
6.1 Supporting Reflection through Visualisation 37
6.2 Enhanced Distance Measures 38
6.3 Further Explorations of Integrated RE 39

7 Conclusions and Main Contributions 40
References 41

viii

PAPER I: Requirements Are Slipping Through the Gaps - A Case Study on
Causes & Effects of Communication Gaps in Large-Scale Software
Development

1 Introduction 46
2 Related Work 47
3 The Case Company 48
4 Research Method 49
5 Results 51
6 Validation of Results with Practitioners 57
7 Interpretation and Discussion 58
8 Conclusions and Future Work 61
References 63

PAPER II: Are You Biting Off More Than You Can Chew? A Case Study on
Causes and Effects of Overscoping in Large-Scale Software Engineering

1 Introduction 66
2 Related Work 67
3 The Case Company 69
4 Research Method 73
5 Interview Results 77
6 Validation Questionnaire on Interview Results 87
7 Interpretation and Discussion 90
8 Conclusions and Further Work 99
References 101

PAPER III: Challenges and Practices in Aligning Requirements with
Verification and Validation: A Case Study of Six Companies

1 Introduction 106
2 Related Work 107
3 Case Study Design 110
4 Results 120
5 Discussion 144
6 Conclusions 148
References 149

PAPER IV: Distances between Requirements Engineering and Later
Software Development Activities: A Systematic Map

1 Introduction 154
2 Software Development and RE 154
3 Research Method 155
4 Results 158
5 Discussion 164
6 Conclusions 166
References 168

PAPER V: Variations on the Evidence-Based Timeline Retrospective
Method - A Comparison of Two Cases

1 Introduction 172
2 Evidence-Based Timeline Retrospectives 172
3 The Two Cases 174
4 Research Method 175
5 Two Variations of the EBTR Method 176
6 Results 179
7 Discussion 183
8 Conclusions and Future Work 186
References 187

PAPER VI: Gap Finder: Assessing and Improving the Integration of
Requirements and Testing

1 Introduction 190
2 Background and Underpinning Research 191
3 Related Work 195
4 The Gap Finder Method 201
5 Case Description 208
6 Research Method 210
7 Results 217
8 Findings and Discussions 234
9 Conclusions and Future Work 245
References 247

x

PREFACE

This dissertation consists of two parts. The first part introduces the topic and
outlines contributions and conclusions. The second part consists of papers
supporting these claims.

List of Included Papers

I. Requirements are Slipping through the Gaps – A Case Study on
Causes & Effects of Communication Gaps in Large-Scale Software
Development.
E. Bjarnason, K. Wnuk and B. Regnell.
Proc of 19th IEEE International Requirements Engineering Conference,
2011, pp.37-46.

II. Are You Biting Off More Than You Can Chew?
A Case Study on Causes and Effects of Overscoping in Large-Scale
Software Engineering.
E. Bjarnason, K. Wnuk and B. Regnell.
Journal of Information and Software Technology, 54(10): 1107-1124, 2012.

III. Challenges and Practices in Aligning Requirements with Verification
and Validation: A Case Study of Six Companies.
E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. Engström, B.
Regnell, G. Sabaliauskaite, A. Loconsole, T. Gorschek, R. Feldt.
Journal of Empirical Software Engineering, July 2013.

IV. Distances between Requirements Engineering and Later Software
Development Activities: A Systematic Map.
E. Bjarnason.
Proc. of 19th Int. Working Conf. Requirements Engineering: Foundation
for Software Quality (REFSQ’13), pp. 292-307. 2013.

V. Variations on the Evidence-Based Timeline Retrospective Method. A
Comparison of Two Cases.
E. Bjarnason, A. Hess, J. Doerr and B. Regnell.
Proceedings of 39th Euromicro Conf. Series on Software Engineering and
Advanced Applications, 2013, pp. 37-44.

xii

VI. Gap Finder: Assessing and Improving the Integration of Requirements
and Testing.
E. Bjarnason, H. Sharp and B. Regnell
To be submitted.

Contribution Statement
I am the main author of all included papers and as such responsible for the
research, dividing the work between co-authors and performing most of the
writing. The ideas, design, data collection and data analysis for the included
papers are largely mine, although I have enjoyed good collaboration with my co-
authors who have contributed as follows.

The ideas of the different studies originate from many sources of which my co-
authors have their share. For example, the study on requirements-test alignment
(paper III) was originated by authors 2, 6, 9 and 10, and the idea to quantify
distances with the Gap Finder (paper VI) originated from the third author.

The design of the research study for paper I (Communication Gaps) and paper
II (Overscoping) was made in cooperation with the third author, with input from
the second author. For paper III (Requirements-Test Alignment) the initial study
design (overall, and up to the design and data collection phase) was performed by
authors 2, 4 to 10, while I took an active part in the design of the data analysis
together with all the other authors. Paper IV was design by me. The other studies
(papers V and VI) were mainly designed by me with input from my co-authors.

I have carried out the main part of the data collection for papers I-II, and VI,
however with support from other people, e.g. contacts within the studied
organisations. For paper III (Requirements-Test Alignment) I performed 2 of the
30 interviews, while the rest were performed by other co-authors. The systematic
mapping study (paper IV) was performed by me. For paper V (Evidence-Based
Timeline Retrospective Method) the data collection for case 1 was performed by
me with support from other researchers and company contacts, while the data
collected for case 2 was performed by the second author.

Analyses of data in all the studies are primarily my analyses, however,
validated by the co-authors. For paper III (Requirements-Test alignment) the
analysis work was shared with the second author, and we each validated the
analysis of the other. For paper V (Evidence-Based Timeline Retrospectives) the
comparative analysis of the cases was done in collaboration with the second
author.

Furthermore, I have authored four papers which are related to but not included
in the thesis. These are listed below.

xiv

List of Related Papers

The following papers are related to this dissertation, but are not include:
Overscoping: Reasons and Consequences – A Case Study in Decision Making
in Software Product Management.

E. Bjarnason, K. Wnuk and B. Regnell.
Proc. of 4th Int. Workshop on Software Product Management (IWSPM),
IEEE Computer Society, September 2010, pp. 30-39.

A Case Study on Benefits and Side-Effects of Agile Practices in Large-Scale
Requirements Engineering.

E. Bjarnason, K. Wnuk and B. Regnell.
Proc.of 1st Workshop on Agile Requirements Engineering (AREW '11).
ACM, 2011.

Evidence-Based Timelines for Agile Project Retrospectives – A Method
Proposal

E. Bjarnason and B. Regnell, B.
Proc of Agile Processes in Software Engineering and Extreme
Programming (XP’12), pp. 177-184. Springer Berlin Heidelberg. 2012

Evidence-Based Timelines for Project Retrospectives – A Method for
Assessing Requirements Engineering in Context

E. Bjarnason, R. Berntsson Svensson, B. Regnell
Proc. of 2nd Int. Workshop on Empirical Requirements Engineering
(EmpiRE), pp. 17-24, IEEE, 2012.

POPULAR SCIENCE SUMMARY
(IN SWEDISH)

xvi

Se upp för gap i kravflödet!

Av Elizabeth Bjarnason
Institutionen för datavetenskap
Lunds universitet

Vi använder mjukvara hela tiden och förväntar oss att den fungerar som vi
vill. Att stavningshjälpen på mobiltelefonen väljer det ord vi tänkt oss, att
vi kan be GPSen att undvika en viss väg där det pågår vägarbete, och att
datorbanken hjälper oss att betala räkningar till rätt mottagare.

Mjukvaruprodukter blir smartare
och mera kompetenta. En smarttelefon
har idag lika mycket kapacitet som en
PC för 10 år sen och innehåller nästan
lika mycket funktionalitet. Samtidigt
förväntar vi oss att den fungerar utan
problem och hjälper oss i vår vardag.

Men, vilka av användarnas alla
förväntningar och krav ska produkten
stödja? Och hur ska de förmedlas till
de hundratals ingenjörer som är

inblandade i att ta fram mjukvaran? De
olika delarna av en organisation som
utvecklar mjukvara behöver
koordineras och ha en samstämmig
bild av vad produkten ska uppfylla för
att kunna arbeta mot samma mål.

Missförstånd är dyra
Missförstånd kring vad

produktkraven innebär ställer till
problem och kan leda till att kunderna
får en produkt med annat beteende än

Pictures are available at www.flickr.com under Creative Common License.

xviii

vad de har förväntat sig. I bästa fall
fångas dessa problem innan kunden får
produkten men det krävs ändå extra
arbete för att korrigera missförstånden.

Målet för vår forskning är
förbättrad precision och effektivitet i
mjukvaruutveckling genom att
upptäcka och undvika
kommunikationsgap och brister i
samordningen av kravställningen
mellan olika ingenjörer. Specifikt
fokuserar denna avhandling på metoder
som kan synliggöra potentiellts
problematiska gap och därigenom
hjälpa organisationer som utvecklare
mjukvara att stärka samordningen
mellan krav- och test-aktiviteter.

Komplex samordning
De mjukvarukrav som en ny

produkt ska uppfylla mejslas gradvis
fram genom att jämka samman
kundernas förväntningar med
affärsstrategier och planer, och väga
dessa mot tekniska möjligheter och
utvecklingskostnader. Det är en
komplex process som fortlöper under
hela utvecklingstiden och där många
detaljer utformas av ingenjörerna
själva. Att koordinera och samordna en
kravbild som kontinuerligt förändras
kräver god samarbets- och
kommunikations-förmåga såväl som
kompetens, rutiner och verktyg för att
hantera och dokumentera
informationen.

När samordningen mellan
produktkraven och ingenjörerna brister
kan detta leda till mjukvara som
avviker från de överenskomna kraven
och kanske också från kundernas
förväntningar. Att korrigera dessa
brister kräver förändringar i mjukvaran
och kan leda till både förseningar och
ökade utvecklingskostnader.

Om testingenjörerna också har
missuppfattat kraven så finns det en
risk att produkten innehåller
avvikelserna när den når kunden.
Produkten kan då behöva dras tillbaka
från marknaden vilket medföra stora
kostnader och kan även leda till
minskat förtroendet för tillverkaren.

Synliggörande av gap
Det är dessa kommunikationsgap

mellan kravställare och ingenjörer som
är i fokus för denna avhandling. Målet
är att kunna erbjuda metoder som
synliggör gapen och därigenom hjälper
utvecklingsprojekt att inse var flödet
brister och hur gapen kan överbryggas.

Avhandlingen innehåller en metod
för gruppreflektioner (EBTR metoden)
omkring ett avklarat projekt vilket kan
leda till nya insikter hos ingenjörerna
om styrkor och brister i interaktionen
mellan projektmedlemmarna.
Visualisering av projekthändelser
förser gruppen med en gemensam bild
av projektet och stödjer en objektiv
diskussion.

En tidslinje använd i EBTR metoden.

xix

Vi har dessutom utvecklat
Gapfinnaren, en metod för att mäta
olika typer av avstånd mellan krav- och
test aktiviteter. Gap mellan olika
ingenjörer och mellan olika dokument
kan tyda på missförstånd i
kravkommunikationen. Till exempel,
stora skillnader (eller gap) mellan krav-
och test-ingenjörens kunskaper om
produkten och dess kunder innebär en
stor risk för missförstånd omkring
mjukvarukraven. Detta kan förbättras
genom att införa nya rutiner som t ex
att kravingenjören testar delar av
mjukvarufunktionaliteten.

Insikt stärker samordningen
EBTR metoden för grupp-

reflektioner och Gapfinnar metoden
har båda applicerats på flera mjukvaru-
utvecklingsprojekt och utvärderats
genom en kombination av enkäter och
samtalsgrupper. Visualiseringen av
projekthändelser initierade relevanta
och värdefulla gruppdiskussioner.
Speciellt ledde detta till nya insikter
hos testingenjörerna om projektets
kravflöde. Gapfinnar metoden påvisade
ett antal gap i kravflödet inom ett
utvecklingsteam vilka då kunde
adresseras och därigenom förbättra
samordningen inom gruppen.

I grunden handlar det om att spara
tid och pengar genom att utveckla och
testa mjukvara enligt en gemensam
förståelse för produktkraven. Mängden
mjukvara kommer troligtvis att
fortsätta att växa framöver. Samtidigt
ställer vi som konsumenter allt högre
krav på funktionalitet, och har mindre
tolerans för dåligt fungerande
mjukvara. Med ökad synlighet av
avstånd mellan produktkrav och
mjukvaruutvecklingen får ingenjörerna
hjälp att identifiera och brygga gap i
kommunikationsflödet. Samordningen
inom organisationer som utvecklar
mjukvara kan därmed förbättras.
Genom att implementera enligt en
korrekt förståelse för mjukvarukraven
kan senare omarbetningar och
förändringar undvikas, vilket leder till
ökad produktivet.

En visualisering av olika avstånd
använd i Gapfinnar metoden.

xx

ACKNOWLEDGEMENTS

Similar to the old African proverb ‘It takes a whole village to raise a child’, it
takes a whole community to raise a researcher. I am very grateful for all that I
have learnt both from my academic and my industrial colleagues both in Lund and
internationally. Working with you and being asked constructive questions have
made me think and think again and lead to something better than if I had done it
on my own. Better solutions, better designs, clearer descriptions and presentations,
and sharper conclusions.

Among my research colleagues, I in particular want to thank my supervisor,
Professor Björn Regnell, for his (always) positive and encouraging attitude,
support and introduction into the world of academic research. I also want to thank
my assistant supervisor Professor Per Runeson for teaching me about case study
research and for widening my perspectives on empirical research. I am indebted to
the EASE Theme D team (co-authors of Paper III) for providing me with a good
team environment in which I got my first practical introduction into performing
interview studies and Krzysztof Wnuk who got me going on writing papers for
this area (on an early version of Paper II). I want to thank the SERG group and the
Department of Computer Science at Lund University for providing a stimulating
and supportive research environment. A special thank you goes to Professor Helen
Sharp at the Open University, UK for introducing me to research in the wild and
for letting me loose on ‘your’ development organisation. It was fun and we all
learnt a lot!

Over the years I have worked with very many different people in industry and
I want to thank all of you, including those who have participated in our research
studies. In particular I want to thank my colleague Yolanda Perdomo who
(probably without realising this) encouraged me in believing that I could
contribute to research with my experience and insights from software
development. I also want to thank my managers Mats Pettersson and Susanne
Engberg for agreeing to send me off on this research journey four years ago.

Finally, I owe a huge THANK YOU to my family and friends for their
encouragement. The support of my family has allowed me to pursue this research;
periodically working long hours, being away on conferences etc. In particular I
want to thank you, Hannah, for joining me on my UK adventure (which resulted in
the final paper VI of this thesis); Bjarni for keeping things afloat while I was gone;
Jonathan for looking after my cats; and Michaela for doing more than your share
of the cooking. You are great!

This research was funded by Stiftelsen för Strategisk Forskning
(stratresearch.se), EASE (ease.cs.lth.se) and Ericsson Research.

xxii

INTRODUCTION

Requirements run like a red thread through software development, or at least they
should in order to facilitate developing ‘the right software for the customer’
(Aurum 2005); software that meets the expectations and needs, or the
requirements of the end users and other stakeholders. Communication including
knowledge share between organisational units, roles and individuals is vital for
enabling an efficient and timely development of competitive software, in
particular for large software development companies (Curtis 1988, Kraut 1995,
Karlsson 2007). Gaps in this communication flow can lead to a range of issues
including delays, wasted effort, software quality issues (Curtis 1988) and
ultimately dissatisfied customers. Companies operating in a market-driven domain
face the added challenge of balancing high requirements volatility and uncertain
cost estimates (Karlsson 2007) with releasing software within a critical market
window (Sawyer 2000). Delays and increased lead times, e.g. caused by
miscommunication, can lead to missing the optimal market window and have
serious implications on both sales and brand value (Novorita 1996). Furthermore,
the importance and challenge of requirements is continuously highlighted through
reports such as the Standish CHAOS survey and research results (Boehm 1991,
Tesch 2007, Kamata 2007) that point to requirements-related issues as the top
risks and causes of problems in software development projects.

A closer integration of requirements engineering (RE) within the development
process can mitigate some of these problems by supporting alignment and
coordination of the requirements with later software development activities (see
Figure 1) by reducing gaps in the communication flow between roles (Damian
2013, Stapel 2012). This is the approach taken in agile software development to
address the challenges of a high rate of requirements change and the need for rapid
software delivery (Sommerville 2005). In agile development, requirements are
defined iteratively and in close cooperation within cross-functional teams
(Ramesh 2010). This approach can support development efficiency and
effectiveness (Dybå 2009), e.g. by avoiding the waste caused by developing and
testing software based on unrealistic or unclear requirements. However, there are
also challenges and risks with agile software development (Dybå 2009, Ramesh
2010) thus indicating that there are more factors involved than merely applying an
agile or non-agile development model.

Even though the interaction and coordination of RE with other software
development activities is vital the bulk of RE research focuses on methods and
techniques within RE (Cheng 2007). Although improving the outcome of the RE
process itself (e.g. the requirements specification) has benefits, it has little value if
RE is not well connected and coordinated with the rest of development. More

2

attention is needed on the impact that RE has on the success of the development
projects and the resulting products (Gorschek 2008).

The aim of this research is three fold: (A) to contribute with empirical insight
into the coordination of requirements within development and (B) to provide
support for improving the integration of requirements, in particular with testing.
This research also contributes with (C) theory of factors influencing the
integration and alignment of requirements and testing. The new knowledge and
methods presented in this thesis can be used to detect potential gaps in
development projects and identify work practices that may bridge these gaps. This
optimisation of the RE integration can increase the alignment between RE and
later development activities, thus improving the overall efficiency and
effectiveness of a software development project. Ultimately, this can increase a
company’s ability to successfully develop and launch profitable products to the
market.

The remainder of this chapter is organised as follows: Section 1 describes the
background and related work of the research presented in this thesis. Section 2
presents our research focus including research questions, contributions and thesis
outline. The applied research methodology is described in Section 3. While the
details of the research contribution is presented in the second part of this thesis,
one of the contributions is presented in Section 4 of this chapter, namely a
theoretical framework. Finally, Section 5 contains a synthesis of the research
results, while future research directions are outlined in Section 6 and main
conclusions in Section 7.

Figure 1. An overview of the problem domain and solution approach, i.e. a
closer integration of requirements engineering (RE, the red thread)
with other development activities, primarily testing. This can
decrease gaps in the information flow between customer
expectations and product behaviour and strengthen the alignment.

Introduction 3

1 The Role of Requirements in Development
Requirements engineering (RE), and its wider context of software engineering,
can be viewed from different angles. It can either be seen as a formal and
structured transformation of information or as a collaborative effort relying on the
creativity and competence of the involved engineers. Process engineering is an
expression of the former, while agile development and research into coordination
and communication within software development is an example of the latter.

1.1 RE in the Development Process

Traditionally the focus has been on practices, methods and techniques for enabling
development through defining work flows, or processes, as a sequence of steps
that transform information from an idea or a request through design,
implementation and testing to a software solution. Viewed from this angle,
process engineering is concerned with prescribing how to achieve a flow from
input to output by defining roles, activities and artefacts that will produce the
desired end result. Furthermore, from this perspective the various software
engineering disciplines (e.g. RE, design, implementation and testing) tend to be
defined as separate processes. The interaction between these processes is then
defined by artefacts and prescribed activities involving interfacing roles.

Damian et al. (2005) found that a well-defined RE process can augment project
planning and the stakeholders’ ability to negotiate project scope, as well as,
support increased developer productivity. RE, thus, has the ability to enhance the
ability of the software development life cycle to produce software that matches the
targeted market window. However, this requires the RE activities and roles to be
well coordinated with the other software development activities (Curtis 1988,
Damian 2006, Kraut 1995), e.g. architectural design, implementation and testing.
In particular, RE plays a vital role in decision making concerning which behaviour
to implement (Aurum 2003) and communication of these requirements to the
relevant development roles (see overview of problem domain in Figure 1). For this
reason, requirements that are not aligned with the technical design and with the
amount of available resources are likely to cause problems and lead to delays,
wasted effort and issues with the quality of the developed software (Damian
2006). Furthermore, frequent requirements changes can lead to similar problems
(Curtis 1988, Boehm 1991).

Research into how RE may enhance the overall development process includes
work on requirements communication (Damian 2013, Stapel 2009, 2011, 2012,
Marczak 2008, 2011), the alignment of requirements and testing (Uusitalo 2008,
Kukkanen 2009, Sabaliauskaute 2010) and taking an agile approach in software
development (Layman 2006, Dybå 2009, Ramesh 2010).

1.2 Requirements Communication

Communication and coordination of requirements is a challenge (Flemming 1978)
common to development in a range of different contexts including market-driven
(Karlsson 2007), large-scale (Curtis 1988) and distributed (Damian 2001, Calefato

4

2007, Stapel 2009) development. Coordination between marketing and
development roles within the market-driven domain entails a range of difficulties
including lack of common views on the role and need of requirements details,
common vocabulary, responsibility for requirements specification and analysis,
dependencies on individuals, and suitable combination of sequential and iterative
development (Karlsson 2007). For large and complex development these
challenges increase and Kraut at al. (1995) argue that a combination of formal and
information communication is required to be able to cope with uncertainties and
changes. For distributed development where the informal communication channels
are reduced most problems have been found to be related to communication, in
particular missing context, awareness and missing document information (Stapel
2009). Awareness of one another’s work is important since it affects the
coordination, which in turn leads to information sharing and knowledge gain
(Damian 2010). Lack of knowledge of on-going activities hinders a correct
assessment of the impact of changes, and can lead to misunderstandings about
requirements, as well as, reduced trust and productivity in a development team
(Damian 2003).

Bridging the communication gaps between RE and other development roles
and activities, in particular for distributed development, has been identified as an
important area for future RE research by Cheng and Atlee (2007). The need for
increased insight in this area is further highlighted by Marczak et al. (2011) who
found that the communication structure in a development team did not adhere to
the one prescribed by the organisation. Some approaches to provide such ‘bridges’
have been researched including use of computer-aided communication for
requirements elicitation and negotiation (Calefato 2007, Damian 2001).

Increased awareness of communication paths has been suggested to improve
the information transfer in a geographically distributed setting. Stapel et al. (2009)
suggest having ‘ambassadors’ physically present at the different sites and to
document fluid information. Marczak et al. (2008) found that the information flow
to a large extent is controlled by a few key people, a.k.a. information brokers.
They pose that extensive experience of an organisation and familiarity with its
members may enable certain people to bridge communication gaps also on behalf
of their fellow team members. Kwan et al. (2007) propose enhancing awareness
by visualising inter-dependent requirements and the people working on them using
a requirements-dependency diagram.

Matching the communication patterns with the technical dependencies
between requirements and work items is an approach investigated by several
researchers. Cataldo et al. (2008) evaluated a framework for assessing the socio-
technical congruence and found that the resolution time for a modification request
was reduced by a third (on average) when the developers’ communication patterns
were synchronised with the technical dependencies between the work items they
were assigned to performed. A related approach to planning and managing
information flows named FLOW Mapping is proposed by Stapel et al. (2009,
2011). FLOW Mapping entails capturing the information needs of a project, and
based on these needs develop and implement a communication strategy covering
both formal and information channels. The final step is to monitor and measure
adherence to this communication strategy (Stapel 2011).

Introduction 5

1.3 Agile RE: Concurrent and Integrated

Agile software development applies a concurrent approach by integrating the
processes for requirements, design and implementation. Within concurrent
engineering (Lawson 1994) product development is performed by concurrently
carrying out the multiple engineering processes with extensive feedback and
iteration between them (Sommerville 2005). Thus, the developers are to consider
all aspects of the development cycle from requirements to cost and quality. The
gains reported for concurrent engineering include increased efficiency,
productivity and quality, and reduced waste and shortened lead times (Lawson
1994). Similar gains are claimed for agile software development including
increased responsiveness to change (Sommerville 2005, Layman 2006).

For agile RE six industrial practices used in agile development and seven
challenges connected to these have been identified by Ramesh et al. (2010). One
of the agile RE practices is prioritising face-to-face communication over written
documentation, which goes back to one of the basic agile principles (Beck 2001).
However, weak customer and project-level communication within agile projects
also leads to challenges with cost and project-level schedule estimations and
customer participation (Ramesh 2010). In addition, these gaps in communication,
in combination with the minimal amount of documentation produced in agile
development projects, have been reported to cause problems with scaling and
evolving the software and with including new project members (Ramesh 2010).

Another identified agile RE practice is review meetings and acceptance tests
which are used to validate and verify the requirements (Ramesh 2010). In some
organisations the acceptance tests are viewed and used as requirements, thereby
fully integrating these two artefacts. The acceptance tests are used to determine
whether or not the system is acceptable from the customers’ perspective and used
as the basis for customer discussions, thus reducing the risk of building the wrong
system. However, the communication then occurs on a more technical level and
may require more technical insight of the customer. Melnik et al. (2006) found
that customers in partnership with software engineers could communicate and
validate business requirements through executable acceptance tests, although there
is an initial learning curve.

The approach of having an executable specification of the system by defining
requirements as test cases is called behaviour-driven development, BDD (North
2006). The test cases are defined with a domain-specific language (DSL)
containing terms from the business domain. The DSL provides the customers and
developers with a common language that reduces ambiguities and
misunderstandings. Solis and Wang (2011) reviewed the available BDD literature
and a number of BDD toolkits and found that the area is still under development.
In addition, they found that the toolkits available at that time were limited to only
support the development phase and did not provide the possibility to add domain-
specific concepts to the DSL.

6

1.4 RE and Test (RET) Alignment

Aligning, coordinating and avoiding gaps between RE and testing (RET) is a
challenge for software development. This challenge relate to a wide range of
issues including organization, process, people, tools, requirement changes,
traceability and measurements (Sabaliauskaute 2010). Practices applied in
industry to address these challenges include traceability and increased
communication, e.g. by involving testers early in the project and in requirement
reviews (Uusitalo 2008). Similarly, Marczak et al. (2011) found that in
requirements-driven collaboration there is often close communication between
requirements and testing roles; key roles which when absent cause disruptions
within the development team.

Research into improving RET alignment has primarily focused on model-
based testing, formal approaches and traceability (Barmi 2010), which all cause
issues when implementing them in practice. Hasling et al. (2008) report on
positive experiences, but also challenges, of linking the requirements process to
the testing process by applying model-based testing to a UML use case model of
the requirements. Similar mixed findings from case studies of applying model-
driven engineering are reported by Mohagheghi and Dehlen (2008) based on a
literature review. Traceability between requirements and test cases or source code
aims to align changing stakeholder needs with on-going development (Jarke
1998). This is a practice seen to improve the quality of the system under
development, support clearer documentation, increased system understanding and
impact analysis (Lindvall 1996). Research into this field has primarily focused on
tools and techniques for supporting traceability. One such technique is trace
recovery, which aims at supporting traceability through automatic or semi-
automatic identification of related entities through information retrieval algorithms
on natural language (Huffman Hayes 2007, De Lucia 2007, Borg 2013). However,
issues related to organisational and social context have been reported as
challenges in implementing tracing in practice (Gotel 1994, Ramesh 2001). Apart
from technical challenges connected to tool environments, reported impediments
include lack of organisational commitment, weak insight into the cost-benefit
balance, lack of processes for tracing, inadequate training and use of external staff
(Ramesh 2001).

Improving the requirements process has been found to support improvements
also of later development activities, such as testing. Damian and Chisan (2006)
performed a longitudinal case study of a company undergoing requirements
process improvements and found that this improved the efficiency of downstream
processes including testing. The improved requirements process provided the
engineers including testers with requirements details and dependencies early on
and, thus supported them in making informed decisions. The decrease in amount
of rework is partly attributed to this improvement. Furthermore, a significant
change in requirements communication is reported leading to improved
communication between functional teams within the organisation and reducing the
need for seeking later information concerning clarification and reiterations of
requirements.

Introduction 7

RET alignment may be enhanced by concurrently improving the requirements
and the testing processes. Kukkanen et al. (2009) report on overall improvements
when integrating the requirements and testing processes with the aim of ensuring
the information flow between these two processes throughout the development life
cycle. This integration formed the basis for optimised usage of resources and led
to increased visibility of project status, removed risk of double work and increased
overall effectiveness of the project (Kukkanen 2009).

Paci and Bouquet (2012) proposed a contrasting approach where changes
between the two areas are propagated through strict interfaces defined between the
requirements and the testing processes (rather than integration). Model-based
traceability is used to connect the two areas, which do not need insight into the
other. Rather, the roles of each area adhere to their separate process and rely on
them being orchestrated so that information is propagated to the other side as
needed. The approach is proposed in particular for security testing and has yet to
be evaluated in a real-life setting.

The REST-bench framework (Unterkalmsteiner 2013) takes a somewhat
similar stance in assessing RET alignment by mapping the information flow
between requirements and testing by using an artefact map. When applying the
method on a one-year project at Ericsson AB, a number of misunderstandings
between requirements and testing roles were uncovered and subsequently resolved
at a joint workshop. At the workshop bottlenecks and sub optimisations in the
RET interaction were also identified by analysing the artefact map for the project.

1.5 Software Process Improvement

Software process improvement (SPI) views ‘the software process as the set of
tools, methods, and practices we use to produce a software product’ (Humphrey,
1989, p.3) and by improving on the processes the development can become more
efficient, reliable and repeatable, and result in software of a higher quality. The
traditional and most wide-spread SPI frameworks and methods such as CMMI
(Chrissis 2008) and SPICE (ISO/IEC 2004-2011) base their improvement
suggestions on a wide set of best practices. These frameworks have been
characterised as being prescriptive, or top-down, (Pettersson 2008), since they
start by comparing the overall picture of one company to the summarised known
set of best practices irrespective of domain, size or other case-specific
characteristics. In contrast an inductive, or bottom-up, SPI framework such as QIP
(Basili 1985) and Lean Six Sigma (George 2002) start by considering the
organisational situation and context of the specific organisation when identifying
potential improvements.

Most SPI frameworks and methods share the same main steps of first
evaluating the current process, and then identifying, implementing and evaluating
suitable process improvements. However, there are a number of different
techniques that can be used for assessing a process and identifying improvements.
One of them is retrospective reflection of past events and experiences with the aim
of identifying issues and improvements (Collier 1996, Deby 2006, Drury 2011).
Within agile development, iteration retrospectives are a common practice and are
strongly connected to the concept of self-governing teams (Drury 2011). The team

8

then discusses the past iteration and agrees on process improvements to apply for
the next one, thus reflecting on a short period of time. In contrast reflecting on the
whole period of a project’s duration through project retrospectives (a.k.a. lessons
learnt or project post-mortems) is more commonly applied within traditional
development. These retrospectives can then range from general brainstorming
sessions to structured meetings with prepared input concerning project events.

Other approaches to SPI include analysis of information flows, process
modelling and process simulation. The technique of analysing information flows
(Cataldo 2008, Stapel 2011) strives to identify bottle-necks and optimise the flow
through a project based on the idea that efficient and effective development relies
on transformation of information. This approach has been applied to requirements
information, see Section 1.2. Similarly, process modelling (Yu 1994) can be used
to construct a model of an existing or an improved process including its
information flow. Such a model of an existing process can facilitate group
communication and understanding of that process, and thereby support improving
and managing it. Furthermore, modelling can enable the implementation of
process guidance and steering in the tool environment, thereby enforcing the
process prescribed by the model. In addition, a process model can be simulated
(Kellner 1999) in order to investigate various modifications of the process.

2 Research Focus
The research within the described problem domain (see Figure 1) was addressed in
three main parts. First, the aim was to (A) seek increased insight into the
coordination of RE with later development activities, and then to (B) research SPI
methods for improving RE coordination and integration. In order to provide a
solid foundation for the research on new methods we (C) generated a theory for
integrated RE (iRE). This theory was based on empirical data from part A and
used as the basis for designing the Gap Finder method in part B. Thus, this iRE
theory (generated in part C) connects the descriptive research performed in part A
with the prescriptive research performed in part B, see Figure 2.

2.1 Research Questions

In order to further focus and define the scope of the research, research questions
were defined for each of the three parts. The 7 main research questions addressed
in this thesis are listed in Table 1. An overview of the relationships between these
questions is depicted in Figure 3 and described in the following sections.

Introduction 9

Table 1. Main research questions covered by this thesis and in which part.

Research Question (RQ) Addressed
in

In
si

gh
t

A1 What causes the challenge of gaps in requirements
communication and what effects can these gaps have? Paper I

A2 What causes the challenge of overscoping of
requirements and what effects can this have? Paper II

A3 What are the challenges and practices in aligning
requirements engineering and testing (RET)? Paper III

Im
pr

ov
em

.

B1

How can the evidence-based timeline retrospective
(EBTR) method support new insights and learning
concerning the interaction between requirements and
other development activities?

Paper V

B2 How can Gap Finder support project teams in
improving RET alignment? Paper VI

T
he

or
y C1

What kind of distances between requirements
engineering and later development activities are
reported in peer-reviewed literature?

Paper IV

C2 How are RET alignment practices related to RE
distances and gaps? Introduction

2.1.1 Part A: Gaining Insight into Practice

The first three research questions (RQ.A1-A3) were asked in order to gain insight
into challenges and practices in the problem domain. The topics of RQ.A1
Communication gaps and RQ.A2 Overscoping were selected based on long
experience of working with in industrial software projects, in combination with
other research insight into RE research. Through RQ.A1 a range of causes and
effects of communication gaps were identified. Connections were found to
overscoping, i.e. RQ.A2. An additional outcome of RQ.A1 was an expressed need
for supporting development projects in gaining new insights and learning
concerning how requirements are communicated and coordinated within the
project, i.e. RQ.B1. Furthermore, a need for investigating distances between
people (individuals, roles, organisational units etc.) and between activities over
time arose from the insights into communication gaps and thus led to RQ.C1.

RQ.A3 RET (Requirements Engineering and Testing) alignment was defined
based on insight into the research area and on a literature review. In addition, the
scope of this thesis was delimited by selecting testing as the ‘later development
activity’ to mainly focus on. RQ.A3 was defined with the aim of gaining insight
into challenges and practices in coordinating and aligning RE with testing. This
research question led to identifying a potential connection of RET alignment to
distances between RE and testing. This resulted in defining RQ.C1 RE Distances
and RQ.C2 How RET alignment practices are related to RE distances. The
empirical data collected to address RQ.A3 was also to investigate RQ.C2.

10

Figure 3. An overview of the main research questions (RQ) defined for each
part (A-C), how they relate to each other and the main research
method used to address each question.

2.1.2 Part B: SPI Methods for Improving Practice

Two of the research questions focus on software process improvement (SPI)
methods aimed at the coordination and integration of RE with other development
activities. The first one, RQ.B1 New insights through the EBTR (Evidence-Based
Timeline Retrospective) method, evolved from RQ.A1 Communication gaps and
practitioners who expressed a need for supporting development projects in gaining
insight and learning concerning how well requirements were managed and
communicated throughout the development life cycle.

RQ.B2 Gap finder was defined to investigate if a SPI method based on the
knowledge and theory gained from RQ.C2 Gaps for RET was applicable for
identifying RE gaps and suitable improvement practices.

Introduction 11

2.1.3 Part C: Theory of Integrated RE (iRE)

The research questions defined for part C were aimed at identifying a theoretical
basis for iRE including the phenomena explored in part A and SPI methods
investigated in part B. RQ.C1 RE Distances was defined to investigate which
distances between requirements and later development activities had been reported
in peer-reviewed literature. This question was initiated based on insights and
results gained from part A. In particular, the results from RQ.A1 Communication
and RQ.A3 RET Alignment around gaps between people, artefacts and between
activities over time. The results identified through RQ.C1 then posed an important
foundation for generating further theory in response to RQ.C2 Relationships
between RET practices and RE distances and resulted in the Gap Model (see
Section 4). This research questions was posed to investigate generating a theory of
gaps (or distances) that could explain the RET challenges and practices identified
through RQ.A3. In addition to using the thirteen RE distances (identified through
RQ.C1) as the basic framework of distances, RQ.C2 was investigated based on the
empirical data collected for RQ.A3 RET alignment.

2.2 Outline of Thesis

This thesis is composed of two parts, namely this introduction chapter and a six
research articles. This first part of the thesis describes the applied research
methods (Section 3), the Gap Model (Section 4), the main results and
contributions (Section 5), future research directions (Section 6) and conclusions
(Section 7). The articles in the second part describe the details of all the performed
studies and underpin the contributions and conclusions made in the first part. The
exception is the study for RQ.C2, which is described in Section 4 of the first part
of the thesis.

3 Research Methodology
This thesis includes five case studies (Papers I-III, V-VI), one literature study
(Paper IV) and one theory-building study (see Section 4). Figure 3 contains an
overview of the main research method used to address each research question. The
overall research approach is discussed below followed by a description of the
methods applied to each main category of study, i.e. case studies, systematic
literature study and theory-generating study.

3.1 Research Approach

The overall aim has been to perform sound empirical research that can support our
industrial partners in improving their software development processes. This is the
reason for performing the majority of the work as case studies of industrial
software development projects at our partners’ sites. The industrial relevance of
this research was thus strengthened both by validating the relevance of the
research questions with our partners and by basing our findings on empirical data

12

gathered from industrial projects both during execution and after project
completion.

The included studies are predominantly of a qualitative nature although some
quantitative data have been collected, e.g. through surveys. This springs from the
aim of gaining insight into factors affecting the coordination of requirements
within development projects and organisations. Since development is a complex
process both from a software engineering perspective and when considering
human and psychological factors we believe that ‘to truly understand software
engineering, it is imperative to study people – software practitioners as they solve
real software engineering problems in real environments’ (Lethbridge 2005, p.
311). Thus, insight into the full picture requires studying real-life situations using
a qualitative approach. Once factors have been identified and sufficient data points
have been collected quantitative methods may be suitable for confirming these,
however this remains as future work to consider.

Applying a flexible design approach (Robson 2002) in planning and
performing the studies has been particularly suitable for the case studies of live
development project. This approach has enabled us to adapt the study if and when
it is affected by changes and delays in the development projects. In addition, this
approach has allowed for iterating and gradually improving on the research design
including the analysis process as new knowledge is gained.

3.2 Case Studies: Papers I-III, V-VI

Five case studies of development projects have been performed to gain insight
(part A) into factors at play in software development and to evaluate the
improvement methods (part B) by applying these in a real-life setting. For these
studies all three of the criteria mentioned by Yin are relevant, i.e. (1) ‘how’ or
‘why’ research questions, (2) little control over events and (3) focus on
contemporary phenomena in a real-life context (Yin 2009, abstract). For research
questions RQ.A1-A2 the investigations focused on the ‘how’ of the challenges in
the targeted area was caused by underlying factors. For RQ.A3, the ‘how’
concerned how the area of RET alignment was experienced and addressed in
industry. For the case studies performed to evaluate the SPI methods EBTR
(Evidence-Based Timeline Retrospective) and Gap Finder the questions were
related to ‘how’ these methods can support project teams in improving on
practice.

For both category RQ.A and RQ.B the phenomena and the SPI methods
needed to be studied in a real-life development project and organisation to ensure
that the findings are derived from a realistic case with the full complexity of
factors involved in software development. Furthermore, by studying particular
cases (projects and organisations) these results are of direct interest and readily
applicable to those cases and thus to our industrial partners.

When studying a real-life project and development organisation (Yin’s third
criteria) it is a fact that the researcher has little control of events (Yin’s second
criteria). However, research can aim to be more of less intrusive and influential on
the case under study. The case studies performed to address RQ.A1-3 were
designed purely for gaining empirical insight, and not to influence or control

Introduction 13

events during the investigations. In contrast, for the method evaluation studies
(RQ.B1-2) the researchers controlled events to some degree by applying a new
SPI method, as agreed with case representatives. However, the intention was not
to influence the participants’ reactions and responses to the methods but rather
study these in order to obtain insight into strengths and weaknesses of the
evaluated methods. Furthermore, since the intention of the SPI methods is to
improve on practice there is (hopefully) a more long term effect on events for
these studies. However, evaluating such effects of the SPI methods remains as
future work and is not within the scope of this thesis.

The applicability of the results obtained through a case study needs to be
considered for both internal and external generalizability (Robson 2002, p. 176-
177). The internal generalizability, i.e. the extent to which the results are valid
within the case context is affected by how representative the performed sampling
is. For all the case studies in this thesis this was mitigated by performing a
controlled convenience sampling of participants. Although availability was
required, suitability was always the prime consideration in order to ensure a
representative sample of the roles and experiences for the research questions at
hand and thereby increase the internal generalizability of the results.

External generalizability has been considered primarily in connection with
reporting of the results rather than in the study design. The findings and the
characteristics of the case context have then been appraised to assess to which
degree the results may be applicable also to other contexts (Runeson 2012, chapter
5). To further support this analytical generalization the context and characteristics
of the cases have been reported together with the results. This enables the reader
to evaluate the generalizability compare to other cases (Runeson 2012, chapter 5).

The purpose of the included case studies varied and was either explanatory or
exploratory (Robson 2002, p. 59). The case studies on communication gaps
(RQ.A1) and overscoping (RQ.A2) were explanatory and sought to explain these
phenomena by identify causes and effects. In contrast the RET study (RQ.A3) and
the evaluation studies (RQ.B1 and RQ.B2) were performed to explore and seek
new insights. In addition, the evaluation studies sought to assess the new SPI
methods in the case context rather than merely describing the application of them.

A mixed method approach was applied for all case studies and a range of
different research methods were combined as was suitable for the research
questions and case context at hand (Robson 2002, p. 370). These include
interviews, focus groups, and document studies. This approach allowed us to study
a phenomenon from multiple angles and enabled applying triangulation.

For each case study their main purpose and approach are further described
below (Sections 3.2.1-3.2.3) including how the main risks to validity were
mitigated in the research design. In addition, the various research methods and
how they were used in the various case studies is discussed in Sections 3.2.4-3.2.8.

3.2.1 Explanatory Case Studies: Papers I and II

Two of the case studies, namely the ones for RQ.A1 Communication Gaps and
RQ.A2 Overscoping had an explanatory purpose and were designed to explain
these phenomena. The starting point of these studies was an assumption of the

14

factors at work derived from previous experience and insight into software
development. The aim and main challenge of the studies was to investigate the
phenomena using these assumptions while avoiding biases. Semi-structure
interviews around questions defined in-line with the assumptions were performed.
The risk of biasing the participants by imposing the assumption on them was
mitigated by starting the interviews with open and un-biased questions before
asking about the pre-assumed factors. In addition, in the reported results a
separation was made between answers to the open questions and those given in
response to the more specific questions. The risk of researcher bias was mitigated
by involving multiple researchers in designing the study and validating interview
transcripts. Furthermore, the outcome of the analysis was validated with
practitioners through a survey.

3.2.2 Exploratory Case Study: Paper III

The exploratory case study for RQ.A3 RET alignment was performed as a semi-
structured interview study where the questions were based on the researchers’
insight into the area and on a literature review. The size of this case study both
concerning the number of interviews (30) and companies (6), and the number of
researchers involved (10) posed a challenge in coordinating and ensuring
consistency between the different parts of the study and in managing the large
amounts of qualitative data. The risks included dispersed research objectives and
unintended variability in the data collection and data analysis (Runeson 2012,
section 7.6). This challenge was partly mitigated by applying a rigorous case study
process (Runeson 2012, section 2.6) and by having regular meetings to coordinate
and synchronise the activities. Furthermore, a chain of evidence was maintained
through traces between the interview data (transcripts), the intermediate analysis
material, and the reported results. These traces thus made it feasible for other
researchers to validate the results and intermediate analysis steps against the
interview transcripts, thereby strengthening the reliability of the results (Yin 2009,
chapter 4, pp. 122-124). In addition, the output of each step in the process from
research design to reporting was reviewed and validated by more than one
researcher, thus applying triangulation throughout the research process.

3.2.3 Exploratory Case Studies for Evaluation: Papers V and VI

The main purpose of the two case studies for part B was to explore and evaluate
the proposed SPI methods, i.e. EBTR (Paper V) and Gap Finder (Paper VI), by
applying them to live development projects. Both of the evaluated methods
contain two parts, namely a) exploring and assessing the project under study
without influencing events and b) interacting with the development team by
presenting and discussing these findings with them with the intention of
supporting, and thus influencing them to learn and improve on practice. The
researcher influence for part a) was minimised in different ways for these two
studies.

For the case study on the EBTR method, the project was explored (part a)
mainly through document studies post fact and resulted in a representation of
project history in the form of a visualised timeline, a.k.a. evidence-based timeline

Introduction 15

(EBT). The risk of researcher bias or misunderstandings was then mitigated by
reviewing this timeline with a company representative and during part b) with the
involved practitioners.

For the other case study, i.e. the evaluation of the Gap Finder (RQ.B2), the
exploration of the project (part a) was done through observations and surveys and
took place in parallel to project execution. There was thus a greater risk of
researcher influence for this case. This risk was mitigated by choosing an
ethnographically-informed approach (Robinson 2007) for the observations, i.e. the
team was observed without interfering or actively interacting with team members
concerning project issues, e.g. during team meetings or discussions. The
ethnographical approach also mitigated the risk of misunderstanding or
misinterpreting the data collected through interviews and surveys.
Ethnographically-informed observations are further discussed in Section 3.2.7.

3.2.4 Interviews

Interviews have been used to collect data for all of the included case studies
except for the EBTR study (RQ.B1). All interviews have been semi structured in
order to focus the discussions while still keeping them open. For each interview
study an interview instrument with a structured set of questions was designed prior
to the interviews. During the interviews this instrument acted as a guide and both
the interviewer and the interviewee were free to ask for clarification and follow-on
questions. In this way it has been possible to perform wide and deep enquiries into
the rich reality of software development for the specific topics of interest. For
example, for the explanatory case studies of communication gaps (RQ.A1) and
overscoping (RQ.A2) the interview instrument was structured around the
phenomena under study and the factors believed to be involved. However, the
leading questions for each topic were consciously design to be open and thus
encourage a free exchange of experiences and viewpoints. This approach
mitigated the risk of biasing the participants and led to identifying factors not
previously considered by the researchers.

For RQ.A1-A3 the main aim was to obtain a rich and wide picture of the area
under study, which is why interviews were used as the main data collection
method for these case studies. For the study on evaluating the Gap Finder (RQ.B2)
interviews were used for a slightly different purpose, namely to support the data
collection through surveys. The surveys were then administered as semi-structured
interview using the survey questions as the interview instrument.

In order to mitigate the risk of researcher bias and misunderstanding what the
interviewee meant all interviews were audio recorded and triangulation applied in
the subsequent steps of the research process. For each interview either the
transcript was reviewed by another researcher (done for RQ.A1-A3) or the
practitioners validated the findings through a follow-up survey (as for RQ.A1-A2)
or through a focus group (as for RQ.B2).

The level of detail in the transcripts has varied over the studies. For the
interview study performed for RQ.A3 where 30 interviews were performed by 10
researchers, the interviews were transcribed word-by-word in order to minimise
the risk of introducing variations due to the many researchers involved. For the

16

other studies, one main researcher was involved in the data collection and
analysis, and the amount of interview data was more manageable. For these
reasons, a slightly higher level of detail was captured in the interview transcripts.
For example, stuttering and repetitions were omitted and rephrased to capture the
meaning rather than each word. Furthermore, timestamps were interspersed in the
transcripts to facilitate going back to specific parts of the audio recordings if
necessary.

3.2.5 Surveys

As insight into the area under study increased so did the need to focus the
investigations. We found surveys to be a good way of achieving this. Surveys
have been used in two ways, namely to validate findings within a case study (as
for RQ.A1-A2) and to study specific factors identified through previous research
(as for RQ.B1-B2). An example of the first application is the study on overscoping
(Paper II) where a set of factors were identified through interviews and then
validated through a survey (or questionnaire) on the relevance and impact of these
factors. An example of the second use of surveys is the Gap Finder study (Paper
VI) where surveys acted as a starting point and were designed based on previous
empirical knowledge represented by the theoretical framework of the Gap Model
(see Section 4). The outcome of these surveys then provided data that was used
both to understand the case and as part of the method which was being evaluated.

For the case study on the EBTR method (RQ.B1) self-administered surveys
were used as a complement to focus groups for collecting data on participants’
experience of the EBTR method. These surveys enabled us to collect more
specific feedback and offered participants a way to provide individual feedback.
This mitigated the risk of participants not freely expressing their viewpoints at the
focus groups (Robson 2002, p. 234), which in this case included their peers and
managers.

The main threats to validity for surveys are that the respondents do not
understand and answers the questions in a uniform way and that the answers do
not provide any depth (Robson 2002, p. 233), i.e. explanations or reasons for the
given opinion. The risk of misunderstood questions was mitigated by carefully
designing the survey questions based on previous empirical insight either from our
own studies or from related work. In addition, the survey questions were reviewed
and refined in collaboration with other researchers before being used.
Furthermore, a researcher with good insight into the specific case was always
involved in designing the survey questions to ensure that the questions were in-
line with case terminology.

Combining surveys with interviews (as described in Section 3.2.4) for several
of the studies further mitigated the risk of survey questions being misinterpreted.
This approach also allowed the researchers to ask for clarification of answers
when these were not readily understood. In conclusion, the surveys allowed us to
focus the enquiries, while combining them with interviews provided a safety net in
which unclear questions and answers could be caught and resolved.

Finally, due to the small numbers of respondents to each survey it has not been
possible to perform statistical hypothesis-testing. Instead a qualitative approach
has been taken in analysing descriptive statistics of the responses.

Introduction 17

3.2.6 Focus Groups

The SPI methods EBTR (Paper V) and Gap Finder (Paper VI) both include focus
group sessions as the main method to stimulate and support project teams in
learning and gaining insight into process improvements through group reflection.
In addition, focus groups were used for gauging the practitioners experience and
viewpoints concerning these SPI methods in a light-weight yet in-depth way.

The focus group sessions were led by a moderator in a similar way to semi-
structured interviews, i.e. predefined questions were used as a guiding framework
in leading the discussions. All participants were allowed to freely express their
opinions within the scope of the targeted topics for the session and the researchers
could ask follow-up questions. For example, to clarify a point or try to ascertain
what caused a mentioned event. Furthermore, an additional researcher was also
present to support the moderator in ensuring that the discussions kept to the topics
and that all topics were covered.

The main challenges of the focus group sessions in our case studies were to
encourage all participants to share openly and with an equal airtime, and to ensure
sufficient moderator competence and insight into the case. For both of the studies,
the focus group participants were existing project teams and thus had a previous
good working relationship. This entails openness when meeting together.
However, in both cases there were participants who attended together with their
managers, which may have limited their openness. For all sessions the moderators
actively strived to encourage all participants to share, although there were sessions
were certain participants were less active. One way to mitigate this was applied in
the EBTR evaluation where the participants were given reflection time for each
question and later took it in turns to share their reflections with the group.

The risk of the moderator and other researchers misunderstanding the
participants was mitigated by ensuring that the moderators of the focus group
sessions had good insight into both the topic area and the case context. In addition,
a summary was written for each focus group session. This summary was reviewed
by the involved researchers and then distributed to the participants to validate that
it reflected their view of what had been discussed and concluded at the meeting.

3.2.7 Ethnographically-Informed Observations

An ethnographically-informed approach was applied during the first part of the
Gap Finder study (Paper VI) and in particularly in the observations of the
development team. The purpose of these observations was to gain a rich insight
into the day-to-day work practices of the team members and their interactions with
each other. The ethnographical approach entailed seeking to understand the team’s
work practices apart from the researcher’s assumptions about software
development (Robinson 2007). Although the long term aim of the Gap Finder
evaluation was to improve on practice, the ethnographically-informed approach
meant that the influence and interference with the development team was kept to a
minimum during the four weeks that the first parts of the Gap Finder method was
applied and during which the observations took place. For example, the researcher

18

did not contribute to any group discussions or meetings during this time period,
merely observed and took notes.

Since the researcher who undertook the observations for the Gap Finder study
had just recently been introduced to the case there was a risk of misinterpreting the
observed interactions. This risk was mitigated by obtaining some initial insight
through an interview and document studies of process descriptions and of
development artefacts. Furthermore, an initial observation period of three days
was undertaken a few weeks before the main observations began. This warm-up
period also allowed the team members to become familiar with the researcher and
mitigated the risk of them feeling uncomfortable and not acting as normal when
being observed.

3.2.8 Document Study

In the evaluation studies of the EBTR method (Paper V) and the Gap Finder (VI)
document studies were used as an unobtrusive and objective way (Yin 2009,
Chapter 4) to gain insight into the cases. For the EBTR study the document studies
were also a key component in preparing the evidence-based timelines that were
later used as the basis for the focus group sessions with the project teams.

There were two main risks associated with these investigations, namely the
risk of studying documents that were not representative of the case and the risk of
bias both in the information and in the interpretation of it. For both case studies
these risks were partly mitigated by initially obtaining an overall picture of the
process including the used artefacts. Furthermore, the risk of studying a skewed
and non-representative sample was mitigated by asking key project members for
pointers to relevant artefacts. In order to avoid restricting the data source, e.g. by
limiting the studies to artefacts directly provided by practitioners, the researchers
had direct access to all of the relevant repositories.

For both studies the risk of bias was mitigated through triangulation. For the
EBTR study, the timelines based on the document studies were reviewed by a case
representative and further validated by the project teams at the focus group
meetings. The majority of the information covered by the timelines was found to
be correct, although details not found in the artefacts were missing, e.g. which
testers had been involved throughout the project. Similarly for the Gap Finder
study, the outcome of the document studies, i.e. the design of the artefact survey,
was reviewed by an additional researcher with insight into the case.

3.3 Systematic Literature Study: Paper IV

A systematic literature study was the main method chosen to investigate research
question RQ.C1 (Paper IV). However, each of the other studies has also included
studying related literature either as a starting point for designing the study or as a
validation step to compare the outcome against existing knowledge. The
difference lies in that for those studies a less systematic process was applied in
searching and analysing related literature than for Paper IV.

For RQ.C1 we were interested in investigating the concept of distance between
RE and later development activities, in particular which distances that had been
researched and for what context. The specific method chosen was a systematic

Introduction 19

mapping study that can be used to classify and structure an area and assess the
coverage and, thus gaps in the current research (Petersen 2008). Relevant
literature was searched for by a defined and systematic process and the literature
found to be relevant was categorised. Furthermore, for each distance types the
literature was reviewed and a synthesis of the research performed so far was
produced.

In comparison, the related method systematic literature review (SLR) aims to
provide a summary of a topic by ‘evaluating and interpreting’ all available
relevant research (Brereton 2007). We interpret this to mean that an SLR focuses
on synthesising the findings of the literature, while a mapping study primarily
focuses on providing an overview and a map of the area.

Since this mapping study was performed by one single person there is a risk of
researcher bias in all steps of the process, i.e. in the selection of the included
literature and in the analysis. This risk was mitigated to some degree by adhering
to a predefined process (Brereton 2007). In addition, the full list of identified
literature including the categorisation was published thereby allowing other
researcher to validate the map.

3.4 Theory Generation Study: Gap Model

Theory has been generated mainly in the RET alignment study (Paper III) and in
the Gap Model study (Section 4 of Introduction), although the Gap Model is the
only pure theory-generation study. For both of the studies a theoretical framework
was constructed by analysing empirical data against existing theoretical
knowledge, thereby extending or modifying the theory by constant comparison to
the data (Seaman 1999). Connection between factors and phenomena were
identified and generalised into theory by coding the data, identifying patterns in
and between these codes, and finally comparing and incorporating these patterns
into the evolving theory.

For the RET alignment study the resulting framework consists of RET
challenges and practices, and connections between them. Together with the set of
RE distances (Paper IV), this RET framework provided the starting point when
generating the Gap Model. In particular, the distances, challenges and practices
provided the initial set of codes used in the analysis of the interview data. This set
was gradually modified and refined and finally consisted of the RE distances and
RET practices found to be relevant to RET alignment for the analysed data. The
Gap Model was then constructed from these codes and the relationships between
them.

The ‘appropriately developed theory is the level at which the generalization of
the case results will occur’ (Yin 2009, Chapter 2). Thus, the external validity of a
generated theory can be assessed in the same way as external generalizability for a
case study, i.e. by applying analytical generalisation. Since the resulting theory is
grounded in the analysed data and the initial theory or hypothesis used to generate
it, the generalizability of these need to be considered. The theory can be
strengthened by iterating the analysis and gradually extending the base of
empirical knowledge on which the theory rests thereby building up a weight of
evidence for the theory (Seaman 1999). One way of achieving this is to perform

20

cross-case analysis (Seaman 1999) which was applied for the RET study data
where six different cases were analysed. Since the case companies all operated in
the embedded domain with a range of different process and development models,
it is feasible to assume that the resulting theory can be applicable to software
development within the embedded domain.

Although data from only one company was used to generate the Gap Model,
the theoretical frameworks that acted as the starting point for that analysis was
based on a wider base, i.e. a systematic literature study and the six-case study of
RET alignment. In addition, the results from the Gap Finder study (which was
based on the Gap Model) indicate that the theory is generalizable beyond the one
case for which data has been analysed so far. Namely, that is may be applicable to
small and medium sized software development projects in a co-located setting and
applying an iterative or agile development model. However, the systematic
analysis required for generating sound theory needs to be performed before the
Gap Model can be extended and generalised in this way.

The main threats to internal validity for the RET framework and the Gap
Model are the risk of researcher bias and the risk of failing to systematically and
rigorously manage the large amounts of empirical data. As pointed out by
Seamann (1999, p. 567) since the coding and pattern matching is largely a creative
process, there is a risk that the researcher is tempted to rely on hunches and start
writing too early, rather than systematically analyse the data and the codes.
Furthermore, there is a risk that the prejudice and pre-assumptions influences the
analysis process. To mitigate this in the RET study, two researchers were involved
in the theory generation and reviewed each other’s analysis including coding and
identification of patterns. For the Gap Model, this remains an open threat to be
addressed in future work, although as previously mentioned the model was
preliminary validated through the Gap Finder study.

4 The Gap Model: A Theory for iRE
The Gap Model is a theoretical framework for iRE (integrated RE) that describes
how iRE, in the form of RE distances (Paper IV), relates to RET alignment. The
model was constructed to answer the question How are RET alignment practices
related to RE distances? (RQ7) For each RET practice, the model contains
information of which RE distances that can be affected by applying the practice.

The model was derived by exploring the assumption that alignment challenges
occur due to RE distances and that alignment practices found to address these
challenges do so by affecting those distances. The method of constant comparison
(Seaman 1999) was applied and the aforementioned assumption was compared
against empirical data on RET alignment from the study reported in Paper III.
Furthermore, this data was compared against the theoretical frameworks of RET
challenges and practices (see Paper III) and of RE distances (see Paper IV).

The rest of this section describes the company from which the underlying
empirical data was collected (see Section 4.1), the research method used to
construct the model (see Section 4.2), the actual Gap Model (see Section 4.3) and
the limitations of this model including future work (see Section 4.4).

Introduction 21

4.1 The Case Company

The initial version of the model is based on the interviews from one of the six
companies involved in the RET alignment study (see Paper III), namely Company
A. This company develops computer networking equipment consisting of both
hardware and software. The software development unit (which is the part of the
company covered by the interview study) has around 150 employees and applies
an iterative development model. A typical software project has a lead time of 6-18
months, around 10 co-located members and approximately 100 requirements and
1,000 test cases. A market-driven requirement engineering process is applied. The
quality focus for the software is availability, performance and security.
Furthermore, the company applies a product-line approach and uses open-source
software in their development.

Three people were interviewed at Company A. This included a test engineer
and a product manager who had both worked at the company for more than three
years. In addition, a project manager was interviewed.

4.2 Research Method

The Gap Model was constructed by an iterative analysis process through which
the set of RE distances and RET alignment practices included in the model were
gradually refined, see Figure 4. A step-wise approach was applied and two
instances of an analysis step were performed on a gradually extended set of
transcript chunks and with multiple levels of analysis within each step. Both the
preliminary and the main analysis step was performed using the same analysis
process (see Section 4.2.1) and resulted in a refined set of RE distances and RET
practices.

The preliminary analysis step was performed on the parts of the interview
transcripts that relate to the quality of requirements. This sub-set was selected in
order to provide a starting point and a focus for the initial analysis. The coding
performed during the previous RET alignment study includes full traceability from
results to transcripts. This traceability was used to identify the parts of the
interview data relevant to the selected starting point, namely the RET challenge

Figure 4. Overview of the research method used to generate the Gap Model.

22

Ch3 Quality of requirements specification and the practices connected to this (see
Paper III). In addition, the chunks in immediate connection to the coded ones were
included in the analysis if needed in order to understand the intention of the
interviewee.

The thirteen RE distance types derived through a systematic literature study
(Paper IV) provided the initial set of distances for this analysis step. Through the
preliminary analysis an initial set of RE distances specifically related to RET
alignment was identified. This set consisted of seven RE distances: abstraction,
adherence, cognitive, geographical, navigational, organisational and semantic.
This set was used as input to the main analysis step.

The main analysis step was performed on the full set of transcript chunks
relevant to all of the identified RET challenges and practices. Through the applied
analysis process (see Section 4.2.1) the set of RE distances identified through the
preliminary analysis was refined and a set of RET practices was derived from the
interview data. Furthermore, connections between these RET practices and RE
distances were identified. The Gap Model is the output of this final analysis step,
which consists of eight RE distances and seven categories of RET practices, in
total 32 practices.

4.2.1 The Analysis Process

The same multi-level analysis process was applied to both the preliminary and the
main analysis step. Level 1 consisted of Coding of the transcripts and was
followed by level 2 Abstraction and grouping of these codes to identify
relationships between them. In addition, the main analysis step included level 3
Validation to ensure consistency of the model. An overview of the analysis
process is shown in Figure 5. A number of distances, challenges and practices, and
chunks of interview transcript was provided as input for each analysis step (see the
previous section for the specific input to each analysis step).

Coding The analysis of the interview transcripts was focused on identifying RE
distances affecting or being affected by RET alignment challenges and practices.
When such information was identified in the transcripts these parts were coded.
The initial codes were provided as input to the analysis step and consisted of RE
distances and RET alignment challenges and practices. This set was extended and
modified during the analysis as additional distances and practices were identified
in the transcripts. For example, in the preliminary analysis step the difference in
effort to navigate between related parts of artefacts was mentioned by an
interviewee. Based on this a new code and thus a new RE distance type called
navigational distance was defined to cover this concept.

Abstraction and Grouping In the second level of analysis relationships between
the codes for distances, challenges and practices were identified and abstracted
based on the transcripts. These relationships were modelled and visualised in a bi-
directional graph, similar to the approach applied in the RET alignment study (see
Paper III, Section 3.4). Through analysis of this representation of the interview
data RE distances relevant for RET alignment were identified. For the initial

Introduction 23

analysis step the main outcome was this refined set of RE distances. For the main
analysis step, the output also consisted of RET practices. Furthermore, for each
practice the final output includes which RE distance the practice addresses and
how, i.e. can the practice bridge, increase or decrease the distance.

Validation was performed for the main analysis step to mitigate the risk of
inconsistencies in the bi-directional graph, and in relation to previously published
results on RET alignment (Paper III). The graph consists of RE distances, RET
practices and RET challenges. In addition, the graph contains information
concerning which RE distances that contribute to a RET challenges, which RE
distances that are affected by a RET practice and which RET practice addresses
each RET challenge. Thus, the graph contains a triangular relationship between
challenges, practices and distances (see Figure 5). In addition, relationships
between RET practices and RET challenges were identified in the previous RET
study. All of these relationships were reviewed to ensure internal consistency
between them and to increase the reliability of the resulting Gap Model. This
validation was done by comparing the challenge-practice connections in the graph
with the ones identified through the RET study. In addition, for each practice
addressing a certain challenge, the set of distances contributing to this challenge
was reviewed against the set of distances affected by the practices. Ideally these
two sets should be the same, although it is possible that additional factors not
covered by the identified practices also contribute to the challenge. Whenever
discrepancies were identified in the graph the related parts of the transcripts were
re-analysed to resolve the inconsistencies by updating the graph accordingly.

Figure 5. Overview of the process applied for each analysis step in order to
construct the Gap Model.

24

4.3 Gap Model: RET Practices x RE Distances

This initial version of Gap Model consists of eight RE distances and seven
categories of RET practices. The RE distances are D1 Geographical, D2
Organisational, D3 Psychological and D4 Cognitive distances between people;
D5 Adherence distances to artefacts, D6 Semantic and D7 Navigational distances
between artefacts; and D8 Temporal distance between activities. The RET
practices are an extended sub-set of the ones reported in Paper III. This set for the
Gap Model consists of the following categories (numbering kept consistent with
the one used in Paper III): P1 RE practices, P2 Validation practices, P3
Verification practices, P4 Change management practices, P6 Tracing practices,
P8 Tool practices and the newly derived category P11 Development process. Four
categories of practices from the original list are not included in the Gap Model due
to not being mentioned in the interviews for Company A. These non-included
categories are P5 Process enforcement, P7 Traceability responsibility roles, P9
Alignment metrics and P10 Job rotation. Furthermore, 17 additional practices
were identified through the analysis performed to construct the Gap Model. These
are marked with a+ in the full list of included RET practices provided in Table 2.

Each of the included RET practices support alignment by addressing one or
more RE distances. Each practice either changes a distance (decreases or increases
it) or bridges it, i.e. does not alter the distance but reduces its negative effect. For
example, organisational distance between requirements engineers and testers can
be bridged with P1.1 Cross-role requirements reviews by bringing these roles
together in a common meeting and around a common task without changing the
organisational distance between these roles. This practice (P1.1) can also decrease
adherence distance between the agreed and the documented requirements by
identifying and resolving this distance through the review meeting. There are two
practices that increase organisational distance by introducing additional
organisational units, namely P3.2 Independent testing and P3.6 Separate testing
team for quality requirements. An overview of the Gap Model and connections
between RET practices and RE distances is shown in Table 3.

To further illustrate the knowledge captured by the Gap Model seven of the
included RET practices and their impact on RE distances will now be discussed in
more detail. This set of example practices have been selected to illustrate both a
simple and a more complex impact on distance. Furthermore, the practices were
selected to obtain examples that cover all of the RE distance types and all but one
of the practice categories.

Introduction 25

Table 2. Overview of RET practices included in the Gap Model. Practices
marked with + are added compared to those reported in Paper III.
Practices marked in bold are described further in the text.

P1
R

E
Pr

ac
tic

es
P1.1 Customer communication at all requirements levels and phases
P1.2 Development involved in detailing requirements
P1.3 Cross-role requirements review
+P1.7 Use of a customer proxy role
+P1.8 Feature requirements documentation
+P1.9 Product manager physically present to developers & testers
+P1.10 Informal communication within organisation
+P1.11 Product manager involved in development project
+P1.12 Same process for QRs
+P1.13 Structure requirements artefacts according to type
+P1.14 Upfront definition of quality requirements

P2
V

al
id

at
io

n
Pr

ac
tic

es

P2.1 Test cases reviewed against requirements
P2.3 Product manager reviews prototype
P2.5 User / Customer testing
+P2.6 Early test involvement in development projects

P3
V

er
ifi

ca
tio

n
Pr

ac
tic

es

P3.2 Independent testing
P3.3 Testers re-use customer feedback
+P3.5 Feature-based test plan
+P3.6 Separate testing team for quality requirements
+P3.7 Test-impact analysis
+P3.8 Close cooperation between Test and Development unit and
roles

P4
C

ha
ng

e P4.1 Process for requirements changes involving Test

P4.2 Product-line requirements practices

P5
Tr

ac
in

g
Pr

ac
tic

es

P6.1 Document-level traces
P6.2 Requirements-test case traces
P6.3 Test cases as requirements
+P6.5 Conceptual tracing
+P6.6 Traces between people/roles

P8
To

ol
Pr

ac
tic

es P8.1 Tool support for requirements and testing

P8.2 Tool support for requirements-test case tracing

+P
11

Pr
oc

es
s +P11.1 Incremental development

+P11.2 Small-scale development

26

Table 3. Overview of Gap Model: how RET practices (see Table 2) can affect
each RE distance, i.e. B=Bridge, D=Decrease or I=Increase. The impact
of practices marked in bold are further described in the text.

P1 RE P2
Valida-

tion

P3
Verifi-
cation

P4
Change

P6
Tracing

P8
Tools

P11
Process
& Size

D1
Geographical

D: 1.9

D2
Organisatio-
nal

B: 1.2,
1.3, 1.9-
1.11,
1.14

B: 2.1,
2.3

I: 3.2,
3.6

B: 4.1 B: 6.2,
6.6

D: 11.2

D3
Psychological

D: 1.10 D: 11.2

D4
Cognitive

BD: 1.1-
1.3, 1.9,
1.11
B: 1.7,
1.8, 1.14

B: 2.1,
2.3, 2.5
BD: 2.6

BD: 3.6
B: 3.2,
3.3

B: 4.1 BD:
11.1,
11.2

D5
Adherence

D: 1.1-
1.3, 1.8,
1.10-
1.11

D: 2.1,
2.3, 2.5

D: 4.1 D: 6.2,
6.5
IB: 6.3

D: 8.2 D: 11.1

D6
Semantic

D: 1.1,
1.2, 1.8

D: 2.1,
2.3, 2.6

B: 3.6
D: 3.2,
3.5, 3.7-
3.8

D: 4.2 D: 6.1-
6.2, 6.5

D: 8.2 D: 11.1

D7
Navigational

D: 3.5 D: 6.2-
6.3

D: 8.1,
8.2

D8
Temporal

D: 2.6 B: 4.1 D: 11.1

4.3.1 Product Manager Physically Present to Developers and
Testers (P1.9)

This practice relates to the physical location of the product manager relative the
office space where other roles of a development project have their desks, in
particular the developers and the testers. The product owner can either be re-
located to a desk closer to this area, or an agreement can be made that the product
owner will spend more time at this location.

Impact on Geographical Distance (D1): By allocating the product owner a desk
closer to the developers and the testers, the geographical distance between these
roles is decreased. Similarly, this distance is also decreased, at least part of the
time, by having the product owner attend project meetings and spend more time in
the office space of the rest of the development team. The increased physical

Introduction 27

proximity of the product owner increases the availability of this role to the rest of
the development team. This in turn encourages more frequent and efficient
communication of requirements, e.g. clarifications, detecting misunderstandings
and conflicts.

Impact on Organisational Distance (D2): This practice can bridge organisational
distance between the product owner and the roles to which the physical proximity
is increased by providing a more direct communication path between these roles
rather than traversing the hierarchical structure of the line organisation.

Impact on Cognitive Distance (D4): Cognitive distances can be bridged and
eventually decreased between co-located people. The increased communication
and awareness caused by being physically close to each other contributes to
sharing knowledge of the domain, process and organisation, and different views
on priorities for the system under development. This increased knowledge share,
can bridge cognitive distance in situations where a high degree of domain
knowledge is required. For example, it can ensure a common understanding of
user requirements between the product owner and a tester. Furthermore, over time
the cognitive differences (distance) between these roles can also decrease as the
knowledge and perspectives are shared and discussed.

4.3.2 Upfront Definition of Quality Requirements (P1.14)

Quality requirements including usability aspects are identified and defined upfront
before development starts. All stakeholders necessary for the relevant quality
aspects are involved in defining these requirements.

Impact on Organisational Distance (D2): This practice brings stakeholders and
project members together to define quality requirements and, thus provides them
with a common objective. Through providing this objective of defining and
agreeing to quality requirements the practice can bridge potential organisational
distance and provide a forum that shortcuts any organisational hierarchy.

Impact on Cognitive Distance (D4): The priority aspect of cognitive distance can
be bridged between project members and stakeholders by bringing these roles
together to jointly discuss and identify the quality requirements to aim for in the
project. By sharing different views on the priorities for the system cognitive
distance between roles can be bridged by understanding the different perspectives
and reaching a common agreement on the quality requirements for a project.

4.3.3 User/Customer Testing (P2.5)

Delivering executable code at regular intervals allows customers and/or end-users
to test and validate the product under development, and then provide feedback to
the development project.

Impact on Cognitive Distance (D4): This practice can bridge cognitive distance
concerning domain knowledge between the customer/user (or a customer proxy)

28

and the developers and testers within the project. By utilising the customers’ or the
users’ knowledge of the domain in validating the produced software missed or
misinterpreted requirements can be identified.

Impact on Adherence Distance (D5): A distance in adherence between the agreed
requirements and the produced software can be decreased through this practice.
This is achieved by detecting missed or misunderstood requirements and then
addressing these, ideally at an early stage in the development cycle.

4.3.4 Independent Testing (P3.2)

This practice entails having a testing team that is separate and independent from
the developers, thereby ensuring that testers are not biased by the developers’
interpretation of the requirements.

Impact on Organisational Distance (D2): Introducing a separate testing unit will
increase the organisational distance between the testers of this team and the roles
in the development team. This increased distance will decrease the communication
between these testers and the developers (which is the aim of the practice).

Impact on Cognitive Distance (D4): This practice can bridge cognitive distance
for the aspects of technical skill in testing and priorities by introducing a testing
team focused on testing. The strong competence and focus on testing within this
team can then compensate for weaknesses in this area in other project roles.

Impact on Semantic Distance (D6): The semantic distance between requirements
and test artefacts for the aspect of coverage can be decreased by this practice. The
test competence and clear responsibility for testing prescribed by this practice can
lead to improved test coverage of requirements.

4.3.5 Process for Requirements Change Involving Test (P4.1)

Involving testing roles in the decision making and in the communication of
changes to the requirements supports alignment through increased communication
and coordination of these changes to the test organisation.

Impact on Organisational Distance (D2): Organisational distance between the
testers and other project roles, e.g. product owner and developers, is bridged by
this practice by introducing direct communication and decision making channels
for requirements changes.

Impact on Cognitive Distance (D4): Cognitive distance for the aspect of domain
knowledge can be bridged with this practice. This is achieved by ensuring that
roles with a high level of domain knowledge are involved in the decision making
process for requirements changes.

Impact on Adherence Distance (D5): This practice can decrease adherence
distance between delivered software and agreed requirements, both by ensuring

Introduction 29

that there is a common view on what the agreed requirements are and by initiating
changes to the software that brings it closer to what the user has requested.

4.3.6 Requirements-Test Case Traces (P6.2)

Tracing between individual requirements and the test cases that verify these
supports a number of activities like impact analysis, ensuring sufficient test
coverage and reviewing test cases against requirements.

Impact on Organisational Distance (D2): This practice can bridge organisational
distance, e.g. between the roles defining requirements and the testers, by providing
direct pointers into relevant entities in the requirements versus test specification.
In this way, information is made more readily available to other parts of the
organisation and not just to the local unit responsible for maintaining the
documentation.

Impact on Adherence Distance (D5): Requirements-test case tracing can decrease
the adherence distance between agreed and documented requirements. The
practice leads to a more active use of the documented requirements (for tracing to
test cases) and can thereby also catch differences (distance) in the requirements
between what has been agreed and what is documented. This is particularly
relevant to a development process where a combination of face-to-face and
document-based requirements communication is applied.

Impact on Semantic Distance (D6): The semantic distance between requirements
and test cases for the aspect of coverage can be decreased by tracing between the
two entities. The tracing simplifies measuring and reviewing the test coverage for
requirements to ensure that it is sufficient and that all requirements are tested.

Impact on Navigational Distance (D7): The navigational distance between
requirements and test cases is decreased by this practice for the simple reason that
the effort required to locate the corresponding entity is decreased. However, the
effort required to create and maintain the traces is substantial.

4.3.7 Small-Scale Development (P11.2)

This practice entails organising software development in such a way that it
simulates small-scale development. Development is then performed with a small
and tight-knit development team, thus avoiding the overhead and complexity
related to large organisational structures.

Impact on Organisational Distance (D2): Organisational distance is per default
minimised with this practice since organisational structure is consciously removed
to construct a small organisation and project.

Impact on Psychological Distance (D3): Psychological distance between
individuals can be decreased in small-scale development due to the close day-to-
day working relationship within the small development team. However, if there is

30

larger psychological distance between people this may also become more apparent
in a small-scale setting, whereas in a larger context these people can avoid each
other to a greater extent.

Impact on Cognitive Distance (D4): Cognitive distance between roles and
individuals can be expected to be bridged in a small project by the close
collaboration and frequent interaction within the project team. These distances
may eventually be decreased by sharing knowledge and perspectives, and learning
from each other.

4.4 Limitations of Gap Model and Future Work

There are two main limitations of the current version of Gap Model both of which
require additional work to address. These limitations concern the extent of the
scope and the internal validity of the analysis. The limitations concerning scope
primarily affect the generalizability of Gap Model, which currently is based on
empirical data for one company. It may be applicable also to other cases with
similar contextual characteristics, i.e. small projects in medium sized companies
where all employees are co-located at one site and for which an iterative or agile
development model is applied. However, this needs to be assessed on a case-by-
case basis. Future work includes extending the empirical base of the Gap Model
with additional case companies and findings from related literature. In addition,
the model may be extended to also include contextual factors found to affect the
relationships between practices and distances. Furthermore, the current Gap
Model is limited to integration of RE with testing. An interesting future addition
would be to extend the model to cover other development activities, such as
usability design and architecture.

The fact that the analysis on which the current version of the Gap Model is
based was performed by one researcher poses a threat to internal validity due to
researcher bias. This was partly mitigated through the iterative analysis approach
which included analysing the empirical data twice thereby reassessing and
adjusting the initial analysis in the main analysis step. The consistency of the
model was also checked against itself and against the outcome of the RET
alignment study through a validation activity in the final analysis step. This added
review further strengthened the reliability of the Gap Model. We believe the
rigour and the applied analysis process to a large extent mitigated the risk of
researcher bias. Even so internal validity could be further strengthened by
involving another researcher.

5 Research Synthesis
The main results and contributions of this thesis are here summarised per reported
study and main research question (as outlined in Section 2.1). In addition, the
main limitations to the validity of the results are discussed for each study. More
detailed descriptions of the results and threats to validity for each study can be
found in the respective paper or, for the Gap Model, in Section 4 of this chapter.

Introduction 31

5.1 Paper I: Communication Gaps

RQ.A1: What causes the challenge of gaps in requirements communication and
what effects can these gaps have?

Main findings: The study confirmed that communication is a challenging part of
RE and may cause a situation where requirements slip through the gaps; are
misinterpreted or overlooked. These gaps can then result in failure to meet
customers’ expectations both concerning functionality and quality. These issues
can be both costly and time consuming to alleviate at a late stage in the
development cycle, thus indicating the importance of detecting and mitigating
these gaps early on. Four main factors were identified as affecting requirements
communication, namely scale, temporal aspects, common views and decision
structure. The results indicate that communication gaps are common in large-scale
and complex development with multiple roles involved throughout the
development cycle. Temporal aspects of the applied process were found to have
an effect on requirements communication. In particular, discontinuity in the
requirements flow, e.g. around hand-over points of the responsibility, was found
to increase the risk of missing vital requirements knowledge and awareness. In
addition, lack of common views and mutual understanding between the various
roles was found to cause gaps in the communication. Similarly, lack of decision
structures including clearly defined and communicated goals and vision for
software development was found to negatively affect the communication,
primarily between those defining the requirements and the development unit.

Potential application of results: An increased awareness of the factors related to
communication gaps can support practitioners in identifying issues related to
these. The requirements communication can then be improved and ultimately
contribute to more efficient and successful software development. By closing the
communication gaps the requirements may continue all the way through the
project life-cycle and be more likely to result in software that meets the
customers’ expectations.

Main validity issues: The main validity issues for the results of this study concern
description validity, i.e. the risk of misinterpreting what the interviewees really
meant, and generalizability. Description validity was mitigated both by asking the
interviewees to review the transcripts and by performing a survey on the results of
the data analysis. The results can be generalized by applying analytical
generalization and thereby assessing the validity of the results for other cases that
share similar characteristics. Furthermore, even though the results are based on
data from one company several of the effects are confirmed by other related
literature indicating that at least parts of the results are generalizable also to other
cases.

32

5.2 Paper II: Overscoping

RQ.A2: What causes the challenges of overscoping of requirements and what
effects can this challenge have?

Main findings: The study provided an increased understanding of scoping as a
complex and continuous activity, including an analysis of the causes and effects of
overscoping. The possible impact of agile RE practices to the issue of overscoping
is also discussed. The results show that when operating in a fast-moving market-
driven domain this ever-changing inflow of requirements must be managed
effectively to avoid overscoping the development organisation. A weak awareness
within the organisation of overall goals, in combination with low development
involvement in early phases can contribute to ‘biting off’ more than a project can
‘chew’. This can then lead to a number of consequences, several of which are
potentially serious and expensive to alleviate, e.g. quality issues, delays and
failure to meet customer expectations. Finally, the results indicate that
overscoping occurs also when applying agile RE practices. However, in the agile
case the overload is perceived as more manageable and lead to less wasted effort
due to applying the practices of continuous scope prioritisation, gradual
requirements detailing and close collaboration within cross-functional teams.

Potential application of results: The results provided by this study can be used to
recognise an overscoping situation and to identify factors to address in order to
achieve a more realistic project scope. By avoiding overscoping a development
organisation can avoid wasting time and effort on managing and investigating
requirements that are later cancelled due to having overloaded a project.

Main validity issues: The main validity issues for the results of this study are
identical to the ones for Paper I since the same basic research design was applied.
Thus, description validity was mitigated by interviewees reviewing the transcripts
and by performing a survey on the results of the data analysis. Furthermore, the
issue of generalizability of the results was addressed by analytical generalization
by applying the making a case strategy (Robson 2002, p. 107) through analysis of
related work and reporting found similarities, differences and disagreements to our
results. This analysis builds a supporting argument for external validity of the
results of this study.

5.3 Paper III: Challenges and Practices of RET
Alignment

RQ.A3: What are the challenges and practices in aligning requirements
engineering and testing (RET)?

Main findings: The contributions of this study include a framework of RET
challenges and practices, and how these relate to each other. Four high-level
factors found to greatly affect RET alignment were also identified. These factors
are the human aspects of development, the quality of requirements, the size of the

Introduction 33

development, and the incentives for implementing alignment. The human side of
software development including communication and coordination between people
was found be vital for alignment in general, so also between requirements
engineers and testers. Further, the results indicate that the quality and accuracy of
the requirements is a crucial starting point for testing the produced software in-line
with the defined and agreed requirements. The size of the development
organisation and its projects were found to be key variation factor that affect both
which challenges that are faced and which tools and practices are suitable for the
specific company, size and domain. Finally, the incentive for applying alignment
practices such as good requirements documentation and tracing was found to vary.
For companies with safety-critical development this incentive is externally
motivated, while it is purely internal for non-safety critical cases. This internal
motivation for RET practices is often weak due to low awareness of the cost vs.
benefit of RET alignment.

Potential application of results: The results provide practical means for
recognising challenges and problems in aligning requirements and testing, and for
matching them with potential improvement practices. The studied case companies
touch on several industrial domains and the result can therefore be relevant for a
range of different companies within these domains. For these companies, the
findings can provide knowledge and insight to their process improvement efforts
and thereby enable strengthening their RET alignment

Main validity issues: The large number of interviews and researchers involved in
this study poses the main validity issue and concerns internal validity due to
individual variation in how interviews were performed. For example, different
follow-on questions at the interviews. This risk was partly mitigated by defining a
common case study process and by involving at least two researchers for each
interview. Despite these mitigating strategies, the fact remains that there are
variations in the detailed avenues of questioning for the different interviews and
thereby variations in coverage of sub-topics within the interview material.

5.4 Paper IV: RE Distances

RQ.C1: What kind of distances between requirements engineering and later
development activities are reported in peer-reviewed literature?

Main findings: Thirteen RE distance types were identified in the study; distances
between people and between artefacts. In addition, the results provide an overview
of the areas for which RE distances has been researched so far and identifies areas
for which further research is needed. The most mature research was found on
distances between people, i.e. geographical, temporal and socio-cultural. These
types of distance have primarily been researched within the context of global
software development. Even so, contradicting literature was found concerning the
impact of geographical distance indicating that there are additional undiscovered
factors at play. Furthermore, since most of the identified distance types are
between people it is relevant to consider findings also from fields like psychology

34

and cognitive science in future research. The results reveal that RE distances in
relationship to later development activities, e.g. design, implementation and
testing, is largely un-researched. This is so despite the potential for using distance
to measure coverage and consistency between related artefacts, e.g. requirements
specifications and test cases. Further research into these areas could thus provide
valuable contributions to software development practices and enable optimization
of RE methods and practices for eliciting, negotiating and communicating
requirements.

Potential application of results: The results can provide practitioners with an
increased general awareness of the existence and impact of distance in software
development, even though the main aim was to provide a building block for
further research.

Main validity issues: The main validity issue concerns the possibility that there
are additional undetected types of distance. Relevant literature and thereby
distances might have been missed due to limiting the search string to the term
‘distance’, rather than include synonyms such as gap, proximity etc. This risk of
missing relevant papers was partly addressed by broad searches for other aspects
and by applying a general inclusion policy. Even though this remains an open
issue, we believe it is only of minor concern considering that the purpose of the
study was to act as a starting point for investigating the use of distance in software
development. This is illustrated by the fact that in subsequent studies specifically
for RET alignment (Gap Model generation and Gap Finder study) the set of
distances has been modified by both adding and removing distances.

5.5 Thesis Introduction: Gap Model

RQ.C2: How are RET alignment practices related to RE distances?

Main findings: The main contribution of this study consists of the actual Gap
Model; a theoretical framework that describes which RE distances the included
RET practices affect and how. The framework thus represents knowledge of how
the RET practices impact the alignment of requirements and testing by influencing
underlying factors.

Potential application of results: The knowledge represented by the Gap Model
could be used directly by practitioners to identify improvement practices even
though the main intention of the model is be used as part of the Gap Finder
method.

Main validity issues: There are two main limitations to the resulting Gap Model,
namely the extent of the scope and internal validity of the analysis. It is a fact that
the scope of the current Gap Model as per design is limited to the topic of
integration of RE and testing. This may be extended to other development
activities through future work. Furthermore, there is a risk of bias in the analysis
due to one sole researcher performing the study. This was partly mitigated through
an iterative analysis approach which included analysing the empirical data twice.

Introduction 35

In addition, in the final analysis round the consistency of the model was checked
against itself and previous results from the RET study. This strengthened the
reliability of the Gap Model. Even though we believe the rigour and the applied
analysis process to a large extent mitigates the risk of researcher bias internal
validity should be further strengthened by involving another researcher.
Furthermore, the fact that the Gap Model is based on data for one company poses
issues concerning generalizability of the model beyond this one case. This needs
to be assessed on a case-by-case basis through analytical generalization. The
generalizability of the theory can in the future be extended through continued
development of it by comparing it with additional cases.

5.6 Paper V: Evidence-Based Timeline Retrospective
Method (EBTR)

RQ.B1: How can the EBTR method support new insights and learning concerning
the interaction between requirements and other development activities?

Main findings: The evaluation showed that team reflections can be supported by
visualising project history as timelines thereby providing facts as a basis for group
discussions. The results indicate that this approach supports memory recall and
factual discussions of project events. This visualisation of project history can then
enhance group reflections around project events and support teams in gaining
insight into issues and potential improvements. Furthermore, a set of variation
points of the method have been identified and evaluated. These variation points
enable tailoring EBTRs for different contexts and retrospective goals. The results
indicate that by selecting certain variations EBTRs can be configured to support
either wide assessments (e.g. the overall impact of a new process) or assessments
of a specific process area. The reflections are directed accordingly through using
open or semi-structured discussions, or by varying the applied timeline technique.

Potential application of results: The proposed method and the insights gained
from applying it can be used to enhance the retrospective practices within software
development organisations and projects. By considering a specific organisation or
project the method can be tailored to match their improvement goals and adapted
to the specific context of that development organisation.

Main validity issues: There are two main issues connected to construct validity,
namely the risk of missed or misinterpreted factors and that the long term impact
of applying the method has not been assessed. The risk of misinterpreting the
impact and missing factors was partly mitigated by involving several researchers
in the data collection and in the analysis. The impact of the method was assessed
by investigating the participants’ experiences, while the long term impact on
development remains to be investigated. Furthermore, there is a risk of bias among
the participants towards the method, which may have resulted in overly positive
responses at the focus group. This bias was partly mitigated by triangulating the
focus group data with survey data collected a while after the retrospective

36

meeting, thus allowing the respondents to reflect and to provide answers
individually. Furthermore, for the case for which the most positive responses were
given the participants were not aware that the EBTR method was the focus of the
research. This decreased the risk that they would be positive about the method in
order to please its stakeholders, i.e. the researchers.

5.7 Paper VI: Gap Finder Method

RQ.B2: How can Gap Finder support project teams in improving RET alignment?

Main findings: The formative evaluation demonstrated that the Gap Finder
method can help teams to detect gaps and identity suitable RET practices for
mitigating these. In addition, a number of improvements to the method were
identified, e.g. assessing the set of existing practices and agreeing to an
improvement plan in the final step. The visualisation of distances was found to
enable a constructive group discussion around potentially harmful gaps and be a
vehicle for supporting the project team in identifying new improvement areas. In
particular, this was enabled by the concept of distance providing the team with a
new perspective and potential explanation of experienced issues. Furthermore, the
results indicate that some distance types have an effect on RET alignment while
others are indicators of the degree of alignment and some may be used to
characterise the applied development process.

Potential application of results: Practitioners can apply the proposed approach of
measuring distance. By discussing gaps and distances, team members can identify
issues and areas for improvement of practice. Furthermore, the reported findings
of the impact of gaps on RET alignment can increase practitioners awareness of
these factors and thereby lead to them noticing gaps within their own development
organisations.

Main validity issues: There are two main issues with validity of the results, these
concern internal validity and construct validity. The issue with internal validity
concerns potential incorrect gauging of the impact of certain factors or missing
other impacting factors. This risk was partly mitigated by deciding to focus the
study on one development team during a specific period of development and by
discussing found factors at a focus group session with the team members, thereby
triangulating the viewpoints. However, it remains an open risk that study
participants and/or researchers have missed or incorrectly identified the factors
involved, e.g. concerning the effect of an RE distance. Finally, the impact of the
method was assessed by investigating the participants’ experiences of it. The long
term impact on the development project remains to be investigated.

Introduction 37

6 Future Research Directions
There are a number of directions and areas of further research that have emerged
as the investigations have progressed. It is apparent that ‘the more I learn, the
more I learn how little I know’ (attributed to Socrates as described by Plato). The
insights gained through the performed research indicate several directions to take
in order to explore what I now have learnt that I know little of. Apart from further
improving on the proposed SPI methods (EBTR and Gap Finder) the future
directions include visualisation techniques that can support reflective analysis and
enhanced techniques for measuring RE distance. There are also several interesting
paths to explore concerning the concept of iRE (integrated RE). These include
extending the theory derived so far to other areas besides testing and to investigate
how the RE integration level of a development project or organisation can be
characterised by RE distances and thereby used as an indicator of the degree of
integration and alignment.

6.1 Supporting Reflection through Visualisation

One of the main insights from the EBTR study (Paper V) and the Gap Finder
study (Paper VI) was that visualisation of project data acted as a powerful focal
point and facilitated constructive discussions within a project team. Presenting
large amounts of data in a compact and illustrative way supported teams in
reflecting of their practices. The project teams gained new insights concerning
factors causing problems and identified suitable improvement practices through
these fact-based reflections. Although the timelines and radar diagrams used in the
performed studies supported reflection, a number of issues and limitations
concerning the applied visualisation techniques were identified. The issues for
timelines include the balance between aggregating multiple data points in one
visualisation compared to showing sufficient details for reflection, how to
visualise multiple data values as they change over time and compare these to an
estimated level (e.g. in a plan). The issues identified concerning the visualisation
of RE distances include how to visualise multi-dimensional measures (i.e. a
combination of distance types and between entities) and combining multiple
measures that do not have a uniform scale. Furthermore, there are issues
concerned with how to visualise changes over time and enable analysing potential
relationship between different factors. Finally, for both studies the large amounts
of data were a challenge when designing, presenting and manipulating the
visualisations.

Research within this area should cover two parts, namely (a) improved
visualisation techniques and (b) evaluating the cognitive aspects of using
visualisation for reflective practice. Concerning techniques for visualisation, the
issues identified through the existing studies can act as a starting point for
exploring new or adapted techniques. In addition, through reviewing existing
research publications within the field of visualisation relevant related work can be
identified. This most likely includes results and techniques that may be applicable
in supporting reflective practice.

38

Evaluating the cognitive aspects of using visualisations for reflective practices
is ideally performed in a multi-disciplinary forum where empirical software
engineering researchers collaborate with researchers from cognitive- and social
psychology. Through an initial literature study, existing research within these
fields can be reviewed and potentially applicable and transferable results
identified. By combining the related work within psychology and within the field
of visualisation with our previous research, potential similarities, contradictions
and relationships between findings can be analysed. This can then form the basis
for defining a theoretical framework based on current knowledge. Through
exploring new or adapted visualization techniques and evaluating the application
of these in industrial projects, new knowledge can then be gained with which the
framework can be extended. These enquiries can be further focused by defining a
specific set of areas and scenarios for reflective practice through visualisation.
These scenarios can then provide both target, structure and scope boundaries for
the enquiries.

6.2 Enhanced Distance Measures

Although the distance measures applied in the Gap Finder study (Paper VI) were
found to support identifying gaps and improvement practices, the study also
showed that there are issues concerning the validity of these measurements. In
particular, the current artefact-related distance measurements were found to be
prone to biases indicating that self-assessment is less suitable for these types of
distance. We propose investigating the use of techniques and algorithms from the
areas of natural language processing NLP (Chantree 2006) and information
retrieval IR (Borg 2013) for estimating the semantic distance between different
artefacts. Techniques from this field may be candidates for distance measures for
RET alignment and RE integration. These could then be evaluated by selecting a
number of existing requirements specifications and the test cases designed to
verify these and qualitatively assessing the semantic distance between these. If a
correlation is then found between the qualitative measurements and those derived
through applying the candidate NLP/IR algorithms, this would imply that these
algorithms are suitable for measuring semantic distance. These measurements
could then be used as indicators of the degree of alignment between the artefacts
and the level of test coverage. As such these measurements would be useful as
early warnings of misunderstandings or missing requirements within a
development project.

For improving the measurements of the people-related distances, termed
psychometrics (Feldt 2008), it would be very interesting to consider research from
the fields within psychology. For example, the terms psychological distance
(Liberman 2007) and cognitive distance (Montello 1991) are both established
terms used within social and cognitive psychology. An initial literature study
would identify relevant research to draw on and potentially present measurements
and techniques to evaluate in the context of software development. Similar to the
direction on enhanced support of reflection through visualisation (Section 6.1),
this is also an area where it would be beneficial to perform a multi-disciplinary
research study. By drawing from these specialist competences, improved

Introduction 39

measurements for assessing cognitive and psychological distance within software
development projects could be designed. Furthermore, combining the perspectives
of these multiple disciplines is likely to provide a deeper understanding of how
human factors affect software engineering. Such insight could be utilised to better
accommodate these factors in designing and improving processes, methods and
techniques for software development.

6.3 Further Explorations of Integrated RE

The Gap Finder study (Paper VI) indicates that integrated RE as characterised by
RE distances is a viable concept. A concept that triggers team reflection of
experienced issues and identification of improvements relevant to alignment and
coordination. Considering the importance of these aspects for software
development, it is an area well worth investigating further both in depth and in
width. Concerning depth, to further explore RE distances within the concept of
integrated RE. The width of the research would entail extending the scope of the
area under study to also cover the integration with other development activities
besides testing.

The Gap Finder study indicated that while some RE distance types directly
affect alignment, others are indicators of the current state of a project, e.g.
concerning alignment, or applied development model. This leads to an interesting
research question concerning how a set of RE distances can be used to
characterise a project concerning RE integration level, weak or strong alignment,
degree of agility etc. Such indicators could be very valuable for software process
assessment and in assessing the current state of a project. Research into this area
could be pursued by profiling a number of projects using RE distance measures
and other parameters concerning project size, length, process model, accuracy of
delivery plans, number of bugs etc. This data could then be analysed to identify
potential patterns and similarities, e.g. between agile projects, or between projects
with long delays or large amounts of issue reports. An initial qualitative approach
would be desirable in order to understand the cases in depth, and identify the
factors involved and potential casual connections between them. This knowledge
could then be incorporated into the existing theory for integrated RE. The found
connections could be further validated by selecting additional cases to include, and
thereby extend the basis for the theory. In addition, when a sufficient amount of
data points have been gathered quantitative analysis could be applied and
statistical tests applied to the qualitatively identified connections.

Finally, the width of our results and theory concerning integrated RE and the
Gap Finder could be extended through research into integrating RE with other SE
areas besides testing, e.g. usability design and architecture. Similarly to the RET
alignment study (involving researchers within both fields), this should be done in
collaboration with researchers specialising in the added field (e.g. usability design)
to ensure sufficient competence and insight into the area. Parts of the previous
studies (i.e. RET alignment, Gap Model construction and Gap Finder) would need
to be performed also for this new area, e.g. a literature study, investigating
challenges and practices specific to the area, designing measurements for the
specific aspects related to the new area. However, the study would also need to

40

consider and evaluate which parts of the existing theoretical frameworks are
relevant to this new area and which parts are not. For example, the results
concerning collaboration and communication are likely similar, while the findings
related to reviewing test cases against requirements might be transferrable to
usability designs. Furthermore, the overall picture of how all three areas, i.e. RE,
testing and the new area work together would also need to be investigated.

7 Conclusions and Main Contributions
Even though software development is a technical field, coordination and
communication between software engineers is vital in the creative and complex
process that is required to produce software. Projects where requirements are
weakly communicated and aligned with other development activities run the risk
of developing software that does not match the customers’ and the users’ requests
and expectations. A closer integration of requirements engineering (RE) with the
other development activities throughout the entire development life cycle can
alleviate this risk of missing or misinterpreting requirements and, thus, avoid
costly rework and delays.

The research presented in this thesis consists of contributions within the area
of iRE (integrated RE). This contribution consists of empirical knowledge into the
interaction and coordination of RE with other development activities, software
process improvement methods for assessing and improving on the integration and
alignment of RE, and a theory of the impact of RE distances on integrated RE.

Empirically-based insight into causes and effects of requirements
communication gaps and overscoping, and challenges and practices of aligning
requirements and testing is one of the novel findings. Various factors that
influence coordination and alignment have been identified and range from
geographical distance between key roles and temporal distance between activities
to cognitive and psychological distances within project teams. These factors can
cause miscommunication of requirements and delays in scoping and requirements
decisions.

Two new software process improvements methods, i.e. EBTR and Gap
Finder are proposed. Both method have supported project teams in identifying
new areas for improved coordination and integration of RE. The Gap Finder can
detect specific gaps and suggest suitable practices for mitigating these. Both apply
visualisation of objective information as a mechanism to stimulate team reflection
of underlying factors and thereby contribute to new insights and learning.

The presented Gap Model theory covers factors involved in integrating RE
and testing, and has been applied and validated through the Gap Finder method.
The theory contributes to the knowledge of integrated RE by connecting the
framework of RE distances with the one for RET alignment. Gap Model, thus
explains how RET alignment practices affect RE distances and the degree of RE
integration.

In conclusion, through case studies, systematic literature study and theory
generation a picture emerges of distances as key factors which influence the
communication and coordination within software development and ultimately the

Introduction 41

success of a product and a company. Through increased awareness of these factors
and their effects, software development organisation can take steps to bridge and
decrease the gaps in their information flow. The SPI methods provided in this
thesis can be used by these organisations to detect gaps and empower their
development teams to reflect, learn and improve on their practices and thereby the
integration of RE within software development. The requirements can then be the
red thread that coordinates various development activities in efficiently
implementing software matching customers’ and users’ expectations and needs.

Acknowledgement I want to thank all the researchers involved in the EASE
Theme D interview study, M. Borg, E. Engström, R. Feldt, T. Gorschek, A.
Loconsole, B. Regnell, P. Runeson, G. Sabaliauskaite and M. Unterkalmsteiner,
for their rigorous work in collecting and transcribing the interview material on
RET alignment on which the Gap Model is based.

References
Aurum A, Wohlin C (2005), Requirements Engineering: Setting the Context, Ch 1 of

Aurum, Wohlin (Eds), Managing and Engineering Software Requirements, Springer-
Verlag, Germany, 2005, pp. 1-15.

Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activities
as a decision-making process. Inf. Softw Technol 45:945–954

Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of Requirements Specification and
Testing: A Systematic Mapping Study. Proc 4th Int. Conf. on Software Testing,
Verificiation and Validation Workshops (ICSTW), pp 476-485, Mar 2011

Basili VR (1985) Quantitative Evaluation of Software Methodology. Tech. report TR-1519,
University of Maryland, College Park, Maryland.

Beck K, Beedle M, van Bennekum A et al. (2001) Manifesto for Agile Development,
http://agilemanifesto.org/ (latest access: 2013-06-18)

Boehm BW (1991) Software Risk Management: Principles and Practices, IEEE Software,
vol.8, no.1, pp.32-41, Jan. 1991. doi: 10.1109/52.62930

Borg M, Runeson P, Ardö A (2013) Recovering from a Decade: a Systematic Mapping of
Information Retrieval Approaches to Software Traceability. Empirical Software
Engineering, May 2013. doi: 10.1007/s10664-013-9255-y

Brereton P, Kitchenham BA, Budgen D et al. (2007) Lessons from Applying the Systematic
Literature Review Process within the Software Engineering Domain. Journal of
Systems and Softw., 80(4), pp. 571-583.

Calefato F Damian D Lanubile F (2007) An Empirical Investigation on Text-Based
Communication in Distributed Requirements Workshops. Proc of 2nd Int. Conf. on
Global Software Engineering (ICGSE 2007), pp.3-11. doi: 10.1109/ICGSE.2007.9

Cataldo M, Herbsleb J, Carley K (2008) Socio-Technical Congruence: a Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development
Productivity. Proc. of 2nd ACM-IEEE Int. Symp. on Empirical Softw. Engineering and
Measurements (ESEM '08)

Chantree F, Nuseibeh B, De Roeck A, Willis A (2006) Identifying Nocuous Ambiguities in
Natural Language Requirements. Proc. Of 14th Int. Conf. on Reqs Engin., pp.59-68.

Cheng BH, Atlee JM (2007) Research Directions in Requirement Engineering. Proc. Future
of Software Engineering (FOSE), pp 285-303, May 2007

42

Chrissis MB, Konrad M, Shrum S (2007) CCMI for Development, v 1.2. Guidelines for
Process Integration and Product Improvement (2nd edition), SEI Series in Software
Engineering, Addison-Wesley.

Collier B, DeMarco T, Fearey P (1996) A Defined Process for Project Postmortem Review,
IEEE Software, vol. 13, issue 4, pp. 65-72.

Curtis B, Krasner H, Iscoe N (1988) A Field Study of the Software Design Process for
Large Systems. Commun. ACM, vol. Nov. 1988, 1268-1287.

Damian D (2001) An Empirical Study of Requirements Engineering in Distributed
Software Projects: Is Distance Negotiation More Effective? Proc of 8th Asia-Pacific
Software Engineering Conference (APSEC 2001), pp. 149- 152.

Damian DE, Zowghi D (2003) Requirements Engineering Challenges in Multi-Site
Software Development Organizations. Requirements Engineering Journal 8: 149–160.

Damian D, Chisan J, Vaidyanathasamy L, Pal Y (2005) Requirements Engineering and
Downstream Software Development: Findings from a Case Study. Empirical Software
Engineering, 10, 255–283, 2005.

Damian D, Chisan J (2006) An Empirical Study of the Complex Relationships between
Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Transactions on Software
Engineering, vol 43, no 7, pp 433-453. (2006)

Damian D, Kwan I, Marczak S (2010). Requirements-Driven Collaboration: Leveraging the
Invisible Relationships Between Requirements and People. Collaborative Software
Engineering (pp. 57-76). Springer.

Damian D, Helms R, Kwan I, Marczak S, Koelewijn B (2013) The Role of Domain
Knowledge and Cross-Functional Communication in Socio-Technical Coordination.
Proc. of Int. Conf. on Software Engineering 2013, pp. 442-451.

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering Traceability Links in
Software Artifact Management Systems using Information Retrieval Methods. ACM
Transactions on Software Engineering and Methodology, Vol. 16, No. 4, Article 13

Derby E, Larsen D (2006) Agile Retrospectives: Making Good Teams Great! Pragmatic
Bookshelf, 2006.

Drury M, Conboy K, Power K (2011) Decision making in agile development: A Focus
Group Study of Decisions and Obstacles. Proc. Of Agile Conference 2011, pp. 39-47.

Dybå T, Dingsoyr T (2009) What Do We Know about Agile Software Development? IEEE
Software, vol.26, no.5, pp.6-9, Sept.-Oct. 2009. doi: 10.1109/MS.2009.145

Feldt R, Torkar R, Angelis L, Samuelsson M (2008) Towards Individualized Software
Engineering: Empirical Studies Should Collect Psychometrics. Proc. of Int. Workshop
on Cooperative and Human Aspects of Software Engineering (CHASE '08), pp. 49-52

Flemming WR (1978) Requirements communication. Int. Conf. Automatic Testing
(AUTOMTESTCON’78), pp. 228-229, 1978, doi: 10.1109/AUTEST.1978.764370

George M (2002) Lean Six Sigma: Combining Six Sigma Quality with Lean Production
Speed. McGraw-Hill.

Gorschek T, Davis AM (2008) Requirements Engineering: In Search of the Dependent
Variables. Information and Software Technology, Volume 50, Issues 1–2, January
2008, pp. 67-75, ISSN 0950-5849, 10.1016/j.infsof.2007.10.003.

Gotel OCZ, Finkelstein CW (1994) An Analysis of the Requirements Traceability Problem.
1st Int Conf on Requirements Engineering, pp 94-101.

Hasling B, Goetz H, Beetz K (2008) Model Based Testing of System Requirements using
UML Use Case Models. 1st Int Conf on Softw. Testing, Verif. and Valid., pp 367-376.

Humphrey WS (1989) Managing the Software Process. SEI Series in Software
Engineering, Addison-Wesley.

Huffman Hayes J, Dekhtyar A, Sundaram SK, Holbrook EA, Vadlamudi S, April A (2007)
REquirements TRacing On target (RETRO): Improving Software Maintenance through

Introduction 43

Traceability Recovery. Innovations in Systems and Software Engineering, vol. 3, no. 3,
Springer, 2007, pp. 193-202.

ISO/IEC (2004-2011) ISO/IEC 15504 Information Technology – Process Assessment, parts
1-10.

Jarke M (1998) Requirements Traceability. Comm. ACM, vol. 41, no. 12, pp. 32-36.
Kamata MI, Tamai T (2007) How Does Requirements Quality Relate to Project Success or

Failure? 15th IEEE Int. Requirements Engineering Conf., 2007. pp.69-78.
Karlsson L, Dahlstedt AG, Regnell B, Natt och Dag J, Persson A. (2007) Requirements

Engineering Challenges in Market-Driven Software Development-An Interview Study
with Practitioners. Information and Software Technology, Vol. 49, issue 6, pp 588-604.

Kellner MI, Madachy RJ, Raffo DM (1999) Software Process Simulation Modeling: Why?
What? How? Journal of Systems and Software, Volume 46, Issues 2–3, 15 April 1999,
pp. 91-105.

Kraut RE, Streeter L (1995) Coordination in Software Development. Communications of
the ACM, vol. 38, no. 3, 69--81.

Kwan I, Marczak S, Damian D (2007) Viewing Project Collaborators Who Work on
Interrelated Requirements. Proc. of 15th IEEE Int. Requirements Engineering
Conference (RE'07). pp. 369-370.

Kukkanen J, Vakevainen K, Kauppinen M, Uusitalo E (2009) Applying a Systematic
Approach to Link Requirements and Testing: A Case Study. Proc of Asia-Pacific
Software Engineering Conference 2009 (APSEC '09), pp. 482-488. doi:
10.1109/APSEC.2009.62

Lawson M, Karandikar HM (1994) A Survey of Concurrent Engineering. Concurrent
Engineering 1994 2:1. doi: 10.1177/1063293X9400200101

Layman L, Williams L, Cunningham L (2006) Motivations and Measurements in an Agile
Case Study. Journal of Systems Architecture 52, pp. 654–667.

Lethbridge T, Sim SE, Singer J (2005) Studying Software Engineers: Data Collection
Techniques for Software Field Studies, Empirical Software Engineering 10, 2005, pp.
311–341.

Liberman N, Trope Y, Stephan E (2007). Psychological distance. Chapter 2 of Social
Psychology: Handbook of Basic Principles, 2nd edition, pp. 353-383. Guilford Press.

Lindvall M, Sandahl K (1996) Practical Implications of Traceability. Software—Practice
and Experience 26, 10 (1996), pp. 1161–1180.

Marczak S, Damian D, Stege U, Schröter A (2008) Information Brokers in Requirement-
Dependency Social Networks. Proc of 16th IEEE Int. Conf. on Requirements
Engineering (RE’08), pp. 53-62

Marczak S, Damian D (2011) How Interaction between Roles Shapes the Communication
Structure in Requirements-Driven Collaboration. 19th IEEE Int Requirements
Engineering Conf., pp. 47-56.

Melnik G, Maurer F, Chiasson M (2006) Executable Acceptance Tests for Communicating
Business Requirements: Customer Perspective. Proc of Agile Conference (Minneapolis,
USA), pp. 12-46, July 2006

Mohagheghi P, Dehlen V (2008) Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. Model Driven Architecture – Foundations and
Applications, LNCS vol 5095, Schieferdecker, I and Hartman, A (eds), pp. 432-443.

Montello DR (1991) The Measurement of Cognitive Distance: Methods and Construct
Validity. Journal of Environmental Psychology, 11(2), pp. 101-122.

North D (2006) Behavior Modification The Evolution of Behavior-Driven Development.
Better Software, Issue March 2006.

Novorita R, Grube G (1996) Benefits of Structured Requirements Methods for Market-
Based Enterprises. Proc. of the Int. Council on Systems Engineering (INCOSE) 6th

Annual Int. Symposium on Systems Engineering: Practices and Tools.

44

Paci F, Massacci F, Bouquet F, Debricon S (2012) Managing Evolution by Orchestrating
Requirements and Testing Engineering Processes. Proc of 5th Int. Conf. on Software
Testing, Verification and Validation (ICST12), pp. 834 - 841

Petersen K, Feldt R, Mujtaba S, et al. (2008) Systematic Mapping Studies in Software
Engineering. 12th Int. Conf. on Evaluation and Assessm. in Software Eng., pp.71-80

Pettersson F, Ivarsson M, Gorschek T (2008) A Practitioner’s Guide to Light Weight
Software Process Assessment and Improvement Planning. Journal of Systems and
Software 81(6):972-995

Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering, vol 27, pp 58-93, Jan 2001

Ramesh B, Cao L, Baskerville R (2010) Agile Requirements Engineering Practices and
Challenges: An Empirical Study. Inform. Systems Journal, vol 20, issue 5, 449-280.

Robinson H, Segal J, Sharp H (2007) Ethnographically-Informed Empirical Studies of
Software Practice. Information and Software Technology, 49, pp. 540-551.

Robson C (2002) Real World Research. Blackwell Publishing. (2002)
Runeson P, Höst M, Rainer A, Regnell B (2012) Case Study Research in Software

Engineering Guidelines and Examples. Wiley.
Sabaliauskaite G, Loconsole A., Engstrom E, Unterkalmsteiner M, Regnell B, Runeson P,

Gorschek T, Feldt R (2010) Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context. 16th Int Working Conf on
Requirements Eng. Foundation for Software Quality (REFSQ), pp. 128-142.

Sawyer P (2000) Packaged Software: Challenges for RE. Proc. of the 6th Int. Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ'2000).

Seaman CB (1999) Qualitative Methods in Empirical Studies of Software Engineering.
IEEE Transactions on Software Engineering, vol. 25, issue 4, pp 557-572.

Solis C, Wang X (2011) A Study of the Characteristics of Behaviour Driven Development,
37th EUROMICRO Conf. on Softw. Eng. and Advanced Applications (SEAA), pp.383-
387.

Sommerville I (2005) Integrated Requirements Engineering: A Tutorial. IEEE Software,
Vol. 22, issue 1, 16-23.

Stapel K, Knauss E, Schneider K (2009): Using FLOW to Improve Communication of
Requirements in Globally Distributed Software Projects. IEEE Proc. Int. Workshop on
Collab. and Intercult. Issues on Req.: Comm. Understanding and Softskills. pp. 5-14.

Stapel K, Knauss E, Schneider K, Zazworka N (2011) FLOW Mapping: Planning and
Managing Communication in Distributed Teams. Proc. of 6th IEEE Int. Conf. On
Global Software Engineering (ICGSE), pp 190-199.

Stapel K, Schneider K (2012) Managing Knowledge on Communication and Information
Flow in Global Software Projects. Expert Systems, September 2012, Blackwell
Publishing. doi: 10.1111/j.1468-0394.2012.00649.x

Tesch D, Kloppenborg TJ, Erolick MN (2007) IT Project Risk Factors: The Project
Management Professionals Perspective. Journal of Computer Information Systems,
47.4, 61, 2007.

Unterkalmsteiner M, Feldt R, Gorschek T (2013) A Taxonomy for Requirements
Engineering and Software Test Alignment. Accepted for publication in ACM
Transactions on Software Engineering and Methodology.

Uusitalo EJ, Komssi M, Kauppinen M et al. (2008) Linking Requirements and Testing in
Practice. 16th IEEE Int Requirements Engineering Conf, NJ, USA, 265-270.

Yin RK (2009) Case Study Research Design and Methods (4th edition). Sage Publications.
Yu ESK, Mylopoulos J (1994) Understanding “Why” in Software Process Modelling,

Analysis, and Design. Proc. of 16th Int. Conf. on Software engineering (ICSE '94).
IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 159-168.

PAPER I

REQUIREMENTS ARE SLIPPING
THROUGH THE GAPS - A CASE

STUDY ON CAUSES & EFFECTS OF
COMMUNICATION GAPS IN LARGE-
SCALE SOFTWARE DEVELOPMENT1

Communication is essential for software development as its efficiency throughout
the entire project life-cycle is a key factor in developing and releasing successful
software products to the market. This paper reports on findings from an explanatory
case study aiming at a deeper understanding of the causes and effects of
communication gaps in a large-scale industrial set up. Based on an assumption of
what causes gaps in communication of requirements and what effects such gaps
have a semi-structured interview study was performed with nine practitioners at a
large market-driven software company. We found four main factors that affect the
requirements communication, namely scale, temporal aspects, common views and
decision structures. The results also show that communication gaps lead to failure
to meet the customers’ expectations, quality issues and wasted effort. An increased
awareness of these factors is a help in identifying what to address to achieve a more
efficient requirements management, and ultimately more efficient and successful
software development. By closing the communication gaps the requirements may
continue all the way through the project life-cycle and be more likely to result in
software that meets the customers’ expectations.

	

1 By Elizabeth Bjarnason, Krzysztof Wnuk and Björn Regnell, In Proc of 19th IEEE
International Requirements Engineering Conference, 2011, pp.37-46.

46

1 Introduction
The requirements communication starts with the customer and continues throughout
a development project, involving many different roles. The initially elicited
requirements need to be communicated, and changes to those requirements
negotiated and communicated between all affected roles, e.g. requirements
engineers, developers, and testers. Since change occurs throughout the project,
requirements communication must also continue during the entire life cycle (Berry
2010). For a software project to be successful, methods and tools must be
supplemented with interpersonal communication across functional boundaries, but
this needs to be balanced with cost and effectiveness of such communication (Kraut
1995). Despite this, the bulk of RE processes and research is mainly concerned with
requirements in the early project phases, while the ultimate goal of any software
project is to efficiently produce successful products; the requirements are just a
means to an end. Already in the 1970s, the problem of inefficient and incorrect
communication, increased as the requirements ripple through a project involving
more people, was reported to lead to overly complex and badly functioning systems
(Flemming 1978). Studies (Cataldo 2007, Lubars 1993, Karlsson 2007, Piri 2008)
have shown that many of the RE challenges facing large-scale software
development are of an organisational and social character, rather than a technical
one and projects need to be organised to ensure co-ordination and communication
of requirements from marketing to engineering.

Previous studies on communication focus mainly on communication paths
(Marczak 2008, 2009, Stapel 2009), models (Al-Ani 2008), tools (Niinimaki 2010)
and methods for improved requirements communication (Fricker 2010), rather than
investigating what factors cause weak communication of requirements and what
effects this has on the final software. To address this gap we report on a case study
conducted in the context of large-scale market-driven software development with
the following main research questions: (RQ1) what causes gaps that hinder the
communication of requirements? and (RQ2) what are the effects of these gaps?

We have performed an explanatory case study at a large market-driven software
development company, where we have interviewed nine practitioners. We found a
number of communication gaps that affect requirements, mainly in the
communication to and from the requirements engineers, but also between roles
within development. Four main factors that cause communication gaps have been
identified, namely scale, temporal aspects, common views and decision structures.
In addition, nine effects that are a consequence of communication gaps were found,
e.g. failure to meet customers’ expectations, quality issues and wasted effort.

Section 2 describes related work. Section 3 provides a description of the case
company. Section 4 describes the research method used in this study. Section 5
contains the results from the interview study, while Section 6 describes the outcome
of the validation questionnaire on these results. In Section 7 we interpret and
discuss the results, as well as, limitations of the study. Section 8 contains
conclusions and further work.

Requirements are Slipping through the Gaps – A Case Study on … 47

2 Related Work
Curtis et al. (1988) studied the upstream part of software development and found
that communication between customers, requirements engineers and the
development teams is a crucial part in enabling stable requirements and a correct
understanding of them, but that for large systems organisational boundaries hinder
the communication. It was also found that the communication need is not reduced
by documentation (Curtis 1988). Since communication and interaction with other
people is a vital part of requirements engineering (apart from technical skills) soft
skills are required to be successful. Based on literature and experience, a
classification of such soft skills per requirements engineering activity (e.g.
elicitation) has been proposed (Penzenstadler 2009).

Communication has also been reported as challenging for distributed software
projects that operate in a Global Software Engineering context (Stapel 2009,
Urdangarin 2008) as it can impede the understanding of requirements, and possibly
lead to delays and project failures. Stapel et al. (2009) found that many problems
for global development can be related to communication, and consist of missing
context for interpreting requirements, awareness or documented information.
Holmstrom et al. (2006) mention temporal distance as challenging in everyday
communication in global software development context. Furthermore, even in
global software development projects where agile practices were used
communication has also been reported as challenging (Urdangarin 2008). On the
other hand, Kotlarsky and Oshri (2005) reported that challenges involved in sharing
knowledge across globally distributed teams are still widespread. Finally, Piri
(2008) reports that many of the common problems encountered in software
development projects can be traced back to social factors of the project with special
challenges to communicate among distributed teams.

Al-Ani and Edwards (2008) investigated communication models adopted in
large-scale software engineering projects. Others, such as Lutz (2009) investigated
linguistic challenges in a global software engineering context, while Niinimaki et
al. (2010) report on findings on communication tools in twelve distributed software
projects. The communication flow between different development teams (Marczak
2009) and teams located at different sites (Marczak 2008, 2009) have been
investigated. The interactions between individuals with different roles in cross-
functional development teams have been studied and the majority of missing
communication edges was found between people performing roles that were not
supposed to be communicating according to the formal organisational structure
(Marczak 2009). For communication around changes that affect multiple
development teams it has been reported that there are a handful of key people
(called information brokers) (Marczak 2008) that can both facilitate and enable
efficient requirements communication, as well as, hinder and/or introduce noise, i.e.
misconceptions or erroneous requirements into the requirements communication
process.

48

3 The Case Company
Our results are based on empirical data from industrial projects at a large company
that is using a product line approach (Pohl 2005). The company operates in a
market-driven requirements-engineering (Karlsson 2007) context that can be
characterised by lack of actual customers that can agree to requirements and the
continuous inflow of requirements from multiple channels. The company has
around 5000 employees and develops embedded systems for a global market. There
are several consecutive releases of a platform (a common code base of the product
line) where each of them is the basis for one or more products that reuse the
platform’s functionality. A major platform release has a lead time of approximately
two years and is focused on functionality growth and quality enhancements for a
product portfolio. For such projects, typically around 60-80 new features are added,
for which approximately 700-1000 system requirements are produced. These are
then implemented by 20-25 development teams with around 40-80 developers per
team, assigned to different projects. The requirements legacy database amounts to a
very complex and large set of requirements at various abstraction levels in the order
of magnitude of 20,000 entities, making it an example of the Very-Large Scale
Requirements Engineering context (Regnell 2008).

A number of different organisational units within the company are involved in
the development. For this study, the relevant units are the Requirements Unit that is
responsible for scope planning and requirements management, the Software Unit
that develops the software for the platform and the Product Unit that develops
products based on the platform. Within each unit there are several groups of
specialists for different technical areas that are responsible for the work in various
stages of the development process. For this case, the most essential groups are the
Requirements Teams (RTs) (part of the Requirements Unit) that elicit and specify
system requirements for a specific technical area, and Design Teams (DTs) (part of
the Software Unit) that design, develop and maintain software. Each RT has a team
leader who manages the team. Another role belonging to the Requirements Unit is
the Requirements Architect who manages the scope at the high level and also
coordinates the RTs. In the DTs there are several different roles, namely
· Design Team Leader who leads and plans the team’s work for the

implementation and maintenance phase
· Design Team Requirements Coordinator who leads the teams during the

requirements management and design phase, and coordinates the requirements
with the RTs

· Developer designs, develops and maintains the software
· Tester verifies the software

The software unit has a project management team consisting of among others
Quality Managers who set the target quality levels and Software Project Managers
that monitor and coordinate the DTs and interact with the Requirements Architects.
The product unit is responsible for of the products, for this study System Testing is
relevant.

The company uses a stage-gate model with several increments. There are
Milestones (MSs) and Tollgates (TGs) for controlling and monitoring the project
progress. In particular, there are four milestones for the requirements management
and design before implementation starts: MS1, MS2, MS3, and MS4, and three

Requirements are Slipping through the Gaps – A Case Study on … 49

milestones for implementation and maintenance: MS5, MS6, MS7. For each of
these milestones, the project scope is updated and baselined. The milestone criteria
are as follows:
· MS1: At the beginning of each project, long-term RT roadmap documents are

extracted to formulate a set of features for an upcoming platform project. A
feature in this case is a concept of grouping requirements that constitute a new
functional enhancement to the platform. At this stage, the features usually
contain a description, their market value and effort estimates. The features are
reviewed, prioritised and approved. The initial scope is decided and baselined
per RT, guided by a project directive and based on initial resource estimates
from the relevant DT. The scope is then maintained and regularly updated each
week at a meeting of the Change Control Board (CCB). The role of the CCB is
to decide upon adding or removing features.

· MS2: Features are refined into requirements by the RTs. One feature usually
consists of ten or more requirements which are expressed in domain-specific,
natural language including many special terms that require contextual
knowledge to be understood. Each feature is assigned to a main DT that is
responsible for its design, implementation and effort estimates. The
requirements for a feature are reviewed together with its main DT and approved.

· MS3: DTs refine system requirements and start designing the system. The effort
estimates are refined, and the scope is updated and baselined.

· MS4: The requirements refinement work and the system design are finished,
and implementation plans are made. The final scope is decided and agreed with
the software unit.

· MS5: All requirements are developed and delivered.
· MS6: The software is stabilised prior to customer testing.
· MS7: Customer-reported issues are handled. The software is updated and ready

to be released.

4 Research Method
The research was conducted using a qualitative research approach, which is
appropriate when individual perceptions of a complex phenomenon in its context is
to be studied, using a series of interviews (Robson 2002). The results reported in
this paper are part of a larger study that contains five different RE challenges: 1)
Communication gaps, 2) Overscoping, 3) Keeping SRS updated, 4) Monitoring
development work from requirements perspective, 5) Manual selection of
requirements for release/product. Partial results for challenge 2) Overscoping, were
published as a workshop publication (Bjarnason 2010a). In this paper, we present
the results around challenge 1) Communication Gaps. The study has been
conducted in three stages, outlined in the sections that follow.

4.1 Phase One: Pre-study Investigation & Preparations

In order to seek an explanation and more insight into the challenges around
communication of requirements, we selected to perform an explanatory case study

50

(Robson 2002) where we start by focusing on a specific case. For this approach, we
used the experience of one of the authors (from working with requirements,
development and processes at the case company) as input in identifying a number
of assumed requirements engineering challenges in industry (of which
Communication gaps was one), as well as, possible causes and effects of these
challenges. In order to avoid selecting a set of assumptions biased by only one
person, these assumptions have been iterated upon in a series of brainstorming
session with the other authors, and the outcome used as the main input when
creating the interview study instrument (which can be accessed online, Bjarnason
2010b). The following assumed causes of communication gaps were identified in
this phase (code within parenthesis denotes the cause to which it is classified in the
compiled result, see Section 5.1):
· Complex product and large organisation (C1)
· Low understanding of the roles of others (C2)
· Low involvement by RT after requirements definition (C3)
· Low involvement by DT during requirements definition (C3)
· Overlapping requirements processes (C3)

4.2 Phase Two: Interview Study at the Case Company

To facilitate the discussion regarding requirements communication, and support
exploring and enriching the understanding of this complex phenomenon, the
qualitative interview study method has been utilised. The interview instrument
(Bjarnason 2010b) produced in phase I (see Section 4.1) was designed to be semi-
structured with a high degree of discussion between the interviewer and the
interviewee. For each of the main challenges (including communication gaps) an
open ended question about the challenge was asked: if it was a challenge, what
causes it and what effects it has. This was done to find the causes and root causes of
the main challenges without imposing the assumptions made during the pre-study
on the interviewee. If the interviewee did not explicitly mention an assumed cause
they were specifically asked about their view on it. The resulting theory related to
communication challenges has thus been grounded in the empirical data gathered
from interviewee with minimised bias from researchers (Strauss 1990).

The interviews were scheduled for 90 minutes each with the possibility to
reduce time or prolong it. All interviews were recorded and transcribed, and the
transcripts sent back to the interviewees for validation. The coding and analysis was
done in an integrated and iterative fashion. The underlying structure of the
interview instrument was used for categorising the views of the interviewees. For
each interview, the transcribed chunks of text were placed within the relevant
sections and, if so needed, copied to multiple sections. The used sections, or
categories, correspond to the challenges, causes and effects (both assumed and
mentioned during the interviews). These were numbered to facilitate consolidating
between the interviews. Relationships were captured by noting dependencies to and
from each category in specific columns.

In order to cover the full project life cycle from requirements definition through
development to the end product people from all relevant organisational units
(Requirements, Software and Product, see Section 3) were selected. Nine persons
were selected (by the researchers) to be interviewed. Two of the interviewees (with

Requirements are Slipping through the Gaps – A Case Study on … 51

identical roles) requested to have their interview together. The roles, organisational
belongings, and length of experience for each interviewee can be found in Table 1.

4.3 Phase Three: Validation of Results with
Practitioners

In the third phase of the case study, the results from the interviews were presented
to (another) seven practitioners who were asked to state their view on the results of
the study via a questionnaire (see Section 6). The following practitioners were
selected (by the researchers): four people from the software unit (a Software project
manager and, from the Development teams, a team leader, a requirements
coordinator, and a tester), 2 people from the requirements unit (Requirements team
leader and Requirements architect) and one person from the product unit (System
test manager). These 7 practitioners have worked within the company for a range of
4 to 13 years. At a meeting, the results around communication gaps (see Section 5)
were presented, briefly discussed (especially around disagreements and additional
viewpoints not covered in the results), and the participants filled out a questionnaire
(available online Bjarnason 2010b) stating to which degree they agree to the results,
and if they see additional, causes, root causes, and effects for communication gaps
and connections to other RE challenges. The session was scheduled for 90 minutes
with the possibility to extend or decrease the time as needed. Due to scheduling
difficulties two sessions were required to cover all participants.

Table 1. Interviewee code (first letter denotes organisational belonging), unit
and role(s) (see Section 3).

Code Organisational
unit

Role (experience in years)

Ra Requirements RT leader (5 years)
Rb Requirements RT leader (2 years)
Rc Requirements Requirements architect (3 years)
Pd Product System test manager (7 years)
Se Software Tester (3 years)
Sf Software Software project manager (2 y), DT leader (2 y),

Developer (2 y)
Sg Software Quality manager (3 years)
Sh Software DT requirements coordinator (0,5 y),

Developer (2 y), DT leader (1 y)
Si Software DT requirements coordinator (7 years)

5 Results
The results of the interview study are divided into four parts. Section 5.1 covers the
causes of communication gaps, Section 5.2 contains the root causes of the main
causes, Section 5.3 describes the effects of communication gaps, and Section 5.4
covers the connections found between communication gaps and the other

52

challenges covered by the study. The results of the questionnaire (study phase three,
see Section 4.3) are reported in Section 5.

5.1 Causes of Communication Gaps

While analysing the results, we identified three of the assumed causes (see Section
4.1) as exhibiting a temporal aspect, i.e. some roles are available at different times
and phases throughout the lifecycle. These assumed causes were grouped into the
(new) cause Gaps between roles over time (C3). In addition, a fourth main cause
was identified based on three of the eight interviewees mentioning issues related to
company-wide strategy and unclear business priority of scope, which affects the
requirements communication. The cause Unclear vision of overall goal (C4) was
added to cover this. For each of the causes, the interviewees’ viewpoints were
categorised per organisation. The results are presented in Table 2, using the
following classification:
· Experienced: cause (occurrence and impact on challenge) is experienced and

was mentioned without prompting
· Agreed: cause not directly mentioned, but derived, agreed to direct question,

observed or heard from others
· Partly agreed: partly Experienced or partly Agreed
· Disagreed: does not agree that this causes the challenge
· Not mentioned: not within expected experience for role

All of the nine interviewees had Experienced, Agreed or Partly Agreed to
communication gaps being a challenge, and a majority of the interviewees have
Experienced or Agreed to causes 1 (9 of 9) and 2 (5 of 9) contributing to gaps in
communication of requirements.

Table 2. No of interviewees who mentioned each cause of communication
gaps per organisational unit (R=requirements, S=software, P=product)

Communication gaps (as a challenge) Three of the interviewees (Sg, Sh, Si)
Partly Agreed, with the motivation that the communication gaps vary between
teams; for some there is close communication, for others the requirements are not
communication to the affected people.

Complex product & large organisation (C1) All interviewees mentioned that size
impacts both agreeing on requirements and communicating them to others. For

Communic
ation gaps

C1
Complx

product &
large org

C2
Low

understand
ing of roles

C3
Gaps bt

roles over
time

C4
Unclear
vision of

goals
Organisational unit R S P R S P R S P R S P R S P
Experienced 2 2 1 3 4 1 1 2 1 2 1 2 1
Agreed 1 1 1 1 1
Partly agreed 3 1 2 2 2
Disagreed 1
Not mentioned 1 1 4

Requirements are Slipping through the Gaps – A Case Study on … 53

example, Rc said ’There are many people who need to be involved and have an
opinion on things.’ While Sh said: ‘No-one knows the full extent of what the
product can do, not even within the company.’ Interviewee Rb believes that the
organisational structure has a huge impact on the communication and the result of
development projects.

Low understanding of roles of others (C2) Sh and Si (Partly Agreed) both
mentioned that the understanding of requirements-related roles is weak within the
development teams, with the exception of the DT requirements coordinator. The
DT tester (Se) Experienced weak understanding of testers potential to contribute to
requirements work, e.g. ensuring verifiability. Interviewee Pd Experienced lack of
consideration of system aspects by the RTs and DTs due to a weak understanding of
the role of system test. Rc (Partly agreed) stated that communication between RT
and DT teams improved with increased understanding of each other’s roles.

Gaps between roles over time (C3) One of the RT leaders (Ra) Agreed to this
cause, and has experienced that direct communication with the DT throughout the
life cycle (i.e. no gaps in time) results in more insight into and control of what is
implemented. Four of the interviewees Partly agreed to this cause; Ra, Rc and Sh
mentioned both, periods in time when requirements communication between RT
and DT was sufficient (e.g. Requirements architect continuously involved via
change management process), and periods when it was not so (e.g. lack of tester
involvement in early phases). Si mentioned that the Requirements Teams do not
always provide requirements in a timely fashion.

Unclear vision of overall goal (C4) Both RT leaders (Ra and Rb) expressed a lack
of clear vision and strategies that can be used in a practical way when defining
requirements for new products. This leads to power struggles between different
units and technical areas rather than constructive communication around how to
reach a common goal. Pd Agreed to this and described that there is a lack of
communication around quality and system-level requirements. In contrast,
interviewee Rc Disagreed to this cause since the technical roadmaps are reviewed
and aligned with company strategy early in the projects.

5.2 Root Cause Analysis

To provide a deeper understanding around the causes of communication gaps, the
interviewees were asked to describe the root causes that may be triggering these
gaps for each cause. The assumed causes that were categorised as C3 (see Section
4.1) are included as root causes of C3. Figure 1 summarises the full picture of our
interpretation of the interview material including the root causes (denoted RC).

Root causes of C1: Complex product & large organisation is the nature of the
case company and its products, and its root causes are out of scope for this study.

Root causes of C2: Low understanding of roles of others The complexity of the
products (RC2a) requires many skills that are spread over many different roles. The
interviewees describe that it is hard to get an understanding of the big picture
concerning how they should work and the purpose and responsibility of different
roles, both due to the sheer numbers of roles involved (RC2a), as well as, the way

54

Figure
1.

C
auses(C

),rootcauses(R
C

)and
effects(E)ofcom

m
unication

gaps,interview
ee

code
w

ithin
brackets.

Requirements are Slipping through the Gaps – A Case Study on … 55

 the process is described in separate sub-processes for each discipline (RC2b), e.g.
requirements and test. This affects the communication around requirements,
causing gaps when people do not know or understand the roles of others, e.g. the
difference in work characteristics between the RT leaders (standardisation &
requirements work) and the DTs (design, development & maintenance).

Root causes of C3: Gaps between roles over time The work is distributed over
many different people and roles (RC3a), which vary over the life cycle of a project.
Our interviewees clearly describe that it is hard to achieve continuity over time
especially at the handover points when work is passed on to new roles. The time
periods mentioned for such gaps are, from initial scope selection to requirements
detailing (RC3b), i.e. MS0-MS2, through the design and planning phase (RC3d),
i.e. MS2-MS4, and then in the implementation, testing and later phases (RC3c,
RC3e), i.e. MS4-. During all of these phases there is a need for requirements
communication between RTs and DTs, but (as our interviewees describe) the level
of communication varies between the teams. Ra expressed the situation in this way:
’We deliver requirements, but if you aren't actively checking all the time that they
[DT] are implementing according to the requirements, it is quite often the case that
it is something different that is being implemented.’ An even more critical point in
time (described by Sf and Sh) is at MS4 when the implementation work starts, and
the DT and software project responsibility is handed over to new roles without
awareness of requirements (RC3e). This handover results in the requirements being
more or less ignored after MS4.

Root causes of C4: Unclear vision of overall goal Vision and strategy guidance
are expected to be provided by the company management. The root causes for lack
of this are out of the scope of the study.

5.3 Effects of Communication Gaps

E1: Customer expectations not met When working with customer-specific
requirements, communication is even harder, which Se expressed as ‘Just getting
the right specification [from the customer] was impossible. And then when we
finally got it, it was outdated and there was a new one.’ In addition, it is not unusual
that customers are promised features that are not agreed to by the software unit,
which may result in failure to meet them.

E2: Low motivation to contribute to requirements work The communication
gaps around requirements between RT and DT were mentioned as leading to
decreased motivation among RT leaders to work with requirements. Low
understanding of roles leads to some DT testers not seeing any value in
participating in requirements work.

E3: Software unit controls what is implemented Due to communication gaps
between the Requirements Unit and the Software Unit, the Software Unit (with
development resources) control what is finally implemented. In addition, the
Software Unit has an internal roadmap that covers more than architectural
improvements, and which is not agreed with the Requirements Unit.

56

E4: Unclear requirements coverage One of the RT leaders (Ra) said that if he
does not stay in touch with the DT, he never knows exactly what is implemented.
The communication gaps caused by C2 and C3 lead to DTs neither discussing
requirements problems with the RTs (e.g. unclarities), nor informing them of
changes that affect requirements.

E5: Test scope mismatch The test scope executed by system test is based on the
SRS, but since the SRS does not correctly reflect the requirements that are finally
implemented (see E4) a lot error reports are created on functionality that is not
designed to work according to the SRS. Pd said: ’If you look at the error reports
that are submitted, the number of things that are rejected [by DTs] due to being
intended to be like this, increases in the later phases because you [system testers]
are [physically] further away from requirements and developers.’ The
communication gaps between RTs and DTs and System test are causing testers to
verify invalid requirements for which the changes have not been communicated.

E6: Communication of incorrect requirements When requirements frequently
change (which they do in a market-driven context) and also slip through the gaps, it
is very hard to communicate correct requirements, both to the customers and
internally. Ra said: ’We gave them [customers] information about what we thoughts
would be included, which often was completely wrong.’

E7: Quality issues The lack of direct communication between RTs and testers,
both system testers and DT testers, lead to weak focus on system aspects (e.g.
quality requirements), testing requirements (e.g. test harnesses) and test cost, in
early project phases, resulting in quality issues later on. In contrast, Sf stated that
gaps between developers and testers are beneficial for software quality, since
competition encourages testers to smoke out problems with software produced by
the developers.

E8: Wasted effort The communication gaps increase the time it takes to
communication changes to all involved parties, and thus increase the amount of
work wasted so far on requirements, design and implementation work, which then
has to be redone. The gaps caused by roles changing at MS4 leads to waste of effort
to transfer knowledge, and missed requirements knowledge and awareness.

E9: Problems with SRS The gaps between RT leaders and, DT testers and
developers, result in unclear, ambiguous and non-verifiable SRS requirements
(E9a), and subsequent problems when implementing and verifying them. The
communication gaps between RT and DT during requirements detailing contribute
to unstable requirements (E9b); since the viewpoints of the testers and the
developers are not taken into consideration until later project phases. Instead, issues
are uncovered when design, implementation and testing start at which point the
requirements need modifying. The problem is enhanced when external parties like
customers are involved. The communication gaps between RTs and developers and
testers result in them being force to locate requirement information (E9c) mainly
through other channels. The SRS is one such channel, in which it is hard to locate
specific and relevant requirements and sometimes the implemented requirements
are not in the SRS (see E4). The DT testers mainly receive requirements by asking
the developers.

Requirements are Slipping through the Gaps – A Case Study on … 57

5.4 Connections to Other Challenges

When analysing the interviews, we found that of the four other challenges covered
by the study, all of them had connections to communication gaps, either mentioned
as direct causes or consequences of communication gaps, or by resulting in an
effect that contributes to another challenge. The full picture of the connections is
shown in Figure 1.

Overscoping, or including more requirement than there are resources for, results in
increased communication gaps between teams (both DTs and RTs) because they do
not have time to communication around requirements. Overscoping also results in
friction between the DTs and software project managers, e.g. when failing to
deliver according to plan. Gaps in communication between the RTs and
stakeholders, as well as, DTs, lead to the RTs specifying a scope missing vital
requirements and without reliable cost estimates, all of which leads to overscoping.

Keeping SRS updated partly bridges the gaps in communication between RT and
system test. But, when the SRS is not kept updated, this results in error reports on
invalid SRS requirements (see E5 in Section 5.3) and increased communication
gaps to DTs who claim that the software works as it should. Communication gaps
between RTs and DTs in later project phases result in RTs being unaware of
implementation changes that affect the requirements, causing a mismatch between
SRS and delivered software.

Manual selection of requirements for products contributes to communication
gaps for the same reasons as for the challenge Keep SRS updated since the product
requirements are selected from the requirements in the SRS, which is not in line
with the implemented software (see E4 and E9 in Section 5.3)

Implementation not monitored from requirements viewpoint is caused by gaps
between roles before and after MS4 (see RC3e in Figure 1). When implementation
starts, the responsibility is transferred to roles who have little insight or awareness
of requirements, during project phases when RTs have little contact with DTs.
Requirement change, but often without RT involvement. The implementation
continues, more or less, without being concerned with the requirements.

6 Validation of Results with Practitioners
In phase three of the study (see Section 4.3), the results described in Section 5 were
presented to seven practitioners at the case company. They noted their level of
agreement in a questionnaire (Bjarnason 2010b) using the following notation:
· Experienced: I have experienced this to be valid
· Agree: I agree to this, but have no personal experience
· Partly agree: I agree to part, but not all, of this
· Disagree: I do not agree
· Don’t know: I have no knowledge of this

A majority of the participants noted Experienced or Agreed to all, but one, of the
causes, root causes, and effects. For Overlapping requirements process between RT

58

& DT (RC3f, see Figure 1), three respondents had Experienced this root cause,
while three Partly agreed and one answered Don’t know. In addition to the
presented results, late test involvement in the projects was mentioned as an
additional root cause to C3 Gaps between roles over time, resulting in missing
requirements from the testers concerning, e.g. test harnesses and other functionality
required for verifying the software. Concerning C1 Complex product & large
organisation, one participant claimed that the way the product portfolio was
planned (by business people with little input from the software unit) resulted in a
more complex portfolio than necessary since little consideration was given to the
cost of implementing and supporting a large number of different configurations.

7 Interpretation and Discussion
In this section, we provide our interpretation and discussion of the results around
causes and effects of communication gaps, and compare them to related work. In
Section 7.1, we discuss the limitations of this study.

Requirements communication is a challenge for the case company though there
are examples of good requirements communication between teams and individuals.
The four identified causes correspond to four different factors that contribute to
communication gaps, namely scale (C1), common views (C2), temporal aspects
(C3) and decision structures (C4).

Cause 1: Complex Product and Large Organisation covers the factor of scale.
Our responders clearly state that the size of the organisation and the complexity of
the products, contribute to communication gaps. A survey study into coordination
of large-scale software development (Kraut 1995) found that scale contributes to
communication gaps over geographic, organisational and social boundaries, due to
dividing the work over many different specialised roles. In addition, organisational
boundaries cause communication gaps that hinder the mutual understanding of
requirements (Curtis 1988). Our study shows that there is a communication gap
upstream towards the Requirements Teams resulting in requirements being received
by Development Teams from many different sources, as well as, incomplete
requirements specifications, overscoping, and conflicting requirements.

Cause 2: Low understanding of each other’s roles covers the factor of common
views. The domain knowledge and perspectives vary between roles. Without respect
and mutual understanding for each other’s viewpoints this causes communication
gaps, either by not communicating at all (due to lack of understanding that other
roles are impacted) or by ineffective communication (e.g. missing tacit
requirements due to lack of insight into the customer’s domain). Weak
understanding of the work of other units negatively affects the communication and
cooperation (Sabaliauskaite 2010). Communication around the design between
stakeholder and architects leads to shared understanding of the requirements and
identification of tacit requirements, as well as, needed requirement changes (Fricker
2010). Similarly, application domain knowledge has been reported as vital in
designing a solution that will meet the customer’s needs (Curtis 1988).

Requirements are Slipping through the Gaps – A Case Study on … 59

Cause 3: Gaps between roles over time covers the factor of temporal aspect. Our
results indicate that requirements communication needs to continue throughout the
project life cycle, since requirements are dynamic and change, often until they are
implemented. Communication gaps between requirements and development teams
during early phases have previously been found to result in requirements that could
not be implemented (Berry 2010, Curtis 1988, Sabaliauskaite 2010). Failure to
bridge these gaps results in delays, and increases the cost of handling late errors and
changes (Berry 2010). Also, there are certain hand-over points (MS2 and MS4 for
our case company) when it is crucial that sufficient knowledge of the requirements
is transferred to new roles, in order to ensure continuity throughout the project life
cycle and avoid development becoming disconnected from requirements. A
suggestion for how to avoid some of these gaps is given by Fricker et al. (2010),
were communication between stakeholders and architects around design was shown
to improve the probability that the requirements are carried on into later phases of
the project. A surprising detail of our results indicate that producing a detailed
requirement specification upfront may contribute to communication gaps (root
cause RC3d), since it then may be assumed that no additional communication of
requirements is needed. We found similar conclusions drawn by Curtis et al.
(1988), i.e. that the existence of artefacts can contribute to communication gaps
since people tend to assume the artefacts in themselves constitute sufficient
communication.

Cause 4: Weak vision of overall goal covers the factor of decision structures.
When there is no clear common goal for the software development it is up to the
individual teams and units to make decisions on which requirements to include. For
our case company, this, in combination with weak understanding of each other’s
roles (C2) has led to wide communication gaps between the Requirements and the
Software Units, resulting in the Software Unit controlling which requirements are
actually implemented (E3). Similar communication gaps are reported by Karlsson
et al. (2007) as a challenge for which having a common goal and vision (C4) is a
way to resolve, or close, such gaps.

Effects Communication gaps contribute to a number of consequences for the
project and for the resulting software. The communication gaps during
requirements definition contribute to an instable, unclear and ambiguous SRS (E9).
Weak communication with the customers has been found to cause instable
requirements (Curtis 1988), while communication between the customer and the
development team is seen to mature both the requirements and the design. For our
case company (that operates in a consumer market with no direct communication
with the end customers) the Requirements Unit represents the (anonymous)
customers. The view of what constitutes a good requirements has been found to
vary between roles (Karlsson 2007), indicating a weak common view (C2).

For the case company, there is a huge gap in requirements communication
during the later phases of the projects (after MS4), which results in the software
implementation being done without the projects, or teams, being monitored from a
requirements perspective. Instead, project management monitors on committed
delivery dates and number of error reports, while the developers rely on the design
correctly reflecting the requirements, and the testers rely on the SRS being kept
updated (which is a challenge). In large-scale market-driven development where

60

change is constant, this results in unclear requirements coverage (E4); there is no
clear and common view of which requirements that are actually supported. Instead,
incorrect requirements information is given (E6), both internally and to customers,
also mentioned as a consequence of weak communication (Karlsson 2007), and the
test scope does not match the implemented requirements (E5). All this results in not
always meeting the customers’ expectations (E1); either due to lack of desired
functionality or quality issues (E7), also reported by Flemming (1978). In addition,
effort is wasted (E8), e.g. when testing requirements for which agreed changes have
not been communicated, which contributes, together with C2, to low motivation to
work with requirements (E2).

7.1 Threats to Validity and Limitations

We discuss the validity threats according to the classification provided by Robson
(2002). The main threat to description validity is to provide a valid description of
what interviewees said and meant. This threat was addressed by recording and
transcribing the interviews. The transcripts were sent back to the interviewees to
check for misinterpretations and other errors. To ensure open and honest replies the
interviewees had full anonymity; the full set of names of the interviewees was only
know to the researchers and the company is large enough for the individuals not be
identifiable from the information given about them in this paper.

To address the treats to valid interpretation, the question on each challenge (of
which communication gaps was one) were formulated in an open and indirect way
to encourage the interviewee to express her own opinion before mentioning the
assumed causes. A possible source of unreliability is related to observer biases
where the results from the pre-study, as well as, questions asked during the
interview, may have been consciously or unconsciously biased by the researcher.
This threat was addressed by all the authors discussing the results of the pre-study,
the selection of interviewees, and reviewing the interview instrument. Moreover,
the practitioner’s involvement in the study has played a vital role in focusing on and
ensuring that the problems under investigation are authentic problems, that the
interpretation of data is based on a deep understanding of the case and its context,
and that the outcome of the study is authentic. To mitigate the risk of quotations
becoming out of context during the analysis phase (Coffey 1996), the observer
triangulation method was used (Robson 2002); one researcher randomly selected
two interview recordings and performed an independent transcription and coding.
Differences were discussed and conflicts resolved. Data triangulation was also
applied by the questionnaire responses from another set of practitioners to further
validate the results from the interview study.

The possibility of generalising the results of this case study has been addressed
both internally within the study and in respect to external generalizability. The
internal generalizability was addressed by sampling participants from different
parts of the company with different roles. As for external generalizability, the main
threat to validity is no possibility of performing a statistical generalisation due to
lack of representative sample and only one company involved in the study.
However, the main focus on this study is to increase the understanding of
communication around requirements and explore possible causes of gaps in this
communication rather than providing a full theory that can be generally applied.

Requirements are Slipping through the Gaps – A Case Study on … 61

Finally, communication gaps were confirmed as a challenge by all our responders
with only minor differences of the importance of this issue and all of the identified
causes, and several of the effects, of communication gaps have been reported by
other researchers in related studies (see Section 7).

8 Conclusions and Future Work
Communication is one of the key mechanisms in coordinating a project, of which
the requirements, or ’a common view of what the software they are developing
should do’ (Kraut 1995), is a vital part. The organisational theory literature suggests
that for an organisation to be successful, an appropriate combination of
organisational structure, processes, and communication and coordination
mechanisms, is needed (Cataldo 2007). Since software development is as highly
collaborative endeavour, many of the problems encountered during software
projects can be traced back to social factors (Piri 2008). Despite the fact that several
studies have reported the challenging nature of communication in software and
requirements engineering (Flemming 1978, Holmstrom 2006, Karlsson 2007,
Kotlarsky 2005, Lubars 1993, Piri 2008, Urdangarin 2008) and investigated various
aspects of communication (Al-Ani 2008, Lutz 2009, Marczak 2008, 2009,
Niinimaki 2010), no consolidated empirical evidence on the causes, root causes
effect and relations to other requirements engineering challenges has (to the best of
our knowledge) been presented.

In this paper, we address this gap by reporting empirical evidence based on an
interview study performed with nine interviewees at a large software development
company. To further strengthen the validity of the study we also conducted a
questionnaire with a different set of seven practitioners who confirmed the results.
The study confirms that communication is a challenging part of requirements
engineering and may cause a situation where requirements slip through the gaps;
are misinterpreted or overlooked, resulting in failure to meet customers’
expectations both concerning functionality, as well as, quality.

We have identified four main factors that may cause communication gaps:
scale, common views, temporal aspects, and decision structures. The size and
complexity of the software development, i.e. scale, increases the challenge of
requirements communication. We found communication gaps between the
requirements engineers and a number of stakeholders, resulting in missing
requirements, e.g. for quality. Instead, these requirements surface in later phases,
thus, incurring increased cost.

Common views and mutual understanding are necessary for communication to
be productive. Weak understanding of each other’s roles and responsibilities causes
gaps in communication. For example, the testers’ competences are not utilised
when defining and reviewing requirements, or the requirements engineers are not
consulted when making implementation choices that affect the requirements.

Temporal aspects come into play when there is a lack of continuity in
requirements awareness through the project life cycle. This may cause gaps in the
requirements communication. Hand-over points, e.g. defined by the process, where
the responsibility is passed on to new roles constitute a risk of missing vital
requirements knowledge and awareness. This may result in requirements being

62

misunderstood and incorrectly implemented, or, making decisions that affect the
requirements without considering all relevant aspects. For example, if there is no
requirements awareness in the implementation phase, the developers tend to make
their own requirement modifications without considering the impact on the
customer or on other parts of the development organisation, such as test.

Decision structures also contribute to communication gaps. Weak, or unclear,
visions or goals for the software development (due to not being communicated or
not being clear enough) contributes to weak communication, primarily, between
those defining the requirements and the development unit, since there is no mutual
understanding of the goal.

Our study shows that communication gaps can have serious and expensive
consequences in terms of wasted effort and quality issues, as well as, not meeting
the customers’ expectations and even communicating an incorrect picture of what
requirements a product fulfils to the customers. In addition, communication gaps
can contribute to a number of other RE-related challenges, like overscoping and
keeping the SRS updated. This, in turn, contributes to communication gaps, i.e. the
software development ends up in a vicious cycle.

The increased understanding of the causes and risk of gaps in requirements
communication provided through this study, can be a help in identifying potential
communication gaps in existing software development processes and organisations.
The goal should be to close such gaps and enable requirements management to
efficiently support and guide development projects towards producing quality
software that will meet customers’ expectations.

Future work includes investigating how aspects such as organisational set-up,
software development model (agile or waterfall) and application of different
software engineering methods affect the challenges, and their causes both within the
case company, and in a broader context.

Requirements are Slipping through the Gaps – A Case Study on … 63

References
Al-Ani B, Edwards HK (2008) A Comparative Empirical Study of Communication in

Distributed and Collocated Development Teams. Proc. IEEE Int. Conference on Global
Software Engineering (ICGSE '08). IEEE Computer Society, pp. 35-44. doi:
10.1109/ICGSE.2008.9.

Berry DM, Czarnecki K, Antkiewicz M, AbdElRazik M (2010) Requirements Determination
is Unstoppable: An Experience Report. Proc. IEEE Requirements Engineering
Conference (RE’10), IEEE Computer Society, Sept 2010, pp. 311-316.

Bjarnason E, Wnuk K, Regnell B (2010a) Overscoping: Reasons and Consequences – A
Case Study in Decision Making in Software Product Management. Proc IEEE Int.
Workshop on Software Product Management (IWSPM’10), Sept 2010, pp. 30-39.

Bjarnason (2010b) The interview instrument and validation questionnaire for the Before aNd
After study (BNA) is available at http://serg.cs.lth.se/research/experiment_packages/bna

Cataldo M, Bass M, Herbsleb JD, Bass L (2007) On Coordination Mechanisms in Global
Software Development. Proc IEEE Int Conf. on Global Software Engineering (ICGSE
'07). IEEE Press, pp. 71-80, doi: 10.1109/ICGSE.2007.33

Coffey AJ, Atkinson PA (1996) Making Sense of Qualitative Data: Complementary
Research Strategies. Sage Publications, Inc, 1996.

Curtis B, Krasner H, Iscoe N (1988) A Field Study of the Software Design Process for Large
Systems. Commun. ACM Nov. 1988, pp. 1268-1287, doi:10.1145/50087.50089.

Flemming WR (1978) Requirements Communication. Int. Conf. Automatic Testing
(AUTOMTESTCON’78), pp. 228-229, 1978, doi: 10.1109/AUTEST.1978.764370

Fricker SM, Glinz M (2010) Comparison of Requirements Hand-Off, Analysis, and
Negotiation: Case Study. Proc IEEE Int. Requirements Engineering Conference, Sept
2010, pp. 167-176, doi: 10.1109/RE.2010.29

Holmstrom H, Conchuir EO, Agerfalk PJ, Fitzgerald B (2006) Global Software Development
Challenges: A Case Study on Temporal, Geographical and Socio-Cultural Distance. Proc
IEEE Int Conf. on Global Software Engineering (ICGSE '06), pp. 3-11.

Karlsson L, Dahlstedt AG, Natt Och Dag J, Regnell B, Persson A (2007) Requirements
Engineering Challenges in Market-Driven Software Development An Interview Study
with practitioners. Inf and Soft Techn, vol. 49, Dec. 2007, pp. 588-604.

Kotlarsky J, Oshri I (2005) Social Ties, Knowledge Sharing and Successful Collaboration in
Globally Distributed System Development Projects. Eur Journal of Inf Systems, vol. 14,
Mar. 2005, pp. 37-48, doi: 10.1057/palgrave.ejis.3000520.

Kraut RE, Streeter L (1995) Coordination in Software Development. Communications of the
ACM, vol. 38, Mar 1995, pp. 69-81, doi: 10.1145/203330.203345.

Lubars M, Potts C, Richter C (1993) A Review of the State of the Practice in Requirements
Modelling. Proc. IEEE Int. Symposium on Requirements Engineering (RE’93), IEEE
Press, Jan. 1993, pp. 2-14, doi: 10.1109/ISRE.1993.324842.

Lutz B (2009) Linguistic Challenges in Global Software Development: Lessons Learned in
an Int. SW Development Division. Proc. Int. Conf. on Global Software Engineering, Jul.
2009, pp. 249-253, doi: 10.1109/ICGSE.2009.33

Marczak S, Damian D, Stege U, Schröter A (2008) Information Brokers in Requirement-
Dependency Social Networks. Proc. IEEE Int Conference on Requirements Engineering,
IEEE Press, Sep. 2008, pp. 53-62, doi: 10.1109/RE.2008.26.

Marczak S, Kwan I, Damian D (2009) Investigating Collaboration Driven by Requirements
in Cross-Functional Software Teams. Proc. Int. Workshop on Collaboration and
Intercultural Issues on Requirements: Communication, Understanding and Softskills,
Aug. 2009, pp.15-22, doi: 10.1109/CIRCUS.2009.2.

Niinimaki T, Piri A, Lassenius C, Paasivaara M (2010) Reflecting the Choice and Usage of
Communication Tools in GSD Projects with Media Synchronicity Theory. Proc. IEEE
Int. Conf. on Global Software Engineering, Sep. 2010, pp. 3-12.

64

Penzenstadler B, Schlosser T, Frenzel G (2009) Soft Skills REquired: A practical approach
for empowering soft skills in the engineering world. Proc. Int. Workshop of
Collaboration and Intercultural Issues on Requirements: Communication, Understanding
and Softskills, IEEE Computer Society, Aug. 2009, pp. 31-36, doi:
10.1109/CIRCUS.2009.5.

Piri A (2008) Challenges of Globally Distributed Software Development - Analysis of
Problems Related to Social Processes and Group Relations. Proc IEEE Int Conf on
Global Software Engineering, Sep. 2008, pp. 264-268, doi: 10.1109/ICGSE.2008.33.

Pohl C, Böckle G, van der Linden FJ (2005) Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, New York USA, 2005.

Regnell B, Berntsson-Svensson R, Wnuk K (2008) Can We Beat the Complexity of Very
Large-Scale Requirements Engineering? Proc. Int. Conf. on Requirements Engineering:
Foundation for Software Quality (REFSQ '08), vol. 5025 of LNCS, Springer-Verlag,
Berlin, Heidelberg, pp. 123-128. doi: 10.1007/978-3-540-69062-7_11

Robson C (2002) Real World Research. Blackwell.
Sabaliauskaite G, Loconsole A, Engström E, Unterkalmsteiner M, Regnell B, Runeson P,

Gorschek T, Feldt R (2010) Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context. Proc. Int. Working Conference
Requirements Engineering: Foundation for Software Quality (REFSQ 2010), Mar. 2010,
LNCS, vol. 6182, pp. 109 – 115, doi: 10.1007/978-3-642-14192-8_14.

Stapel K, Knauss E, Schneider K (2009) Using FLOW to Improve Communication of
Requirements in Globally Distributed Software Projects. Proc. Int. Workshop on
Collaboration and Intercultural Issues on Requirements: Communication, Understanding
and Softskills. IEEE Computer Society, Aug. 2009, pp. 5-14,
doi=10.1109/CIRCUS.2009.6.

Strauss A, Corbin J (1990) Basics of Qualitative Research: Grounded Theory Procedures and
Techniques. Sage Publications, New York, 1990.

Urdangarin R, Fernandes P, Avritzer A, Paulish D (2008) Experiences with Agile Practices
in the Global Studio Project. Proc. IEEE Int. Conf. on Global Software Engineering,
Aug. 2008, pp. 77-86, doi: 10.1109/ICGSE.2008.11.

PAPER II

ARE YOU BITING OFF MORE THAN
YOU CAN CHEW?

A CASE STUDY ON CAUSES AND
EFFECTS OF OVERSCOPING IN

LARGE-SCALE SOFTWARE
ENGINEERING1

Scope management is a core part of software release management and often a key
factor in releasing successful software products to the market. In a market-driven
case, when only a few requirements are known a priori, the risk of overscoping may
increase. This paper reports on findings from a case study aimed at understanding
overscoping in large-scale, market-driven software development projects, and how
agile requirements engineering practices may affect this situation. Based on a
hypothesis of which factors that may be involved in an overscoping situation, semi-
structured interviews were performed with nine practitioners at a large, market-
driven software company. The results from the interviews were validated by six
(other) practitioners at the case company via a questionnaire. The results provide a
detailed picture of overscoping as a phenomenon including a number of causes, root
causes and effects, and indicate that overscoping is mainly caused by operating in a
fast-moving, market-driven domain, and how this ever-changing inflow of
requirements is managed. Weak awareness of overall goals, in combination with
low development involvement in early phases may contribute to ‘biting off’ more
than a project can ‘chew’. Furthermore, overscoping may lead to a number of
potentially serious and expensive consequences, including quality issues, delays and
failure to meet customer expectations. Finally, the study indicates that overscoping
occurs also when applying agile RE practices, though the overload is more
manageable and perceived to result in less wasted effort when applying a continuous
scope prioritisation, in combination with gradual requirements detailing and a close
cooperation within cross-functional teams. The results provide an increased
understanding of scoping as a complex and continuous activity, including an
analysis of the causes, effects, and a discussion on possible impact of agile
requirements engineering practices to the issue of overscoping. The results
presented in this paper can be used to identify potential factors to address in order to
achieve a more realistic project scope.

1 By E. Bjarnason, K. Wnuk and B. Regnell, Published in Information and Software
Technology, 54(10): 1107-1124, 2012.

66

1 Introduction
Maximising the business value for a product and a set of available resources may
sound like a simple task of selecting features according to the highest return of
investment. However, in market-driven requirements engineering (MDRE)
(Karlsson 2007a, Regnell 2005) software product managers face the challenge of
managing continuously shifting market needs (Abramovici 2002) with a large
number of new and changing requirements (Gorschek 2005) caused both by a
capricious market situation (DeBaud 1999) and by evolving technologies. In this
situation, selecting which requirements to include into the next release of a software
product (also called scoping by Schmid 2002 or project scoping by PMI 2000) is a
complex and continuous task of assessing and re-assessing how these scoping
changes impact the common code base of the software product line (Pohl 2005) on
which those products are built (Wnuk 2009). This domain scoping is considered part
of the product line scoping (Schmid 2002), which derives value from the
opportunities to reuse functionality of the product line. These factors, combined
with increased market competition and unpredictable market response to new
products, force decision makers to continuously face the task of making and re-
evaluating decisions in an ever evolving world (Aurum 2003).

Defining the scope of a product to fit a required schedule is a known risk in
project management (Boehm 1989) and in our previous work (Wnuk 2009) we
found that the project scope at a large software company changed significantly
throughout the entire project life cycle. These changes were partly due to
overscoping, i.e. setting a scope that requires more resources than are available.
Several researchers have focused on scope creep where the scope is increased by the
developers, and highlighted this as a serious project risk (Carter 2001, Crockford
1980, Iacovou 2004). Others have investigated scoping as a part of release planning
(Schmid 2002, Svahnberg 2010, Wnuk 2009). However, no study has yet attempted
to investigate the causes and effects of overscoping even though requirements
engineering (RE) decision making is an acknowledged challenge (Alenljung 2008,
Aurum 2003, Ngo-The 2005). In this study, we have investigated this phenomenon
of overscoping a project, or biting off more that you can chew, in particular in a
market-driven and very-large scale RE (VLSRE) context (Regnell 2008).

Agile development processes claim to address several of the challenges involved
in scoping frequently changing requirements. For example, in eXtreme
programming (XP) (Beck 1999) and Scrum (Schwaber 2002) the balance between
scope and available resources is managed by extreme prioritisation and constant
(re)planning of the scope in combination with time boxing of the individual
development iterations. However, agile requirements engineering (RE) practices
have also been found to pose new challenges, e.g., in achieving consensus on
priorities among multiple stakeholders and in creating accurate project plans (cost
and timeline) for an entire project (Ramesh 2007).

The main goal of the case study reported on in this paper was to increase the
understanding of factors involved in overscoping and thereby highlight this risk and
take a step towards addressing and avoiding overscoping of projects. To achieve
this, the study was designed to answer the following questions: (RQ1) what causes
overscoping?; (RQ2) what are the resulting effects of overscoping?; and (RQ3) how
may agile RE practices impact the causes and effects of overscoping? The case

Are You Biting Off More Than You Can Chew? A Case Study on … 67

study has been conducted at a large market-driven software development company
that has started to shift towards a more agile way of working. The study includes
interviews with nine practitioners working with requirements engineering, software
development and product testing. The interview results were then validated via a
questionnaire with another six practitioners from the case company. The
contribution of the presented work includes eight main causes of overscoping
complemented by a number of root causes, and nine main effects of overscoping. In
addition, the results indicate that three of the agile RE practices adopted by the case
company may impact some of these causes and root causes and, thus, may also
reduce the effects of overscoping.

Partial results from this study have previously been published as workshop
publications in (Bjarnason 2010a) where overscoping was preliminarily investigated
and in (Bjarnason 2011a) where preliminary results on the benefits and side effects
of agile RE practices were published. For this article, the results are extended with
(1) additional causes, root causes and effects of overscoping; (2) additional
empirical results on overscoping from 6 (other) practitioners; and (3) details on the
impact of agile RE practices specifically on overscoping. These extensions were
achieved by further analysis of the full interview material and further validation of
the results through a questionnaire.

The remainder of this paper is structured as follows: Section 2 describes related
work. Section 3 describes the case company, while the research method is outlined
in Section 4. The results are reported in Section 5 for the interviews and in Section 6
for the validation questionnaire. In Section 7, the results are interpreted and related
to other work, and limitations and validity threats are discussed. Finally, Section 8
contains conclusions and further work.

2 Related Work
Unrealistic schedules and budgets are among the top ten risks in software
engineering (Boehm 1989) and some reasons for overloading projects with scope
have been suggested. For example, DeMarco and Lister (2003) mentioned that a
failure among stakeholders to concur on project goals (also one of the challenges of
agile RE according to Ramesh et al. 2007) can result in an excessive scope burden
on a project. Project overload may also result from sales staff agreeing to deliver
unrealistically large features without considering scheduling implications (Hall
2002). Furthermore, scope that is extended beyond the formal requirements by the
developers, i.e. scope creep, is stated by Iacovou and Dexter (2004) as a factors
leading to project failures. Scope creep is also mentioned as having a big impact on
risk and risk management in enterprise data warehouse projects (Legodi 2010). In
addition, it is listed as one of five core risks during the requirements phase, and is a
direct consequence of how requirements are gathered (DeMarco 2003). On the other
hand, Gemmer (1997) argues that people’s perceptions of risk and their subsequent
behaviour is overlooked within risk management and that an increased awareness of
causes and effects of risks may lead to an improved discussion and management of
these risks. Some methods and tools to mitigate and manage risks related to scoping
have been presented (Crockford 1980). For example, Carter et al. (2001) suggested
combining evolutionary prototyping and risk-mitigation strategy to mitigate the

68

negative effects of scope creep. However, the full issue of overscoping is not
explicitly named as a risk in the related work, nor empirically investigated for their
causes and consequences.

Requirements engineering (RE) is a decision intense part of the software
engineering process (Aurum 2003), which can support and increase the probability
of success in the development process (Aurum 2005a). However, the efficiency and
effectiveness of RE decision making has cognitive limitations (Aurum 2003), due to
being a knowledge intensive activity. Furthermore, research into the field of RE
decision making is still in its infancy (Alenljung 2008, Ngo-The 2005). A major
challenge in this research (according to Alenljung and Persson 2008) lies in
understanding the nature of RE decision making and identifying its obstacles and
several authors (Alenljung 2008, Aurum 2003, 2005a, Ngo-The 2005) mention the
need to: (1) identify decision problems in the RE process; (2) perform empirical
studies of RE decision making; and (3) examine how non-technical issues affect or
influence decision making. Communication gaps are an example of such non-
technical issues which have been reported to negatively affect the decision making
and contribute to defining an unrealistic scope (Bjarnason 2011b).

There are two characteristics of MDRE (Regnell 2005) which further aggravates
RE decision making, namely a lack of actual customers with which to negotiate
requirements (Karlsson 1997, Potts 1995) and a continuous inflow of requirements
from multiple channels (Gorschek 2005, Karlsson 2007a). As a result, rather than
negotiate with specific customers, the demands and requirements of an anonymous
consumer market have to be ‘invented’ (Potts 1995) through market research.
Moreover, the success of the final product is primarily validated by the market with
the uncertainty (Regnell 2005) of how well the ‘invented’ requirements compare to
the market needs. Commonly, market research continuously issues more
requirements (Regnell 2005) than can be handled with available resources. A state
of congestion then occurs in the MDRE process (Karlsson 2007a) and the set of
requirements to implement in the next project has to be selected using prioritisation
techniques based on market predictions and effort estimates (Carlshamre 2002,
Jorgensen 2007, Karlsson 1997).

Scope management is considered as one of the core functions of software release
planning and a key activity for achieving economic benefits in product line
development (Schmid 2002). Accurate release planning is vital for launching
products within the optimal market window. And, this is a critical success factor for
products in the MDRE domain (Sawyer 2000). Missing this window might cause
both losses in sales and, additional cost for prolonged development and delayed
promotion campaigns. However, making reliable release plans based on uncertain
estimates (Karlsson 2007a) and frequently with features with dependencies to other
features (Carlshamre 2001) is a challenge in itself. In addition, a rapidly changing
market situation may force a project to consider new market requirements at a late
project stage. Release planning is then a compromise where already committed
features may need to be sacrificed at the expense of wasted effort (Wnuk 2009) of
work already performed. The area of release planning is well researched and
Svahnberg et al. (2010) reported on 24 strategic release planning models presented
in academic papers intended for market-driven software development. Furthermore,
Wohlin and Aurum (2005) investigated what is important when deciding to include

Are You Biting Off More Than You Can Chew? A Case Study on … 69

a software requirement in a project or release. Despite this, the understanding of the
challenges related to scope management and their causes and effects is still low.

Scoping in agile development projects mainly involves three of the agile RE
practices identified by Ramesh et al. (2007), namely extreme prioritisation, constant
planning and iterative RE. High-level requirements are prioritised and the features
with the highest market value are developed first. This approach ensures that if the
project is delayed launch may still be possible since the most business-critical
requirements will already be developed. Ramesh et al. (2007) also identified a
number of benefits for companies applying these agile RE practices and challenges
and varying impact on project risks. The identified benefits include an ability to
adapt to changing prioritisation of requirements, as well as, a clearer understanding
of what the customers want, thus reducing the need for major changes. On the other
hand, agile RE practices were also found to include challenges in (1) correctly
estimating and scheduling for the full project scope (which continuously changes),
(2) a tendency to omit quality requirements and architectural issues (with the risk of
serious and costly problems over time), and (3) constant reprioritisation of the
requirements (with subsequent instability and waste).

3 The Case Company
The case company has around 5,000 employees and develops embedded systems for
a global market using a product line approach (Pohl 2005). The projects in focus for
this case study are technology investments into an evolving common code base of a
product line (a.k.a. platform) on which multiple products are based. There are
several consecutive releases of this platform where each release is the basis for one
or more products. The products mainly reuse the platform’s functionality and
qualities, and contain very little product-specific software. A major platform release
has a lead time of approximately two years from start to launch, and is focused on
functionality growth and quality enhancements for a product portfolio. For such
projects typically around 60-80 new features are added, for which approximately
700-1,000 system requirements are produced. These requirements are then
implemented by 20-25 different development teams with, in total, around 40-80
developers per team assigned to different projects. The requirements legacy
database amounts to a very complex and large set of requirements, at various
abstraction levels, in the order of magnitude of 20,000 entities. This makes it an
example of the VLSRE (very-large scale RE) context (Regnell 2008). Both the flow
of new requirements (added to and removed from the scope of platform projects)
and the scoping decisions associated with this flow may change frequently and
rapidly. This exposes the project management to a series of unplanned, and often
difficult, decisions where previous commitments have to be changed or cancelled.

3.1 Organisational Set-up
Several organisational units within the company are involved in the development.
For this case study, the relevant units are: the requirements unit that manages the
scope and the requirements; the software unit that develops the software for the
platform; and the product unit that develops products based on the platform releases.

70

In addition, there is a usability design unit responsible for designing the user
interface. Within each unit there are several groups of specialists divided by
technical area. These specialists are responsible for the work in various stages of the
development process. For this study, the most essential groups are the requirements
teams (RTs) (part of the requirements unit) that, for a specific technical area, define
the scope, and elicit and specify system requirements, and the development teams
(DTs) (part of the software unit) that design, develop and maintain software for the
(previously) defined requirements. Each RT has a team leader who manages the
team. Another role belonging to the requirements unit is the requirements architect
who is responsible for managing the overall scope, which includes coordinating the
RTs. In the DTs there are several roles, namely
· development team leader who leads and plans the team’s work for the

implementation and maintenance phases
· development team requirements coordinator who leads the team’s work during

the requirements management and design phase, and coordinates the
requirements with the RTs

· developer who designs, develops and maintains the software
· tester who verifies the software

The software unit also has a project management team consisting of (among others):
quality managers who set the target quality levels and follow up on these, and
software project managers who monitor and coordinate the DTs and interact with
the requirements architects. For the product development unit in this study, we focus
on the system testing task from the viewpoint of the functionality and quality of the
platform produced by the software unit.

3.2 Phase-Based Process
The company used a stage-gate model. There were milestones (MS) for controlling
and monitoring the project progress. In particular, there were four milestones for the
requirements management and design (MS1-MS4) and three milestones for the
implementation and maintenance (MS5-MS7). For each of these milestones, the
project scope was updated and baselined. The milestone criteria were as follows:
· MS1: At the beginning of each project, RT roadmap documents were extracted

to formulate a set of features for an upcoming platform project. A feature in this
case is a concept of grouping requirements that constitute a new functional
enhancement to the platform. At this stage, features contained a description
sufficient for enabling estimation of its market value and implementation effort,
both of which were obtained using a cost-value approach (Karlsson 1997). These
values were the basis for initial scoping inclusion for each technical area when
the features were reviewed, prioritised and approved. The initial scope was
decided and baselined per RT, guided by a project directive and based on initial
resource estimates given by the primary receiving (main) DT. The scope was
then maintained in a document called feature list that was updated each week
after a meeting of the change control board (CCB). The role of the CCB was to
decide upon adding or removing features according to changes that occur.

· MS2: The features were refined to requirements and specified by the RTs, and
assigned to their main DTs, responsible for designing and implementing the
feature. The requirements were reviewed with the main DTs and were then

Are You Biting Off More Than You Can Chew? A Case Study on … 71

approved. Other (secondary) DTs that were also affected by the features were
identified. The DTs make an effort estimate per feature for both main and
secondary DT.

· MS3: The DTs had refined the system requirements and started designing the
system. The set of secondary DTs were refined along with the effort estimates,
and the scope was updated and baselined.

· MS4: The requirements refinement work and the system design were finished,
and implementation plans were produced. The final scope was decided and
agreed with the development resources, i.e. the software unit.

· MS5: All requirements had been developed and delivered to the platform.
· MS6: The software in the platform had been stabilised and prepared for

customer testing.
· MS7: Customer-reported issues had been handled and the software updated. The

software was ready to be released.
According to the company’s process guidelines, the majority of the scoping

work should have been done by MS2. The requirements were expressed using a
domain-specific, natural language, and contained many special terms that required
contextual knowledge to be understood. In the early phases, requirements contained
a customer-oriented description while later being refined to detailed implementation
requirements.

3.3 Agile Development Process
In order to meet the challenges of managing high requirements volatility, the case
company was introducing a new development process at the time of this study. The
size and complexity of the software development, including the usage of product
lines, remained the same irrespective of the process used. The new process has been
influenced by ideas and principles from the agile development processes eXtreme
programming (XP) (Beck 1999) and Scrum (Schwaber 2002). The phase-based
process was replaced by a continuous development model with a toll-gate structure
for the software releases of the software product line (to allow for coordination with
hardware and product projects, see P1 below). The responsibility for requirements
management was transferred from the (previous) requirements unit, partly into the
business unit and partly into the software unit. The following agile RE practices
were being introduced:
· one continuous scope & release-planning flow (P1) The scope for all software

releases is continuously planned and managed via one priority-based list
(comparable to a product backlog). The business unit gathers and prioritises
features from a business perspective. All new high-level requirements are
continuously placed into this list and prioritised by the business unit. The
software unit estimates the effort and potential delivery date for each feature
based on priority and available software resource capacity. Development is
planned and executed according to priority order. Planning and resource
allocation is handled via one overall plan which contains all the resources of the
software unit. The scope of the platform releases are synchronised with the
product releases by gradual commitment to different parts of the scope. Critical
scope is requested to be committed for specific product releases, while non-

72

critical features are assigned to product releases when they are implemented and
ready to be integrated into the platform.

· cross-functional development teams (P2) that include a customer representative
assigned by the business unit (comparable to the agile practice of customer
proxy) have the full responsibility for defining detailed requirements,
implementing and testing a feature (from the common priority-based list). Each
new feature is developed by one cross-functional team specifically composed
for that feature. The different software engineering disciplines and phases (e.g.
requirements, design and test) are performed in an integrated fashion and within
the same team. The team has the mandate to decide on changes within the
value, effort and time frames assigned for the feature.

· gradual & iterative detailing of requirements (P3) The requirements are first
defined at the high level (as features in the priority-based list) and then
iteratively refined in the development teams into more detailed requirements as
the design and implementation work progresses.

· integrated requirements engineering (P4) The requirements engineering tasks
are integrated with the other development activities. The requirements are
detailed, agreed and documented during design and development within the
same cross-functional development team through close interaction between the
customer representative and other team members, e.g. designers, developers and
testers.

· user stories & acceptance criteria (P5) are used to formally document the
requirements agreed for development. User stories define user goals and the
acceptance criteria define detailed requirements to fulfill for a user story to be
accepted as fully implemented. The acceptance criteria are to be covered by test
cases.

This study mainly focuses on the situation prior to introducing the new agile way
of working, i.e. for projects working as described in Section 3.2. The agile RE
practices covered in this paper were defined in the company’s internal development
process at the time of the study. Practices P1 and P2 were being used in the projects,
while P3 was partly implemented, and P4 and P5 were in the process of being
implemented. Thus, it was not possible to investigate the full impact of the new
agile RE practices at the time of this study. Nevertheless, the study investigates how
these (new) practices are believed to affect the overscoping situation, i.e. which
causes and root causes may be impacted by the agile RE practices and, thus, lead to
reducing overscoping and its effects.

4 Research Method
The study was initiated due to a larger transition taking place within the case
company and with the aim of understanding the differences between the scoping
processes of the phase-based process and the new agile development process. Our
previous research into scoping (Wnuk 2009) served as the basis for identifying
research questions aimed at seeking a deeper understanding of overscoping as a
phenomenon. In order to obtain detailed insight, an explanatory approach (Robson
2002) was taken and the study design was based on the specific company context

Are You Biting Off More Than You Can Chew? A Case Study on … 73

and the authors’ pre-understanding. (These investigations can then be broadened in
future studies.) Existing knowledge from literature was taken into account in
interpretation and validation of the results.

A single-company explanatory case study (Robson 2002) was performed using
mainly a qualitative research approach complemented by a quantitative method for
some of the data gathering. Qualitative research is suitable for investigating a
complex phenomenon (such as overscoping) in a real-life context where it exists
(Myers 2002) (such as our case company). In this study, practitioners’ perceptions
of overscoping were studied through interviews where the verbalised thoughts of
individuals with a range of different roles at the case company were captured
(Myers 2002, Robson 2002).

The case study was performed in three phases (see Figure 1). In the first phase,
the industrial experience of one of the authors was used to formulate a hypothesis
concerning possible (assumed) causes of overscoping and (assumed) effects which
may result from overscoping. This hypothesis was used as a starting point in
creating the interview instrument (Bjarnason 2010b) for the interviews, which took
place in the second phase of the study. In the third phase, the interview results were
presented to (another) six practitioners from the same company and validated by
using a questionnaire (see Section 4.3 for more details and Bjarnason 2010b for the
validation questionnaire). This was done to reduce the risk of inappropriate (false)
certainty of the correctness of the results (Robson 2002).

4.1 Phase 1: Pre-study, Hypothesis Generation
The purpose of the first phase of the study was to formulate a hypothesis on
overscoping and prepare for the interviews. The experience of one of the authors
(who has worked at the case company, with experience in several areas including
coding, design, requirements engineering and process development) was used to
identify possible (assumed) causes and effect of overscoping. In addition to these
assumptions for the phase-based way of working, this author also identified the agile
RE practices being introduced at the case company. These practices were assumed
to impact one or more of the issues believed to cause overscoping in the phase-
based process. If these assumptions were correct, applying the new practices should
then result in reducing (or eliminating) the effects connected to those causes, and
thus reduce (or eliminate) overscoping. In order to avoid selecting a set of
assumptions biased only by one person, a series of brainstorming sessions on the
hypothesis were conducted with the researchers involved in this study (i.e. the
authors). The resulting (updated) hypothesis was then used as the main input in
creating an interview study instrument (accessible online Bjarnason 2010b).

74

4.1.1 Formulated hypothesis
The hypothesis formulated for this study is that overscoping is caused by a number
of factors, and that by addressing one or more of these factors, e.g. through agile RE
practices, the phenomenon of overscoping may be alleviated, or even eliminated.
The following five factors were identified as assumed causes for overscoping in
phase one:
· continuous requirements inflow via multiple channels (C1) was assumed to

cause overscoping by the many inflows increasing the difficulty of defining a
realistic scope for multiple parallel projects. Requirements continuously arrive
from the market, as well as, from internal stakeholders. This inflow was
managed by batching those requests into one or two projects per year. It was a
challenge to manage the execution of multiple parallel projects, while handling
requests for new features and requirements, as well as, requests for changes to
the agreed project scope.

· no overview of software resource availability (C2) was assumed to cause
overscoping due to the challenge of balancing the size of the total scope for
several (parallel) development projects against the (same) set of development
resources. The resource allocation for the software development unit was
handled at the DT level, i.e. there was no total overview of the load and
available capacity of all the development resources of the software unit.

· low DT involvement in early phases (C3) was assumed to contribute to defining
unrealistic and unclear requirements in the early phases, that are later deemed

Figure 1. Overview of research method for study.

Are You Biting Off More Than You Can Chew? A Case Study on … 75

too costly or even impossible to implement, thus causing overscoping. The
development teams were not very involved in the early project phases (MS1-
MS4) with providing cost estimates and feedback during requirements writing.

· requirements not agreed with DT (C4) was assumed to cause overscoping due
to not ensuring that the suggested scope was feasible and understandable. The
requirements specification was not always agreed with the development teams
at the handover point (MS2). Even if there was a formal review by DTs, we
assumed that there was a low level of commitment from DTs. Furthermore, this
low level of agreement was assumed to lead to low DT motivation to fulfil the
requirements defined by the RTs.

· detailed requirements specification is produced upfront (C5) by the
requirements teams by MS2 before the design starts was assumed to cause
overscoping by limiting the room for negotiating requirements that could enable
a more efficient design and realistic development plan. Furthermore, time and
cost overhead for managing such changes was also assumed to contribute to
overscoping.

4.2 Phase 2: Interview Study at Case Company
In phase two, semi-structured interviews with a high degree of open discussion
between the interviewer and the interviewee were held. The hypothesis provided a
framework that helped to discuss, explore and enrich the understanding of this
complex phenomenon. To avoid imposing this hypothesis on the interviewees, the
discussion both on overscoping in general and on the detailed causes and effect was
always started with an open ended question. In addition, the interviewees were
asked to talk freely about the roles and phases she had experience from at the
beginning of the interviews. In order to separate between the situation with the
phase-based process and with the new agile RE practices, the impact of the new
practices was discussed specifically in a (separate) section at the end of the
interviews.

Our aim was to cover the whole process from requirements definition through
development (design, implementation and testing) to the resulting end product
(quality assurance, product projects), mainly for the phase-based process. This was
achieved by selecting people to cover all the relevant organisational units (see
Section 3) for interviews and thereby catch a range of perspectives on the
phenomenon of overscoping. Nine people in total were selected to be interviewed.
Two of the interviewees with identical roles requested to have their interviews
together. The roles, organisational belongings, and relevant experience of the
interviewed persons within the case company for the phase-based process can be
found in Table 1. We have used a coding for the interviewees that also includes their
organisational belonging. For example, interviewees belonging to the requirements
unit are tagged with a letter R, belonging to product unit with a letter P and
belonging to software unit with a letter S.

76

Table 1. Interviewee roles (f phase-based process), organisational
belonging and length of experience for each role within
company (see Section 3.1).

Code Organisational unit Role (s) within company Years in role
Ra Requirements RT leader 5
Rb Requirements RT leader 2
Rc Requirements Requirements architect 3
Pd Product System test manager 7
Se Software Tester 3

Sf Software
Software project manager 2
DT leader 2
Developer 2

Sg Software Quality manager 3

Sh Software
DT requirements coordinator 1
Developer 2
DT leader 1

Si Software DT requirements coordinator 7

The interviews were scheduled for 90 minutes each with the possibility to reduce
time or prolong it. All interviews were recorded and transcribed, and the transcripts
sent back to the interviewees for validation. For each interview, the transcript was 7-
10 pages long and contained in average 3 900 words. Transcription speed varied
from 3-7 times of recorded interview time. The coding and analysis was done in MS
Excel. The underlying section structure of interview instrument, i.e. causes, effects
and agile RE practices, were numbered and used to categorise the views of the
interviewees. For each interview, the transcribed chunks of text were placed within
the relevant sections and, if so needed, copied to multiple sections. Relationships
between different categories, as well as, the level of agreement on causes, effects
and agile RE practices were noted in specific columns. The viewpoints of the two
practitioners interviewed together (interviewees Ra and Rb) were separated into
different columns in order to allow reporting their individual responses.

4.3 Phase 3: Result Validation Questionnaire
To further strengthen the validity of the results from the interviews a set of six
(additional) practitioners at the case company was selected in phase three, see Table
2. To ensure that these six practitioners understood the results correctly and in a
uniform way, the interview results were presented to them. During the meeting the
participants could ask for clarifications and comment on the results, especially when
they disagreed or had other different or additional viewpoints. In order to gather
their views on the results in a uniform and non-public way, the participants were
asked to fill out a questionnaire (available online at Bjarnason 2010b) stating to
which degree they agreed to the results and if additional relevant items had been
missed. Due to limited availability of the participants a total of three such sessions
were held. Each session was scheduled for 90 minutes with the possibility to extend
or decrease the time as needed. The results from the questionnaire can be found in
Section 6.

Are You Biting Off More Than You Can Chew? A Case Study on … 77

Table 2. Questionnaire respondents: roles and organisational belonging (for
phase-based process), and length of experience within company.
See Section 3.1 for descriptions of organisational units and roles.

Organisational unit Role(s) Years in company
Software Software project manager, DT leader 4
Software Tester 7
Software DT reqs coordinator, DT leader 5
Requirements Requirements architect 5
Requirements RT leader 13
Product System test manager 15

5 Interview Results
The causes and effects of overscoping derived from the interviews performed in
phase two of the study (see Figure 1) are outlined in Figure 2 and described in the
following sections. Section 5.1 covers the main causes for overscoping, while the
root causes are reported in Section 5.2 and the effects in Section 5.3. The findings
from the interviews concerning how the agile RE practices may address overscoping
are described in Section 5.4. The outcome of the validation questionnaire (phase 3)
on these results is reported in Section 6.

5.1 Causes of Overscoping (RQ1)
The viewpoint of each interviewee concerning the causes of overscoping was
categorised and matched against the hypothesis regarding the assumed causes of
overscoping (C1-C5, see Section 4.1.1). In addition, five of the eight interviewees
were found to describe a sixth main cause for overscoping, namely C6 unclear
vision of overall goal. A lack of (clearly communicated) strategy and overall goals
and business directions for software development led to un-clarities concerning the
intended direction of both software roadmaps and product strategies, as well as,
unclear business priority of project scope. The interviewees described how this
cause (C6) led to scope being proposed primarily from a technology aspect, rather
than from a business perspective, and without an (agreed) unified priority. Instead,
most of the scope of a project was claimed to be critical and non-negotiable.

78

Figure
2.

O
verview

ofallfound
causes(C

),rootcauses(R
C

)and
effects(E)ofoverscoping.Item

sderived
from

questionnaire
noted

w
ith

+
and

dashed
lines.Interview

ee
code

(see
Section

4.2)noted
w

ithin
brackets.

Are You Biting Off More Than You Can Chew? A Case Study on … 79

The interviewee results around the main causes of overscoping are shown in
Table 3. The opinions of the interviewees have been classified in the following way:
· Experienced: the cause (both its occurrence and its impact on overscoping) is

experienced and was mentioned without prompting.
· Agreed: either the cause (occurrence and impact) was not directly mentioned,

but derived or agreed after direct question, or when interviewee has no direct
experience, but had observed it or heard about it from others.

· Partly agreed: partly Experienced or partly Agreed.
· Disagreed: does not agree to the cause, either its occurrence, or that it caused

overscoping.
· Not mentioned: even though within expected experience for role.
· NA: not within the expected experience for the role (according to the process).

All interviewees had Experienced or Agreed to overscoping as a challenge, and a
majority had Experienced or Agreed to causes 1-3. No interviewees Disagreed to
any of the causes, though causes 4 and 5 both had less than a majority of
Experienced or Agreed interviewees. Causes 4-5 were Not mentioned by all, while
cause 6, which was derived from 5 of the interviewees, was Not mentioned by the
others.

The entries marked NA (Not Applicable) indicate that the interviewee in her role
was not expected to have experience of that cause. The system test manager (Pd)
and the quality assurance manager (Sg) were classified as NA for C2, C3 and C4
since they merely observed the requirements flow from their management-level
positions and were not directly involved in the early phases of the projects. In
addition, Sg was also classified as NA for C5 due to lack of contact with the SRS.
Furthermore, the software tester (Se), who had no insight into project planning, was
categorised as NA for the causes C1 and C2.

For each identified main causes of overscoping, the number ofTable 3.
interviewees per response category (see Section 5.1) and
organisational unit (Requirements etc, see Section 3.1).

Over-
scoping

as a
challenge

C1
Continuos
requirem

inflow

C2
No

overview
of

software
resources

C3
Low DT
involvem
in early
phases

C4
Reqs not
agreed

with DTs

C5
Detailed
reqs spec
produced
upfront

C6
Unclear
vision of
overall

goal

R
eq

s
So

ftw
ar

e
Pr

od
uc

t
R

eq
s

So
ftw

ar
e

Pr
od

uc
t

R
eq

s
So

ftw
ar

e
Pr

od
uc

t
R

eq
s

So
ftw

ar
e

Pr
od

uc
t

R
eq

s
So

ftw
ar

e
Pr

od
uc

t
R

eq
s

So
ftw

ar
e

Pr
od

uc
t

R
eq

s
So

ftw
ar

e
Pr

od
uc

t

Experienced 2 5 1 1 3 1 1 2 3 1 1 1 2 3 2
Agreed 1 2 2 1 1 1 1
Partly agreed 1 1 2 2 1
Disagreed
Not mentioned 2 1 2 3 1
NA 1 2 1 1 1 1 1 1

80

For all assumed causes there were some counts of Partly agreed, namely
· continuous requirements inflow via multiple channels (C1).

The quality manager (Sg) mentioned the continuous inflow of requirement
changes after setting the scope as causing overscoping, but no root causes
prior to this milestone, and is therefore classified as ‘Partly agreed’.

· no overview of software resource availability (C2).
One of the DT requirements coordinators (Si) is noted as ‘Partly agreed’ to
this cause, due to believing that a better overview of available resources
would not alleviate the overscoping to any greater extent. In contrast,
another interviewee (Sf) saw this as a strong cause for overscoping; ‘There
was no control of what people were working with. There were different DT
leaders who just sent out [tasks].’

· low DT involvement in early phases (C3).
Both DT requirements coordinators (Sh, Si) were categorised as ‘Partly
agree’ since the involvement from the rest of the DT including producing
cost estimates was low, even though they personally had experienced good
cooperation with the RT leaders during MS1-MS2. This lack of
involvement was seen by the DT tester (Se) as leading to an unrealistically
large scope being specified, ‘The full view of requirements would be
improved by including input from more roles, and a more realistic scope
could be identified earlier on.’

· requirements not agreed with DT (C4).
The DT requirements coordinators (Sh, Si) believed that the requirements
were understood and agreed with the DT at MS2, though the DT did not
commit to implementing them at that point. One of them (Sh) mentioned
that the system requirements specification was primarily agreed with the
DT requirements coordinators and not with developers and testers in the
DT.

· detailed requirements specification produced upfront (C5).
One of the RT leaders (Rb) had an agile way of working and did not
produce a detailed requirements specification upfront, but instead regularly
and directly interacted with the DT. This increased insight into the DT
enabled a more flexible discussion around scope and detailed requirements,
led to overscoping being experienced as a more manageable challenge by
Rb. The other RT leader (Ra, interviewed together with Rb) did not
mention C5 as causing overscoping, but agreed to Rb’s conclusions and
was noted as ‘Partly agreed’. Ra had the opposite experience, i.e. of
producing and relying on a requirements specification, and then not staying
in touch with the DT during the later phases of development (after MS2)
who then developed software that was usually different from what was
specified in the SRS. One of the DT interviewees (Sf) believed that the
(wasted) effort of producing and agreeing to detailed requirements upfront
(for features that were later descoped) increased the overscoping since it
hindered those resources from working on viable features. Another
interviewee (Sh) said: ‘At this point [MS2] we [DT] approved a lot of
things, because we liked what they [RT] wrote here and we really wanted
that functionality then we [DT] started to over commit.’

Are You Biting Off More Than You Can Chew? A Case Study on … 81

5.2 Root Cause Analysis (RQ1)
To provide a deeper understanding the interviewees were asked to describe what
may be triggering overscoping, i.e. the root causes of overscoping. These root
causes have been grouped according to the main cause (C1-C6, outlined in Sections
4.1 and 5.1) that they affect. A full picture of the cause-effects relationships for
overscoping identified through this study is depicted in Figure 2. The results around
root causes from both the interviews and from the questionnaire are also
summarised in Table 4.

Summary of all identified causes and root causes of overscoping:Table 4.
Number of responses for interviewees (see Section 5 for details) and for
questionnaire responses per level of agreement (see Section 6 for details).
Additional items from questionnaire responses are marked with +.

Mentioned
as causes /
root causes

by # of
interviewees
(9 in total)

Nr of questionnaire
responses (6 in total)

Ex
pe

rie
nc

ed

A
gr

ee

Pa
rtl

y
ag

re
e

D
is

ag
re

e

D
on

’t
kn

ow

Overscoping (as a challenge) 9 6
C1: Continuous requiremts inflow via multiple channels 8 4 2
a) Large number of product variants 2 3 1 2
b) Long lead times 1 4 2
c) Communication gaps 6 3 1 1 1

i. between reqs & software unit 3 3 2 1
ii. between RT-RT & DT-DT 2 3 2 1
iii. between RT and usability design 1 2 1 1 2
iv. between RT and software quality managers 1 2 4

+d) Customer requirements changes (many & late) 3
+e) Product portfolio re-planning 1
C2: No overview of software resource availability 6 2 3 1
a) Communication gaps within software unit 2 1 2 1 1 1
C3: Low dev. team involvement in early phases 7 1 2 2 1
a) Lack of DT resources for pre-development work 1 2 2 2
b) Low competence in estimating cost 2 2 1 3
c) Low development capacity 2 1 1 2 1 1
d) Communication gaps 3

i. Late reqs information to DT 1 2 2 1 1
ii. Lack of respect/understanding of develpmnt costs 2 2 3 1

+e) Weak leadership incl. ineffective communication 1
+f) Change of people during the project 1
+g) Multi-tasking 1
C4: Reqs not agreed with development teams 5 2 2 2
a) Low DT involvement in early phases (C3) 3 2 2 1 1
b) Communication gaps 3 1 2 2 1

i. between reqs and software units 2 1 2 1 2
ii. between RT and DT 2 1 1 2 1 1
iii. betw. developers and testers 1 1 1 1 2 1

+c) Unclear and ambiguous reqs 3

82

+d) Low understanding of why particular scope is
selected

1

C5: Detailed reqs spec.produced upfront 5 1 3 1 1
C6: Unclear vision of overall goal 5 4 1 1
a) Unclear business strategy f software development 2 3 2 1
b) Technology focus when scope set 3 3 2 1
c) Weak priority of scope 2 3 2 1
d) Communication gaps 2 3 1

i. between RTs 1 1 3 2
ii. between DTs 1 2 2 2
iii. bt reqs and software units 3 1 3 1 1

Additional (new) causes (from questionnaire responses)
+C7 Weak process adherence 1
+C8 Overall scope & deadline dictated by management 1

5.2.1 Root causes of C1: Continuous requirements inflow via
multiple channels

A number of requirement sources besides the regular requirement flow (defined by
the RTs) were mentioned as contributing to the continuous inflow. These include:
requirements produced by defining many different product variants in the product
line (RC1a); and, many late new market requirements and changes incurred by the
long project lead times (RC1b) compared to rate of requirements change.
Furthermore, communication gaps (RC1c) were mentioned as causing additional
requirements inflow through-out the project life-cycle. These consist of
communication gaps between the requirements unit and the software unit (RC1ci)
which resulted in the software unit preferring to work according to their own
software-internal roadmap containing a large amount of requirements not agreed
with the requirements unit. Communication gaps between technical areas, both for
RTs and for DTs, (RC1cii) led to indirect requirements between DTs being
discovered after the initial scope selection at MS2, which greatly increased the
amount of implementation required. The impact of these indirect requirements was
especially large for DTs responsible for service-layer functionality like display
frameworks and communication protocols. Furthermore, communication gaps
between usability design and the RTs (RC1ciii) resulted in additional functional
requirements appearing in usability design specification, sometimes in conflict with
RT requirements. And, finally, due to lack of communication between the software
quality managers and the requirements unit (RC1civ), requirements on quality
aspects were not defined and prioritised together with the RT requirements, but
managed separately in a later phase.

5.2.2 Root causes of C2: No overview of software resource
availability

The lack of overview of available software development resources was believed to
be a consequence of communication gaps within the software unit and between the
DTs (RC2a). The organisational structures and the high scope pressure were seen to
result in each DT focusing on their own areas rather than striving for cooperation
and good communication with other DTs. One interviewee described that enabling
DTs to coordinate their plans had the effect of improving the scoping situation by

Are You Biting Off More Than You Can Chew? A Case Study on … 83

increasing the delivery rate and efficiency, ‘We tried to solve the overscoping by
enabling the DTs to co-plan and deliver incrementally. This resulted in more
deliveries and increased efficiency.’ (Sf)

5.2.3 Root causes of C3: Low DT involvement in early phases

Several interviewees described that software resources were rarely available in early
project phases (RC3a) due to development and maintenance work for previous
projects. Rc said: ‘by MS2, but it was hard to get [DT] resources. That probably was
the problem.’ In addition, weak and incorrect cost estimations (RC3b) were
mentioned as leading to including too much into the project scope. In contrast, low
development capacity of the software unit (RC3c) caused by bad architecture was
believed by the two RT leaders to be the main reason for overscoping. Furthermore,
gaps in the communication (RC3d) between the requirements unit and the software
unit were mentioned as causing low DT involvement. For example, interviewees
mentioned that early DT involvement was often postponed due to a lack of
understanding within the software unit for the importance of this work. However,
the opposite was also mentioned, namely that the DTs received requirements
information too late (RC3di) which then resulted in extending the project scope
without realistic plans. Similarly, the cost estimates for both development and
testing were not always respected (RC3dii). In contrast, close cooperation between
the RTs and the DTs were experienced (by Rc) to lead to an early uncovering of
problems, thereby enabling definition of more stable requirements that were then
successfully implemented.

5.2.4 Root causes of C4: Requirements not agreed with DTs

Low DT involvement in the early phases (C3, RC4a) was seen as leading to weak
agreement and commitment to the requirements, by all three interviewees with
experience from planning DT work (Se, Sh, Si). The interviewees connected the
level of requirements agreement with the level of communication around
requirements (RC4b), i.e. RTs and DTs that communicated well also tended to have
a mutual understanding and agreement of the requirements. Due to variations in
communication between teams, the view on C4 varied between interviewees (see
Section 5.1). Even so, one interviewee (Sh) who had experienced good cooperation
with the RT mentioned that the different organisational belongings (RC4bi) caused
timing issues due to different priorities for different units. In addition,
communication gaps between RTs and DTs (RC4bii) including no contact between
testers and RT leaders were caused by physical and organisational distances and
resulted in weak DT agreement on the requirements. Weak communication on
requirements and design between developers and testers (RC4biii) was also
mentioned (by Se) as causing weak requirements agreement.

5.2.5 Root causes of C5: Detailed req spec produced upfront

The phase-based process defined that a requirements specification should be
produced by MS2, therefore no further root causes have been identified for this
cause.

84

5.2.6 Root causes of C6: Unclear vision of overall goal

The RT leaders (Ra and Rb) described that the lack of clear business strategy
(RC6a) and vision that could guide them in defining a roadmap resulted in
proposing a project scope from a pure technology standpoint (RC6b). A weak and
un-unified business priority (RC6c) of the proposed scope (almost everything was
‘critical’) was described (by Si) as pushing the DTs to commit to unrealistic project
plans. In addition, Rc mentioned that the lack of unified priority hindered the project
management from effectively addressing the overscoping. Furthermore, several
communication gaps (RC6d) were seen to contribute to this cause. Weak
communication both between RTs (RC6di) and between DTs (RC6dii) were
described by Rc as resulting in weak scope coordination between functional areas,
as well as, conflicts and lack of clarity concerning the overall goal. Finally, both RT
leaders described that communication gaps and low common understanding between
the requirements unit and the software unit (RC6diii) of the overall goal resulted in
the project scope being decided to a large extent by the DTs , and not (as the process
stated) by the RTs.

5.3 Effects of Overscoping (RQ2)
The interviews uncovered the following six main effects of overscoping (marked as
E1 to E6, see Figure 2).

5.3.1 Many req changes after the project scope is set (E1)

All interviewees had experienced that overscoping caused requirement changes to
take place after the project scope was set (at MS2). As the projects proceeded and
the overload was uncovered large amounts of features were removed from scope
(descoped). The phenomena was so common that the phrases ‘overscoping’ and
‘descoping’ have become part of company vocabulary. This descoping of already
started features was a waste (E1a) of both RT and DT effort and led to frustration
and decreased motivation (E1b) to work with new requirements. As interviewee Sh
said: ’There are many things that you as a tester or developer have spent time on
that never resulted in anything. And that isn't very fun. There is a lot of overtime
that has been wasted.’ However, the many requirement changes were experienced
by Pd as having only minor impact on the system testing. They merely adjusted the
test plans, and rarely wasted any effort due to this effect.

5.3.2 Quality issues (E2)

All interviewed practitioners involved after MS4 (when development started, Rc,
Pd, Se, Sf, Sg, Sh) mentioned that software quality was negatively affected by
overscoping both due to the high workload and due to the many requirement
changes. The software quality manager Sg expressed, ‘If you get too much scope,
you get quality problems later on and you haven't got the energy to deal with them.’
Similarly, interviewee Pd said: ‘When you have a lot going on at the same time,
everything isn't finished at the same time and you get a product with lower quality.’
Furthermore, the lack of respect for development costs (C3dii) in the earlier phases
was mentioned by the software tester (Se) to contribute to insufficient testing and
subsequent quality issues.

Are You Biting Off More Than You Can Chew? A Case Study on … 85

5.3.3 Delays (E3)

The overscoping and subsequent overloading of the DTs was described by several
practitioners as resulting in delayed deliveries being the norm rather than the
exception. In addition, overscoped DTs were often forced to commit to customer-
critical requests and changes which in turn resulted in even more delays and quality
issues (E2). One DT interviewee (Sf) stated that ‘our team was always loaded to
100% at MS4, which was too much since there were always customer requests later
on that we had to handle. That meant that we were forced to deliver functionality
with lower quality or late.’ The same situation was described by the quality manager
(Sg) who said: ‘Even if we decided on a scope for MS4, there were extremely many
changes underway, so we were never ready by MS5, as we had said, but were
delayed.’

5.3.4 Customer expectations are not always met (E4)

Overscoping was mentioned by a few interviewees as resulting in sometimes failing
to meet customer expectations. For example, customers sometimes file change
requests for features that had previously been removed due to overscoping. In
addition, overscoping caused by requiring a large number of products (RC1a) with
different display sizes and formats was experienced by interviewee Sf as resulting in
releasing products with faulty software, e.g. misplaced icons.

5.3.5 Communication gaps (E5)

Overscoping and overloading an organisation was described as leading to several
communication gaps; between the requirements and software units; within the
software unit itself, between DTs (Sg, Si) and between DTs and software project
managers (Sf); and between the software and the product unit. For example, the
many descoped features (E1) and wasted effort (E1a) resulted in distrust between
the requirements unit and the software unit, so much so that the software unit
defined their own internal roadmap without coordinating this with the requirements
unit. Furthermore, invalid error reports filed by the system testers based on an
unreliable SRS (caused by E1-E6) caused an increase both in work load and in
frustration at the software unit and, consequently friction and widened
communication gaps between these units.

5.3.6 Challenge to keep the SRS updated (E6)

The situation caused by overscoping, with a high workload and many late
requirement changes (E1), increased the challenge of keeping the SRS updated. The
practitioners mentioned that in an overscoping situation the task of updating the
SRS was given low priority (partly caused by E1b). Furthermore, the amount of
required updates both for changed and descoped requirements was increased (Ra,
Rb, Pd, Sg, Si) by producing the requirements upfront (C5) with a low level of DT
agreement (C4). The RT leaders (Ra, Rb) had also experienced that many
requirement-related changes were made during development without informing the
RTs (or the system testers), many of which might have been a result of insufficient
DT involvement in the early phases (C3).

86

5.4 Impact of Agile RE Practices (RQ3)
The general opinion of the interviewees on the situation after introducing the agile
RE practices (see Section 3.3) is that even though some overscoping is still
experienced, it is a more manageable challenge than with the previous phase-based
process. For example, there is less descoping and most of the features worked on by
the software unit now continue until completion (Si). Interviewee Sg said: ‘We still
have overscoping in all projects. But, it is more controlled now and easier to remove
things without having done too much work.’ Many of the interviewees stated that in
theory the agile RE practices address overscoping, but that these practices also incur
a number of new challenges. The following practices were mentioned by the
interviewees as impacting some of the causes and/or root causes of overscoping.

5.4.1 One continuous scope & release-planning flow (P1)

This practice (which was implemented at the time of the interviews) was seen to
address the root cause weak prioritisation of scope (RC6c, mentioned by Rc, Pd, Sg,
Sh) and the causes continuous requirements inflow via multiple channels (C1,
mentioned by Se, Sf) and no overview of software resource availability (C2,
mentioned by Sf, Sg), by enforcing that all scope and development resources are
managed through a uniformly prioritised list.

5.4.2 Cross-functional development teams (P2)

This practice (which was implemented at the time of the interviews) was seen to
address several communication gaps, and, thus, impact causes C1-C4 by closing the
gaps (identified as root causes) between RTs and DTs and between different
functional areas. This practice was also believed to impact C5 (detailed
requirements specification produced upfront) since detailing of requirements is now
handled within the development teams together with the customer representative.
Interviewee Sf said: ’It is an advantage that they [the team] sit together and can
work undisturbed, and there is no us-and-them, but it is us. And when they work
with requirements the whole group is involved and handshakes them.’

5.4.3 Gradual & iterative detailing of requirements (P3)

This practice (which was partly implemented at the time of the interviews) was
mentioned as directly impacting the cause C5 (detailed SRS produced upfront).
Furthermore, this practice was also seen by Sf and Sg to reduce both the lead time
for each high-level requirement (RC1b) and the amount of changes after project
scope is set (E1) and, thus also reduce the amount of wasted effort (E1a, also
mentioned by Ra, Rb).

Are You Biting Off More Than You Can Chew? A Case Study on … 87

6 Validation Questionnaire on Interview
Results

Overscoping was further investigated through the validation questionnaires
(Bjarnason 2010b), see Table 4. Each of the six respondents noted her level of
agreement by using the following notation:
· Experienced: I have experienced this (item and connection) to be valid
· Agree: I agree to this, but have not experienced it personally
· Partly agree: I agree to part, but not all, of this
· Disagree: I do not agree
· Don’t know: I have no knowledge of this item or its impact

6.1 Causes and Root Causes (RQ1)
A majority of the questionnaire respondents confirmed (i.e. Experienced or Agreed
to) all main causes as contributing to overscoping, except C3 (low DT involvement)
for which there was also one Disagree response. Causes C2, C3, C5 and C6 each
had one count of Disagree from respondents with experience from the requirements
unit. Two additional main causes were given by two respondents, namely weak
processes adherence (+C7) and dictation of scope and deadlines from management
(+C9). Furthermore, some additional root causes were given for C1, C3 and C4. For
C3, two alternative root causes were given, namely turn-over of DT members as the
project progressed (RC3f) and assigning the same resources to multiple parallel
projects (RC3g). For C4 (requirements not agreed with DT) three respondents stated
that this was caused by unclear and ambiguous requirements (RC4c), while one
respondents suggested that DTs often lacked insight into why certain features and
requirements were important, which is related to C6 (unclear vision of overall goal).
All responses from the validation questionnaire on causes and root causes can be
found in Table 4.

The impact of each main cause on overscoping was gauged by asking the
questionnaire respondents to distribute 100 points over all causes according to the
extent of their impact (see Table 5) C1 got the highest score in total and all six
respondents, thereby indicating that the continuous requirements inflow was a main
cause of overscoping. The second highest total score was given to C6 (unclear
vision of overall goal), which all the participants from the software unit graded with
30-60, while the other participants graded this with 0 or 30. Causes C4, C5, +C6 and
+C7 were seen as having a minor or no impact on the overscoping situation.

88

The total number of points reflecting the impact of each cause onTable 5.
overscoping. Each questionnaire respondent distributed 100 points.
The columns show the number of points per responder (organisational
belonging given in header, see Section 3.1).

To
ta

li
m

pa
ct

So
ftw

ar
e

So
ftw

ar
e

So
ftw

ar
e

R
eq

ui
re

m
en

ts
R

eq
ui

re
m

en
ts

Pr
od

uc
t

C1: Continuous reqs inflow via multiple channels 275 20 20 15 50 100 70
C2: No overview of software resource availability 60 10 20 20 10
C3: Low DT involvement in early phases 80 10 50 20
C4: Reqs not agreed with DTs 10 5 5
C5: Detailed reqs specification produced upfront 15 5 5 5
C6: Unclear vision of overall goal 140 60 40 30 10
+C7: Weak process adherence 0
+C8: Overall scope and deadline dictated from top 20 20

6.2 Effects of Overscoping (RQ2)
In large, the questionnaire respondents had experienced or agreed to all the effects
of overscoping identified from the interviews. The respondent from the product unit
had no view on E5 or E6, while the requirements architect partly agreed E5. In
addition, the respondents mentioned the following effects of overscoping: overtime
(+E7); changed and sometimes cancelled product plans (+E8); low prioritisation of
administrative tasks (+E9). The full questionnaire response on effects is shown in
Table 6.

In addition to stating the level of agreement to the identified effects of
overscoping, the respondents were asked to grade their impact. The following
notation was used:
· Critical: Company or customer level
· Major: Project or unit level
· Medium: Team level
· Minor: Individual level
· None: No impact

All the effects identified from the interviews were seen as having an impact. All
effects except E5 (communication gaps) were seen as having major or critical
impact by a majority of the participants. There were two counts of minor impact:
one for E6 (keeping SRS updated) and one for +E7 (overtime).

Are You Biting Off More Than You Can Chew? A Case Study on … 89

Number of questionnaire responses on the effects of Overscoping perTable 6.
level of agreement (notation described in Section 6) and per impact
category (notation described in Section 6.2). Additional items derived
from questionnaire marked with +.

Mentioned
by #

interviewees
(9 in total)

Questionnaire responses
(6 in total)

Agreement Impact

Ex
pe

rie
nc

ed
A

gr
ee

Pa
rtl

y
ag

re
e

D
is

ag
re

e
D

on
’t

kn
ow

C
rit

ic
al

M
aj

or
M

ed
iu

m
M

in
or

N
on

e

E1: Many req changes after scope is set 9 5 1 4 2
a) Wasted effort 7 5 1 3 3
b) Decreased motivation 5 4 2 3 2 1

E2: Quality issues 6 6 5 1
E3: Delays 4 6 5 1
E4: Customer expectat. not always met 1 4 2 5 1
E5: Communication gaps 4 2 1 1 1 2 1 3
E6: Keep SRS updated 5 1 4 1 5 1
+E7: Overtime 3 1 1 1
+E8: Changed/cancelled product plans 1 1
+E9: Administrative tasks not always
performed

1 1

6.3 Impact of Agile RE Practices (RQ3)
The questionnaire respondents mostly agreed to the three identified agile RE

practices as impacting the challenge of overscoping, either through their own
experience or by believing the practice should work in theory. Furthermore, some
additional practices were mentioned as impacting overscoping: (+P4) clearer
company vision (i.e. directly addressing C6), (+P5) open source development
(limiting C1 by restricting what the customer can reasonably expect when large
parts of the software are outside of company control) and (+P6) incremental
deliveries (shorter cycles facilitate scope size control for each cycle). Table 7
contains the questionnaire responses on the impact of the agile RE practices on
overscoping.

Finally, the respondents had all experienced, agreed or partly agreed that
overscoping was still a challenge for the case company. The new agile process and
practices are seen to, at least partly, address the situation and provided ways to
better manage and control the extent of overscoping and its effects. The
practitioners’ responses concerning the current situation are shown in Table 8.

90

Number of questionnaire responses on the impact of Agile RETable 7.
Practices on overscoping per level of agreement (notation described in
Section 6). Additional practices identified through questionnaire
responses are marked with +.

Ex
pe

rie
nc

ed
A

gr
ee

(i
n

th
eo

ry
)

Pa
rtl

y
ag

re
e

D
is

ag
re

e
D

on
’t

kn
ow

P1: One continuous scope & release-planning flow 2 4
P2: Cross-functional development teams 3 2 1
P3: Gradual & iterative detailing of requirements 2 2 2
+P4: Company vision 1
+P5: Open source development 1
+P6: Incremental deliveries 1

Number of questionnaire responses per agreement category (describedTable 8.
in Section 6) on the current situation at the case company with Agile
RE practices, as compared to when using phase-based process.

Ex
pe

rie
nc

ed
A

gr
ee

Pa
rtl

y
A

gr
ee

D
is

ag
re

e
D

on
’t

kn
ow

Overscoping is still a challenge 3 1 2
There is less overscoping now 1 1 3 1
Overscoping is more manageable now 1 3 1 1

7 Interpretation and Discussion
The results of this study corroborate that overscoping is a complex and serious risk
for software project management (Boehm 1989, DeMarco 2003, Legodi 2010) both
for phase-based and for agile development processes. In addition, the results show
that communication issues have a major impact on overscoping. This complements
the work by Sangwan et al. (2006) and Konrad et al. (2008) who mentioned that
weak communication can cause project failures in large-scale development and
global software engineering. Moreover, our results extend the lists of effects of
weak coordination proposed by Sangwan et al. (2006) (long delays, leave teams idle
and cause quality issues) by adding overscoping. Further research is needed to fully
identify and address the factors involved. The results are discussed and related to
other research in further detail, per research question, in Sections 7.1 (RQ1), 7.2
(RQ2) and 7.3 (RQ3). Finally, the limitations of this study and threats to validity of
the results are discussed in Section 7.4.

Are You Biting Off More Than You Can Chew? A Case Study on … 91

7.1 Causes of Overscoping (RQ1)
Our results indicate that overscoping is caused by a number of causes and root
causes. These causes mainly originate from the nature of the MDRE context in
which the company operates, but are also due to issues concerning organisational
culture and structures, and communication. This was further highlighted by
interviewees describing the additional cause C6 (unclear vision of overall goal) and
two questionnaire respondents mentioning additional causes connected to lack of
respect for the decision- and development process, i.e. C7 and C8. In contrast,
practitioners with experience of good cooperation and well-communicating teams
described overscoping as a less serious and more manageable challenge. This may
explain all the Disagree questionnaire responses but one (i.e. C5).

We interpret the results around the six causes of overscoping identified through
the interviews (see Section 5.1 and Figure 2) as follows.

7.1.1 Continuous requiremts inflow from multiple channels (C1)

We interpret the homogeneity of the interview and questionnaire results (see Table 3
and Table 5) to mean that a large and uncontrollable inflow of requirements has the
potential to cause overscoping when not managed and balanced against the amount
of available capacity. This cause was also been identified by Regnell and
Brinkkemper (2005) and Karlsson at el. (2007a) as one of the challenges of MDRE.
In addition to corroborating this challenge, our work also identifies that this
continuous inflow of requirements can cause overscoping. The importance and
seriousness of this factor are indicated by this cause scoring the highest total impact
factor in the questionnaire (see Table 5). The extent to which this cause affects
companies that operate in the bespoke requirements engineering context (Regnell
2005) requires further research.

Our study also reveals that the inflow of requirements can be further increased
by scope creep at the software management level through a software-internal
roadmap (RC1ci, see Section 5.2). In effect, this hindered resources from being
available for managing new customer requirements. Similar results have been
reported by Konrad et al. (2008) who found that scope creep can result in problems
with meeting customer expectations, i.e. effect E4 (see Section 5.3). Konrad et al.
(2008) propose addressing scope creep by increased understanding and traceability
of customer requirements, and by creating an effective hierarchical CCB structure.
The impact of these methods on overscoping remains to be evaluated.

7.1.2 No overview of software resource availability (C2)

The majority of our responders (six of nine interviewees and five of six
questionnaire respondents) had experienced or agreed to the lack of overview of
available resources being a cause of overscoping. However, the questionnaire results
suggest that the impact of this cause is not as critical as cause C1. This result is
surprising, when considering the importance of management of the daily workload
including coordination of tasks and activities reported by, e.g. Philips et al. (2002).
The contrasting opinions of low development capacity (RC3c, held by RT leaders)
and low respect for development costs (RCdii, held by DT roles) is interesting. This
difference can be interpreted as a low understanding of each other’s viewpoint

92

around cost and an indication that this viewpoint is dependent on role (related to
Jorgensen 2007). If the development capacity really is low is a different issue.
Finally, this cause specifically includes the lack of overview, or awareness of the
total load on the resources. To the best of our knowledge, this issue has not been
empirically investigated. Rather software cost estimation research (Jorgensen 2007)
mainly focuses on effort estimation and on optimising resource assignment (Lixin
2008).

7.1.3 Low development team involvement in early phases (C3)

The results indicate that low development involvement in the requirements phase
can cause overscoping (mentioned by 6 out of 9 interviewees and 5 out of 6
questionnaire respondents did not disagree to this). This confirms previous work
that points out the need of early development involvement in requirements
engineering, e.g. required by interdependencies between product management and
software development (Nuseibeh 2001). Glinz et al. (2002) also mentioned that lack
of communication between project management and development at requirements
hand-off may lead to unsatisfactory results. Similarly, Karlsson et al. (2007a)
reported that communication gaps between marketing (requirements unit for our
case company) and development, can result in insufficient effort estimates (i.e.
RC3b) and in committing to unrealistically large features without considering the
technical and scheduling implications. Our results corroborate these results in that
low involvement and weak communication in early phases may lead to problems
later on, including overscoping. These communication issues may also exacerbate
the problem of getting accurate and reliable effort estimates (RC3b). Furthermore,
the fact that one questionnaire respondent expressed experiencing good
communication and cooperation between requirements and development teams may
also explain the one Disagree response for this cause. On the other hand, a
surprising result from the validation questionnaire is that this cause (C3) was seen to
influence overscoping less than cause C6 (unclear vision of overall goal) both in
total (among all respondents) and by 2 of the 3 software respondents. These results
indicate that there may be additional (uncovered) factors that influence the impact
this cause has on overscoping.

Finally, several methods have been proposed for addressing cause C3, e.g.
negotiation of implementation proposals (Fricker 2007), model connectors for
transforming requirements to architecture (Medvidovic 2003), cooperative
requirements capturing (Macaulay 1993) and involving customers in the
requirements management process (Kabbedijk 2009). Goal-oriented reasoning can
also provide constructive guidelines for architects in their design tasks (van
Lamsweerde 2003). If and to which degree the mentioned methods can alleviate
overscoping by impacting this cause remains a topic for further research.

7.1.4 Requirements not agreed with development team (C4)

The results provide empirical evidence that weak agreement on requirements
between requirements and software units can cause overscoping (all 6 questionnaire
responders agreed to cause C4 and five interviewees mentioned C4 as a cause of
overscoping). A significant root cause for this cause was found to be communication
gaps, mainly between the requirements-related roles and the development and

Are You Biting Off More Than You Can Chew? A Case Study on … 93

testing roles. This confirms the viewpoint of Hall et al. (2002) that most requirement
problems are actually organisational issues. In addition, this confirms the
importance of seamless integration of different processes in collaborative work
(Ebert 2002). The impact of insufficient communication on software engineering
has been reported as a general issue within requirements engineering and product
management (Bjarnason 2011b, Fricker 2007, Hall 2002, Kabbedijk 2009, Karlsson
2007a). Surprisingly, C4 scored the lowest impact among all the causes and only
two questionnaire responders (both from the software unit) rated this cause as
having any (low) impact factor on overscoping. In contrast, cause C6 (weak vision
of overall goal) was rated as having the largest impact on overscoping.

7.1.5 Detailed requirements specification produced upfront (C5)

Our results indicate that too much detailed documentation produced upfront may
cause overscoping (mentioned by five interviewees and experienced, agreed or
partly agreed to by five questionnaire respondents, see section 5.1). This
complements other studies into documentation in software engineering projects. For
example, El Emam and Madhavji (1995) mentioned that in organisations which
require more control the pressure to produce much detail is also greater. Lethbridge
et al. (2003) reported that, for software engineers, there is often too much
documentation for software systems, frequently poorly written and out of date.
Furthermore, Sawyer et al. (1999) mention that premature freezing of requirements
may cause scope creep and communication problems (both of which are identified
as root causes of overscoping in our study) and suggest evolutionary prototyping as
a remedy. Other remedies suggested for addressing excessive documentation
include reuse of requirements specifications (Faulk 2001), as well as, simply
creating less documentation (Aurum 1999). The effectiveness of these methods for
the risk of overscoping remains to be investigated. The differing views on this cause
between respondents may be explained by their roles and relationship to RE. All the
disagreeing questionnaire respondents for this cause worked with requirements
related roles. These roles are more likely to consider detailed requirements
specifications as positive and good, rather than an issue. However, these roles have
less insight into the later phases when development takes place and the effects of
overscoping are experienced. Three of the respondents with experience from later
development phases had experienced C5 as causing overscoping. Furthermore,
Berry et al. (2010) mentioned that when time for elicitation is short, i.e. there is a
lack of upfront documentation (or lack of C5), the requirements usually end up as an
enhancement or become de-scoped since all of the client’s requests cannot be
delivered. Considering this, we conclude that both under specifying (as in Berry
2010) and over specifying (as in our study) can cause overscoping and later
descoping, and that it remains to be investigated how to strike a good balance.

7.1.6 Unclear vision of overall goal (C6)

Our study identifies that a lack of clearly communicated goals and strategy for
software development may cause defining the project scope primarily from a
technology perspective, rather than with a business focus, thereby contributing to
overscoping. Overall this cause was graded as having the second largest impact on
overscoping, despite one questionnaire respondent (an RT leader) disagreeing to this

94

cause. Our results support the findings from related papers (Aurum 2005a,
Cusumano 1995, DeMarco 2003, Khurum 2007, Neumann-Alkier 1997, Rosca
1997) that stress the importance of selecting requirements aligned with the overall
business goals and discarding others as early as possible. In addition, failure of
stakeholders to concur on project goals was found by DeMarco and Lister (2003) to
pose the biggest risk for a project. A method for early requirements triage based on
management strategies was proposed by Khurum et al. (2007). Aurum and Wohlin
(2005a) have proposed a framework for aligning requirements with business
objectives. Rosca et al. (1997) mention that the most demanding characteristic of
business is the likelihood of change which cannot be fully controlled. This can be
managed when business objectives are clear to the software developers, thus
enabling them to manage a system requiring modifications while meeting the
business objectives (Cusumano 1995). Finally, Karlsson et al. (2007a) mentioned
the lack of common goals and visions as a challenge in achieving good cooperation,
quoting their responders: ‘If everyone has the same goal and vision, then everyone
works in the right direction.’

7.1.7 Weak process adherence(+C7) and Scope & deadline
dictated by management (+C8)

These two causes were mentioned in the questionnaires, though none of them were
seen as having any major impact on overscoping. Karlsson et al. (2007a) found that
weak process adherence may be caused both by high process complexity, as well as,
lack of time for process implementation. The latter could be a consequence of
overscoping. The direction of causal relationship between overscoping and process
adherence remains to be investigated.

7.2 The Effects of Overscoping (RQ2)
The results indicate that overscoping may lead to a number of effects (or
consequences), many of which are judged to be serious and potentially very costly
for the company. Several of the identified effects may be in line with held beliefs
about what overloading a project with too much work may lead to. The aim of this
study is to investigate if such beliefs can be supported by empirical evidence or not,
and if more surprising phenomena arise in relation to a specific, real-world
overscoping situation.

7.2.1 Many changes after the project scope is set (E1)

The results show that overscoping leads to a large number of scope changes
(experienced by all responders and impact graded as critical or major by all six
questionnaire responders). This confirms evidence provided by Harker (1993) that
requirements are not static and, thus, are hard to capture or classify. In addition,
requirements volatility is mentioned as one of the challenges in MDRE by Karlsson
et al. (2007a) and identified by Ramesh et al. (2007) as one of the 14 assumptions
underlying agile software development. Furthermore, origins of requirements
volatility have been listed (Harker 1993). Despite this awareness, causes for
requirements volatility have not been empirically explored. Our results highlight

Are You Biting Off More Than You Can Chew? A Case Study on … 95

overscoping as one possible cause of late requirement changes. Furthermore, our
results confirm that it is challenging to manage requirement changes.

7.2.2 Quality issues (E2)

The results indicate this as an important effect of overscoping (experienced and
agreed for both interviews and questionnaires, and graded as having critical or major
impact). This confirms that the quality of requirements engineering determines the
software quality, as reported, e.g. by Aurum and Wohlin (2005b). In addition, our
results highlight overscoping as a potential reason for quality issues.

7.2.3 Delays (E3)

This study shows (with a high degree of alignment between interviewees and
questionnaire responses) that delays can be an effect of overscoping. Within MDRE,
delays in launching products can be very costly and result in loss of market shares
(Karlsson 2007a, Regnell 2005, Sawyer 1999, 2000). Therefore, the insight that
overscoping may have this effect is important evidence that indicates that
overscoping is a (potentially) serious risk.

7.2.4 Customer expectations are not always met (E4)

Our results indicate that overscoping can have the effect of failing to meet customer
expectations. This could be explained by an overloaded project having no time or
capacity neither to analyse or implement new requirements, nor to validate if market
or customer needs could have changed. Furthermore, Karlsson et al. (2007a)
reported failure to meet customer needs as one of the risks of developing products
based on a technology focus (root cause RC6b). Another crucial part of producing
software products that will satisfy the customers, as pointed out by Aurum and
Wohlin (2005b), is working with RE throughout the project life cycle (as opposed to
upfront requirements detailing, C5). The results of this study highlight the
importance of selecting a feasible scope as one factor to consider when attempting
to better understand and capture the customers’ needs.

7.2.5 Communication gaps (E5)

Our results indicate that overscoping may cause increased communication gaps.
(Roughly half of our interviewees and questionnaire respondents mentioned and
agreed to this effect.) This may be explained by the tendency to deflect by blaming
others when under pressure, rather than cooperate to solve problems together.
Furthermore, interviewees described that the many changes resulting from
overscoping (E1) were badly communicated to the product unit and resulted in false
error reports being filed on changed, but not updated requirements. This in turn,
caused irritation among the development teams and further increased the
communication gaps. Similarly, Karlsson et al. (2007) reported that constant inflow
of requirements (cause C1) caused decision conflicts between marketing and
development roles.

96

7.2.6 Challenge to keep SRS updated (E6)

The majority of the respondents confirmed that overscoping increases the challenge
to keep the SRS updated. When the SRS is detailed upfront (C5), the combination of
the two (overscoping) effects E1 (many scope changes) and E1b (decreased
motivation) lead to an increased need, but a lower motivation to update the SRS.
This complements previous work, which reports requirements volatility as a
common challenge for software projects (Harker 1993, Hood 2008, Jönsson 2005,
Wiegers 2003) and that the view of RE as concerning a static set of requirements is
inappropriate (Hall 2002, Harker 1993). In addition, Berry et al. (2010) report that
time and resources are never sufficient to keep the documentation updated and that
scope creep occurs when programmers code while the documentation keeps
changing. Furthermore, our study highlights that the challenge of keeping the SRS
updated is increased as an effect of overscoping. Harker and Eason (1993) proposed
to address this challenge by defining a minimum critical specification combined
with incremental deliveries (i.e. +P6) and thereby gradually providing more value.
Further research is needed to investigate if the methods proposed to address the
challenge of updating the requirements documentation could also minimise this
effect for overscoping.

7.2.7 Overtime (+E7), Changed/cancelled product plans (+E8),
Low priority for administrative tasks (+E9)

These effects were mentioned in the validation questionnaires and each got one
count of critical impact. Further investigations are needed to validate their
relationship to overscoping.

7.3 How Agile RE Practices May Impact Overscoping
(RQ3)

Our study identifies that three of the agile RE practices being introduced at the case
company may impact several of the causes and root causes of overscoping. In
addition, three more practices were suggested by questionnaire respondents as
addressing overscoping. The details of how the identified agile RE practices may
impact overscoping (mentioned root causes can be seen in Figure 2) are discussed
below. We interpret the results as an indication that overscoping is still a challenge
for the case company, though more manageable with the (partly implemented) agile
RE practices. Further investigations are needed to fully understand the situation in
the agile context.

7.3.1 One continuous scope and release planning flow (P1)

This practice is experienced by the responders to directly impact cause C2 (no
overview of software resource availability) by enabling transparency and insight
into the full project scope and into the current workload of the software unit. The
increased visibility of the load and available resource capacity to both business and
software unit may bridge several communication gaps identified as root cause of
overscoping, i.e. RC1c, RC3d and RC4b. This practice covers the agile RE practices
of requirements prioritisation and constant re-planning for the high-level
requirements (Ramesh 2007). Our results confirm the findings of Dybå and

Are You Biting Off More Than You Can Chew? A Case Study on … 97

Dingsøyr (2008) that managers of agile companies are more satisfied with the way
they plan their projects than are plan-based companies. Furthermore, our study also
corroborates the findings that agile prioritisation of the scope in combination with a
stage-gate model at the feature level can avoid delaying critical features and also
provides early feedback on features (Karlström 2005). However, achieving correct
high-level cost and schedule estimation has been identified as a challenge also for
agile project (Ramesh 2007), which may be one reason why overscoping remains an
issue for the case company.

7.3.2 Cross-functional development teams (P2)

Cross-functional development teams are indicated by our results as improving
several of the communication gaps identified by our study as important root causes
to overscoping (i.e. RC1c, RC2a, RC3d, RC4b, RC6d). This case company practice
is equivalent to the agile RE practice of preferring face-to-face requirements
communication over written documentation (Beck 2001) in combination with agile
prioritisation and constant re-planning at the detailed requirements level (Ramesh
2007). At this detailed requirements level, cost and schedule estimations in an agile
fashion (by only allowing additions when simultaneously removing something less
prioritised) have been found to be efficient (Karlström 2005, Ramesh 2007) and
eliminate the ‘requirements cramming’ problem (Karlström 2005), which is
equivalent to overscoping. Other studies have found that communication within
development teams is improved by agile practices, but that communication towards
other (dependent) teams remains a challenge (Karlström 2005, Pikkarainen 2008).
This challenge is addressed with P2 by including competence covering all the
involved functional areas within the same team (thus, impacting root causes RCicii,
RC2a, RC4b and RC6dii). Furthermore, the agile RE practice of including a
customer representative in the development teams is summarised by Dybå and
Dingsøyr (2008) as improving the communication been customer and engineers,
while filling this role can be stressful and challenging (Karlström 2005, Ramesh
2007).

7.3.3 Gradual and iterative requirements detailing (P3)

This practice is seen (by our interviewees) to decrease the total lead time for
development of a feature (root cause RC1b) by delaying the detailing of
requirements until they are actually needed for design and development. This in turn
reduces the amount of requirement changes within the (shorter) time frame for the
feature development, which in a market with high requirements volatility is a
significant improvement. It may also reduce the communication gaps that occur due
to the timing aspect of detailing requirements before design and implementation
starts, i.e. root causes RC3d, RC4a, RC4b. The case company practice P3 is
equivalent to the agile practice of iterative RE (Ramesh 2007).

7.4 Threats to Validity and Limitations
As for every study there are limitations that should be discussed and addressed.
These threats to validity and steps taken to mitigate them are reported here based on
guidelines provided by Robson (2002) for flexible design studies. Another important
aspect for the quality of a flexible design research is the investigator (Robson 2002),

98

and for this study all researchers involved have previous experience in conducting
empirical research, both interview studies and surveys.

7.4.1 Description validity

Misinterpretation of the interviewees (Robson 2002) poses the main threat to
description validity. This threat was addressed in several ways. The interviews were
recorded and transcribed. To enhance reliability of the transcriptions, the person
taking notes during the interviews also transcribed them. In addition, this person has
worked for the case company for several years and is well versed in company
culture and language. Also, data triangulation was applied to the transcriptions by
another researcher performing an independent transcription and coding of two
randomly selected interviews. Furthermore, the interviewees checked both the
transcriptions and the results of the study for errors and misinterpretations. Finally,
data triangulation was applied to the interview results by collecting additional
viewpoints from six (other) practitioners through a questionnaire (Robson 2002).

7.4.2 Interpretation validity
For this study, the main threat to valid interpretation has been the risk of imposing
the hypothesis (formulated in phase one) onto the interviewees. To address this
threat, open interview questions were always posed before asking specific questions
based on the hypothesis. Furthermore, spontaneous descriptions of causes (without
prompting) have been reported (as Experienced) separately from responses to
follow-up questions on specific causes (as Agreed), see Section 5.1 and Table 3.

For phase three, the threat to valid description was addressed by the researchers
jointly designing the questionnaire and the session held in connection to it. To
ensure that all questionnaire responders correctly and uniformly understood the
interview results, the results were presented to the participants. They could then ask
for clarifications before filling out the questionnaire. The fact that questionnaire
responders were confronted with a framework of results remains an open threat to
interpretation validity. On the other hand, both interviewees and questionnaire
respondents were explicitly encouraged to disagree and mention additional causes,
effects and practices, which they also did. One of the main limitations of the study is
the limited number of respondents. Although representatives from each of the
covered units of the case company were involved in both interviews and validation
questionnaire, the number of persons is relatively small and more factors may be
identified by including additional viewpoints.

7.4.3 Theory validity

The main threat to theory validity for this study is the risk of missing additional or
alternative factors. One source of this threat is the limited set of practitioners from
which data has been gathered. Another potential source is the risk of observer biases
limiting the study to the researcher’s pre-knowledge of the company. This was a risk
mainly in phase one and was addressed by involving the other researchers in
discussing and reviewing the study design and the hypothesis which shaped the
interview instrument. The fact that an additional main cause (i.e. C6) was identified
as a result of the interviews shows that this bias was successfully addressed.
However, identification of additional results in phase 3 may indicate that saturation

Are You Biting Off More Than You Can Chew? A Case Study on … 99

and the full exploration of the problem under investigation is not yet reached. As the
goal of this work is exploratory our aim is not to present or achieve a complete
coverage of the problem under investigation.

The involvement of the researcher with work experience from the case company
has played a vital role in the study. This has ensured that the investigated problem is
authentic and that the results are derived though an interpretation of the data based
on a deep understanding of the case and its context. However, the results are limited
to the case company and there is a risk that other possible causes of overscoping
experienced at other companies were not identified. This also applies to the set of
agile RE practices, which are limited to the ones that were currently known and
partly implemented at the case company at the time of the study.

Internal generalizability was addressed by sampling interviewees and
questionnaire respondents from different parts of the company thereby selecting
roles and responsibilities involved throughout the development life cycle. Even so, it
was not possible to include representatives from sales and marketing (they were
unavailable at the time of the study). However, the requirements team leaders
provided some insight into these aspects based on their experience from contacts
with customers and with sales and marketing roles.

Considering external generalizability, the results should be interpreted with the
case company context in mind. External validity is addressed by using analytical
generalisation which enables drawing conclusions without statistical analysis and,
under certain conditions, relating them also to other cases (Robson 2002, Runeson
2012). Within the scope of this paper, analytical generalisation is argued by
applying the making a case strategy (Robson 2002, p. 107) by analysing related
work and reporting similarities, differences and disagreements to our results (see
Section 7). This analysis builds a supporting argument towards external validity of
our study by seeking data which is not confirming a pre-assumed theory. In
addition, follow-up studies in other domains can be conducted to utilise the direct
demonstration strategy (Robson 2002) to further address the threat to external
validity.

8 Conclusions and Further Work
Decision making is at the heart of requirements engineering (RE) (Aurum 2003) and
within market-driven requirements engineering (MDRE) release planning is one of
the most important and challenging tasks (Karlsson 2007a, 2007b, Regnell 2005,
Sawyer 1999). Decisions concerning what to develop, and when, are inherently
related to achieving customer satisfaction. Even though release planning (Karlsson
1997, 2007b, Regnell 2005) is well researched, RE decision making is
acknowledged as challenging (Alenljung 2008, Aurum 2003, Ngo-The 2005) and
scope creep is ranked as a serious project risk (Carter 2001) (Crockford 1980,
Iacovou 2004), other aspects of scope management have been less explored (van de
Weerd 2006). Furthermore, techniques for prioritising requirements (Karlsson 1997,
2007b) often focus on planning the scope of a project as a discrete activity, or one in
a series of releases (Ngo-The 2005). Our previous work reported that scoping in an
MDRE context is a continuous activity that may last throughout the entire project
lifecycle (Wnuk 2009). If not successfully managed, and more requirements are

100

included into the project scope than can be handled with available resources the
result is overscoping, i.e. the project ‘bites off more than it can chew’.

Our study provides a detailed picture of factors involved in overscoping and
confirms that scoping is a challenging part of requirements engineering and one of
the risks in project management (Boehm 1989, DeMarco 2003, Legodi 2010). Our
results indicate that overscoping is mainly caused by the fast-moving market-driven
domain in which the case company operates, and how this inflow of requirements is
managed. In the early project phases, low involvement from the development-near
roles in combination with weak awareness of overall goals may result in an
unrealistically large project scope. Our study indicates that overscoping can lead to a
number of negative effects, including quality issues, delays and failure to meet
customer expectations. Delays and quality problems are expensive, not just
considering the cost of fixing the quality issues, but also in loss of market shares and
brand value (Regnell 2005). Furthermore, we found indications that a situation of
overscoping may cause even more overscoping, i.e. an organisation may end up in a
vicious cycle when overscoping ties up development resources which are then not
available for participating in early project phases. Furthermore, overscoping leads to
increased communication gaps, which in turn are root causes of overscoping.

Companies, such as our case company, that develop embedded software for a
business domain with a high market pressure need an organisational set-up and
process suited to efficiently managing frequent changes in a cost effective way.
Development projects need to respond quickly to changes, while at the same time
handling the complexity of developing software in a large-scale setting. Agile
processes are claimed to be better adapted to managing change than phase-based
ones. As one interviewee stated: ‘The waterfall approach is good from a preparation
perspective, if you can then stick to what is planned. But, since we live in a world
that changes a lot it doesn't work after all.’ Our study indicates, that despite
introducing agile RE practices, overscoping is still an issue for the case company,
although more manageable. We conclude that the improvements may be explained
by the agile RE practices of continuous prioritisation of the project scope, in
combination with performing cost and schedule estimation, and gradual
requirements detailing, in close collaboration within cross-functional teams, thereby
closing a number of communication gaps. However, agile RE practices also pose
challenges (Ramesh 2007), e.g. communication between teams (Karlström 2005,
Pikkarainen 2008), difficulty in cost estimation (Ramesh 2007). This, in
combination with a fast-moving, market-driven domain may explain why
overscoping remains a challenge also with the agile development process.

The causes and effects unveiled through this study (summarised in Figure 2) can
be used as a basis for identifying potential issues to address in order to avoid or
alleviate an overscoping situation. For example, the root cause of low competence in
cost estimations may be addressed by introducing techniques for improving cost
estimation, which should lead to more realistic plans. Finally, supported by our
findings of potentially serious effects of overscoping, we conclude that this
phenomenon can be a major risk of requirements engineering and project
management, complementary to the risk of scope creep mentioned by De Marco and
Lister (2003).

Future work includes evaluating the agile RE practices when they are fully
implemented; how do they affect overscoping and what additional challenges do

Are You Biting Off More Than You Can Chew? A Case Study on … 101

they pose over time? Furthermore, it would be interesting to investigate how aspects
such as organisational set-up, software development model (agile or waterfall) and
application of different software engineering methods affect decision making. In
addition, extending the results from this study to include other companies and also
other perspectives, such as marketing and sales, may strengthen the generalizability
of our findings.

References
Abramovici M, Sieg OC (2002) Status and Development Trends of Product Lifecycle

Management Systems. Published at Ruhr-University Bochum, Germany.
Alenljung B, Persson A (2008) Portraying the Practice of Decision-Making in Requirements

Engineering: a Case of Large scale bespoke Development. Req. Eng. 13, 2008, 257-279.
Aurum A, Martin E (1999) Managing both Individual and Collective participation in

Software Requirements Elicitation Process. 14th Int. Symposium on Computer and
Information Sciences, (ISCIS’99), Kusadasi, Turkey, 1999, pp. 124-131.

Aurum A, Wohlin C (2003) The Fundamental Nature of Requirements Engineering Activities
as a Decision-Making Process. Inf. Software Technol. 45, 2003, 945-54.

Aurum A, Wohlin C (2005a) Aligning Requirements with Business Objectives: a Framework
for Requirements Engineering Decisions. Workshop on Requirements Engineering
Decision Support, REDECS'05, 29 August-September 2, 2005, Paris, France.

Aurum A, Wohlin C (2005b) Requirements Engineering: Setting the Context. A. Aurum, C.
Wohlin (Eds.), Managing and Engineering Software Requirements, Springer- Verlag,
Germany, 2005, pp. 1-15.

Beck K (1999) Extreme Programming Explained. Published by Addison-Wesley, 1999.
Beck et al. (2001) The Agile Manifesto. Published at http://agilemanifesto.org/ (Latest access

June 2013.)
Berry DM, Czarnecki K, Antkiewicz M, AbdElRazik M (2010) Requirements Determination

is Unstoppable: An Experience Report. Proc. of the 18th Int. IEEE Requirements
Engineering Conference, IEEE Computer Society, 2010, pp. 311-316.

Bjarnason E, Wnuk K, Regnell B (2010a) Overscoping: Reasons and Consequences – A Case
Study in Decision Making in Software Product Management. Proc. of 4th Int. Workshop
on Softw. Product Management, pp. 30-39.

Bjarnason E (2010b) Case study material (interview instrument, questionnaire etc) for the
Before aNd After (BNA) study. Published online at
http://serg.cs.lth.se/research/experiment_packages/bna/ (latest access June 2013)

Bjarnason E, Wnuk K, Regnell B (2011a) A Case Study on Benefits and Side-Effects of
Agile Practices in Large-Scale Requirements Engineering. Proc. of 1st Workshop on
Agile Requirements Engineering (AREW '11). ACM, New York, NY, USA, 2011.

Bjarnason E, Wnuk K, Regnell B (2011b) Requirements Are Slipping Through the Gaps - A
Case Study on Causes & Effects of Communication Gaps in Large-Scale Software
Development. Proc. of 19th IEEE Int. Requirements Engineering Conf., pp.37-46.

Boehm B (1989) Tutorial: Software Risk Management. Published by IEEE Computer Society
Press, 1989

Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An Industrial Survey
of Requriements Interdependencies in Software Product Release Planning. Proc. of 5th

IEEE Int. Symposium on Requirements Engineering, pp. 84–91.
Carlshamre P (2002) A Usability Perspective on Requirements Engineering – From

Methodology to Product Development. Published Ph.D Thesis, Linköping University
Sweden, 2002.

102

Carter RA, Anton AI, Dagnino A, Williams L (2001) Evolving Beyond Requirements Creep:
A Risk-Based Evolutionary Prototyping Model. Proc. of 5th IEEE Int. Symposium on
Requirements Engineering, pp. 84-101.

Crockford N (1980) An Introduction to Risk Management (2 ed.) Published by Cambridge,
UK: Woodhead-Faulkner. 112 p.

Cusumano MA, Selby RW (1995) Microsoft Secrets. Published by Simon and Schuster, New
York, 1995.

DeBaud JM, Schmid K (1999) A Systematic Approach to Derive the Scope of Software
Product Lines. Proc. of 21st Int. Conf. on Software Engineering, ACM, Los Angeles
USA, 1999, pp. 34-43.

DeMarco T, Lister T (2003) Risk Management during Requirements. IEEE Software 20,
2003, 99-101.

Dybå T, Dingsøyr T (2008) Empirical Studies of Agile Software Development: A Systematic
Review. Information Software Technology 50, 2008, 833–859.

Ebert C, De Man J (2002) e-R&D – Effectively Managing Process Diversity. Ann. Softw.
Eng. 14, 2002, 73-91.

El Emam K, Madhavji NH (1995) A field study of requirements engineering practices in
information systems development. Proc. of 2nd IEEE Int. Symposium on Requirements
Engineering, IEEE Computer Society, Washington, DC, USA, 1995, pp. 68-80.

Faulk SR (2001) Product-Line Requirements Specification (PRS): An Approach and Case
Study. Proc. of 5th IEEE Int. Symposium on Requirements Engineering, IEEE Computer
Society, Washington, DC, USA, 2001, pp. 48-55.

Fricker S, Gorschek T, Myllyperkiö P (2007) Handshaking between Software Projects and
Stakeholders Using Implementation Proposals. Proc. of Int. Working Conference on
Requirements Engineering: Foundation for Software Quality, Trondheim, Norway, 2007,
Vol. 4542 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2007, pp.
144 – 159.

Gemmer A (1997) Risk Management Moving Beyond Process. Computer 30, 1997, pp. 33-
43, DOI=10.1109/2.589908 http://dx.doi.org/10.1109/2.589908

Glinz M, Berner S, Joos S (2002) Object-Oriented Modelling with ADORA. Information
Systems 27, 2002, pp. 425-444.

Gorschek T, Wohlin C (2005) Requirements Abstraction Model. Requir. Eng. 11, 2006, pp.
79-101.

Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve software companies:
an empirical analysis. IEEE Software 149, 2002, pp. 153- 160.

Harker SDP, Eason KD (1993) The Change and Evolution of Requirements as challenge to
the Practice of Software Engineering. Proc. of IEEE Int. Symposium on Requirements
Engineering, SanDiego, CA, USA, 1993, pp. 266-292.

Hood C, Wiedemann S, Fichtinger S, Pautz U (2008). Chapter on Change Management
interface. Requirements Management – The Interface Between Requirements
Development and All Other Systems Engineering Processes, Springer-Verlag Berlin
Heidelberg, 2008, pp. 175-191.

Iacovou CL, Dexter AS (2004) Turning around runaway information technology projects. In:
IEEE Engineering Management Review 3, 2004, pp. 97- 112.

Jorgensen M, Shepperd M (2007) A Systematic Review of Software Development Cost
Estimation Studies. IEEE Trans. on Soft. Eng. 33, 2007, 33-53.

Jönsson P, Lindvall M (2005) Impact Analysis. In: Managing and Engineering Software
Requirements, A. Aurum, C. Wohlin (Eds.), Springer- Verlag, Germany, 2005, pp. 117-
142.

Kabbedijk J, Brinkkemper S, Jansen S, van der Veldt SB (2009) Customer Involvement in
Requirements Management: Lessons from Mass Market Software Development. Proc. of
17th IEEE Int. Requirements Engineering Conf., pp.281-286.

Are You Biting Off More Than You Can Chew? A Case Study on … 103

Karlsson J, Ryan K (1997) A Cost-Value Approach for Prioritizing Requirements. IEEE Soft.
14, 1997, pp. 67–74.

Karlsson L, Dahlstedt ÅG, Natt Och Dag J, Regnell B, Persson A (2007a) Requirements
Engineering Challenges in Market-Driven Software Development An Interview Study
with Practitioners. Inf. and Soft. Techn. 49, 2007, 588-604.

Karlsson L, Thelin T, Regnell B, Berander P Wohlin C (2007b) Pair-wise Comparisons
versus Planning Game Partitioning--Experiments on Requirements Prioritisation
Techniques. Emp. Soft. Eng. 12, 2007, pp. 3-33.

Karlström D, Runeson P (2005) Combining Agile Methods with Stage-Gate Project
Management. IEEE Soft. 22, 2005, pp. 43 – 49.

Khurum M, Aslam K, Gorschek T (2007) A Method for Early Requirements Triage and
Selection Utilizing Product Strategies. Proc. of 14th IEEE Asia-Pacific Software
Engineering Conf., Washington, DC, USA, 2007, pp. 97-104.

Konrad S, Gall M (2008) Requirements Engineering in the Development of Large-Scale
Systems. Proc. of 16th IEEE Int. Requirements Engineering Conf. 2008, pp. 217-222.

van Lamsweerde A (2003) From System Goals to Software Architecture. Formal Methods for
Software Architectures, M.Bernardo, P. Inverardi, (Eds), Springer, 2003.

Legodi I, Barry ML (2010) The Current Challenges and Status of Risk Management in
Enterprise Data Warehouse Projects in South Africa. Proc. of PICMET '10, pp.1-5.

Lethbridge TC, Singer J, Forward A (2003) How Software Engineers Use Documentation:
the State of the Practice. IEEE Software 20, 2003, pp. 35- 39.

Lixin Z (2008) A Project Human Resource Allocation Method Based on Software
Architecture and Social Network. Proc. of 14th Int. Conf. on Wireless Communications,
Networking and Mobile Computing, October 2008, pp.1-6.

Macaulay L (1993) Requirements Capture as a Cooperative Activity. Proc. of 1st IEEE
Symposium on Requirements Engineering, USA, 1993, pp. 174-181.

Medvidovic N, Grünbacher P, Egyed A, Boehm B (2003) Bridging Models Across the
Software Lifecycle. Journal of Syst. Softw. 68, 2003, pp. 199-215.

Myers MD, Avison D (2002) Qualitative Research in Information System. Sage Publications,
USA, 2002.

Neumann-Alkier L (1997) Think Globally, Act Locally – Does it Follow the Rule in
Multinational Corporations? Proc. of 5th European Conf. on Information Systems, 1997,
pp. 541-552.

Ngo-The A, Ruhe G (2005) Decision support in requirements engineering. Managing and
Engineering Software Requirements, A. Aurum, C. Wohlin (Eds.), Springer- Verlag,
Germany, 2005, pp. 267-286.

Nuseibeh B (2001) Weaving Together Requirements and Architectures. Computer 34, 2001,
pp. 115-117.

Phillips JJ, Bothell TW, Snead GL (2002) The Project Management Scorecard: Measuring the
Success of Project Management Solutions. Elsevier, USA, 2002.

Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The Impact of Agile
Practices on Communication in Software Development. Empirical Software Engineering
13, 2008, pp. 303–337.

Pohl C, Böckle G, van der Linden FJ (2005) Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag, New York USA, 2005.

Potts C (1995) Invented Requirements and Imagined Customers: Requirements Engineering
for Off-the-shelf Software. Proc. of 2nd IEEE Int. Symposium on Requirements
Engineering, March 1995, pp. 128-131, doi: 10.1109/ISRE.1995.512553.

PMI (Project Management Institute) (2000) Chapter 5: Project Scope Management. In: A
Guide to the Project Management Body of Knowledge (PMBOK Guide) 2000 Edition.
Project Management Institute, Four Campus Boulevard, Newtown Square, PA 19073-
3299, USA, 2000.

104

Ramesh B, Cao L, Baskerville R (2007) Agile Requirements Engineering Practices and
Challenges: An Empirical Study. Information Systems Journal 20, 2007, pp. 449-280.

Regnell B, Brinkkemper S (2005) Market–Driven Requirements Engineering for Software
Products. Managing and Engineering Software Requirements, A. Aurum, C. Wohlin
(Eds.), Springer-Verlag, Germany, 2005, pp. 287-308.

Regnell B, Berntsson Svensson R, Wnuk K (2008) Can We Beat the Complexity of Very
Large-Scale Requirements Engineering? Proc. of 14th Int. Conf. on Requirements
Engineering: Foundation for Software Quality (REFSQ '08), B. Paech, C. Rolland (Eds.),
vol. 5025 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg,
2008, pp. 123-128.

Robson C (2002) Real World Research. Blackwell Publishing, 2002.
Rosca D, GreenSpan S, Feblowitz M, Wild C (1997) A Decision Making Methodology in

Support of the Business Rules Lifecycle. Proc. of 3rd IEEE Int. Symposium on
Requirements Engineering, Annapolis, MD, USA, January 1997, pp. 236-246.

Runeson P, Rainer A, Höst M, Regnell B (2012) Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, 2012.

Sangwan R, Bass M, Mullick N, Paulish DJ, Kazmeier J (2006) Global Software
Development Handbook. Auerbach Publications, Boston MA, USA 2006.

Sawyer P, Sommerville I, Kotonya G (1999) Improving Market-Driven RE Processes. Proc.
of Int. Conf. on Product-Focused Softw. Process Improvem., 1999, pp. 222–236.

Sawyer P (2000) Packaged Software: Challenges for RE. Proc. of 6th Int. Workshop on
Requirements Engineering: Foundation for Software Quality (REFSQ'2000).

Schmid K (2002) A Comprehensive Product Line Scoping Approach and Its Validation. Proc.
of 24th Int. Conf. on Software Engineering, 2002, pp. 593-603.

Schwaber K, Beedle M (2002) Agile Software Development with SCRUM. Prentice Hall.
Svahnberg M, Gorschek T, Feldt R, Torkar R, Bin Saleem S, Shafique MU (2010) A

Systematic Review on Strategic Release Planning Models. Inf. Softw. Technol. 52, 2010,
pp. 237-248.

Wiegers KE (2003) Software Requirement (2nd edition) Microsoft Press, Redmond 2003.
Wnuk K, Regnell B, Karlsson L (2009) What Happened to Our Features? Visualization and

Understanding of Scope Change Dynamics in a Large-Scale Industrial Setting. Proc. of
17th IEEE Int. Requirements Engineering Conf. 2009, pp. 89-98. doi 10.1109/RE.2009.32

van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J, Bijlsma L (2006) Towards a
Reference Framework for Software Product Management. Proc. of 14th IEEE Int. Conf.
on Requirements Engineering, Sep. 2006, pp. 319-322.

Wohlin C, Aurum A (2005) What is Important When Deciding to Include a Software
Requirement in a Project or Release? Proc. of 4th Symposium on Empirical Software
Engineering, 17-18 Nov. 2005, doi: 10.1109/ISESE.2005.1541833.

PAPER III

CHALLENGES AND PRACTICES IN
ALIGNING REQUIREMENTS WITH

VERIFICATION AND VALIDATION:
A CASE STUDY OF SIX COMPANIES1

Weak alignment of requirements engineering (RE) with verification and validation
(VV) may lead to problems in delivering the required products in time with the
right quality. For example, weak communication of requirements changes to testers
may result in lack of verification of new requirements and incorrect verification of
old invalid requirements, leading to software quality problems, wasted effort and
delays. However, despite the serious implications of weak alignment research and
practice both tend to focus on one or the other of RE or VV rather than on the
alignment of the two. We have performed a multi-unit case study to gain insight
into issues around aligning RE and VV by interviewing 30 practitioners from 6
software developing companies, involving 10 researchers in a flexible research
process for case studies. The results describe current industry challenges and
practices in aligning RE with VV, ranging from quality of the individual RE and
VV activities, through tracing and tools, to change control and sharing a common
understanding at strategy, goal and design level. The study identified that human
aspects are central, i.e. cooperation and communication, and that requirements
engineering practices are a critical basis for alignment. Further, the size of an
organisation and its motivation for applying alignment practices, e.g. external
enforcement of traceability, are variation factors that play a key role in achieving
alignment. Our results provide a strategic roadmap for practitioners in improvement
work to address alignment challenges. Furthermore, the study provides a foundation
for continued research to improve the alignment of RE with VV.

	

1 By E. Bjarnason, P. Runeson, M. Borg, M. Unterkalmsteiner, E. Engström, B. Regnell, G.
Sabaliauskaite, A. Loconsole, T. Gorschek, R. Feldt. Published in Journal of Empirical
Software Engineering, July 2013.

106

1 Introduction

Requirements engineering (RE) and verification and validation (VV) both aim to
support development of products that will meet customers’ expectations regarding
functionality and quality. However, to achieve this RE and VV need to be aligned
and their ‘activities or systems organised so that they match or fit well together’
(MacMillan Dictionary’s definition of ‘align’). When aligned within a project or an
organisation, RE and VV work together like two bookends that support a row of
books by buttressing them from either end. RE and VV, when aligned, can
effectively support the development activities between the initial definition of
requirements and acceptance testing of the final product (Damian 2006).

Weak coordination of requirements with development and testing tasks can lead
to inefficient development, delays and problems with the functionality and the
quality of the produced software, especially for large-scale development (Kraut
1995). For example, if requirements changes are agreed without involving testers
and without updating the requirements specification, the changed functionality is
either not verified or incorrectly verified. This weak alignment of RE and work that
is divided and distributed among engineers within a company or project poses a risk
of producing a product that does not satisfy business and/or client expectations
(Gorschek 2007). In particular, weak alignment between RE and VV may lead to a
number of problems that affect the later project phases such as non-verifiable
requirements, lower product quality, additional cost and effort required for
removing defects (Sabaliauskaite 2010). Furthermore, Jones et al. (2009) identified
three other alignment related problems found to affect independent testing teams,
namely uncertain test coverage, not knowing whether changed software behaviour
is intended, and lack of established communication channels to deal with issues and
questions.

There is a large body of knowledge for the separate areas of RE and VV, some
of which touches on the connection to the other field. However, few studies have
focused specifically on the alignment between the two areas (Barmi 2011) though
there are some exceptions. Kukkanen et al. (2009) reported on lessons learnt in
concurrently improving the requirements and the testing processes based on a case
study. Another related study was performed by Uusitalo et al. (2008) who identified
a set of practices used in industry for linking requirements and testing. Furthermore,
RE alignment in the context of outsourced development has been pointed out as a
focus area for future RE research by Cheng and Attlee (2007).

When considering alignment, traceability has often been a focal point (Watkins
1994, Barmi 2011, Paci 2012). However, REVV alignment also covers the
coordination between roles and activities of RE and VV. Traceability mainly
focuses on the structuring and organisation of different related artefacts. Connecting
(or tracing) requirements with the test cases that verify them support engineers in
ensuring requirements coverage, performing impact analysis for requirements
changes etc. In addition to tracing, alignment also covers the interaction between
roles throughout different project phases; from agreeing on high-level business and
testing strategies to defining and deploying detailed requirements and test cases.

Our case study investigates the challenges of RE and VV (REVV) alignment,
and identifies methods and practices used, or suggested for use, by industry to

Challenges and Practices in Aligning Requirements with Validation and … 107

address these issues. The results reported in this paper are based on semi-structured
interviews of 90 minutes each with 30 practitioners from six different software
companies, comprising a wide range of people with experience from different roles
relating to RE and VV. This paper extends on preliminary results of identifying the
challenges faced by one of the companies included in our study (Sabaliauskaite
2010). In this paper, we report on the practices and challenges of all the included
companies based on a full analysis of all the interview data. In addition, the results
are herein categorised to support practitioners in defining a strategy for identifying
suitable practices for addressing challenges experienced in their own organisations.

The rest of this paper is organised as follows: Section 2 presents related work.
The design of the case study is described in Section 3, while the results can be
found in Section 4. In Section 5 the results are discussed and, finally the paper is
concluded in Section 6.

2 Related Work

The software engineering fields RE and VV have mainly been explored with a
focus on one or the other of the two fields (Barmi 2011), though there are some
studies investigating the alignment between the two. Through a systematic mapping
study into alignment of requirements specification and testing, Barmi et al. (2011)
found that most studies in the area were on model-based testing including a range of
variants of formal methods for describing requirements with models or languages
from which test case are then generated. Barmi et al. also identified traceability and
empirical studies into alignment challenges and practices as main areas of research.
Only 3 empirical studies into REVV alignment were found. Of these, 2 originate
from the same research group and the third one is the initial results of the study
reported in this paper. Barmi et al. draw the conclusions that though the areas of
model-based engineering and traceability are well understood, practical solutions
including evaluations of the research are needed. In the following sections previous
work in the field is described and related to this study at a high level. Our findings
in relation to previous work are discussed in more depth in Section 5.

The impact of RE on the software development process as a whole (including
testing) has been studied by Damian et al. (2005) who found that improved RE and
involving more roles in the RE activities had positive effects on testing. In
particular, the improved change control process was found to ‘bring together not
only the functional organisation through horizontal alignment (designers,
developers, testers and documenters), but also vertical alignment of organisational
responsibility (engineers, teams leads, technical managers and executive
management)‘ (Damian 2005). Furthermore, in another study Damian and Chisan
(2006) found that rich interactions between RE and testing can lead to pay-offs in
improved test coverage and risk management, and in reduced requirements creep,
overscoping and waste, resulting in increased productivity and product quality
(Damian 2006). Gorschek and Davis (2007) have proposed a taxonomy for
assessing the impact of RE on, not just project, but also on product, company and

108

society level; to judge RE not just by the quality of the system requirements
specification, but also by its wider impact.

Jointly improving the RE and testing processes was investigated by Kukkanen et
al. (2009) through a case study on development performed partly in the safety-
critical domain with the dual aim of improving customer satisfaction and product
quality. They report that integrating requirements and testing processes, including
clearly defining RE and testing roles for the integrated process, improves alignment
by connecting processes and people from requirements and testing, as well as,
applying good practices that support this connection. Furthermore, they report that
the most important aspect in achieving alignment is to ensure that ‘the right
information is communicated to the right persons’. Successful collaboration
between requirements and test can be ensured by assigning and connecting roles
from both requirements and test as responsible for ensuring that reviews are
conducted. Among the practices implemented to support requirements and test
alignment were the use of metrics, traceability with tool support, change
management process and reviews of requirements, test cases and traces between
them (Kukkanen 2009). The risk of overlapping roles and activities between
requirements and test, and gaps in the processes was found to be reduced by
concurrently improving both processes (Kukkanen 2009). These findings correlate
very well with the practices identified through our study.

Alignment practices that improve the link between requirements and test are
reported by Uusitalo et al. (2008) based on six interviews, mainly with test roles,
from the same number of companies. Their results include a number of practices
that increase the communication and interaction between requirements and testing
roles, namely early tester participation, traceability policies, consider feature
requests from testers, and linking test and requirements people. In addition, four of
the companies applied traceability between requirements and test cases, while
admitting that traces were rarely maintained and were thus incomplete (Uusitalo
2008). Linking people or artefacts were seen as equally important by the
interviewees who were unwilling to select one over the other. Most of the practices
reported by Uusitalo et al. were also identified in our study with the exception of
the specific practice of linking testers to requirements owners and the practice of
including internal testing requirements in the project scope.

The concept of traceability has been discussed, and researched since the very
beginning of software engineering, i.e. since the 1960s (Randell 1969). Traceability
between requirements and other development artefacts can support impact analysis
(Gotel 1994, Watkins 1994, Ramesh 1997, Damian 2005, Uusitalo 2008, Kukkanen
2009), lower testing and maintenance costs (Watkins 1994, Kukkanen 2009), and
increased test coverage (Watkins 1994, Uusitalo 2008) and thereby quality in the
final products (Watkins 1994, Ramesh 1997). Tracing is also important to software
verification due to being an (acknowledged) important aspect in high quality
development (Watkins 1994, Ramesh 1997). The challenges connected to
traceability have been empirically investigated and reported over the years. The
found challenges include volatility of the traced artefacts, informal processes with
lack of clear responsibilities for tracing, communication gaps, insufficient time and

Challenges and Practices in Aligning Requirements with Validation and … 109

resources for maintaining traces in combination with the practice being seen as non-
cost efficient, and a lack of training (Cleland-Huang 2003). Several methods for
supporting automatic or semi-automatic recovery of traces have been proposed as a
way to address the cost of establishing and maintaining traces, e.g. De Lucia 2007,
Hayes 2007, Lormans 2008. An alternative approach is proposed by Post et al.
(2009) where the number of traces between requirements and test are reduced by
linking test cases to user scenarios abstracted from the formal requirements, thus
tracing at a higher abstraction level. When evaluating this approach, errors were
found both in the formal requirements and in the developed product (Post 2009).
However, though the evaluation was performed in an industrial setting the set of 50
requirements was very small. In conclusion, traceability in full-scale industrial
projects remains an elusive and costly practice to realise (Gotel 1994, Watkins
1994, Jarke 1998, Ramesh 1998). It is interesting to note that Gotel and Finkelstein
(1994) conclude that a particular concern in improving requirements traceability is
the need to facilitate informal communication with those responsible for specifying
and detailing requirements. Another evaluation of the traceability challenge
reported by Ramesh identifies three factors as influencing the implementation of
requirements traceability, namely environmental (tools), organisational (external
organisational incentive on individual or internal), and development context
(process and practices) (Ramesh 1998).

Model-based testing is a large research field within which a wide range of formal
models and languages for representing requirements have been suggested (Dias
Neto 2007). Defining or modelling the requirements in a formal model or language
enables the automatic generation of other development artefacts such as test cases,
based on the (modelled) requirements. Similarly to the field of traceability, model-
based testing also has issues with practical applicability in industrial development
(Nebut 2006, Mohagheghi 2008, Yue 2011). Two exceptions to this is provided by
Hasling et al. (2008) and by Nebut et al. (2006) who both report on experiences
from applying model-based testing by generating system test cases from UML
descriptions of the requirements. The main benefits of model-based testing are in
increased test coverage (Nebut 2006, Hasling 2008), enforcing a clear and
unambiguous definition of the requirements (Hasling 2008) and increased testing
productivity (Grieskamp 2011). However, the formal representation of requirements
often results in difficulties both in requiring special competence to produce (Nebut
2006), but also for non-specialist (e.g. business people) in understanding the
requirements (Lubars 1993). Transformation of textual requirements into formal
models could alleviate some of these issues. However, additional research is
required before a practical solution is available for supporting such transformations
(Yue 2011). The generation of test cases directly from the requirements implicitly
links the two without any need for manually creating (or maintaining) traces.
However, depending on the level of the model and the generated test cases the
value of the traces might vary. For example, for use cases and system test cases the
tracing was reported as being more natural than when using state machines
(Hasling 2008). Errors in the models are an additional issue to consider when
applying model-based testing (Hasling 2008). Scenario-based models where test
cases are defined to cover requirements defined as use cases, user stories or user
scenarios have been proposed as an alternative to the formal models, e.g. by

110

Regnell and Runeson (1998), Regnell et al. (2000) and Melnik et al. (2006). The
scenarios define the requirements at a high level while the details are defined as test
cases; acceptance test cases are used to document the detailed requirements. This is
an approach often applied in agile development (Cao 2008). Melnik et al. (2006)
found that using executable acceptance test cases as detailed requirements is
straight-forward to implement and breeds a testing mentality. Similar positive
experiences with defining requirements as scenarios and acceptance test cases are
reported from industry by Martin et al. (2008)

3 Case Study Design

The main goal of this case study was to gain a deeper understanding of the issues in
REVV alignment and to identify common practices used in industry to address the
challenges within the area. To this end, a flexible exploratory case study design
(Robson 2002, Runeson 2012) was chosen with semi-structured interviews as the
data collection method. In order to manage the size of the study, we followed a case
study process suggested by Runeson et al. (2012, chapter 14) which allowed for a
structured approach in managing the large amounts of qualitative data in a
consistent manner among the many researchers involved. The process consists of
the following five interrelated phases (see Figure 1 for an overview, including in-
and outputs of the different phases):

1) Definition of goals and research questions
2) Design and planning including preparations for interviews
3) Evidence collection (performing the interviews)
4) Data analysis (transcription, coding, abstraction and grouping,

interpretation)
5) Reporting

Phases 1-4 are presented in more detail in sections 3.1 to 0, while threats to
validity are discussed in section 3.5. A more in-depth description with lessons
learned from applying the process in this study is presented by Runeson et al (2012,
Chapter 14). A description of the six case companies involved in the study can be
found in section 3.2.

The ten authors played different roles in the five phases. The senior researchers,
Regnell, Gorschek, Runeson and Feldt lead the goal definition of the study. They
also coached the design and planning, which was practically managed by
Loconsole, Sabaliauskaite and Engström. Evidence collection was distributed over
all ten researchers. Loconsole and Sabaliauskaite did the transcription and coding

Figure 1. Overview of the research process including in- and output for each
phase.

Challenges and Practices in Aligning Requirements with Validation and … 111

together with Bjarnason, Borg, Engström and Unterkalmsteiner, as well as the
preliminary data analysis for the evidence from the first company (Sabaliauskaite
2010). Bjarnason, Borg, Engström and Unterkalmsteiner did the major legwork in
the intermediate data analysis, coached by Regnell, Gorschek and Runeson.
Bjarnason and Runeson made the final data analysis, interpretation and reporting,
which was then reviewed by the rest of the authors.

3.1 Definition of Research Goal and Questions

This initial phase (see Figure 1) provided the direction and scope for the rest of the
case study. A set of goals and research questions were defined based on previous
experience, results and knowledge of the participating researchers, and a literature
study into the area. The study was performed as part of an industrial excellence
research centre, where REVV alignment was one theme. Brainstorming sessions
were also held with representatives from companies interested in participating in
the study. In these meetings the researchers and the company representatives agreed
on a main long-term research goal for the area: to improve development efficiency
within existing levels of software quality through REVV alignment, where this case
study takes a first step into exploring the current state of the art in industry.
Furthermore, a number of aspects to be considered were agreed upon, namely agile
processes, open source development, software product line engineering, non-
functional requirements, and, volume and volatility of requirements. As the study
progressed the goals and focal aspects were refined and research questions
formulated and documented by two researchers. Four other researchers reviewed
their output. Additional research questions were added after performing two pilot
interviews (in the next phase, see Section 3.2). In this paper, the following research
questions are addressed in the context of software development:

· RQ1: What are the current challenges, or issues, in achieving REVV
alignment?

· RQ2: What are the current practices that support achieving REVV
alignment?

· RQ3: Which current challenges are addressed by which current practices?
The main concepts of REVV alignment to be used in this study were identified

after discussions and a conceptual model of the scope of the study was defined (see
Figure 2). This model was based on a traditional V-model showing the artefacts and
processes covered by the study, including the relationships between artefacts of
varying abstraction level and between processes and artefacts. The discussions
undertaken in defining this conceptual model led to a shared understanding within
the group of researchers and reduced researcher variation, thus ensuring greater
validity of the data collection and results. The model was utilised both as a guide
for the researchers in subsequent phases of the study and during the interviews.

3.2 Design and Planning

In this phase, the detailed research procedures for the case study were designed and
preparations were made for data collection. These preparations included designing
the interview guide and selecting the cases and interviewees.

112

The interview guide was based on the research questions and aspects, and the
conceptual model produced in the Definition phase (see Figures 1 and 2). The guide
was constructed and refined several times by three researchers and reviewed by
another four. User scenarios related to aligning requirements and testing, and
examples of alignment metrics were included in the guide as a basis for discussions
with the interviewees. The interview questions were mapped to the research
questions to ensure that they were all covered. The guide was updated twice; after
two pilot interviews, and after six initial interviews. Through these iterations the
general content of the guide remained the same, though the structure and order of
the interview questions were modified and improved. The resulting interview guide
is published by Runeson et al. (2012, appendix C). Furthermore, a consent
information letter was prepared to make each interviewee aware of the conditions of
the interviews and their rights to refuse to answer and to withdraw at any time. The
consent letter is published by Runeson et al. (2012, Appendix E).

The case selection was performed through a brainstorming session held within
the group of researchers where companies and interviewee profiles that would
match the research goals were discussed. In order to maximise the variation of
companies selected from the industrial collaboration network, with respect to size,
type of process, application domain and type of product, a combination of
maximum variation selection and convenience selection was applied (Runeson
2012, p. 35, 112). The characteristics of the case companies are briefly summarised
in Table 1. It is clear from the summary that they represent: a wide range of
domains; size from 50 to 1,000 software developers; bespoke and market driven
development; waterfall and iterative processes; using open source components or
not, etc. At the time of the interviews a major shift in process model from waterfall
to agile was underway at company F. Hence, for some affected factors in Table 1,
information is given as to for which model the data is valid.

Our aim was to cover processes and artefacts relevant to REVV alignment for
the whole life cycle from requirements definition through development to system
testing and maintenance. For this reason, interviewees were selected to represent

Figure 2. The conceptual model of the area under study, produced in phase 1.

Challenges and Practices in Aligning Requirements with Validation and … 113

the relevant range of viewpoints from requirements to testing, both at managerial
and at engineering level. Initially, the company contact persons helped us find
suitable people to interview. This was complemented by snowball sampling
(Robson 2002) by asking the interviewees if they could recommend a person or a
role in the company whom we could interview in order to get alignment-related
information. These suggestions were then matched against our aim to select
interviewees in order to obtain a wide coverage of the processes and artefacts of
interest. The selected interviewees represent a variety of roles, working with
requirements, testing and development; both engineers and managers were
interviewed. The number of interviews per company was selected to allow for
going in-depth in one company (company F) through a large number of interviews.
Additionally, for this large company the aim was to capture a wide view of the
situation and thus mitigate the risk of a skewed sampled. For the other companies,
three interviews were held per company. An overview of the interviewees, their
roles and level of experience is given in Table 2. Note that for company B, the
consultants that were interviewed typically take on a multitude of roles within a
project even though they can mainly be characterised as software developers they
also take part in requirements analysis and specification, design and testing
activities.

3.3 Evidence Collection

A semi-structured interview strategy (Robson 2002) was used for the interviews,
which were performed over a period of one year starting in May 2009. The
interview guide (Runeson 2012, appendix C) acted as a checklist to ensure that all
selected topics were covered. Interviews lasted for about 90 minutes. Two or three
researchers were present at each interview except for five interviews, which were
performed by only one researcher. One of the interviewers led the interview, while
the others took notes and asked additional questions for completeness or
clarification. After consent was given by the audio recordings were made of each
interview. All interviewees consented.

The audio recordings were transcribed word by word and the transcriptions were
validated in two steps to eliminate un-clarities and misunderstandings. These steps
were: (i) another researcher, primarily one who was present at the interview,
reviewed the transcript, and (ii) the transcript was sent to the interviewee with
sections for clarification highlighted and the interviewee had a chance to edit the
transcript to correct errors or explain what they meant. These modifications were
included into the final version of the transcript, which was used for further data
analysis.

114

T
able

1.O
verview

ofthe
com

paniescovered
by

thiscase
study.A

tcom
pany

F
a

m
ajorprocesschange

w
astaking

place
atthe

tim
e

ofthe
study

and
data

specific
to

the
previousw

aterfall-based
processare

m
arked

w
ith

‘previous’.

Challenges and Practices in Aligning Requirements with Validation and … 115

Table 2. Overview of interviewees’ roles at their companies incl. level of
experience in that role; S(enior) = more than 3 years, or J(unior)
= up to 3 years. Xn refers to interviewee n at company X.
Note: most interviewees have additional previous experience.

Role A B C D E F
Requirements
engineer

F1 (S),
F6 (S),
F7 (S)

Systems architect D3 (J) E1 (S) F4 (S)
Software developer B1 (J),

B2 (S),
B3 (S)

F13 (S)

Test engineer A2 (S) C1 (S),
C2 (J)

D2 (S) E3 (S) F9 (S),
F10 (S),
F11 (J),
F12 (S),
F14 (S)

Project manager A1(J) C3 (S) D1 (S) F3 (J),
F8 (S)

Product manager A3(S) E2 (S)
Process manager F2 (J),

F5 (S),
F15 (J)

The transcripts were divided into chunks of text consisting of a couple of
sentences each to enable referencing specific parts of the interviews. Furthermore,
an anonymous code was assigned to each interview and the names of the
interviewees were removed from the transcripts before data analysis in order to
ensure anonymity of the interviewees.

3.4 Data Analysis

Once the data was collected through the interviews and transcribed (see Figure 1), a
three-stage analysis process was performed consisting of: coding, abstraction and
grouping, and interpretation. These multiple steps were required to enable the
researchers to efficiently navigate and consistently interpret the huge amounts of
qualitative data collected, comprising more than 300 pages of interview transcripts.

Coding of the transcripts, i.e. the chunks, was performed to enable locating relevant
parts of the large amounts of interview data during analysis. A set of codes, or
keywords, based on the research and interview questions was produced, initially at
a workshop with the participating researchers. This set was then iteratively updated
after exploratory coding and further discussions. In the final version, the codes were
grouped into multiple categories at different abstraction levels, and a coding guide
was developed. To validate that the researchers performed coding in a uniform way,
one interview transcript was selected and coded by all researchers. The differences
in coding were then discussed at a workshop and the coding guide was
subsequently improved. The final set of codes was applied to all the transcripts. The

116

coding guide and some coding examples are published by Runeson et al. (2012,
Appendix D).

Abstraction and grouping of the collected data into statements relevant to the
goals and questions for our study was performed in order to obtain a manageable set
of data that could more easily be navigated and analysed. The statements can be
seen as an index, or common categorisation of sections belonging together, in
essence a summary of them as done by Gorschek and Wohlin (2004, 2006),
Petterson et al. (2008) and Höst et al. (2010). The statements were each given a
unique identifier, title and description. Their relationship to other statements, as
derived from the transcripts, was also abstracted. The statements and relationships
between them were represented by nodes connected by directional edges. Figure 3
shows an example of the representation designed and used for this study. In
particular, the figure shows the abstraction of the interview data around cross-role
reviews of requirements, represented by node N4. For example, the statement
‘cross-role reviews’ was found to contribute to statements related to requirements
quality. Each statement is represented by a node. For example, N4 for ‘cross-role
review’, and N1, N196 and N275 for the statements related to requirements quality.
The connections between these statements are represented by a ‘contributes to’
relationship from N4 to each of N1, N196 and N275. These connections are
denoted by a directional edge tagged with the type of relationship. For example, the
tags ‘C’ for ‘contributes to’, ‘P’ for ‘prerequisite for’ and ‘DC’ for ‘does not
contribute to’. In addition, negation of one or both of the statements can be denoted
by applying a post- or prefix ‘not’ (N) to the connection. The type of relationships
used for modelling the connections between statements were discussed, defined and
agreed on in a series of work meetings. Traceability to the original statements and
the relationships between them was captured and maintained by noting the id of the
relevant source chunk, both for nodes and for edges. This is not shown in Figure 3.

The identified statements including relationships to other statements were
extracted per transcript by one researcher per interview. To ensure a consistent
abstraction among the group of researchers and to enhance completeness and

Figure 3. Part of the abstraction representing the interpretation of the
interviewee data. The relationships shown denote C - contribute to, P -
prerequisite for, and DC – does not contribute to.

Challenges and Practices in Aligning Requirements with Validation and … 117

correctness, the abstraction for each interview was reviewed by at least one other
researcher and agreed after discussing differences of opinion. The nodes and edges
identified by each researcher were merged into one common graph consisting of
341 nodes and 552 edges.

Interpretation of the collected evidence involved identifying the parts of the data
relevant to a specific research question. The abstracted statements derived in the
previous step acted as an index into the interview data and allowed the researchers
to identify statements relevant to the research questions of challenges and practices.
This interpretation of the interview data was performed by analysing a graphical
representation of the abstracted statements including the connections between them.
Through the analysis nodes and clusters of nodes related to the research questions
were identified. This is similar to explorative coding and, for this paper, the
identified codes or clusters represented REVV alignment challenges and practices
with one cluster (code) per challenge and per practice. Due to the large amount of
data, the analysis and clustering was initially performed on sub-sets of the graphical
representation, one for each company. The identified clusters were then iteratively
merged into a common set of clusters for the interviews for all companies. For
example, for the nodes shown in Figure 3 the statements ‘The requirements are
clear’ (N196) and ‘The requirements are verifiable’ (N275) were clustered together
into the challenge ‘Defining clear and verifiable requirements’ (challenge Ch3.2,
see Section 4.1.3) based on connections (not shown in the example) to other
statements reflecting that this leads to weak alignment.

Even with the abstracted representation of the interview transcripts, the
interpretation step is a non-trivial task which requires careful and skilful
consideration to identify the nodes relevant to specific research questions. For this
reason, the clustering that was performed by Bjarnason was reviewed and agreed
with Runeson. Furthermore, the remaining un-clustered nodes were reviewed by
Engström, and either mapped to existing clusters, suggested for new clusters or
judged to be out of scope for the specific research questions. This mapping was
then reviewed and agreed with Bjarnason.

Finally, the agreed clusters were used as an index to locate the relevant parts of
the interview transcripts (through traces from the nodes and edges of each cluster to
the chunks of text). For each identified challenge and practice, and mapping
between them, the located parts of the transcriptions were then analysed and
interpreted, and reported in this paper in Sections 4.1, 4.2 and 4.3, respectively for
challenges, practices, and the mapping.

3.5 Threats to Validity

There are limitations and threats to the validity to all empirical studies, and so also
for this case study. As suggested by Runeson et al (2009, 2012), the construct
validity, external validity and reliability were analysed in the phases leading up to
the analysis phase of the case study, see Figure 1. We also report measures taken to
improve the validity of the study.

118

3.5.1 Construct validity

Construct validity refers to how well the chosen research method has captured the
concepts under study. There is a risk that academic researchers and industry
practitioners may use different terms and have different frames of reference, both
between and within these categories of people. In addition, the presence of
researchers may threaten the interviewees and lead them to respond according to
assumed expectations. The selection of interviewees may also give a limited or
unbalanced view of the construct. In order to mitigate these risks, we took the
following actions in the design step:

- Design of the interview guide and reference model. The interview guide was
designed based on the research questions and reviewed for completeness and
consistency by other researchers. It was piloted during two interviews and then
revised again after another six. The risk that the language and terms used may not
be uniformly understood was addressed by producing a conceptual model (see
Figure 2), which was shown to the interviewees to explain the terminology.
However, due to the semi-structured nature of the guide and the different
interviewers involved the absence of interviewee data for a certain concept,
challenge or practice cannot be interpreted as the absence of this item either in the
interviewees experience or in the company. For similar reasons, the results do not
include any ranking or prioritisation as to which challenges and practices are the
most frequent or most effective.

- Prolonged involvement. The companies were selected so that at least one of
the researchers had a long-term relation with them. This relationship helped provide
the trust needed for openness and honesty in the interviews. To mitigate the bias of
knowing the company too well, all but five interviews (companies D and E) were
conducted by more than one interviewer.

- Selection of interviewees. To obtain a good representation of different aspects,
a range of roles were selected to cover requirement, development and testing, and
also engineers as well as managers, as reported in Table 2. The aim was to cover the
relevant aspects described in the conceptual model, produced during the Definition
phase (see Section 3.1 Figures 1 and 2). There is a risk that the results might be
biased due to a majority of the interviewees being from Company F. However, the
results indicate that this risk was minor, since a majority of the identified items (see
Section 4) could be connected to multiple companies.

- Reactive bias: The presence of a researcher might limit or influence the
outcome either by hiding facts or responding after assumed expectations. To reduce
this threat the interviewees were guaranteed anonymity both within the company
and externally. In addition, they were not given any rewards for their participation
and had the right to withdraw at any time without requiring an explanation, though
no interviewees did withdraw. This approach indicated that we were interested in
obtaining a true image of their reality and encouraged the interviewees to share this.

3.5.2 Internal validity

Even though the conclusions in this paper are not primarily about causal relations,
the identification of challenges and practices somewhat resembles identifying
factors in casual relations. In order to mitigate the risk of identifying incorrect
factors, we used data source triangulation by interviewing multiple roles at a

Challenges and Practices in Aligning Requirements with Validation and … 119

company. Furthermore, extensive observer triangulation was applied in the analysis
by always including more than one researcher in each step. This strategy also partly
addressed the risk of incorrect generalisations when abstracting challenges and
practices for the whole set of companies. However, the presented results represent
one possible categorisation of the identified challenges and practices. This is partly
illustrated by the fact that not all identified practices can be connected to a
challenge.

The interviews at one of the case companies were complicated by a major
process change that was underway at the time of the study. This change posed a risk
of confusing the context for which a statement had been experienced; the previous
(old) way of working or the newly introduced agile practices. To mitigate this risk,
we ensured that we correctly understood which process the response concerned, i.e.
the previous or the current process.

Furthermore, due to the nature of semi-structured interviews in combination
with several different interviewers it is likely that different follow-on questions
were explored by the various researchers. This risk was partly mitigated by jointly
defining the conceptual model and agreeing on a common interview guide that was
used for all interviews. However, the fact remains that there are differences in the
detailed avenues of questioning which has resulted in only being able to draw
conclusions concerning what was actually said at the interviews. So, for example, if
the completeness of the requirements specification (Ch3.2) was not explicitly
discussed at an interview no conclusions can be drawn concerning if this is a
challenge or not for that specific case.

3.5.3 External validity

For a qualitative study like this, external validity can never be assured by sampling
logic and statistical generalisation, but by analytical generalisation which enables
drawing conclusions and, under certain conditions, relating them also to other cases
(Robson 2002, Runeson 2012). This implies that the context of the study must be
compared to the context of interest for the findings to be generalised to. To enable
this process, we report the characteristics of the companies in as much detail as
possible considering confidentiality (see Table 1). The fact that six different
companies of varying size and domain are covered by the study, and some results
are connected to the variations between them indicates that the results are more
general than if only one company had been studied. But, of course, the world
consists of more than six kinds of companies, and any application of the results of
this study need to be mindfully tailored to other contexts.

3.5.4 Reliability

The reliability of the study relates to whether the same outcome could be expected
with another set of researchers. For qualitative data and analysis, which are less
procedural than quantitative methods, exact replication is not probable. The analysis
lies in interpretation and coding of words, and the set of codes would probably be
partly different with a different set of researchers.

To increase the reliability of this study and to reduce the influence by single
researchers, several researchers have taken part in the study in different roles. All
findings and each step of analysis have been reviewed by and agreed with at least

120

one other researcher. In addition, a systematic and documented research process has
been applied (see Figure 1) and a trace of evidence has been retained for each
analysis steps. The traceability back to each source of evidence is documented and
kept even in this report to enable external assessment of the chain of evidence, if
confidentially agreements would allow.

Finally, the presentation of the findings could vary depending on categorisation
of the items partly due to variation in views and experience of individual
researchers. For example, a challenge in achieving alignment such as Ch2
Collaborating successfully (see Section 4.1.2) could be identified also as a practice
at the general level, e.g. to collaborate successfully could be defined as an
alignment practice. However, we have chosen to report specific practices that may
improve collaboration and thereby REVV alignment. For example, P1.1 Customer
communication at all requirements levels and phases can support improved
coordination of requirements between the customer and the development team. To
reduce the risk of bias in this aspect, the results and the categorisation of them was
first proposed by one researcher and then reviewed by four other researchers
leading to modifications and adjustments.

4 Results

Practitioners from all six companies in the study found alignment of RE with VV to
be an important, but challenging, factor in developing products. REVV alignment
was seen to affect the whole project life cycle, from the contact with the customer
and throughout software development. The interviewees stated clearly that good
alignment is essential to enable smooth and efficient software development. It was
also seen as an important contributing factor in producing software that meets the
needs and expectations of the customers. A software developer stated that
alignment is ‘very important in creating the right system’ (B1:272). One interviewee
described the customer’s view of a product developed with misaligned requirements
as: ‘There wasn’t a bug, but the behaviour of the functionality was interpreted or
implemented in such a way that it was hard to do what the customer [originally]
intended.’ (A3:43) Another interviewee mentioned that alignment between
requirements and verification builds customer trust in the end product since good
alignment allows the company to ‘look into the customer’s eyes and explain what
have we tested… on which requirements’ (D2:10).

In general, the interviewees expressed that weak and unaligned communication
of the requirements often cause inconsistencies that affect the verification effort. A
common view was that these inconsistencies, caused by requirements that are
misunderstood, incorrect or changed, or even un-communicated, leads to additional
work in updating and re-executing test cases. Improved alignment, on the other
hand, was seen to make ‘communication between different levels in the V-model a
lot easier’ (E3:93). One of the interviewed testers stated: ‘Alignment is necessary.
Without it we [testers] couldn’t do our job at all.’ (C1:77)

2 Reference to source is given by interviewee code, see Table 2.

Challenges and Practices in Aligning Requirements with Validation and … 121

Below, we present the results concerning the challenges of alignment (Ch1-
Ch10) and the practices (P1-P10) used, or suggested, by the case companies to
address REVV challenges. Table 3 provides an overview of the challenges found
for each company, while Table 4 contains an overview of the practices. Table 6
shows which challenges each practices is seen to address.

4.1 Alignment Challenges

The alignment challenges identified through this study are summarised in Table 3.
Some items have been categorised together as one challenge, resulting in 10 main
challenges where some consist of several related challenges. For example, Ch3
Requirements specification quality consists of three challenges (Ch3.1-Ch3.3)
concerning different aspects of requirements quality. Each challenge including sub
items is described in the subsections that follow.

4.1.1 Challenge 1: Aligning goals and perspectives within an
organisation (Ch1)

The alignment of goals throughout the organisation was mentioned by many
interviewees as vital in enabling cooperation among different organisational units
(see challenge 2 in Section 4.1.2). However, goals were often felt to be missing or
unclearly defined, which could result in ‘making it difficult to test [the goals]’
(B3:17). In several companies problems with differing and unaligned goals were
seen to affect the synchronisation between requirements and testing, and cause
organisational units to counteract each other in joint development projects. For
example, a product manager mentioned that at times, requirement changes needed
from a business perspective conflicted with the goals of the development units;
‘They [business roles] have their own directives and … schedule target goals’ and
‘they can look back and see which product was late and which product was good’
(A3:74). In other words, misaligned goals may have an impact on both time
schedules and product quality.

Many interviewees described how awareness and understanding of different
perspectives on the problem domain is connected to better communication and
cooperation, both towards the customers and external suppliers, and internally
between competence areas and units. When there is a lack of aligned perspectives,
the customer and the supplier often do not have the same understanding of the
requirements. This may result in ‘errors in misunderstanding the requirements’
(B3:70). Lack of insight into and awareness of different perspectives was also seen
to result in decisions (often made by other units) being questioned and requirements
changed at a late stage in the development cycle with a subsequent increase in cost
and risk. For example, a systems architect described that in a project where there is
a ‘higher expectations on the product than we [systems architect] scoped into it’
(E1:20) a lot of issues and change requests surface in the late project phases. A
software developer stated concerning the communication between requirements
engineers and developers that ‘if both have a common perspective [of technical
possibilities], then it would be easier to understand what [requirements] can be set
and what cannot be set’ (F13:29). Or in other words, with increased common
understanding technically infeasible requirements can be avoided at an early stage.

122

Table 3. Alignment challenges mentioned for each company. Note: a blank
cell means that the challenge was not mentioned during the
interviews, not that it is not experienced.

Id Challenge Company
A B C D E F

Ch1 Aligning goals and perspectives within
an organisation X X X X X

Ch2 Cooperating successfully X X X X X

R
eq

sp
ec

qu
al

ity

Ch3.1 Defining clear and verifiable
requirements X X X X

Ch3.2 Defining complete requirements X X X X
Ch3.3 Keeping requirements documents

updated X

V
V

qu
al

ity

Ch4.1 Full test coverage X X X X X
Ch4.2 Defining a good verification process X
Ch4.3 Verifying quality requirements X X X

Ch5 Maintaining alignment when
requirements change X X X

R
eq

’s
ab

st
ra

ct
le

ve
ls

Ch6.1 Defining requirements at abstraction
level well matched to test cases X X

Ch6.2 Coordinating requirements at different
abstraction levels X X

T
ra

ce
ab

ili
ty Ch7.1 Tracing between requirements and test

cases X X X X X

Ch7.2 Tracing between requirements
abstraction levels X X X

Ch8 Time and resource availability X X X

Ch9 Managing a large document space X X X

Ch10 Outsourcing of components or testing X X

Weak alignment of goals and perspectives implies a weak coordination at higher
organisational levels and that strategies and processes are not synchronised. As
stated by a process manager, the involvement of many separate parts of an
organisation then leads to ‘misunderstandings and misconceptions and the use of
different vocabulary’ (F2:57). In addition, a test engineer at Company A mentioned
that for the higher abstraction levels there were no attempts to synchronise, for
example, the testing strategy with the goals of development projects to agree on
important areas to focus on (A2:105). Low maturity of the organisation was thought
to contribute to this and result in the final product having a low degree of
correspondence to the high-level project goals. A test engineer said: ‘In the long
run, we would like to get to the point where this [product requirements level] is
aligned with this [testing activities].’ (A2:119)

Challenges and Practices in Aligning Requirements with Validation and … 123

4.1.2 Challenge 2: Cooperating successfully (Ch2)

All of the companies included in our study described close cooperation between
roles and organisational units as vital for good alignment and coordination of both
people and artefacts. Weak cooperation is experienced to negatively affect the
alignment, in particular at the product level. A product manager stated that ‘an “us
and them” validation of product level requirements is a big problem’ (A3:058-059).
Ensuring clear agreement and communication concerning which requirements to
support is an important collaboration aspect for the validation. At Company F
(F12:063) lack of cooperation in the early phases in validating requirements has
been experienced to result in late discovery of failures in meeting important product
requirements. The development project then say at a late stage: ‘We did not approve
these requirements, we can’t solve it’ (F12:63) with the consequence that the
requirements analysis has to be re-done. For Company B (consulting in different
organisations) cooperation and communication was even described as being
prioritised above formal documentation and processes, expressed as: ‘We have
succeeded with mapping requirements to tests since our process is more of a
discussion’ (B3:49). Several interviewees described that alignment at product and
system level, in particular, is affected by how well people cooperate (C2:17, E1:44,
48, E2:48, F4:66, F15:46). When testers have a good cooperation and frequently
communicate with both requirements-related and development-related roles, this
leads to increased alignment (E3:093).

Organisational boundaries were mentioned as further complicating and
hindering cooperation between people for two of the companies, namely companies
E and F. In these cases, separate organisational units exist for requirements (E2:29,
E3:94, F2:119), usability (F10:108) and testing (F3:184). As one interviewee said:
‘it is totally different organisations, which results in ... misunderstandings and
misconceptions...we use different words’ (F02:57). Low awareness of the
responsibilities and tasks of different organisational units was also claimed to
negatively affect alignment (F2:264). This may result in increased lead times
(E1:044, F15:033), need for additional rework (E1:150, E1:152), and conflicts in
resource allocation between projects (F10:109, E1:34).

4.1.3 Challenge 3: Good reqs specification quality (Ch3)

‘If we don't have good requirements the tests will not be that good.’ (D3:14) When
the requirement specification is lacking the testers need to guess and make up the
missing information since ‘the requirements are not enough for writing the software
and testing the software’ (D3:19). This both increases the effort required for testing
and the risk of misinterpretation and missing vital customer requirements. One
process manager expressed that the testability of requirements can be improved by
involving testers and that ‘one main benefit [of alignment] is improving the
requirements specifications’ (F2:62). A test leader at the same company identified
that a well aligned requirements specification (through clear agreement between
roles and tracing between artefacts) had positive effects such as ‘it was very easy to
report when we found defects, and there were not a lot of discussions between
testers and developers, because everyone knew what was expected’ (F9:11).

There are several aspects to good requirements that were found to relate to
alignment. In the study, practitioners mentioned good requirements as being

124

verifiable, clear, complete, at the right level of abstraction, and up-to-date. Each
aspect is addressed below.

· Defining clear and verifiable requirements (Ch3.1) was mentioned as a major
challenge in enabling good alignment of requirements and testing, both at
product and at detailed level. This was mentioned for four of the six companies
covered by our study, see Table 3. Unclear and non-verifiable requirements
were seen as resulting in increased lead times and additional work in later
phases in clarifying and redoing work based on unclear requirements (F2:64,
D1:80). One test manager said that ‘in the beginning the requirements are very
fuzzy. So it takes time. And sometimes they are not happy with our
implementation, and we have to do it again and iterate until it’s ready.’ (F11:27,
similar in E3:44.) Failure to address this challenge ultimately results in failure to
meet the customer expectations with the final product. A project manager from
company D expressed this by saying that non-verifiable requirements is the
reason ‘why so many companies, developers and teams have problems with
developing customer-correct software’ (D1:36).

· Defining complete requirements (Ch3.2) was claimed to be required for
successful alignment by interviewees from four companies, namely companies
B, D, E and F. As expressed by a systems architect from Company D, ‘the
problem for us right now is not [alignment] between requirements and testing,
but that the requirements are not correct and complete all the time’ (D3:118).
Complete requirements support achieving full test coverage to ensure that the
full functionality and quality aspects are verified. (F14:31) When testers are
required to work with incomplete requirements, additional information is
acquired from other sources, which requires additional time and effort to locate
(D3:19).

· Keeping requirements documentation updated (Ch3.3) Several interviewees
from company F described how a high frequency of change leads to the
requirements documentation not being kept updated, and consequently the
documentation cannot be relied on (F14:44, F5:88). When a test for a
requirement then fails, the first reaction is not: ‘this is an error’, but rather ‘is
this really a relevant requirement or should we change it’ (F5:81). Mentioned
consequences of this include additional work to locate and agree to the correct
version of requirements and rework (F3:168) when incorrect requirements have
been used for testing. Two sources of requirements changes were mentioned,
namely requested changes that are formally approved (F14:50), but also changes
that occur as the development process progresses (during design, development
etc.) that are not raised as formal change requests (F5:82, F5:91, F11:38). When
the requirements documentation is not reliable, the projects depend on
individuals for correct requirements information. As expressed by one
requirements engineer: ‘when you lose the people who have been involved, it is
tough. And, things then take more time.’ (F1:137)

4.1.4 Challenge 4: Validation and verification quality

Several issues with validation and verification were mentioned as alignment
challenges that affect the efficiency and effectiveness of the testing effort. One

Challenges and Practices in Aligning Requirements with Validation and … 125

process manager with long experience as a tester said: ‘We can run 100,000 test
cases but only 9% of them are relevant.’ (F15:152) Testing issues mentioned as
affecting alignment were: obtaining full test coverage, having a formally defined
verification process and the verification of quality requirements.

· Full test coverage (Ch4.1) Several interviewees described full test coverage of
the requirements as an important aspect of ensuring that the final product fulfils
the requirements and the expectations of the customers. As one software
developer said: ‘having full test coverage with unit tests gives a better security...
check that I have interpreted things correctly with acceptance tests’ (B1:117).
However, as a project manager from Company C said: ‘it is very hard to test
everything, to think about all the complexities’ (C3:15). Unclear (Ch3.2, C1:4)
and non-verifiable requirements (Ch3.1, A1:55, D1:78, E1:65) were mentioned
as contributing to difficulties in achieving full test coverage of requirements for
companies A, B, D and E. For certain requirements that are expressed in a
verifiable way a project manager mentioned that they cannot be tested due to
limitations in the process, competence and test tools and environments (A1:56).
To ensure full test coverage of requirements the testers need knowledge of the
full set of requirements, which is impeded in the case of incomplete
requirements specifications (Ch3.3) where features and functionality are not
described (D3:16). This can also be the case for requirements defined at a
higher abstraction level (F2:211, F14:056). Lack of traceability between
requirements and test cases was stated to making it harder to know when full
test coverage has been obtained (A1:42). For company C, traceability was stated
as time consuming but necessary to ensure and demonstrate full test coverage,
which is mandatory when producing safety-critical software (C1:6, C1:31).
Furthermore, obtaining sufficient coverage of the requirements requires analysis
of both the requirement and the connected test cases (C1:52, D3:84, F14:212).
As one requirements engineer said, ‘a test case may cover part of a requirement,
but not test the whole requirement’ (F7:52). Late requirements changes was
mentioned as a factor contributing to the challenge of full test coverage (C1:54,
F7:51) due to the need to update the affected test cases, which is hampered by
failure to keep the requirements specification updated after changes (Ch3.5,
A2:72, F15:152).

· Having a verification process (Ch4.2) was mentioned as directly connected to
good alignment between requirements and test. At company F, the on-going
shift towards a more agile development process had resulted in the verification
unit operating without a formal process (F15:21). Instead each department and
project ‘tries to work their own way... that turns out to not be so efficient’
(F15:23), especially so in this large organisation where many different units and
roles are involved from the initial requirements definition to the final
verification and launch. Furthermore, one interviewee who was responsible for
defining the new verification process (F15) said that ‘the hardest thing [with
defining a process] is that there are so many managers ... [that don’t] know what
happens one level down’. In other words, a verification process that supports
requirements-test alignment needs to be agreed with the whole organisation and
at all levels.

126

· Verifying quality requirements (Ch4.3) was mentioned as a challenge for
companies B, D and F. Company B has verification of quality in focus with
continuous monitoring of quality levels in combination with frequent releases;
‘it is easy to prioritise performance optimisation in the next production release’
(B1:52). However, they do not work proactively with quality requirements.
Even though they have (undocumented) high-level quality goals the testers are
not asked to use them (B1:57, B2:98); ‘when it’s not a broken-down [quality]
requirement, then it’s not a focus for us [test and development]’ (B3:47).
Company F does define formal quality requirements, but these are often not
fully agreed with development (F12:61). Instead, when the specified quality
levels are not reached, the requirements, rather than the implementation, are
changed to match the current behaviour, thus resigning from improving quality
levels in the software. As one test engineer said: ‘We currently have 22
requirements, and they always fail, but we can’t fix it’ (F12:61). Furthermore,
defining verifiable quality requirements and test cases was mentioned as
challenging, especially for usability requirements (D3:84, F10:119).
Verification is then faced with the challenge of subjectively judging if a
requirement is passed or failed (F2:46, F10:119). At company F, the new agile
practices of detailing requirements at the development level together with testers
was believed to, at least partly, address this challenge (F12:65). Furthermore,
additional complication is that some quality requirements can only be verified
through analysis and not through functional tests (D3:84).

4.1.5 Challenge 5: Maintaining alignment when requirements
change (Ch5)

Most of the companies of our study face the challenge of maintaining alignment
between requirements and tests as requirements change. This entails ensuring that
both artefacts and tracing between them are updated in a consistent manner.
Company B noted that the impact of changes is specifically challenging for test
since test code is more sensitive to changes than requirements specifications.
‘That’s clearly a challenge, because [the test code is] rigid, as you are exemplifying
things in more detail. If you change something fundamental, there are many tests
and requirements that need to be modified’ (B3:72).

Loss of traces from test cases to requirements over time was also mentioned to
cause problems. When test cases for which traces have been outdated or lost are
questioned, then ‘we have no validity to refer to ... so we have to investigate’
(A2:53). In company A, the connection between requirements and test cases are set
up for each project (A2:71): ‘This is a document that dies with the project’; a
practice found very inefficient. Other companies had varying ambitions of a
continuous maintenance of alignment and traces between the artefacts. A key for
maintaining alignment when requirements change is that the requirements are
actively used. When this is not the case there is a need for obtaining requirements
information from other sources. This imposes a risk that ‘a requirement may have
changed, but the software developers are not aware of it’ (D3:97).

Interviewees implicitly connected the traceability challenge to tools, although
admitting that ‘a tool does not solve everything... Somebody has to be responsible
for maintaining it and to check all the links ... if the requirements change’ (C3:053).

Challenges and Practices in Aligning Requirements with Validation and … 127

With or without feasible tools, tracing also requires personal assistance. One test
engineer said, ‘I go and talk to him and he points me towards somebody’ (A2:195).

Furthermore, the frequency of changes greatly affects the extent of this
challenge and is an issue when trying to establish a base-lined version of the
requirements. Company C has good tool support and traceability links, but require
defined versions to relate changes to. In addition, they have a product line, which
implies that the changes must also be coordinated between the platform (product
line) and the applications (products) (C3:019, C3:039).

4.1.6 Challenge 6: Requirements abstraction levels (Ch6)

REVV alignment was described to be affected by the abstraction levels of the
requirements for companies A, D and F. This includes the relationship to the
abstraction levels of the test artefacts and ensuring consistency between
requirements at different abstraction levels.

· Defining requirements at abstraction levels well-matched to test cases
(Ch6.1) supports defining test cases in line with the requirements and with a
good coverage of them. This was mentioned for companies D and F. A specific
case of this at company D is when the testers ‘don’t want to test the complete
electronics and software system, but only one piece of the software’ (D3:56).
Since the requirements are specified at a higher abstraction level than the
individual components, the requirements for this level then need to be identified
elsewhere. Sources for information mentioned by the interviewees include the
design specification, asking people or making up the missing requirements
(D3:14). This is also an issue when retesting only parts of a system which are
described by a high-level requirement to which many other test cases are also
traced (D3:56). Furthermore, synchronising the abstraction levels between
requirements and test artefacts was mentioned to enhance coverage (F14:31).

· Coordinating requirements at different abstraction levels (Ch6.2) when
breaking down the high-level requirements (such as goals and product concepts)
into detailed requirements at system or component level was mentioned as a
challenge by several companies. A product manager described that failure to
coordinate the detailed requirements with the overall concepts could result in
that ‘the intention that we wanted to fulfil is not solved even though all the
requirements are delivered’ (A3:39). On the other hand, interviewees also
described that the high-level requirements were often vague at the beginning
when ‘it is very difficult to see the whole picture’ (F12:144) and that some
features are ‘too complex to get everything right from the beginning’ (A3:177).

4.1.7 Challenge 7: Tracing between artefacts (Ch7)

This challenge covers the difficulties involved in tracing requirements to test cases,
and vice versa, as well as, tracing between requirements at different abstraction
levels. Specific tracing practices identified through our study are described in
Sections 4.2.6 and 4.2.7.

· Tracing between requirements and test cases (Ch7.1). The most basic kind
of traceability, referred to as ‘conceptual mapping’ in Company A (A2:102), is

128

having a line of thought (not necessarily documented) from the requirements
through to the defining and assessing of the test cases. This cannot be taken for
granted. Lack of this basic level of tracing is largely due to weak awareness of
the role requirements in the development process. As a requirements process
engineer in Company F says, ‘One challenge is to get people to understand why
requirements are important; to actually work with requirements, and not just go
off and develop and do test cases which people usually like doing’ (F5:13).

Tracing by using matrices to map between requirements and test cases is a
major cost issue. A test architect at company F states, that ‘we don't want to do
that one to one mapping all the way because that takes a lot of time and
resources’ (F10:258). Companies with customer or market demands on
traceability, e.g. for safety critical systems (companies C and D), have full
traceability in place though ‘there is a lot of administration in that, but it has to
be done’ (C1:06). However, for the other case companies in our study (B3:18,
D3:45; E2:83; F01:57), it is a challenge to implement and maintain this support
even though tracing is generally seen as supporting alignment. Company A says
‘in reality we don’t have the connections’ (A2:102) and for Company F ‘in most
cases there is no connection between test cases and requirements’ (F1:157).
Furthermore, introducing traceability may be costly due to large legacies
(F1:57) and maintaining traceability is costly. However, there is also a cost for
lack of traceability. This was stated by a test engineer in Company F who
commented on degrading traceability practices with ‘it was harder to find a
requirement. And if you can’t find a requirement, sometimes we end up in a
phase where we start guessing’ (F12:112).

Company E has previously had a tradition of ‘high requirements on the
traceability on the products backwards to the requirements’ (E2:83). However,
this company foresees problems with the traceability when transitioning towards
agile working practices, and using user stories instead of traditional
requirements. A similar situation is described for Company F, where they
attempt to solve this issue by making the test cases and requirements one; ‘in the
new [agile] way of working we will have the test cases as the requirements’
(F12:109).

Finally, traceability for quality (a.k.a. non-functional) requirements creates
certain challenges, ‘for instance, for reliability requirement you might ... verify
it using analysis’ (D3:84) rather than testing. Consequently, there is no single
test case to trace such a quality requirement to, instead verification outcome is
provided through an analysis report. In addition, tracing between requirements
and test cases is more difficult ‘the higher you get’ (B3:20). If the requirements
are at a high abstraction level, it is a challenge to define and trace test cases to
cover the requirements.

· Tracing between requirements abstraction levels (Ch7.2) Another dimension
of traceability is vertical tracing between requirements at different abstraction
levels. Company C operates with a detailed requirements specification, which
for some parts consists of sub-system requirements specifications (C1:31). In
this case, there are no special means for vertical traceability, but pointers in the
text. It is similar in Company D, where a system architect states that ‘sometimes
it's not done on each individual requirement but only on maybe a heading level

Challenges and Practices in Aligning Requirements with Validation and … 129

or something like that’ (D3:45). Company F use a high-end requirements
management tool, which according to the requirements engineer ‘can trace the
requirement from top level to the lowest implementation level’ (F7:50).

Company E has requirements specifications for different target groups, and
hence different content; one market oriented, one product oriented, and one with
technical details (E1:104). The interviewee describes tracing as a ‘synch
activity’ without specifying in more detail. Similarly, Company F has
‘roadmaps’ for the long term development strategy, and there is a loosely
coupled ‘connection between the roadmaps and the requirements’ to balance the
project scope against strategy and capacity (F11:50).

4.1.8 Challenge 8: Time and resource availability (Ch8)

In addition to the time consuming task of defining and maintaining traces (Ch7)
further issues related to time and resources were brought forward in companies C, E
and F. Without sufficient resources for validation and verification the amount of
testing that can be performed is not sufficient for the demands on functionality and
quality levels expected of the products. The challenge of planning for enough test
resources is related to the alignment between the proposed requirements and the
time and resources required to sufficiently test them. A requirements engineer states
that ‘I would not imagine that those who are writing the requirements in anyway are
considering the test implications or the test effort required to verify them’ (F6:181).
A test manager confirms this view (F14:188). It is not only a matter of the amount
of resources, but also in which time frame they are available (E1:18). Furthermore,
availability of all the necessary competences and skills within a team was also
mentioned as an important aspect of ensuring alignment. A software developer
phrased it: ‘If we have this kind of people, we can set up a team that can do that,
and then the requirements would be produced properly and hopefully 100%
achievable’ (F13:149). In addition, experienced individuals were stated to
contribute to strengthening the alignment between requirements and testing, by
being ‘very good at knowing what needs to be tested and what has a lower priority’
(C2:91), thereby increasing the test efficiency. In contrast, inexperienced testing
teams were mentioned for Company C as contributing to weaker alignment towards
the overall set of requirements including goals and strategies since they ‘verify only
the customer requirements, but sometimes we have hazards in the system which
require the product to be tested in a better way’ (C2:32-33).

4.1.9 Challenge 9: Managing a large document space (Ch9)

The main challenge regarding the information management problems lies in the
sheer numbers. A test engineer at Company F estimates that they have accumulated
50,000 requirements in their database. In addition, they have ‘probably hundreds of
thousands of test cases’ (F2:34, F12:74). Another test engineer at the same
company points out that this leads to information being redundant (F11:125), which
consequently may lead to inconsistencies. A test engineer at Company D identifies
the constant change of information as a challenge; they have difficulties to work
against the same baseline (D2:16).

Another test engineer at Company F sees information management as a tool
issue. He states that ‘the requirements tool we have at the moment is not easy to

130

work with....Even, if they find the requirements they are not sure they found the
right version’ (F9:81). In contrast, a test engineer at company C is satisfied with the
ability to find information in the same tool (C2). A main difference is that at
Company F, 20 times as many requirements are handled than at Company C.

The investment into introducing explicit links between a huge legacy of
requirements and test cases is also put forward as a major challenge for companies
A and F. In addition, connecting and integrating different tools was also mentioned
as challenging due to separate responsibilities and competences for the two areas of
requirements and testing (F5:95, 120).

4.1.10 Challenge 10: Outsourcing or offshoring of components or
testing (Ch10)

Outsourcing and offshoring of component development and testing create
challenges both in agreeing to which detailed requirements to implement and test,
and in tracing between artefacts produced by different parties. Company D stresses
that the timing of the outsourcing plays a role in the difficulties in tracing
component requirement specifications to the internal requirements at the higher
level; ‘I think that's because these outsourcing deals often have to take place really
early in the development.’ (D3:92). Company F also mentions the timing aspect for
acquisition of hardware components; ‘it is a rather formal structured process, with
well-defined deliverables that are slotted in time’ (F6:21).

When testing is outsourced, the specification of what to test is central and
related to the type of testing. The set-up may vary depending on competence or
cultural differences etc. For example, company F experienced that cultural aspects
influence the required level of detail in the specification; ‘we [in Europe] might
have three steps in our test cases, while the same test case with the same result, but
produced in China, has eight steps at a more detailed level’ (F15:179). A
specification of what to test may be at a high level and based on a requirements
specification from which the in-sourced party derives tests and executes. An
alternative approach is when a detailed test specification is requested to be executed
by the in-sourced party (F6:251-255).

4.2 Practices for Improved Alignment

This study has identified 27 different alignment practices, grouped into 10
categories. Most of the practices are applied at the case companies, though some are
suggestions made by the interviewees. These categories and the practices are
presented below and discussed and summarised in Section 5. In Section 4.3 they are
mapped to the challenges that they are seen to address.

Challenges and Practices in Aligning Requirements with Validation and … 131

Table 4. Alignment practices and categories, and case companies for which
they were mentioned. Experienced practices are marked with X,
while suggested practices are denoted with S. Note: a blank cell
means that the practice was not mentioned during the interviews.
It does not mean that it is not applied at the company.

Company
Cat. Id Description A B C D E F

R
eq

ui
re

m
en

ts
E

ng
in

ee
ri

ng

P1.1
Customer communication at all requirements
levels and phases X X X X X

P1.2 Development involved in detailing requirements X X X
P1.3 Cross-role requirements reviews X X X X X
P1.4 Requirements review responsibilities defined X X

P1.5
Subsystem expert involved in requirements
definition X X

P1.6
Documentation of requirement decision
rationales S S

V
al

id
at

io
n

P2.1 Test cases reviewed against requirements X
P2.2 Acceptance test cases defined by customer X

P2.3 Product manager reviews prototypes X X

P2.4 Management base launch decision on test report X

P2.5 User / Customer testing X X X X

V
er

ifi
ca

tio
n

P3.1 Early verification start X X
P3.2 Independent testing X X X

P3.3
Testers re-use customer feedback from previous
projects

X X X

P3.4 Training off-shore testers
X

C
ha

ng
e

P4.1 Process for requirements changes involving VV X X X X X

P4.2 Product-line requirements practices X X
P5 Process enforcement X S

T
ra

ci
ng

P6.1 Document-level traces X
P6.2 Requirements-test case traces X
P6.3 Test cases as requirements X X

P6.4
Same abstraction levels for requirements and test
spec X X

P7 Traceability responsibility role X X X

T
oo

ls P8.1 Tool support for requirements and testing X X X X X
P8.2 Tool support for requirements-test case tracing X X X X X

P9 Alignment metrics, e.g. test coverage X X X X
P10 Job rotation S S

132

4.2.1 Requirements engineering practices

Requirements engineering practices are at the core of aligning requirements and
testing. This category of practices includes customer communication and involving
development-near roles in the requirements process. The interviewees described
close cooperation and team work as a way to improve RE practices (F12:146) and
thereby the coordination with developers and testers and avoid a situation where
product managers say ‘”redo it” when they see the final product’ (F12:143).

· Customer communication at all levels and in all phases of development
(P1.1) was mentioned as an alignment practice for all but one of the case
companies. The communication may take the form of customer-supplier co-
location; interaction with the customer based on executable software used for
demonstrations or customer validation; or agreed acceptance criteria between
customer and supplier. For the smaller companies, and especially those with
bespoke requirements (companies B and C), this interaction is directly with a
physical customer. In larger companies (companies E and F), and especially
within market driven development, a customer proxy may be used instead of the
real customer, since there is no assigned customer at the time of development or
there is a large organisational distance to the customer. Company F assigns a
person in each development team ‘responsible for the feature scope. That person
is to be available all through development and to the validation of that feature’
(F2:109). Furthermore, early discussions about product roadmaps from a four to
five year perspective are held with customers and key suppliers (F6:29) as an
initial phase of the requirements process.

· Involving developers and testers in detailing requirements (P1.2) is another
practice, especially mentioned by companies A and F. A product manager has
established this as a deliberate strategy by conveying the vision of the product to
the engineers rather than detailed requirements: ‘I’m trying to be more
conceptual in my ordering, trying to say what’s important and the main
behaviour.’ (A3:51) The responsibility for detailing the specification then shifts
to the development organisation. However, if there is a weak awareness of the
customer or market perspectives, this may be a risky practice as ‘some people
will not [understand this] either because they [don’t] have the background or
understanding of how customers or end-users or system integrators think’
(A3:47). Testers may be involved to ensure the testability of the requirements,
or even specify requirements in the form of test cases. Company F was in the
process of transferring from a requirements-driven organisation to a design-
driven one. Splitting up the (previous) centralised requirements department
resulted in ‘requirements are vaguer now. So it’s more up to the developers and
the testers to make their own requirements.’ (F12:17) Close cooperation around
requirements when working in an agile fashion was mentioned as vital by a
product manager from Company E: ‘Working agile requires that they
[requirements, development, and test] are really involved [in requirements
work] and not only review.’ (E2:083)

· Cross-role requirements reviews (P1.3) across requirements engineers and
testers is another practice applied to ensure that requirements are understood and
testable (A2:65, C3:69, F2:38, F7:7). The practical procedures for the reviews,

Challenges and Practices in Aligning Requirements with Validation and … 133

however, tend to vary. Company A has an early review of requirements by
testers while companies C and D review the requirements while creating the test
cases. Different interviewees from companies E and F mentioned one or the
other of these approaches; the process seems to prescribe cross-role reviews but
process compliance varies. A test engineer said ‘[the requirements are] usually
reviewed by the testers. It is what the process says.’ (F11:107) Most
interviewees mention testers’ reviews of requirements as a good practice that
enhances both the communication and the quality of the requirements, thereby
resulting in better alignment of the testing effort. Furthermore, this practice was
described as enabling early identification of problems with the test specification
avoiding (more expensive) problems later on (C2:62). A systems architect from
Company F described that close collaboration between requirements and testing
around quality requirements had resulted in ‘one area where we have the best
alignment’ (F4:101).

· Defining a requirements review responsible (P1.4) was mentioned as a
practice that ensures that requirement reviews are performed (E2:18, F2:114). In
addition, for Company F this role was also mentioned as reviewing the quality
of the requirements specification (F2:114) and thereby directly addressing the
alignment challenge of low quality of the requirements specification (Ch3).

· Involving domain experts in the requirements definition (P1.5) was
mentioned as a practice to achieve better synchronisation between the
requirements and the system capabilities, and thereby support defining more
realistic requirements. The expert ‘will know if we understand [the requirement]
correctly or not’ (D3:38), said a system architect. Similar to the previous RE
practices, this practice was also mentioned as supporting alignment by
enhancing the quality of the requirements (Ch3) which are the basis for software
testing.

· Documentation of requirement decision rationales (P1.6), and not just the
current requirement version, was suggested as a practice that might facilitate
alignment by interviewees from both of the larger companies in our study,
namely E and F. ‘Softly communicating how we [requirements roles] were
thinking’ (E3:90) could enhance the synchronisation between project phases by
better supporting hand-over between the different roles (F4:39). In addition, the
information could support testers in analysing customer defect reports filed a
long time after development was completed, and in identifying potential
improvements (E3:90). However, the information needs to be easily available
and connected to the relevant requirements and test cases for it to be practically
useful to the testers (F1:120).

4.2.2 Validation practices

Practices for validating the system under development and ensuring that it is in-line
with customer expectations and that the right product is built (IEEE610) include test
case reviews, automatic testing of acceptance test cases, and review of prototypes.

· Test cases are reviewed against requirements (P2.1) at company F (F14:62).
In their new (agile) development processes, the attributes of ISO9126

134

(ISO9126) are used as a checklist to ensure that not only functional
requirements are addressed by the test cases, but also other quality attributes
(F14:76).

· Acceptance test cases defined by customer (P2.2), or by the business unit, is
practiced at company B. The communication with the customer proxy in terms
of acceptance criteria for (previously agreed) user scenarios acts as a ‘validation
that we [software developers] have interpreted the requirements correctly’
(B1:117). This practice in combination with full unit test coverage of the code
(B1:117) was experienced to address the challenge of achieving full test
coverage of the requirements (Ch4, see Section 4.1.4).

· Reviewing prototypes (P2.3) and GUI mock-ups was mentioned as an
alignment practice applied at company A. With this practice, the product
manager in the role as customer proxy validates that the developed product is in-
line with the original product intents (A3:153,163). Company partners that
develop tailor-made systems using their components may also be involved in
these reviews.

· Management base launch decisions on test reports (P2.4) was mentioned as
an important improvement in the agile way of working recently introduced at
Company F. Actively involving management in project decisions and,
specifically in deciding if product quality is sufficient for the intended
customers was seen as ensuring and strengthening the coordination between
customer and business requirements, and testing; ‘Management ... have been
moved down and [made to] sit at a level where they see what really happens’
(F15:89).

· User/customer testing (P2.5) is a practice emphasised by company B that
apply agile development practices. At regular intervals, executable code is
delivered, thus allowing the customer to test and validate the product and its
progress (B3: 32, B3:99). This practice is also applied at company E, but with
an organisational unit functioning as the user proxy (E3:22). For this practice to
be effective the customer testing needs to be performed early on. This is
illustrated by an example from company F, namely ‘before the product is
launched the customer gets to test it more thoroughly. And they submit a lot of
feedback. Most are defects, but there are a number of changes coming out of
that. That’s very late in the process ... a few weeks […] before the product is
supposed to be launched’ (F1:12). If the feedback came earlier, it could be
addressed, but not at this late stage.

4.2.3 Verification practices

Verification ensures that a developed system is built according to the specifications
(IEEE610). Practices to verify that system properties are aligned to system
requirements include starting verification early to allow time for feedback and
change, using independent test teams, re-use of customer feedback obtained from
previous projects, and training testers at outsourced or off-shored locations.

· Early verification (P3.1) is put forward as an important practice especially
when specialised hardware development is involved, as for an embedded

Challenges and Practices in Aligning Requirements with Validation and … 135

product. Verification is then initially performed on prototype hardware
(F15:114). Since quality requirements mostly relate to complete system
characteristics, early verification of these requirements is harder, but also more
important. Company E states: ‘If we have performance issues or latency issues
or database issues then we usually end up in weeks of debugging and checking
and tuning.’ (E3:28)

· Independent test teams (P3.2) are considered a good practice to reduce bias in
interpreting requirements by ensuring that testers are not influenced by the
developers’ interpretation of requirements. However, this practice also increases
the risk of mis-alignment when the requirements are insufficiently
communicated since there is a narrower communication channel for
requirements-related information. This practice was emphasised especially for
companies with safety requirements in the transportation domain (companies C
and D); ‘due to the fact that this is a fail-safe system, we need to have
independency between testers and designers and implementers’ (C3:24, similar
in C2:39, D2:80), ‘otherwise they [test team] might be misled by the
development team’ (D1:41). Similarly, company F emphasises alternative
perspectives taken by an independent team. As a software developer said: ‘You
must get another point of view of the software from someone who does not
know the technical things about the in-depth of the code, and try to get an
overview of how it works.’ (F13:32)

· Testers re-use customer feedback from previous projects (P3.3) when
planning the verification effort for later projects (F14:94), thereby increasing the
test coverage. In addition to having knowledge of the market through customer
feedback, verification organisations often analyse and test competitor products.
With a stronger connection and coordination between the verification and
business/requirements units, this information could be utilised in defining more
accurate roadmaps and product plans.

· Training off-shore/outsourced testers (P3.4) in the company’s work practices
and tools increases the competence and motivation of the outsourced testers in
the methods and techniques used by the outsourcing company. This was
mentioned by a project manager from Company C as improving the quality of
verification activities and the coordination of these activities with requirement
(C3:49, 64).

4.2.4 Change management practices

Practices to manage the (inevitable) changes in software development may mitigate
the challenge of maintaining alignment (Ch5, see Section 4.1.5). We identified
practices related to the involvement of testing roles in the change management
process and also practices connected to product lines as a means to support REVV
alignment.

· Involving testing roles in change management (P4.1), in the decision making
and in the communication of changes, is a practice mentioned by all companies,
but one, as supporting alignment through increased communication and
coordination of these changes with the test organisation. ‘[Testers] had to show

136

their impacts when we [product management] were deleting, adding or changing
requirements’ (E2:73) and ‘any change in requirement ... means involving
developer, tester, project manager, requirements engineer; sitting together when
the change is agreed, so everybody is aware and should be able to update
accordingly’ (F8:25). In companies with formalised waterfall processes, a
change control board (CCB) is a common practice for making decisions about
changes. Company D has weekly meetings of the ‘change control board with the
customer and we also have more internal change control boards’ (D1:106). The
transitioning to agile practices affected the change management process at
companies E and F. At company F the change control board (CCB) was
removed, thus enhancing local control at the expense of control of the whole
development chain. As expressed by a process manager in company F: ‘I think
it will be easy for developers to change it [the requirements] into what they want
it to be.’ (F12:135) At company E centralised decisions were retained at the
CCB (E2:73), resulting in a communication challenge; ‘sometimes they [test]
don't even know that we [product management] have deleted requirements until
they receive them [as deleted from the updated specification]’ (E2:73).

· Product-line requirements practices (P4.2) are applied in order to reduce the
impact of a requirements change. By sharing a common product line (a.k.a.
platform), these companies separate between the requirements for the
commonality and variability of their products. In order to reduce the impact of
larger requirements changes and the risks these entail for current projects,
company A ‘develop it [the new functionality] separately, and then put that into
a platform’ (A3:65). Company C use product lines to leverage on invested test
effort in many products. When changing the platform version ‘we need to do the
impact analysis for how things will be affected. And then we do the regression
test on a basic functionality to see that no new faults have been introduced.’
(C3:55)

4.2.5 Process enforcement practices (P5)

External requirements and regulations on certain practices affect the motivation and
incentive for enforcing processes and practices that support alignment. This is
especially clear in company C, which develops safety critical systems. ‘Since it is
safety-critical systems, we have to show that we have covered all the requirements,
that we have tested them.’ (C1:6) It is admitted that traceability is costly, but, non-
negotiable in their case. ‘There is a lot of administration in that, in creating this
matrix, but it has to be done. Since it is safety-critical systems, it is a reason for all
the documentation involved.’ (C1:06) They also have an external assessor to
validate that the processes are in place and are adhered to. An alternative
enforcement practice was proposed by one interviewee from company F (which
does not operate in a safety-critical domain) who suggested that alignment could be
achieved by enforcing traceability through integrating process enforcement in the
development tools (F14:161) though this had not been applied.

Challenges and Practices in Aligning Requirements with Validation and … 137

4.2.6 Tracing between artefacts

The tracing practices between requirements and test artefacts vary over a large
range of options from simple mappings between documents to extensive traces
between detailed requirements and test cases.

· Document-level traces (P6.1) where links are retained between related
documents is the simplest tracing practice. This is applied at company A: ‘we
have some mapping there, between the project test plan and the project
requirement specification. But this is a fragile link.’ (A2:69)

· Requirement - test case traces (P6.2) is the most commonly mentioned tracing
practice where individual test cases are traced to individual requirements. This
practice influences how test cases are specified: ‘It is about keeping the test case
a bit less complex and that tends to lead to keep them to single requirements
rather than to several requirements.’ (F6:123)

· Using test cases as requirements (P6.3) where detailed requirements are
documented as test cases is another option where the tracing become implicit at
the detailed level when requirements and test cases are represented by the same
entity. This practice was being introduced at company F. ‘At a certain level you
write requirements, but then if you go into even more detail, what you are
writing is probably very equivalent to a test case.’ (F5:113) While this resolves
the need for creating and maintaining traces at that level, these test-case
requirements need to be aligned to requirements and testing information at
higher abstraction levels. ‘There will be teams responsible for mapping these
test cases with the high-level requirements.’ (F10:150) Company A has this
practice in place, though not pre-planned but due to test cases being better
maintained over time than requirements. ‘They know that this test case was
created for this requirement some time ago […and] implicitly […] the database
of test cases becomes a requirements specification.’ (A2:51)

· Same abstraction levels used for requirements and test specifications (P6.4)
is an alignment practice related to the structure of information. First, the
requirements information is structured according to suitable categories. The
requirements are then detailed and documented within each category, and the
same categorisation used for the test specifications. Company C has ‘different
levels of requirements specifications and test specifications, top level, sub-
system, module level, and down to code’ (C3:67), and company D presents
similar on the test processes and artefacts (D3:53). It is worth noting that both
company C and D develop safety-critical systems. At company F, a project
leader described ‘the correlation between the different test [levels]’ and different
requirement levels; at the most detailed level ‘test cases that specify how the
code should work’ and at the next level ‘scenario test cases’ (F8:16).

4.2.7 Practice of traceability responsible role (P7)

For large projects, and for safety-critical projects, the task of creating and
maintaining the traces may be assigned to certain roles. In company E, one of the
interviewees is responsible for consolidating the information from several projects
to the main product level. ‘This is what I do, but since the product is so big, the

138

actual checking in the system is done by the technical coordinator for every
project.’ (E3:54) In one of the companies with safety-critical projects this role also
exists; ‘a safety engineer […] worked with the verification matrix and put in all the
information […] from the sub products tests in the tool and also we can have the
verification matrix on our level’ (C2:104.)

4.2.8 Tool support

Tool support is a popular topic on which everyone has an opinion when discussing
alignment. The tool practices used for requirements and test management vary
between companies, as does the tool support for tracing between these artefacts. See
Table 5 for an overview.

· Tool support for requirements and test management (P8.1) varies hugely
among the companies in this study, as summarised in 5. Company A uses a test
management tool, while requirements are stored as text. Companies D and E use
a requirements management tool for requirements and a test management tool
for testing. This was the previous practice at company F too. Company C uses a
requirements management tool for both requirements and test, while Company F
aims to start using a test management tool for both requirements and testing.
Most of the companies use commercial tools, though company A has an in-
house tool, which they describe as ‘a version handling system for test cases’
(A2:208).

· Tool support for requirements-test case tracing (P8.2) is vital for supporting
traceability between the requirements and test cases stored in the tools used for
requirements and test management. Depending on the tool usage, tracing needs
to be supported either within a tool, or two tools need to be integrated to allow
tracing between them. For some companies, only manual tracing is supported.
For example, at company D a systems architect describes that it is possible to
‘trace requirements between different tools such as [requirements] modules and
Word documents’ (D3:45). However, a software manager at the same company
mentions problems in connecting the different tools and says ‘the tools are not
connected. It’s a manual step, so that’s not good, but it works’ (D1:111).
Tracing within tools is practiced at company C where requirements and test
cases are both stored in a commercial requirements management tool: ‘when we
have created all the test cases for a certain release, then we can automatically
make this matrix show the links between [system] requirements and test cases’
(C1:8). Company F has used the between-tools practice ‘The requirements are
synchronised over to where the test cases are stored.’ (F5:19) However, there
are issues related to this practice. Many-to-many relationships are difficult to
handle with the existing tool support (F2:167). Furthermore, relationships at the
same level of detail are easier to handle than across different abstraction levels.
One requirements engineer asks for ‘a tool that connects everything; your
requirement with design documents with test cases with your code maybe even
your planning document,’ (F5:17). In a large, complex system and its
development organisation, there is a need for ‘mapping towards all kinds of
directions – per function group, per test cases, and from the requirement level’
(F11:139).

Challenges and Practices in Aligning Requirements with Validation and … 139

Table 5. Tool usage for requirements and test cases, and for tracing
between them. For company F the tool set-up prior to the major
process change are also given (marked with ‘previous’).

Requirements tool Tracing tool Testing tool
Requirements C, D, E, F

(previous)
F

Traces C D, E, F (previous) F
Test cases C A, D, E, F

(current and
previous)

Many interviewees had complaints about their tools, and the integration
between them. Merely having tool support in place is not sufficient, but it must
be efficient and useable. For example, company E have tools for supporting
traceability between requirements and test state of connected test cases but ‘we
don't do it because the tool we have is simply not efficient enough’ (E3:57) to
handle the test state for the huge amount of verified variants. Similarly, at
company E the integration solution (involving a special module for integrating
different tools) is no longer in use and they have reverted to manual tracing
practices: ‘In some way we are doing it, but I think we are doing it manually in
Excel sheets’ (E2:49).

Finally, companies moving from waterfall processes towards agile practices
tend to find their tool suite too heavy weight for the new situation (E3:89).
Users of these tools not only include engineers, but also management, which
implies different demands. A test manager states: ‘Things are easy to do if you
have a lot of hands on experience with the tools but what you really need is
something that the [higher level] managers can use’ (F10:249).

4.2.9 Alignment metrics (P9)

Measurements can be used to gain control of the alignment between requirements
and testing. The most commonly mentioned metrics concern test case coverage of
requirements. For example, company C ‘measure[s] how many requirements are
already covered with test cases and how many are not’ (C1:64). These metrics are
derived from the combined requirements and test management tool. Companies E
and F have a similar approach, although with two different tools. They both point
out that, in addition to the metrics, it is a matter of judgment to assess full
requirements coverage. ‘If you have one requirement, that requirement may need 16
test cases to be fully compliant. But you implement only 14 out of those. And we
don't have any system to see that these 2 are missing.’ (E3:81) And, ‘just because
there are 10 test cases, we don’t know if [the requirement] is fully covered’
(F11:34). Furthermore, there is a versioning issue to be taken into account when
assessing the requirements coverage for verification. ‘It is hard to say if it
[coverage] should be on the latest software [version] before delivery or ...?’
(F10:224) The reverse relationship of requirements coverage of all test cases is not
always in place or measured. ‘Sometimes we have test cases testing functionality
not specified in the requirements database.’ (F11:133) Other alignment metrics
were mentioned, for example, missing links between requirements and tests,
number of requirements at different levels (F5:112), test costs for changed

140

requirements (F14:205), and requirements review status (F14:205). Not all of these
practices were practiced at the studied companies even though some mentioned that
such measures would be useful (F14:219).

4.2.10 Job rotation practice (P10)

Job rotation was suggested in interviews at companies D and F as a way to improve
alignment by extending contact networks and experiences across departments and
roles, and thereby supporting spreading and sharing perspectives within an
organisation. In general, the interviews revealed that alignment is very dependent
on individuals, their experience, competence and their ability to communicate and
align with others. The practice of job rotation was mentioned as a proposal for the
future and not currently implemented at any of the included companies.

4.3 Practices that Address the Challenges

This section provides an overview of the relationships between the alignment
challenges and practices identified in this study (and reported in Sections 0 and
4.2). The mapping is intended as an initial guide for practitioners in identifying
practices to consider in addressing the most pressing alignment challenges in their
organisations. The connections have been derived through analysis of the parts of
the interview transcripts connected to each challenge and practice, summarised in
Table 6 and elaborated next. The mapping clearly shows that there are many-to-
many relations between challenges and practices. There is no single practice that
solves each challenge. Consequently, the mapping is aimed at a strategic level of
improvement processes within a company, rather than a lower level of practical
implementation. After having assessed the challenges and practices of REVV
alignment within a company, the provided mapping can support strategic decisions
concerning which areas to improve. Thereafter, relevant practices can be tailored
for use within the specific context. Below we discuss our findings, challenge by
challenge.

The practices observed to address the challenge of having common goals
within an organisation (Ch1) mainly concern increasing the synchronisation and
communication between different units and roles. This can be achieved through
involving customers and development-near roles in the requirements process (P1.1,
P1.2, P1.3, P1.5); documenting requirement decision rationale (P1.6); validating
requirements through test case reviews (P2.1) and product managers reviewing
prototypes (P2.3); and involving testing roles in change management (P4.1). Goal
alignment is also increased by the practice of basing launch decisions made by
management on test reports (P2.4) produced by testers. Furthermore, tracing
between artefacts (P6.1-6.4) provides a technical basis for supporting efficient
communication of requirements. Job rotation (P10) is mentioned as a long-term
practice for sharing goals and synchronising perspectives across the organisation. In
the mid-term perspective, customer feedback received by testers for previous
projects (P3.3) can be re-used as input when defining roadmaps and products plans
thereby further coordinating the testers with the requirements engineers responsible
for the future requirements.

Challenges and Practices in Aligning Requirements with Validation and … 141

Table 6. Mapping of practices to the challenges they are found to address.
An S represents a suggested, but not implemented practice.
Note: a blank cell indicates that no connection was mentioned
during the interviews.

P1
R

E
pr

ac
tic

es

P2
V

al
id

at
io

n
pr

ac
tic

es

P3
V

er
ifi

ca
tio

n
pr

ac
tic

es

P4
C

ha
ng

e
m

an
ag

em
en

t

P5
Pr

oc
es

se
nf

or
ce

m
en

t

P6
Tr

ac
in

g
be

tw
ee

n
ar

te
fa

ct
s

P7
Tr

ac
ea

bi
lit

y
re

sp
on

si
bi

lit
y

ro
le

P8
To

ol
pr

ac
tic

es

P9
A

lig
nm

en
tm

et
ric

s

P1
0

Jo
b

ro
ta

tio
n

Ch1 Aligning goals and
perspectives within
organisation

P1.1-
1.3,
1.5-
1.6

P2.1,
2.3-
2.4

P3.3 P4.1 P6.1-
6.4

P10
(S)

Ch2 Cooperating
successfully

P1.2-
1.3,
1.5-
1.6

P2.1,
2.3,
2.4

P3.1 P4.1 P10
(S)

Ch3 Requirements
specification quality

P1.1-
1.5

P2.1,
2.5

P4.1 P5 P6.2-
6.3

P9

Ch4 VV quality P1.1-
1.5

P2.1-
2.3,
2.5

P3.1-
3.3

P5 P6.1-
6.4

P9

Ch5 Maintaining
alignment when
requirements change

P2.2,
P2.5

P4.1-
4.2

P5 P6.1-
6.4

P7 P9

Ch6 Requirements
abstraction levels

P1.1,
1.6

P6.4

Ch7 Traceability P2.1 P5 P6.1-
6.4

P7 P8.1-
8.2

P9

Ch8 Time and resource
availability

P4.1 P5

Ch9 Managing a large
document space

P6.1-
6.4

P7 P8.1-
8.2

P9

Ch10 Outsourcing of
components or testing

P1.1-
1.5

P2.1-
2.3

P3.4 P6.4

142

The challenge of cooperating successfully (Ch2) is closely related to the first
challenge (Ch1) as being a means to foster common goals. Practices to achieve
close cooperation across roles and organisational borders hence include cross-
functional involvement (P1.2, P1.5, P2.4) and reviews (P1.3, P2.1, P2.3), feedback
through early and continuous test activities (P3.1), as well as, joint decisions about
changes in change control boards (P4.1) and documenting requirement decision
rationales (P1.6). The former are practices are embraced in agile processes, while
the latter practices of change control boards and documentation of rationales were
removed for the studied cases when agile processes were introduced. Job rotation
(P10), with its general contribution to building networks, is expected to facilitate
closer cooperation across organisational units and between roles.

The challenge of achieving good requirements specification quality (Ch3) is
primarily addressed by the practices for requirements engineering (P1.1-1.5),
validation (P2.1, P2.5) and managing requirement changes (P4.1). Some of the
traceability practices (P6.2, P6.3) also address the quality of requirements in terms
of being well structured and defined at the right level of detail. Furthermore,
awareness of the importance of alignment and full requirements coverage may
induce and enable organisations in producing better requirements specifications.
This awareness can be encouraged with the use of alignment metrics (P9) or
enforced (P5) through regulations for safety-critical software and/or by integrating
process adherence in development tools.

The challenge of achieving good validation and verification quality (Ch4) is
addressed by practices to ensure clear and agreed requirements, such as cross-
functional reviews (P1.3, P2.1), involving development roles in detailing
requirements (P1.2) and customers in defining acceptance criteria (P2.2). Validation
is supported by product managers reviewing prototypes (P2.3) and by
user/customer testing (P2.5). Verification is improved by early verification
activities (P3.1) and through independent testing (P3.2) where testers are not
influenced by other engineers’ interpretation of the requirements. Complete and up-
to-date requirements information is a prerequisite for full test coverage, which can
be addressed by requirements engineering practices (P1.1-1.5), testers re-using
customer feedback (P3.3) (rather than incorrect requirements specification) and
indirectly by traceability practices (P6.1-6.4). The external enforcement (P5) of the
full test coverage and alignment metrics (P9) are practices that provide incentives
for full test coverage including quality requirements.

Maintaining alignment when requirements change (Ch5) is a challenge that
clearly connects to change and traceability practices (P4.1-4.2, P6.1-6.4 and P7).
However, also the validation practices of having acceptance tests based on user
scenarios (P2.2) and user/customer testing (P2.5) address this challenge by
providing feedback on incorrectly updated requirements, test cases and/or software.
Furthermore, having alignment metrics in place (P9) and external regulations on
documentation and traceability (P5) is an incentive to maintain alignment as
requirements change.

The challenge of managing requirements abstraction levels (Ch6) is
addressed by the requirements practice of including the customer in requirements
work throughout a project (P1.1) and the tracing practices of matching abstractions
levels for requirements and test artefacts (P6.4). Both of these practices exercise the
different requirements levels and thereby support identifying mismatches. This

Challenges and Practices in Aligning Requirements with Validation and … 143

challenge is also supported by documentation of requirement decision rationales
(P1.6) by providing additional requirements information to the roles at the different
abstraction level.

Traceability (Ch7) in itself is identified as a challenge in the study, and
interviewees identified practices on the information items to be traced (P6.1-6.4), as
well as, tools (P8.1-8.2) to enable tracing. In addition, the practice of reviewing test
cases against requirements (P2.1) may also support identifying sufficient and/or
missing traces. Furthermore, requirements coverage metrics (P9) are proposed as a
means to monitor and support traceability. However, as noticed by companies E and
F, simple coverage metrics are not sufficient to ensure ample alignment. Process
enforcement practices (P5) and assigning specific roles responsible for traceability
(P7) are identified as key practices in creating and maintaining traces between
artefacts.

The practical aspects of the challenge on availability of time and resources
(Ch8) are mainly a matter of project management practices, and hence not directly
linked to the alignment practices. However, the practice of involving testing roles in
the change management process (P4.1) may partly mitigate this challenge by
supporting an increased awareness of the verification cost and impact of changes.
Furthermore, in companies for which alignment practices are externally enforced
(P5) there is an awareness of the importance of alignment of software development,
but also an increased willingness to take the cost of alignment including tracing.

The large document space (Ch9) is a challenge that can be partly addressed
with good tool support (P8.1-8.2) and tracing (P6.1-6.4, P7) practices. The study
specifically identifies that a tool that fits a medium-sized project may be very hard
to use in a large one. One way of getting a synthesised view of the level of
alignment between large sets of information is to characterise it, using quantitative
alignment measurements (P9). It does not solve the large-scale problem, but may
help assess the current status and direct management attention to problem areas.

Outsourcing (Ch10) is a challenge that is related to timing, which is a project
management issue, and to communication of the requirements, which are to be
developed or tested by an external team. The primary practice to apply to
outsourcing is customer communication (P1.1). Frequent and good communication
can ensure a common perspective and direction, in particular in the early project
phases. In addition, other practices for improved cooperation (P1.2-P1.5, P2.1-P2.3)
are even more important when working in different organisational units, times
zones, and cultural contexts. Furthermore, in an outsourcing situation the
requirements specification is a key channel of communication, often also in
contractual form. Thus, having requirements and tests specified at the same level of
abstraction (P6.4), feasible for the purpose, is a practice to facilitate the
outsourcing. Finally, training the outsourced or off-shored team (P3.4) in company
practices and tools also addresses this challenge.

In summary, the interviewees brought forward practices, which address some of
the identified challenges in aligning requirements and testing. The practices are no
quick-fix solutions, but the mapping should be seen as a guideline to recommend
areas for long-term improvement, based on empirical observations of industry
practice.

144

5 Discussion

Alignment between requirements and test ranges not only the life-cycle of a
software development project, but also company goals and strategy, and affects a
variety of issues, from human communication to tools and their usage. Practices
differ largely between companies of varying size and maturity, domain and product
type, etc. One-size alignment practices clearly do not fit all.

A wide collection of alignment challenges and practices have been identified
based on the large amount of experiences represented by our 30 interviewees from
six different companies, covering multiple roles, domains and situations. Through
analysing this data and deriving results from it, the following general observations
have been made by the researchers:

1) the human and organisational sides of software development are at the
core of industrial alignment practices

2) the requirements are the frame of reference for the software to be built,
and hence the quality of the requirements is critical for alignment with
testing activities

3) the large difference in size (factor 20) between the companies, in
combination with variations in domain and product type, affects the
characteristics of the alignment challenges and applicable practices

4) the incentives for investing in good alignment practices vary between
domains

Organisational and human issues are related to several of the identified
challenges (Ch1, Ch2, Ch8, and Ch10). Successful cooperation and collaboration
(Ch2) is a human issue. Having common goals and perspectives for a development
project is initially a matter of clear communication of company strategies and goals,
and ultimately dependant on human-to-human communication (Ch1). Failures to
meet customer requirements and expectations are often related to misunderstanding
and misconception; a human failure although technical limitations, tools,
equipment, specifications and so on, also play a role. It does not mean that the
human factor should be blamed in every case and for each failure. However, this
factor should be taken into account when shaping the work conditions for software
engineers. These issues become even more pressing when outsourcing testing.
Jones et al. (2009) found that failure to align outsourced testing activities with in-
house development resulted in wasted effort, mainly due to weak communication of
requirements and changes of them.

Several of the identified alignment practices involve the human and
organisational side of software engineering. Examples include communication
practices with customers, cross-role and cross-functional meetings in requirements
elicitation and reviews, communication of changes, as well as, a proposed job
rotation practice to improve human-to-human communication. This confirms
previous research that alignment can be improved by increasing the interaction
between testers and requirements engineers. For example, including testers early on
and, in particular, when defining the requirements, can lead to improved
requirements quality (Uusitalo 2008). However, Uusitalo also found that cross
collaboration can be hard to realise due to unavailability of requirements owners

Challenges and Practices in Aligning Requirements with Validation and … 145

and testers on account of other assignments and distributed development (Uusitalo
2008). In general, processes and roles that support and enforce the necessary
communication paths may enhance alignment. For example, Paci et al. (2012)
report on a process for handling requirements changes through clearly defined
communication interfaces. This process relies on roles propagating change
information within their area, rather than relying on more general communication
and competence (Paci 2012). This also confirms the findings of Uusitalo et al. that
increased cross communication reduces the amount of assumptions made by testers
on requirements interpretation, and results in an increased reliability of test results
and subsequent products (Uusitalo 2008). Similarly, Fogelström et al. (2007) found
that involving testers as reviewers through test-case driven inspections of
requirements increases the interaction with requirements-related roles and can
improve the overall quality of the requirements, thereby supporting alignment.
Furthermore, even technical practices, such as tool support for requirements and
test management, clearly have a human side concerning degree of usability and
usefulness for different groups of stakeholders in an organisation.

Defining requirements of good quality (Ch3) is central to enabling good
alignment and coordination with other development activities, including validation
and verification. This challenge is not primarily related to the style of requirements,
whether scenario based, plain textual, or formal. But, rather the quality
characteristics of the requirements are important, i.e. being verifiable, clear,
complete, at a suitable level of abstraction and up-to-date. This relates to results
from an empirical study by Ferguson et al. (2006) that found that unclear
requirements have a higher risk of resulting in test failures. A similar reverse
relationship is reported by Graham (2002), that clearer and verifiable requirements
enable testers to define test cases that match the intended requirements. In addition,
Uusitalo et al. (2008) found that poor quality of requirements was a hindrance to
maintaining traces from test cases. Sikora et al. (2012) found that requirements
reviews is the dominant practice applied to address quality assurance of the
requirements for embedded systems and that industry need additional and improved
techniques for achieving good requirements quality. Furthermore, requirements
quality is related to involving, not only requirements engineers in the requirements
engineering, but also VV roles in early stages. This can be achieved by involving
non-RE roles in reviews and in detailing requirements. This also contributes to
cross-organisational communication and learning, and supports producing
requirements that are both useful and used. Uusitalo et al. (2008) found that testers
have a different viewpoint that makes them well suited to identifying deficiencies in
the requirements including un-verifiability and omissions. Martin et al. (2008) take
this approach one step further by suggesting that the requirements themselves be
specified as acceptance test cases, which are then used to verify the behaviour of
the software. This approach was evaluated through an experiment by Ricca et al.
(2009) who found that this helped to clarify and increase the joint understanding of
requirements with substantially the same amount of effort. Furthermore, our
findings that RE practices play a vital role in supporting REVV alignment confirm
previous conclusions that the requirements process is an important enabler for
testing activities and that RE improvements can support alignment with testing
(Uusitalo 2008).

146

Company size varies largely between the six companies in this study. Similarly, the
challenges and practices also vary between the companies. While smaller project
groups of 5-10 persons can handle alignment through a combination of informal
and formal project meetings. Large-scale projects require more powerful process
and tool support to ensure coordination and navigation of the (larger) information
space between different phases and hierarchies in the organisation. This was
illustrated by different views on the same state-of-the-art requirements management
tool. The tool supported alignment well in one medium-sized project (company C),
but was frequently mentioned by the interviewees for the largest company
(company F) as a huge alignment challenge.

In some cases (e.g. company F), agile practices are introduced to manage large
projects by creating several smaller, self-governing and less dependent units. Our
study shows that this supports control and alignment at the local level, but, at the
expense of global control and alignment (company E). The size-related alignment
challenges then re-appear in a new shape, at another level in the organisation. For
example, granting development teams mandate to define and change detailed
requirements increases speed and efficiency at the team level, but increases the
challenge of communicating and coordinating these changes wider within a large
organisation.

The incentives for applying alignment practices, specifically tracing between
requirements and test artefacts, vary across the studied companies. Applying
alignment practices seems to be connected to the incentives for enforcing certain
practices, such as tracing and extensive documentation. The companies reporting
the most rigid and continuously maintained alignment practices are those working
in domains where customers or regulatory bodies require such practices. Both of
these companies (C and D) have enforced alignment practices in their development
including tracing between requirements and tests. Interestingly these are also the
companies in our study which apply a traditional and rigorous development model.
It is our interpretation that the companies with the most agile, and least rigorous,
development processes (A and B) are also the companies which rely heavily on
people-based alignment and tracing, rather than on investing in more structured
practices. These are also the two companies that do not have tracing between
artefacts in place, even partially. While for the remaining companies (E and F)
which apply agile-inspired processes, but with structured elements (e.g. eRUP),
traceability is in place partly or locally. Our interpretation of the relationship
between the included companies concerning incentives and degree of rigour in
applying structured alignment practices is illustrated in Figure 4 together with the
relative size of their software development. The observed connection between
degree of rigour and incentives for alignment are similar to other findings
concerning safety-critical development. Namely, that alignment is enabled by more
rigorous practices such as concurrently designed processes (Kukkanen 2009) or
model-based testing (Nebut 2006, Hasling 2008). Furthermore, companies in
safety-critical domains have been found to apply more rigorous processes and
testing practices (Runeson 2003). In contrast, neglect of quality requirements,
including safety aspects has been found to one of the challenges of agile RE (Cao
2008).

Challenges and Practices in Aligning Requirements with Validation and … 147

Interestingly, several alignment challenges (e.g. tracing, communicating
requirements changes) were experienced also for the companies developing safety-
critical software (C and D) despite having tracing in place and applying practices to
mitigate alignment challenges (e.g. frequent customer communication, tracing
responsible role, change management process involving testers etc.) This might be
explained by a greater awareness of the issues at hand, but also that the increased
demands posed by the higher levels of quality demands requires additional
alignment practice beyond those needed for non-critical software.

When the documentation and tracing practices are directly enforced from
outside the organisation, they cannot be negotiated and the cost has to be taken
(Watkins 1994). In organisations without these external requirements the business
case for investing in these practices needs to be defined, which does not seem to be
the case for the studied organisations. Despite the existence of frustration and
rework due to bad alignment, the corresponding costs are seldom quantified at any
level. Improving alignment involves short term investments in tools, work to
recapture traces between large legacies of artefacts, and/or in changed working
practices. The returns on these investments are gained mainly in the longer term.
This makes it hard to put focus and priority on alignment practices in a short-
sighted financial and management culture. Finally, requirements volatility increases
the importance and cost to achieve REVV alignment. This need to manage a rate of
requirements changes often drives the introduction of agile practices. These
practices are strong in team cooperation, but weak in documentation and
traceability between artefacts. The companies (C and D) with lower requirements
volatility and where development is mainly plan-driven and bespoken, have the
most elaborated documentation and traceability practices. In both cases, the

Figure 4. Rough overview of the relationship between the variation factors
size, rigour in applying alignment practices and incentive for
alignment practices for the studied companies. Number of people in
software development is reflected by the relative size of the circle.

148

practices are enforced by regulatory requirements. However, in our study, it is not
possible to distinguish between the effects of different rates of change and the
effects of operating in a safety-critical domain with regulations on documentation
and traceability.

In summary, challenges and practices for REVV alignment span the whole
development life cycle. Alignment involves the human and organisational side of
software engineering and requires the requirements to be of good quality. In
addition, the incentives for alignment greatly vary between companies of different
size and application domain. Future research and practice should consider these
variations in identifying suitable practices for REVV alignment, tailored to different
domains and organisations.

6 Conclusions

Successful and efficient software development, in particular on the large scale,
requires coordination of the people, activities and artefacts involved (Kraut 1995,
Damian 2005, 2006). This includes alignment of the areas of requirements and test
(Damian 2006, Uusitalo 2008, Kukkanen 2009, Sabaliauskaite 2010). Methods and
techniques for linking artefacts abound including tracing and use of model-based
engineering. However, companies experience challenges in achieving alignment
including full traceability. These challenges are faced also by companies with
strong incentives for investing in REVV alignment such as for safety critical
software where documentation and tracing is regulated. This indicates that the
underlying issues lie elsewhere and require aligning of not only the artefacts, but
also of other factors. In order to gain a deeper understanding of the industrial
challenges and practices for aligning RE with VV, we launched a case study
covering six companies of varying size, domain, and history. This paper reports the
outcome of that study and provides a description of the industrial state of practice in
six companies. We provide categorised lists of (RQ1) industrial alignment
challenges and (RQ2) industrial practices for improving alignment, and (RQ3) a
mapping between challenges and practices. Our results, based on 30 interviews with
different roles in the six companies, add extensive empirical input to the existing
scarce knowledge of industrial practice in this field (Uusitalo 2008, Sabaliauskaite
2010). In addition, this paper presents new insights into factors that explain needs
and define solutions for overcoming REVV alignment challenges.

We conclude with four high-level observations on the alignment between
requirements and testing. Firstly, as in many other branches of software
engineering, the human side is central, and communication and coordination
between people is vital, so also between requirements engineers and testers, as one
interviewee said: ‘start talking to each other!’ (F7:88) Further, the quality and
accuracy of the requirements is a crucial starting point for testing the produced
software in-line with the defined and agreed requirements. Additionally, the size of
the development organisation and its projects is a key variation factor for both
challenges and practices of alignment. Tools and practices may not be scalable, but
rather need to be selected and tailored to suit the specific company, size and
domain. Finally, alignment practices such as good requirements documentation and

Challenges and Practices in Aligning Requirements with Validation and … 149

tracing seem to be applied for safety-critical development through external
enforcement. In contrast, for non-safety critical cases only internal motivation exists
for the alignment practices even though these companies report facing large
challenges caused by misalignment such as incorrectly implemented requirements,
delays and wasted effort. For these cases, support for assessing the cost and benefits
of REVV alignment could provide a means for organisations to increase the
awareness of the importance of alignment and also tailor their processes to a certain
level of alignment, suitable and cost effective for their specific situation and
domain.

In summary, our study reports on the current practice in several industrial
domains. Practical means are provided for recognising challenges and problems in
this field and matching them with potential improvement practices. Furthermore,
the identified challenges pose a wide assortment of issues for researchers to address
in order to improve REVV alignment practice, and ultimately the software
engineering practices.

Acknowledgment
We want to thank Börge Haugset for acting as interviewer in three of the
interviews. We would also like to thank all the participating companies and
anonymous interviewees for their contribution to this project. The research was
funded by EASE Industrial Excellence Center for Embedded Applications Software
Engineering (http://ease.cs.lth.se).

References
Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of Requirements Specification and

Testing: A Systematic Mapping Study. Proc 4th Int. Conf. On Softw. Testing,
Verification and Validation Workshops (ICSTW):476-485.

Cao L, Ramesh B (2008) Agile Requirements Engineering Practices: An Empirical Study.
IEEE Software Jan/Feb 2008.

Cheng BH, Atlee JM (2007) Research Directions in Requirements Engineering. Proc. Future
of Software Engineering (FOSE):285-303.

Cleland-Huang J, Chang CK, Christensen M (2003) Event-Based Traceability for Managing
Evolutionary Change. IEEE Transactions on Software, 29(9).

Damian D, Chisan J, Vaidyanathasamy L, Pal Y (2005) Requirements Engineering and
Downstream Software Development: Findings from a Case Study. Empirical Software
Engineering, vol 10:255-283.

Damian D, Chisan J (2006) An Empirical Study of the Complex Relationship between
Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Transactions on Software
Engineering, 32(7):33 - 453.

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering Traceability Links in
Software Artifact Management Systems using Information Retrieval Methods. ACM
Transactions on Softw. Engineering and Methodology, 16(4):Article 13.

Dias Neto AC, Arilo C, Subramanyan R, Vieira M, Travassos GH (2007) A Survey on
Model-Based Testing Approaches: A Systematic Review. Proc of 1st ACM Int
Workshop on Empirical Assessm. of Softw. Engineering Languages and Technologies,
pp. 31-36.

150

Ferguson RW, Lami G (2006) An Empirical Study on the Relationship between Defective
Requirements and Test Failures. Proc of 30th Annual IEEE/NASA Software Engineering
Workshop SEW-30 (SEW'06).

Fogelström N, Gorschek T (2007) Test-case Driven versus Checklist-based Inspections of
Software Requirements – An Experimental Evaluation. Proc. of 10th Workshop on
Requirements Engineering (WER’07).

Gorschek T, Wohlin C (2004) Packaging Software Process Improvement Issues - A Method
and a Case Study. Softw. Pract & Experience 34:1311-1344

Gorschek T, Wohlin C (2006) Requirements Abstraction Model. Requir Eng J 11:79-101
Gorschek T, Davis AM (2007) Requirements Engineering: In Search of the Dependent

Variables. Information and Software Technology, 50(1–2):67-75
Gotel O, Finkelstein A (1994) An Analysis of the Requirements Traceability Problem. Proc.

First Int Conf. Requirements Eng., pp. 94-101.
Graham D (2002) Requirements and Testing: Seven Missing-Link Myths. IEEE Software,

vol 19:15-17.
Grieskamp W, Kicillof N, Stobie K, Braberman V (2011) Model-Based Quality Assurance of

Protocol Documentation: Tools and Methodology. Softw. Test Verification Reliability.
21(1):55–71

Hasling B, Goetz H, Beetz K (2008) Model Based Testing of System Requirements using
UML Use Case Models. Proc of 2008 Int. Conf. on Software Testing, Verification, and
Validation.

Hayes JH, Dekhtyar A, Sundaram SK, Holbrook EA, Vadlamudi S, April A (2007)
REquirements TRacing On target (RETRO): Improving Software Maintenance Through
Traceability Recovery. Innovations in Systems and Software Engineering, 3(3):193-202.

Höst M, Feldt R, Lüders F (2010) Support for Different Stakeholders in Software
Engineering Master Thesis Projects. IEEE Transactions on Education, 52(2):288-296.
doi:10.1109/TE.2009.2016106

IEEE. IEEE standard glossary of software engineering terminology. Technical Report
610.12-1990, IEEE, New York, NY, USA, 1990.

ISO/IEC 9126-1:2001(E), International standard software engineering product quality part 1:
Quality model. Technical report, ISO/IEC, 2001.

Jarke M (1998) Requirements Traceability. Comm. ACM, vol. 41, no. 12, pp. 32-36
Jones JA, Grechanik M, van der Hoek A (2009) Enabling and Enhancing Collaborations

between Software Development Organizations and Independent Test Agencies.
Cooperative and Human Aspects of Softw. Engineering (CHASE’09), May 17, 2009,
Vancouver, Canada.

Kraut RE, Streeter L (1995) Coordination in Software Development. Communications of the
ACM, 38(3):69-81.

Kukkanen J, Vakevainen K, Kauppinen M, Uusitalo E (2009) Applying a Systematic
Approach to Link Requirements and Testing: A Case Study. Proc of Asia-Pacific
Software Engineering Conference (APSEC '09):482 – 488.

Lormans M, van Deursen A, Gross H (2008) An Industrial Case Study in Reconstructing
Requirements Views. Empirical Software Engineering, online first, September 03, 2008.

Lubars M, Potts C, Richter C (1993) A Review of the State of the Practice in Requirements
Modelling. Proceedings of 1st IEEE Int. Symposium on Requirements Engineering, pp.
2–14.

Martin R, Melnik G (2008) Tests and Requirements, Requirements and Tests a Möbius Strip.
IEEE Software, 25(1):54-59.

Melnik G, Maurer F, Chiasson M (2006) Executable Acceptance Tests for Communicating
Business Requirements: Customer Perspective. Proc. of Agile Conference, Minneapolis,
USA, pp. 12-46.

Challenges and Practices in Aligning Requirements with Validation and … 151

Mohagheghi P, Dehlen V (2008) Where Is the Proof? - A Review of Experiences from
Applying MDE in Industry. LNCS, Model Driven Architecture – Foundations and
Applications, vol 5095:432-443.

Nebut C, Fleurey F, Traon YL, Jézéquel J (2006) Automatic Test Generation: A Use Case
Driven Approach. IEEE Trans. on Softw. Engineering, 32(3):140-155.

Paci F, Massacci F, Bouquet F, Debricon S (2012) Managing Evolution by Orchestrating
Requirements and Testing Engineering Processes. Proc. of IEEE 5th Int. Conf. On,
pp.834-841.

Pettersson F, Ivarsson M, Gorschek T (2008) A Practitioner’s Guide to Light Weight
Software Process Assessment and Improvement Planning. J. of Systems and Software
81(6):972-995

Post H, Sinz C, Merz F, Gorges T, Kropf T (2009) Linking Functional Requirements and
Software Verification. Proc. of 17th IEEE Int. Requirements Engineering Conf., pp. 295-
302.

Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements traceability: Theory and
practice. Annals of Software Engineering, 3(1):397-415.

Ramesh B (1998) Factors Influencing Requirements Traceability Practice. Communications
of the ACM CACM Homepage archive, 41(12):37-44.

Randell B (1969) Towards a methodology of computing system design. Naur, P., and
Randell, B (Eds.) NATO Working Conference on Software Engineering 1968, Report on
a Conference Sponsored by NATO Scientific Committee, Germany, pp. 204-208.

Regnell B, Runeson P (1998) Combining Scenario-based Requirements with Static
Verification and Dynamic Testing. Proc. 4th Int. Working Conf. Requirements
Engineering: Foundation for Software Quality, pp.195–206.

Regnell B, Runeson P, Wohlin C (2000) Towards Integration of Use Case Modelling and
Usage-Based Testing. J. of Systems and Softw. 50(2):117–130.

Ricca F, Torchiano M, Di Penta M, Ceccato M, Tonella P (2009) Using Acceptance Tests as
a Support for Clarifying Requirements: A Series of Experiments. Information and
Software Technology 51, pp. 270–283

Robson C (2002) Real World Research: A Resource for Social Scientists and Practitioner
Researchers, 2nd edition. Blackwell Publishing.

Runeson P, Andersson C, Höst M (2003) Test Processes in Software Product Evolution - A
Qualitative Survey on the State of Practice. Journal of Software Maintenance and
Evolution: Research and Practice 15(1):41–59.

Runeson P, Höst M (2009) Guidelines for Conducting and Reporting Case Study Research in
Software Engineering. Empir Softw Eng 14(2):131–164

Runeson P, Höst M, Rainer A, Regnell B (2012). Case Study Research in Software
Engineering – Guidelines and Examples. Wiley.

Sabaliauskaite G, Loconsole A, Engström E, Unterkalmsteiner M, Regnell B, Runeson P,
Gorschek T, Feldt R (2010) Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context. Proceedings of REFSQ 2010

Sikora E, Tenbergen B, Pohl K (2012) Industry Needs and Research Directions in
Requirements Engineering for Embedded Systems. Requirements Engineering, 17(1):57–
78.

Uusitalo EJ, Komassi M, Kauppinen M, Davis AM (2008) Linking Requirements and
Testing in Practice. Proc. of 16th Int. Requirements Engineering Conf., pp. 295-302.

Watkins R, Neal M (1994) Why and How of Requirements Tracing. IEEE Software
11(4):104-106.

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A (2000) Experimentation
in Software Engineering: An Introduction (Int. Series in Softw. Eng.). Springer,
Heidelberg.

Yue T, Briand L, Labiche Y (2011) A Systematic Review of Transformation Approaches
Between User Requirements and Analysis Models. Requirements Engin. 16(2):75-99

152

PAPER IV

DISTANCES BETWEEN
REQUIREMENTS ENGINEERING

AND LATER SOFTWARE
DEVELOPMENT ACTIVITIES: A

SYSTEMATIC MAP1

The main role of requirements engineering (RE) is to guide development projects
towards implementing products that will appeal to customers. To effectively
achieve this RE needs to be coordinated with and clearly communicated to the later
software development activities. Communication gaps between RE and other
development activities reduce coordination and alignment, and can lead to project
delays and failure to meet customer needs. The main hypothesis is that coordination
is enhanced by proximity to RE roles and artefacts, and that distances to later
activities increase the effort needed to align requirements with other development
work. Thirteen RE-related distances have been identified through a systematic map
of existing research. Reported distances are mapped according to research type, RE
activity and later software development activities. The results provide an overview
of RE distances and can be used a basis for defining a theoretical framework.

	

1 By E. Bjarnason, published in Proc. 19th Int. Working Conf. Requirements Engineering:
Foundation for Software Quality (REFSQ’13), pp. 292-307. 2013.

154

1 Introduction
Effective requirements engineering (RE) greatly depends upon successful
coordination (Curtis 1988, Ebert 2006) and communication of requirements with
the downstream development activities (Bjarnason 2011, Marczak 2011), e.g.
design, implementation, and testing. Merely producing a perfect requirements
specification is not sufficient. Rather it is vital to ensure that the requirements are
clearly understood and agreed with implementation-near roles, and that sufficient
requirements information is available for later development activities (Damian
2006, Marczak 2011). Communication gaps between people may contribute to
project delays, software quality issues and even failure to meet customer
expectations (Bjarnason 2011).

Within global software development (GSD), project teams and members are
globally distributed. These geographical distances between people have been found
to negatively affect the communication and thereby also the coordination and
success of the distributed development. In addition to geographical distance, socio-
cultural and temporal distances have been found to be in play within GSD
(Agerfalk 2005). Agerfalk et al. (2005) have defined a theoretical framework of
these different types of distances and how they affect communication, coordination
and control. However, coordination and communication is also a challenge within
non-distributed development, in particular for large development organizations and
projects (Bjarnason 2011, Curtis 1988).

Our main hypothesis is that distance plays an important role in development,
whether distributed or not. In particular, the distances between RE and later
software development activities may impact project effectiveness and efficiency.
The systematic mapping study reported in this paper provides an overview of
existing knowledge of RE-related distances within software engineering research.

Work related to the targeted area is described in Section 2. Section 3 outlines the
research method while Section 4 presents the results, which are then discussed in
Section 5. Finally, the paper is concluded in Section 6.

2 Software Development and RE
‘Requirements are the basic building blocks gluing together [the] different ...
activities needed to define, develop, implement, build, operate, service, and phase
out a product and its related variants.’ (Ebert 2006) However, in general most
people focus mainly on one area of expertise: RE, project management,
architecture, implementation, testing etc. Both in practice and in research, there is
generally weak insight and knowledge into how to leverage software development
by improving on the interaction and coordination of RE with later activities within
software development.

In contrast, concurrent engineering (Lawson 1994) is an approach to product
development where several engineering activities are carried out concurrently (at
the same time by the same project team) with extensive feedback and iteration. The
developers are to consider all aspects of the development cycle from requirements
to cost and quality. Reported gains for this approach include increased efficiency,
productivity and quality, and reduced waste and shortened lead times (Lawson

Distances between Requirements Engineering and Later Software Dev … 155

1994). A concurrent approach is applied within agile software development by
integrating the activities for requirements, architecture, implementation and testing,
and the claimed gains are similar to those for concurrent engineering, including
increased responsiveness to change.

Damian et al. (2006) found that improved RE practices within a more traditional
plan-based development project may have an effect also on later software
development activities. Effective RE can thereby support increased development
effectiveness and augment the efficiency and productivity of the other development
activities, and lead to improvements for a wide range of software development
aspects, e.g. project planning, managing feature creep, testing, defects, rework, and
product quality (Damian 2006). This indicates that RE can play a vital role for the
total development effort, if RE is effective and well-coordinated with later
development activities.

Requirements and design are interdependent activities. While design (either by
architecture or directly during implementation) aims to realize the requirements,
architectural and technical limitations, and new technical possibilities may affect
the requirements and, thus, require requirements changes. For these reasons, it has
been suggested that RE should be intertwined and performed in parallel with design
(Nuseibeh 2001, Swartout 1982). Nuseibeh et al. (2001) have designed a method
that does this while still separating between problem and solution structure. This
method is receptive to handling change in an efficient way, allows early exploration
of the problem space, and enables engineers to identify requirements and match
them to available components and products Nuseibeh (2001). Similarly, Fricker et
al. (2010) found that aligning requirements and architecture through a negotiation
process between product management and architecture led to identifying missed
requirements, and to a shared requirements understanding that mitigated problems
related to missed requirements and requirements dependencies.

Coordination and alignment of RE and testing. We have reported on the
situation of alignment between RE and testing in industry (Bjarnason 2013b). Two
of the main challenges were found to be RE quality and the softer aspects of
development, i.e. communication and collaboration (Bjarnason 2013b).
Furthermore, a number of industrial practices for supporting alignment have been
reported both by Bjarnason et al. (2013) and by Uusitalo et al.(2008) These
practices include traceability between requirements and test cases, and increased
communication between roles (Bjarnason 2013b, Uusitalo. 2008), e.g. by involving
testers early in the project and in requirement reviews, and by establishing
communication between testers and requirement owners (Uusitalo 2008). Similarly,
Marczak et al. (2011) found that in requirements-driven collaboration, close
communication between requirements and testing depends on key roles which when
absent cause disruptions within the development team.

3 Research Method
The systematic map reported in this paper was performed based on guidelines for
systematic mapping (Petersen 2008) and insights for systematic literature reviews

156

(Brereton 2007). The steps taken in designing and performing the study are
described below. The study protocol and full list of papers included in the study can
be found on-line (Bjarnason 2013a).

3.1 Research Questions
With the aim of locating research into RE distances within/between RE and later
software development activities, the following research questions were formulated:
RQ1: Which RE-related distances are reported in peer-reviewed literature?
RQ2: To which extent is ‘distance’ used in GSD versus non-GSD papers?
RQ3: For which activities within RE has the concept of distance been researched?
RQ4: Towards which later development activities are RE distances investigated?

3.2 Search Strategy
The defined scope covers RE research and its intersection with later development
activities. Papers focusing on non-RE topics were excluded, while general software
development papers were included. Based on scope and research questions, search
keywords were defined. The initial keywords were searched in well-known
databases, e.g. IEEE Xplore, SciVerse. Based on search results, the keyword, scope
and research questions were refined and search strings reformulated. The set of
databases was expanded and re-searched for relevant papers.

3.3 Data Sources
Searches into the following databases are included in this mapping study:

1. IEEE Xplore (http://ieeexplore.ieee.org) covers computer science, electrical
engineering, and electronic subject areas. Full-text and bibliographic access to
almost 3 million of IEEE’s publication including transactions, journals,
magazines and conference proceedings published are provided.

2. Elsevier’s SciVerse (http://sciencedirect.com) covers papers from more than
2,500 computer science and engineering journal.

3. ACM Digital Library (http://dl.acm.org) provides access to ACM journals,
proceedings and transaction including ACM computing literature.

4. Inspec and Compendex provide access to huge amounts of scientific literature in
many subjects including information technology, and are accessible via
Engineering village’s unified search interface
(http://www.engineeringvillage2.org).

3.4 Data Retrieval
Search strings were constructed by combining the defined scope (software
engineering OR software development OR requirements engineering) with the term
‘distance’. The searches were limited to peer-reviewed material written in English.
Material on ‘distance learning’ was excluded in the search to avoid a large number
of irrelevant hits. The searches were limited to title, abstract and keywords.

Distances between Requirements Engineering and Later Software Dev … 157

3.5 Screening Process
The final searches yielded 2,427 papers (see Table 1). A title scan resulted in 161
relevant papers. The full references, abstract and search source of these papers were
then stored in MS Excel (available on-line, see Bjarnason 2013a). Duplicates were
removed; 148 unique papers. These papers were then included or excluded based on
the abstracts. The inclusion/exclusion decisions for both title and abstract were
cautious, i.e. when in doubt the paper was included. When an abstract contained
insufficient information, the introduction was reviewed. In total 53 papers were
included in the final set.

3.6 Data Extraction, Classification and Synthesis
During data extraction and mapping, a classification scheme was developed
according to guidelines provided by Petersen et al. (2008). A set of keyword were
identified through exploratory coding of the abstracts, and then clustered into the
categories of the map. In a few cases, the abstract was insufficient and parts of the
full text were reviewed to ensure a correct understanding. Two sets of categories
were identified. One related to context and focus of the research (main development
activity, specific RE activity, and organisational distribution) and the other related
to distance type.

The initial set of keywords for distance types was refined through analysing
parts of the full paper text. In some cases, forwards snowballing was applied to
locate additional papers, which were consulted to ensure a correct understanding of
the used terms. The coding of all included papers was then revised to match the
final set of codes. The final coding of the included papers is available on-line
(Bjarnason 2013a).

Finally, a synthesis was performed on the included papers for each distance type
to identify how the term is defined and applied, and if any causal relationships are
reported for that term. In some cases, additional papers were located through
forwards snowballing. For example, in GSD papers distances would typically be
mentioned with a reference to previous work. In addition, for distances with only a
few located papers supplementary searches on the specific distance type names
were performed to identify additional papers. Parts of the full text was analysed for
the synthesis, in particular introduction and conclusions sections, and all mentions
of the term ‘distance’.

Table 1. Number of papers in each step of the screening process.
Source Initial selection Title review Abstract review
SciVerse 51 7 2
IEEE Xplore 79 4 1
ACM Digital Library 1,951 52 33
Inspec 346 11 0
Compendex 74 17
TOTAL 2,427 148 53

158

4 Results

4.1 Demographics of Retrieved Literature (and RQ2)
The search and selection resulted in 53 individual peer-reviewed papers. The
majority of these (42) were within GSD. The distribution of papers over time, split
into GSD / non-GSD context, is shown in Figure 1. The maximum was in 2009
with 11 papers. It is worth noting that within GSD a framework for categorizing
GSD challenges based on three types of distances was published in 2005 (Agerfalk
2005) and that the following 4 years (2006-2009) have the largest number of papers
found in this study.

The research type for each paper was classified according to the scheme
suggested by Wieringa et al. (2006) The following categories were considered in
this study:
1. Evaluation research investigates a problem or technique in practice and provides

new knowledge of causal or logical relationships.
2. Solution proposals present a solution without a full-blown validation.
3. Validation research presents a solution proposal validated outside of industrial

practice, e.g. experiments, prototyping, theoretical proof etc.
4. Philosophical papers sketch new theories or frameworks.
5. Experience papers describe the author’s personal experience and may contain

anecdotal evidence.

The distribution of the included papers according to research type and
distribution context (GSD or non-GSD) is shown in Figure 2. The numbers indicate
that, for the GSD context, more empirical evaluations and theoretical frameworks
on the concept of distance have been researched than for the non-GSD context. For
general development (non-GSD), the majority of included papers are in the form of
validation research, indicating that more evaluation research is required into
distances in the general software development context to establish foundations for
more mature knowledge and for establishing theories based on empirical evidence.

4.2 Type of Distances (RQ1)
This study identifies thirteen distances. Eight of these, are distances between
people, e.g. between roles, teams and organizations, while four address distances
between artefacts. One distance concerns distance between an artefact (e.g. formal

Figure 1. Number of papers per year, categorised according to GSD or non-GSD context.

0

2

4

6

8

10

12

1997199819992000200120022003200420052006200720082009201020112012

non-GSD

GSD

Distances between Requirements Engineering and Later Software Dev … 159

Table 2. The number of papers per distance type and software development activity.
The bar indicates relative amount. Papers covering several categories are
counted for each category.

model) and reality. Unsurprisingly (since the majority of included papers address
GSD), the most commonly referred distances are the ones defined within GSD, i.e.
geographical, socio-cultural and temporal distances. Table 2 shows an overview of
the number of papers for each distance. (The distances are described in Section 4.4.)

4.3 RE Activities (RQ3) and Later Software
Development Activities (RQ4)

Distances were found in papers related to RE, project management, design,
implementation, tools and processes. More than half of the papers (29 of 53) cover
software development in general, while a third of the papers (17 of 53) cover RE,
and a fourth (8 of 53) cover implementation. The numbers indicate that RE is
acknowledged as an important activity for which distances are relevant to
investigate. However, more research is needed to fully explore the field. In
particular, research is needed on how RE distances relate to testing for which no
papers were found, which is surprising considering that testing verifies that the
requirements are fulfilled in the final product. A map of papers per distance type
and development activity for which they were mentioned is shown in Table 2.

Figure 2. The number of papers per research type and GSD vs. non-GSD context.

Evaluation Experience Philosophical Solution
Proposal Validation

non-GSD (11) 2 1 2 6

GSD (42) 21 2 10 6 3

0

5

10

15

20

25

N
o

of
pa

pe
rs

160

Of the 17 RE-specific papers, 7 address negotiation and 4 cover RE in
general, while for handling changes, elicitation, specification, validation and
traceability only the odd papers was found for each RE activity. 7 of the RE-
specific papers purely address RE, while the others also cover software
development in general (3), project management (3), tools (3) and
implementation (1). Table 3 shows a map of RE-specific papers per development
activity and RE activity.

4.4 RE Distances in Context
The systematic map identifies 13 RE distances between people, artefacts, and other
entities. This section describes each distance based on included papers.

4.4.1 Distance between people

Geographical distance denotes ‘a directional measure of the effort required for one
actor to visit another at the latter’s home site [or home work place]’ (Agerfalk
2005). Even a geographical distance of 25 metres, i.e. within the same office
building, has been found to reduce communication between engineers (Allen 1977).
For off-shored projects where RE is geographically separated from other software
development activities Dibbern et al. (2008) found that this distance can be a
significant cost driver. In particular, in cases where client-specific knowledge was
crucial face-to-face collaboration was required for adequate knowledge transfer of
domain knowledge and for requirements analysis and specification (Dibbern 2008).
Tools for enhancing distributed group communication have been suggested for
collaborative RE activities such as requirement negotiation and requirements
traceability towards goals and design artefacts (Herlea 1998). Calefato et al. (2007)
found that computer-based communication provided better support for elicitation
than for negotiation, and suggest that the general preference for face-to-face
communication might be explained by this weakness of computer-based
negotiations. In contrast, Damian et al. (2001) found that when using technology for
negotiating requirements the group’s overall performance was not decreased
compared to when negotiating face-to-face, and could even be more effective in
integrating multiple stakeholders’ needs. Similarly, Wolf et al. (2008) found no
significant delays for geographical distance in a case study. This was believed to be
due to practices applied to bridge these distances (collaborative tools, and processes
and practices adapted to distributed software teams), but may also be explained by

Table 3. The number of RE-specific papers per RE activity and later activities. The bar
indicates relative amount. Papers covering several categories are counted for
each category.

Distances between Requirements Engineering and Later Software Dev … 161

the fact that the delays were quantified as opposed to qualitatively measured as for
most other studies (Wolf 2008).

Temporal distance denotes ‘a directional measure of the dislocation in time
experienced by two actors wishing to interact’ (Agerfalk 2005) due to different time
zone, work shifts etc. In general, short temporal distances allow for timely
synchronization between team members, while long temporal distances reduced the
opportunities for synchronous communication and introduce delayed feedback
(Agerfalk 2005). Time zones and work shift schedules may work together to
decrease temporal distance by adjusted office hours or utilized for working around
the clock by passing on tasks between teams in different time zones (Agerfalk
2005). Yousuf et al. (2008) suggest that when temporal distance is present certain
requirements validation techniques which do not rely on synchronous
communication are more suitable than others.

Socio-cultural distance denotes ‘a directional measure of an actor's understanding
of another actor's values and normative practices’ (Agerfalk 2005) and includes
organisational and national culture, language, individual motivations, work ethics,
and politics. In general, communication is improved by low socio-cultural distance
thereby reducing risk, while long socio-cultural distances increase the risk of
misunderstandings and may make coordination harder (Agerfalk 2005). However,
long distances also have a potential for increased learning and access to a richer
skill set, and be stimulating for innovation (Agerfalk 2005).

In the context of RE for GSD, Dibbern et al. (2008) found that cultural distance
can be a significant cost driver for a company with off-shored projects. Increased
costs may be incurred for transfer of knowledge of domain, requirements etc., and
additional specification effort to ensure accurate requirements. Yousuf et al. (2008)
mention socio-cultural distance as potentially influencing requirements validation
though without specifically analysing how. Real-time machine translation has been
proposed for requirements negotiation among stakeholders separated by language
barriers, and found to not disrupt real-time interaction in text-based chat (Calefato
2007).

Opinion distance denotes a measure of the difference of opinion on a certain
aspect of an item between two actors. This distance has been investigated between
decision makers and stakeholders in requirements negotiations with the aim of
supporting group decision by measuring the differences in linguistic opinions of
alternatives based on multiple criteria (Chakraborty 2007). Chakraborty and
Chakraborty (2007) propose using a fuzzy distance measure to measure the distance
between fuzzy clusters of the opinions in order to improve ‘accuracy’ of the
decision by identifying dissimilar opinions. Similarly, Zhu and Hipel (2012)
propose a method for dealing with multi-stage information, i.e. when information
about alternatives evolves over time.

Organisational distance denotes a measure of one organisational unit’s
understanding of another unit’s goals and perspectives, e.g. concerning priority of
customer requirements relative cost of code design and quality. The organisational
distance between people involved in RE was categorised in a study on pairing on
RE tasks as internal or external depending on if they are part of the development

162

team or not (Yu 2011). The study suggests that sharing RE tasks is more effective
when there is a shorter organisational distance due to less delay in the (shorter)
communication paths (Yu 2011).

Psychological distance denotes a measure of the perceived psychological
(subjective) effort of an actor to communicate with another actor (Prikladnicki
2012). This distance has been researched for software development in general,
though not specifically for RE. Prikladnicki (2012) has defined a measurement for
the perceived distance between people. This measurement relates to the social
dimension of psychological distance that addresses the distance of a stimulus
(social object or event) from the perceiver’s self (Liberman 2007), e.g. my best
friend or a person from another culture. The measurement was evaluated in a
project with development distributed between Brazil and India. The study shows
that the psychological distance does not necessarily correspond to the geographical
distance, but to a high degree depends upon trust and communication though the
impact of these factors varied per country and per role (Prikladnicki 2012). For
example, a project engineer in Brazil perceived the lowest distance while a project
manager (also in Brazil) perceived the highest psychological distance.

Power distance denotes a measure of the degree to which unequal distribution of
power is accepted within a society (Hofstede 1993). This distance has been
researched for software development in general, though not specifically for RE.
This distance is one of the dimensions of socio-cultural distance and has been found
to affect relationships within distributed development and thereby also the success
of distribution (Winkler 2008). Winkler et al. (2008) found that difference in power
distances may negatively affect communication. For example, in a culture with a
large power distance saying no or voicing criticism is avoided, detailed
specifications are preferred and instructions are preferred from superiors rather than
from peers. All of these factors pose a risk of complicating collaboration with team
members used to shorter power distances and more open communication (Winkler
2008). Wende and Philip (1010) found communication via instant messaging
improved communication and, thus, enabled bridging power distances.

Cognitive distance denotes a measure of the difference between two actors’
cognition, e.g. what they each know and are aware of. Yu and Sharp (2011)
observed this distance in a case study on pairing on RE tasks and identified that
when one person fills many roles communication is immediate since the cognitive
distance between the roles is zero, which is beneficial for communication and
coordination.

4.4.2 Distance between artefacts

Similarity distance denotes a measure of the similarity between an entity and
another entity of the same type, e.g. project. This distance has been suggested as
supporting the coordination between RE and project management, in particular for
cost estimation of requirements. In analogy-based software effort estimation, the
concept of similarity distance is used to identify completed projects with similar
characteristics by measuring the Euclidian distance between project features
(Sheppard 1997), e.g. number of requirements, number of interfaces, project model

Distances between Requirements Engineering and Later Software Dev … 163

etc. This approach has been validated using industrial data sets and the results
confirm that this approach outperforms the usage of algorithmic models for effort
estimation (Sheppard 1997).

Several different approaches and variations have been proposed for measuring
similarity distance. Chiu and Huang (2007) propose adjusting the estimations to
take into account the re-use effect of the project identified as the most similar.
Azzeh et al. (2008) propose an approach that supports handling uncertainties and
imprecision in project attributes by the use of fuzzy C-means clustering and fuzzy
logic. With this approach, each attribute is represented with several fuzzy sets
instead of by a single value. Furthermore, this approach clusters together the most
similar projects and their values are represented in the same fuzzy set. The
similarity between two projects is then measured by the similarity distance between
the two sets to which they mostly belong (Azzeh 2008).

Impact distance denotes a measure of the number of steps with which a change
in one entity impacts another entity, e.g. through dependencies. This distance has
been proposed by Briand et al. for addressing the issue of impact analysis, e.g. for
requirements changes, in a UML modelling context. A measurement of the distance
between a changed element and an impacted element is defined as the number of
impact analysis rules, or steps, required to identify that the impacted element is
affected by the change (Briand 2006). Initial empirical evaluations indicate that
impacted elements at distance one lead to code changes, while those with a greater
distance, in most cases, do not. However, further evaluations are required to
determine at which maximum distance code changes for impacted elements should
be considered (Briand 2006).

Semantic distance denotes a directional measure of the amount of functionality
of a specification that distinguishes it from another related specification. Semantic
distance between requirements specifications and other artefacts may be used for
supporting software re-use, e.g. to identify library components with a short
semantic distance to the requirements. Jilani et al. (2001) pose a theoretical case
that the use of semantic distance is applicable for decisions on black-box re-use and
define a number of metrics for semantic distances. These include metrics for
functional deficit that reflect how much functionality needs to be added to one
specification in order to satisfy another, and metrics for functional excess that
measure the amount of functional features of one specification that are irrelevant to
another one (Jilani 2001).

Syntactic distance denotes a measure of dissimilarity of the design structure of
two artefacts (Jilani 2001). Syntactic distance between specifications has been
suggested by Jilani et al. (2001) for supporting decisions on white-box reuse (where
a component is modified). While providing theoretical arguments for applicability
of this type of distance Jilani et al. (2001) also argues that it is unrealistic to define a
measure for syntactic distances since this requires a uniform representation of
specifications irrespective of abstraction level and a canonical scheme that supports
the definition of a unique representation of specifications. Instead, semantic
distances (for which measurements are defined) are suggested to be used as an
approximation of syntactic distances (Jilani 2001).

164

4.4.3 Distance between other entities

Adherence distance denotes the size of the difference between a formal or
theoretical model of a process or a phenomena and the actual enactment of it.
Within software development this distance has been suggested for gauging the
degree of adherence for models. For example, Huo et al. (2008) consider the
distance between a formal process model and the actual work practices observed in
a project, though no measurement of this distance is defined. Furthermore, a
measure of the distance between a theoretical distribution and actual estimates is
defined and evaluated by Thelin and Runeson (2000) in the context of assessing the
accuracy of remaining faults in an inspected software artefact, which could be
applied to validation of requirements specifications.

4.5 Limitations

Reliability of the results due to the risk of researcher bias in the inclusion process
and the classification process remains an open issue since only one researcher was
involved. However, for inclusions/exclusion a generous policy was used, and
independent validation of both inclusion and classification is possible since the full
set of papers, including the ones excluded through abstract review, is available on-
line. Furthermore, there is a risk of incorrect classification when only performed on
an abstract. This was addressed by reviewing the full text when the abstract was
unclear. However, replication of the study may result in a slightly different set of
papers, both in the initial search and in the inclusion/exclusion step.

Conclusion validity concerning the completeness of the results (e.g. number of
distances) is one of the main limitations of this study. The search string was limited
to ‘distance’ and did not include synonyms such as gap, proximity etc. This risk of
missing relevant papers was partly addressed by broad searches for other aspects.
For example, papers were collected from multiple sources incl. IEE and ACM, and
wide search terms (software development, software engineering) were used for the
scope aspect of the search. Furthermore, no limitation was set on publication year
or type of publication (journal, conference etc.). These measures resulted in the
study starting with a large set of papers (more than 2,000). However, extending the
search to include synonyms would produce an even larger set of papers, and may
uncover additional types of distances and applications of these. The main intention
of this study was to act as a starting point and further research is planned to further
explore the area.

5 Discussion
RE is a communication intense activity and the identified distances between people
(see overview in Figure 3) may have an impact on the efficiency and effectiveness
of communication and collaboration (Agerfalk 2005, Allen 1977, Winkler 2008,
Wolf 2008, Yu 2011) and can be a significant cost driver (Dibbern 2008). Within
GSD, cases where communication is equally strong, or even improved, compared to
co-located development have been reported (Damian 2001, Wolf 2008). For

Distances between Requirements Engineering and Later Software Dev … 165

example, computer-based group meetings were found to be more effective for
requirements negotiation than face-to-face meetings (Damian 2001). Similarly,
development environments with computer-based support for collaborative work in
combination with best practices were found to contribute to reducing
communication delays (Wolf 2008).

These contradicting results might be explained by the effect the applied
practices have on the division between formal and informal communication. When
(previously) informal information is re-routed to more formal communication
channels the communication flow may be improved, resulting in reaching a wider
audience. This correlates well with findings by Agerfeldt et al.(2005). Distance
tends to affect informal communication in particular and leads to reduced trust,
difficulty in conveying vision and strategy and lack of awareness (Agerfalk 2005).
Cases where formal communication including documentation is weak and the
informal channels are important (e.g. for agile development) are likely to be very
vulnerable to distances between people.

Some of the distances are subjective (e.g. geographical) while others are
objective and based on perception (Prikladnicki 2012), values and normative
practices. The perceived (objective) distance can vary over team members and over
time and research has shown that quantifying this distance can support management
and be beneficial for GSD practices (Prikladnicki 2012). All the objective people
distances, i.e. organisational, power, opinions, cognitive and psychological, seem to
be covered by the socio-cultural distance (see Figure 3). More research into these
distances specifically for RE and for collocated development could potentially
explain issues reported for RE communication and collaboration (Bjarnason 2011,
Curtis 1988, Marczak 2011). For example, several distances may be at play in co-
located cross-functional teams with a product owner from a different organisational
unit and with an RE background; short geographical, but long organisational and
cognitive distances between the product owner and other team members.
Awareness of distance and their impact could support management in optimising
organisations (Yu 2011), training efforts, and selected methods (Yousuf 2008) and
tools (Calefato 2007, Damian 2001, Herlea 1998, Wende 2010, Wolf 2008).

Temporal distance affects the possibility of synchronous communication, and
within GSD asynchronous communication is common (Agerfalk 2005, Yousuf
2008). In addition, subjective distances caused by differences in culture, language
etc. may make people reluctant to communicate directly, thus resulting in preferring
to communicate via e-mail or through issue management systems. In general, the
asynchronous communication that these distances may incur induce delays and
increase lead times of RE and the entire development effort (Yousuf 2008). This
may affect communication intense activities such as RE, both in general and in

Figure 3. Overview of interpretation of identified RE distances including relevant
RE areas.

166

particular for elicitation and negotiation.
Artefacts play an important role in communicating requirements to stakeholders

and within a development project. The identified distances between artefacts have
primarily been researched for cost estimation and re-use based on changes to, or
different versions of, RE artefacts (Briand 2006, Jilani 2001, Shepperd 1997).
These distances may be used to characterise coverage and consistency between
artefacts of different activities, e.g. as a measure of the alignment between RE and
later development activities. For this reason, RE distances to artefacts of later
development activities are an important area to research.

Adherence distance between an artefact and the actual enactment of it has been
suggested for process improvement (Huo 2008) and for estimating remaining fault
content (Thelin 2000). Additional interesting applications could be adherence
between a requirement specification and the final product, as well as, the actual
customer needs. Both of which are key factors for successful RE.

Finally, most of the identified distances are reported to be better the shorter they
are, but there are some interesting exceptions. Within GSD, long socio-cultural
distance may potentially increase learning by providing access to a richer skill set,
and be stimulating for innovation (Agerfalk 2005). Furthermore, organisational
distance between testers and developers has been reported to improve alignment
between testing and requirements by avoiding testing against developers’
interpretation of the requirements (Bjarnason 2011). Identifying and understanding
additional cases where long distances result in positive effects can support defining
a comprehensive theory of the impact of RE distances on software development.

6 Conclusions
Coordination and alignment of requirements with later activities is vital for
enabling continuous development of successful products. Within global software
engineering distances are reported as increasing risk and cost. Distances between
RE and other development activities, e.g. in decision making and requirements
communication, may hinder effective and efficient development of customer
requirements.

In this systematic mapping study 13 RE-related distances were identified.
Distances were mainly found between people (roles, teams etc.) and between
artefacts (requirements and design specifications etc). Distance between people has
primarily been researched within the context of GSD (geographic, socio-cultural
and temporal), while distance between artefacts was found exclusively in non-GSD
research.

GSD research on distance between people is fairly mature, though more
empirical research is needed to understand the impact of these distances for non-
distributed development, e.g. for large-scale development. Furthermore, no theory
was found in the reviewed papers that could explain the contradicting findings of
several studies concerning geographical distance. Further investigations are
required to gain a deeper insight into relationship between different distances and
the impact they have on division between formal and informal communication.
Findings from other fields like psychology and cognitive science are relevant to

Distances between Requirements Engineering and Later Software Dev … 167

consider when investigating these people-related distances in relation to RE
activities.

Distance between artefacts has been suggested in the context of requirements
change and traceability and is an interesting area for future RE research. Distance
between RE artefacts and artefacts of later development activities, e.g. design and
testing, could potentially be used to measure coverage and consistency between RE
and other artefacts such as design and test specifications, and source code.

The systematic map reveals that RE distances in relationship to later
development activities (e.g. design, implementation and testing) is largely un-
researched. If distance is indeed an important factor in the coordination and
communication of RE, research is much needed to address this gap. Examples of
RE activities where distance may play an important role include elicitation,
negotiation, specification, managing requirements changes and requirements
traceability.

This study is a first step towards exploring and defining a theory for the role of
RE distances in software development. Future work includes constructing a
theoretical framework for RE distances in relationship to testing based on previous
research and on empirical data.

Further empirical research into how RE distances, and combinations of these,
affect later development activities may support constructing a theory that explains
what mechanisms are at play in development projects, between people, artefacts
and activities. Increased knowledge of such factors might enable optimization of
RE methods and practices for eliciting, negotiating and communicating
requirements. Furthermore, through researching new methods and practices for
bridging or decreasing distances the effectiveness of RE in software development
may be improved, ultimately resulting in more efficient development of better
products.

168

References
Agerfalk PJ, Fitzgerald B, Holmstrom Olsson H, Lings B, Lundell B, Ó Conchúir E (2005) A

Framework for Considering Opportunities and Threats in Distributed Software
Development. Proc. Of Int. Works. on Distr. Softw. Eng., DiSD 2005, pp. 47-61.

Allen T (1977) Managing the flow of technology. Cambridge, MA, MIT Press
Azzeh M, Neagu D, Cowling P (2008) Software project similarity measurement based on

fuzzy C-means. Proc. of Int. Conf. on the Softw. process, ICSP'08, pp. 123-134.
Bjarnason E (2013a) Study material for RE distance study incl. list of all papers,

http://serg.cs.lth.se/research/experiment_packages/distmap/, latest access 2013-01-28.
Bjarnason E, Runeson P, Borg M et al. (2013b) Challenges and Practices in Aligning

Requirements with Verification and Validation: A Case Study of Six Companies. Journal
of Empirical Software Engineering, nn(nn):x-x, 2013.

Bjarnason E, Wnuk K, Regnell B (2011) Requirements are Slipping Through the Gaps – A
Case Study on Cause & Effects of Communication Gaps in Large-Scale Software
Development. Proc. of 19th IEEE Int Requirements Engineering Conf., pp. 37-46.

Brereton P, Kitchenham BA, Budgen D et al. (2007) Lessons from applying the systematic
literature review process within the software engineering domain. Journal of Systems and
Softw., 80(4), Pages 571-583.

Briand LC, Labiche Y, O’Sullivan L, Sówka MM (2006) Automated impact analysis of
UML models. Journal of Systems and Softw. 79(3), pp. 339-352.

Calefato F, Damian D, Lanubile F (2007) An Empirical Investigation on Text-Based
Communication in Distributed Requirements Workshops. Proc. Of Int. Conf. on Global
Softw. Engineering (ICGSE '07), pp. 3-11.

Chakraborty C, Chakraborty D (2007) A fuzzy clustering methodology for linguistic
opinions in group decision making. J. of Applied Soft Computing, 7(3), pp. 858-869.

Chiu NH, Huang SJ (2007) The adjusted analogy-based software effort estimation based on
similarity distances. Journal of Systems and Software, 80(4), pp. 628-640.

Curtis B, Krasner H, Iscoe N (1988) A Field Study of the Software Design Process for Large
Systems. Commun. ACM, vol. Nov. 1988, pp. 1268-1287.

Damian D (2001) An empirical study of requirements engineering in distributed software
projects: Is distance negotiation more effective? Proc. Of 8th Asia Pacific Softw.
Engineering Conf. APSEC'2001, pp. 149-152.

Damian D, Chisan J (2006) An Empirical Study of the Complex Relationships between
Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Trans on Softw. Eng. 43(7), pp 433-
453.

Dibbern J, Winkler J, Heinz A (2008) Explaining variations in client extra costs between
software projects offshored to India. MIS Quarterly: Management Information Systems,
vol. 32, n:o 2, pp. 333-366.

Ebert C (2006) Understanding the product life cycle: four key requirements engineering
techniques. IEEE Software, vol.23, no.3, pp.19-25.

Fricker S, Glinz M (2010) Comparison of Requirements Hand-Off, Analysis, and
Negotiation: Case Study. Proc. of 18th International Requirements Engineering
Conferance, pp. 167-176.

Herlea D, Greenberg S (1998) Using a groupware space for distributed requirements
engineering. Proc. of Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, WET ICE, pp. 57-62.

Hofstede G (1993) Cultural constraints in management theories. Academy of Management
Executive, 7(1), pp. 81 – 94.

Huo M, Zhang H, Jeffery R (2008) Detection of consistent patterns from process enactment
data. Proc. of Int. Conf. on Software Process, ICSP'08, pp. 173-185.

Distances between Requirements Engineering and Later Software Dev … 169

Jilani LL, Desharnais J, Mili A (2001) Defining and Applying Measures of Distance
Between Specifications. Journ. IEEE Transactions on Softw. Eng, 27(8), pp. 673-703.

Lawson M, Karandikar HM (1994) A Survey of Concurrent Engineering. Concurrent
Engineering 1994 2:1.

Liberman N, Trope Y, Stephan E (2007) Psychological Distance, book chapter in ‘Social
psychology: handbook of basic principles’ (2nd ed), Kruglanski, Higgins (Eds), pp. 353-
381, Guilford Press.

Marczak S, Damian D. (2011) How Interaction between Roles Shapes the Communication
Structure in Requirements-Driven Collaboration. Proc of 19th IEEE Int Req. Eng. Conf.,
pp. 47-56

Nuseibeh B (2001) Weaving together requirements and architectures. Computer , vol.34,
no.3, pp.115-119.

Petersen K, Feldt R, Mujtaba S et al. (2008) Systematic Mapping Studies in Software
Engineering. 12th Int. Conf. on Evaluation and Assessm. in Software Eng., pp.71-80

Prikladnicki R (2012) Propinquity in Global Software Engineering: Examining Perceived
Distance in Globally Distributed Project Teams. Journal of Softw. Evolution and Process,
24(2), pp. 119-137.

Shepperd M, Schofield C (1997) Estimating Software Project Effort Using Analogies. IEEE
Trans. on Software Eng, Vol. 23 Issue 11, pp. 736-743.

Swartout W, Balzer R (1982) On the Inevitable Intertwining of Specification and
Implementation. Comm. ACM, vol. 25, no. 7, pp. 438-440.

Thelin T, Runeson P (2000) Robust Estimations of Fault Content with Capture–Recapture
and Detection Profile Estimators. Journal of Systems and Softw. 52(2–3), pp. 139-148

Uusitalo EJ, Komssi M, Kauppinen M et al. (2008) Linking Requirements and Testing in
Practice. 16th IEEE Int Requirements Engineering Conf, NJ, USA, pp. 265-270

Wende E, Philip T (2010) Instant Messenger in Offshore Outsourced Software Development
Projects: Experiences from a Case Study. Proc. of 44th Annual Hawaii Int. Conf. on
System Sciences.

Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements Engineering Paper
Classification and Evaluation Criteria: a Proposal and a Discussion. Journal of Requir.
Eng. 11(1), pp. 102-107

Winkler JK, Dibbern J, Heinzl A (2008) The Impact of Cultural Differences in Offshore
Outsourcing-Case Study Results from German-Indian Application Development Projects.
Inf. Systems Frontiers, v 10, n 2, pp. 243-258

Wolf T, Nguyen T, Damian D (2008) Does Distance Still Matter? Journal of Impr. and
Practice of Softw. Process, 13(6), pp. 493-510

Yousuf F, Zaman Z, Ikram N (2008) Requirements Validation Techniques in GSD: A
Survey. Proc. 12th IEEE Int. Multitopic Conf. INMIC’08, pp. 553-557

Yu Y, Sharp H (2011) Analyzing Requirements in a Case Study of Pairing. Proc. of 1st Int.
Workshop on Agile RE, Lancaster, UK.

Zhu J, Hipel KW (2012) Multiple Stages Grey Target Decision Making Method with
Incomplete Weight Based on Multi-Granularity Linguistic Label. Journal of Information
Sciences, vol. 212, pp. 15-32

170

PAPER V

VARIATIONS ON THE EVIDENCE-
BASED TIMELINE RETROSPECTIVE

METHOD
A COMPARISON OF TWO CASES1

Even though project retrospectives can be a powerful tool for process improvement
and obtaining new learning and insights, pure experience-based reflections pose a
risk of leading to incorrect conclusions. Our method, evidence-based timeline
retrospectives (EBTR), mitigates this risk by providing a pre-generated timeline
that visualises project history based on evidence rather than relying on subjective
opinions and biased memories. Within the scope of a comparative study of two
cases a set of variation points has been evaluated. The variation points enable
configuring the EBTR method to different contexts and retrospective goals. The
results indicate that by selecting certain variations the EBTR method can be
configured to support either wide assessments (e.g. the overall impact of a new
process) or assessments of a specific process area. For example, through using open
or semi-structured discussions, or by varying the applied timeline technique.

	

1 By E. Bjarnason, A. Hess, J. Doerr, B. Regnell. Published in proc. of 39th Euromicro Conf.
Series on Software Engineering and Advanced Applications, 2013, pp. 37-44.

172

1 Introduction
Software process engineering is considered fundamental in software engineering
(Emami 2010, Dikici 2012). Thus, the identification of weaknesses and
improvement opportunities of software engineering processes is an important but
challenging activity (Emami 2010). Several approaches have been proposed that
support software process improvements, e.g., based on simulations (Cabral Silva
Filho 2010), application lifecycle management solutions (Lacheiner 2011), or
prioritization techniques (Birkholzer 2011).

In general, retrospective analysis can be an effective tool for assessing software
processes by identifying problems and best practices. Retrospective meetings can
support process improvements both directly by identifying weaknesses and
improvement strategies, and indirectly through team members gaining new insights
and learning concerning best practices (Collier 1996, Derby 2006, Drury 2011,
Bjarnason 2012). However, retrospectives based solely on participants’ experiences
of events pose a risk of drawing incorrect conclusions (Jørgensen 2000) and may
become a forum for emotional venting rather than constructive discussions (Collier
1996, Drury 2011).

An evidence-based retrospective method was designed to combat this by
injecting the retrospective with a pre-generated timeline of visualised project
history based on evidence gathered from available systems (Bjarnason 2012a). This
evidence-based timeline retrospective (EBTR) method was previously evaluated for
one case (denoted case 1 in this paper) (Bjarnason 2012b).

In order to further evaluate and explore the EBTR method it was applied to a
second case (denoted case 2 in this paper) and the outcome compared. The aim of
this comparative study was to empirically observe the effect of varying the EBTR
method over a set of variation points (VPs). In this paper, we report on the
influence that each VP may have on (RQ1) new insights and learning; (RQ2)
timeline support for meeting; and (RQ3) topics discussed at the retrospective
meeting.

The remainder of this paper is structured as follows: Section 2 presents the
EBTR method, and Section 3 describes the two cases. Section 4 presents the
research method and the evaluated EBTR variants are described in Section 5. The
results are presented in Section 6 and discussed in Section 7, and we conclude in
Section 8.

2 Evidence-Based Timeline Retrospectives
Evidence-based timeline retrospectives (EBTRs) inject pre-constructed timelines
into retrospective meetings. Project history is visualised in evidence-based timelines
(EBTs) by displaying time-stamped evidence of project events from various
systems. EBTs can prompt memory and support reflection of past events. At a
retrospective meeting multiple roles share their experiences, reflect on events and
good practices, and identify improvements. Kerth (2001) describes a method where
a timeline is produced at the meeting by the participants. Our method enhances on
this by providing pre-prepared EBTs, which saves meeting time and provides

Variations on the Evidence-Based Timeline Retrospective Method 173

objective information. In addition, it includes a phase for planning and one for
validation to ensure final agreement.

The method was initially designed for assessing RE in a project context though
generic enough to be customised for different retrospective goals. The generic
method is described in this section, while the EBTR variants for the two cases are
described in Section 5.

The EBTR method consists of four phases: (1) planning, (2) EBT construction,
(3) EBTR meeting with the project team, and finally, (4) validation of the outcome.
Each phase is described in the following sections.

2.1 Phase 1: EBTR Planning

The definition of goals in this phase enables focusing the EBTR on strategic
improvement areas. The main vehicles for achieving these goals are the EBTs (see
phase 2) and a set of focus questions (see Bjarnason 2013). The focus questions are
defined in the planning phase and used at the EBTR meeting (see phase 3) to focus
discussions on issues relevant to the EBTR goals.

The EBTs are constructed based on aspects, evidence, and visualisation that are
all defined during the planning phase. The aspects to visualise in the EBT are
defined based on the goals. The type and source of evidence to collect and suitable
visualisations are identified. The projects to include in the assessment are also
selected in this planning phase.

2.2 Phase 2: EBT Construction

The EBTs are constructed by collecting evidence from various systems, e.g. scope
and prioritisation systems, requirements databases, planning tools, defect
management systems, etc. The project history is visualised by displaying this
evidence along a timeline for each aspect.

2.3 Phase 3: EBTR Meeting

The EBTR meeting is intended to facilitate group reflection in-line with EBTR
goals and was designed according to guidelines for project retrospectives (Kerth
2001) and focus groups (Robson 2002). The focus questions (from phase 1) and
EBTs (from phase 2) are used to stimulate a discussion.

The meeting participants represent key roles throughout the project life cycle,
similar to Collier’s retrospective method (Collier 1996); ideally 4-8 project
members and 1 moderator.

The meeting room is prepared by posting the EBTs on the wall. In addition, a
whiteboard or flipchart, and pens and post-its are needed for capturing information.
Seating the participants around the EBTs encourages interaction with the EBTs and
with each other.

The EBTR goal and EBTs are presented at the meeting. The moderator then
leads a discussion based on the focus questions (see phase 1). A set of prompting
questions suggested by Kerth (2001) is available for reinvigorating or redirecting
discussions. The participants add clarifications, corrections and additional
information to the EBTs, thus, producing updated and jointly agreed EBTs.

174

The final part of the meeting consists of jointly summarising the findings and
lessons learned by using a set of sum-up questions that are based on the concluding
part of Kerth’s timeline exercise: things that worked well; what was learnt; what
needs improving; what is still puzzling; and what needs to be discussed further.

2.4 Phase 4: EBTR Validation

In this phase the meeting outcome and conclusions are validated by the
retrospective participants reviewing the notes and updated EBTs. Additional
validation can be obtained through additional meetings to agree on an action plan
for addressing identified problems and improvements.

3 The Two Cases

3.1 Case 1: Product Development Company

The EBTR method was initially designed for and applied at a company in the
telecommunication domain. The company has around 4,000 employees and
develops software using an agile development process. All new functionality is
defined as features that are prioritised in a product backlog and developed in order
of priority. Each feature is developed in a separate feature project that integrates
software into software release projects. A feature project life cycle has a lead time
of 9 weeks to 2 years and includes handovers between different units and teams;
from request through design, development in cross-functional teams, system
integration and system testing, and finally customer acceptance. Typically around
200-250 features are integrated into a main software release project.

A feature project involves several roles including product manager, project
sponsor, project manager, project architect, developer and tester. The product
manager acts as a customer proxy and is responsible for scope decisions. The
project sponsor is responsible for ensuring resources. The feature architect is
responsible for adhering to architectural strategy and guidelines. The developers
and testers iteratively detail requirements in collaboration with the product
manager, and develop and verify software accordingly. Finally, the feature project
interacts with system-level roles for architecture, integration, and testing.

3.2 Case 2: Research Project

The EBTR method was applied to a German research project called IBIS (Fetzer
2013), which involved two research partners and two company partners, SMEs
(small and medium sized enterprises) with ~20 employees. The project aimed at
designing a method that enables developers without specific knowledge in usability
engineering to systematically design software products that are intuitive to use,
creative and innovative. The resulting IBIS method was designed by integrating
image schemas (Hurtienne 2008) (recurring cognitive structures and patterns) into a
task-oriented requirements engineering process (Adam 2009); and it was defined to
be easy to integrate into the company partners’ software engineering (SE)
processes. The usefulness and applicability of the IBIS method was evaluated

Variations on the Evidence-Based Timeline Retrospective Method 175

throughout the research project through comparison of industrial projects conducted
at each company’s site some using the method.

Different roles were involved in the IBIS project: researchers that developed and
evaluated the IBIS method; project managers for each company partner and
software engineering roles defined by the IBIS method and typically included in SE
projects at the company’s sites comprising product managers being responsible to
elicit / specify requirements and evaluate intermediate / final product versions with
the customers / end users, developer being responsible to design interactions and
corresponding UIs, to implement and test the software products.

4 Research Method
The main aim of this comparative study was to explore and evaluate variations of
the EBTR method by comparing two cases. A number of variation points (VPs)
were identified and an EBTR variant was applied to each case (see Figure 1). The
outcome for the two cases has been analysed to identify differences potentially
caused by the VPs. This comparative study was performed in three main steps:
preparations, data collection and data analysis.

4.1 Preparations

The study was prepared at a number of meetings where the researchers discussed
the EBTR method, and designed and planned this study. Previous experience of
applying the method (for case 1) was shared and potential VPs were discussed and
agreed. For example, the same focus questions were to be used for both cases, but
for case 2 the retrospective discussions were to be more structured and limited to
these questions. Furthermore, the EBTR meetings were to be longer for case 2 (4
hours vs. 75 minutes) due mainly to availability. The full set of variations points is
described in Section 5. Characteristics for comparing the selected projects were also
discussed and agreed, and the reported set is shown in Table 1.

Figure 1. Overview of study setup: one EBTR variant per case. Both variants
evaluated through transcription, focus group and questionnaire.

176

A separate researcher managed each case and was the contact point between this
study and the investigated project(s). This researcher planned and performed the
EBTR(s) for their case including constructing the EBTs.

4.2 Data Collection

The same data collection protocol was used for both cases. Apart from jointly
updated EBTs, extensive notes were taken at the EBTR meetings. Transcriptions
were sent to the participants for validation. Furthermore, the participants’ EBTR
experiences were gauged by a questionnaire with scale Not at all, Somewhat, Fairly
much and Very much and a focus group with evaluation questions. Identical
questionnaire and evaluation questions were used in both cases (available on-line,
Bjarnason 2013).

4.3 Analysis

The final set of VPs and their potential impact were identified at a workshop by the
involved researchers. At this workshop the EBTR variants for each case were
presented and the collected data compared. Differences and similarities were
discussed and classified as VPs or as effects of a VP.

In order to understand the impact of the variations on EBTR meeting
discussions, a topic analysis was performed at the workshop on the notes of one
meeting for each case. The researcher responsible for the case analysed the notes
and identified the discussed topics. These topics were then matched to the focus
question topics used at the EBTR meetings and the findings compared between the
two cases.

Similarly, the focus group and questionnaire data were compiled and analysed
by comparing the results from the two cases. The observed differences were then
compared to the VPs and potential connections identified.

5 Two Variations of the EBTR Method
The EBTR variant for case 1 was applied to three development projects (P11-P13),
while the EBTR variant for case 2 was applied to one research project (P21).
Project characteristics are shown in Table 1. The variants differ in the following
VPs:

(VP1) EBTR goal
(VP2) EBT content and visualisation
(VP3) EBTR meeting participant preparations
(VP4) EBTR meeting length
(VP5) discussion structure at EBTR meeting
(VP6) EBTR meeting moderator

Variations on the Evidence-Based Timeline Retrospective Method 177

Table 1. Each EBTR variant is described below. The relevant VPs are given
within parenthesis. Characteristics of the included projects.

Project id Lead time
(months)

Project size:
developers of total

N:o of roles in
project

N:o of EBTR
particip.

Case 1
P11 28 1 of 4 6 4
P12 13 1-2 of 13 8 9
P13 14 4-5 of 13 9 6

Case 2
P21 7 4 of 11 4 5

5.1 EBTR Variant for Case 1

5.1.1 Phase 1: EBTR Planning

For case 1, the EBTRs were planned in close collaboration with company
representatives and EBTR goals, aspects and evidence were defined and agreed.
The main goal (VP11) was a general assessment of the RE aspects of the company’s
new development model and what impact it has on project lead time. A secondary
goal was to encourage project members to reflect and learn about good
requirements practices, and thereby enable improvements in future projects. In line
with these goals, evidence was selected to cover a number of aspects (VP21),
namely people, project state, decisions, artefacts and planning.

5.1.2 Phase 2: EBTR Construction

Evidence for each aspect (VP21) was selected to represent both high-level events
(e.g. project phase) and low-level events (e.g. customer meeting, filing of issue
report). The evidence was extracted from available systems for scope, release and
project planning, defect management, requirements and test management. The
extracted data was visualised in one MS Visio timeline per aspect (see Figure 2)
and printed on A3 papers (4 in width).

Figure 2. An extract from the EBTs used for case 1.

178

5.1.3 Phase 3: EBTR Meeting

Participants were invited to the meeting without prior information about the EBTR
method or any other preparations (VP31). The meetings were booked for 75 minutes
(VP41). Two of the meetings ran over with approx. 15 minutes. A semi-structured
discussion format was used (VP51). The EBTs and the focus questions were used to
encourage open discussions. Spontaneous follow-up questions were used to explore
mentioned issues and topics. Despite attempting to include everyone there were
junior participants who said nothing or very little, in particular in the largest
meeting (P12) and in one with two very strong leadership roles (P11). The moderator
was well acquainted with the case (e.g. development process and terminology) but
had no prior relationship to the projects (VP61).

5.1.4 Phase 4: EBTR Validation

Notes of the discussions were sent out to the participants a few days after the
meeting together with updated EBTs. Evidence added at the EBTR meeting was
marked in the timelines with a separate colour (VP2).

5.2 EBTR Variant for Case 2

5.2.1 Phase 1: EBTR Planning

The main goal for case 2 (VP12) was to assess the usefulness and applicability of
the IBIS method compared to currently applied methods; to identify problems, ideas
for improvements and good practices. Secondary goals were to learn from the
experience of working in a research project compared to industrial projects and to
identify new ideas for future projects. Three aspects were selected: (VP22), namely:

(i) performed activities
(ii) important events
(iii) delivered artefacts (including planned and actual dates)

EBT visualisation was decided to be done with flip chart paper and coloured
cards.

5.2.2 Phase 2: EBT Construction

Evidence for each aspect (VP22) was collected by the two project managers at each
company. This evidence was extracted from data collected throughout the project
for comparing the IBIS method with existing engineering methods. This activity
also acted as preparation for the EBTR meeting (VP32).The moderator constructed
the EBT with the evidence by noting it on cards using a colour scheme to separate
between activities, artefacts and events. The cards were arranged along a timeline
drawn on two flip chart papers, see Figure 3. Thus, data for all aspects was
represented in one EBT though visually separated by colour.

Prior to the EBTR meeting the EBTR method was briefly presented to most
participants at a project meeting (VP32).

Variations on the Evidence-Based Timeline Retrospective Method 179

5.2.3 Phase 3: EBTR Meeting

The EBTR meeting was organised by the moderator who was also actively involved
throughout the IBIS project (VP62). The meeting was opened by a brief introduction
and by everyone sharing their expectations (VP32). The EBT and the visualisation
scheme were then presented, and the topics covered by the focus questions
discussed topic by topic. The discussion was structured as follows (VP52):

(i) the topic was presented
(ii) the participants reflected individually and noted issues on post-its (10-15

min)
(iii) each participant presented their issues and added them to the EBT
(iv) the presented issues were discussed

The meeting was concluded by a discussion on the sum-up questions (see
Section 2.3) with the same discussion structure as for the EBTR meeting. The
meeting took 4 hours (VP42).

5.2.4 Phase 4: EBTR Validation

After the EBTR meeting, the outcome of the meeting was consolidated and
reviewed by the participants. The final outcome has been published in a project
report (Fetzer 2013).

6 Results
The results of this comparative study are here presented according to the three
facets of the research questions RQ1-RQ3 (see Section 1). For each facet, the
results are presented per case based on data gathered through focus groups,
questionnaire and topic analysis (see Section 4). The results are related to variation
points in Section 7.

Figure 3. An extract from the EBTs used for case 2.

180

All retrospective participants were present at the focus groups where they shared
experiences of the retrospective including improvements. The 20 questionnaire
respondents represent all roles present at EBTR meetings. For case 1, this was
product manager, project manager, line manager, architect, developer and tester.
Their experience in current roles varies from 3 months to 10 years (4 years for the
majority) and in total ranges from 5 to 27 years (evenly distributed over
respondents). For case 2, the following roles were represented: project manager,
product manager, developer and company CEO. Their experience in current roles
varies from 1 to 15 years, and in total 1 to 16 years.

6.1 New Insights and Learning (RQ1)

For case 1, several participants stated at the focus group that they had gained and
learnt from the EBTR meeting. One project sponsor said that he now realised that
the new company strategy would have had an impact on this project’s scoping
decisions. One tester gained new insight into the overall process, in particular the
early requirements phases and said: ‘For me, it is very positive to see the entire
picture.’ A project manager said that this kind of retrospective could improve and
motivate people when starting a new project.

For case 2, the participants stated that they consider EBTR meetings as very
useful for reflecting on aspects that went well or could be improved. In this
particular case most of the discussed issues were not completely new to the
participants due to intensive evaluation activities and frequent discussions at project
meetings throughout the IBIS project. However, the EBTR method did support the
participants in summarising their experiences. Thus, the participants considered the
outcome of the EBTR meeting a very good project result; one that has been
delivered to the customer financing the research project.

Comparing the questionnaire responses for new insights and learning from the
two cases reveal some interesting differences, see Figure 4. While the participants
for case 1 experienced that they gained somewhat to fairly much new insight and
learning concerning the big, overall picture (questionnaire 4a), the degree to which
participants for case 2 experienced this was not at all to somewhat. For good
practices (questionnaire 4d), there is also a higher grading for case 1 than for case 2,
while needed improvements (questionnaire 4e) are almost identical. These
differences could be explained by the fact that in case 1 the projects are part of a
very large organisation while for case 2 the particular development projects are

Figure 4. Questionnaire responses for new insights and learning per case
(c1 and c2). Boxplots with 25/75 percentiles shown.

Variations on the Evidence-Based Timeline Retrospective Method 181

more stand-alone and with less ‘big picture’ to relate to. However, the higher
ratings (for 4b and 4d) could be an indication of an effect of a VP, e.g. that the
EBTs were more detailed (VP21) or that the moderator’s lack of prior knowledge of
the project (VP61) led to explicitly mentioning more contextual factors and
practices as opposed to assuming them to be common knowledge.

6.2 EBT Support for Meeting (RQ2)

For case 1, several participants expressed that compared to experience-based
retrospectives the EBTs supported reflection of the entire life cycle. One participant
said: ‘It would have been harder to discuss the project without the prepared
timeline. The graphical presentation makes you think.’ A product manager, and
some developers and testers appreciated seeing a compilation of the big picture
including the phases in which they are not actively involved. Similarly, one
participant said that the method supported extending individual perspectives.
Furthermore, several participants from different projects said that EBTs support
memory recall and that preparing them before the meeting was preferable. One
participant said: ‘It helps us to remember what happened. It would’ve been difficult
to start talking based on nothing. It’s a long time since we did this.’

For case 2, the participants also said that the EBT enabled seeing the big picture
and identifying relationships between events. One participant was impressed by
being able to see all project activities at a glance and easily become aware of the
spent effort and achieved outcome of the project. Thus, the visualisation of project
history supported memory recall of certain events and reflection of relevant issues
as prompted by the focus questions. Furthermore, the EBT supported the
participants in identifying (previously unnoticed) relationships between issues and
their consequences through the whole project life cycle. For example, some late
scope changes were identified as being caused by a lack of communication at the
start of the project. This previously unidentified connection enabled improving the
IBIS method to avoid such problems in future.

The participants expressed that at the end of the meeting the EBT was crowded
with cards and post-its, making it hard to work with. They proposed preparing the
EBT with just flip-chart paper, and use cards/post-it notes during the meeting.

The questionnaire data concerning EBT support for the meeting (see Figure 5)
indicates that the EBT variant used for case 1 provided better support for the

Figure 5. Questionnaire responses for EBT support per case (c1 and c2).
Boxplots with 25/75 percentiles shown.

182

meeting, for memory recall and for agreeing on past events than the one used in
case 2. However, the EBTs were perceived to provide the same degree of support in
both cases for identifying connections between events and supporting a factual
discussion.

6.3 Topic Analysis (RQ3)

Comparison of topics discussed at EBTR meetings for each case (see Section 4.3)
reveals that for case 2, all discussed topics could be matched to focus topics. While
more topics in total and outside of the focus topics were covered for case 1, see
Table 2.

Table 2. Number of focus and non-focus topics discussed at EBTR meetings per
case and focus topic area.

Focus topic area Non-focus
topic area SumScope Communication Planning

Case 1 4 4 4 10 22
Case 2 8 2 5 0 15

6.4 Limitations

Limitations are presented here according to Runeson et al (2012).
Construct validity regards how well the research method correlates to the targets

research questions. A combination of focus group and questionnaire was used to
mitigate the risk of misinterpreting the participants’ experience of the EBTR
method. Variation points (VPs) were iteratively defined rather than planned from
the start. In combination, with varying multiple VPs it is not possible to ensure
which variation point causes which effect. However, potential dependencies
between VPs have been considered.

Reliability concerning the independence of data and analysis from specific
researchers, the risk of researcher bias was addressed with triangulation of meeting
notes and cross-analysis of data among the authors. The results were reviewed by
researchers not involved in the data collection.

Internal validity concerns whether causal conclusions are warranted or if there
are overlooked phenomena. The difference in evidence collection for the EBTs
poses a risk. Two EBTR participants collected evidence in case 2, and may have
introduced a bias in the EBT, thus limiting the retrospective discussions.
Furthermore, intensive evaluation for case 2 throughout the project may have an
influence on the results. Since several issues had already been discussed in project
meetings some insights were not new.

External validity concerns the ability to generalise and transfer findings to other
cases. Our aim is not to draw statistically valid conclusions outside the two cases,
rather to understand and describe variability aspects in relation to their contexts.
Results transferability needs to be assessed by comparing our cases with other
cases. To support this we have characterised the cases and the projects.

Variations on the Evidence-Based Timeline Retrospective Method 183

7 Discussion
The outcome of applying the EBTR variants to the two cases is compared in this
section and the potential effect of each VP (see Section 5) is discussed. A summary
of our interpretation of the results is also shown in Figure 6.

7.1 VP1: Retrospective Goals

The width, or focus, of the EBTR goal varied between the two cases, which
influenced several other variation points and seems to have affected the outcome.
Case 1 had a wide EBTR goal of assessing the RE aspects of their agile
development process. While for case 2, the goal was to assess the IBIS project
regarding communication, workload between different roles and lessons learnt
regarding the IBIS method. The observed differences in amount and focus of
discussed topics (see Section 6.3) and extent of new insight into the larger context
(see questionnaire 4a, Section 6.1) correspond to the width of the EBTR goal.
However, due to the influence that the EBTR goal had on the design of other VPs,
we believe that VP1 only has an indirect effect on these factors.

VP1 affected the design of the EBTs (VP2) and the selection of discussion
structure (VP5). The aspects and types of evidence for the EBTs were selected in
line with the EBTR goal, i.e. for the wider goal of case 1 more aspects and evidence
types were selected, while for the more focused goal of case 2 less aspects and
evidence types were selected. In addition, the discussion structure was selected to
match the goal width, with a more structured discussion for the more focused goal
of case 2.

7.2 VP2: EBT Content and Visualisation

The EBTs used in the two cases varied in the amount of aspects and evidence that
were included, and in the applied visualisation technique. For case 1, five different
aspects were used and evidence extracted from four different systems by the
moderator. While for case 2, three aspects were selected and all evidence was
selected from two systems by two participants. This resulted in a larger set of data

Figure 6. Summary of identified connections between variation points (VP)
and effects (black boxes).

184

for case 1 than for case 2. For case 1, the large amounts of data were managed by
visualising the evidence in several EBTs using a digitalised format. For case 2, the
time stamped data was visualised in one EBT using physical cards. In both cases,
the moderators were responsible for visualising the collected evidence in the EBTs.

The range and amount of evidence in the EBTs correspond well to the amount
and range of topics discussed during the EBTR meetings (see Section 6.3). Thus
indicating that larger and wider sets of data visualised in a clear digitalized way (as
for case 1) can lead to discussing a broader range of topics. In contrast, selecting a
more focused and limited set of evidence, and visualising this in a simpler way (as
for case 2) can result in focusing the EBTR discussions on more specific topics (see
Section 6.3).

Furthermore, for case 1 the significantly higher degree of participant insight into
the bigger picture (see questionnaire 4b in Section 6.1) may also be partly explained
by the detailed EBTs used for this case. It is possible that they provide a richer
picture of a wider range of events, not limited to current insight.

7.3 VP3: EBTR Meeting Participant Preparations

The degree of participant preparation was different for the two cases. In case 1, the
participants were consciously not prepared due to a goal to design the EBTR
method so as to require minimum development resource effort. Instead, the EBTR
method was introduced at the beginning of EBTR meeting. For case 2, the EBTR
method was introduced to most of the participants at a project meeting. Thereafter
the participants agreed to apply the method. Furthermore, for case 2 two
participants were also prepared by being involved in the evidence collection.

Participant preparation (i.e. case 2) was expected to enhance the EBTR meeting
by strengthening the degree of new insights and the amount of support provided by
the EBTs to the meeting. However, the degree of new insights gained from EBTR
(questionnaire #4, see Section 6.1) is either similar for both cases, or higher for case
1. Furthermore, the degree of EBT support for EBTR meeting was seen as much
higher for case 1 rather than case 2 (questionnaire 5, see Section 6.2).

This lack of observable effect may be explained by the large difference in
meeting time between the cases. Even if the length of the EBTR meetings could
have been reduced (or avoided running over time) by a short preparation, the total
meeting time is most likely similar. The decision to prepare participants beforehand
or not needs to be made case by case depending on the specific situation. For
example, for case 1 a 10-minute presentation of the EBT visualisation could have
enabled a quicker start of the actual discussions at the EBTR meeting.

7.4 VP4: EBTR Meeting Length

There was a large variation in the length of the EBTR meetings. For case 1, the
meetings were booked for 75 minutes; 2 of 3 meetings ran out of time. For case 2,
the meeting was planned for 3 hours, but took approx. 4 hours.

There are no directly observable effects of the differences in meeting length. A
longer meeting time could be expected to result in a higher degree of new insights
and learning. But, this is not the case. Rather, the results indicate more new insight
of the bigger picture and for good practices for case 1, and the same degree of

Variations on the Evidence-Based Timeline Retrospective Method 185

insight for improvements (see questionnaire 4, see Section 6.1). This could partly
be explained by the participants in case 2 having a high degree of pre-insight into
good practices due to continuous assessments throughout the project.

A positive effect of a longer EBTR meeting is that it allows for more time for
discussions and could (if managed correctly) facilitate all participants having a fair
opportunity to share and discuss their views. More meeting time also supports
selecting a more structure discussion format (this was one of the reasons for not
selecting this for case 1).

7.5 VP5: Discussion Structure at EBTR Meeting

Two variations in discussion structure have been evaluated and found to have an
effect on the outcome of the EBTR method. For case 1, a semi-structured
discussion was moderated, based on the focus questions but not limited to those
topics (see Section 0). For case 2, the discussions were more strictly structured
according to the focus questions and the participants were given time to
individually reflect on each topic before sharing and discussing their views (see
Section 5.2.3).

The topic analysis shows that for case 1, a larger number and wider range of
issues and topics were discussed at the analysed EBTR meeting. In contrast, the
majority of the topics discussed for case 2 can be connected to the focus questions
(see Section 6.3). Thus, selecting a structured discussion format may lead to more
focused discussions and thus more specific findings. A semi-structured format may
support exploring a wider area and be suitable for investigating causes and
connections between topics.

Furthermore, the higher rating of new insight into the bigger picture and good
practices for case 1 (questionnaire 4b and 4d, see Section 6.1), could potentially be
partly attributed to the wider discussions resulting from the open discussion format.

Finally, the structured format used in case 2 encouraged all participants to
equally share and discuss their views.

7.6 VP6: EBTR Meeting Moderator

Two different variations concerning the moderator’s relationship to the project were
evaluated. In both cases, the moderators had good knowledge and insight into the
general domain of the projects and previous experience of moderating group
meetings. However, for case 1 the moderator had no previous relationship with the
projects to which the EBTR was applied. For case 2, the moderator was an active
project member.

The more focused set of topics discussed in case 2 (see topic analysis, Section
6.3) may be partly supported by the moderator’s existing relationship with the
project. This enabled the moderator to support the discussions in identifying
potential improvements, though this factor was rated at the same level for case 1
and for case 2 (see questionnaire 4e, Section 6.1). Furthermore, it was easier for the
moderator for case 2 to ensure that everyone was included in sharing and discussing
their views, which was harder in case 1 since the moderator did not know the name
of all the participants.

186

In contrast, the wider set of topics discussed in case 1 (see Section VI.C) and the
higher degree of new insights and good practices among the participants
(questionnaire 4b and 4d, see Section VI.A) may be partly supported by the
moderator having no previous relationship to the project. The specific project was,
thus new to the moderator. This may have led to the moderator asking and the
participants sharing relevant information, which would otherwise have been
assumed to be common knowledge and not mentioned.

8 Conclusions and Future Work
Project retrospectives can be an effective way for an organisation to assess and
continuously improve their development processes. By project members meeting to
reflect on project history after project completion, new insights can be gained into
good practices, problems and needed improvements. Team reflections can be
further supported by injecting facts (evidence) into the retrospective meeting in the
form of a pre-constructed visual timeline. A previous evaluation of our evidence-
based retrospective (EBTR) method showed that this supports memory recall and
factual discussions, and thereby enhancing group reflections around project events.

However, for this to be an effective process improvement tool rather than
merely a group bonding activity, the project retrospectives need to be targeted
towards strategic goals. Furthermore, the retrospective meetings need to cover
topics relevant to those goals.

This comparative study has identified and evaluated a six variation points of the
EBTR method and their potential effect. The specificity of the EBTR goal is found
to impact the retrospective outcome. By setting the variation points, the method can
be customised either towards assessing a specific process area or topic, or towards a
broader assessment of a process and its influence on surrounding processes and
roles.

Future work includes further evaluations of the EBTR method for other cases
and other combinations of VPs. In particular, evaluation of different timeline
visualisation techniques is an interesting avenue to explore.

Variations on the Evidence-Based Timeline Retrospective Method 187

References
Adam S, Doerr J, Eisenbarth M (2009) Lessons Learned from Best Practice-

Oriented Process Improvement in Requirements Engineering – A Glance Into
Current Industrial RE Application, REET09.

Birkholzer T, Dickmann C, Vaupel J (2011) A Framework for Systematic
Evaluation of Process Improvement Priorities. 37th Euromicro Conference on
Softw. Eng. and Adv. Appl. (SEAA), pp. 294-301.

Bjarnason E, Regnell B (2012a) Evidence-Based Timelines for Agile Project
Retrospectives – A Method Proposal. Proc. Agile Processes in Software
Engineering and Extreme Programming (XP 2012), May 2012, pp. 177-184.

Bjarnason E, Berntsson Svensson R, Regnell B (2012b) Evidence-Based Timelines
for Project Retrospectives—A Method for Assessing Requirements Engineering
in Context. IEEE 2nd Int. Workshop on Empirical Requirements Engineering
(EmpiRE), pp. 17-24.

Bjarnason E (2013) Research study material on evidence-based timeline
retrospective method on-line at (last accessed 2013-03-20):
http://serg.cs.lth.se/research/experiment_packages/ebtretro/

Cabral Silva Filho R, Cavalcanti da Rocha AR (2010) Towards an Approach to
Support Software Process Simulation in Small and Medium Enterprises. 36th

Euromicro Conference on Softw. Eng. and Adv. Appl. (SEAA), pp.297-305.
Collier B, DeMarco T, Fearey P (1996) A Defined Process for Project Postmortem

Review. IEEE Software, vol. 13, issue 4, pp. 65-72.
Derby E, Larsen D (2006) Agile Retrospectives: Making Good Teams Great!

Pragmatic Bookshelf.
Dikici A, Turetken O, Demirors O (2012) A Case Study on Measuring Process

Quality: Lessons Learned. 38th Euromicro SEAA’12, pp.294-297.
Drury M, Conboy K, Power K (2011) Decision Making in Agile Development: A

Focus Group Study of Decisions and Obstacles. Agile Conference, pp. 39-47.
Emami MS, Binti IthninN, Ibrahim O (2010) Software Process Engineering:

Strengths, Weaknesses, Opportunities and Threats. 6th Int. Conference on
Networked Computing (INC), pp.1-5.

Fetzer K, Hess A, Lange K et al. (2013) Weber Schlussbericht Gestaltung intuitiver
Benutzung mit Image Schemata (Final report) (www.ibis-projekt.de)

Hurtienne J, Weber K, Blessing L (2008) Prior Experience and Intuitive Use: Image
Schemas in User Centred Design. Langdon, Clarkson, Robinson (Eds.),
Designing Inclusive Futures. Springer.

Jørgensen M, Sjøberg D (2000) The Importance of NOT Learning from Experience.
Proc. Of European Softw. Process Improvement, EuroSPI’2000, pp. 2.2-2.8

Kerth N (2001) Project Retrospectives. A Handbook for Team Reviews. Dorset
House.

Lacheiner H, Ramler R (2011) Application Lifecycle Management as Infrastructure
for Software Process Improvement and Evolution: Experience and Insights from
Industry. 37th Euromicro Conf. on Softw. Eng. and Adv. Appl. pp. 286-293.

Robson C (2002) Real World Research. 2nd ed. Blackwell Publishing.
Runeson P, Höst M, Rainer A, Regnell B (2012) Case Study Research in Software

Engineering: Guidelines and Examples, Wiley.

188

PAPER VI

GAP FINDER: ASSESSING AND
IMPROVING THE INTEGRATION OF

REQUIREMENTS AND TESTING1

A closer integration of requirements engineering and testing (RET) can strengthen
the coordination and alignment within a software project and enable the discovery
of issues and misunderstandings earlier, rather than later. This integration of various
activities can be achieved by applying alignment practices. However, each
organisation and project is different and there is no one-fits-all set of practices.
Rather, for each organisation and project the processes need to be tailored and
improved to match the current targets and challenges.

We propose a process improvement method called Gap Finder that can support
project teams in addressing weak RET alignment. The method can detect
problematic gaps between people and between artefacts, and then identify practices
that can decrease or bridge these gaps. For example, cognitive gaps in domain
knowledge between requirements and testing roles may be bridged by user testing
or by cross-reviews of test cases and requirements. The Gap Finder method is based
on a theoretical framework of the impact of RET alignment practices on different
types of distance. A formative evaluation of this method was performed through a
case study in which Gap Finder was applied to an on-going development project. A
qualitative and mixed-method approach was taken in the evaluation including
ethnographically-informed observations.

The results show that Gap Finder can be used to detect gaps causing
misalignment and to identity suitable practices for mitigating these. This
demonstrates the feasibility of the approach to consider and measure distances as an
underlying factor of alignment. Furthermore, the visualisation of these distances
was found to enable a constructive group discussion around gaps and support the
project team in identifying new improvement areas.

The insights on the impact of gaps on RET alignment reported in this paper can
provide practitioners with an increased awareness of these factors and their
potential impact on the development process. Furthermore, Gap Finder provides a
stepping stone for further research into RE distances and RET alignment.

1 By Elizabeth Bjarnason, Helen Sharp and Björn Regnell. To be submitted.

190

1 Introduction
Repeatedly developing software that meets the demands of the market and of the
customer concerning both functionality and quality requires a well-functioning
development organisation. Coordination of the different roles and activities of the
organisation can enhance their alignment towards common goals. Coordination is
supported by suitable software processes and practice, but also relies heavily on
softer aspects of interaction and communication between individuals and teams.
Software artefacts may also support this communication in which case the structure
and quality of those artefacts also affect the coordination within a project.

Software testing requires a clear understanding of the expected behaviour in
order to validate that we are ‘building the right product’ (Boehm 1981) and to
verify that we are ‘building the product right’ (Boehm 1981). This understanding
can be provided by requirements engineering (RE) activities and a clear
communication of the requirements (Damian 2005, 2006, Bjarnason 2011).
However, when the requirements are unclear and ambiguous this can lead to an
increased frequency of test failures (Ferguson 2006). Furthermore, weak alignment
and coordination of the RE activities and roles with those of software testing may
lead to serious implications both for development projects and for the resulting
software products. Examples of this include increased development lead time,
delayed deliveries, and problems with software functionality and quality (Damian
2005, 2006, Uusitalo 2008, Bjarnason 2013b).

Defining a process that will support the necessary coordination and alignment
between RE and testing is non-trivial. Apart from the fact that each organisation
and project is different and has different targets, how well a process is applied
depends on how individual engineers function together. While there is a plethora of
methods, frameworks and practices for improving on software processes (including
CMMI, SPICE etc.) methods and techniques for assessing and improving the softer
aspects of software development are scarce.

We propose a method called Gap Finder for assessing and improving the
alignment between requirements and testing by measuring underlying factors in the
form of distances between people and between artefacts. The method is designed to
pinpoint gaps that negatively affect alignment and propose relevant practices for
mitigating these gaps. Alignment can then be improved by applying these practices.

The presented contribution of the Gap Finder adds to our previous empirical
work into challenges and practices for RET2 (RE and testing) alignment (Bjarnason
2013b). Furthermore, the proposed method is based on a previously reported
framework of RE distances (Bjarnason 2013a). The results of our previous research
indicate that a closer integration of requirements and testing along one or more
dimensions may support increased coordination and alignment. For example, that
shorter geographical and cognitive distance between the involved roles may
decrease communication gaps and thus avoid testing based on an incorrect
understanding of requirements.

In this paper, we report on a formative evaluation of the initial version of the
Gap Finder with the aim of assessing how the method supports project teams in

2 In this paper the term RET alignment is used to mean the same as the term REVV (RE and
Verification & Validation) alignment used in our previously published work on this topic.

Gap Finder: Assessing and Improving the Integration of Requirements… 191

improving the alignment between requirements and testing. The study addressed the
following four research questions, for the area of integration of requirements and
testing:

RQ1 How relevant is the set of distances included in Gap Finder to this area?
RQ2 How relevant are the practices identified by the Gap Finder method?
RQ3 How does the Gap Finder approach of assessing and visualising distances

stimulate reflections of this area within a project team?
RQ4 What improvements can be made to the Gap Finder method?

The method was applied to an on-going development project and evaluated
through observations, interviews and a survey. Ethnographically-informed
observations (Robinson 2007) were undertaken in the evaluation study with a focus
on understanding how well the method captures relevant issues and identifies
suitable practices.

The rest of this paper is structured as follows: Section 2 describes the research
underpinning the Gap Finder method, while Section 3 describes related work. In
Section 4, the Gap Finder method is presented. The case in which the method was
evaluated is presented in Section 5, while the research method used in the
evaluation study is described in Section Table 4. The results of the evaluation are
reported in Section 7 and discussed in Section 8 including potential improvements.
Finally, we conclude by summarising and describing future work in Section 9.

2 Background and Underpinning Research
The Gap Finder method stems from our previous research on RET alignment and
RE distances, and rests on the findings of that work, see Figure 1. Challenges and
practices of RET alignment were identified through an interview study (Bjarnason
2013b). While working with that study the concept of various kinds of distance
between requirements and testing affecting RET alignment was conceived. This
concept was explored through a systematic mapping study (Bjarnason 2013a) of the
use of the term distance between RE and later software development activities. The
RET interview material (from a previous study) was then reanalysed using this
framework of RE distances to identify relationships between individual RE
distances and RET practices. The outcome of this re-analysis is a theoretical

Figure 1. Overview of the building blocks underpinning the Gap Finder method.

192

framework called the Gap Model (Bjarnason 2013c, Chapter 1). Gap Finder was
designed as a SPI (software process improvement) method for improved RET
alignment by utilising the knowledge of the Gap Model concerning RE distances
and which RET practices that are affected by them. Each of the underpinning
building blocks including the design of Gap Finder are described below.

2.1 Practices for RET Alignment

In a previous case study into RET alignment a set of RET alignment practices used,
or suggested for use, by industry were identified (Bjarnason 2013b). These results
were based on 30 semi-structured interviews of 90 minutes each with practitioners
from six different software companies, comprising a wide range of people with
experience from various roles relating to RE and testing.

Four main factors were identified as affecting RET alignment. Firstly, softer
aspects such as communication and coordination within a development organisation
is one of the major challenges in achieving good alignment with testing since
requirements are a crucial starting point for testing. Secondly, the quality of the
requirements engineering effort is critical to the alignment of the testing activities
aimed at validating and verifying the requirements. Thirdly, size is a key variation
factor of alignment and improvement practices need to be selected and tailored to
suit the specific company including its size and domain. Fourthly and finally, the
motivation required for applying alignment practices varies. For safety-critical
development this motivation is driven by external enforcement, while internal
motivation is required for non-safety critical development. Internal motivation in
turn relies on insight into the balance between cost and benefits of applying RET
alignment practices.

Ten categories of alignment practices were identified, namely (P1) RE
practices, (P2) validation practices, (P3) verification practices, (P4) change
management practices, (P5) process enforcement, (P6) tracing practices, (P7)
traceability responsible role, (P8) tools, (P9) alignment metrics, and (P10) job
rotation. In total, the results from this RET alignment study include 27 individual
practices ranging from high-level practices such as P5 Process enforcement to
specific practices such as P2.4 Management base launch decision on test report.

2.2 Requirements Engineering (RE) Distances

Different types of distance between RE and later development activities were
investigated through a systematic mapping study (Bjarnason 2013a). The full map
contains 53 peer-reviewed papers and 13 different RE distances were found. These
were categorised as being between people, between artefacts, or between artefacts
and reality. Eight of the distances were between people: geographical, temporal,
socio-cultural, cognitive, psychological, opinion, power and organisational. Four
distances were found to be between artefacts, namely semantic, similarity, syntactic
and impact. While finally, one distance was found to concern adherence between an
artefact and reality.

In general, long distance between people has been found to have a negative
effect on communication and collaboration within projects. However, there are
unexplained contradictory findings that indicate decreased delays in communication

Gap Finder: Assessing and Improving the Integration of Requirements… 193

over geographical distance in certain contexts (Wolf 2008). These may be explained
by the effect that different practices have on the characteristics of the
communication channel that is used, i.e. formal or informal, synchronous or
asynchronous.

Although there is less research into distances between artefacts it is an
interesting area for future RE research. It has been suggested as applicable in the
context of requirements change and traceability. For example, that the distance
between the previous and a changed version of an artefact can be used to assess the
impact of the change (Jilani 2001, Briand 2006). Distance between RE artefacts and
artefacts of later development activities, e.g. design and testing, could potentially be
used to measure coverage and consistency between requirements specifications and
other artefacts such as design and test specifications, and source code.

2.3 The Gap Model: A Framework of Distances

The Gap Model is a theoretical framework of distances relevant to RET alignment
that provides a knowledge base of relationships between RET practices and RE
distances. The model was constructed by analysing empirical data against the two
theoretical frameworks briefly described in the previous sections (Sections 2.1 and
2.2), the one for RE distances (Bjarnason 2013a) and the one for challenges and
practices of RET alignment (Bjarnason 2013b). The new framework was derived
from the empirical data gathered in the case study on RET alignment. This data was
re-analysed to identify which distances were perceived to be affected by each RET
alignment practice. Details on the design and content of the Gap Model are reported
by Bjarnason (2013c, Chapter 1, Section 4).

Currently eight RE distances are included in the Gap Model: (D1) geographical,
(D2) organisational, (D3) psychological and (D4) cognitive distances between
people; (D5) adherence distances to artefacts, (D6) semantic and (D7) navigational
distances between artefacts, and (D8) Temporal distance between activities. An
overview of these distances is shown in Table 1.

The Gap Model contains seven categories of RET practices, namely RE
practices (P1), Validation practices (P2), Verification practices (P3), Change
management practices (P4), Tracing practices (P63), Tool practices (P8) and
Development process (P11). In total the model contains 32 individual RET
practices, see (Bjarnason 2013c, Chapter 1, Table 2) for the full list of practices.

The impact of each RET practice on one or more RE distances is included in the
model and categorised as either decreasing or increasing the distance, or bridging it,
i.e. the practice reduces the negative effect of it without directly affecting the
distance. For example, applying the practice of Cross-role requirements reviews (an
RE practice) can bridge an organisational distance between requirements engineers
and testers without changing the organisational structure and thus the organisational
distance. This cross-role review practice can also decrease adherence distance
between an agreed and documented set of requirements by identifying
inconsistencies at the review and by updating the requirements documentation
accordingly. An overview of the Gap Model and included practice-distance
connections can be found in (Bjarnason 2013c, Chapter 1, Table 3).

3 Same numbering of practices as in the RET alignment study, see Section 2.1.

194

Table 1. The RE distances included in the Gap Model and in the Gap Finder.

Type of distance Between
PE

O
PL

E
D1 Geographical distance Physical distance of desks

Roles related to
requirements and

testing

D2 Organisational distance Distance between
organisational units
D3 Psychological distance Perceived effort to
communicate
D4 Cognitive distance Difference in knowledge

A
R

T
E

-
FA

C
T

S

D5 Adherence distance Difference betw. documented
content and perception of agreement or reality

Artefact and
reality

D6 Semantic distance Difference in meaning
ArtefactsD7 Navigational distance Effort to navigate between

A
C

T
IV

I-
T

IE
S

D8 Temporal distance Time between activities, e.g.
specifying and using a requirements specification

Activities

2.4 Design of the Gap Finder Method

The Gap Finder was designed to assess and improve on RE distances related to the
alignment of requirements and testing based on the Gap Model (see Section 2.3 and
Bjarnason 2013c, Chapter 1). Around this theoretical core, a measurement
instrument was designed for assessing the RE distances for a development project
(see further details below). A process for preparing, analysing and presenting the
outcome of these measurements has also been designed and includes the following
steps: preparations, measuring, gap analysis and gap workshop. The outcome of this
design, i.e. the Gap Finder method, is presented in Section 4.

2.4.1 Design of the Measurement Instrument

A measurement instrument for estimating the RE distances covered by the Gap
Model was created. The entities between which the distances were to be measured
were specified, and various aspects to measure for each distance were identified.
For example, the following aspects of semantic distance were define, namely
similarity, abstraction level and coverage between two related artefacts.
Furthermore, measurements and relevant scales were also designed for each
identified aspect of a distance. The design was guided by existing empirical data
and related research findings.

In this initial Gap Finder version the measurement instrument consists of
surveys and physical measurements. For practical reasons (timing and variations in
targeted participants), the survey questions were split into three separate surveys,
namely profile, communication and artefact survey. Templates for these surveys
were created and are available on-line, see (Bjarnason 2013d).

Gap Finder: Assessing and Improving the Integration of Requirements… 195

2.4.2 Design of the Analysis Step

An explorative approach was taken in the design of the analysis step (the gap
analysis, see Section 4.1.3). Based on a set of obtained measurements various
calculations of total distance were investigated. For example, average, minimum,
maximum, sum of pair-wise distances between the data points, and Cartesian
difference for multi-dimensional data points. Similarly, different ways of
visualising distances were explored including radar diagrams, plotting of data
points, and various graph representations.

When a gap has been recognised in the data, this can be compared against the
information in the Gap Model. Thereby RET practices found to address this
distance type can be derived based on the knowledge obtained from previous
studied (Bjarnason 2013b). This information is represented in the Gap Model.

2.4.3 Design of Discussion with Development Team

One of the main aims of discussing the Gap Finder outcome with the development
team at the gap workshop (see Section 4.1.4) is to obtain a consensus and
commitment to an agreed set of improvement practices. This is a vital factor in
effectively implementing these changes. In addition, the session is intended to
facilitate group reflection on the outcome of the assessment and thereby provide
validation of the Gap Finder output. Therefore, this discussion session was designed
as a focus group (Robson 2002) involving all team members of the assessed project.
The intention of this design choice was to support an open discussion of the
obtained distance measurements and the identified improvement practices.

3 Related Work

3.1 Aligning Requirements and Testing

There is a limited amount of research into the alignment of requirements and
testing, rather most research tends to focus on one area (Barmi 2011). Of the
research published in the area of RET alignment Barmi et al. (2011) found that
most studies were on model-based testing including a range of variants of formal
methods for describing requirements with models or languages from which test case
are then generated. Barmi et al. also identified traceability and empirical studies
into alignment challenges and practices as main areas of research. Only 3 empirical
studies specifically focusing on RET alignment were found. Of these, 2 originate
from the same research group (namely Kukkanen 2009 and Uusitalo 2008) and the
third one is from our previous RET alignment study (Sabaliaskaute 2010, Bjarnason
2013b). Barmi et al. draw the conclusion that although the areas of model-based
engineering and traceability are well understood, there is a need for practical
approaches and methods for implementing these.

Related empirical studies of RET alignment consist of a case study into jointly
improving the RE and testing processes by Kukkanen et al. (2009) and an interview
study investigating alignment practices in industry by Uusitalo et al. (2008).
Kukkanen et al. (2009) found that alignment can be improved by integrating the

196

requirements and testing processes, including clearly defining RE and testing roles
for the integrated process. The most important aspect in achieving alignment was
found to be ensuring that ‘the right information is communicated to the right
persons’. This aspect was supported by connecting the processes and the people
from both areas in combination with applying good practices that support this
connection. The practices implemented to support RET alignment were: the use of
metrics, traceability with tool support, change management process and reviews of
requirements, test cases and traces between them (Kukkanen 2009). Similar and
additional alignment practices are reported by Uusitalo et al. (2008) based on six
interviews with mainly test roles from six different companies. Their results include
a number of practices that increase the communication and interaction between
requirements and testing roles, namely early tester participation, traceability
policies, considering feature requests from testers, and linking test and requirements
people (Uusitalo 2008). Linking people or artefacts were seen as equally important
by the interviewees who were unwilling to select one over the other. Most of the
practices reported by Uusitalo et al. were also identified in our RET alignment
study (Bjarnason 2013b) with the exception of the specific practice of linking
testers to requirements owners and the practice of including internal testing
requirements in the project scope.

Traceability is a long-standing topic that has been research since the beginning
of software engineering, i.e. the 1960s (Randell 1969). However, despite
traceability being an (acknowledged) important aspect in high quality development
(Watkins 1994, Ramesh 1997) and therefore important to software verification, the
implementation of this practice still remains elusive and a challenge for most
companies (Gotel 1994, Watkins 1994, Jarke 1998, Ramesh 1998). Traceability
between requirement artefacts and other development artefacts has a number of
benefits and can support impact analysis (Gotel 1994, Watkins 1994, Ramesh 1997,
Damian 2005, Uusitalo 2008, Kukkanen 2009), lower the cost of testing and
maintenance (Watkins 1994, Kukkanen 2009), and increase the test coverage
(Watkins 1994, Uusitalo 2008) and thereby the quality of products (Watkins 1994,
Ramesh 1997). However, a wide range of challenges connected to traceability have
also been reported, e.g. by Cleland-Huang (2003). These challenges include artefact
volatility, informal processes, lack of clear responsibilities for tracing,
communication gaps, insufficient time and resources for maintaining traces, low
insight into cost-benefit of tracing, and a lack of training (Cleland-Huang 2003). It
has been suggested that the cost of establishing and maintaining traces can be
reduced by automatic or semi-automatic recovery of traces (De Lucia 2007, Hayes
2007, Lormans 2008) or by tracing at a higher abstraction level such as at the user
scenario level thereby reducing the number of traces (Post 2009). In the context of
our work, it is interesting to note that the traceability gurus Gotel and Finkelstein
(1994) express that a particular concern in improving requirements traceability is
the need to facilitate informal communication with those responsible for specifying
and detailing requirements.

Model-based testing is a large research field within which a wide range of
formal models and languages for representing requirements have been suggested
(Dias Neto 2007). Similarly to the field of traceability, model-based testing also has
issues with practical applicability in industrial development (Nebut 2006,
Mohagheghi 2008, Yue 2011). Two exceptions to this are provided by Hasling et al.

Gap Finder: Assessing and Improving the Integration of Requirements… 197

(2008) and by Nebut et al. (2006) who both report on experiences from applying
model-based testing by generating system test cases from UML descriptions of the
requirements. The main benefits of model-based testing are in increased test
coverage (Nebut 2006, Hasling 2008), enforcing a clear and unambiguous
definition of the requirements (Hasling 2008) and increased testing productivity
(Grieskamp 2011). However, the formal representation of requirements often
results in difficulties both in requiring special competence to produce (Nebut 2006),
but also for non-specialist people, e.g. business roles, in understanding these models
of requirements (Lubars 1993). In addition, the risk of errors in the models needs to
be considered when applying this approach (Hasling 2008). An alternative to formal
models is scenario-based models, which has been proposed by Regnell and
Runeson (1998), Regnell et al. (2000) and Melnik et al. (2006). Test cases are then
defined to cover requirements defined at a high level of abstraction as use cases,
user stories or user scenarios. The details are then defined as test cases and used to
document the detailed requirements. This is an approach often applied in agile
development (Ramesh 2010). Melnik et al. (2006) found that using executable
acceptance test cases as detailed requirements is straight-forward to implement and
breeds a testing mentality. Similar positive experiences with defining requirements
as scenarios and acceptance test cases are reported by Martin et al. (2008)

3.2 Software Process Improvement

The field of software process improvement (SPI) was established in the 1980s by
the pioneers Watts Humphrey (1989, 1997) and Victor Basili (1988). The capability
maturity model CMM (now CMMI, Chrissis 2007) was developed by Humphrey
(1989) in the 1980s and is now a widely used framework for process improvement.
SPI is rooted in the perspective that ‘the software process is the set of tools,
methods, and practices we use to produce a software product’ (Humphrey, 1989,
p.3) The process is then an important instrument in developing and maintaining
quality software products in an efficient, reliable and repeatable way. In addition,
SPI is based on quality management and organisational learning, and emphasises
the concept of goal-oriented measurements (GQM, Basili 1992), as identified by
Dybå based on synthesis from a literature review (Dybå 2000). Furthermore, CMMI
emphasises that the process is the mechanism that integrates and synchronises the
people, the work procedures and the tools involved (Chrissis 2007).

There is a wide range of SPI frameworks, which in general share the same main
steps of first evaluating (or assessing) the current process, and then identifying,
implementing and evaluating suitable process improvements. These frameworks
may be categorised into two main approaches: inductive and prescriptive (Briand
1995). Inductive (or bottom-up) frameworks, such as QIP (Basili 1985) and Lean
Six Sigma (George 2002), take their stance in the organisational situation and
context of the organisation when identifying potential improvements. In contrast,
prescriptive (or top-down) frameworks, such as CMMI (Chrissis 2007) and SPICE,
i.e. ISO/IEC 15504 (ISO/IEC 2004-2011), mainly base their improvement
suggestions on a wide set of best practices. The degree to which organisation-
specific goals and underlying conditions are catered for thus varies depending on
approach. Furthermore, rather than merely applying a prescribed practice based on
previous experience an inductive framework would consider and analyse

198

underlying factors of observed issues and suggest improvements that address
identified root causes. Thus, prescriptive methods do not consider the potential
effect of contextual factors, but rather treat all software organisations as equal
independent of size, average project lead time, targeted product levels, domain etc.

Within SPI in general, processes are prioritized rather than people (in contrast to
the approach taken in agile development). Although people are acknowledge as
important it is primarily from the perspective of having the competence required for
their roles and the activities they are to perform as prescribed by the software
process (Humphrey 1989) rather than how the software process can be tailored to
match the individuals working within a software development project or
organisation. There is a parallel framework to CMMI for personal software
processes (PSP, Humphrey 1997) that focuses on practices for the individual
including some collaboration practices, e.g. code review practice, that are reported
to decrease defect rates with no cost to developer productivity (O’Beirne 1997).

Finally, techniques such as retrospective reflection, information flow analysis,
process modelling and process simulation are also used for assessing and
identifying software process improvements.

Retrospective reflection is used to consider and analyse past events and
experiences, to identify problems and potential improvements (Collier 1996, Derby
2006, Drury 2011). Iteration retrospectives are a common practice within agile
development and they are strongly connected to the concept of self-governing
teams. The retrospectives are then the forum for discussing and agreeing on process
improvements within the project team (Drury 2011). In traditional development,
project retrospectives (also called lessons learnt or project post-mortems) are more
common and range from semi-structured meetings were project members discuss
the past project to more structured meetings either with or without prepared input
concerning project events.

Analysis of information flows and identification of bottlenecks are both based on
the idea that software development relies on the transformation of information, and
thus aims at ensuring an effective and efficient flow of this information through the
project. For example, the resolution time for modification requests has been found
to be reduced when the communication patterns between engineers are well-
matched to technical dependencies between their work (Cataldo 2008). A similar
approach in planning and managing information flows is applied in the FLOW
Mapping method (Stapel 2011). The method suggests an improved flow by
capturing the information needs of a project and developing a communication
strategy based on these needs.

Process modelling (Yu 1994) and process simulation (Kellner 1999) are two
connected areas, although modelling can be used for SPI without simulating that
model. A model of an existing or an improved process can facilitate group
communication and understanding of that process, and thereby support improving
and managing this process. Furthermore, modelling can enable the implementation
of process guidance and steering in the tool environment, thereby enforcing the
process prescribed by the model.

Gap Finder: Assessing and Improving the Integration of Requirements… 199

3.3 RE and RET Alignment in the Context of SPI

Several studies show that RE is a challenging, but important, area to address with
SPI frameworks. This is most likely due to the serious implications that unclear and
changing requirements can have on later development activities. Through a
systematic literature review Lavallée and Robillard (2012) found that SPI leads to
an improved quality of documentation although at an increased cost, but also report
on mixed findings concerning the impact on requirements issues in general. For
example, there are studies that report that SPI had no impact on requirements
problems (Chen and Huang 2009), but also studies that found that SPI can improve
the quality of the requirements and then also improve the overall quality of the
software product (Kandt 2009). However, Harter et al. (2012) found that there was
a significant decrease in the rate of severe defects at higher CMM levels, but that
this effect was not present for projects with a high degree of requirements
ambiguity. They conclude that ‘investments in requirements clarification and
process improvement [á la CMM] are not substitutes for each other, but instead tend
to be complementary’ (Harter 2012). This strong (negative) impact of weak RE
correlates well with findings reported by Hall et al. (2002) that requirements issues
cause the most software process issues, including changes to user requirements and
delivering erroneous software to customers. Furthermore, softer issues including
lack of skill and staff circulation were found to cause more requirements-related
problems in development than technical issues (Hall 2002).

The current version of CMMI (Chrissis 2007) does include process areas for
RE, validation and verification, and practitioners are reported to agree that
documentation of requirements is a key practice of CMMI (Lavallée 2012).
Requirements engineering is covered in CMMI by the two process areas
requirements development (at maturity level 3) and requirements management (at
maturity level 2), and verification and validation are covered by corresponding
CCMI process areas by those names (both at maturity level 3). Furthermore, the
CMMI framework describes intended connections between these process areas and
includes alignment practices such as traceability and cross-review of requirements
against project plans and other work products, e.g. design and test artefacts,
managing requirements changes. These practices have been identified as
supporting RET alignment (Bjarnason 2012b, Uusitalo 2008) and applying them as
part of a CMMI effort would thus be expected to lead to an improvement. However,
we are not aware of any empirical research studies on the impact of CCMI (level 2-
3, and higher) on RET alignment.

However, there are some studies that report on the correlation between the RE
and the testing processes. Damian and Chisan (2006) found that simultaneously
improving these processes can lead to pay-offs in improved test coverage and risk
management, and in reduced requirements creep, overscoping and waste, resulting
in increased productivity and product quality (Damian 2006). Similarly, Kukkanen
et al. (2009) report that improving the requirements and testing processes by
integrating these two processes for one case in the safety-critical domain led to
improvements in customer satisfaction and in product quality. The implemented
improvements included clearly defining RE and testing roles for the integrated
process, improved alignment and coordination by connecting processes and people
from requirements and testing, and implementation of good practices that support

200

this connection. Furthermore, the risk of overlaps and gaps in the processes for RE
and testing, e.g. in roles and activities, was found to be reduced when concurrently
improving both processes (Kukkanen 2009).

3.4 Related SPI Methods

There are some inductive SPI frameworks that similarly to Gap Finder also include
project team reflections and some element of theory. These include an iterative
improvement process by Salo and Abrahamsson (2007), a framework proposed by
Pettersson et al. (2008) called iFLAP and a method called the team radar
instrument proposed by Brede Moe et al. (2009) and improved by Angermo
Ringstad et al. (2011). In addition, Unterkalmsteiner et al. (2013) present a
framework called REST-bench specifically aimed at assessing and improving RET
alignment. However, we are not aware of any method or framework that applies the
Gap Finder approach of deriving improvement suggestions from empirical-based
theory in the analysis step of the assessment. Rather, the related SPI frameworks
derive specific improvement suggestions through elicitation with the practitioners,
either in an assessment step or as part of a project team meeting.

The iterative improvement process proposed by Salo and Abrahamsson (2007)
consists of a number of short steps which pivot around a retrospective meeting with
the development team. These steps including the retrospective meeting can be
integrated into agile iteration sprints and repeated throughout a project, thereby
achieving continuous process improvement in a structured manner. Process
improvements are derived based on obstacles and issues elicited from the software
development team. The found issues are grouped and discussed, and an
improvement plan for the upcoming iteration is agreed at a retrospective meeting
with the team. The method has been evaluated for five industrial cases by applying
the method to 3-4 subsequent iterations of development projects. The method was
found to yield improvements both in practice and in increased project-team
satisfaction. The study also indicates that up to a third of agreed improvement
actions were not implemented and the authors draw the conclusions that the SPI
activities need to be more systematic. Furthermore, organisational support was
found to be required for a third of the actual performed SPI activities of the project
teams. The authors’ believe that this support is vital for the team’s motivation to
participate in the SPI activities.

The iFLAP SPI improvement framework presented by Pettersson et al. (2008)
produces improvement plans through eliciting improvement issues from
practitioners and by supporting the organisation in identifying an appropriate
improvement plan. In the improvement planning various factors are considered
including organisational needs, restrictions, cost and risk. The planning also entails
prioritising and identifying dependencies between the improvements, and actively
ensuring there is sufficient agreement to the improvement effort. Two case studies
of applying iFLAP at Volvo Technology with the aim of improving their RE
practices are presented as validation of the method including a number of lessons
learnt from these studies.

Brede Moe et al. (2009) propose an instrument called the team radar for
improving on agile software development projects by qualitatively assessing factors
found to influence team work and then visually present and discuss these with the

Gap Finder: Assessing and Improving the Integration of Requirements… 201

project team to identify improvements. The five assessed factors were derived from
empirically-based theory on team-work challenges and are: shared leadership, team
orientation, redundancy, learning and autonomy. These factors are assessed through
semi-structured interviews with team members and a subsequent discussion of these
with the involved researchers who then rate each of the five factors between 0 and
10. These ratings are presented to the development team using a radar diagram and
jointly reflected on with the aim of improving team work by strengthen the
underlying factors. The instrument was found useful to practitioners in identifying
improvements and the five factors were confirmed as relevant to team work in agile
development. Furthermore, the instrument provided a common vocabulary for the
practitioners and the researchers to discuss the topic, i.e. team work.

The team radar instrument (Brede Moe 2009) was further improved by
Angermo Ringstad et al. (2011) through strengthening the diagnosis step and by
applying action planning. The diagnosis phase of the method was expanded to (in
addition to interviews) also include observations of the assessed team’s daily work.
The rating of the underlying factors for team work was based on a structured
analysis of all the gathered data, i.e. interview transcripts and field notes from the
observations. An action plan to address found issues was then specified at a meeting
where the ratings were presented to the team who were invited to discuss the
presented picture and areas to improve on. The defined actions were based on the
underlying theoretical framework of factors affecting team work in agile
development. This improved version of the team radar was found to support project
teams by illuminating issues not previously discussed within the team. This was
contributed to providing a view of the situation by highlighting underlying factors
and causes, rather than merely pointing out experienced problems.

The REST-bench (Unterkalmsteiner 2013) assesses RET alignment by
modelling the information flow between requirements and testing for a specific
project using an artefact map. By eliciting information individually from
requirements and testing roles inconsistencies and incongruences can be uncovered.
These are then discussed and resolved at a common workshop where the flow is
also analysed and improvements identified. When applying the method on a one-
year project at Ericsson AB, a number of misunderstandings were uncovered and
subsequently resolved at the workshop, which also resulted in identifying
bottlenecks and sub optimisations in the RET interaction.

4 The Gap Finder Method
Gap Finder enables assessing a development project by measuring a set of RE
distances and identifying relevant RET improvement practices by consulting the
theoretical framework of the Gap Model. These practices can bridge or decrease
troublesome distances and can thus support improved alignment between
requirements and testing (RET). The distance measurements obtained using the Gap
Finder provide an iRE profile (integrated RE profile) of the current level of RET
integration for a project. This profile and the identified improvement practices are
presented to the assessed project team at a gap workshop. This workshop has the
dual purpose of validating the output of the Gap Finder and agreeing with the team
on which improvement practices to implement.

202

Before applying Gap Finder the generic parts of the method need to be tailored
to the specific case. In particular, this applies to the measurement instrument which
needs to be specialised to the specific roles and artefacts involved in the
requirements and testing activities. This requires knowledge of the current process
for the specific case. The user guide that is part of the Gap Finder method provides
guidelines for how to tailor and apply the method to a case, and is available on-line
(Bjarnason 2013d).

The theoretical framework of the Gap Model (see Section 2.3) on which the Gap
Finder relies acts as a knowledge base. The Gap Model contains relationships
between distances and RET alignment practices. This framework is used in the
analysis of the measured distances, called gap analysis, to identify relevant
improvement practices. These practices are identified by comparing the distances
found in the obtained iRE profile with the Gap Model and extracting RET practices
known to bridge or decrease troublesome distances. The main steps for applying
Gap Finder are described in Section 4.1 while the measurements are presented in
Section 4.2. The iRE profile is outlined in Section 4.3 and the gap analysis is
described in Section 4.3.

4.1 The Four Main Steps of the Method

Applying Gap Finder to a specific case involves four main steps: (I) preparations,
(II) measuring, (III) gap analysis and (IV) gap workshop. After preparing and
tailoring the method for the specific case (step I) the distances can be measured
(step II). These measurements are then analysed to identify gaps and potential
improvement practices (step III). The outcome of this gap analysis is presented at a
gap workshop (step IV) and a set of practices are agreed upon. These practices are
then implemented (after step IV) and the project is re-assessed by iterating from
step II. An overview of the steps involved in applying the Gap Finder is shown in
Figure 2.

4.1.1 Step I: Preparations

For successful application of Gap Finder, the scope, extent and timeframe of the
assessment needs to be prepared and planned in agreement with the host
organisation in which the assessment is to take place. In addition, the Gap Finder
measurement instrument needs to be tailored and adapted to the processes of the
assessed project. Both of these activities require insight into the processes and
practices of the organisation. The method may (in the future) be applied by
someone with this knowledge, e.g. a process engineer. Otherwise initial
investigations are needed to obtain this knowledge. In particular, knowledge of
roles and artefacts involved in the requirements and testing processes is needed.

The tailoring entails adapting the measurement instrument (see Section 4.2) by
configuring it for the exact roles and artefacts applicable to the specific case. For
example, if developers are involved in detailing requirements (as for the evaluated
case) their role needs to be included in the assessment as part of the set of roles
involved in requirements activities. This entails tailoring the measurement
instrument to include their technical skills as developers in the measurement of
cognitive distance. In this case, the measurement instrument needs to be extended
with an additional measure to cover this technical skill (design and development)

Gap Finder: Assessing and Improving the Integration of Requirements… 203

and a survey question added for this. Furthermore, planning for applying the
method is also affected by this since the people fulfilling this role then need to be
included in the assessment, and agreement for this needs to be obtained from their
manager.

Furthermore, as part of the tailoring the survey questions need to be adapted to
refer to case-specific terminology. This will reduce misunderstandings and support
a more consistent understanding of the questions by the survey participants. For
example, the survey question that mentions ‘the system’ can be clarified by adding
the name of the system the assessed team are developing.

Tailoring needs to be performed each time Gap Finder is to be applied for a new
case. Furthermore, as practices, roles and terminology change for a case the
measurement instrument may need to be updated to reflect this.

The output of the preparation step is a measurement instrument adapted to the
specific case, and an agreement concerning the project and time period for which to
perform the assessment.

Figure 2. An overview of the Gap Finder method (generic and case-
specific parts) and the four steps of method application.

204

4.1.2 Step II: Measuring Distances

Gap Finder’s measurement instrument consists of three surveys: profile,
communication and artefact survey. The profile and communication surveys contain
questions concerning the project members, while the artefact survey investigates
distances for specific requirements.

The surveys are administered to the roles involved in the requirements and
testing activities. The first time Gap Finder is applied to an organisation, it is
recommended to use interviews for the surveys. This will allow the participant to
ask for clarifications, which can enable a more uniform understanding of the
questions and of the scales used to answer them. In addition, the interviewer can ask
follow-up questions and thereby obtain a richer picture of potential issues and
reasons for them. This is particularly important when the interviewer is not
intimately acquainted with the project.

4.1.3 Step III: Gap Analysis

When the results of the distant measurements have been collated into the iRE
profile this can be analysed to identify gaps. Where the project displays potentially
troublesome gaps the Gap Model is consulted. The model provides information on
practices that can address these types of distance. Through analysis and comparison
of the distances found in the iRE profile against the information in the Gap Model a
set of improvement practices are identified. This analysis is further supported by
any additional knowledge about the specific case, e.g. contextual factors such as
project size, development model, specific practices applied.

The output of the gap analysis consists of a set of improvement practices that
may address the gaps identified in the iRE profile.

4.1.4 Step IV: Gap Workshop

The iRE profile and the improvement suggestions are presented to the assessed
project team at a gap workshop. For each distance type, the relevant parts of the
iRE profile including the gaps are shown and improvement practices presented. The
project members are encouraged to share their observations of potential issues
caused by the identified gaps and if and how the suggested practices may address
them. This allows for a validation of the gaps and practices identified through
applying Gap Finder. Furthermore, it includes the project members in the decisions
regarding which improvements to implement thereby increasing the probability of
successfully implementing the new practices.

4.1.5 After Step IV: Implement Practices and Iterate from Step II

After having implemented the agreed practices, the situation is re-assessed by
iterating from step II. The distances are re-measured (step II) and another gap
analysis (step III) is performed. In this gap analysis, the original and the new iRE
profiles are compared to assess if the previous gaps have been reduced and/or that
the effects of them have been minimised by the implemented practices. Additional
or different improvement practices may be uncovered through analysis of the new
iRE profile. These are then reviewed and discussed with the project team at another

Gap Finder: Assessing and Improving the Integration of Requirements… 205

gap workshop (step IV). At this session a decision is made as to whether or not the
SPI effort is completed, and if not the Gap Finder is re-iterated again from step II.

4.2 The Gap Finder Measurement Instruments

The Gap Finder measurement instrument used for assessing a project contains
eighteen measurements (see Table 2) that cover the eight RE distances of the Gap
Model (see Table 1 and Section 2.3). These measurements are applied to artefacts
and people involved in the requirements and testing activities. While some
distances are straight forward to assess, others are estimated through surveys with
self-rating questions. For example, geographical distance (D1) is assessed by
measuring the physical distance to walk between desks, while psychological
distance (D3) is measured through a survey question asking each team member to
rate the distance towards each other member of the team.

A majority of the distances are complex and contain several aspects. For these
distances there is one measurement per aspect and, thus, several measurements per
distance. For example, for cognitive distance (D4) five aspects are measured: one
aspect of prioritisation of quality aspects for the system, and three aspects of
different types of knowledge specifically domain, technical skill, organisation and
process.

Most of the survey questions have Likert-type scales with five options for the
respondent to choose between. For example, for psychological distance (D3, M3.1)
the respondents were asked to rate how hard it was to communicate with colleague
n by noting 1-5 for Not hard (1), Some effort required (2), Medium effort (3), Much
effort (4), Extremely hard (5). Similarly, for the knowledge aspects of cognitive
distance (M4.1-M4.3) the respondents were asked to grade their own competence
using Benner’s (1982) five levels of experience, i.e. Novice (1), Advanced beginner
(2), Competent (3), Proficient (4) and Expert (5). The cognitive distance between
two people was then measured by calculating the difference between their levels of
competence. For the artefact survey, the aspects abstraction (M5.2.3, M6.3) and
coverage (M5.1.2, M5.2.2, M6.2) are directional, i.e. the abstraction level of
artefact A may be higher or lower than artefact B. For these questions the following
scale was used: Much more, Somewhat more, The same, Somewhat less, Much less,
and Can't say.

The aspect of priority for cognitive distance (M4.4) was assessed with a survey
question on the relative priority of the quality characteristics specified in ISO/IEC
9126-1. The respondent was asked to distribute 30 resources over the six quality
characteristics. The distance between two people was then assessed by calculating
the Cartesian distance between their responses.

The distance for the measured aspects can be calculated in various ways either
individually per measurement or combined to a total distance for the whole project.
For example, the average value for one aspect of distance between each pair of team
members can be considered, or the distance between the minimum and the
maximum value. The total distance for a distance type for which multiple aspects
are measured can be obtained by calculating the Cartesian distance between the
multi-dimensional data points for each participant.

206

Table 2. Overview of measurements (M1-M8) per distance (D1-D8, see Table 1).

Measurement Distance Aspect Survey
M1 Physical distance between desks D1 Physical

Profile
surveyM2

Length of path in line organisational
tree between two people D2

Home unit
in line
organisation

M3.1 Perceived effort to communicate with
another person D3

Uni-
directional Comm

surveyM3.2 Perceived effort to communicate
between two people

Bi-
directional

M4.1 Difference between people’s
knowledge of system domain

D4

Domain
knowledge

Profile
survey

M4.2
Differences in competence within
technical areas affecting requirements
and testing alignment

Technical
skill

M4.3 Differences in knowledge of project
and organisation including processes

Process and
organisation

M4.4 Differences in prioritisation around
product

Priorities

M5.1.1 Difference between product actual and
agreed product behaviour

D5.1:
Delivered
vs agreed

reqs

Similarity

Artefct
survey

M5.1.2 Difference in coverage between actual
and agreed product behaviour

Coverage

M5.2.1 Difference in meaning between
documented vs agreed requirements

D5.2:
Agreed vs
documntd

reqs

Similarity

M5.2.2
Degree of coverage between
documented vs agreed requirements

Coverage

M5.2.3
Difference in abstraction level
between documented vs agreed
requirements

Abstraction

M6.1 Difference in meaning between
requirements and testing artefacts

D6:
Reqs vs

test cases

Similarity

M6.2 Degree of coverage between
requirements and testing artefacts

Coverage

M6.3
Difference in abstraction level
between requirements and testing
artefacts

Abstraction

M7.1
Number of clicks to navigate from a
requirement to the test cases which
verifies it D7

Req to Test
cases

M7.2
Number of clicks to navigate from a
test case to the requirement(s) that is
verifies

Test case to
Reqs

M8
Length of time between specifying a
requirement and defining a test case
for verifying it

D8
Reqs – Test
case
definition

Gap Finder: Assessing and Improving the Integration of Requirements… 207

4.3 The iRE Profile

A project’s integrated RE profile for testing, or iRE profile, provides a view of the
project’s current level of RET integration. The iRE profile is produced by collating
the measurements for each distance. For example, the cognitive and psychological
distances between the roles responsible for requirements and testing are included in
the iRE profile.

The range and average value for each type of distance can be presented as part
of the project’s iRE profile. For measurements with the same scale, or scales that
can be normalised, the various aspects and distances can be visualised together in a
radar diagram, see example in Figure 3. In order to avoid the limitations of this type
of visualisation, the ordering of the axes needs to be considered and kept consistent,
in particularly when comparing diagrams over time.

The iRE profile is used as input to the gap analysis (step III) and to the gap
workshop (step IV). When analysing the iRE profile individual distances between
project members and roles may need to be considered to identify distances that need
addressing. Similarly upon re-assessing a project, the two versions of the iRE
profile can be compared to assess the effect of the implemented practices.

4.4 Gap Analysis: Identifying Improvement Practices

The set of distances within an iRE profile can be compared to the existing
knowledge of distances found in the Gap Model (see Section 2.3), thereby
identifying improvement practices that may address gaps within a project. For
example, if a large organisational distance is seen in the iRE profile the Gap Model,
based on empirical knowledge, suggests 14 different practices for mitigating this
gap. This large set can be whittled down to a more manageable number of practices
by a combination of matching the sets proposed by Gap Model for each identified
gap and considering the suitability including cost of each practice for the assessed
development organisation. The aim is to identify a small set of practices that can
address all the identified gaps and that are a good match for the organisation at
hand.

Figure 3. A radar diagram visualising part of an iRE profile of the assessed
project. The average distances are shown.

208

5 Case Description
A development project within The Open University’s IT unit provided the case for
this evaluation. The Open University is the largest academic institution in the UK
with more than 240,000 students studying from all over the world. The IT unit is
responsible for the day-to-day management of the university’s information systems
and in-house development of some systems. The studied project is part of a
programme developing a system for student administration and curriculum
management to meet the new requirements posed by evolving curriculum needs,
changed fees and funding regulations, and subsequent changes to internal business
processes. Prior to and in parallel with these changes the IT department itself has
also undergone a number of changes. The management structure was overhauled
and externally recruited staff appointed at all levels. Replacing the phase-based
process for software development with agile work practices has had a large effect
on the requirements and testing activities. Test engineers have been recruited for
function and system testing. An overview of the case is provided in Table 3.

The Scrum development method is applied at team and intra-team levels. Each
development team consists of a product owner, a requirements analyst, a tester, a
number of developers and a scrum master. In addition, there is also a project
manager responsible for the project to which the team delivers. The product owner
represents the business and is responsible for the scope including signing off on
acceptance of project deliveries. The requirements analyst is responsible for
eliciting and defining the requirements in close collaboration with the product
owner and the development team. The scrum master, project manager, developers
and testers all take an active part in discussing, and thereby defining, the detailed
requirements. Finally, the tester within the team is responsible for verifying that the
software produced by the team corresponds to the agreed requirements. The team
members of the studied development team are characterised in Table 4.

The project scope is described in definition documents and in agile epics by
senior requirements analysts (not necessarily the requirements analysts of the
development team) and allocated to one of the planned four releases of the system.
For each release the epics are detailed into user stories and acceptance criteria by
the requirements analyst for the intended development team and placed in that
team’s backlog. Development is performed in 2-week sprints (iterations) and prior
to each sprint the user stories in the backlog are prioritised by the product owner
and requirements analyst. The user stories with the highest priority are then
presented to the development team who estimate them and a set of stories are
agreed on for that sprint according to priority and team capacity.

Development of a user story is initiated by a discussion between the developer,
requirements analyst and tester where requirements and technical details are
discussed and agreed. The requirements analyst will take any uncertainties or
questions regarding the user requirements back to the product owner to ask for
clarifications. Similar requirements clarifications are made throughout the sprint.
The tester develops test scripts to verify the agreed requirements. These scripts are
executed and any issues found are reported. Completed user stories, i.e. developed
and successfully tested, are demonstrated to the product owner at the end of the
sprint. A retrospective meeting is then also held where the development team reflect
on the past sprint and on ways to improve team work practices.

Gap Finder: Assessing and Improving the Integration of Requirements… 209

Table 3. Characteristics of the studied case and Company A (on which Gap Model
is based).

Open University Company A of Paper III

Type of case Academic education provider Software development of
embedded products

people in software
development unit

Approx. 150 for IT
development

(300 for whole IT unit)
125-150

people in project Approx. 20 10
Distributed No No

Domain / system type
IT: Educational programme

management including
student services

Computer networking
equipment

Source of
requirements In-house Market driven

Main quality focus Maintainability Availability, performance,
security

Certification No Not for software
Process model Scrum Iterative
Duration of project 2-3 years 6-18 months
requirements in
project Approx. 800 user stories 100 (10-30 pages of html)

test cases in project Approx. 1,300 test cases Approx. 1,000 test cases
Product lines No Yes
Open source No Yes

Table 4. Roles and length of experience for the members of the studied
development team. The number of people included for each survey is
also given (see Section Table 4).

Roles

Length of
experience in

team role
(months)

Total length
of work

experience
(years)

Surveys

Pr
of

ile

C
om

m
un

ic
at

io
n

A
rte

fa
ct

Product owner 10 26 1 1 1
Requirements analyst 0 28 1 1 1
Tester 3 26 1 1 1
4 developers 8, 9, 9, 0 7, 6, 22, 10 2 4 0
Scrum master 10 26 1 1 0
Project manager 3 25 1 1 0

210

The epics, user stories and acceptance test cases are stored in a central
requirements repository with traceability links. The test scripts are stored in another
repository and linked to the relevant user story. These test scripts can then be
viewed from the requirements repository.

Once the development team has delivered accepted functionality the system is
tested as a whole both from a user perspective and from a system integration
perspective. This testing is performed by team-external testers and by
representatives from the business unit. Any issues found in this testing is initially
analysed by the tester in the development team before further decisions and actions
are taken to either reject or agree to address the issue. The team tester and the team-
external testers are assigned from the same department.

6 Research Method
The evaluation of Gap Finder was performed through a case study (Robson 2002,
Runeson 2012) where the Gap Finder method was applied to a development project.
The aim of the study was to perform a formative evaluation of the method, i.e. to
seek feedback that could guide further design and improvement of the Gap Finder
and thereby ensure that the method is usable and useful (Rogers 2011).

A combination of empirical research methods was applied in the evaluation of
the Gap Finder as outlined in Figure 4. Apart from the methods included in Gap
Finder (i.e. surveys and focus group, see Section 4), observations and interviews
were also performed. An ethnographically-informed approach (Robinson 2007)
was taken in the observations to ensure that relevant data was collected with the
Gap Finder and that it was understood in-line with the team members’ perception of
the situation.

The study design, data collection and analysis was mainly performed by
Bjarnason, and reviewed and validated by Sharp. In addition, Sharp provided
support in the contact with the case organisation and participated in one initial
interview and in the gap workshop where the outcome of the Gap Finder was
presented to the development team.

6.1 Preparations

Some preparations were needed to apply and evaluate Gap Finder in a live
development project, namely a) design of a research method for the evaluation, b)
tailoring Gap Finder (and its measurements) for the case and c) planning for
applying the method. All of these activities required d) obtaining insight into the
development organisation and, in particular, into the roles, artefacts and practices of
the development team. Each preparational activity is described below.

6.1.1 Obtaining Knowledge of Case

The knowledge of the case required for applying and evaluating Gap Finder was
obtained through document studies, a semi-structured interview with two managers
from the case organisation, demonstrations, and observations of the development
team. One of the authors had an existing relationship with the case organisation and

Gap Finder: Assessing and Improving the Integration of Requirements… 211

Figure 4. Overview of the Gap Finder evaluation study including the
applied Gap Finder steps. Activities specific to evaluation study
are marked with grey. The light grey activities (for Obtaining
case knowledge) are the activities performed for that optional step
in this evaluation.

therefore also some initial documentation and contacts. These documents were
studied and discussed between Bjarnason and Sharp and an interview instrument
was designed (available on-line Bjarnason 2013d) to clarify and obtain additional
knowledge about the roles, artefacts and activities used for requirements and
testing.

Two managers within the IT development unit were interviewed in order to
provide a picture of the development process and how the project was organised. At
the managers’ suggestion they were interviewed at the same time using an open
semi-structured interview format. The managers shared their view of current
challenges and good practices and supplied a number of pointers to information and
people including access to various development artefacts, e.g. requirements,
backlogs, test cases etc.

Insight into development artefacts and how they are used by the requirements
and testing roles was also obtained through demonstrations and document studies.
The artefacts used for function- and system-testing were demonstrated to the
researchers by two different test engineers. Furthermore, by exploring the
requirements and testing artefacts in the application management system used to
store these, the researchers gained an understanding of the amount and extent of
available artefacts and information about them.

212

Finally, one development team (the same as was later assessed) was observed
for a consecutive period of three days approximately a month before the Gap Finder
measurements were taken. These initial observations took place at the end of one
sprint including the sprint review and planning for the next sprint. The purpose of
these observations was to establish contact and gain familiarity with this team, and
to secure an understanding of their day-to-day work. These observations enabled
tailoring the Gap Finder measurements and fine-tuning the research method for the
evaluation.

6.1.2 Research Study Design

In addition to merely applying Gap Finder, the researchers decided to add
additional data collection in parallel to the method application. For this reason,
semi-structured interviews were held in connection with the surveys and the team
was observed for the time period during which Gap Finder was applied. This
additional data allowed the researchers to evaluate the Gap Finder measurements
and the outcome of the gap analysis by applying triangulation.

An explorative research approach was taken in this case study meaning that the
initial study design evolved and was adapted over time as new insights were gained.
Similarly, even though the different parts of the case study are here described as
separate and sequential activities an iterative approach was applied throughout the
study, meaning that the study design was continuously re-visited. For example,
when it became apparent that the applicability of certain practices had not been
commented on during the gap workshop a survey of the suggested practices was
designed to complement that data.

6.1.3 Planning for Applying Gap Finder

The researchers decided to apply Gap Finder at the sprint iteration level for one
development team. This allowed an evaluation of the Gap Finder method covering a
full set of development activities including requirements detailing, design,
development and testing within a feasible time frame and with a clearly delimited
set of requirements. The team that had been initially observed (see Section 6.1.1)
agreed to participate also in this part of the study to which their managers
consented.

The original plan was to apply Gap Finder twice for two different sprint
iterations, with a new practice implemented for the second iteration. However, due
to changes in the project which reduced the amount of development of new
requirements this was not possible. Instead, the plan was adapted to apply the
method iteratively during two consecutive sprints.

6.1.4 Tailoring of Gap Finder

Before applying the Gap Finder its measurement instrument needed to be
tailored to the specific case (see Section 4.1.1). The information obtained about the
case organisation and project (see Section 5) was utilised for this. In particularly
this included the knowledge gained of which roles, and artefacts that were involved
in the requirements and test activities, and how the requirements and test cases were
managed in the requirements repository. Based on this insight the researchers

Gap Finder: Assessing and Improving the Integration of Requirements… 213

decided to exclude the measurements for navigational (D7) and temporal distance
(D8) from the evaluation study. Since tracing was applied between requirements
and test cases the navigational distance would always have resulted in the value 1,
which would not allow for detecting any gaps for this dimension. Temporal
distance was excluded from the evaluation due to the practical difficulties in
measuring this for the case organisation. Since an agile development approach was
applied the on-going discussions within the team is the main source of requirements
information rather than the artefacts (which is what the generically defined Gap
Finder measurement for this distance assumes). The measurement instrument used
for the evaluation (with some terms replaced for confidentiality and anonymity
reasons) can be found on-line (Bjarnason 2013d).

Since the requirements were defined through team discussions in this agile
project, all roles represented in the development team were involved in
requirements activities. However, the product owner, requirements analyst, tester
and developers were the primary roles involved in detailing the requirements, while
the scrum master and project manager were primarily involved in requirements
discussions at a more general level. The measurement instrument was customised
accordingly. Namely, the set of measurements were adapted to cover all of the
primary roles and their corresponding technical skills of scope management,
requirements engineering, testing, design and development. In addition, all roles
were asked to participate in the profile and communication surveys, while the
artefact survey was limited to the product owner, requirements analyst and tester.

Similarly, the measurement instrument was designed to cover the specific
artefacts and activities used for requirements and testing in the case organisation. In
addition, generic terminology was replaced with specific terms used within the
organisation, e.g. ‘documented requirements’ was replaced with ‘user stories’.

6.2 Measuring Distances

The RE distances within the development team and between their requirements and
testing artefacts were measured by applying the Gap Finder. In parallel, additional
data relevant to these distances, e.g. experienced issues and strategies applied to
mitigate these, was gathered through interviews and observations.

6.2.1 Obtaining the iRE Profile

The iRE profile for the assessed project was obtained through applying the
measurement instrument of the Gap Finder including the communication, profile
and artefact surveys. The communication survey was taken by all team members,
while the profile survey covered each role within the team. Thus, all team members
except two of the four developers where included in the profile survey. The two
surveyed developers were included due to being available and actively involved in
the current sprint.

At the end of the second sprint that was studied distances related to the
requirements and test artefacts for the delivered functionality were measured by
administering the artefact survey to the product owner, requirements analyst and the
tester.

214

The communication and profile survey were administered during the first sprint
while the artefact survey was performed after the following sprint was completed.
For each survey, the targeted respondents were free to choose whether or not to
participate.

Information on where each team member was located was obtained through the
profile survey and through observations for the team member located in the team
area. The physical distance between the desks in the team area were measured with
a tape measure, while the distance to desks in the other buildings was estimated
based on a map.

6.2.2 Interviews

The profile and artefact surveys were administered as semi-structured interviews
around the survey questions. For each question, the interviewer ensured that the
interviewee understood the question and the scale correctly. In addition, follow-up
questions were asked to clarify the interviewee’s responses and gather additional
information concerning specific events including factors contributing or resulting
from each distance.

During the interviews the answers to the survey questions were noted by the
interviewer on a copy of the survey in full view of the interviewee. The interviews
were audio recorded and transcribed. The transcriptions were used both in the gap
analysis and for the analysis of the evaluation outcome.

The communication survey was not combined with interviews but each team
member was asked to fill it in individually and return it to the researcher. This
difference in approach was due mainly to the sensitive nature of the question on
ease of communication with individual team members, but also due to simpler
questions. Furthermore, it was administered when 2 whole weeks of observations
had been performed by which time a good insight into communication within the
team had already been obtained.

6.2.3 Ethnographically-Informed Observations

An ethnographically-informed approach was applied in the observations of the
development team. The purpose of these observations was to gain a rich insight into
the day-to-day work practices of the team members and their interactions with each
other. The ethnographical approach entailed seeking to understand the team’s work
practices apart from the researcher’s assumptions about software development
(Robinson 2007). The observations were as unobtrusive as possible and questions
were only asked to seek clarification of used terminology or actions, and never to
participate in team discussions. The distances and practices of the Gap Model
provided a ‘protocol’ that supported the observer in taking particular note of
activities and interactions potentially related to these. Extensive field notes were
made during the observations including interactions in the team area, status and
information shared during meetings, and individual activities.

Gap Finder: Assessing and Improving the Integration of Requirements… 215

6.3 Gap Analysis: Finding Gaps and Improvement
Practices

Gaps were identified by analysing the obtained measurements, and generic RET
practices for addressing these were extracted from the Gap Model. A qualitative
approach was taken in analysing the quantitative measurement data. This was partly
due to the fact that since these were the first measurement values obtained there was
nothing to compare these to and thereby quantitatively identify troublesome
distances. However, even when such reference data become available in the future
the analysis needs to respect contextual factors that may influence if a distance is
‘good’ or ‘bad’. For example, for a case with extensive requirements documentation
the distance between artefacts is likely more critical than for a case relying heavily
on face-to-face communication of requirements.

The gaps were identified by analysing the measured data from a number of
different perspectives. This was done by calculating both the total distance for all
distance types and the individual distance per measured aspect. In addition, for each
distance type and aspect the average and range of obtained values were calculated
and analysed. For the measurements using Likert-type scales the median values
were calculated and found to be very close to the mean values, which were then
chosen in order to present uniform types of values. Since the further analysis of
these values was qualitative, we judge that this choice did not affect the following
Gap Finder steps. The distance between pairs of people was also calculated to
identify potentially large gaps between specific roles and individuals.

The improvement practices were extracted from the Gap Model by querying it
for the identified gaps. This set of generic practices were adapted to more specific
ones by considering additional data and insight into the case, thereby tailoring the
practices for the specific case. For example, the generic practice of co-location was
tailored to the specific practice of providing a guest desk for product owner since
this person was seated the furthest away and incurring the largest geographical
distance within the team.

The initial set of obtained measurements and identified gaps were for distances
between people since these were the ones measured during the first sprint included
in the study. However, the measurements of artefact-related distances (obtained
after the end of the second sprint) did not reveal any additional gaps and
subsequently the Gap Model did not need to be queried again. Thus, the initial set
of obtained practices remained intact.

6.4 Gap Workshop: Present and Agreed on
Improvements

A gap workshop was held at the beginning of the second iteration to present the iRE
profile obtained so far and the identified improvement practices to the development
team. The main intention of the workshop was to gauge the practitioners’ views on
the suitability of the suggested practices. Furthermore, the relevance and validity of
the presented distances and gaps was also assessed at the workshop. The whole
team was invited to the workshop and six of nine team members attended. The
content and questions of the workshop was later covered with the three absent team

216

members by individual semi-structured interviews. Furthermore, the suitability of
the suggested practices was also assessed through a survey after the second iteration
was completed. The survey was sent by e-mail to one of the managers within the IT
development unit, the scrum master and the tester from the assessed (the template is
available on-line, see Bjarnason 2013d).

The workshop was opened with an introduction to the Gap Finder method and
the concept of RE distances within software development. An overview of the full
set of measured distances was then given before presenting and discussing the
findings for each distance type. First the obtained measurements were presented and
an open question asked if and how this may have an impact on their work. The
practices suggested by the Gap Finder method were then presented, and the team
asked to comment on if the practice may address the distance and improve on
alignment, and if they thought it was a suitable practice to adapt.

For each distance, the average, minimum and maximum values were shown. For
measurements with identical scale, or a scale that can be normalised, the distance
values were shown using radar diagrams. An example of this is given in Figure 3
where the normalised values for psychological, cognitive, adherence and semantic
distance are all shown in the same radar diagram. Furthermore, the multi-value
measurement for the priority aspect of cognitive distance was presented by showing
the individual values for each factor and for each (anonymous) team member and
high-lighting where gaps had been identified.

After having discussed each distance type, the participants were asked to reflect
individually on issues related to the presented distances and practices for addressing
these. These reflections were written on post-it notes and then shared and discussed
within the group.

At the end of the gap workshop the participants were asked if and in which way
the Gap Finder method was useful including how they had experienced the
workshop.

The gap workshop was audio recorded (after agreement was obtained from the
participants), transcribed and summarised. This summary was then distributed to all
the team members who were asked to provide feedback if anything was incorrectly
described or if they had additional reflections.

6.5 Analysis of Evaluation Outcome

After completing the application of the Gap Finder the complete set of gathered
data from the method application and from the evaluation activities was analysed.
The researchers’ experience of applying the Gap Finder was also considered. For
each of the research questions relating to how the Gap Finder supports different
aspects (RQ1-RQ3) the relevant data from the different sources was analysed
together. This was also done for each measured distance and suggested practice.
Data from the measurements, the interviews and the observations including the
feedback gathered at the gap workshop was thus compared and triangulated.

Gap Finder: Assessing and Improving the Integration of Requirements… 217

7 Results
The outcome of applying Gap Finder consists of the iRE profile (the set of distances
measured for the studied project), the set of practices identified through the gap
analysis and the shared reflections at the gap workshop. This outcome is presented
below alongside the additional data captured for these aspects through the
observations and interviews. In addition, limitations and threats to validity for these
results also discussed.

7.1 The iRE Profile for the Assessed Project

An iRE profile for the assessed project was constructed from the distance
measurements and used as the basis for the gap analysis. Furthermore,
measurements for each of the distances within the iRE profile were presented to the
development project at the gap workshop. An overview of the derived profile is
shown in Table 5. The obtained values for each type of distance are presented
below together with qualitative data from the observations and interviews
performed as part of the evaluation.

7.1.1 Geographical Distance (M1)

The core team members (scrum master, developers and testers) were co-located in
one common team area. However, the other team members (product owner,
requirements analyst and project manager) were located elsewhere. The project
manager had a desk in the same office as the team while the requirements analyst
was located on a different floor in the same building. In addition, the product owner
was located in a separate building approximately 300 metres away. The average
distance between each pair of team members was 77 metres, see Table 5, while the
total distance between each pair was 2,760 metres.

The team was aware of the negative impact of these distances and frequently
commented on the lack of proximity to the product owner and the requirements
analyst. During the interviews several people commented on the negative impact of
geographical distance as causing time delays in obtaining information. As
expressed by one team member: ‘the conversation slows down’. For example, quick
questions concerning requirements may be postponed and then forgotten, or posed
to a team member closer at hand. This then results in moving on with potentially
incomplete or incorrect information about the requirements. One interviewee said:
‘Even being 2 desks away can have a negative impact. It makes a big difference! It
[co-location] makes it easy to quickly check details you are unsure about.’

Co-location (i.e. short geographical distance) was perceived by the team as
enabling them to manage requirements changes in a light-weight manner by relying
on frequent face-to-face communication rather than on extensive documentation of
requirements. As the product owner stated: ‘we get what we expect due to the
constant communication.’ The requirements analyst also stated that the
geographical distance to the team reduced this communication and attempted to
mitigate this, partly through documentation. Information concerning requirements is
also frequently picked up by the tester from on-going discussions in the team area.

218

Table 5. An overview of the iRE profile derived for the assessed project. All
values except for geographical and organisational distance are normalised
within the range of 0 to 1.

Furthermore, the geographical distance sometimes led to a lack of coordination.
This was expressed in interviews with the product owner and the requirements
analyst, and observed when meetings were cancelled, delayed or moved to another
meeting room with short notice. Information concerning these changes was
automatically shared between the co-located team members but did not always
reach the team members outside of the team area.

4 One data point only for the measurements of semantic distance.

Measured distance Min Aver. Max
M1 D1 Geographical (metres) 1.8 76.7 322
M2 D2 Organisational (steps in organisational path) 0 2.6 7
M3.1

D3 Psychological
Person to person (uni-directional) 0.20 0.35 1

M3.2 Between two people (bi-directional) 0.20 0.35 0.60
M4

D4 Cognitive

In total: 0.15 0.29 0.46
M4.1 Domain knowledge 0.00 0.32 0.80
M4.2

Technical
skill

In total: 0.17 0.32 0.50
M4.2.1 Scope management 0.00 0.36 0.80
M4.2.2 Requirements engineering 0.00 0.27 0.60
M4.2.3 Testing 0.00 0.23 0.40
M4.2.4 Design and development 0.00 0.23 0.60
M4.3 Process-,

organisational
knowledge

In total: 0.06 0.32 0.56
M4.3.1 Local 0.00 0.38 0.80
M4.3.2 Non-local 0.00 0.25 0.52
M4.4 Priorities 0.03 0.08 0.14
M5.1

D5 Adherence

Artefact vs
agreed
requirements

In total: 0.00 0.24 1.00
M5.1.1 Similarity 0.00 0.00 0.00
M5.1.2 Coverage 0.00 0.00 0.00
M5.1.3 Abstraction level 0.50 0.67 1.00
M5.2 Implemented

behaviour vs
agreed
reqmts

In total: 0.00 0.08 0.25
M5.2.1 Similarity 0.00 0.17 0.25
M5.2.2 Coverage 0.00 0.00 0.00
M6

D6 Semantic4

In total: 0.3 0.4 0.5
M6.1 Similarity Roughly the

sameM6.2 Coverage Somewhat more
M6.3 Abstraction level Somewhat more

Gap Finder: Assessing and Improving the Integration of Requirements… 219

7.1.2 Organisational Distance (M2)

All team members except the product owner belonged to the IT unit. The scrum
master and the developers were organised into one department, while the
requirements analyst, tester and project manager each reported to other managers
within the IT unit. Since the role of the product owner is to represent the users (in
this case the business owners) this role needs to be filled by someone with insight
and knowledge of this. In this case, the product owner was from outside of the IT
unit at an organisational distance of in total 7 steps up and down the organisational
tree, see Table 5. In total there was an organisational distance between each pair of
team members of 92 steps.

Two team members described that people from non-local organisational units
can disagree due to different priorities and perspective, e.g. on how and which
requirements to implement. The product owner mentioned this for the business unit
versus the IT unit, while a developer described a similar situation between the
development team and other functions within the IT unit. They both stated that
these long organisational distances between units make it infeasible to use the line-
organisational path as a communication channel for decision-making and for
resolving disagreements concerning requirements. When the common manager to
which two distant organisational units escalate issues is at a very high level in the
organisation this manager is then often too far removed from the context and day-
to-day work of the issue at hand to make an informed decision. Escalating decisions
in such cases is experienced by several of the interviewees as causing long delays
and miscommunication of information.

When there is long organisational distance between roles, the team members
found that communicating informally or via a project organisation was a more
direct communication channel and therefore more efficient. For example, the
product owner had established direct communication channels by attending various
project meetings held by the IT department, including meetings concerning project
steering, scope and issue management. Similarly the scrum master described that
conflicts with other IT development roles were avoided as far as possible by direct
communication and by pro-actively seeking alternative solutions. However, both
product owner and scrum master mentioned cases where these more direct
communication channels failed to achieve an agreement, e.g. with the IT unit on
important user requirements, or with other departments within the IT unit
concerning design issues. When this occurs, the issue can either be escalated via the
organisational channels with subsequent long delays, or left unresolved.

Furthermore, the organisational distance was also experienced to cause practical
issues with coordinating meeting schedules. The product owner who frequently
attends various meetings at the IT department expressed that these often conflict
with other meetings held within the business unit.

7.1.3 Psychological Distance (M3)

The psychological distance between team members was on average short; between
Not hard and Some effort required (on average 1.7 of 5, see normalised value in
Table 5). However, there was a wide range of measurement results (see maximum
values in Table 5) which indicates that there is some psychological distance

220

between certain members of the team. There were two counts of Extremely hard to
communicate given by one practitioner, and three counts of Much effort by two
other team members, see Figure 5. These values are for the uni-directional distance,
i.e. one person’s perception of communicating with another. There is a difference
when considering the bi-directional distance, i.e. the total effort to communicate
between two people. The maximum for bi-directional distance (see Table 5) is
lower, namely at the level of Medium effort. The psychological distance between
two people as perceived by one person does not seem to be necessarily reciprocated
by the other, i.e. that one person might find it hard to communicate with another
does not necessarily mean that that person finds it equally hard to communicate
with the other.

The observations revealed that the communication within the team is good and
that there is a strong awareness of the importance of sharing information. For
example, information sharing practices were emphasised by several team members
at a sprint retrospective. In addition, application of these practices was observed
when new team members were integrated in the team. For example, a developer
new to the team was brought up to speed by frequently pairing with the more
experienced developers. Furthermore, information concerning context and
motivation for specific requirements and work practices were spontaneously shared
during discussions with new team members.

Occasional occurrences of communication difficulties were observed. On a
couple of occasions team members were observed to indicate reluctance to continue
a discussion with a neighbour and instead focused their attention on their screen
thereby withdrawing from the conversation. Furthermore, during an interview one
team member shared an impression that discussions, in this case about
requirements, were sometimes very polite rather than being open and frank.
Another team member said: ‘it is often easier to speak to people who agree with
you most of the time. Otherwise you can spend a lot of time discussing.’ In a
previous interview, this person described that there are different mindsets within the
team concerning to which degree developers should be concerned with
requirements detailing. This indicates that some of the ratings for psychological
distance can be due to cognitive distance and difficulties in reaching a common
view on requirements.

Figure 5. Percentage of occurences for uni-directional vs. bi-directional
psychological distance for each pair of team members.

Gap Finder: Assessing and Improving the Integration of Requirements… 221

7.1.4 Cognitive Distance (M4)

Within the team the cognitive distance between team members with different roles
and length of experience was found to vary greatly. The multiple measures used to
assess the cognitive distance were combined to a normalised average value of 0.29
with a maximum of 0.46, i.e. slightly below half the largest possible distance (see
Table 5). Long distances were identified for some of the measured aspects. There
were large differences concerning technical skills in scope management (M4.2.1,
0.80 of 1) between the product owner and the tester. In addition, long distances
were measured between long-standing and new team members for knowledge of the
local processes and organisation (M4.3), and the domain (M4.1, 0.80 of 1).

As a whole the team was found to possess near to the maximum amount of
knowledge for the three aspects of knowledge that were assessed, see Figure 6.
Within the team there is Expert knowledge for the domain (M4.1), local
organisation and process (M4.3.1), and for 3 of the 4 technical areas of expertise
(M4.4). Furthermore, for wider organisation and process (M4.3.2) and for testing
(M4.2.4) there is Proficient knowledge. Furthermore, the team members in average
have a high level of knowledge, around Competent, for all measured knowledge
aspects (M4.1-4.3). One team member said: ‘I think we have a good mix of people
who have been here a long time and new people.’ Another one said: ‘It is a good
team! We’re well covered.’ This distribution can be a great asset for the team if the
knowledge is utilised and shared in an efficient way.

The cognitive distance for the aspect of prioritisation of system quality factors
(M4.4) was low in average (below 0.1 of 1) for individual quality factors, although
this distance varied for the different quality characteristics, see Figure 7. A larger
distance was found when considering the total prioritisation for all quality aspects,
in average 0.35 of 1 with a maximum distance of 0.6. In particular, there are longer
distances for this aspect between the product owner and other roles. For example,
the requirements analyst prioritised functionality lower and maintainability higher
than the product owner, while the tester prioritised usability much lower than all
non-development roles including the product owner. This is surprising considering
that the tester is responsible for verifying and validating the produced software,
which in this case is an information system aimed at non-technical users.

Figure 6. Total and average amount of knowledge of domain,
organisational and process, and technical skill within the team.

222

M4.1 Domain knowledge The tester said that as his domain knowledge increased it
was possible to be more proactive, rather than merely reactive. He experienced that
the subsequent shorter cognitive distance towards the product owner and
requirements analyst enabled a faster response in the testing work and, being
quicker to identify issues. This correlates well with the requirements analyst
comments on the importance of testers thinking outside of the box and not just
testing according to the agreed requirements, although as the interviewee pointed
out this requires the tester to have good domain knowledge. Furthermore, one of the
developers pointed out that there was a distance in domain knowledge between very
experienced requirements analyst and newer developers and tester. On several
occasions this gap had resulted in failure to capture incorrect software behaviour
(e.g. through testing) due to requirements analysts not communicate what he/she
considered to be tacit requirements to the development team. These tacit
requirements had thus not being developed or tested, and had not been discovered
until further down the line during user acceptance testing.

M4.2 Technical skill The product owner expressed that his/her previous experience
of design and of testing supported the communication of requirements with the
development and testing roles. Similarly, the requirements analyst mentioned
having a good understanding of the requirements information needed by the tester
based on his/her own previous experience of testing. Furthermore, this enabled both
the product owner and the requirements analyst to perform some user-related
testing on the produced software.

M4.3 Organisational & Process knowledge One of the newer team members
expressed that he had little insight and knowledge of other teams and areas since
there was limited interaction with them. However, this knowledge was increasing as
time progressed through getting more involved in work at a wider-project level and
through more interactions with other teams and functions outside of his/her own
team. The scrum master indicated that the current synchronisation between
development teams could be improved by increasing the frequency of the

Figure 7. Range of (normalised) cognitive distance for priorities between ISO
quality characteristics between team members.

Gap Finder: Assessing and Improving the Integration of Requirements… 223

interaction and strengthened by not merely provide status updates but also a more
general sharing of information. Furthermore, on several occasions team members
were observed to raise questions concerning the system test team. Namely, what the
process was for receiving identified issues from system testing, what the focus of
the system testing was to be, and in particular, if issues regarding requirements
could also be expected to be raised or if the system testing would be limited to the
requirements agreed to by the team.

M4.4 Priorities Although there was agreement on the high importance of the
quality characteristics maintainability, it was motivated in varying ways by
different roles. The product owner, requirements analyst and tester all expressed
that this characteristic enabled the team to quickly respond to changing business
requirements and bug reports. In contrast, the interviewed developers highlighted
that maintainability was required due to the long life-time expectancy of the system
in combination with most of the development roles being short term contractors.

There was a difference in view point concerning the quality characteristics
between developers and the other roles. One developer indicated that reliability,
usability and efficiency were less prioritised since these characteristics were mostly
out of the control of this development team. Rather, these characteristics rely on
software of lower architectural layers for which other teams are responsible.

Additional aspect of cognitive distance (not covered by the iRE profile) During
the interviews the tester and the requirements analyst separately described that the
testers which perform the user- and system-level testing have very little knowledge
(cognition) of the requirements implemented by the team. In one case a conscious
decision had been made for this testing to be performed without any communication
with the development team concerning what requirements the software supported,
but rather test from a general user perspective. This resulted in a large part of the
issues reported from this testing being rejected by the development team since the
software worked as designed, thus indicating misaligned views of the requirements.
In another case, information was shared through job rotation of a tester previously
on the development team circulating to the system test team. In this case, the
amount of found and rejected issues was less.

7.1.5 Adherence Distance: Delivered vs. Agreed Requirements
(M5.1)

The adherence distance between the agreed requirements and the behaviour of the
delivered software was found to be short, with a normalised average of 0.08. The
product owner and the requirements analyst both stated that the delivered behaviour
was Almost the same as the agreed requirements, while the tester judged that
Exactly the same behaviour had been delivered as had been agreed. This indicates
that the tester has a somewhat different understanding of the agreed requirements
compared to the product owner and the requirements analyst. The requirements
analyst described that the requirement details had evolved after input from and
discussions with the developers. Even if these development-initiated modifications
were acceptable for the short term, the requirements analyst expected modifications
to be required in the future to support the full set of user requirements. Furthermore,

224

the product owner said that at times the delivered behaviour was more and/or better
than what had been agreed.

Additional aspect of adherence distance One developer expressed that being
provided with very detailed by the requirements analyst restricts the creativity of
the developers. Similarly, the requirements analyst described that testing ought to
go beyond the exact details of the requirement that have been agreed in order to
validate them by testing from a wider perspective. This wider view in testing might
be encouraged by agreeing to requirements at a higher level thereby necessitating
active consideration of the details by the developers and the testers.

The short distance between the agreed requirements and the resulting software
behaviour was stated by the developer to result in a closed mind-set concerning
requirements among the developers. Instead of seeing the given requirement merely
as the starting point and then considering a wider picture and context, other team
members would work solely within the given set of requirements. This team
member had previously experienced more creativity when working in a small
company with phase-based development model, but with a longer distance in
abstraction level between the requirements agreed with the requirements analyst
and the resulting software behaviour.

7.1.6 Adherence Distance: Agreed vs. Documented Requirements
(M5.2)

For the adherence distance between the documented requirements and the
requirements perceived to have been agreed upon the team members judged there to
be no distance for the aspects of meaning (M5.2.1, Exactly the same) or coverage
(M5.2.2, The same), merely a distance for the aspect of abstraction level (M5.2.3).
This distance in abstraction level is to be expected since documenting all details is
infeasible. One of the interviewees also pointed out that the level of detail of the
documented requirements was now significantly lower than with the previous
phase-based process. This increased in adherence distance for abstraction level is
due to the agile development model prescribing frequent face-to-face
communication rather than relying on requirements communication through
artefacts. The normalised total average adherence distance between requirements
artefact and agreement of 0.24 (M5.2) is solely due to this distance in abstraction
levels. When interviewed two of the survey participants admitted that the
requirements artefact did include requirements that had previously been agreed, but
that were now removed from the project scope. Thus, the requirements artefact had
not been updated to reflect this change. Subsequently there was a distance in
meaning and coverage between the requirements artefacts and the current set of
agreed requirements (M5.2.1 and M5.2.2) even though all three survey participants
responded to the direct survey question that there was no distance. The
requirements analyst explained this by saying that team members are assumed to
know about this change of project scope and that a basic understanding of the
domain is required of the reader rather than providing extensive details in the
requirements artefact.

Gap Finder: Assessing and Improving the Integration of Requirements… 225

7.1.7 Semantic Distance (M6)

Some semantic distance was found between the requirements artefacts and the test
artefacts. The meaning of the two artefacts (M6.1) was judged by the tester to be
Roughly the same, thus indicating some differences. For the assessed artefacts this
distance was mainly due to requirements information that was not yet in scope for
the project, but still included in the documentation.5

The tester judged that the test cases covered Somewhat more than what was
specified in the requirements artefacts (M6.2). In addition, the abstraction level of
the test cases (M6.3) was stated to be Somewhat more than for the requirements,
which is to be expected. Furthermore, the tester described that the level of detail in
the test cases was dependent on time availability and was usually more than for the
specific set considered in the survey.

7.2 Identified Improvement Practices

Ten practices were suggested as potential improvements for the project based on the
output of the gap analysis of its iRE profile. These improvement practices (IP1-
IP10) address the gaps found in the iRE profile and may improve the RET
alignment by mitigating the found distances.

The improvement practices were presented to and discussed with the
development team at a gap workshop. For two members who could not attend the
workshop their feedback was gathered through interviews instead. In addition, a
survey on the suitability of the improvement practices was performed among three
team members and one manager within the organisation. The received feedback for
each of the ten suggested practice is compiled and presented below together with a
description of each practice, and three additional practices mentioned at the
workshop by the team are reported in Section 7.2.11.

7.2.1 Guest Desk for Product Owner (IP1)6

Practice. Provide a guest desk in the team area for non-colocated team members, in
particular the product owner.

Addressed distance: Geographical, cognitive. The practice can bridge the distance
by bringing the product owner physically closer to the team more often and for
longer periods of time. This increased co-location can in turn bridge cognitive
distance, in particular for domain knowledge, between the product owner and the
development team

5 This survey question was posed after having identified the difference between agreed
requirements and documented requirements related to the reduction in project scope through
the interview questions around adherence distance.
6 Re-locating the requirements analyst to the team area would also address geographical
distance. However, since this practice was already in the process of being implemented it
was not included in the suggestions presented to the team although it was identified as a
suitable practice.

226

Team response. This practice was received very positively by all roles within the
team and is one of the practices the team is now aiming to adopt. The scrum master
said: ‘Having the product owner in our office even 1 hour per day would help a lot
with communication.’ The product owner expressed that having a guest desk would
enable working in between meetings rather than just waiting or spending time on
walking back and forth. One team member believed that a guest desk would make
the product owner feel more welcome and encourage spending more time with the
team, thus making this important role more available to the team. In addition,
another team member believed that this could lead to an increased awareness for the
product owner and enable this role to have more insight into the development team
and the issues they face. However, office space is limited so reserving a desk for
visitors is a challenge. In the meantime, an agreement has been made that the
product owner spends more time in the team area and borrows temporarily available
desks.

7.2.2 Requirements Communication at all Levels & Throughout
Project Life-cycle (IP2)

Practice. Establish additional and strengthen existing communication paths from
the team to roles and functions currently with insufficient requirements information,
e.g. towards the system test team, between tester and product owner.

Addressed distances: Organisational and cognitive. The practice can bridge
organisational distance by creating short-cuts in situations where increased
requirements communication may avoid later coordination problems, e.g. between
product owner and tester, or between requirements analyst and team-external
testers. Requirements validation can also be improved by this increased
communication between requirements and testing roles. In addition, the practice can
affect cognitive distance by bridging it in the short term by bringing together roles
with different knowledge and perspectives, and decreasing it in the long term by
sharing this knowledge with others.

Team response. A majority of the team members were positive to this practice and
the team aim to implement it. One of the survey respondents said that an increase in
requirements communication would reduce the amount of unpleasant surprises that
surface later on, e.g. issue reports, and also contribute to a better understanding of
different viewpoints and therefor also fewer disagreements around requirements.
Similarly, another survey respondent suggested that by involving the user
interaction team in requirements discussion they would gain ‘a better appreciation
of why we ask for particular things and why we think they are important’, thus
contribute to decreasing the amount of disagreements to roles to which the team has
an organisational distance.

The developers commented that it may be possible to have more frequent
demonstrations and communication around requirements of on-going work
throughout the sprints. However, they believed that the product owner’s limited
availability and physical presence in the team area would restrict the frequency of
this practice.

Gap Finder: Assessing and Improving the Integration of Requirements… 227

One participant reflected that the communication between the tester and the
product owner could potentially be increased. For example, a previous tester had
been very interactive with the product owner, e.g. showing mock-ups and
discussing requirements details.

Several participants described that as a team they have developed a strategy for
avoiding potential conflicts with other functions and units by applying a similar
approach to the suggested practices, i.e. through direct and frequent communication
with people from these other organisational units.

One survey respondent commented on the fact that with the previous document-
and phase-based process requirements were primarily communicated through
extensive requirements documentation, which thus was believed to bridge distance
between the development teams and the system-level testing. However, in the
previous development process the testing was also primarily performed by the
requirements analysts, i.e. the distance between requirements and testing roles
would have been very short.

7.2.3 Test Cases Reviewed Against Requirements (IP3)

Practice. Let someone other than the tester, e.g. the requirements analyst, look at
the test cases and consider if they cover and correspond to the requirements in an
adequate way.

Addressed distances: Semantic, cognitive, and organisational. This practice
primarily reduces semantic distance between artefacts and cognitive distance
between the roles responsible for those artefacts, and may also bridge organisational
distance between these roles. The semantic distance is reduced by identifying and
remedying the causes of the gaps through the review and subsequent updates. The
cognitive distance between the reviewers is decreased by the information shared
during the review. Potential organisational distance between the involved roles
(which for this case is not an issue) can be bridged by the communication channel
set up by the review practice.

Team response. There was a mixed response to this practice. Two of the survey
respondents stated that this was a practice to adopt. Another respondent was less
definite and said that the practice might be useful. In contrast, the tester expressed
no opinion on this practice. One team member said that having more people look at
the test cases would likely result in improving them, while another said that the
practice would increase the sharing of knowledge concerning test cases.
Furthermore, one survey respondent believed that this practice would support the
requirements analysts in writing clearer and better acceptance criteria.

7.2.4 Let People Have a Say in Seating Arrangements (IP4)

Practice. Let personal preferences regarding ease of communication be one factor
when considering team seating.

Addressed distance: Psychological. This practice can bridge distance by allowing
people some control over their communication with others.

228

Team response. The scrum master indicated that psychological distance could be
one factor among many to consider when deciding on how to locate different team
members. However, in general the response on this practice was that it is hard to
accommodate since office space is limited and opinions vary. This practice
triggered another team member to initiate a separate discussion on whether seating
people next to each other between whom there is a long psychological distance
might decrease the distance, or alternatively decrease the communication.

7.2.5 Product Owner Testing (IP5)

Practice. The product owner (or the requirements analyst) performs user testing
with the intention of validating that the implemented behaviour and performance
aligns with overall system intentions and user expectations.

Addressed distance: Cognitive (domain aspect) and adherence. Differences in
domain knowledge between the one performing the product owner testing and the
tester in the development team can be bridged by utilising their additional
knowledge of the user requirements and the domain. The requirements validation
supported by this practice can thus decrease the adherence distance between the
agreed requirements and the implemented software behaviour by identifying and
addressing mis-alignment within the development team.

Team response. This practice was already applied by the product owner and the
requirements analyst, who both indicated that they would consider applying this
practice more often. Similarly, the scrum master stated that it is a practice that the
team will applied more often in the future. Applying this practice had been
experienced to uncover issues related to missed or misunderstood requirements
details. As one survey respondents said this practice could ‘help to highlight
problems with misunderstandings and wrong assumptions earlier in the process, and
help the [requirements] analyst feel closer to the working software.’ Other team
members agreed to the benefits of this practice in uncovering user-related issues.
However, technical limitations were also mentioned in that the product owner
cannot access the software for the sprint until after it has been delivered, thus only
allowing the product owner to apply this practice after the team has delivered. The
requirements analyst however was observed to perform this testing during a sprint,
thereby identifying a number of missed requirements.

7.2.6 Continuous Competence Development (IP6)

Practice. Increase team member’s technical knowledge through personal study,
training courses etc. within specific areas, e.g. testing.

Addressed distance: Cognitive (Technical skill). Decrease7 cognitive distance by
increasing the skill level of individual members.

7 May also increase the distance when individuals gain knowledge beyond that of other team
members.

Gap Finder: Assessing and Improving the Integration of Requirements… 229

Team response. There was agreement in principle to this practice. Although
competence development is encouraged in general within the organisation, personal
development is up to the individual. One survey participant expressed that increased
competence in teams and individuals would increase their ability to adapt and deal
with challenging situations. However, one team member commented on that the
majority of the team members were short-term contractors and indicated that
competence development was mainly considered for permanent staff.

7.2.7 Job Rotation (IP7)

Practice. Rotate team members to different roles and responsibilities, e.g. team
tester to system test team, requirements analyst to testing.

Addressed distance: Cognitive (technical skill, organisational & process
knowledge). This practice primarily addresses the organisational & process
knowledge aspect of the cognitive distance by increasing a person’s knowledge of a
new role. In addition, this person can gain technical skills by performing another
job, thus also decreasing the distance for the technical skill aspect.

Team response. The team response to this practice was that it would be
challenging to apply even if gains had been observed when it was applied in an ad
hoc fashion, e.g. when a team tester had been transferred to the system test team.
One survey respondent stated that the practice would incur additional costs in the
form of temporary productivity drop and increased training needs. In particular,
several practitioners mentioned that it would be hard to handle the loss of
competence caused by rotating a team member. Furthermore, as indicated by
another team member, rotating to a different role may not be in-line with personal
preferences. As expressed by one survey respondent, the practice would cause
‘improved general knowledge of different areas, but at a cost of less specific
knowledge.’ However, an interviewee described that it was not uncommon for
people to be moved between teams and roles as need arose. In particular, since most
of the requirements analysts also have system testing experience it had been
discussed within the organisation to have the analysts take on testing roles.

7.2.8 Consider Quality Upfront in Requirements Elicitation (IP8)

Practice. Consider quality characteristics already in the requirements elicitation and
identify important quality aspects in the early requirements discussions. These are
then detailed in the same way as other requirements.

Addressed distance: Cognitive (priority of quality aspects). Cognitive distance
concerning the priority of quality aspects can be decreased or at least bridged by
discussing and sharing different perspectives on their relative important.

Team response. Several team members stated that this is a practice that they plan
to adopt since it will help identify quality requirements early on. Thus the practice
can reduce the amount of issues discovered in later activities, e.g. systems
integration and production, and thereby avoid costly and time consuming
maintenance. As one survey participant said: the practice ‘might catch particular

230

issues earlier when they are easier to address.’ However, some team members were
doubtful whether quality aspects could be elicited upfront since there might then not
be sufficient awareness of the customers’ expectations for these aspects.

7.2.9 Agree on Quality Priority for Project (IP9)

Practice. Discuss which quality aspects are more or less important for the project
and establish a common view of relevant quality characteristics within the team.

Addressed distance: Cognitive (priority of quality aspects). Agreeing to a set of
quality aspects for the project can decrease the priority aspect of cognitive distance
between team members by having shared and aligned their various viewpoints.

Team response. This practice was stated by three of the survey participants as one
to adopt. One of them said that the practice ‘could help us come to a more common
understanding of where we should be focusing our efforts’.

7.2.10 Use Checklist of Quality Characteristics for Testing (IP10)

Practice. Use a set of quality characteristics as a check list during test planning and
test design.

Addressed distance: Adherence. This practice can decrease adherence distance
between agreed requirements and software behaviour by identifying potential
quality issues already through testing within the development team.

Team response. The tester and two more survey participants clearly expressed that
this was a practice to adopt. Together with the practice of defining quality
requirements upfront (IP8) this practice was believed to enable the team to uncover
quality issues early on, thus avoiding costly maintenance by aligning requirements
with the testing performed within the team.

7.2.11 Additional Practices Suggested by the Team

In addition to reflecting on the presented practices, the participants of the gap
workshop suggested the following practices for mitigating the found gaps:
- The scrum master suggested that misunderstandings of requirements caused,

e.g. by organisational distance could be decreased by improving the acceptance
criteria so that they become more like acceptance test cases (+IP11). Thus,
decreasing the semantic distance between the requirements artefacts and the
test cases.

- One developer suggested that geographical and psychological distance could be
further shortened by re-organising the team area (+IP12) thereby further
improving on communication including requirements clarification and
detailing. For example, removing dividing screens, placing desks facing each
other rather than back-to-back would further facilitate visual contact and
awareness. Furthermore, this team member mentioned implementing additional
communication practices, e.g. always face the person you are talking to, listen
when others are talking.

Gap Finder: Assessing and Improving the Integration of Requirements… 231

- One developer suggested that cognitive distance concerning technical skill
could be decreased by ensuring that all team members can and know how to
access each other’s artefacts (+IP13). For example, no other team members
currently have any knowledge of the test cases and cannot access or view them.
Similarly, there is a lack of access to other artefacts produced by previous team
members, e.g. requirements documents for previous sprints.

7.3 Feedback on Gap Finder

Throughout the study feedback was gathered from the team members concerning
their experience of the Gap Finder method, both concerning its approach and
output, and the time and effort required of them to participate in the assessment.
The main feedback data was gathered at the gap workshop, but also as part of the
interviews and through the observations.

At the gap workshop, the team members expressed that they found the approach
of the Gap Finder method useful in discussing issues and in identifying new areas
for improvement, and that the suggested practices were appropriate. One workshop
participant stated that the Gap Finder approach unearthed new perspectives, e.g.
concerning the psychological distance, which had then enabled team reflection on
previously un-discussed issues. In addition, even though several of the suggested
practices were not completely new to the team (e.g. guest desk, product owner
testing), presenting and motivating them in light of the concept of distance provided
additional motivation for deciding to implement them.

Furthermore, the gap workshop (including the follow-on interviews) revealed
that the product owner (who usually does not attend the team retrospectives) was in
fact more positive towards adopting some of the practices than the rest of the team
thought. In particular, this was the case for IP1 Guest desk for product owner. In
addition, some of the suggested practices were already applied by the product
owner although the team was not aware of this, e.g. IP5 Product owner testing.

The development team did not find the assessment particularly costly from their
perspective. Even though they had a high work load they found time for taking the
surveys, which could each be done in 10-15 minutes. When asked, the scrum master
also expressed that the team had not perceived any undue cost of participating in the
evaluation study. The most time consuming part from their perspective was the gap
workshop, which took just over 60 minutes. However, the researchers’ experience
from the gap workshop was that presenting and reflecting on all the distance types
in a satisfactory way required longer time than was available and that this required
the participants to take in too much data at once.

The survey questions were well understood by the participants and required no
major clarifications after the measurement scales and the question on priority of
quality characteristics (part of the profile survey) had been explained. Minor
clarifications were asked for. In particular for the questions on technical skills, for
which some participants indicated a difficulty in separating between technical
knowledge for an area associated with a role (e.g. RE for the requirements analyst)
and knowledge of the processes and practices for that role in the case context.

232

7.4 Validity and Limitations

In this section, we discuss the limitations of the results including threats to validity
according to guidelines provided by Runeson et al. (2012). Steps taken to mitigate
these limitations and threats are also mentioned.

7.4.1 Construct Validity

There are two main risks to construct validity in this study, namely the
appropriateness of the underlying theoretical framework in relationship to the
specific case to which the method was applied and the precision of the distance
measures. The risk concerning the underlying framework, i.e. the Gap Model,
springs from that fact that the Gap Finder method is based on empirical data from
Company A in the RET alignment study (Bjarnason 2013b). Although both studies
focus on RET alignment there is a risk that due to differences in case characteristics
the empirical knowledge gained from Company A is not applicable to the
organisation in this study. In order to allow assessing this risk by comparing the
cases, the case used in this study is reported using the same kind of character
attributes as the ones that were reported in the previous study (see Section 5), e.g.
size of development organisation, project size and length, number of requirements
etc. Furthermore, this risk to construct validity was partly mitigated in the design of
the gap model by taking these case characteristics into account when selecting one
of the six companies from the previous study as a starting point for the theory
construction. Similarly to the case in this evaluation, Company A is of about the
same size, applies an iterative agile development model for which the development
is not distributed, and which does not develop safety critical software. The
characteristics which differ are mainly a difference in requirements source (market
driven for Company A vs. bespoke for this case) and the use of product lines and
open source software for Company A. Based on the insight gained from the
previous RET study, no specific impact on RET alignment is known for these
factors although the use of product line practices was suggested as supporting
alignment.

The risk concerning distance measure precision concerns how well the
measurement instrument assesses the distance it is intended to measure. To mitigate
this risk, the measurement instrument was designed in an iterative fashion based on
empirical knowledge from previous studies, in combination with insight into the
assessed case. Despite this the construct validity of the measures requires further
research to assess and improve on their precision. However, the main aim of this
study was to perform a qualitative evaluation of the Gap method and approach, for
which we judge that slight imprecisions of the measurements have a limited impact.

7.4.2 Internal Validity

The main threat to internal validity is the risk of incorrectly gauging the impact of
certain factors or missing other impacting factors, and of misinterpreting survey
questions. This is particularly relevant in this study where we aim to investigate the
causal relationships between RE distances and RET practices in a real live context
where there are multiple uncontrollable factors. This risk has been partly mitigated
by deciding to study one development team during a specific period of

Gap Finder: Assessing and Improving the Integration of Requirements… 233

development. Distances for a defined set of requirements and test cases, and group
of people were investigated, thus enabling studying the specifics of how these
people relate to each other and how they work with the specific requirements at
hand. However, it remains an open risk that study participants and/or researchers
have incorrectly identified factors involved in causal relationships, e.g. concerning
the effect of an RE distance, and in particular that other relevant factors may have
been missed.

Furthermore, there is a potential risk of participants misunderstandings the
survey questions used to assess the distances. This risk was partly mitigated by
obtaining knowledge and insight of the case, e.g. through document studies,
observations and interviews, before tailoring the questions to the specific case. The
questions were thus adapted to the terminology used by the studied organisation
including the specific roles and artefacts used. In addition, the survey questions
were reviewed and discussed with the researcher with more familiarity with the
organisation (i.e. Sharp). Furthermore, triangulation was applied to the obtained
distance measures by administering the surveys as part of an interview where
misunderstandings could then be discovered and resolved, and by comparing with
data gathered through observations.

7.4.3 External Validity

The question of external validity concerns the extent to which the results of this
study are applicable and of interest beyond that of the studied case, for which
analytical generalisation needs to considered. This study is based on the Gap Model
which in turn is based on empirical data from a previous study of another case, and
no conflicting findings have been found in this study indicating that the two cases
are comparable when considering RET alignment. For this reason the results are of
interest to cases displaying the characteristics common to the two case on which
both of these results are based, i.e. small and medium sized companies (150-200
people) and projects (10-20 people), with an agile and iterative development model,
and for which there are no safety-critical aspects of the software development.
However, even within this set of cases generalizability needs to be considered on a
case-by-case basis by comparing the specifics of a case alongside the full set of
characteristics reported for this case (see Section 5).

For cases that apply a non-agile development model with a strong focus on
artefacts as the primary channel for requirements communication the iRE profile is
most likely very different from the one obtained for this case. Subsequently the
suggested practices might not have the same impact as for an agile project.
However, results from previous studies show that even for a document-based
process the degree of collaboration and thus distance between roles and individuals
has a large impact on the collaboration between RE and later development
activities, and thus on the project outcome. For this reason, the people distances are
most likely relevant also for a traditional process model, although the iRE profile
and the set of improvement practices would likely be different. Further research is
required to explore and extend the Gap Finder to also cover projects with a phase-
based and document-based process.

The general applicability of the Gap Finder for different cases and contexts
requires extending the underlying theoretical framework, i.e. the Gap Model.

234

Initially knowledge available in the Gap Model is limited to the case context on
which it is based, currently one company. Over time further knowledge will be
obtained and the Gap Model extended. This includes knowledge of what comprises
a troublesome gap in an iRE profile, as well as more fine-grained rules concerning
contextual factors that impact how a practice affects a distance.

7.4.4 Reliability

There is a risk that researcher biases have influenced the application and evaluation
of the Gap Finder method and, thus the reliability of the results of this study. This
risk was mitigated by including the perspectives of multiple researchers on design
aspects at several points throughout the study and by applying triangulation to the
collected data. For example, the research design and the tailored survey instruments
were iteratively reviewed and refined by the researchers. Triangulation of the
obtained distance measures was done by also collecting data on each distance
through observations and interviews. Finally, the outcome of the Gap Finder was
presented to and discussed with the development team in order to validate the found
distances and suitability of the suggested practices.

8 Findings and Discussions
Through studying the application and outcome of the Gap Finder a number of new
insights were gained concerning how Gap Finder can support software process
improvement for RET alignment and how this support can be further improved. The
development team expressed that the approach was very helpful by providing them
with new perspectives and improvement suggestions, some of which have now been
implemented. Furthermore, the study provided experience of applying the method
and further insight into the impact of RE distances on RET alignment. Based on the
collected empirical data, the four research questions can now be answered
concerning how Gap Finder can address RET alignment and how the method can be
improved (Section 8.4). Based on the findings (see Section 7), the relevance of the
distances and practices is discussed in Sections 8.1-8.2, and how Gap Finder
supports team reflection in Section 8.3. The main improvements of the method are
concluded and discussed in Section 8.4.

8.1 Relevance of Included Distances (RQ1)

All of the six types of RE distances included in the applied version of the Gap
Finder were found to be relevant to RET alignment, while no answer can be given
for navigational (D7) and temporal (D8) distance that were not included in the
evaluation. The development team had experienced the impact that the people-
related distances can have on RET alignment primarily on requirements
communication. However, for most of the distance types the team had previously
not considered the distance as such, merely observed its effects. In particular this
was the case for organisational distance, psychological distance and the priority
aspect of cognitive distance. Furthermore, the artefact-related distance types, e.g.

Gap Finder: Assessing and Improving the Integration of Requirements… 235

adherence, were found to be indicators of weak or strong alignment and selected
project model.

The measured aspects were found to be relevant to RET alignment with the
exception of local organisational & process knowledge (M4.3.1) for which no clear
impact was identified. Two new aspects of distance were identified as potentially
relevant to RET alignment. Table 6 outlines the found impact on RET alignment
including detected gaps and the team’s awareness of each distance and its impact.

Table 6. Summary of relevance of RE distances to RET alignment (RQ1).
Detected gaps and the team’s previous awareness of distance and impact
for the studied case. + denotes additional (new) aspects of distance.

RE distance and impact on RET alignment
Impact on RET alignment

Gap (G), awareness of
distance (D) and impact (I)

D1 Geographical GDI
Delays and misunderstandings in requirements communication and coordination
with the distant team member
D2 Organisational GI
Difficulties and delays in decision making concerning disagreements on which
requirements to support
D3 Psychological GI
Conflicts and difficulties in agreeing, e.g. when discussing requirements details
D4 Cognitive GD (domain) I (all)
Knowledge of
- Domain: missed communication of tacit requirements leading to identifying

missing functionality at a late stage
- Technical skill: a) for testing and development skills a short distance supports

good requirements communication towards developers and testers, and facilitates
user-level testing,
b) for scope management and requirements engineering: general impact on
communication

- Organisational and process: a) for role of others this distance can cause
misalignment of system-level testing relative requirements delivered by team, b)
for own role no direct impact was found

+ Agreed requirements: Gaps concerning this (new) aspects between system
testers and development team was suggested to lead to system-level testing of
other non-agreed requirements with subsequent increase in potentially unnecessary
issue reports and management of these
Priorities for product
Missing quality requirements with subsequent misalignment of user expectations
vs. quality level in delivered software, may surface in system-level testing
D5 Adherence I
Delivered vs. agreed requirements
A long distance is a sign of misalignment in the development flow including
missing or misunderstood communication of requirements and that the testing
effort has failed to catch discrepancies between agreed and delivered requirements
+ Abstraction: a long distance may motivate developers and testers roles in
validating requirements by providing more freedom and responsibility to detail
them, which requires domain knowledge and insight into user expectations

236

Agreed vs. documented requirements
- Similarity and coverage: a long distance can indicate either misalignment caused

by missing or misunderstood requirements communication, or that the
documentation is not updated

- Abstraction: the distance characterises the development model and in particular
the weight given to requirements documentation, i.e. degree of documentation-
based communication

D6 Semantic I
- Similarity and coverage: a long distance can indicate that requirements are not

fully updated or a misalignment in requirements communication towards testing
- Abstraction: a characteristics of the development model, i.e. degree of

requirements detail and documentation upfront or concurrently w implementation

8.1.1 RE Distance Impact on Requirements Communication

All of the people-related distances were seen by the team members as having an
impact on the communication of requirements within the team and towards other
roles, e.g. in system- and user-testing. Long people-related distances were seen as
increasing the risk of misinterpreting and missing requirements. For example,
cognitive gaps concerning domain knowledge had on several occasions caused lack
of communication of requirements which were tacit to requirements analysts with
long experience, but not to developers and testers who had joined more recently.
Similarly, a cognitive gap in the aspect of priorities for the product (M4.4) between
individual team members and roles was also seen to have contributed to missed
quality requirements. Other negative effects of people-related distance include
delays and inefficiency in decision making when there are disagreements
concerning which requirements to implement. In particular, these delays were
experienced in relation to the organisational distance between the product owner
and the rest of the development team and whenever possible the team tries to
resolve issues internally rather than escalate them to their managers. In addition,
psychological distance was believed to explain some difficulties in communicating
and agreeing with individual team members. Furthermore, long geographical
distance between the product owner and the developers and testers were
experienced to cause delays in clarifying requirements and impeded coordination
within the team. This physical distance has now been shortened and the team
describes an increased frequency of communication with the product owner, which
they believe will contribute to reducing the amount of misunderstandings and
misalignment towards the users’ needs and expectations. Finally, a short distance in
cognitive distance was described as supporting a smoother communication and
agreement on requirements details. In particular, a short distance from the
requirements analyst and the product owner towards the tester concerning
knowledge of testing was described as beneficial since this testing knowledge
supports, e.g. the requirements analyst in adapting the requirements information to
the testers needs.

8.1.2 RE Distance as Indicators

While many of the RE distances were described by the team members as
contributing to alignment the artefact-related distances were mainly found to be

Gap Finder: Assessing and Improving the Integration of Requirements… 237

indicators, e.g. of weak or strong alignment. For example, an adherence distance
between delivered vs. agreed requirements indicates that the testing effort has failed
to catch the discrepancy between what has been agreed and what is delivered. This
measure thus indicates how well the requirements are aligned with the testing, i.e.
the degree of RET alignment for a project.

Similarly for the aspect of abstraction for adherence and semantic distance
(M5.2.3, M6.3), a distance was measured that was not judged to be a gap, but rather
a characteristic, in this case of the applied development model. As one of the
respondents pointed out, the distance in abstraction level between agreed and
documented requirements can be expected to be longer for an agile development
project than for a project applying a traditional document-based process.
Subsequently the impact on RET alignment for this adherence distance (M5.2) will
vary depending on how much weight is given to the requirements artefacts. If the
requirements artefact is the main communication channel for requirements (as in a
traditional process) a short distance is required to achieve good RET alignment.
However, a longer adherence distance may be manageable while retaining good
RET alignment if this distance is bridged by alternative (non-document based)
practices for communicating requirements, e.g. by involving developers and testers
in the requirements detailing.

A third kind of indicator was detected concerning adherence distance for the
aspects of similarity and coverage, namely as an indicator of un-updated artefacts.
During the interviews held in connection with the artefact survey two of the
interviewees mentioned that some parts of the documented requirements were no
longer applicable due to changes to the project scope and that these then contributed
to some distance in similarity and coverage both for adherence distance between
agreed and documented requirements (M5.2.1 and M5.2.2) and for semantic
distance between documented requirements and test cases (M6.1 and M6.2).
However, for this case the documented requirements merely support the primary
communication channel, i.e. face-to-face communication, and the ultimate set of
requirements is what is found in the software accepted and signed off by the
product owner. In contrast, for a traditional development model where the
requirements artefact is the main source of requirements information incorrectness
in the requirements artefacts, indicated by adherence distance, is more likely to lead
to the requirements being miscommunicated to the developers and testers, thus also
affecting the implemented software.

8.1.3 Suggestions for Additional Aspects of Distance

In addition to the measured distances, two other aspects were identified through this
study, namely the knowledge of current requirements as an aspect of cognitive
distance (D4) and the abstraction level of agreed requirements vs. delivered
software as an aspect of adherence distance (D5.1). The additional aspect of
cognitive distance concerns knowledge of what functionality and behaviour the
delivered software is intended to support. In particular, when there is a long
distance for this aspect between the development team and testers performing
system-level testing this has a negative effect on RET alignment and can result in
unnecessary issue reports and subsequent management of these. This aspect is also
relevant to consider between the roles within the team. Good RET alignment can be

238

expected when there is a short distance in knowledge of the agreed requirements
between all members of the team, e.g. between requirements analyst and
developers, between requirements analyst and tester.

Distance in knowledge of organisation and process (M4.3) concerning the roles
of others (M4.3.2) may have an impact on the alignment between the development
team and the testers performing the system-level testing. Together with
organisational distance, these distances affect the requirements communication
between these teams. The team were concerned that there might be misalignments
towards the system testing concerning the understanding of which requirements that
had been agreed and were implemented.

The other new aspect of distance mentioned by the requirements analyst and one
of the developers is the distance in abstraction level between agreed and delivered
requirements (+M5.1.3). A longer distance for this aspect could encourage testers
and developers to take more responsibility for the validity of requirements by
providing them with more freedom to detail the requirements. RET alignment could
thus be supported by validating and verifying the requirements from a wider
perspective. However, this requires good domain knowledge and insight user
expectations and business strategies on the part of those detailing the requirements.

8.2 Relevance of Suggested Practices (RQ2)

The development team described that eight of the ten suggested practices could
directly address and improve on RET alignment for their project, however the cost-
benefit balance varies between practices and thus also the feasibility of
implementing them. The practices for which no direct impact on RET alignment
was identified are IP4 concerning team seating and IP6 concerning competence
development. Both of these practices were believed to have a general impact on
communication vs. ability within the team, and thereby indirectly improve on RET
alignment. The development team have indicated that they plan to implement four
of the practices, i.e. IP1, IP2, IP5 and IP8, while three of them might be
implemented, i.e. IP3, IP9 and IP10, and three are judged as infeasible to
implement, i.e. IP4, IP6 and IP7. The relevance and suitability of each practice is
discussed below, and an overview is given in Table 7.

Gap Finder: Assessing and Improving the Integration of Requirements… 239

Table 7. Overview of findings on relevance of suggested practices including
addressed distance, impact on RET alignment, and if team plans to
implement the practice.

Practice Addressed
distance(s) Impact on RET alignment Planned for

implementation

IP1 Guest desk Geographical,
cognitive

Improved requirements
communication and
validation

Yes, new

IP2 Requirements
communication, all
levels & throughout

Organisational,
cognitive

Improved requirements
communication and
validation, decrease reqs
conflicts and no of defects

Yes, new +
strengthen
existing
practice

IP3 Test cases
reviewed against
requirements

Semantic,
cognitive,
organisational

Ensure that reqs and test
case artefacts are in synch,
agreement of requirements

Maybe, if test
department
agree

IP4 Individual say
in team seating Psychological None found. General

impact on communication
No, space
limitations

IP5 Product owner
testing

Cognitive:
domain,
adherence

Improved verification of
requirements

Yes, strengthen
existing
practice

IP6 Competence
development

Cognitive:
technical skill

None found. General
impact on abilities.

No, infeasible
in practice

IP7 Job rotation Cognitive

Improve alignment with
system-test team by
increasing their knowledge
of agreed requirements

No, infeasible
to apply
systematically

IP8 Consider
quality in elicitation Cognitive

Early alignment on quality
requirements can reduce the
amount of late issues

Yes, new

IP9 Agee on quality
priority for project Cognitive

Increase agreement within
team and organisation on
quality requirements

Maybe, if rest
of project agree

IP10 Quality
checklist for testing

Cognitive,
Adherence

Increase amount of quality
issues caught by testing
early on

Maybe, if test
department
agree

8.2.1 Guest Desk for Product Owner (IP1)

This practice was immediately picked up by the team members who were aware of
the negative effects that the geographical distance was having on the requirements
communication and were eager to improve on this. Even though this practice had
been considered by the product owner it had not previously been discussed within
the team. The practice can increase the frequency of direct communication between
the customer representative (i.e. the product owner) and the development team, and
thereby enable a quicker resolution of queries and problems related to requirements.
In addition, the increased presence of the product owner in the team area can extend
this role’s awareness of current project issues and contribute to a closer

240

collaboration with the development team. Furthermore, this increased awareness
and closer collaboration can improve the validation of requirements.

8.2.2 Requirements Communication at all Levels & Throughout
Project Life-Cycle (IP2)

Although the importance of frequent requirements communication was already
emphasised in the team, they stated that strengthening and extending this practice
would further improve on the alignment between requirements and testing.
Strengthening the communication within the team, in particular between the
product owner and the tester, would bridge difference in domain knowledge and
further ensure that the right requirements were implemented and tested in the right
way. Furthermore, establishing new communication paths between the team and
roles outside of the team were mentioned as decreasing disagreements and the
number of reported system-level issues. In particular, cognitive and organisational
distance between the team and the system testers could be bridged and to some
extent decreased by establishing direct communication between the development
team and these roles.

8.2.3 Test Cases Reviewed Against Requirements (IP3)

The team response to implementing this practice was mixed even though the
practitioners confirmed that it could have an impact on RET alignment. The
decision on implementing this practice lies with the testing department who is
responsible for the testing processes and practices, in general. However, a review of
the test cases can improve on their quality and align them further with both the
documented and the agreed requirements, thus decreasing semantic distance.
Furthermore, the practice may lead to decreasing cognitive distance. For example, if
the review is performed by a requirements analyst this would further increase the
understanding of what is required for writing good test cases and lead to the analyst
defining clearer acceptance criteria.

8.2.4 Let People Have a Say in Seating Arrangements (IP4)

There are many factors at play for this practice and how to apply it in order to
achieve an optimal set of communication paths for requirements is unclear. The
team members indicated that the practice could have a general impact rather than
directly affect RET alignment, and it was not seen as feasible to implement for the
assessed project. For practical reasons, it is hard to accommodate personal
preferences although they are considered whenever possible.

There are multiple aspects to consider in influencing the frequency of
communication between different individuals. Apart from psychological distance,
factors such as cognitive distance and the importance of frequent communication
between different roles are likely to have an impact. However, it is unclear how to
balance and optimise these different factors. For example, would requirements
communication be best increased by placing the team member with the most
domain knowledge in a central location, or by placing the requirements analyst
there? What if the psychological distance for these people is long, would placing
them in a central location shorten this distance or would it decrease the

Gap Finder: Assessing and Improving the Integration of Requirements… 241

communication? Further research is required before guidelines and
recommendations can be made.

8.2.5 Product Owner Testing (IP5)

This practice was agreed as strengthening the alignment through validating that the
developers and testers have correctly understood and fulfilled the customer
requirements. Although the practice was already applied periodically it was agreed
as a good practice to apply more frequently. When this kind of testing performed
within a sprint, e.g. by the requirements analyst, issues caused by misunderstood or
missing requirements are caught before they go further down the line, e.g. to system
testing.

8.2.6 Continuous Competence Development (IP6)

No direct impact on RET alignment in this case was found for this practice.
Competence can have a general impact on the capacity and ability of the team and
of individual team members, and may thereby also affect RET alignment.
Furthermore, even though the case organisation encourages competence
development personal development is up to the individual and not a practice that
saw seen as feasible to adopt in a systematic way.

This practice can be expected to be more suitable for organisations with a
clearly defined strategy and plan for learning and competence development for its
employees. For example, a competence program with defined categories and levels
of competence enables an open and objective discussion on which level each person
is at and what is required for different roles and position. The existence of a gap in
competence for each individual, but also at the overall level, can then be identified
and training programs be defined to address these.

8.2.7 Job Rotation (IP7)

Although this practice can have a positive effect on RET alignment, e.g. when
rotating testers between the development team and system test team, it was also
found to cause challenges. For example, the cost of losing an experienced team
member was mentioned as not being worth the gains in increased insight and
competence. Also, some team members indicated that rotating to a different role
was not in-line with their personal preferences.

This practice is related to competence development and in particular in gaining
practical experience (as opposed to merely theoretical knowledge) of other jobs and
roles. Even though the practice may be hard to apply in a systematic way, unless
there is a competence management program in place, managers should be aware of
the potential benefits and consider this as one option when discussing personal
development, but also when consider competency needs overall.

8.2.8 Consider Quality Upfront in Requirements Elicitation (IP8)

This practice can mitigate issues caused by misalignment of quality requirements
between the requirements implemented by the team and the ones that the testers at
user- and system-level are verifying. When considering quality aspects during the
elicitation the cognitive distance between team members concerning priority of

242

these aspects are bridged and decreased, and the risk of missing potentially critical
user requirements is reduced. This is one of the practices that the studied team have
identified for implementation.

Quality requirements are a known challenge for software development, in
particular for agile development, but also for traditional development models. These
aspects are often seen as tacit when defining and implementing requirements, which
can then result in issues with the delivered software. For example, the performance
or the capacity of the system can be found to be unsatisfactory from a user
perspective, i.e. issues that are often costly to address.

8.2.9 Agree on Quality Priority for Project (IP9)

The team agreed to that this practice can support improved alignment of quality
requirements at the project level by agreeing to a priority between quality
characteristics, i.e. defining goal-level requirements for quality. Such an agreed and
clearly communicated set of priorities within the project can bridge and decrease
cognitive distance for this aspect between different roles. However, the mandate for
deciding to implement this practice lies with the project rather than with the
development team.

RET alignment at the goal level can be further improved when this practice is
combined with using the agreed quality aspects as a check list for testing (IP10, see
below). The prioritised quality aspects are then considered and validated both in
defining and detailing the requirements, and then verified by the testing activities.

8.2.10 Use Checklist of Quality Characteristics for Testing (IP10)

Testing according to a checklist of quality characteristics was received as a good
practice for enhancing RET alignment by catching missed quality requirements
through testing. This practice can bridge cognitive distance for the aspect of
priorities towards the testers by providing information on which quality
characteristics that are important (also see IP9 above). This increased awareness of
important quality aspects can in turn have a positive effect on the requirements
validation and enable locating requirements issues already during elicitation and
requirements detailing. Although the team agreed to the importance of
implementing this practice, the testing department also need to agree on this.

8.3 Support for Team Reflections (RQ3)

This study shows that the concept of gaps and distances provides a good metaphor
for discussing RET alignment issues and practices to mitigate them within a
development team. Presenting the distance types and visualising the obtained
measures stimulated team discussions around alignment issues seen to be caused by
these distances and practices for mitigating them. In addition, the group reflections
enabled the team to identify new improvement areas.

For some distances, e.g. geographical distance, the measures confirmed a known
issue and triggered action to improve on this by implementing the suggested
practice. For other instances, e.g. psychological distance, the presentation of the
distance and the measurements unearthed issues that had been observed
individually but never discussed within the team. In this instance, presentation of

Gap Finder: Assessing and Improving the Integration of Requirements… 243

the (anonymised) measures enabled an objective discussion of what could otherwise
be a sensitive topic, and both potential causes and improvements were discussed
openly within the team.

Discussing the distances and suggested practices with all the roles within the
team including the product owner (who did not usually attend the team
retrospectives) was beneficial. In particularly, there were misconceptions around
the product owner’s view on certain practices to which he/she was more positive
than the core team members thought. Furthermore, the product owner and the
requirements analyst were already applying some of the practices sporadically
although the rest of the team were unaware of this fact.

The concept of distance triggered some team members to identify further
practices that could bridge or decrease various distances. This further illustrated the
relevance of using distance as a metaphor when considering alignment within
software development.

Finally, even though the gap workshop including the presentation of distances
was found to support team reflection, the session ran out of time and the
participants got tired. This was in part due to practical reasons (delayed meeting
start and hot room), but possibly also due to the large amounts of data presented to
them. Despite having selected a sub-set of the obtained measurements and
visualised the majority of them using radar diagrams, tables and various colours, the
impression was that it was hard for the participants to take in all the data, distance
types and practices at once.

8.4 Improvements to the Gap Finder Method (RQ4)

One of the main outcomes of this formative evaluation is a number of potential
improvements of the Gap Finder method. These can be divided into a) improving
the set of measured RE distances, b) improving the identification of suitable
improvement practices, c) ways to further increase the support for team reflections
at the gap workshop and d) general improvements to the Gap Finder process.

8.4.1 The Set of Distances

Even though most of the applied distance measures were found to be relevant to
RET alignment, some were less so and might be removed from the method. In
particular this concerns the cognitive aspects of technical skill and organisational &
process knowledge. Furthermore, two additional aspects were identified as relevant
and useful when considering RET alignment. These are, 1) a cognitive aspect
concerning the difference in knowledge of agreed requirements, e.g. between a
development team and the system testers, and 2) an adherence aspect between the
abstraction level of agreed requirements and the behaviour of the delivered
software. Both of these are candidates for being added to the Gap Finder.

It may be possible to divide the RE distances and the various aspects of these
into three categories, namely 1) indicators of weak or strong alignment, 2) factors
affecting alignment or other distances, and 3) indicators of case characteristics. For
example, the aspects of similarity and coverage for the semantic distance between
requirements and test cases are indicators of how well the two artefacts are aligned
and therefore belong to the first category. The people-related distances, e.g.
cognitive and psychological, are examples of factors found to affect RET

244

alignment, i.e. these can be placed in the second category. The aspect of abstraction
level is an example of the third category as an indicator of the selected development
model (agile or traditional RE).

Finally, the use of self-assessing surveys to measure the artefact distances needs
to be reconsidered since there is a high risk of bias with this approach. This is due
to the fact that a long distance in similarity or coverage towards the documented
and/or delivered requirements or test cases correlates with failure to capture and
match the agreed requirements. The person responsible for ensuring that an artefact
has sufficient similarity and coverage is likely not aware of there being a distance,
and if so might be unwilling to admit that there is one. For this reason, an
alternative measuring approach needs to be investigated for the adherence distance
between agreed and documented requirements and the semantic distance between
requirements and test artefacts.

8.4.2 Identifying Suitable Improvement Practices

Several of the practices proposed at the gap workshop were in fact already applied,
although this had not been caught during the observations or the interviews. Despite
this fact, suggesting existing practices also had a positive effect in that these were
then discussed within the team and for some of them this meant that they were re-
considered and agreed to be applied more frequently. However, the Gap Finder
analysis could be improved by adding a step for identifying existing practices, e.g.
through a survey, prior to gap analysis. This information can then be considered
during the gap analysis, but should not exclude from suggesting existing but
relevant practices. Rather for these practices, the outcome should be a suggestion to
consider how to further improve on their implementation.

The suggested practices that were not seen to directly affect RET alignment, i.e.
say in team seating (IP4) and competence development (IP6), and their impact on
RE distance need to be investigated further. It may be the case that these practices
need to be tailored further to address specific gaps. For example for competence
development, if a gap for a specific competence is found this technical area and the
involved individuals should be suggested for competence development. For the
practice of team seating and the distance it is claimed to address, namely
psychological distance, further insight is needed either from literature studies or
from additional research into the impact of this practice.

8.4.3 Supporting Team Reflections

An important aspect of the gap workshop is to enable the team to jointly reflect on
issues and improvement practices. The concept of distance was found to provide a
good metaphor for supporting the team in discussing both known issues from a new
perspective and previously un-discussed issues. However, these discussions could
potentially be improved by focusing on key gaps particularly relevant to the
assessed case. This would ensure a more effective use of meeting time while also
reducing the set of distances and measured the participants are required to take in.

The visualisations used at the gap workshop supported the team in reflecting on
the measured gaps and are an interesting area for further improvements. This
includes investigating additional visualisation techniques and considering which

Gap Finder: Assessing and Improving the Integration of Requirements… 245

distance measures and combinations of measures that can further support software
engineers in reflecting on factors that affect RET alignment.

Furthermore, the measures are currently presented per distance type. However,
considering that several practices affect multiple distance types and that the
distances affect each other, a potential improvement could be to analyse the full set
of distances between each pair of entities. This may further support identifying
specific improvement practices by analysing the combined set of measured
distances for one relationship, e.g. between the tester and the product owner, or
between the development team and the system test team. Furthermore, this could
provide more specific focal points at the gap workshop, although discussing
individual relationships could be sensitive even with objective data.

8.4.4 Process Improvement Through Applying Gap Finder

The main aim of the Gap Finder is to support enhanced RET alignment by
providing practices that will improve on the RE integration with testing activities.
This requires identifying suitable practices and supporting the team in deciding
which practices to implement. For this study, the Gap Finder method was not re-
iterated so the agreement on practices for implementation was gathered over a
period of 4-6 weeks and mainly consisted of gathering this feedback through a
survey. However, it is desirable to ensure an agreement that is committed to by the
whole team and to gain this agreement in connection with the gap workshop to
avoid delays in the process improvement work. This could be achieved by having
two sessions of the gap workshop, i.e. one session similar to the existing one and
one follow-on session with the main aim of reaching an agreement and an action
plan for improving on practice. This would also allow the team members to reflect
individually before meeting again to agree on which improvements to implement.

For this case three of the suggested practices were viewed by the team as
improvements to implement, but the decision to adopt these practices lay outside of
the team, e.g. with the line manager for the testers. This indicates that the mandate
for implementing each of the practices identified through the gap analysis also
needs to be considered and supported by the method. These mandates could be
identified at an initial workshop session. The full set of stakeholders including the
affected team members could then be invited to a follow-up workshop session. This
would ensure sufficient mandate at the second gap workshop session to decide on
which practices to implement and agree to an improvement plan.

9 Conclusions and Future Work
Software process improvement (SPI) aims to improve on the productivity of
software development by tweaking the development process through identifying
and implementing suitable improvements. While most existing SPI methods and
framework focus on assessing and improving practice in general, the Gap Finder
method is designed to support project teams to improve specifically on the
alignment between requirements and testing. Furthermore, Gap Finder focuses on
factors that can have an effect on RET alignment and proposes practices for
mitigating these factors. These factors have been identified through previous

246

research and consist of RE distances between people and between artefacts. This
approach has been evaluated through the case study reported in this paper by
applying the Gap Finder method to an active development project and studying the
outcome.

Through this formative evaluation three main insights have been gained
concerning the relevance of Gap Finder for improving on RET alignment. Namely,
concerning the relevance of the measured RE distances (RQ1), the relevance and
suitability of the practices identified by applying Gap Finder (RQ2), and how the
method can support team reflection in this area (RQ3).

All of the applied RE distances were found to be relevant to RET alignment,
although the exact set of RE measurements needs to be reviewed. The results also
indicate that there are three main categories of distances, namely distances that can
a) have an effect on RET alignment, b) indicate weak or strong alignment or c)
characterise the applied development process, e.g. agile or traditional RE process.

All of the improvement practices identified with the Gap Finder can support
improved RET alignment, although further tailoring of some practices is needed for
them to clearly address alignment specifically. In addition, the method can be
further strengthened by adding a step for process improvement planning, which
could include additional decision makers, e.g. responsible line managers.

The metaphor of distance used in the Gap Finder can support and stimulate team
reflections on RET alignment and was found to enable the development team to
identify new improvement areas. The concept of distance was found to provide the
team with a new perspective and potential explanation of experienced issues. In
addition, providing objective measures of distance can support an open and
objective discussion, even of more sensitive subjects such as individual difficulties
in communicating.

Future work includes considering the identified method improvements, as well
as further exploring the visualisation of distances and iRE profiles. An interesting
avenue to explore is to identify patterns in iRE profiles between related projects,
e.g. projects that apply an agile development model, or distributed projects.
Furthermore, the theoretical framework of the Gap Model will be improved further
based on the new empirical evidence from this study on the connections between
RE distances and RET alignment practices.

In conclusion, Gap Finder is found to support teams in improving on RET
alignment in a novel way by providing an objective view of underlying factors, i.e.
RE distances. By doing so the method allows practitioners to take a step back and
consider underlying factors (as do inductive SPI methods) rather than focusing on
problems with existing processes. The method combines an inductive and a
prescriptive approach to SPI by first assessing the actual case and then comparing
these findings in a structured way to an existing theoretical framework of best
practices. In this way, the method supports identifying suitable improvements by
starting at the bottom through insight into the specific project and combining this
with existing empirical knowledge, i.e. from the top.

Acknowledgement
We would like to thank the development team members for enabling this study by
sharing their time, thoughts and office space. This work was partly funded by
EASE and by Ericsson Research.

Gap Finder: Assessing and Improving the Integration of Requirements… 247

References
Angermo Ringstad M, Dingsoyr T, Brede Moe N (2011) Agile Process improvement:

Diagnosis and Planning to Improve Teamwork. Proc of 18th European Conf. on Systems,
Software and Service Process Improvement (EuroSPI’11), Communications in Computer
and Information Science Volume 172, 2011, pp. 167-178.

Barmi ZA, Ebrahimi AH, Feldt R (2011) Alignment of Requirements Specification and
Testing: A Systematic Mapping Study. Proc. 4th Int. Conf. on Softw. Testing,
Verification and Validation Workshops (ICSTW):476-485.

Basili VR (1985) Quantitative Evaluation of Software Methodology. Tech. report TR-1519,
University of Maryland, College Park, Maryland.

Basili VR, Rombach HD (1988) The TAME Project: Towards Improvement-Oriented
Software Environments, IEEE Transactions on Software Engineering, 14(6), 758–773.

Basili VR (1992) Software modelling and measurement: the Goal/Question/Metric paradigm,
Technical report, University of Maryland at College Park College Park, MD, USA.

Benner P (1982) From Novice to Expert. American Journal of Nursing, 82(3), 402-407.
Bjarnason E, Wnuk K, Regnell B (2011) Requirements are Slipping Through the Gaps – A

Case Study on Cause & Effects of Communication Gaps in Large-Scale Software
Development. Proc. of 19th IEEE Int Requirements Engineering Conf., pp. 37-46.

Bjarnason E (2013a) Distances between Requirements Engineering and Later Software
Development Activities: A Systematic Map. Proc. of Requirements Engineering for
Software Quality Conference (REFSQ) 2013, pp. 292-307. 2013

Bjarnason E, Runeson P, Borg M et al. (2013b) Challenges and Practices in Aligning
Requirements with Verification and Validation: A Case Study of Six Companies.
Empirical Software Engineering, published on-line July 2013.

Bjarnason E (2013c) Integrated Requirements Engineering: Understanding and Bridging
Gaps within Software Development, Ph. D. Thesis, November 2013.

Bjarnason E (2013d) Research material for Gap Finder evaluation study incl measurement
instrument, interview guide etc. (latest access: 2013-10-22)
http://serg.cs.lth.se/research/experiment_packages/GapFinder/

Boehm, BW (1981) Software Engineering Economics, Prentice Hall.
Brede Moe N, Dingsoyr T, Royrvik EA (2009) Putting Agile Teamwork to the Test – An

Preliminary Instrument for Empirically Assessing and Improving Agile Software
Development. Proc of XP 2009, LNBIP 31, pp. 114-123.

Briand L, El Emam K, Melo WL (1995) ANSI -- An Inductive Method for Software Process
Improvement: Concrete Steps. Proc. of the ESI-ISCN’95: Measurement and Training
Based Process Improvement, Sep. 11-12 1995, Vienna, Austria.

Briand LC, Labiche Y, O’Sullivan L, Sówka MM (2006) Automated impact analysis of
UML models. Journal of Systems and Software 79(3), pp. 339-352.

Cataldo M, Herbsleb J, Carley K (2008) Socio-Technical Congruence: a Framework for
Assessing the Impact of Technical and Work Dependencies on Software Development
Productivity. Proc. of 2nd ACM-IEEE Int. Symp. on Empirical Softw. Engineering and
Measurements (ESEM '08)

Chen JC, Huang SJ (2009) An empirical analysis of the impact of software development
problem factors on software maintainability. Journal of Systems and Software, vol. 82,
no. 6, pp. 981-992.

Chrissis MB, Konrad M, Shrum S (2007) CCMI for Development, v 1.2. Guidelines for
Process Integration and Product Improvement (2nd edition), SEI Series in Software
Engineering, Addison-Wesley.

Cleland-Huang J, Chang CK, Christensen M (2003) Event-Based Traceability for Managing
Evolutionary Change. IEEE Transactions on Software, 29(9).

Collier B, DeMarco T, Fearey P (1996) A Defined Process for Project Postmortem Review,
IEEE Software, vol. 13, issue 4, pp. 65-72.

248

Damian D, Chisan J, Vaidyanathasamy L, Pal Y (2005) Requirements Engineering and
Downstream Software Development: Findings from a Case Study. Empirical Software
Engineering, vol 10:255-283.

Damian D, Chisan J (2006) An Empirical Study of the Complex Relationship between
Requirements Engineering Processes and Other Processes that Lead to Payoffs in
Productivity, Quality, and Risk Management. IEEE Transactions on Software
Engineering, 32(7):33 - 453.

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering Traceability Links in
Software Artifact Management Systems using Information Retrieval Methods. ACM
Transactions on Softw. Engineering and Methodology, 16(4):Article 13.

Derby E, Larsen D (2006) Agile Retrospectives: Making Good Teams Great! Pragmatic
Bookshelf, 2006.

Dias Neto AC, Arilo C, Subramanyan R, Vieira M, Travassos GH (2007) A Survey on
Model-Based Testing Approaches: A Systematic Review. Proc of 1st ACM Int
Workshop on Empirical Assessm. of Softw. Engineering Languages and Technologies,
pp. 31-36.

Drury M, Conboy K, Power K (2011) Decision making in agile development: A Focus
Group Study of Decisions and Obstacles. Proc. Of Agile Conference 2011, pp. 39-47.

Dybå T (2000) An Instrument for Measuring the Key Factors of Success in Software Process
Improvement. Empirical Software Engineering, 5, pp. 357–390.

Ferguson RW, Lami G (2006) An Empirical Study on the Relationship between Defective
Requirements and Test Failures. Proc of 30th Annual IEEE/NASA Software Engineering
Workshop SEW-30 (SEW'06).

George M (2002) Lean Six Sigma: Combining Six Sigma Quality with Lean Production
Speed. McGraw-Hill.

Gotel O, Finkelstein A (1994) An Analysis of the Requirements Traceability Problem. Proc.
First Int Conf. Requirements Eng., pp. 94-101.

Grieskamp W, Kicillof N, Stobie K, Braberman V (2011) Model-based quality assurance of
protocol documentation: tools and methodology. Softw. Test Verification Reliability.
21(1):55–71.

Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve software companies:
an empirical analysis. IEEE Software 149, 2002, pp. 153- 160.

Harter DE, Kemerer CF, Slaughter SA (2012) Does Software Process Improvement Reduce
the Severity of Defects? A Longitudinal Field Study. Software Engineering, IEEE
Transactions on , vol.38, no.4, pp.810,827, July-Aug. 2012 doi: 10.1109/TSE.2011.63

Hasling B, Goetz H, Beetz K (2008) Model Based Testing of System Requirements using
UML Use Case Models. Proc of 2008 Int. Conf. on Software Testing, Verification, and
Validation.

Hayes JH, Dekhtyar A, Sundaram SK, Holbrook EA, Vadlamudi S, April A (2007)
REquirements TRacing On target (RETRO): Improving Software Maintenance Through
Traceability Recovery. Innovations in Systems and Software Engineering, 3(3):193-202.

Humphrey WS (1989) Managing the Software Process. SEI Series in Software Engineering,
Addison-Wesley.

Humphrey W (1997) Managing Technical People: Innovation, Teamwork, and the Software
Process, Addison-Wesley.

ISO/IEC (2004-2011) ISO/IEC 15504 Information Technology – Process Assessment, parts
1-10.

Jarke M (1998) Requirements Traceability. Comm. ACM, vol. 41, no. 12, pp. 32-36, Dec.
1998.

Jilani LL, Desharnais J, Mili A (2001) Defining and Applying Measures of Distance
Between Specifications. Journ. IEEE Transactions on Softw. Eng, 27(8), pp. 673-703.

Kandt RK (2009) Experiences in Improving Flight Software Development Processes.
Software, IEEE, vol. 26, no. 3, pp. 58-64.

Gap Finder: Assessing and Improving the Integration of Requirements… 249

Kellner MI, Madachy RJ, Raffo DM (1999) Software Process Simulation Modeling: Why?
What? How? Journal of Systems and Software, Volume 46, Issues 2–3, 15 April 1999,
pp. 91-105.

Kukkanen J, Vakevainen K, Kauppinen M, Uusitalo E (2009) Applying a Systematic
Approach to Link Requirements and Testing: A Case Study, Proc of Asia-Pacific
Software Engineering Conference (APSEC '09):482 – 488.

Lavallée M, Robillard PN (2012) The Impacts of Software Process Improvement on
Developers: A Systematic Review. Proc of 34th Int. Conf. on Software Engineering
(ICSE), pp.113-122. doi: 10.1109/ICSE.2012.6227201

Lawson M, Karandikar HM (1994) A Survey of Concurrent Engineering. Concurrent
Engineering 1994 2:1.

Lormans M, van Deursen A, Gross H (2008) An Industrial Case Study in Reconstructing
Requirements Views. Empirical Software Engineering, December 2008, Vol. 13, Issue 6,
pp. 727-760.

Martin R, Melnik G (2008) Tests and Requirements, Requirements and Tests a Möbius Strip.
IEEE Software, 25(1):54-59.

Melnik G, Maurer F, Chiasson M (2006) Executable Acceptance Tests for Communicating
Business Requirements: Customer Perspective. Proc. of Agile Conference, Minneapolis,
USA, pp. 12-46.

Mohagheghi P, Dehlen V (2008) Where is the Proof?-A Review of Experiences from
Applying MDE in Industry. Proc. of Model Driven Architecture–Foundations and
Applications, pp. 432-443.

Nebut C, Fleurey F, Traon YL, Jézéquel J (2006) Automatic Test Generation: A Use Case
Driven Approach. IEEE Trans. on Softw. Engineering, 32(3):140-155.

Lubars M, Potts C, Richter C (1993) A Review of the State of the Practice in Requirements
Modelling. Proc. of 1st IEEE Int. Symposium on Requirements Engineering, pp. 2–14.

O’Beirne P (1997) Personal Software Process - does the PSP deliver its promise? INPIRE II,
Process Improvement Training and Teaching for the Future. The British Computer
Society.

Pettersson F, Ivarsson M, Gorschek T (2008) A Practitioner’s Guide to Light Weight
Software Process Assessment and Improvement Planning. Journal of Systems and
Software 81(6):972-995

Post H, Sinz C, Merz F, Gorges T, Kropf T (2009) Linking Functional Requirements and
Software Verification. Proceedings of 17th IEEE International Requirements Engineering
Conference, pp. 295-302.

Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements traceability: Theory and
practice. Annals of Software Engineering, 3(1):397-415.

Ramesh B (1998) Factors Influencing Requirements Traceability Practice. Communications
of the ACM CACM Homepage archive, 41(12):37-44.

Ramesh B, Cao L, Baskerville R (2010) Agile Requirements Engineering Practices and
Challenges: An Empirical Study. Information Systems Journal, Volume 20, Issue 5,
pages 449–480, September 2010.

Randell B (1969) Towards a Methodology of Computing System Design. NATO Working
Conference on Software Engineering 1968, Report on a Conference Sponsored by NATO
Scientific Committee, Garmisch, Germany, pp. 204-208.

Regnell B, Runeson P (1998) Combining Scenario-based Requirements with Static
Verification and Dynamic Testing. Proc. 4th Int. Working Conf. Requirements
Engineering: Foundation for Software Quality, pp.195–206.

Regnell B, Runeson P, Wohlin C (2000) Towards integration of use case modelling and
usage-based testing. Journal of Systems and Softw. 50(2):117–130.

Robinson H, Segal J, Sharp H (2007) Ethnographically-Informed Empirical Studies of
Software Practice. Information and Software Technology, 49, pp. 540-551.

Robson C (2002) Real World Research. 2nd ed. Blackwell Publishing.

250

Rogers Y, Sharp H, Preece J (2011) Interaction Design: Beyond Human - Computer
Interaction, 3rd Edition. Wiley.

Runeson P, Höst M, Rainer A, Regnell B (2012). Case Study Research in Software
Engineering – Guidelines and Examples. Wiley.

Sabaliauskaite G, Loconsole A, Engström E, Unterkalmsteiner M, Regnell B, Runeson P,
Gorschek T, Feldt R (2010) Challenges in Aligning Requirements Engineering and
Verification in a Large-Scale Industrial Context. Proceedings of REFSQ 2010.

Salo O, Abrahamsson P (2007) An Iterative Improvement process for Agile Software
Development. Software Process Improvement and Practice, vol.12, issue 1, pp. 81-100.

Stapel K, Knauss E, Schneider K, Zazworka N (2011) FLOW Mapping: Planning and
Managing Communication in Distributed Teams. Proc of 6th IEEE Int. Conf. On Global
Software Engineering (ICGSE), pp 190-199.

Unterkalmsteiner M, Feldt R, Gorschek T (2013) A Taxonomy for Requirements
Engineering and Software Test Alignment. Accepted for publication in ACM
Transactions on Software Engineering and Methodology.

Uusitalo EJ, Komssi M, Kauppinen M et al. (2008) Linking Requirements and Testing in
Practice. 16th IEEE Int Requirements Engineering Conf, NJ, USA, pp. 265-270

Watkins R, Neal M (1994) Why and How of Requirements Tracing, IEEE Software
11(4):104-106.

Wolf T, Nguyen T, Damian D (2008) Does Distance Still Matter? Journal of Impr. and
Practice of Softw. Process, 13(6), pp. 493-510

Yu ESK, Mylopoulos J (1994) Understanding “Why” in Software Process Modelling,
Analysis, and Design. Proc. of 16th Int. Conf. on Software engineering (ICSE '94). IEEE
Computer Society Press, Los Alamitos, CA, USA, pp. 159-168.

Yue T, Briand LC, Labiche Y (2011) A Systematic Review of Transformation Approaches
Between User Requirements and Analysis Models. Requirem. Engin., 16(2), pp. 75-99.

	01FirstPage
	02Abstract
	03Contents
	04aPreface
	04bPopScH
	04cPopScience
	05Acknowledge
	06Intro_04
	07Paper1_CommGaps
	08Paper2_Overscoping
	09Paper3_REVV_Alignment
	10Paper4_Distances
	11Paper5_EBTRetros_02
	12Paper6_GapFinder_10

