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Abstract

With industrial robots ready to take the next step in mastering manufacturing tasks new approaches to reduce the pro-
gramming effort are needed. This is achieved by introducing skills as robot "know-how" and using them as a higher
abstraction level of robot instructions during programming. The skills are reusable items providing motion control and
rich declarative descriptions of complex robot capabilities. Storing the skills requires an adequate knowledge represen-
tation model that enables reuse and reasoning on skills and simplifies knowledge management. In this paper we report
on development of a skill representation model and its implementation in a knowledge base. The developed model
is effectively a class hierarchy of the skill concepts implemented in a modularized ontology structure. The resulting
model clarifies the intrinsic concepts of a skill and presents a module structure that enables the future development and
reuse of skills in general.

1 Introduction

Cognitive robotics is a fast-growing domain dealing with
creating robot systems aware of their own capacities and
limitations. Web-enabled intelligent robots can com-
municate with external knowledge bases to seek infor-
mation or to exchange programs and data with each
other. This is to some extent already a reality for re-
search service robots, where projects like RoboEarth [23]
(roboearth.org), KnowRob [20] (knowrob.org)
or RoboHow [2] (robohow.eu) provide infrastruc-
ture for exchanging pieces of relevant knowledge among
infrastructure-aware robots. In particular, in order to be
able to understand each other’s contributions, the robots
need to have same understanding of the data and knowl-
edge available in the common repositories. This com-
mon understanding is usually introduced via appropri-
ate ontologies [6], describing the concepts in a machine-
readable way.

In order to understand its own limitations, a cognitive
robot must also possess the ability to reason about itself
and its environment, about possible actions it can take
or reactions it must offer given some circumstances. It
must also understand why some actions are taken and
how. This leads to the concept of a robot skill, encom-
passing physical activities, sensory interaction, purpose-
fulness and business value, all in the context of a par-
ticular application domain. We have earlier argued for
this kind of understanding of this concept [16]. Our point
is that robots need not only possess skills and exchange
them among themselves; they need also understanding of
what a skill is and how it should be used, maintained,
shared (or kept secret) and error-recovered from. They
should distinguish skills ready to be run from those not
ready for execution, misconfigured, failed during execu-
tion, etc.

This paper presents an ontology of skills prepared with
industrial robots in mind. Its main result is actually a
set of ontologies collectively describing industrial robot
skills, intended to be used by cognitive robotic systems
for reasoning about their activities, both physical as well
as mental, like learning, teaching and interacting with
other, robotic or human, agents. The particular contribu-
tion of this paper is the meta-ontology of skills, introduc-
ing concepts like configuration, coordination and orches-
tration of skills, while previous work [3, 7, 13, 18] has
provided the necessary building blocks, i.e., the ontolo-
gies of basic robotic skills and devices (rosetta.owl),
of behaviour specification (sfc.owl), of skill parame-
terization (params.owl). Of particular interest is the
work presented in [19] where the philosophy behind the
skill transfer, reparameterization and reuse by other hard-
ware configurations is presented in detail. This paper,
together with the ontology it describes, is a complement
of those.

2 Robotic Skills
A skill of a robot is an overloaded term, used very often
informally and in a slightly different meaning depending
on the context. Quite often by a skill one understands a
potential to perform a particular action leading to a mean-
ingful outcome. Although this is a good first approxima-
tion, there are many facets of a robotic skill that need
to be taken into account before we let robots think by
themselves about their own activities. Therefore the de-
scription below tries to characterize the different aspects
of the skill concept, and make them sufficiently concrete
and semantically clear so that an automated reasoner can
exploit them appropriately.
The formal skill definition presented in this section fol-
lows rather closely the verbal one introduced in [16].



Moreover, we provide here just a couple of basic defini-
tions, while the complete formalization is available at the
Lund skill ontology site http://git.cs.lth.se/
ontologies/.
The typographical conventions in the text below are the
following: Classes (capitalized: concepts), Roles (aka
relations), individuals (lowercase). We use description
logic for the formal definitions.

2.1 Action
One of the basic terms necessary for defining a
skill is action. We distinguish SimpleActions,
CompositeActions and AtomicActions. The three
concepts are defined as disjoint.

Action
.
= SimpleAction t CompositeAction t

t AtomicAction.

SimpleAction u CompositeAction = ⊥.

SimpleAction uAtomicAction = ⊥.

CompositeAction uAtomicAction = ⊥.

Actions have effect. We introduce hasEffect and
isEffectOf relations for this. (This is a nam-
ing clash with OWL-S ontology, which in its turn
introduces hasEffect to hold between a Result
and an Expression. The two ontologies are obvi-
ously distinguished by their prefixes: http://kif.
cs.lth.se/ontologies/skills.owl\# and
http://www.daml.org/services/owl-s/1.
2/Process.owl\#, respectively.)

> v ∀hasEffect.Effect .

This says that the range of hasEffect relation is con-
cept Effect.

∃hasEffect.> v Action.

This says that the domain of hasEffect relation is the
concept Action.

hasEffect = isEffectOf−.

This says that roles (relations) hasEffect and
isEffectOf are inverse of each other. In what follows
below we will skip this kind of explanatory texts, unless
they are deemed to be necessary or useful.

Motions are actions with physical effects. Only motions
can have physical effects. A physical effect is caused by
an Actuator. Relation pair causes and isCausedBy
are used to express that.

Motion
.
= Action u (∀hasEffect.PhysicalEffect).

∀hasEffect.PhysicalEffect vMotion.

∃causes.> v Actuator.

> v ∀isCausedBy.Actuator .

∃isCausedBy.> v PhysicalEffect .

Motions can be explicit or implicit. An explicit motion
is somewhat equivalent to “imperative”, meant to mean
“executable”. Implicit is equivalent to “declarative” and
is meant to be synthesized later on. Implicit motions are
useful for verification purposes. One possible question
a motion can ask the system: “Am I executable?” An
implicit motion together with an appropriate solver can
yield and explicit (executable) motion. Compositionality
is easier to achieve for implicit motions.
AtomicActions and SimpleActions can be expressed as
OWL-S primitives. OWL-S is a formal language for
characterizing composable (software) services [14]. In
robotic context, we say that an action isModeledBy an
OWL-S Process.
Actions have an OWL-S specification as ser-
vices. This dependence is captured by the relation
isDescribedBy.

> v ∀isDescribedBy.Service.

This says that the range of isDecsribedBy relation is
Service class (concept).

∃isDescribedBy.> v Action.

This says that the domain of isDescribedBy relation
is the concept Action.

2.2 Configuration
As the skill concept is intimately related to orchestration
(of motions), consisting in turn of configuration and co-
ordination [16], we introduce those three concepts first.

In order to describe a configuration (of a system) one
needs to specify the topology (i.e., the subsystems in-
volved and their relations), the connectivity (i.e., the sta-
tus of connections between the subsystems, including the
physical connections as well as logical ones) and the pa-
rameterization (providing the actual settings for the con-
figuration).
This dependency is captured by the following three roles
(object properties):

∃involvesTopology.> v Configuration.

> v ∀involvesTopology.ConfigurationTopology .

∃involvesConnectivity.> v Configuration.

> v ∀involvesConnectivity.ConfigurationConnectivity .

∃involvesParameterization.> v Configuration.

> v ∀involvesParameterization.
.ConfigurationParameterization.

A Configuration is characterized by its Status:

∃isCharacterizedBy.> v Configuration.

> v ∀isCharacterizedBy.Status.

characterizes = isCharacterizedBy−.



A status can be expressed in several ways, e.g., using
the traffic light symbol (in order to capture three, some-
times four, distinguished values of the status symbolized
by red, yellow, /possibly blinking yellow/ and green, re-
spectively), using the binary {OK, NoOK} domain or us-
ing some numeric encoding, like a digit between 0 and 9.
Of course, there are many more possibilities,
We have introduced the Configuration concept in a
generic manner, as applied to any kind of system. In the
context of industrial robotic systems we will be interested
in using it to characterize at least three kind of objects:
Device, Connection and Coordination.
In each of those cases the Status will mean something dif-
ferent, but the meaning will be sufficiently clear to reason
further on its base. For example, a status of a (physical)
connection between two devices can be: non-connected;
connected, but not configured; connected and properly
configured; — mapping quite well to the traffic light vi-
sualization by red, yellow and green.

∃hasStatusValue.> v Status.

TrafficLightStatus v Status.

The TrafficLightStatus consists of three independent sta-
tuses, namely RedStatus, YellowStatus and GreenStatus:

RedStatus v TrafficLightStatus.

YellowStatus v TrafficLightStatus.

GreenStatus v TrafficLightStatus.

Each of them is restricted to have just one
(string) value, out of three possible ones: On,
Off and Blinking. For this purpose there exist
three data properties: hasGreenLightState,
hasYellowLightState, and hasRedLightState,
all three subproperties of hasLightState that has one
of three possible values: “Blinking”, “Off”, or “On”. The
semantics of their combinations is dependent on the ap-
plication domain.

2.3 Coordination
Coordination describes the (possibly real-time) be-
haviour of a correctly configured system. The means for
this description normally involve some kind of transition
system. There exist may variants of those, with different
denotational and operational semantics, however, hav-
ing in common the capability of specifying causal (tem-
poral or event-based) dependencies between simpler be-
haviours, out of which the overall behaviour is composed.
So, in order to describe coordination, one has to be able to
specify simple (sometimes primitive) behaviours in some
way, and then their interdependencies, like serial or par-
allel connections, mutual exclusion, synchronization, etc.

∃defines.> v Coordination.

> v ∀defines.Behaviour .

We distinguish therefore behaviours and behaviour de-
scriptions. Behaviours are normally (in robotics) associ-
ated with (robot) actions, but may also be used to denote
computations, environment changes, etc. Any observ-
able change of some physical value in time may be rep-
resented as a behaviour of an appropriate entity. There-
fore the transition systems ontology lists the following
concepts as subconcepts to Behaviour: Action, Activ-
ity, (Condition) Occurrence, Event, Execution, Process,
Task. Depending on the particular domain described,
each of those is somehow captured by the term behaviour.
Behaviour description in its turn is a tool for describ-
ing a behaviour. We associate always a transition sys-
tem with a behaviour. In the simplest case of a primitive
action (like move), the transition system will be trivial
and will consist of only one state: moving, and one out-
going transition from it, denoting completion. The con-
tinuous activity in each state will be described using a
formalism appropriate for the domain in question and the
tools available: differential equations, difference equa-
tions, data flow diagram, program code in some language.
The resulting hybrid system is intended to capture a large
part of what we intuitively describe as “behaviours” of
technical systems.

∃describes.> v BehaviourDescription.

> v ∀describes.Behaviour .

∃isDescribedBy.> v Behaviour .

> v ∀isDescribedBy.BehaviourDescription.

isDescribedBy ≡ describes−.

The ontology we have developed so far (see Sec. 3 below)
names at least five such transition system formalisms:
OpenPLC, Statecharts [10], Intermediate Modeling Lan-
guage (IML, originating in AutomationML [5]) and Se-
quential Function Charts (SFC) [21], besides the generic
Finite State Machines (FSM). Each is a subconcept of a
Graph, where Nodes and Arcs, appropriately decorated,
correspond to states and transitions of a transition system.
Besides FSMs, graphs are also used to express (specify)
assembly tasks (Assembly Graphs) and assembly con-
straints (Constraint Graphs).

2.4 Orchestration
Orchestration consists of Configuration and Coordina-
tion. (It is effectively a pair.)

∃hasConfiguration.> v Orchestration.

> v ∀hasConfiguration.Configuration.

∃hasCoordination.> v Orchestration.

> v ∀hasCoordination.Coordination.

An orchestrated skill is ready to be executed. Note that
skills MUST be defined declaratively, otherwise they are
not skills, but incomplete skills or skill candidates.



3 Skill Ontologies
The specific ontology this paper introduces on top of ex-
isting ones, skills.owl, is a meta-ontology in the
sense that it assumes other, concrete robot skill ontologies
to provide details about robotic devices, their capabilities
and the interesting operations demanded by the domain.
For example, in assembly there will be joining operations
of various kind, like glueing, welding, riveting or screw-
ing together, while robotic capabilities described in the
bottom-level ontology will include pressing (i.e. applying
a force in a given direction), force-controlled snapping,
screwing a nut, etc. The meta-ontology is concerned in
turn with providing the necessary semantic grounds for
reasoning about a particular robotic cell setup: Is it capa-
ble of performing task X?, Will it perform the task given
current configuration and parameterization? How should
the coordination be performed? What behaviours will the
devices involved realize?
This meta-ontology is created in order to capture, among
other concepts, the 5C meta-model [22] realizing sepa-
ration of concerns (Communication, Computation, Coor-
dination, Configuration, and Composition) while describ-
ing (industrial) robot activities. The formalization closely
follows the model-driven approach to software develop-
ment in robotics [4], in order to guarantee that the soft-
ware controlling robots is correct, verifiable, robust and
modular.
The dependencies between the robotic ontologies men-
tioned in the introduction are illustrated in Figure 1. The
skills.owl is the ontology introduced here, while
the others are described in detail in [18]. Please note
also that all the open ontologies, denoted in the figure
by gray shade and license name, are available, either
at the knowledge server kif.cs.lth.se at URIs
http://kif.cs.lth.se/ontologies/XXXX.owl,
where XXXX is the name of the corresponding ontol-
ogy, or at the Lund skill ontology site mentioned earlier,
except the two bottom ones, external to our system and
available from their respective providers. We use the
Creative Commons 3.0 license for the open ontologies
mentioned here.

PARAMS.OWLPARAMS.OWL

ROSETTA.OWL

QUDT 1.1

SKILLS.OWL

SFC.OWLPARAMS.OWLFRAMES.OWL

OM 1.8

CC-BY-3.0

CC-BY-SA-3.0

CC-BY-3.0

CC-BY-3.0

CC-BY-3.0

Figure 1: The original ontology structure, [18].

4 Modularization

As described in Sec. refsec:skill-ontologies, the set of
robotic ontologies developed in the ROSETTA and sub-
sequent EU projects have the structure illustrated in
Fig. 1. In particular, the meta-ontology skills.owl is
separated from the ground concept ontologies, thus mak-
ing them less amenable for introspection by software sys-
tems. Moreover, although the division into frame-related
concepts (frames.owl, describing poses and geomet-
rical relations), behaviour encoding (sfc.owl, formal-
izing transition systems of various kinds) and skill pa-
rameters (params.owl, ensuring correct execution of
the underlying software) corresponds to the conceptual
model we used for a very long time, their dependencies
are unclear and very hard to maintain.

Therefore, in order to make the structure more modu-
lar, allowing one to extend the set of available skills
with new ones, and to offer possibility of ontology
plug-ins with proprietary information specific for some
vendors or end-users (like e.g., proprietary descriptions
of robot skills), we have rearranged the concepts de-
fined in skills.owl [11] by making explicit the as-
pects of skill configuration (dependencies, parametriza-
tion, task and feature frames associated with it, etc.) and
coordination, encompassing the system behaviour
in an explicit manner. The new structure is illustrated
in Fig. 2.

ROSETTA.OWLOM 1.8

CONFIGUARTION.OWL COORDINATION.OWL

SKILL1.OWL

SKILL2.OWL

SKILL3.OWL

PRIMITIVE2.OWL

PRIMITIVE1.OWL

...

Figure 2: The new ontology structure, [11].

In this manner the important aspects of relevance to cog-
nitive processes, i.e. coordination and configuration of
skills, became explicitly available. The structure of a sin-
gle robotic skill is shown in Fig. 3, while Fig. 4 presents
the new structure of an example skill named Skill1,with
all the necessary annotations. The reasoners exploiting
this new structure are currently tested in practical set-
tings of an SMERobotics demonstrator [8]. The ontolo-
gies have also been used in a knowledge repository for a
prototype extension of the ABB RobotStudio software.



Figure 3: The new skill structure, [11].

Figure 4: An example Skill1 represented according to the
ontology, [11].

5 Related work
Cognitive robotics demands explicit reasoning about
robot capabilities. Ontologies ease this task by making
this knowledge explicit and transferable among agents.
There is a number of projects developing this kind of
robotic knowledge bases, like the mentioned already
KnowRob [20], RoboEarth [23] or Open Robotics On-
tology ORO [12], but they usually refer to the service
robotics domain and involve mobility as the basic robot
activity. A good recent overview of this research may be
found in [9]. In case of industrial robotics the amount
of work is less extensive, but there exist initiatives to se-
mantically characterize basic concepts, like the Core On-
tology for Robotics and Automation, CORA, [17], based
in its turn on the Suggested Upper Merged Ontology
SUMO. however, the concepts introduced there are rather
basic, and do not reach the complexity necessary to char-

acterize industrial robotic skills. There are some inter-
esting and valuable attempts to remedy this problem, but
they are yet limited in their scope, like [1], [15] or [24].

6 Conclusions

The main purpose of this paper is to announce the exis-
tence of a set of modular ontologies intended to charac-
terize industrial robotic skills, focusing on robotized as-
sembly in particular. The ontologies are under continu-
ous development and may still miss some important as-
pects, but are already used in a meaningful way in our
research projects (including the ones mentioned below in
acknowledgments). We particularly stress the skill porta-
bility as one of the necessary aspects and most important
properties. We expect the ontologies to be useful also out-
side the context of our projects and do hope to get feed-
back from prospective adopters.
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