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Abstract

The thesis covers different topics related to model predictive control (MPC)
and particularly distributed model predictive control (DMPC). One topic
of the thesis is gradient-based optimization algorithms for solving the
optimization problem arising in DMPC in a distributed manner. The un-
derlying idea is to solve the optimization problem in distributed fashion
using dual decomposition, which is a well-known method. Dual decom-
position is traditionally used in conjunction with (sub)gradient methods
which are known to have bad convergence rate properties, especially for
ill-conditioned problem. In this thesis it is shown how to use accelerated
gradient methods with dual decomposition, and how to choose the step
size parameter optimally in the algorithm. A method to bound the num-
ber of iterations needed to guarantee a prespecified accuracy of the so-
lution is also provided. Based on the iteration bound, it is shown how
to precondition the problem data optimally to improve conditioning of the
problem. These contributions significantly improve the performance of the
distributed optimization algorithm compared to dual decomposition with
a (sub)gradient method.
Another topic of the thesis is to guarantee feasibility and stability

when using the developed distributed optimization algorithm in a DMPC
context. Traditional methods of proving stability in MPC usually involve
terminal cost functions and terminal constraints that are non-separable.
These methods are not directly applicable in DMPC based on dual decom-
position because of the non-separable terms. Further, dual decomposition
does not provide feasible iterations but is guaranteed to be primal feasible
only in the limit. These issues have been addressed in the thesis. The sta-
bility issue is addressed by showing that for problems without a terminal
cost or terminal constraints and if a certain controllability assumption on
the stage costs is satisfied, the optimal value function is decreasing in
every time step by a prespecified amount. It is also shown how the con-
trollability assumption can be verified by solving a mixed integer linear
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Abstract

program. The feasibility issue is addressed by a novel adaptive constraint
tightening approach. The adaptive constraint tightening guarantees that
a primal feasible solution can be constructed with finite number of algo-
rithm iterations without compromising the stability guarantee.
The developed distributed optimization algorithm is evaluated on a

hydro power valley benchmark problem. The hydro power valley consists
of several dams connected in series where each dam is equipped with a
turbine to extract power from the water. The objective is to control the
water flow between the dams such that the total power from the turbines
matches a power reference while respecting constraints on water levels
and water flows. The control problem is formulated as an optimization
problem, which is solved in receding horizon fashion using the distributed
optimization algorithm presented in the thesis. The performance of the
proposed distributed controller is compared to the performance of a cen-
tralized controller.
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Preface

Contributions of the Thesis

The thesis consists of one introductory chapter, eight papers and one sup-
plement. This section describes the content of the introductory chapter,
the contribution of each paper, and the content in the supplement.

Chapter 1 – Background

The background chapter consists of material relevant for the thesis. We
cover convex optimization, Lagrange duality theory, gradient-based opti-
mization methods, decomposition techniques, and model predictive con-
trol.

Paper I

Giselsson, P., M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer
(2012) “Accelerated gradient methods and dual decomposition in
distributed model predictive control.” To appear in Automatica.

In this paper it is shown how accelerated gradient methods can be
used in conjunction with dual decomposition in a distributed model pre-
dictive control context. The optimal constant step size for the algorithm
is provided. It is also shown how to, in a distributed manner, handle an
additional non-smooth and non-separable 1-norm term in the objective.
Another contribution is, besides a convergence rate for the dual function
value, also a convergence rate for the primal variables.
The work was to a large extent carried out by P. Giselsson with help

from M. D. Doan. Useful support and comments were given by T. Keviczky,
B. De Schutter and A. Rantzer.
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Paper II

Giselsson, P. (2012) “Execution time certification for gradient-based
optimization in model predictive control.” To appear in Proceedings
of the 51st IEEE Conference on Decision and Control, Maui, HI.

The paper considers execution time certification for a dual acceler-
ated gradient method applied in a model predictive control context. A
centralized model predictive control formulation with eliminated states is
considered. To compute a bound on the number of iterations needed to
achieve a prespecified accuracy of the dual function value, a bound on the
norm of the optimal dual variables associated with the inequality con-
straints is needed. We show that by constructing a Slater vector for every
feasible initial condition, the norm of the optimal dual variables can be
bounded. This implies that the iteration bound for dual function accuracy
can be computed. We also show how to precondition the inequality con-
straint matrices optimally, where optimally refers to the preconditioning
that minimizes the obtained iteration bound.

Paper III

Giselsson, P. (2012) “Optimal preconditioning and iteration complexity
bounds for gradient-based optimization in MPC.” Submitted to 2013
American Control Conference, Washington, D.C.

This paper extends the result in Paper II to the case where the state
variables are not eliminated. The resulting MPC optimization problem
has both equality and inequality constraints and the presented results
are hence applicable to distributed MPC as well as centralized MPC. To
compute an iteration bound for the dual function accuracy, the norm of
the optimal dual variables corresponding to the equality constraints and
the inequality constraints needs to be bounded. We show how to com-
pute a bound to the norm of the optimal dual variables, which is used to
compute the iteration bound. We also show how to precondition the equal-
ity constraint and inequality constraint matrices optimally by solving a
semidefinite program, where optimally refers to the preconditioning that
minimizes the iteration bound.

Paper IV

Giselsson, P. (2012) “A generalized distributed accelerated gradient
method for DMPC with iteration complexity bounds.” Submitted to
2013 American Control Conference, Washington, D.C.

Gradient-based methods are known to have iterations of low complex-
ity but might need a significant number of iterations to converge. In this
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paper a distributed dual accelerated gradient method is proposed which
significantly reduces the number of iterations needed to achieve a satis-
factory accuracy of the dual function. This is done by, in a well-defined
manner, incorporating hessian information to the algorithm. By approxi-
mating the hessian by a block-diagonal matrix, the algorithm can still be
implemented in a distributed fashion. By offline computing the hessian
approximation, the iteration complexity is greatly reduced at run-time for
the DMPC controller. The paper also shows how to compute a bound on the
number of iterations necessary to guarantee a prespecified dual accuracy.

Paper V

Giselsson, P. and A. Rantzer (2012) “On feasibility, stability and perfor-
mance in distributed model predictive control.” Submitted to IEEE
Transactions on Automatic Control.

This publication concerns closed loop properties for distributed model
predictive control when the optimization problem is solved using dual
decomposition methods. The traditional way of proving stability in cen-
tralized model predictive control is not directly applicable to distributed
model predictive control. In this paper a method is presented that proves
stability for distributed model predictive control where neither terminal
constraints nor a terminal cost is used. The stability result is based on
a controllability assumption of the stage costs. We show that this con-
trollability assumption can be verified by solving a mixed integer linear
program. The paper also proposes a novel adaptive constraint tightening
approach that enables for early termination of the optimization algorithm
while still guaranteeing closed loop properties such as feasibility, stability
and a prespecified performance.
The basic ideas with dual decomposition and suboptimality bounds

in distributed model predictive control are due to A. Rantzer. All details
such as the method to verify the controllability assumption, the adaptive
constraint tightening approach, and the possibility for early termination
are due to P. Giselsson.

Paper VI

Giselsson, P. (2012) “Output feedback distributed model predictive control
with inherent robustness properties.” Submitted to 2013 American
Control Conference, Washington, D.C.

This paper extends the results in Paper V to include the possibility
of output feedback. A decentralized observer is created and the controller
from Paper V is fed with state estimates from the observer. Stability re-
sults are provided by showing that the estimation error can be treated as
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a bounded disturbance and that the controller from Paper V is inherently
robust to small disturbances.

Paper VII

Doan, M. D., P. Giselsson, T. Keviczky, B. De Schutter, and A. Rantzer
(2012) “A distributed accelerated gradient algorithm for DMPC of a
hydro power valley.” Submitted to Control Engineering Practice.

In this paper distributed control of a hydro power valley (HPV) is con-
sidered. The objective of the control is to meet a time-varying power profile
while respecting water flow and water level constraints. The model of the
HPV has nonlinearities in the power production functions and boolean
constraints. Further, the power production depends on states in all sub-
systems, which complicates a distributed implementation. These issues
are addressed and the distributed optimization algorithm from Paper I is
used to solve the resulting optimization problem in a distributed fashion.
The hydro power valley problem is a benchmark problem in the European
Union FP7 STREP project HD-MPC.
Model reduction was performed by M. D. Doan and controller de-

sign, controller tuning, and simulations were performed by P. Giselsson.
T. Keviczky, B. De Schutter, and A. Rantzer gave useful comments and
A. Rantzer also suggested some useful ideas for the controller design.

Paper VIII

Giselsson, P. (2012) “Gradient-based model predictive control in a pendu-
lum system.” Technical Report ISRN LUTFD2/TFRT--7624--SE. De-
partment of Automatic Control, LTH, Lund University, Sweden.

In this paper optimal control of a pendulum system is considered. Op-
timal control trajectories are computed and used as feedforward control
trajectories. A model predictive control (MPC) formulation is used as feed-
back to control the actual system trajectories towards the optimal trajec-
tories. The MPC optimization problem is formulated as a quadratic pro-
gram. A dual formulation to the MPC optimization problem is stated and
an accelerated gradient method is applied to solve the dual problem. Ex-
periments show that the optimization algorithm is efficient enough to be
implemented in the pendulum application in real-time and that the MPC
feedback gives good closed loop performance.
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Related publications. The technical report is based on and extends
the conference paper

Giselsson, P. (2011): “Model predictive control in a pendulum system.” In
Proceedings of the 31st IASTED Conference on Modelling, Identifica-
tion and Control. Innsbruck, Austria.

and is to some extent also based on the conference paper

Giselsson, P., J. Åkesson, and A. Robertsson (2009): “Optimization of a
pendulum system using Optimica and Modelica.” In Proceedings of the
7th International Modelica Conference 2009, pp. 480–489. Como, Italy.

Supplement A – Specification of Randomly Generated Systems

The supplement specifies dynamics matrices, constraints, and cost func-
tions in the randomly generated systems used in Paper III, Paper IV,
Paper V, and Paper VI.

Additional Publications

The following publications were chosen not to be included in the thesis.

Torreblanca, P. M., P. Giselsson, and A. Rantzer (2010): “Distributed
receding horizon Kalman filter.” In Proceedings of the 49th IEEE
Conference on Decision and Control, pp. 5068–5073. Atlanta, GA.

Giselsson, P. and A. Rantzer (2010): “Distributed model predictive con-
trol with suboptimality and stability guarantees.” In Proceedings of
the 49th IEEE Conference on Decision and Control, pp. 7272–7277.
Atlanta, GA.

Giselsson, P. (2010): “Adaptive nonlinear model predictive control with
suboptimality and stability guarantees.” In Proceedings of the 49th
IEEE Conference on Decision and Control, pp. 3644–3649. Atlanta,
GA.

Lindholm, A. and P. Giselsson (2012): “Formulating an optimization
problem for minimization of losses due to utilities.” In 8th IFAC
International Symposium on Advanced Control of Chemical Processes.
Singapore.
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1

Background

In this chapter, background material relevant for the thesis is presented.

1.1 Convex Optimization

In this section we will describe convex optimization and introduce useful
definitions and results.

Convex Sets

A set C is convex if for any points x1, x2 ∈ C and any θ where 0 ≤ θ ≤ 1
we have

θ x1 + (1− θ)x2 ∈ C.
The definition implies that between any two points in the set, there is a
straight line that lies within the set.

Convex Functions

A convex function is a function f : Rn → R where for all x, y ∈ Rn and θ
with 0 ≤ θ ≤ 1 we have

f (θ x + (1− θ)y) ≤ θ f (x) + (1− θ) f (y). (1.1)

In this definition and hereafter we assume that dom f = Rn for conve-
nience. The convexity definition implies that the line segment between
any points (x, f (x)) and (y, f (y)) lies above (or on) the graph of f . A
subgradient to a convex function f at x is any vector ξ (x) such that

f (y) ≥ f (x) + ξ (x)T (y− x) (1.2)

for all y ∈ Rn. The set of vectors ξ (x) that satisfy (1.2) at x is denoted by
� f (x) and is called the subdifferential of f at x. If the subdifferential for
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Chapter 1. Background

every x ∈ Rn is a singleton, then f is differentiable. In that case � f (x) =
{∇ f (x)} where ∇ f (x) is called the gradient to f at x. For differentiable
functions convexity holds if and only if for all x, y∈ Rn the following holds

f (y) ≥ f (x) +∇ f (x)T (y− x).

For differentiable functions we also define strict convexity. The function f
is strictly convex if for any x, y ∈ Rn with x ,= y we have

f (y) > f (x) +∇ f (x)T (y− x).

For differentiable functions, a strongly convex function f is a function that
satisfies

f (y) ≥ f (x) +∇ f (x)T (y− x) + σ

2
qx − yq2

for every x, y ∈ Rn where σ > 0 is called the convexity parameter. The
definitions imply that a strongly convex function is also strictly convex,
but not vice versa. It is also possible to define strict and strong convexity
for non-differentiable functions in accordance with (1.1). A differentiable
convex function with Lipschitz continuous gradient satisfies

q∇ f (x) −∇ f (y)q ≤ Lqx − yq

for all x, y ∈ Rn where L > 0 is the Lipschitz constant. This is equivalent
to (cf. [Nesterov, 2003, Theorem 2.1.5])

f (y) ≤ f (x) +∇ f (x)T (y− x) + L
2
qx − yq2 (1.3)

for all x, y ∈ Rn, i.e., that a quadratic function with curvature L in all di-
rections is an upper bound to f . Finally, a concave function � is a function
� : Rn → R such that −� is convex.

Convex Optimization Problems

We consider the following general optimization problem

minimize f0(x) (1.4)
subject to fi(x) ≤ 0, i = 1, . . . , q

hi(x) = 0, i = 1, . . . , r

where x ∈ Rn. We refer to f0 : Rn → R as the objective function or
cost function. We call fi : Rn → R, i = 1, . . . , q, the inequality constraint
functions and fi(x) ≤ 0, i = 1, . . . , q, are referred to as inequality con-
straints. Further, we call hi : Rn → R, i = 1, . . . , r, the equality constraint
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1.1 Convex Optimization

functions and hi(x) = 0, i = 1, . . . , r, the equality constraints. We use the
shorthand vector notation

f (x) =




f1(x)
...

fq(x)


 , h(x) =




h1(x)
...

hr(x)


 .

The optimization problem (1.4) is called feasible if there exists an x such
that f (x) ≤ 0 and h(x) = 0, the problem is strictly feasible if there exists
an x such that f (x) < 0 and h(x) = 0, and the problem is infeasible if
it is not feasible. The optimal value of (1.4) is denoted by p⋆. We use the
convention of letting p⋆ = ∞ for infeasible problems and p⋆ = −∞ for
problems that are unbounded below.
We define convex optimization problems to be of the form

minimize f0(x) (1.5)
subject to fi(x) ≤ 0, i = 1, . . . , q

aTi x = bi, i = 1, . . . , r

where fi, i = 0, . . . , q are convex functions, ai ∈ Rn and bi ∈ R, i =
1, . . . , r. The differences between the general optimization problem (1.4)
and the convex optimization problem (1.5) are that in (1.5) the objective
function and inequality constraint functions are restricted to be convex,
and the equality constraint functions in (1.5) are restricted to be affine.
For future reference we introduce the matrix A = [a1, . . . , ar]T and the
vector b = [b1, . . . , br]T which implies that the equality constraints can be
expressed as Ax = b.
The feasible set of (1.5) is a convex set since it is the intersection of level

sets to convex functions (the inequality constraints) and hyperplanes (the
equality constraints). This implies that in convex optimization, a convex
cost is minimized over a convex set.

Existence of Optimal Solutions

Even if the optimal value p⋆ to (1.5) is finite, it is possible that no x
exist that attains the minimum, i.e., no x exist such that f0(x) = p⋆,
f (x) ≤ 0 and Ax = b. An example is the unconstrained problem with
f0(x) = ex for which p⋆ = 0 but no x exist such that ex = 0. Weierstrass
extreme value theorem gives conditions for which a minimization problem
is guaranteed to attain its minimum value. To state these conditions we
define the feasible set

Z = {x ∈ R
n p f (x) ≤ 0 and Ax = b}.

We state one version of Weierstrass extreme value theorem below.
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Chapter 1. Background

PROPOSITION 1.1
Let Z ⊆ Rn be nonempty and let f0 : Rn → R be continuous. Assume
that at least one of the following conditions hold

1. Z is compact.

2. Z is closed and f0 is strongly convex.

Then a vector x exists such that f0(x) = infz∈Z f0(z).
This is a slight modification of [Bertsekas, 1999, Proposition A.8]. We have
exchanged the coercive property in [Bertsekas, 1999, Proposition A.8 (2)]
to strongly convex since every strongly convex function is also coercive.

First-order Optimality Condition

Below we state the first-order optimality condition for differentiable cost
functions f0 (cf. [Boyd and Vandenberghe, 2004, §4.2.3]). We have that x∗

is optimal if and only if x∗ ∈ Z and

∇ f0(x∗)T (x − x∗) ≥ 0 for all x ∈ Z .

From the definition of strictly convex functions and the first-order opti-
mality condition we get

f0(x) − f0(x∗) > ∇ f0(x∗)T (x − x∗) ≥ 0

for all x ∈ Z\x∗. This implies that the minimizing argument x∗ to a convex
optimization problem with a strictly convex objective function is unique,
if it is attained.

1.2 Lagrange Duality Theory

In this section we describe Lagrange duality theory. The presentation
in this section is influenced by [Boyd and Vandenberghe, 2004, Chapter
5]. For a more complete treatment of convex optimization and Lagrange
duality theory the reader is referred to [Rockafellar, 1970,Bertsekas, 1999,
Boyd and Vandenberghe, 2004,Hiriart-Urruty and Lemarechal, 1996].
We consider optimization problems as stated in (1.4) and refer to (1.4)

as the primal problem. In Lagrange duality, the constraints are taken
into account by augmenting the cost function by a weighted sum of the
constraint functions. We introduce dual variables λ ∈ Rr and µ ∈ R

q
≥0

and form the Lagrangian associated with (1.4) as

L(x,λ , µ) = f0(x) +
r∑

i=1
λ ihi(x) +

q∑

i=1
µ i fi(x)
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1.2 Lagrange Duality Theory

where λ i is associated with equality constraint hi and µ i is associated
with inequality constraint fi. The Lagrange dual function is defined as

�(λ , µ) = inf
x
L(x,λ , µ) = inf

x

(
f0(x) +

r∑

i=1
λ ihi(x) +

q∑

i=1
µ i fi(x)

)

which is a concave function even if the primal problem (1.4) is not convex
[Boyd and Vandenberghe, 2004, §5.1.2]. For any µ ∈ R

q
≥0, any λ ∈ Rr, and

any feasible x̃ ∈ Rn, i.e., that satisfies hi(x̃) = 0 and �i(x̃) ≤ 0, we have
that

r∑

i=1
λ ihi(x̃) +

q∑

i=1
µ i fi(x̃) ≤ 0. (1.6)

This implies that

�(λ , µ) = infL(x,λ , µ) ≤ L(x̃,λ , µ) ≤ f0(x̃) (1.7)

where the last inequality follows from the definition of L and from (1.6).
Since the relation holds for any feasible x̃, it holds for the minimizing
argument to (1.4) which implies that

�(λ , µ) ≤ p⋆. (1.8)

Dual Function Differentiability Properties

Before we discuss differentiability properties of the dual function, we in-
troduce the set of points that minimize the Lagrangian

X (λ , µ) = {x ∈ R
n p x = argmin

x
L(x,λ , µ)}.

Using this definition, a subgradient to the concave dual function is any
vector ξ = [ξ Tλ ξ Tµ ]T where ξ Tλ and ξ Tµ are any vectors that satisfy

ξλ =




aT1 xλµ − b1
...

aTr xλµ − br


 , ξµ =




f1(xλµ)
...

fq(xλµ)




for some xλµ ∈ X (λ , µ) (cf. [Bertsekas, 1999, §6.1]). Under some condi-
tions the dual function is differentiable. These conditions are stated in
the following proposition.
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Chapter 1. Background

PROPOSITION 1.2
Assume that fi, i = 1, . . . , q, are continuous and convex, that h(x) = Ax−b
where A ∈ Rr$n and b ∈ Rr, that f0 is continuous and strongly convex,
and that (1.4) is feasible. Then X (λ , µ) consists of a unique point xλµ

and the dual function �(λ , µ) is differentiable with gradient ∇�(λ , µ) =
[∇λ�(λ , µ)T ∇µ�(λ , µ)T ]T where

∇λ�(λ , µ) = Axλµ − b, ∇µ�(λ , µ) = f (xλµ).

The proof follows almost immediately from Danskin’s Theorem [Bertsekas,
1999, Proposition B.25]. A slight modification of the proof is however
needed. The proof requires the infimum to be performed over a compact
set. This is circumvented by letting f0 be strongly convex, fi, i = 1, . . . , q
convex and hi affine. From these assumptions, uniqueness of xλµ is con-
cluded and the necessary compact set can be constructed where needed
in the proof.
By further restricting the problem data, we obtain the following prop-

erty of the dual function.

PROPOSITION 1.3
Assume that h(x) = Ax− b, where A ∈ Rr$n and b ∈ Rr and that f (x) =
Cx−d where C ∈ Rq$n and d ∈ Rq. Further assume that f0 is continuous
and strongly convex with convexity parameter σ , and that (1.4) is feasible.
Then the gradient of the dual function ∇�(λ , µ) has Lipschitz continuous
gradient with Lipschitz constant

L = q[AT CT ]Tq2
σ

.

A proof to this proposition is provided in [Nesterov, 2005, Theorem 1].

The Lagrange Dual Problem

We know from (1.7) that the dual function gives a lower bound to the
optimal value p⋆ of the optimization problem (1.4) if µ ∈ R

q
≥0 and λ ∈ Rr.

To obtain the tightest lower bound, we maximize the dual function

maximize �(λ , µ)
subject to µ ≥ 0.

This problem is referred to as the Lagrange dual problem or the dual
problem. The optimal value of the dual problem is denoted by d⋆. From
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1.2 Lagrange Duality Theory

(1.8) we have that �(λ , µ) ≤ p⋆ holds for any λ ∈ Rr and µ ∈ R
q
≥0 which

implies that
d⋆ ≤ p⋆. (1.9)

This relation is referred to as weak duality and the difference p⋆− d⋆ ≥ 0
is referred to as the duality gap. For some optimization problems there is
no duality gap, i.e.,

d⋆ = p⋆. (1.10)

This property is referred to as strong duality.

Alternative Characterization of Duality

The dual problem can by definition be written as

d⋆ = sup
λ ,µ≥0

inf
x
L(x,λ , µ).

We also have

sup
λ ,µ≥0
L(x,λ , µ) = sup

λ ,µ≥0

(
f0(x) +

r∑

i=1
λ ihi(x) +

q∑

i=1
µ i fi(x)

)

=
{
f0(x) fi(x) ≤ 0, i = 1, . . . , q, hi(x) = 0
∞ else

This states that if x is feasible, then supλ ,µ≥0L(x,λ , µ) = f0(x), otherwise
supλ ,µ≥0L(x,λ , µ) = ∞. This implies that p⋆ can be expressed as

p⋆ = inf
x
sup

λ ,µ≥0
L(x,λ , µ).

By weak duality we get that

sup
λ ,µ≥0

inf
x
L(x,λ , µ) ≤ inf

x
sup

λ ,µ≥0
L(x,λ , µ)

and if strong duality holds we get

sup
λ ,µ≥0

inf
x
L(x,λ , µ) = inf

x
sup

λ ,µ≥0
L(x,λ , µ).

We conclude that strong duality implies that the order of the minimiza-
tion over x and the maximization over λ , µ can be interchanged without
affecting the result.
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Chapter 1. Background

Complementary Slackness

We assume that (λ∗, µ∗) are dual optimal, that x∗ is primal optimal, and
that strong duality holds. Under these assumptions we have that

f0(x∗) = �(λ∗, µ∗) = inf
x
L(x,λ∗, µ∗) (1.11)

= inf
x

(
f0(x) +

r∑

i=1
λ∗
i hi(x) +

q∑

i=1
µ∗
i fi(x)

)

≤ f0(x∗) +
r∑

i=1
λ∗
i hi(x∗) +

q∑

i=1
µ∗
i fi(x∗)

≤ f0(x∗)

where the first equality is due to strong duality, the second equality follows
from the definition of the dual function, and the third equality is due to
the definition of L. The first inequality is due to the definition of inf
and the final inequality holds since x∗ is primal feasible, i.e., hi(x∗) = 0
and fi(x∗) ≤ 0, and since µ∗ ≥ 0. Since the inequalities in (1.11) can be
replaced by equalities, we conclude that

q∑

i=1
µ∗
i fi(x∗) = 0.

Each term in the sum is non-positive which implies that

µ∗
i fi(x∗) = 0, i = 1, . . . , q.

This condition, which is referred to as complementary slackness, holds for
any primal optimal solution x∗ and dual optimal solution (λ∗, µ∗) when
strong duality holds.

Obtaining Primal Optimal Solution From Dual Problem

From (1.11) we conclude that x∗ is a minimizer to L(x,λ∗, µ∗). However,
L(x,λ∗, µ∗) can have also other minimizers. To extract the primal problem
from the dual further conditions are required. Suppose that a dual optimal
pair (λ∗, µ∗) is known and that the minimizing argument to

inf
x

(
f0(x) +

r∑

i=1
λ∗
i hi(x) +

q∑

i=1
µ∗
i fi(x)

)
(1.12)

is unique. One example for which this occurs is if f0 is strongly convex
and that fi, i = 1, . . . , q are convex and hi, i = 1, . . . , r are affine. Then one
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1.2 Lagrange Duality Theory

of two situations can happen. Either the minimizing argument to (1.12)
is a feasible solution to (1.4), then it is also optimal due to (1.11), or
the minimizing argument to (1.12) is infeasible for (1.4), then no optimal
point to (1.4) can exist (cf. [Boyd and Vandenberghe, 2004, §5.5.5]).

Karush-Kuhn-Tucker Optimality Conditions

In this section we describe the Karush-Kuhn-Tucker (KKT) optimality
conditions for optimization problem (1.4) when the functions f0, . . . , fq
and h1, . . . ,hr are differentiable.

Nonconvex problems. The following conditions (KKT) must be satis-
fied for any dual feasible optimum (λ∗, µ∗) and primal feasible optimum x∗

for which strong duality holds (cf. [Boyd and Vandenberghe, 2004, §5.5.3])

fi(x∗) ≤ 0, i = 1, . . . , q (1.13)
hi(x∗) = 0, i = 1, . . . , r (1.14)

µ∗
i ≥ 0, i = 1, . . . , q (1.15)

µ∗
i fi(x∗) = 0, i = 1, . . . , q (1.16)

∇ f0(x∗) +
q∑

i=1
µ∗
i∇ fi(x∗) +

r∑

i=1
λ∗
i∇hi(x∗) = 0. (1.17)

The first two conditions imply that the primal problem is feasible, while
the third condition ensures that the dual problem is feasible. The fourth
condition is the complementary slackness and the final condition holds
since x∗ minimizes L(x,λ∗, µ∗) over x which implies that the gradient
w.r.t. x must vanish for optimal x∗.

Convex problems. For convex problems the KKT conditions are not
only necessary (as in the nonconvex case above) but also sufficient for
(λ∗, µ∗) and x∗ to be primal and dual optimal. A condition for (1.4) to be
convex is that fi are convex and hi are affine. This implies that any points
(λ∗, µ∗) and x∗ that satisfy the KKT conditions

fi(x∗) ≤ 0, i = 1, . . . , q (1.18)
hi(x∗) = 0, i = 1, . . . , r (1.19)

µ∗
i ≥ 0, i = 1, . . . , q (1.20)

µ∗
i fi(x∗) = 0, i = 1, . . . , q (1.21)

∇ f0(x∗) +
q∑

i=1
µ∗
i∇ fi(x∗) +

r∑

i=1
λ∗
i∇hi(x∗) = 0 (1.22)

are primal and dual optimal and �(λ∗, µ∗) = f0(x∗), i.e., strong duality
holds (cf. [Boyd and Vandenberghe, 2004, §5.5.3]).
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Chapter 1. Background

Constraint Qualification

A number of different conditions can be stated for the optimization prob-
lem that ensure the KKT conditions to hold. Such conditions are called
constraint qualifications. Below we describe two different constraint qual-
ifications.

Slater constraint qualification. The most commonly used constraint
qualification is Slater’s constraint qualification which can be applied to
convex optimization problems, i.e., for optimization problems of the form

min
x
f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . , q
Ax = b.

Slater’s constraint qualification is presented in the following proposition
which is proven, e.g., in [Boyd and Vandenberghe, 2004, §5.3.2].

PROPOSITION 1.4
Assume that fi for i = 0, . . . , q are continuously differentiable and convex
and that there exists a point x̃ such that

fi(x̃) < 0, i = 1, . . . , q, Ax̃ = b

then there exist λ∗, µ∗ and x∗ such that the KKT conditions (1.18)-(1.22)
hold.

Mangasarian-Fromovitz constraint qualification. A more general
constraint qualification is the Mangasarian-Fromovitz constraint qualifi-
cation (MFCQ). It applies to problems of the form (1.4). MFCQ is pre-
sented in the following proposition and proven, e.g., in [Bertsekas, 1999,
Proposition 3.3.8].

PROPOSITION 1.5
Assume that fi, i = 0, . . . , q are continuously differentiable and that x∗ is
a local minimum of (1.4). Further assume that the gradients ∇hi(x∗) for
i = 1, . . . , r are linearly independent and that there exists a vector v such
that

∇hi(x∗)Tv = 0, ∀i = 1, . . . , r, ∇ f j(x∗)Tv < 0, ∀ j ∈ A∗(x∗)

where A∗(x∗) is the set indices j for which the constraint f j(x∗) = 0. Then
there exist λ∗, µ∗ such that the KKT conditions (1.13)-(1.17) hold.
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1.3 Gradient-Based Optimization

If the matrix A defining the affine equality constraints Ax = b has full row
rank, then Slater’s condition implies MFCQ [Bertsekas, 1999, Proposition
3.3.9].
An interesting property related to MFCQ is boundedness of the optimal

dual variables as shown in [Gauvin, 1977]. Before we state this result, we
introduce the set of optimal dual variables

Z(x) = {λ∗ ∈ R
r, µ∗ ∈ R

q
≥0 p (1.13) − (1.17) holds with x∗ = x}.

PROPOSITION 1.6
Let x∗ be a local minimum of (1.4) where fi for i = 0, . . . , q and hi for
i = 1, . . . , r are continuously differentiable. Then, boundedness and non-
emptiness of Z(x∗) is equivalent to that MFCQ holds.

1.3 Gradient-Based Optimization

In this section we describe subgradient, gradient and accelerated gradient
methods. We start with a brief discussion on subgradient methods.

Subgradient Methods

We consider unconstrained convex optimization problems, i.e., problems
of the form

minimize f0(x) (1.23)

where f0 : Rn → R is convex and x ∈ Rn. Such problems can be solved
by the following subgradient iterations

xk+1 = xk − tk ξ (xk)
qξ (xk)q

where ξ (xk) is a subgradient of f0 at xk, i.e., ξ (xk) satisfies (1.2), and
tk is the step size at iteration k. To show asymptotic convergence it is
enough that the subgradients are bounded and to use step sizes that
satisfy (cf. [Nesterov, 2003, Theorem 3.2.2])

tk ≥ 0,
∞∑

k=1
tk = ∞,

∞∑

k=1

(
tk
)2 < ∞.

For more on subgradient methods the reader is referred to [Shor, 1985,
Bertsekas, 1999,Nesterov, 2003,Polyak, 1987].
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Chapter 1. Background

Gradient Methods

If the objective function f0 in (1.23) is convex and differentiable, then
gradient methods can be applied. We present a gradient algorithm below;
choose x0, for k ≥ 1 the iterations are defined by

xk+1 = xk − tk∇ f0(xk) (1.24)

where tk > 0 is a step size parameter. The step size parameter can be
chosen in many different ways, see [Bertsekas, 1999, Chapter 1] for an
overview. For cost functions f0 that have a Lipschitz continuous gradient
convergence can be shown using a constant step size tk = t. If we denote
by L the Lipschitz constant to ∇ f0 then the optimal constant step size is
t = 1/L (cf. [Nesterov, 2003, Corollary 2.1.2]) and the convergence rate is
(cf. [Beck and Teboulle, 2009, Theorem 3.1])

f0(xk) − p⋆ ≤
Lqx0 − x∗q2

2k
(1.25)

where x∗ is any optimal point.

Proximal gradient methods. The gradient method has been general-
ized to handle problems of the form (see [Beck and Teboulle, 2009] and
the references therein)

minimize f0(x) + P(x) (1.26)

where f0 : Rn → R is convex and differentiable, ∇ f0 is Lipschitz contin-
uous with Lipschitz constant L, and P : Rn → R ∪ {+∞} is lower semi-
continuous and convex with P(x) < ∞ for at least one x and P(x) > −∞
for every x. The proximal gradient method is defined by the following
iteration

xk+1 = argmin
x

{
f0(xk) +∇ f0(xk)T (x − xk) +

L

2
qx − xkq2 + P(x)

}
.

(1.27)
Due to the quadratic upper bound property (1.3) of functions with a Lip-
schitz continuous gradient, the minimand in (1.27) is a quadratic upper
bound to f0+P which tangent the function f0+P at xk. Hence, a quadratic
upper bound to f0 + P is minimized in each iteration of the proximal gra-
dient algorithm.
The proximal gradient algorithm is shown to have the same conver-

gence rate properties as the classical gradient method (1.25) (cf. [Beck
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and Teboulle, 2009]). For P " 0 we recover the classical gradient method
with step size t = 1/L since for P " 0 we have

xk+1 = argmin
x

{
f0(xk) +∇ f0(xk)T(x − xk) +

L

2
qx − xkq2 + P(x)

}

= argmin
x

{
∇ f0(xk)T x +

L

2
qx − xkq2

}

= argmin
x

{(
∇ f0(xk) − Lxk

)T
x + L

2
xT x

}

= xk − 1
L
∇ f0(xk). (1.28)

Convex constrained optimization problems can also be solved using the
proximal gradient method (1.27) by setting P to be the indicator function
of the constraint set. This implies that a constrained quadratic optimiza-
tion problem needs to be solved in each iteration of the algorithm.
For cases where the Lipschitz constant L is difficult to determine, the

proximal gradient method can be used with backtracking line search with
maintained convergence rate (cf. [Beck and Teboulle, 2009]).
The presented gradient methods are, however, not optimal w.r.t. what

can be achieved by gradient methods. An exact lower bound for achievable
performance for gradient methods applied to functions with Lipschitz con-
tinuous gradient is (cf. [Nemirovsky and Yudin, 1983,Nesterov, 2003])

f0(xk) − p⋆ ≥
Lqx0 − x∗q2
8(k+ 1)2 . (1.29)

Accelerated Gradient Methods

The first gradient algorithm to achieve the convergence rate (1.29) up to
a constant factor was presented in [Nesterov, 1983]. We refer to gradient
algorithms that achieve this improved convergence rate by accelerated gra-
dient methods. Variations of the accelerated gradient method in [Nesterov,
1983] have been presented in [Nesterov, 1988, Nesterov, 2003, Nesterov,
2005].

Accelerated proximal gradient methods. Some accelerated gradi-
ent methods have been presented that solve problems of the form (1.26).
In [Beck and Teboulle, 2009] an accelerated gradient method that gener-
alizes the method in [Nesterov, 1983] to solve problems of the form (1.26)
was presented and in [Nesterov, 2007] the method in [Nesterov, 2005] was
generalized to solve (1.26). A unified framework for accelerated proximal
gradient methods was presented in [Tseng, 2008] where also a general-
ization to the algorithm in [Nesterov, 1988] was presented.
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The algorithm from [Beck and Teboulle, 2009] as presented in [Tseng,
2008] is described by the following iterations for, k ≥ 0:

yk = xk + θ k((θ k−1)−1 − 1)(xk − xk−1), (1.30)

xk+1 = argmin
x

{
f0(yk) +∇ f0(yk)T (x − yk) +

L

2
qx − ykq2 + P(x)

}
(1.31)

θ k+1 =
√
(θ k)4 + 4(θ k)2 − (θ k)2

2
(1.32)

where θ 1 = θ 0 = 1, and the initial iterate x0 = x−1 needs to be chosen.
In [Tseng, 2008] it was noted that the θ k-sequence θ k = 2/(k+ 2) can be
used instead of (1.32). This choice of θ k-sequence gives the following even
simpler iterations for k ≥ 0:

yk = xk + k− 1
k+ 2 (x

k − xk−1) (1.33)

xk+1 = argmin
x

{
f0(yk) +∇ f0(yk)T (x − yk) +

L

2
qx − ykq2 + P(x)

}
.

(1.34)

Both (1.30)-(1.32) and (1.33)-(1.34) share the following convergence rate
property

f0(xk) − p⋆ ≤
2Lqx0 − x∗q2
(k+ 1)2 (1.35)

which is proven in [Tseng, 2008, Corollary 2]. However, (1.30)-(1.32) per-
forms slightly better in practice since that θ k-sequence tends to zero some-
what faster within the allowed bounds. The convergence rate (1.35) for the
accelerated gradient methods is up to a constant factor the same as the
best achievable convergence rate (1.29). Also, the convergence rate for the
accelerated gradient methods (1.35) is much better than the convergence
rate for the non-accelerated proximal gradient method (1.25) despite that
the complexity of the algorithms are nearly the same.

Generalized accelerated proximal gradient methods. The accel-
erated gradient method in [Beck and Teboulle, 2009] has been further
generalized in [Zuo and Lin, 2011]. The method applies to problems of the
form (1.26) where the requirement of ∇ f0 being Lipschitz continuous is
replaced by the requirement that for every x, y ∈ Rn the following holds:

f0(x) ≤ f0(y) +∇ f0(y)T(x − y) +
1
2
qx − yq2M (1.36)
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where M ∈ Rn$n is a positive definite matrix. The algorithm with θ k =
2/(k+ 2) is described below, for k ≥ 0

yk = xk + k− 1
k+ 2 (x

k − xk−1)

xk+1 = argmin
x

{
f0(yk) +∇ f0(yk)T (x − yk) +

1
2
qx − ykq2M + P(x)

}

which is very similar to (1.33)-(1.34). The requirement (1.36) on f0 is
very similar to the Lipschitz continuity requirement on ∇ f0, which is
equivalent to (1.3), for non-generalized accelerated gradient methods. The
requirement (1.36) allows for quadratic upper bounds that need not have
the same curvature in every direction. For appropriately chosen M (1.36)
might give a significantly tighter upper bound to f0 than (1.3). This can
improve convergence for ill-conditioned problems for which gradient-based
methods are known to have slow convergence. However, the choice of M
is up to the user for different applications. The choice M = LI where
L is the Lipschitz constant to ∇ f0 gives the iterations (1.33)-(1.34). The
convergence rate for the generalized accelerated gradient method is (cf.
[Zuo and Lin, 2011])

f0(xk) − p⋆ ≤
2qx0 − x∗q2M
(k+ 1)2 . (1.37)

1.4 Distributed Optimization Methods

We describe two different distributed optimization methods in this section,
namely primal and dual decomposition. The objective for the decomposi-
tion is to distribute the computations when computing the solution to
an optimization problem. The decomposition techniques can sometimes
give improved performance compared to other solution techniques since
parallel computational units can be utilized. Another advantage is that
it provides increased flexibility for implementation of optimization algo-
rithms on networked problems and that it enables for very large problems
to be solved. See [Bertsekas, 1999, Chapter 6] or [Boyd et al., 2008] for
more on primal and dual decomposition.
To describe the decomposition techniques we consider the following
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optimization problem

minimize
J∑

i=1
fi(xi) (1.38)

subject to xi ∈ X i, i = 1, . . . ,J
J∑

i=1
yi = b, Aixi = yi, i = 1, . . . ,J .

The vectors xi ∈ Rni are local vectors, Ai ∈ Rm$ni , yi ∈ Rm, and b ∈
Rm. The sets X i are feasible sets for the corresponding local vectors xi
and are assumed nonempty, closed, and convex. Further, the functions
fi : Rni → R are assumed convex. The equality constraints are referred
to as a complicating constraints since they involve not only local vari-
ables. The decomposition methods can handle also inequality constraints
as complicating constraints but we restrict our presentation to equality
constraints for brevity.

Primal Decomposition

To decompose (1.38) using primal decomposition we see by fixing yi that
(1.38) can be decomposed into the following subproblems

φ i(yi) = min
xi
fi(xi) (1.39)

s.t. xi ∈ X i, Aixi = yi

for i = 1, . . . ,J . These subproblems are convex and can be solved simulta-
neously in parallel. Using these subproblems, we construct the following
problem that is equivalent to (1.38)

minimize φ(y1, . . . , yJ ) =
J∑

i=1
φ i(yi) (1.40)

subject to
J∑

i=1
yi = b, yi ∈ Y i, i = 1, . . . ,J

where Y i is the set of feasible vectors for which (1.39) has at least one
feasible solution. The problem (1.40) is referred to as the master problem.
The objective of the master problem is to distribute yi to the different sub-
systems optimally. The objective function defining the master problem is
often non-differentiable but can be solved using subgradient methods. By
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letting λ∗
i (yi) be an optimal dual variable for constraint Aixi = yi in sub-

problem (1.39) we get that a subgradient to φ is given by (cf. [Bertsekas,
1999, §6.4.2])

−[λ∗
1(y1), . . . ,λ∗

J (yJ )]T ∈ �φ(y1, . . . , yJ ).

We denote by x∗
i (yi) the optimal primal variables for subproblem (1.39)

and introduce the stacked vectors

y= [yT1 , . . . , yTJ ]T , λ∗(y) = [λ∗
1(y1)T , . . . ,λ∗

J (yJ )T ]T .

Using this notation, the full algorithm when solving the master problem
(1.40) using a subgradient method consists of solving subproblems (1.39)
in parallel to find x∗

i (yki ) and λ∗
i (yki ), where k is the iteration number. Then

the allocation variables y are updated according to

yk+1 = [yk + tkλ∗(yk)]+

where tk is a positive step size and [⋅]+ denotes the Euclidean projection
onto the constraint set

{
y

∣∣∣∣∣

J∑

i=1
yi = b, yi ∈ Y i, i = 1, . . . ,J

}
.

A great benefit of primal decomposition is that the original problem is
feasible in every iteration.

Dual Decomposition

Dual decomposition is an old technique that dates back to the early 1960s
[Everett, 1963, Benders, 1962, Dantzig and Wolfe, 1960]. To solve (1.38),
assuming that some constraint qualification holds, using dual decompo-
sition, we introduce dual variables λ ∈ Rm and form the following dual
problem

sup
λ
inf
xi∈X i

J∑

i=1
fi(xi) + λT

(
J∑

i=1
Aixi − b

)
. (1.41)

For fixed λ ∈ Rm the inner minimization problem can be decomposed into
the following subproblems

�i(λ) = inf
xi∈X i

fi(xi) + λT Aixi (1.42)
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for i = 1, . . . ,J . These problems are convex and can be solved simultane-
ously in parallel. To guarantee that the minimum in (1.41) is attained we
assume, besides the assumption on X i being nonempty, closed, and con-
vex, that fi are strongly convex. These assumptions imply the existence
of a solution by Weierstrass extreme value theorem, see Proposition 1.1.
The master problem in dual decomposition is to find λ ∈ Rm that solves

sup
λ
�(λ) =

J∑

i=1
�i(λ) (1.43)

which is equivalent to (1.41). Since the objective function is assumed
strongly convex, the dual function is differentiable and has gradient (cf.
Proposition 1.2)

∇�(λ) =
J∑

i=1
Aix

∗
i (λ) − b

where x∗
i (λ) is the optimal solution to (1.42) for given λ . Since the dual

problem is differentiable, it can be solved using gradient methods. To solve
the dual problem (1.43) using a gradient method, the subproblems (1.42)
are solved in parallel to get x∗

i (λk), where k is the iteration number. Then
the dual variables are updated according to

λk+1 = λk + tk
(
J∑

i=1
Aix

∗
i (λk) − b

)

where tk is a step size parameter.

1.5 Model Predictive Control

Model predictive control (MPC) is an optimization based control methodol-
ogy that optimizes plant behavior based on state predictions from a plant
model. In each sampling instant, a finite horizon optimal control prob-
lem is solved with the current state of the plant used as initial condition
for the state predictions. The first control action from the optimal control
trajectory is applied to the plant. This procedure is repeated in each sam-
ple, which introduces feedback into the methodology. MPC is becoming
increasingly used in the process industry, see [Qin and Badgwell, 2003]
for survey of MPC applications in the industry. For a thorough descrip-
tion of MPC, the reader is referred to [Maciejowski, 2002, Rawlings and
Mayne, 2009] or the survey paper [Mayne et al., 2000].
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Optimal Control Problem

The plant to be controlled is usually described by a differential equa-
tion. However, since it is common to apply piece-wise constant control
trajectories, the differential equation is often approximated by, or exactly
reformulated as, a difference equation

xt+1 = f (xt,ut), x0 = x̄

where xt ∈ Rn, ut ∈ Rm for t ∈ N≥0 and f : Rn $ Rm → Rn. We assume
that the plant has an equilibrium point in the origin, i.e., that f (0, 0) = 0
and that the system is controllable. A benefit of model predictive control
over other control methodologies is its ability to handle state and control
constraints, i.e., that the states and controls can be forced to satisfy x ∈ X
and u ∈U if possible. In this overview, we consider the regulation control
problem which is to steer the system state to the origin while respecting
the constraints. To achieve this, a cost function is used that penalizes
deviations from the desired equilibrium point

JN(x,u) = { f (xN) +
N−1∑

t=0
{(xt,ut)

where x = [xT0 , xT1 , . . . , xTN ]T and u = [uT0 ,uT1 , . . . ,uTN−1]T . We assume that
the stage cost { : Rn $ Rm → R≥0 satisfies c1(q[xT ,uT ]Tq) ≤ {(x,u) ≤
c2(q[xT ,uT ]Tq) where c1(0) = c2(0) = 0 and c1, c2 are continuous, strictly
increasing and unbounded. Often a terminal constraint set X f is used
where X f ⊆ X , i.e., we impose that xN ∈ X f . This gives the following
optimal control problem

VN(x̄) = min
x,u
JN(x,u) (1.44)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,N − 1
x0 = x̄
x ∈ X ,u ∈U, t = 0, . . . ,N − 1
xN ∈ X f .

We denote the optimal state and control sequences to (1.44) for initial state
x̄ by {x∗

t (x̄)}Nt=0 and {u∗
t (x̄)}N−1t=0 respectively and define the set of initial

conditions such that (1.44) is feasible by XN . We hereafter assume that f ,
{ and { f are continuous, U is compact and X ,X f are closed. Under these
assumptions and since N is finite, it can through Weierstrass extreme
value theorem (see Proposition 1.1, [Bertsekas, 1999, Proposition A.8]) be
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shown that the minimum in (1.44) is attained for every x̄ ∈ XN (cf. [Mayne
et al., 2000]).
In MPC, the first control action u∗

0(x̄) in the control sequence is applied
to the system. In the following sample, the optimization problem (1.44)
is solved with the new measured state as initial condition and the first
control action from the obtained control sequence is applied to the sys-
tem. This procedure is repeated in each sample which defines the static
feedback control law νN(x̄) = u∗

0(x̄).

Stability and Feasibility

There are numerous ways to prove stability and feasibility of the closed
loop system using the MPC control law νN . In [Mayne et al., 2000] different
methods to prove stability and feasibility presented in the literature was
summarized. Most stability results use a terminal controller ν f , besides
the terminal constraints X f and the terminal cost { f . We will see that ifν f ,
X f and { f are such that the following four assumptions hold (cf. [Mayne
et al., 2000]), stability and recursive feasibility can be guaranteed.
A1: X f ⊆ X , X f closed, 0 ∈ X f (state constraint satisfied in X f ).
A2: ν f (x̄) ∈U, ∀x̄ ∈ X f (control constraint satisfied in X f ).
A3: f (x̄,ν f (x̄)) ∈ X f , ∀x̄ ∈ X f (X f positively invariant under ν f ).
A4: { f (x̄) ≥ { f ( f (x̄,ν f (x̄)))+{(x̄,ν f (x̄)), ∀x̄ ∈ X f ({ f is a local Lyapunov

function).
Below we indicate how stability and recursive feasibility can be estab-
lished under Assumptions A1-A4, see [Mayne et al., 2000] for details. For
each x̄ ∈ XN we know by definition that (1.44) is feasible. We construct
the following shifted control trajectory

ũ(x̄) = [u∗
1(x̄)T ,u∗

2(x̄)T , . . . ,u∗
N−1(x̄)T ,ν f (x∗

N(x̄))T ]T

and define the corresponding state trajectory

x̃(x̄) = [x∗
1(x̄)T , x∗

2(x̄)T , . . . , x∗
N(x̄)T , f (x∗

N(x̄),ν f (x∗
N(x̄)))T ]T .

Since x̄ ∈ XN we have that x∗
N(x̄) ∈ X f which by Assumption A2 implies

that v f (x∗
N(x̄)) ∈U and by Assumptions A1, A3 implies that

f (x∗
N (x̄),ν f (x∗

N(x̄))) ∈ X f ⊆ X .

Thus, Assumptions A1-A3 imply that (x̃(x̄), ũ(x̄)) is a feasible solution to
(1.44) with initial state f (x̄,u∗

0(x̄)). Further

VN( f (x̄,u∗
0(x̄))) ≤ JN(x̃(x̄), ũ(x̄)) ≤ VN(x̄) − {(x̄,u∗

0(x̄))
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where Assumption A4 has been used to conclude the last inequality. Using
the assumed properties of { it can be shown that VN is a Lyapunov function
for the system. Further, since f (x̄,u∗

0(x̄)) ∈ XN the procedure can be
repeated in the following time sample which gives recursive feasibility
and asymptotic stability.
Many different methods to choose the terminal constraint set, the ter-

minal cost, and the terminal controller that give the desired characteris-
tics A1-A4 have been proposed. Below some of these are described starting
with the case of systems with linear dynamics.

Linear Systems. One important and widely used special case in MPC
is the problem with linear dynamics, i.e.,

xt+1 = f (xt ,ut) = Axt + But, x0 = x̄

where A ∈ Rn$n and B ∈ Rn$m, with polytopic constraint sets X ,U, and
with a quadratic cost

{(x,u) = 1
2

(
xTQx + uTRu

)

where Q 4 0 and R ≻ 0. A linear terminal control law ν f (x) = K f x is
stabilizing if it satisfies ρ(A+ BK f ) < 1, where ρ(⋅) denotes the spectral
radius. The largest terminal set X f such that Assumptions A1-A3 hold is
the maximal output admissible set (cf. [Gilbert and Tan, 1991]) for the dy-
namics xt+1 = (A+ BK f )xt. Under certain assumptions [Gilbert and Tan,
1991, Theorem 4.1] the maximal output admissible set can be described by
a finite number of linear inequalities. To satisfy also Assumption A4 the
terminal cost { f must be chosen. A natural choice is to have a quadratic
terminal cost { f (x) = xTP f x where P f ≻ 0. By setting A f := A+ BK f we
get by insertion of the terminal cost into the condition in Assumption A4
that

xTP f x ≥ xT ATf P f A f x + xTQx + xTK Tf RK f x

should hold for all x ∈ X f . This holds if P f ≻ 0 is chosen such that the
following discrete-time Lyapunov matrix inequality in P f holds

P f 4 ATf P f A f + Q + K Tf RK f . (1.45)

The matrices K f and P f can in the linear case be chosen to achieve infi-
nite horizon optimal performance for constrained linear systems as first
proposed in [Sznaier and Damborg, 1987]. We choose the terminal control
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law ν f (x) = K f x as the infinite horizon optimal feedback controller for
the unconstrained case and P f as the matrix defining the corresponding
optimal value function. To determine such K f and P f is the well known
LQ-problem and is found by solving the discrete time algebraic Riccati
equation (see [Zhou et al., 1996, Boyd and Barratt, 1991] for more on
LQ). Insertion of the infinite horizon optimal matrices K f and P f gives
equality in (1.45), which implies that Assumption A4 is satisfied. The ter-
minal constraint set X f is chosen as the maximal output admissible set
(cf. [Gilbert and Tan, 1991]) for the dynamics xt+1 = (A+ BK f )xt. Inside
the output admissible set no constraints are active and the system state
will never leave this set once entered. The terminal constraint set X f is
not used explicitly in the optimization routine, rather the control horizon
is adapted until the final state in the trajectory is inside the terminal set.
Stability guarantees for this scheme were presented in [Chmielewski and
Manousiouthakis, 1996,Scokaert and Rawlings, 1998].

Nonlinear Systems. Nonlinear systems without state or control con-
straints has been treated in [Parisini and Zoppoli, 1995] for the discrete
time case and in [Jadbabaie et al., 2001] for the continuous time case.
They use a stabilizing control law ν f and a terminal cost function { f that
is a local Lyapunov function for the stabilized system. The terminal con-
straint set is chosen to be level sets of the local Lyapunov function { f and
to be positively invariant for xt+1 = f (xt,ν f (xt)).
Nonlinear systems with constraints was treated in [De Nicolao et al.,

1996] for discrete time systems and in [Chen and Allgöwer, 1998] for con-
tinuous time systems. In both papers, ν f is chosen to stabilize the lin-
earized system with linearization point in the origin. They differ in the
choice of terminal cost { f which was chosen quadratic in [Chen and All-
göwer, 1998] and non-quadratic in [De Nicolao et al., 1996]. The terminal
constraint set X f is positively invariant for the nonlinear system and sat-
isfies X f ⊆ X and ν f (X f ) ⊆U. It was in [Mayne et al., 2000] pointed out
that all these choices of terminal controller, terminal constraint set and
terminal cost are different ways of satisfying Assumptions A1-A4.

Stability without Terminal Cost or Terminal Constraints

Assumptions A1-A4 rely on a terminal controller, a terminal cost and a
terminal constraint set to prove stability. Stability results for MPC with-
out terminal cost, terminal controller or terminal constraint set, i.e., for
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problems of the form

VN(x̄) = min
N−1∑

t=0
{(xt,ut) (1.46)

s.t. xt+1 = f (xt ,ut), t = 0, . . . ,N − 2
x0 = x̄
x ∈ X ,u ∈U, t = 0, . . . ,N − 1

has been presented in the literature. In [Grimm et al., 2005] it was shown
that closed loop stability holds when the control horizon is sufficiently
long. In [Grüne and Rantzer, 2008] this was further elaborated on by
showing stability based on an assumption on the relation between the
optimal value function and the optimal stage-cost. The result in [Grüne
and Rantzer, 2008] relies on relaxed dynamic programming which was
presented in [Lincoln and Rantzer, 2006,Rantzer, 2006]. Relaxed dynamic
programming applied to MPC states that if the following holds for all
x ∈ X

VN(x) ≥ VN( f (x,νN(x)) +α {(x,νN(x)) (1.47)
where α ∈ (0, 1] is a suboptimality parameter, νN(x) = u∗

0(x), and u∗
0 and

VN refer to the optimal solution to (1.46). Then the closed loop system
xt+1 = f (xt ,νN(xt)) satisfies

α
∞∑

t=0
{(xt,νN(xt)) ≤ V∞(x0).

Using appropriate assumptions on {, (1.47) also implies asymptotically sta-
bility of the closed loop system. Further progress was reported in [Grüne,
2009], where it was shown how to compute the minimal control horizon
that satisfies (1.47) by solving a linear program. This result is based on
a quantification of a controllability assumption on the stage-costs.

Distributed Model Predictive Control

In distributed model predictive control (DMPC) the system to be con-
trolled consists of several smaller subsystems that are coupled. The cou-
pling might be due to a non-separable cost, due to dynamic interaction, or
due to complicating constraints. In this section we focus on problems with
interacting dynamics but separable cost and constraints. To introduce the
system description we assign a unique label from the set {1, 2, . . . ,J} to
each subsystem where J is the total number of subsystems. The subsys-
tem interaction can be described by a directed graph G = (E,V ) where
the set E = {1, 2, . . . ,J} contains indices for the nodes in the graph and
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the set V contains ordered pairs (i, j). The pair (i, j) ∈ V if and only if
subsystem j is directly influenced by subsystem i through the dynamics.
Using this, we construct the set of neighbors for each subsystem i as

N i = { j ∈E\i p ( j, i) ∈V }.

We also introduce the following vector which contains the states for all
neighbors to subsystem i, x−i = (. . . , x j , . . .), x j ∈ N i where x j ∈ Rn j are
the states associated with subsystem j.
Two main directions have emerged in the distributed model predic-

tive control literature. One direction is to pose centralized optimization
problems and solve them in a distributed manner. This yields a central-
ized optimal solution. The other direction is to pose local optimization
problems with constraints on neighboring interaction that can be used to
prove stability. Both approaches apply to sparse systems where each local
subsystem is described by

xit+1 = fi(xit,uit, x−it ), xi0 = x̄i.

where for t ∈ N0, xit ∈ Rni , uit ∈ Rmi , and x−1t ∈ Rn−i where n−i =
∑
j∈N i n j .

The controls and states are subject to local constraints, i.e., ui ∈U i and
xi ∈ X i where U i and X i are nonempty, closed and convex sets.

DMPC using distributed optimization. To get a centralized opti-
mization problem that can be solved in distributed fashion, a separable
cost is used

N−1∑

t=0

J∑

i=1
{i(xit,uit).

The cost is often chosen strongly convex and quadratic, i.e.,

{i(xi,ui) = (xi)TQixi + (ui)TRiui

with Qi ∈ Rni$ni and Ri ∈ Rmi$mi that satisfy Qi ≻ 0 and Ri ≻ 0 re-
spectively. To get a convex optimization problem, the dynamic constraints
need to be linear, i.e., of the form

xit+1 = Aiixit + Biiuit +



∑

j∈N i

Ai jx
j
t + Bi ju jt


 , xi0 = x̄i. (1.48)
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The MPC optimization problem becomes

minimize
J∑

i=1

(
N−1∑

t=0
{i(xit,uit)

)
(1.49)

subject to xit ∈ X i, uit ∈U i, t = 0, . . . ,N − 1,
(1.48), t = 0, . . . ,N − 2.

In [Venkat et al., 2005,Venkat et al., 2008] this problem was solved in dis-
tributed fashion by taking into account the system-wide behavior when
optimizing local control action. This implies that full model knowledge is
needed in every node. A benefit of the method is that stability and fea-
sibility are guaranteed in every iteration. Another way to solve (1.49) in
a distributed fashion is to use dual decomposition. In dual decomposi-
tion, small local subproblems are solved in each node and communication
between subsystems i and j is needed only if j ∈ N i or i ∈ N j . This
approach has been used, e.g., in [Negenborn et al., 2008,Wakasa et al.,
2008, Doan et al., 2009] where (sub)gradient methods are used to solve
the dual problem, and in [Necoara and Suykens, 2008, Necoara et al.,
2008] where the accelerated gradient method with smoothing originally
presented in [Nesterov, 2005] was used. In the problem description (1.49)
neither terminal cost nor terminal constraints are used. Both the terminal
cost and terminal constraints used to prove stability in traditional MPC,
i.e., Assumptions A1-A4, usually involve all states. This implies that dual
decomposition cannot be used with centralized terminal constraints or
cost without letting all subsystems communicate with each other.

DMPC with stability constraints. The other direction used in the
DMPC literature is to create local optimization problems for each subsys-
tem with stability constraints for the interaction with neighboring subsys-
tems. This approach has been taken in [Jia and Krogh, 2001,Camponogara
et al., 2002, Richards and How, 2007] for linear systems where the local
optimization problems are solved sequentially and each local solution is
passed to neighboring subsystems. By solving sequentially, the subsys-
tems further downstream can satisfy the stability constraint using opti-
mized trajectories from subsystems upstream. In [Dunbar, 2007] a similar
approach is used to show stability for nonlinear systems. In [R.M. Her-
mans, 2010] a stabilizing constraint is used that gives an explicit reduction
of a control Lyapunov function. The only communication needed in that
approach is to submit initial states between neighbors. This implies that
an almost decentralized implementation is possible.
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Paper I

Accelerated Gradient Methods and

Dual Decomposition in Distributed

Model Predictive Control

Pontus Giselsson, Minh Dang Doan, Tamás Keviczky,

Bart De Schutter, and Anders Rantzer

Abstract

We propose a distributed optimization algorithm for mixed L1/L2-
norm optimization based on accelerated gradient methods using dual
decomposition. The algorithm achieves convergence rate O( 1

k2
), where

k is the iteration number, which significantly improves the conver-
gence rates of existing duality-based distributed optimization algo-
rithms that achieve O( 1

k
). The performance of the developed algorithm

is evaluated on randomly generated optimization problems arising in
distributed model predictive control (DMPC). The evaluation shows
that, when the problem data is sparse and large-scale, our algorithm
can outperform current state-of-the-art optimization software CPLEX
and MOSEK.

cF2012 Elsevier. Printed with permission. To appear in Automatica.
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1. Introduction

1. Introduction

Gradient-based optimization methods are known for their simplicity and
low complexity within each iteration. A limitation of classical gradient-
based methods is the slow rate of convergence. It can be shown [Bertsekas,
1999,Nesterov, 2003] that for functions with a Lipschitz-continuous gra-
dient, i.e., smooth functions, classical gradient-based methods converge
at a rate of O( 1

k
), where k is the iteration number. In [Nemirovsky and

Yudin, 1983] it was shown that a lower bound on the convergence rate for
gradient-based methods is O( 1

k2
). Nesterov showed in his work [Nesterov,

1983] that an accelerated gradient algorithm can be constructed such
that this lower bound on the convergence rate is achieved when minimiz-
ing unconstrained smooth functions. This result has been extended and
generalized in several publications to handle constrained smooth prob-
lems and smooth problems with an additional non-smooth term [Nes-
terov, 1988,Nesterov, 2005, Beck and Teboulle, 2009] and [Tseng, 2008].
Gradient-based methods are suitable for distributed optimization when
they are used in combination with dual decomposition techniques.
Dual decomposition is a well-established concept since around 1960

when Uzawa’s algorithm [Arrow et al., 1958] was presented. Similar ideas
were exploited in large-scale optimization [Danzig and Wolfe, 1961]. Over
the next decades, methods for decomposition and coordination of dynamic
systems were developed and refined [Findeisen, 1980, Mesarovic et al.,
1970, Singh and Titli, 1978] and used in large-scale applications [Car-
pentier and Cohen, 1993]. In [Tsitsiklis et al., 1986] a distributed asyn-
chronous method was studied. More recently dual decomposition has been
applied in the distributed model predictive control literature in [Doan
et al., 2011,Doan et al., 2009,Giselsson and Rantzer, 2010] and [Negenborn
et al., 2008] for problems with a strongly convex quadratic cost and arbi-
trary linear constraints. The above mentioned methods rely on gradient-
based optimization, which suffers from slow convergence properties O( 1

k
).

Also the step size parameter in the gradient scheme must be chosen appro-
priately to get good performance. Such information has not been provided
or has been chosen conservatively in these publications.
In this work, we improve on the previously presented distributed op-

timization methods by using an accelerated gradient method to solve the
dual problem instead of a classical gradient method. We also extend the
class of problems considered by allowing an additional sparse but non-
separable 1-norm penalty. Such 1-norm terms are used as regularization
term or as penalty for soft constraints [Savorgnan et al., 2011]. Further,
we provide the optimal step size parameter for the algorithm, which is
crucial for performance. The convergence rate for the dual function value
using the accelerated gradient method is implicitly known from [Beck
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and Teboulle, 2009, Tseng, 2008]. However, the convergence rate in the
dual function value does not indicate the rate at which the primal iter-
ate approaches the primal optimal solution. In this paper we also provide
convergence rate results for the primal variables.
Related to our work is the method presented in [Necoara and Suykens,

2008] for systems with a (non-strongly) convex cost. It is based on the
smoothing technique presented by Nesterov in [Nesterov, 2005]. Other rel-
evant work is presented in [Kögel and Findeisen, 2011,Richter et al., 2009]
in which optimization problems arising in model predictive control (MPC)
are solved in a centralized fashion using accelerated gradient methods.
These methods are, however, restricted to handle only box-constraints on
the control signals.
To evaluate the proposed distributed algorithm, we solve randomly

generated large-scale and sparse optimization problems arising in dis-
tributed MPC and compare the execution times to state-of-the-art opti-
mization software for large-scale optimization, in particular CPLEX and
MOSEK. We also evaluate the performance loss obtained when subopti-
mal step lengths are used.
The paper is organized as follows. In Section 2, the problem setup

is introduced. The dual problem to be solved is introduced in Section 3
and some properties of the dual function are presented. The distributed
solution algorithm for the dual problem is presented in Section 4. In Sec-
tion 5 a numerical example is provided, followed by conclusions drawn in
Section 6.

2. Problem Setup

In this paper we present a distributed algorithm for optimization problems
with cost functions of the form

J(x) = 1
2
xTHx + �T x + γ qPx − pq1. (1)

The full decision vector, x ∈ Rn, is composed of local decision vectors, xi ∈
Rni , according to x = [xT1 , . . . , xTM ]T . The quadratic cost matrix H ∈ Rn$n

is assumed separable, i.e., H = blkdiag(H1, . . . ,HM) where Hi ∈ Rni$ni .
Further, H is assumed positive definite with σ (H)I 5 H 5 σ̄ (H)I, where
0 < σ (H) ≤ σ̄ (H) < ∞. The linear part � ∈ Rn consists of local parts,
� = [�T1 , . . . ,�TM ]T where �i ∈ Rni . Further, P ∈ Rm$n is composed of
P = [P1, . . . , Pm]T , where each Pr = [PTr1, . . . , PTrM ]T ∈ Rn and Pri ∈ Rni .
We do not assume that the matrix P should be block-diagonal which means
that the cost function J is not separable. However, we assume that the
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vectors Pr have sparse structure. Sparsity refers to the property that for
each r ∈ {1, . . . ,m} there exist some i ∈ {1, . . . ,M} such that Pri = 0. We
also have p = [p1, . . . , pm]T and γ > 0. This gives the following equivalent
formulation of (1)

J(x) =
M∑

i=1

[
1
2
xTi Hixi + �Ti xi

]
+

m∑

r=1

∣∣∣∣∣

M∑

i=1
PTrixi − pr

∣∣∣∣∣. (2)

Minimization of (1) is subject to linear equality and inequality constraints

A1x = B1, A2x ≤ B2

where A1 ∈ Rq$n and A2 ∈ R(s−q)$n contain al ∈ Rn as A1 = [a1, . . . , aq]T
and A2 = [aq+1, . . . , as]T . Further each al = [aTl1, . . . , aTlM ]T where ali ∈ Rni .
Further we have B1 ∈ Rq and B2 ∈ Rs−q where B1 = [b1, . . . , bq]T and
B2 = [bq+1, . . . , bs]T . We assume that the matrices A1 and A2 are sparse.
By introducing the auxiliary variables y and the constraint Px− p = y we
get the following optimization problem

min
x,y

1
2 x
THx + �T x + γ qyq1

s.t. A1x = B1
A2x ≤ B2
Px − p = y.

(3)

The objective of the optimization routine is to solve (3) in a distributed
fashion using several computational units, where each computational unit
computes the optimal local variables, denoted x∗

i , only. Each computational
unit is assigned a number of constraints in (3) for which it is responsible.
We denote the set of equality constraints that unit i is responsible for
by L1i , the set of inequality constraints by L

2
i and the set of constraints

originating from the 1-norm by R i. This division is obviously not unique
but all constraints should be assigned to one computational unit. Further
for l ∈ L1i and l ∈ L2i we require that ali ,= 0 and for r ∈ R i that Pri ,= 0.
Now we are ready to define two sets of neighbors to computational unit i

N i =
{
j ∈ {1, . . . ,M} p ∃l ∈ L1i s.t. al j ,= 0

or ∃l ∈ L2i s.t. al j ,= 0
or ∃r ∈R i s.t. Pr j ,= 0

}
,

M i =
{
j ∈ {1, . . . ,M} p ∃l ∈ L1j s.t. ali ,= 0

or ∃l ∈ L2j s.t. ali ,= 0
or ∃r ∈R j s.t. Pri ,= 0

}
.
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Through the introduction of these sets, the constraints that are assigned
to unit i can equivalently be written as

aTl x = bl Z[
∑

j∈N i

aTl j x j = bl, l ∈ L1i (4)

aTl x ≤ bl Z[
∑

j∈N i

aTl j x j ≤ bl, l ∈ L2i (5)

and the 1-norm term can equivalently be written as

pPTr x − prp =
∣∣∣
∑

j∈N i

PTr j x j − pr
∣∣∣, r ∈ R i. (6)

In the following section, the dual function to be maximized is introduced.
First, we state an assumption that will be useful in the continuation of
the paper.

ASSUMPTION 1
We assume that there exists a vector x̄ such that A1 x̄ = b1 and A2 x̄ < b2.
Further, we assume that al, l = 1, . . . , q and Pr, r = 1, . . . ,m are linearly
independent.

REMARK 1
Assumption 1 is known as the Mangasarian-Fromovitz constraint qualifi-
cation (MFCQ). In [Gauvin, 1977] it was shown that MFCQ is equivalent
to the set of optimal dual variables being bounded. For convex problems,
MFCQ is equivalent to Slater’s constraint qualification with the additional
requirement that the vectors defining the equality constraints should be
linearly independent.

3. Dual Problem

In this section we introduce a dual problem to (3) from which the pri-
mal solution can be obtained. We show that this dual problem has the
properties required to apply accelerated gradient methods.

3.1 Formulation of the Dual Problem

We introduce Lagrange multipliers, λ ∈ Rq, µ ∈ R
s−q
≥0 , ν ∈ Rm for the

constraints in (3). Under Assumption 1 it is well known (cf. [Boyd and
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Vandenberghe, 2004, §5.2.3]) that there is no duality gap and we get the
following dual problem:

sup
λ ,µ≥0,ν

inf
x,y

{
1
2
xTHx + �T x + γ qyq1 + λT (A1x − B1)+

+ µT(A2x − B2) +νT (Px − p− y)
}
. (7)

After rearranging the terms we get

sup
λ ,µ≥0,ν

{
inf
x

[
(AT1 λ + AT2 µ + PTν + �)T x + 1

2
xTHx

]
−

− λTB1 − µTB2 −νT p+ inf
y

[
γ qyq1 −νT y

]}
. (8)

The infimum over y can be solved explicitly:

inf
y

{
γ qyq1 −νT y

}
= inf

y

{
∑

i

(γ p[y]ip − [ν ]i[y]i)
}

=
∑

i

{
inf
[y]i
(γ p[y]ip − [ν ]i[y]i)

}
=
{
0 if qνq∞ ≤ γ

−∞ else

where [⋅]i denotes the i-th element in the vector. The infimum over y
becomes a box-constraint for the dual variables ν . This is a crucial obser-
vation for distribution reasons.
Before we explicitly solve the minimization over x in (8) the following

notation is introduced:

A = [AT1 AT2 PT ]T , B = [BT1 BT2 pT ]T , z = [λT µT νT ]T

where A ∈ R(s+m)$n, B ∈ Rs+m and z ∈ Rs+m. We also introduce the set
of feasible dual variables:

Z =






zl ∈ R l ∈ {1, . . . , q}
z ∈ Rs+m zl ≥ 0 l ∈ {q+ 1, . . . , s}

pzl p ≤ γ l ∈ {s+ 1, . . . , s+m}





. (9)

The minimization over x in (8) can be solved explicitly:

inf
x

[
(A T z+ �)T x + 1

2
xTHx

]
= −1

2
(A T z+ �)TH−1(A T z+ �)
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and we get the following dual problem

sup
z∈Z

{
− 1
2
(A T z+ �)TH−1(A T z+ �) −BT z

}
. (10)

We introduce the following definition of the negative dual function

f (z) := 1
2
(A T z+ �)TH−1(A T z+ �) +BT z.

Since f consists of a quadratic term with positive semidefinite hessian
and a linear term, f is differentiable and has the following gradient

∇ f (z) =AH−1(A T z+ �) +B. (11)

Further, from the min-max theorem we have that the smallest Lipschitz
constant, L, to ∇ f is L = qAH−1A Tq2.

4. Distributed Optimization Algorithm

In this section we show how the accelerated gradient method can be used
to distributively solve (3) by minimizing the negative dual function f . The
accelerated proximal gradient method for problem (10) is defined by the
following iteration as presented in [Tseng, 2008, Algorithm 2] and [Beck
and Teboulle, 2009, Eq. 4.1-4.3]

vk = zk + k− 1
k+ 2 (z

k − zk−1) (12)

zk+1 = PZ
(
vk − 1

L
∇ f (vk)

)
(13)

where PZ is the Euclidean projection onto the set Z . Thus, the new iterate,
zk+1, is the previous iterate plus a step in the negative gradient direction
projected onto the feasible set.
We define the primal iteration xk = H−1(−A T zk −�). Using this defi-

nition, straightforward insertion of vk into (11) gives

∇ f (vk) = −A
(
xk + k− 1

k+ 2 (x
k − xk−1)

)
+B

By defining x̄k = xk + k−1
k+2(xk − xk−1) and recalling the partition z =

[λT µT νT ]T and the definition (9) of the set Z , we find that (12)-(13) can
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be parallelized:

xk = H−1(−A T zk − �) (14)

x̄k = xk + k− 1
k+ 2 (x

k − xk−1) (15)

λk+1l = λkl +
k− 1
k+ 2 (λ

k
l − λk−1l ) + 1

L
(aTl x̄k − bl) (16)

µk+1l = max
{
0, µkl +

k− 1
k+ 2 (µ

k
l − µk−1l ) + 1

L
(aTl x̄k − bl)

}
(17)

ν k+1r = min
{

γ ,max
[
− γ ,ν kr +

k− 1
k+ 2 (ν

k
r −ν k−1r ) + 1

L
(PTr x̄k − pr)

]}
. (18)

From these iterations it is not obvious that the algorithm is distributed.
By partitioning the constraint matrix as

A = [A1, . . . ,AM ]

where each A i = [a1i, . . . , asi, P1i, . . . , Pmi]T ∈ R(s+m)$ni , and noting that H
is block-diagonal, the local primal variables are updated according to

xki = H−1i
(
−A Ti zk − �i

)

= −H−1i
[
�i +

∑

j∈M i

[∑

l∈L1
j

aliλ
k
l +

∑

l∈L2
j

aliµ
k
l +

∑

r∈R j

Priν
k
r

]]
. (19)

Thus, each local primal update, xki , can be computed after communication
with neighbors j ∈ M i. Through (4)-(6) we note that the dual variable
iterations can be updated after communication with neighbors i ∈N i. We
get the following distributed algorithm.

ALGORITHM 1—DISTRIBUTED ACCELERATED PROXIMAL GRADIENT ALGORITHM

Initialize λ0 = λ−1, µ0 = µ−1,ν0 = ν−1 and x0 = x−1
In every node, i, the following computations are performed:
For k ≥ 0
1. Compute xki according to (19) and set

x̄ki = xki +
k− 1
k+ 2 (x

k
i − xk−1i )

2. Send x̄ki to each j ∈M i, receive x̄kj from each j ∈N i
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3. Compute λk+1l according to (16), (4) for l ∈ L1i
Compute µk+1l according to (17), (5) for l ∈ L2i
Compute ν k+1l according to (18), (6) for l ∈ R i

4. Send {λk+1l }l∈L1
i
, {µk+1l }l∈L2

i
, {ν k+1r }r∈R i to each j ∈N i,

receive {λk+1l }l∈L1
j
, {µk+1l }l∈L2

j
and {ν k+1r }r∈R j from each j ∈M i

End

The convergence rates for the dual function f and the primal variables
when running Algorithm 1 are stated in the following theorem.

THEOREM 1
Algorithm 1 has the following convergence rate properties:

1. Denote an optimizer of the dual problem (10) as z∗. The convergence
rate is:

f (zk) − f (z∗) ≤ 2Lqz
0 − z∗q22

(k+ 1)2 ,∀k ≥ 1 (20)

2. Denote the unique optimizer of the primal problem as x∗. The rate
of convergence for the primal variable is

qxk − x∗q22 ≤
4Lqz0 − z∗q22
σ (H)(k+ 1)2 ,∀k ≥ 1 (21)

PROOF
Algorithm 1 is a distributed implementation of [Tseng, 2008, Algorithm
2] and [Beck and Teboulle, 2009, Eq. 4.1-4.3] applied to minimize f . The
convergence rate in argument 1 follows from [Tseng, 2008, Proposition 2]
and [Beck and Teboulle, 2009, Theorem 4.4].
For argument 2 we get that the necessary and sufficient KKT condi-

tions [Boyd and Vandenberghe, 2004, p. 244] implies x∗ = H−1(−A T z∗−�)
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since H is invertible. This leads to

qxk − x∗q22 = qH−1(A T zk −A T z∗)q22
≤ qH−1qqA T zk −A T z∗q2H−1

= 1
σ (H)(z

k − z∗)TAH−1A T(zk − z∗)

= 1
σ (H)

(
(zk)TAH−1A T zk − (z∗)TAH−1A T z∗−

− 2(AH−1A T z∗)T (zk − z∗)+

+ 2(B +AH−1�)T (zk − zk + z∗ − z∗)
)

= 2
σ (H)

(
f (zk) − f (z∗) − (AH−1(A T z∗ + �) +B)T (zk − z∗)

)

= 2
σ (H)

(
f (zk) − f (z∗) −∇ f (z∗)T (zk − z∗)

)

≤ 2
σ (H)( f (z

k) − f (z∗)) ≤ 4Lqz
0 − z∗q22

σ (H)(k+ 1)2

where the first inequality comes from the min-max theorem, the equali-
ties are algebra with addition of some zero-terms, the first inequality in
the final row is from the first-order optimality condition [Nesterov, 2003,
Theorem 2.2.5], and the final inequality is due to (20). This completes the
proof. �

5. Numerical Example

In this section we evaluate the performance of Algorithm 1. We compare
the presented algorithm to state-of-the-art centralized optimization soft-
ware for large-scale optimization implemented in C, namely CPLEX and
MOSEK. We also evaluate the performance loss when using suboptimal
step sizes. Our algorithm is implemented on a single processor to be able
to compare execution times.
The comparison is made on 100 random optimization problems arising

in distributed MPC. A batch of random stable controllable dynamical sys-
tems with random structure and random initial conditions are created.
The sparsity fraction, i.e., the fraction of non-zero elements in the dy-
namics matrix and the input matrix, is chosen to be 0.1. We have random
inequality constraints that are generated to guarantee a feasible solution
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Table 1. Algorithm comparison with 1-norm cost term and random state and input
constraints. Algorithm 1 is implemented in MATLAB while CPLEX and MOSEK are
implemented in C.

Alg. vars./constr. tol. # iters exec (ms)
mean max mean max

1 (L) 4320/3231 0.005 69.8 160 253 609

1 (L1) 4320/3231 0.005 160 420 594 1532

1 (LF) 4320/3231 0.005 248 640 934 2444

MOSEK 4320/3231 - - - 1945 2674

CPLEX 4320/3231 0.005 - - 1663 2832

1 (L) 2160/1647 0.005 63.8 100 94 200

1 (L1) 2160/1647 0.005 75.8 180 115 368

1 (LF) 2160/1647 0.005 121 320 185 488

MOSEK 2160/1647 - - - 334 399

CPLEX 2160/1647 0.005 - - 282 522

and a 1-norm cost where the P-matrix and p-vector are randomly chosen.
The quadratic cost matrices are chosen Q = I and R = I. Table 1 shows
the numerical results obtained running MATLAB on a Linux PC with a
3 GHz Intel Core i7 processor and 4 GB memory. The optimization soft-
ware used is CPLEX V12.2 and MOSEK 6.0.0.114 that are accessed via
the provided MATLAB interfaces.
The first column specifies the algorithm used where Algorithm 1 is

supplemented with the step size used. L is the optimal step size L =
qAH−1A Tq2, LF = qAH−1A TqF and L1 =

√
qAH−1A Tq1qAH−1A Tq∞.

We compare to the suboptimal step sizes L1 and LF since they can be
computed in distributed fashion. The step sizes satisfy L ≤ L1 and L ≤
LF . The second column specifies the number of variables and constraints
in the optimization problems. In the third column we have information
about the duality gap tolerance that is used as stopping condition in the
algorithms (if possible to set). The two final columns present the results in
terms of number of iterations and execution time. The difference between
the upper and lower halves of the table is the size of the problems that
are solved.
Table 1 reveals that Algorithm 1 performs better than CPLEX and

MOSEK on these large-scale sparse problems despite the fact that CPLEX
and MOSEK are implemented in C and Algorithm 1 is implemented in
MATLAB. We also conclude that the choice of step size in Algorithm 1 is
important for performance reasons.
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6. Conclusions

6. Conclusions

We have presented a distributed optimization algorithm for strongly con-
vex optimization problems with sparse problem data. The algorithm is
based on an accelerated gradient method that is applied to the dual prob-
lem. The algorithm was applied to large-scale sparse optimization prob-
lems originating from a distributed model predictive control formulation.
Our algorithm performed better than state-of-the-art optimization soft-
ware for large-scale sparse optimization, namely CPLEX and MOSEK, on
these problems.
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Paper II

Execution Time Certification for

Gradient-Based Optimization in

Model Predictive Control

Pontus Giselsson

Abstract

We consider model predictive control (MPC) problems with linear
dynamics, polytopic constraints, and quadratic objective. The result-
ing optimization problem is solved by applying an accelerated gradi-
ent method to the dual problem. The focus of this paper is to provide
bounds on the number of iterations needed in the algorithm to guaran-
tee a prespecified accuracy of the dual function value and the primal
variables as well as guaranteeing a prespecified maximal constraint
violation. The provided numerical example shows that the iteration
bounds are tight enough to be useful in an inverted pendulum appli-
cation.

cF2012 IEEE. Printed with permission. To appear in Proceedings of the
51st IEEE Conference on Decision and Control, Maui, HI, 2012.
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1. Introduction

1. Introduction

Model predictive control (MPC) is an optimization based control method-
ology that can handle state and control constraints (see [Maciejowski,
2002,Mayne et al., 2000] for thorough descriptions of MPC). In the opti-
mization problem a cost function is minimized based on predicted future
state and control trajectories and subject to constraints. Optimal control
and state trajectories are obtained and the first element in the input tra-
jectory is applied to the system. This procedure is repeated every sampling
instant which sets requirements on the execution time of the optimization
problem. The topic of this paper is to provide certificates for the execu-
tion time of the optimization algorithm such that for every feasible ini-
tial condition the optimization algorithm provides a solution within the
sampling time. We consider linear time-invariant systems with polytopic
constraints and quadratic cost and a dual accelerated gradient method
[Giselsson et al., 2012] is used to solve the resulting optimization prob-
lem.
For accelerated gradient methods there are convergence rate results

[Nesterov, 2003, Beck and Teboulle, 2009, Tseng, 2008, Giselsson et al.,
2012] that depend explicitly on the norm of the difference between the op-
timal solution and the initial iterate. If this norm can be bounded, a bound
on the number of iterations to achieve a prespecified accuracy of the func-
tion value can be computed. This was done in [Richter et al., 2009] where
input constrained MPC was considered. The condensed problem, i.e., the
problem with all state variables eliminated, was solved using a fast gra-
dient method. An iteration bound was obtained since the norm of the
difference between the optimal solution and the initial iterate is bounded
by the size of the input constraint set. Accelerated gradient methods can
also be applied to the dual problem [Richter et al., 2011,Giselsson et al.,
2012]. To compute a bound on the number of iterations to achieve a pre-
specified accuracy, a bound on the norm of the difference between the
optimal dual variables and initial dual iterate is needed. This is more
involved in the dual space than in a constrained primal space since dual
variables are not chosen from a compact set. This is addressed in [Richter
et al., 2011] where the equality constraints are dualized and a bound on
the norm of the optimal dual variables is obtained using a recent result in
[Devolder et al., 2011]. The obtained bounds turn out to be quite conser-
vative. Another method to provide computation time certificates in MPC
is to bound the search time in the look-up table in explicit MPC [Bem-
porad et al., 2002,Alessio and Bemporad, 2009]. Practically this method
is limited to small or medium-sized problems. For interior point meth-
ods, iteration bounds are available [McGovern, 2000], these are, however,
reported to be quite conservative [Richter et al., 2011,McGovern, 2000].
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In this paper we consider the dual to the condensed problem, i.e.,
the dual to the problem where the state variables are eliminated. The
resulting optimization problem has only inequality constraints and we
apply the accelerated gradient method to the dual problem. To compute
an iteration bound, we need a bound on the norm of the optimal dual
variables. Using a result in [Nedic and Ozdaglar, 2009] a bound to this
norm can be computed if a Slater vector to the optimization problem is
known. Computation of the norm bound requires that the distance from
equality in the inequality constraints for the Slater vector is known, as
well as the primal cost for the Slater vector. We will see that such a Slater
vector can be constructed for almost all feasible initial conditions in the
MPC case. The provided numerical example shows that the presented
bounds are tight enough to give useful bounds in an inverted pendulum
application.

2. Problem Setup and Preliminaries

We consider the problem of controlling a linear dynamical system to the
origin subject to polytopic constraints. To achieve this we use MPC in
which the following finite horizon optimization problem is solved at the
current state x̄ ∈ Rn:

VN(x̄) := min
x,u

1
2

N−1∑

t=0
(xTt Qxt + uTt Rut) +

1
2
xTNQNxN

s.t. (xt,ut) ∈ X $U, t = 0, . . . ,N − 1
xt+1 = Axt + But, t = 0, . . . ,N − 1
xN ∈ X f , x0 = x̄

(1)

where xt ∈ Rn, ut ∈ Rm, x = [xT1 , . . . , xTN ]T , and u = [uT0 , . . . ,uTN−1]T . We
use the standard assumptions that Q 4 0, QN 4 0, and R ≻ 0. The
constraint sets are assumed to be polytopes

X = {x ∈ R
n p Cxx ≤ dx}, X f = {x ∈ R

n p Cf x ≤ d f},
U = {u ∈ R

m p Cuu ≤ du}.

Throughout this paper we assume that the sets X , X f , and U are non-
empty and compact and that 0 ∈ int X , 0 ∈ int X f , and 0 ∈ int U which
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implies that dx,d f ,du > 0. By introducing the following matrices

A =



A
...

AN


 , B =




B 0 ⋅ ⋅ ⋅ 0

AB
. . .

. . .
...

...
. . .

. . . 0

AN−1B ⋅ ⋅ ⋅ AB B




the predicted future state variables can be described in the current state
x̄ and control variables u as

x = Ax̄ +Bu.

We further define

Q := blkdiag(Q, . . . ,Q,QN), R := blkdiag(R, . . . ,R),
Cx := blkdiag(Cx, . . . ,Cx,Cf ), dx := [dTx , . . . ,dTx ,dTf ]T ,
Cu := blkdiag(Cu, . . . ,Cu), du := [dTu , . . . ,dTu ]T .

The optimization problem (1) can, using these matrices, equivalently be
written as

VN(x̄) = min
u

JN(x̄,u) := 1
2u
THu+ x̄TGu+ 1

2 x̄
T Fx̄

s.t. �(x̄,u) ≤ 0
(2)

where H = BTQB+R, G = ATQB, F = ATQA+ Q, �(x̄,u) = Cu− d(x̄)
and

C =
(
Cu

CxB

)
, d(x̄) =

(
du

dx −CxAx̄

)
.

To solve (2) we introduce dual variables µ ∈ R
p
≥0 for the inequality con-

straints. The first pu ≤ p dual variables in the dual variable vector µ
correspond to the input constraints and the last p − pu dual variables
correspond to the state constraints. If Slater’s condition holds, we get the
following dual problem (cf. [Boyd and Vandenberghe, 2004])

VN(x̄) = max
µ≥0
min
u

1
2
uTHu+ x̄TGu+ µT (Cu− d(x̄)).

As shown in [Giselsson et al., 2012] the dual problem becomes

max
µ≥0

−1
2
(CTµ+ GT x̄)TH−1(CTµ+ GT x̄) − µTd(x̄). (3)
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We define the dual function

DN(x̄,µ) = −
1
2
(CTµ+ GT x̄)TH−1(CTµ+ GT x̄) − µTd(x̄)

which satisfies the following properties (cf. [Giselsson et al., 2012]).

PROPOSITION 1
The dual function has Lipschitz continuous gradient with Lipschitz con-
stant L = qCH−1CTq and the gradient is given by

∇DN(x̄,µ) = −CH−1(CTµ+ GT x̄) − d(x̄).

This implies that the dual function can be maximized using an accelerated
gradient method [Nesterov, 2003, Beck and Teboulle, 2009, Tseng, 2008,
Giselsson et al., 2012]. The algorithm presented in [Giselsson et al., 2012]
with a cold-starting strategy, i.e., µ0 = 0 is presented below.

ALGORITHM 1—ACCELERATED GRADIENT ALGORITHM

Initialize µ0 = µ−1 = 0 and u−1 = −H−1GT x̄.
For k ≥ 0

uk = −H−1(CTµk + GT x̄)

ũk = uk + k− 1
k+ 2 (u

k − uk−1)

µk+1 = max
{
0,µk + k− 1

k+ 2 (µ
k − µk−1) + 1

L

(
Cũk − d(x̄)

)}

End

Before we state the convergence rate properties of the algorithm, we in-
troduce the set of optimal dual variables

M∗(x̄) = {µ ∈ R
p
≥0 p DN(x̄,µ) ≥ VN(x̄)}.

We also introduce XN which is the steerable set defined as

XN = {x̄ ∈ R
n p there exist u s.t. Cu ≤ d(x̄)}.

REMARK 1
From [Rawlings et al., 2008], we know that the steerable set XN is convex
and that 0 ∈ XN .

We also denote by u∗(x̄) the optimal solution to (2) with initial condition
x̄ and σ (H) the smallest eigenvalue to H.
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PROPOSITION 2
Suppose that x̄ ∈ XN . For any µ∗ ∈ M∗(x̄) Algorithm 1 has the following
convergence rate properties:

1. The dual function converges as

DN(x̄,µ∗) − DN(x̄,µk) ≤
2Lqµ∗q2
(k+ 1)2 ,∀k ≥ 1. (4)

2. The primal variable rate of convergence is

quk − u∗(x̄)q2 ≤ 4Lqµ∗q2
σ (H)(k+ 1)2 ,∀k ≥ 1. (5)

3. The constraint violation is bounded by

q�(x̄,uk) − �(x̄,u∗(x̄))q2 ≤ 4L
2qµ∗q2

(k+ 1)2 ,∀k ≥ 1.

PROOF
Argument 1 is proven in [Beck and Teboulle, 2009,Tseng, 2008,Giselsson
et al., 2012] and argument 2 is proven in [Giselsson et al., 2012]. To prove
the third argument we have

q�(x̄,uk) − �(x̄,u∗(x̄))q2 = qCuk − d(x̄) − (Cu∗(x̄) − d(x̄))q2

= q∇DN(x̄,µk) −∇DN(x̄,µ∗)q2

≤ 2L
(
− 〈−∇DN(x̄,µ∗),µk − µ∗〉+

+ DN(x̄,µ∗) − DN(x̄,µk)
)

≤ 2L
(
DN(x̄,µ∗) − DN(x̄,µk)

)
.

The first inequality comes from [Nesterov, 2003, Theorem 2.1.5] since −DN
is convex. The second inequality is due to first order optimality condition
[Nesterov, 2003, Theorem 2.2.5] for the convex function −DN . It is left to
apply Argument 1 to prove the result. �

The objective of the paper is to, a priori, compute bounds on the number of
iterations needed to achieve a prespecified dual function, primal variable,
and constraint satisfaction tolerance when initializing the algorithm with
µ0 = 0. These bounds should ideally hold for any initial state x̄ ∈ XN . In
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this paper we will show how to compute bounds that hold for any x̄ ∈ βXN
where β ∈ (0, 1) and βXN is defined as

βXN := {x̄ ∈ R
n p 1

β
x̄ ∈ XN}.

From the definition and Remark 1 we conclude that βXN ⊆ XN and
that 0 ∈ βXN . Before we proceed with the presentation we introduce the
following definition.

DEFINITION 1
We define κ ≥ 1 as the smallest scalar such that for every x̄ ∈ XN the
following holds

VN(x̄) ≤ κ min
u
JN(x̄,u).

REMARK 2
The optimal solution to minu JN(x̄,u) is u∗

uc(x̄) = −H−1GT x̄. The corre-
sponding cost becomes

min
u
JN(x̄,u) =

1
2
x̄TGH−1GT x̄ − x̄TGH−1GT x̄ + 1

2
x̄T Fx̄

= 1
2
x̄T (F − GH−1GT )x̄.

By defining P := F − GH−1GT where P ≻ 0 we get

VN(x̄) ≤ κ min
u
JN(x̄,u) =

κ

2
x̄TPx̄.

Also, note that we have

VN(x̄) ≥ min
u
JN(x̄,u) =

1
2
x̄TPx̄.

2.1 Notation

We denote by R the real numbers and by R≥0 non-negative real numbers.
The norm q⋅q refers to the Euclidean norm or the induced Euclidean norm
unless otherwise is specified and 〈x, y〉 = xT y. Further σ̄ (H) denotes the
largest singular value of H and σ (H) denotes the smallest singular value
of H. Further [⋅]i denotes the i:th element in the vector.
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3. Lagrange Multiplier Norm Bounds

All quantities in the bounds in Proposition 2 are known except for qµ∗q
where µ∗ ∈ M∗(x̄). This section is devoted to bounding the norm of the
optimal dual variables in (3) for any x̄ ∈ βXN where β ∈ (0, 1). The
following result is used to achieve this.

LEMMA 1
Assume that ū(x̄) is a Slater vector, i.e., that ū(x̄) satisfies Cū(x̄) < d(x̄).
Then

max
µ∈M ∗(x̄)

qµq ≤ 1
γ (x̄, ū(x̄))(JN(x̄, ū(x̄)) − VN(x̄))

where γ (x̄, ū(x̄)) := min1≤ j≤p[−�(x̄, ū(x̄))] j .

PROOF
A proof is provided in [Nedic and Ozdaglar, 2009]. �

Thus, if we can find a Slater vector for any initial condition x̄ ∈ βXN
we can bound the norm of the optimal Lagrange multipliers, µ∗. In the
following lemma we show how to construct a Slater vector to (2) for any
initial state x̄ ∈ βXN . Before we present the lemma the following notation
is introduced; d := [dTu ,dTx ]T and dmin := min j [d] j which implies that
dmin > 0.

LEMMA 2
For every x̄ ∈ βXN with β ∈ (0, 1), ū(x̄) = βu∗(x̄/β ) is a Slater vector
to the optimization problem (2). The Slater vector satisfies γ (x̄, ū(x̄)) ≥
(1− β )dmin.

PROOF
Since x̄ ∈ βXN we have by definition that x̄/β ∈ XN . The optimal con-
trol trajectory at x̄/β is u∗(x̄/β ). Since x̄/β ∈ XN the optimal control
trajectory is feasible, i.e., the following holds

�( x̄
β
,u∗( x̄

β
)) =

(
Cuu∗(x̄/β ) − du

Cx(Ax̄/β +Bu∗(x̄/β )) − dx

)
≤ 0.

For any x̄ ∈ βXN we have for the chosen Slater vector ū(x̄) = βu∗(x̄/β )
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that

�(x̄, βu∗( x̄
β
)) =

(
Cuβu∗(x̄/β ) − du

Cx(Ax̄ +Bβu∗(x̄/β )) − dx

)

=
(

β (Cuu∗(x̄/β ) − du) + (β − 1)du
β (Cx(Ax̄/β +Bu∗(x̄/β )) − dx) + (β − 1)dx

)

= β

(
Cuu∗(x̄/β ) − du

Cx(Ax̄/β +Bu∗(x̄/β )) − dx

)
−
( (1− β )du
(1− β )dx

)

≤ −
( (1− β )du
(1− β )dx

)
.

This gives

γ (x̄, ū(x̄)) = min
1≤ j≤p

[−�(x̄, βu∗(x̄/β ))] j ≥ (1− β )min([d] j) = (1− β )dmin.

This completes the proof. �

By limiting the set of initial states, a Slater vector can be constructed
with a certain distance to equality in the inequality constraints. Using
this result the following theorem provides a bound on the norm of the
optimal dual variables.

THEOREM 1
For every x̄ ∈ βXN we have that

max
µ∈M ∗(x̄)

qµq ≤ κ − 1
2(1− β )dmin

x̄TPx̄. (6)

PROOF
We will show that Lemma 1 gives (6) using the Slater vector ū(x̄) =
βu∗(x̄/β ). We have

JN(x̄, βu∗(x̄/β )) = 1
2
(βu∗(x̄/β ))THβu∗(x̄/β ) + x̄TGβu∗(x̄/β ) + 1

2
x̄T Fx̄

= β 2

2

(
(u∗( x̄

β
))THu∗( x̄

β
) + 2

[
x̄

β

]T
Gu∗( x̄

β
)+

+
[
x̄

β

]T
F

[
x̄

β

])

= β 2VN(x̄/β ) ≤ κ

2
β 2
[
x̄

β

]T
P

[
x̄

β

]
= κ

2
x̄TPx̄
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where the inequality comes from Remark 2. From Lemma 1 and Lemma 2
we have

max
µ∈M ∗(x̄)

qµq ≤ JN(x̄, βu
∗(x̄/β )) − VN(x̄)

γ (x̄, βu∗(x̄/β )) ≤ 1
(1− β )dmin

(κ
2
x̄TPx̄ − VN(x̄))

≤ κ − 1
2(1− β )dmin

x̄TPx̄

where the last inequality is due to Remark 2. This completes the proof. �

REMARK 3
If Definition 1 is changed such that κβ 1 is the smallest scalar such that for
all x̄ ∈ β1XN and for some β1 ∈ (0, 1) we have an upper bound VN(x̄) ≤
κβ1
2 x̄

TPx̄. Then for every x̄ ∈ β2XN where β2 ∈ (0, β1) it is straightforward
to verify that

max
µ∈M ∗(x̄)

qµq ≤ κβ 1 − 1
2(1− β2/β1)dmin

x̄TPx̄.

If
κβ1

−1
1−β 2/β 1

< κ−1
1−β 2

we get an improved bound on the norm of the dual
variables compared to Theorem 1.

The provided bound on the norm of optimal dual variables can, together
with Proposition 2, be used to bound the number of iterations to get a pre-
specified accuracy in the function value, primal variables and constraint
violation. This is the topic of the following section.

4. Algorithm Iteration Bounds

In this section we provide bounds on the number of iterations within
which a dual ǫd-solution, ǫc constraint violation and ǫp norm-distance to
the primal optimal solution are guaranteed. The bounds are developed for
the cold starting case, i.e., when the initial iterate is µ0 = 0.

4.1 Iteration Bound to Guarantee Dual ǫ-solution

The first bound is on the number of iterations within which a dual ǫ-
solution is guaranteed. To avoid that scaling the Q and R-matrices give
different bounds we use a relative tolerance.

THEOREM 2
Suppose that Algorithm 1 is initialized with µ0 = 0. Then for every x̄ ∈
βXN with β ∈ (0, 1) we have

VN(x̄) − DN(x̄,µk) ≤ ǫdVN(x̄) (7)
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if

k ≥ kd(x̄) :=
√
Lx̄TPx̄

ǫd

κ − 1
(1− β )dmin

− 1.

PROOF
Inequality (7) is equivalent to

DN(x̄,µ∗) − DN(x̄,µk) ≤ ǫdDN(x̄,µ∗)

for any µ∗ ∈ M∗(x̄). From Proposition 2 and Theorem 1 we have that

DN(x̄,µ∗) − DN(x̄,µk) ≤
2Lqµ∗q2
(k+ 1)2 ≤

2L(κ − 1)2
4(1− β )2d2min(k+ 1)2

(x̄TPx̄)2.

Since 12 x̄
TPx̄ ≤ VN(x̄), we have that

2L(κ − 1)2
4(1− β )2d2min(k+ 1)2

(x̄TPx̄)2 ≤ ǫd

1
2
x̄TPx̄ (8)

implies (7). Rearranging the terms gives the result. �

REMARK 4
By scaling the penalty-matrices Qa = aQ, Ra = aR we get Ha = aH
which implies La = qCH−1a CTq = 1

a
qCH−1CTq = 1

a
L and Pa = aP. Thus,

using a relative tolerance the same bound is obtained for every scaling
factor a > 0.

REMARK 5
To get a bound that holds for all x̄ ∈ βXN , kd(x̄) should be maximized
subject to x̄ ∈ βXN . An over-estimator is to maximize kd(x̄) subject to
x̄ ∈ βX which is readily available. The resulting maximization problem
depends affinely on

√
x̄TPx̄, hence the maximizing argument can be found

by maximizing x̄TPx̄ on βX . This is a quadratic maximization problem
that can be rewritten as a mixed integer linear program (MILP) as shown
in [Jones and Morari, 2009]. MILP software produce upper and lower
bounds to the objective in each iteration and since an upper bound to the
objective is enough to compute an iteration bound, the optimization can
be stopped when sufficient accuracy is achieved.
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4.2 Iteration Bound for Constraint Violation

In this section we bound the number of iterations within which a pre-
specified constraint violation is guaranteed. We use the following relative
tolerance �(x̄,uk) ≤ ǫd.

THEOREM 3
Suppose that Algorithm 1 is initialized with µ0 = 0. Then, �(x̄,uk) ≤ ǫcd

holds for every x̄ ∈ βXN if

k ≥ kc(x̄) :=
L(κ − 1)x̄TPx̄
(1− β )d2minǫc

− 1.

PROOF
First note that if q�(x̄,uk) − �(x̄,u∗)q ≤ ǫcdmin then �(x̄,uk) ≤ ǫcd since
�(x̄,u∗) ≤ 0. From Proposition 2 and Theorem 1 we get

q�(x̄,uk) − �(x̄,u∗(x̄))q ≤ 2Lqµ
∗q

k+ 1 ≤ L(κ − 1)x̄TPx̄
(1− β )dmin(k+ 1)

.

Setting this ≤ ǫcdmin and rearranging the terms gives the bound. �

REMARK 6
This result can be used in a constraint tightening approach to guarantee
a feasible solution w.r.t. to the original constraint sets within kc(x̄) itera-
tions.

4.3 Primal Variable Iteration Bound

Using the same techniques it is also possible to bound the number of iter-
ations needed to guarantee a primal solution that is within a prespecified
distance to the optimal solution.

THEOREM 4
Suppose that Algorithm 1 is initialized with µ0 = 0. Then, for every x̄ ∈
βXN we have

quk − u∗(x̄)q ≤ ǫp

if

k ≥ kp(x̄) :=
√

L

σ (H)
(κ − 1)x̄TPx̄
ǫp(1− β )dmin

− 1.
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PROOF
From Proposition 2 and Theorem 1 we have

quk − u∗(x̄)q ≤
√

L

σ (H)
2qµ∗q
(k+ 1) ≤

√
L

σ (H)
(κ − 1)xTPx

(1− β )dmin(k+ 1)
.

Setting this ≤ ǫp and rearranging gives the result. �

5. Preconditioning

There are two different ways of preconditioning the problem data to possi-
bly achieve smaller iteration bounds. One is to do a variable change in the
primal variables and another is to scale the matrices defining the inequal-
ity constraints. We start by considering scaling the matrices defining the
inequality constraints.

5.1 Scaling Inequality Constraints

All iteration bounds kd, kc, kp depend on
√
L/dmin or L/d2min. By intro-

ducing D = diag(d) and recalling the definition of L we get L/d2min =
qCH−1CTq/λ2min(D). By scaling the inequality constraints, this ratio can
be minimized to get less conservative bounds without affecting the solu-
tions of the optimization problem. We introduce the scaling matrix S =
blkdiag(Su, Sx) where Su = diag(s1, . . . , spu), Sx = diag(spu+1, . . . , sp) where
pu ≤ p and all elements si > 0, i = 1, . . . , p. We get the following scaling

SCu ≤ Sd(x̄).

From the definition of C and d(x̄) we see that this is equivalent to

SuCu ≤ Sudu SxCx(Ax̄ +Bu) ≤ Sxdx.

The scaling of constraints will give as small bounds as possible if the
scaling is chosen according to the following minimization

min
S

qSCH−1CTSq
λ2min(SD)

.

We introduce S̄ = SD which is a diagonal matrix with strictly positive el-
ements since it is a product of two diagonal matrices with strictly positive
elements. This gives the equivalent minimization problem

min
S̄

qS̄D−1CH−1CTD−1S̄q
λ2min(S̄)

. (9)
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It was shown in [Richter et al., 2011, Lemma 1] that for invertible S̄, an
optimal solution is S̄ = I. Since diagonal matrices with positive elements
are a subset of all invertible matrices, we get that S̄ = I minimizes (9).
The optimal scaling becomes S = S̄D−1 = D−1.

5.2 Preconditioning of Primal Variables

When performing a linear change of variables in primal variables, i.e., set
q = T−1u where T is an invertible matrix, H, G and C must be changed
accordingly to not affect the primal optimal solution. We get Hq = TTHT ,
Gq = GT and Cq = CT . The Lipschitz constant does not change since

Lq = qCqH−1q CTq q = qCTT−1H−1T−TTTCTq = qCH−1CTq = L.

Straightforward verification of the algorithm when initialized with µ0 = 0
gives that the µk-sequence is identical whether using the new variables
q or the original variables u. It is also straightforward to verify that the
relation between the iterates in the new variable qk and the iterates in
the original variable uk is qk = T−1uk. Thus, we do not get better (or
worse) convergence properties by preconditioning the primal variables.

6. Numerical Example

We evaluate the conservatism of the iteration bounds by applying them
to a double integrator system and a double integrator with a pendulum
attached. We consider the pendulum in [Giselsson, 2011] with pendulum
length l = 0.4m. The cart has inner control loops that make it behave as a
double integrator. We choose sample time h = 0.02s as in [Giselsson, 2011].
We get the following discrete time dynamics for the pendulum system
when the pendulum is in its inverted position (cf. [Giselsson, 2011])

x(t + 1) =




1 0.02 0 0

0 1 0 0

0 0 1.0049 0.0200

0 0 0.4913 1.0049


 x(t) +




0.0002

0.02

−0.0005
−0.0501


u(t).

The state variables are x = [p ṗ θ θ̇ ]T where p is cart position, ṗ is cart
velocity, θ is pendulum angle and θ̇ is pendulum angular velocity. The
double integrator system is the system consisting of only the first two
states, [p ṗ]. We have the following constraints

−0.5 ≤ p ≤ 0.5 −1 ≤ ṗ ≤ 1 −5 ≤ u ≤ 5
−0.2 ≤ θ ≤ 0.2 −0.5 ≤ θ̇ ≤ 0.5.
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Figure 1. The figure shows the iteration bounds (kd, kc, kp), the actual number of
iterations (kact

d
, kactc , k

act
p ), and the maximal number of iterations needed to certify

execution time within h=0.02s for the double integrator system (kreq).
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Figure 2. The figure shows the iteration bounds (kd, kc, kp), the actual number of
iterations (kact

d
, kactc , k

act
p ), and the maximal number of iterations needed to certify

execution time within h=0.02s for the pendulum system (kreq).

The objective is to minimize

N−1∑

t=0

(
xTt Qxt + uTt Rut

)
+ xTNPxN

where Q = diag(1, 0.3, 0.3, 0.1), R = 0.1 and P is the infinite horizon
cost for the unconstrained LQ-problem with weighting matrices Q and R.
Further we choose the terminal set X f = X .
In Figures 1 and 2 we compare the iteration bounds with the worst

case actual number of iterations and the maximum number of iterations,
kreq, to guarantee an execution time less than h = 0.02s on a machine
with 1 Gflops/s computing power. If implemented wisely, the number of
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flops per iteration in Algorithm 1 is 2(pN)2 + 7pN and we get

kreq =
109h

2(pN)2 + 7pN .

In all examples, we use control horizon N = 10, accuracy requirements
ǫd = 0.01 and ǫc = ǫp = 0.05. In Figure 1, the results for the double
integrator are presented. On the x-axis β in βXN is plotted and on the y-
axis the iterations bounds and the actual number of iterations are plotted.
We are able to certify that the optimization algorithm will terminate with
a close to optimal solution for all x̄ ∈ 0.925XN within the sampling time,
h = 0.02s. We also see that for x̄ ∈ 0.825XN we can guarantee that the
optimal solution is found in one iteration, i.e., that no constraints are
active.
In Figure 2, the results for the inverted pendulum system are pre-

sented. Also here we have β in βXN on the x-axis and the iteration bounds
and the actual number of iterations on the y-axis. We are able to certify
that for x̄ ∈ 0.6XN that the required accuracy is achieved within the sam-
pling time, h = 0.02s. We can also certify that a dual ǫd-solution is found
within the sampling time for any x̄ ∈ 0.9XN . We see that for large parts
of the steerable set, XN , the iteration bounds give meaningful results that
can be used to certify the MPC-controller with respect to execution time.

7. Conclusions and Future Work

We solve the optimization problems arising in MPC with linear dynam-
ics, polytopic constraints, and a quadratic cost using a dual accelerated
gradient method [Giselsson et al., 2012]. By constructing Slater vectors to
the optimization problems, we are able to bound the norm of the optimal
dual variables. This is used to compute iteration bounds on the number
of iterations within which a certain accuracy of the dual function value,
constraint violation, and primal variables is guaranteed. The provided nu-
merical example shows that the bounds are tight enough to be useful in
a pendulum application. A future work direction is to search for tighter
iteration bounds when using warm-starting strategies.
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Paper III

Optimal Preconditioning and

Iteration Complexity Bounds for

Gradient-Based Optimization in MPC

Pontus Giselsson

Abstract

Model predictive control (MPC) formulations for systems with lin-
ear dynamics, polytopic constraints, and a quadratic cost are consid-
ered. The resulting quadratic program is solved using the accelerated
gradient method presented in [Giselsson et al., 2012]. Bounds on the
number of iterations needed to ensure a prespecified tolerance of the
dual function value and primal variables are provided. Further, we
present an optimal preconditioning for the matrices describing the
equality and inequality constraints, where optimal refers to the pre-
conditioning that minimizes the iteration bound for dual function ac-
curacy. A numerical example is provided which shows that the optimal
preconditioning gives significantly less iterations in the algorithm, es-
pecially for ill-conditioned problem.

Submitted to 2013 American Control Conference, Washington, D.C., 2013.
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1. Introduction

1. Introduction

Model predictive control (MPC) is an optimization based control method-
ology that can handle state and control constraints (for more on MPC, see
[Maciejowski, 2002,Rawlings and Mayne, 2009]). In each time step a cost
function is minimized based on predicted future state and control trajecto-
ries and subject to constraints. The first element in the obtained optimal
input trajectory is applied to the system. This procedure is repeated in
every sampling instant, which defines a feedback control law. A bound
on the allowed execution time of the optimization algorithm is set by the
sampling time. In this paper, methods to bound the execution time for the
accelerated gradient method presented in [Giselsson et al., 2012] when
applied to MPC optimization problems are developed. The execution time
bounds can be computed by bounding the number of iterations necessary
to achieve a satisfactory solution and to evaluate the complexity within
each iteration.
Convergence rate results for accelerated gradient methods are pre-

sented in [Nesterov, 2003,Beck and Teboulle, 2009,Tseng, 2008,Giselsson
et al., 2012]. The convergence rate depends on the norm of the difference
between the optimal solution and the initial iterate. By bounding this
norm, a bound on the number of iterations to achieve a prespecified ac-
curacy of the function value can be obtained. In [Richter et al., 2009] an
accelerated gradient method was applied to the primal problem for input
constrained MPC. An iteration bound was obtained by bounding the dif-
ference between the initial and optimal control trajectories. In [Richter
et al., 2011,Giselsson et al., 2012] accelerated gradient methods was ap-
plied to the dual problem. To guarantee a prespecified accuracy of the
dual function value, an upper bound to the norm of the difference be-
tween the optimal dual variables and initial dual iterate is needed. This
is complicated by the fact that dual variables are not constrained to be in
a compact set. In [Richter et al., 2011] a recent result in [Devolder et al.,
2011] is used to bound the dual variables associated with the equality
constraints. These bounds are used to compute a lower iteration bound
to achieve a prespecified dual function accuracy. The bounds are reported
to be quite conservative [Richter et al., 2011]. Another method to pro-
vide computation time certificates in MPC is to bound the search time
in the look-up table in explicit MPC [Bemporad et al., 2002, Alessio and
Bemporad, 2009]. Practically this method is limited to small or medium-
sized problems. For interior point methods, iteration bounds are available
[McGovern, 2000], these are, however, reported to be quite conservative
[Richter et al., 2011,McGovern, 2000].
In this paper the accelerated gradient method presented in [Giselsson

et al., 2012] is applied to an MPC problem with linear dynamics, polytopic
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constraints and quadratic cost. The objective is to bound the number of
iterations necessary to guarantee a prespecified accuracy of the dual func-
tion value and the primal variables. From the convergence rate results in
[Giselsson et al., 2012] it is clear that a bound on the norm of the optimal
dual variables is needed to compute the iteration bounds. By extending
and generalizing results from [Nedic and Ozdaglar, 2009] and [Gisels-
son, 2012] we show how to compute a bound to the norm of the optimal
dual variables. These bounds are then used to compute the desired itera-
tion bounds for dual function and primal variable accuracy. We also show
how to precondition the matrices describing the inequality and equality
constraints optimally, where optimally refers to the preconditioning that
minimizes the iteration bound for dual function accuracy. A numerical
example is provided that shows that the preconditioning decreases signif-
icantly the number of iteration needed to achieve a prespecified accuracy
of the solution, especially for ill-conditioned problems.
The results in this paper are related to the results in [Giselsson, 2012].

They differ in that in this paper the problem with equality and inequality
constraints is considered, while in [Giselsson, 2012] the condensed prob-
lem, i.e., the problem where the state variables are eliminated leaving only
inequality constraints, is treated. This difference poses different technical
challenges for the dual variable bounds and for optimal preconditioning.
The paper is organized as follows. In Section 2 the MPC optimization

problem is stated and the solution algorithm from [Giselsson et al., 2012]
is presented. In Section 3 we present bounds on the norm of the optimal
dual variables. Based on these, we present algorithm iteration bounds in
Section 4. We show how to precondition the optimization data optimally
in Section 5. In Section 6 a numerical example is provided and the paper
is concluded in Section 7.

2. Problem Setup and Preliminaries

The following MPC optimization problem with initial condition x̄ ∈ Rn is
considered

VN(x̄) := min
x,u

1
2

N−1∑

t=0
(xTt Qxt + uTt Rut) +

1
2
xTNQNxN

s.t. (xt,ut) ∈ X $U, t = 0, . . . ,N − 1
xt+1 = Axt + But, t = 0, . . . ,N − 1
xN ∈ X f , x0 = x̄

(1)

where xt ∈ Rn, ut ∈ Rm, x = [xT1 , . . . , xTN ]T and u = [uT0 , . . . ,uTN−1]T . The

90



2. Problem Setup and Preliminaries

cost matrices are assumed to satisfy Q ≻ 0, QN ≻ 0 and R ≻ 0 and the
constraint sets are assumed to be polytopes defined by

X = {x ∈ R
n p Cxx ≤ dx}, X f = {x ∈ R

n p Cf x ≤ d f },
U = {u ∈ R

m p Cuu ≤ du},

where Cx ∈ Rnx$n, Cu ∈ Rnu$m and Cf ∈ Rn f$n. We also assume that X ,
X f and U contain zero in their respective interiors which implies that
dx,d f ,du > 0. We also assume that the sets X , X f andU are compact. By
stacking all decision variables into one vector, y = [x0, . . . , xN ,u0, . . . ,uN−1]
and introducing the cost

JN(y) =
1
2
yTHy

where H ∈ R(n+m)N+n$(n+m)N+n is chosen accordingly, the optimization
problem (1) can more compactly be written as

VN(x̄) := min
y

JN(y)

s.t. Ay = bx̄
Cy ≤ d

(2)

where matrices A ∈ R
nN$(n+m)N+n, b ∈ R

nN$n, C ∈ R
(nx+nu)N+n f$(n+m)N+n

and d ∈ R(nx+nu)N+n f are built according to the introduced vector y. Dual
variables λ ∈ RnN for the equality constraints and µ ∈ R

(nx+nu)N+n f
≥0 for the

inequality constraints are introduced. Under the assumption that Slater’s
condition holds, the following dual problem is obtained (cf. [Boyd and
Vandenberghe, 2004])

VN(x̄) = max
λ,µ≥0

min
y

1
2
yTHy+ λT (Ay− bx̄) + µT(Cy− d).

The dual problem can be rewritten as (cf. [Giselsson et al., 2012])

max
λ,µ≥0

−1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd. (3)

The dual function is defined as the maximand in the dual problem, i.e.,

DN(x̄,λ,µ) = −
1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd

and satisfies the properties stated in the following proposition (cf. [Gisels-
son et al., 2012]).
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PROPOSITION 1
The gradient of the dual function ∇DN is Lipschitz continuous with con-
stant L = q[ATCT ]TH−1[ATCT ]q. The gradient w.r.t. λ and µ are given
by

∇λDN(x̄,λ,µ) = −AH−1(ATλ+CTµ) − bx̄,
∇λDN(x̄,λ,µ) = −CH−1(ATλ+CTµ) − d

respectively.

These properties are such that an accelerated gradient method [Nesterov,
2003,Beck and Teboulle, 2009,Tseng, 2008,Giselsson et al., 2012] can be
used to solve the dual problem. Below, a cold-starting variant, i.e., with
λ0 = 0 and µ0 = 0, of the algorithm in [Giselsson et al., 2012] is presented.

ALGORITHM 1—ACCELERATED GRADIENT ALGORITHM

Initialize λ0 = λ−1 = 0, µ0 = µ−1 = 0 and y−1 = 0.
For k ≥ 0

yk = −H−1(ATλk +CTµk)

ỹk = yk + k− 1
k+ 2 (y

k − yk−1)

λk+1 = λk + k− 1
k+ 2 (λ

k − λk−1) + 1
L

(
Aỹk − bx̄

)

µk+1 = max
{
0,µk + k− 1

k+ 2 (µ
k − µk−1) + 1

L

(
Cỹk − d

)}

End

The set of optimal dual variables is denoted by

M∗(x̄) =
{
λ ∈ R

nN ,µ ∈ R
(nx+nu)N+n f
≥0

∣∣ DN(x̄,λ,µ) ≥ VN(x̄)
}
.

The set of initial conditions for which (2) is feasible is denoted by XN . The
optimal solution to (2) with initial condition x̄ ∈ XN is denoted by y∗(x̄).
Next, we state the convergence rate properties of Algorithm 1.

PROPOSITION 2
Suppose that x̄ ∈ XN . For every (λ∗,µ∗) ∈ M∗(x̄), Algorithm 1 has the
following convergence rate properties:

1. For all k ≥ 1 the dual function converges as

DN(x̄,λ∗,µ∗) − DN(x̄,λk,µk) ≤
2L

(k+ 1)2
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

. (4)
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2. The primal variable rate of convergence is

qyk − y∗(x̄)q2 ≤ 4L
σ (H)(k+ 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

,∀k ≥ 1 (5)

where σ (H) denotes the smallest eigenvalue to H.

PROOF
Argument 1 is proven in [Beck and Teboulle, 2009,Tseng, 2008,Giselsson
et al., 2012] and argument 2 is proven in [Giselsson et al., 2012]. �

To compute lower iteration bounds for the cold starting case, i.e., with
λ0 = 0 and µ0 = 0, to guarantee a prespecified dual function value or
primal variable accuracy is the objective of this paper. We will show how
to compute bounds that hold for every x̄ ∈ βXN with β ∈ (0, 1) and where
βXN is defined as

βXN := {x̄ ∈ R
n p 1

β
x̄ ∈ XN}.

Since the set XN is convex and 0 ∈ XN (cf. [Rawlings et al., 2008]) we
have that βXN ⊆ XN and that 0 ∈ βXN . Before we proceed with the
presentation we introduce

P := bT (AH−1AT )−1b

which characterizes the optimal solution with only equality constraints
and satisfies

1
2
x̄TPx̄ = max

λ
DN(x̄,λ, 0) ≤ VN(x̄) (6)

We also make the following definition.

DEFINITION 1
The scalar κ ≥ 1 is defined as the smallest scalar such that for every
x̄ ∈ XN we have

VN(x̄) ≤
κ

2
x̄TPx̄.

Finally, we make the following assumption.

ASSUMPTION 1
We assume that A has full row rank.
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2.1 Notation

The real line is denoted by R and the non-negative real numbers are
denoted by R≥0. The Euclidean norm and the induced Euclidean norm
are denoted by q ⋅ q and 〈x, y〉 = xT y. Further, σ̄ (H) and σ (H) are the
largest and smallest singular value of H respectively. Finally, the i:th
element in a vector is denoted by [⋅]i.

3. Lagrange Multiplier Norm Bounds

The only unknown quantity in the bounds in Proposition 2 is the norm of
the optimal dual variables. The topic of this section is to show how such
norms can be computed for any initial condition x̄ ∈ βXN with β ∈ (0, 1).
The following result is a straightforward generalization of the result in
[Nedic and Ozdaglar, 2009, Lemma 1].

LEMMA 1
Assume that there exists a vector ȳ(x̄) such that Cȳ(x̄) < d and Aȳ(x̄) =
bx̄. Then for every (λ∗,µ∗) ∈ M∗(x̄) we have that µ∗ satisfies

qµ∗q ≤ 1
γ (ȳ(x̄))(JN(ȳ(x̄)) − VN(x̄))

where γ (ȳ(x̄)) := min1≤ j≤(nx+nu)N+n f −[Cȳ(x̄) − d] j .
PROOF
For every (λ∗,µ∗) ∈ M∗(x̄) we have

VN(x̄) = inf
y
JN(y) + (λ∗)T(Ay − bx̄) + (µ∗)T (Cy− d)

≤ JN(ȳ(x̄)) + (λ∗)T (Aȳ(x̄) − bx̄) + (µ∗)T (Cȳ(x̄) − d)
≤ JN(ȳ(x̄)) − γ (ȳ(x̄))(µ∗)T1
= JN(ȳ(x̄)) − γ (ȳ(x̄))qµ∗q1
≤ JN(ȳ(x̄)) − γ (ȳ(x̄))qµ∗q

Rearranging the terms gives the result. �

By constructing a strictly feasible vector, referred to as a Slater vector,
a bound on the norm of the optimal Lagrange multipliers associated with
the inequality constraints can be computed. Next, a straightforward gener-
alization to [Giselsson, 2012, Lemma 2] is presented where it was shown
how a Slater vector to (2) for every initial state x̄ ∈ βXN can be con-
structed. Before the lemma is presented we introduce dmin := min j [d] j >
0.
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LEMMA 2
For every x̄ ∈ βXN with β ∈ (0, 1), a Slater vector to the optimization
problem (2) is given by ȳ(x̄) = βy∗(x̄/β ). Further, γ (ȳ(x̄)) ≥ (1− β )dmin.

PROOF
We first note that

Aȳ(x̄) = βAy∗( x̄
β
) = βb

x̄

β
= bx̄

which implies that the equality constraints are satisfied. Further

Cȳ(x̄) = βCy∗( x̄
β
) ≤ βd = d− (1− β )d

Hence −(Cȳ(x̄) −d) ≥ (1− β )d which by definition of the function γ and
dmin gives the result. �

Next, we present a theorem that, using Lemma 1 and Lemma 2, shows
how a bound on the norm of the optimal dual variables can be computed.
Before we present the theorem, we introduce the matrices

Φ := AH−1AT , Ψ := (AH−1AT )−1AH−1CT . (7)

By Assumption 1 A has full row rank and H is positive definite, hence
Φ = AH−1AT is invertible and Ψ exists.

THEOREM 1
For every x̄ ∈ βXN we have for every (λ∗,µ∗) ∈ M∗(x̄) that

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤
∥∥∥∥
[

Ψ

I

]∥∥∥∥
κ − 1

2(1− β )dmin
x̄TPx̄ + qΦ−1bx̄q. (8)

PROOF
Using the Slater vector ȳ(x̄) = βy∗(x̄/β ) we get

JN(ȳ( ¯̄x)) = JN(βy∗( x̄
β
)) = β 2

1
2
y∗( x̄

β
)THy∗( x̄

β
)

= β 2VN(
x̄

β
) ≤ β 2

κ

2

[
x̄

β

]T
P

[
x̄

β

]
= κ

2
x̄TPx̄

where the inequality comes from Definition 1. Further, KKT conditions
to (2) and Proposition 1 gives that for every (λ∗,µ∗) ∈ M∗(x̄) we have

−AH−1(ATλ∗ +CTµ∗) = bx̄.
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This implies that

λ∗ = −(AH−1AT )−1(AH−1CTµ∗ + bx̄) = −Ψµ∗ − Φ−1bx̄

where the last equality comes from the definitions of Φ and Ψ in (7). This
gives

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ =
∥∥∥∥
[−Ψ

I

]
µ∗ +

[−Φ−1bx̄

0

]∥∥∥∥

≤
∥∥∥∥
[

Ψ

I

]∥∥∥∥ qµ∗q + qΦ−1bx̄q

≤
∥∥∥∥
[

Ψ

I

]∥∥∥∥
1

γ (ȳ(x̄)) (JN(ȳ(x̄) − VN(x̄)) + qΦ
−1bx̄q

≤
∥∥∥∥
[

Ψ

I

]∥∥∥∥
κ − 1

2(1− β )dmin
x̄TPx̄ + qΦ−1bx̄q

where the second inequality comes from Lemma 1 and the final inequality
from Lemma 2, Definition 1 and (6). This completes the proof. �

In the following section, the bound on the optimal dual variables is
used, together with the convergence rate results in Proposition 2, to com-
pute lower iteration bounds to achieve a prespecified dual function value
and primal variable accuracy.

4. Algorithm Iteration Bounds

Lower iteration bounds to achieve prespecified dual function value and pri-
mal variable tolerances are presented in this section. We consider bounds
for the cold starting case, i.e., when λ0 = 0 and µ0 = 0.

4.1 Iteration Bound to Guarantee Dual ǫ-solution

First, a lower iteration bound to achieve a prespecified dual function value
accuracy is presented. As in [Giselsson, 2012] a relative tolerance is used
to avoid that a scaling of the Q and R matrices affects the bound.

THEOREM 2
Suppose that Algorithm 1 is initialized with λ0 = 0 and µ0 = 0. Then for
every x̄ ∈ βXN with β ∈ (0, 1) we have

VN(x̄) − D(x̄,λk,µk) ≤ ǫdVN(x̄) (9)
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for every k ≥ kd(x̄) where

kd(x̄) = 2
√
L

ǫd

(
(κ − 1)

√
x̄TPx̄

2(1− β ) ν + ρ

)
− 1 (10)

and ρ = qΦ−1bP−1/2q and ν = q[ΨT IT ]Tq/dmin.
PROOF
Inequality (9) is equivalent to

DN(x̄,λ∗,µ∗) − DN(x̄,λk,µk) ≤ ǫdDN(x̄,λ∗,µ∗)

for any (λ∗,µ∗) ∈ M∗(x̄). From Proposition 2 and (6) we conclude that (9)
holds if

2L
(k+ 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

≤ ǫd

1
2
x̄TPx̄. (11)

Insertion of the bound in Theorem 1 into (11) and rearranging the terms
gives

kd(x̄) = 2
√
L

ǫd

(
(κ − 1)

√
x̄TPx̄

2(1− β ) ν + qΦ
−1bx̄q√
x̄TPx̄

)
− 1.

We have

qΦ−1bx̄q√
x̄TPx̄

≤ ρ Z[ qΦ−1bx̄q2
qP1/2 x̄q2 ≤ ρ2 Z[ x̄TbTΦ−2bx̄ ≤ ρ2 x̄TPx̄.

Since 0 ∈ int(βXN) this holds for every x̄ ∈ βXN if and only if ρ is such
that

bTΦ−2b 5 ρ2PZ[ P−1/2bTΦ−2bP−1/2 5 ρ2 I Z[ qΦ−1bP−1/2q 5 ρ.
(12)

Choosing ρ such that the last step in (12) holds with equality completes
the proof. �

REMARK 1
As in [Giselsson, 2012] the lower iteration bound is not affected by scaling
the cost matrices by a factor a > 0. This is true since for cost matrices
Qa = aQ and Ra = aR we get La = 1

a
L, Pa = aP, ρa =

√
aρ, and νa = ν .

By insertion into (10) the factor a is cancelled.
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REMARK 2
It is desirable to compute a lower iteration bound for all x̄ ∈ βXN . By
maximizing kd(x̄) subject to x̄ ∈ βXN this can be obtained. Since it is
often difficult to describe the set x̄ ∈ βXN an over estimator to the lower
iteration bound is found by maximizing kd(x̄) subject to x̄ ∈ βX . The only
x̄-dependency in the iteration bound is

√
x̄TPx̄ which affects the bound

affinely. By maximizing x̄TPx̄ over βX , which is a quadratic convex maxi-
mization problem, the maximizing x̄ can be found. Such problems are NP-
complete but can be rewritten as mixed integer linear programs (MILP) as
shown in [Jones and Morari, 2009, Lemma 1]. There are efficient MILP-
solvers that in every iteration produce upper and lower bounds to the
optimal value. An upper bound to the optimal value is enough to compute
an iteration bound, hence the MILP solver can be stopped when sufficient
accuracy has been reached.

4.2 Primal Variable Iteration Bound

In this section, a bound on the number of iterations needed to guarantee
a prespecified distance between the algorithm primal variables and the
optimal primal variables is presented.

THEOREM 3
Suppose that Algorithm 1 is initialized with λ0 = 0 and µ0 = 0. Then for
every x̄ ∈ βXN we have

qyk − y∗(x̄)q ≤ ǫp (13)

for every k ≥ kp(x̄) where

kp(x̄) =
2
ǫp

√
L

σ (H)

(∥∥∥∥
[

Ψ

I

]∥∥∥∥
(κ − 1)x̄TPx̄
2(1− β )dmin

+ qΦ−1bx̄q
)
− 1.

PROOF
From Proposition 2 we have that (13) holds if

2
k+ 1

√
L

σ (H)

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤ ǫp

Insertion of the bound in Theorem 1 and rearranging gives the result. �
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5. Preconditioning

In this section we focus on how to precondition the problem data to get
improved iteration bounds. We precondition the equality constraints with
an invertible matrix E such that EAy = Ebx̄ and the inequality con-
straints with a diagonal matrix F with positive diagonal elements such
that FCy ≤ Fd. To keep the sparse structure of the equality constraints,
E should satisfy E ∈ E where E defines the sparsity structure. We as-
sume that E is such at least all diagonal elements may be non-zero. We
note that the only terms in (10) that are affected by the preconditioning
are L, ν , and ρ. In the following lemma we show that the optimal precon-
ditioner for the inequality constraint has the form F = tD−1 where t > 0
and D := diag(d).

LEMMA 3
Let the Lipschitz constant to ∇DN be bounded by L. Then the optimal
preconditioner for the inequality constraints satisfies F = tD−1 for some
t > 0 where optimal refers to the preconditioners that minimize the iter-
ation bound in Theorem 2.

PROOF
Since F and D are diagonal matrices with positive elements, F can be
represented as F = GD−1 where G is a diagonal matrix with positive
elements. The variables in the iteration bound in Theorem 2 that are
affected by the preconditioning are ρ, ν and L. For preconditioners E and
F = GD−1, ρ satisfies

ρ = q(EAH−1ATET)−1EbP−1/2q = qE−T(AH−1AT )−1E−1EbP−1/2q
= qE−TΦ−1bP−1/2q (14)

and ν satisfies

ν =
∥∥∥∥
[ (EAH−1ATET)−1EAH−1CTD−TGT

I

]∥∥∥∥ /dmin

=
∥∥∥∥
[
E−T(AH−1AT )−1E−1EAH−1CTD−TGT

I

]∥∥∥∥ /minj [GD
−1d] j

=
∥∥∥∥
[
E−TΨD−TGT

I

]∥∥∥∥ /λmin(G) (15)

where Φ and Ψ are defined in (7). Further, since the Lipschitz constant
to ∇DN should be bounded by L for all feasible E and F = GD−1, they
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must satisfy (see Proposition 1)

L ≥
∥∥∥∥∥

[
EA

GD−1C

]
H−1

[
EA

GD−1C

]T∥∥∥∥∥ . (16)

Next, we show that the optimal F satisfies F = tD−1 where t > 0, i.e., that
the optimal G = tI. We represent G as G = tI + G̃ where G̃ is diagonal
and G̃ 4 0. This implies that (15) is equivalent to ν being the smallest
scalar such that

GD−1ΨTE−1E−TΨD−TGT + I 5 ν2t2 I

which in turn is equivalent to ν being the smallest scalar such that

(ν2t2 − 1)I 4 E−TΨD−TGTGD−1ΨTE−1

= E−TΨD−T(t2 I + 2G̃t+ G̃T G̃)D−1ΨTE−1.

Hence, for given t > 0, G̃ = 0 gives the smallest ν independent of E.
Further, the Lipschitz constant constraint (16) is equivalent to

LI 4 H−1/2[ATET ,CTD−TGT ][ATET ,CTD−TGT ]TH−1/2

which in turn is equivalent to

LH 4 ATETEA+CTD−TGTGD−1C
= ATETEA+CTD−T(t2 I + 2G̃t+ G̃T G̃)D−1C.

We introduce X (G̃) = LH − CTD−T(t2 I + 2G̃t + G̃T G̃)D−1C which sat-
isfies X (G̃1) ≺ X (G̃2) if G̃1 ≻ G̃2 4 0. We also define the set of feasible
preconditioners for the equality constraints

Σ(G̃) = {E ∈E p ATETEA 5 X (G̃)}.

For E ∈ Σ(0) we have ATETEA 5 X (0) and for E ∈ Σ(G̃) with G̃ ≻ 0
we have ATETEA 5 X (G̃) ≺ X (0), which implies Σ(G̃) ⊂ Σ(0) for every
G̃ ≻ 0. Hence, by setting G̃ = 0 the variable ν is as small as possible and
the set of feasible E is as large as possible. This implies that if G̃ = 0 then
E gets maximal freedom in minimizing (14) and (15) while respecting the
constraint (16). This concludes the proof. �

Before we state the theorem about how to compute the optimal precon-
ditioner we define Px := maxx∈X

√
xTPx. This implies maxx∈βX

√
xTPx =

βPx.
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THEOREM 4
Let the Lipschitz constant to ∇DN be bounded by L. Then the precondi-
tioners E and F that minimize the iteration bound in Theorem 2 for fixed
β ∈ (0, 1) are found by solving the following semidefinite program

min
(κ − 1)βPx
2(1− β ) ν + ρ

s.t.
[

Z θ Φ−1b

θbTΦ−T P

]
4 0 (17)

[
Z φ ΨD−T

φD−1ΨT (1− s)I

]
4 0 (18)

[
sI φD−1C

φCTD−T LH − ATZA

]
4 0 (19)

[
ν 1

1 φ

]
4 0 (20)

[
ρ 1

1 θ

]
4 0 (21)

Z ≻ 0, Z ∈E
ρ > 0,θ > 0,φ > 0,ν > 0, s > 0

where Z = ETE, s = φ2

t2
and F = tD−1. Further, the optimal value, i.e.,

the lower iteration bound, is the same for any choice of L > 0.
PROOF
The variables in the iteration bound in Theorem 2 that are affected by the
preconditioning are ρ, ν and L. Variables ρ and ν are given by (14) and
(15) respectively when preconditioning is used, and the constraint imposed
by L is given in (16) in the preconditioning case. We will show that the
posed semidefinite program implies (14), (15), and (16) and chooses the
preconditioners that minimize the iteration bound in Theorem 2.
Schur complement of (21) gives ρ ≥ 1/θ . Further, Schur complement

gives that (17) and Z ≻ 0 implies

bTΦ−TZ−1Φ−1b 5 1
θ 2
P 5 ρ2P.

Hence
qE−TΦ−1bP−1/2q ≤ ρ (22)

and (14) is implied by choosing the smallest ρ such that (22) holds. Schur
complement of (20) gives ν ≥ 1/φ and Schur complement of (18) gives

D−1ΨTZ−1ΨD−T 5 1
φ2
(1− s)I 5 (ν2 − 1

t2
)I.
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This is equivalent to

tD−1ΨTZ−1ΨD−T t+ I 5 ν2t2 I = ν2d2min I

which in turn is equivalent to

∥∥∥∥
[
E−TΨD−T t

I

]∥∥∥∥
1
dmin

5 ν . (23)

By choosing the smallest ν such that (23) holds, (15) is satisfied since by
Lemma 3, G = tI is optimal and since λmin(G) = dmin. Finally, since s > 0
Schur complement of (19) gives

LH 4 ATZA+CTD−T φ2

s
D−1C = ATZA+CTD−T t2D−1C

which is equivalent to

L ≥ qH−1/2[ATET ,CTD−T t][ATET ,CTD−T t]TH−1/2q

which in turn is equivalent to

L ≥
∥∥∥∥∥

[
EA

tD−1C

]
H−1

[
EA

tD−1C

]T∥∥∥∥∥ . (24)

This implies that the Lipschitz constant constraint (16) holds. Next we
show that the cost

min
(κ − 1)βPx
2(1− β ) ν + ρ (25)

implies that (24) holds with equality which implies that the iteration
bound (10) is minimized. Since t = dmin the bound (23) is equivalent to

∥∥∥∥
[
E−TΨD−T

1/t

]∥∥∥∥ 5 ν .

Further, (22) depends on E−1. This implies that ρ and ν are decreasing
when E and t are increasing, while the r.h.s. of (24) is increasing with
E and t. Hence, the optimal preconditioners must have equality in (24).
Further, since (24) holds with equality, the Lipschitz constant L in (10)
is fixed and (25) minimizes the iteration bound (10).
It remains to show that the iteration bound (10) is independent of

the choice of L > 0. The iteration bound (10) depends on
√
Lρ and

√
Lν

and the only hard constraints are (24) and the constraints on positive
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definiteness. We introduce the set of feasible preconditioners for fixed L
as follows

Θ(L) = {t > 0, E ∈ E p E ≻ 0 and (24) holds}.

Since E is only a sparsity constraint we get for any L1 > 0 and L2 > 0
that

√
L2Θ(L1) =

√
L1Θ(L2). Hence every pair (t2, E2) ∈ Θ(L2) can be

described as (t2, E2) =
√
L2(t1, E1) where (t1, E1) ∈ Θ(L1) and L1 = 1.

We denote by ρ1 and ν1 the bounds (22) and (23) using t1 and E1 and
by ρ2 and ν2 the bound (22) and (23) using t2 and E2. We see from (22)
that using E2 =

√
L2E1 and t2 =

√
L2t1 gives ρ2 = ρ1/

√
L2 and from

(23) we conclude that ν2 = ν1/
√
L2. Since the iteration bound depends

on
√
Lρ and

√
Lν we get

√
L2ρ2 =

√
L2ρ1/

√
L2 = 1ρ1 =

√
L1ρ1 and√

L2ν2 =
√
L2ν1/

√
L2 = 1ν1 =

√
L1ν1. Hence, the choice of L does not

influence the iteration bound. This completes the proof. �

REMARK 3
Since Z is symmetric and positive definite it can be decomposed as Z =
UΣUT where U is unitary and Σ is diagonal with positive diagonal ele-
ments. Setting E = UΣ1/2UT gives that if Z ∈ E then also E ∈ E and
ETE = UΣ1/2UTUΣ1/2UT = UΣUT = Z . The preconditioning matrix F
is readily computed by setting F = φ√

s
D−1.

6. Numerical Example

The efficiency of the preconditioning and the conservatism of the iteration
bound are evaluated by applying the optimization algorithm on a DMPC
problem where the dynamics matrix is randomly generated and has sparse
structure. The system is unstable since the largest eigenvalue of the dy-
namics matrix is 1.1. The system has 3 sub-systems with 5 states and 1
input each, i.e., in total 15 states and 3 inputs. The state and input vari-
ables are upper and lower bounded by random numbers in the intervals
[0.5 1.5] and [−0.15 − 0.05] respectively. We evaluate the preconditioning
and the iteration bound on two different choices of cost-matrices. The first
choice is Q1 = I, R1 = I and in the second choice, the cost matrices Q2
and R2 are diagonal and each diagonal element is randomly chosen from
the interval [1 100]. The control horizon is N = 6. All simulations are per-
formed in MATLAB and the semidefinite program for the preconditioning
is solved through YALMIP [Löfberg, 2004] using SeDuMi [Sturm, 1999].
In Table 1 we compare the number of iterations needed to achieve a

certain dual accuracy using for the randomly generated DMPC problem
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Table 1. Experimental results for Algorithm 1 with and without preconditioning.
The number of algorithm iterations and iteration complexity bounds are presented.

Cost ǫv β precond # iters iter bound

avg. max.

Q1,R1 0.005 0.25 y 7.44 19 220

Q1,R1 0.005 0.25 n 36.41 57 1014

Q2,R2 0.005 0.25 y 9.57 68 484

Q2,R2 0.005 0.25 n 191.15 343 5087

Q1,R1 0.005 0.5 y 10.65 28 496

Q1,R1 0.005 0.5 n 40.26 82 2449

Q2,R2 0.005 0.5 y 23.26 123 1333

Q2,R2 0.005 0.5 n 201.41 505 12463

Q1,R1 0.005 0.75 y 13.22 39 1326

Q1,R1 0.005 0.75 n 46.12 128 6752

Q2,R2 0.005 0.75 y 30.17 155 3878

Q2,R2 0.005 0.75 n 214.52 624 34585

with and without preconditioning for the two choices of cost matrices. We
also compare the actual number of iterations with the iteration bounds
to evaluate the conservatism of the bounds. The first column specifies
which cost matrices that are used. The second column specifies the duality
tolerance and the third column specifies the set from which the initial
conditions are chosen where β is the scaling factor, i.e., initial conditions
are chosen from βXN . The fourth column specifies if preconditioning is
used or not. The fifth and sixth columns present average and max number
of iterations while the seventh column presents the iteration bound. The
data in Table 1 is obtained by solving the DMPC optimization problem for
10000 randomly generated initial conditions.
In Table 1 we see that the preconditioning reduces significantly the

number of iterations needed to achieve a relative dual accuracy of 0.005.
This holds especially when using cost-matrices Q2,R2 which result in
more ill-conditioned problems than using cost-matrices Q1,R1. Further,
the conservatism of the iteration bound is about one to two orders of
magnitude.

7. Conclusions and Future Work

We solve the optimization problems arising in MPC with linear dynamics,
polytopic constraints and quadratic cost using a dual accelerated gradient

104



7. Conclusions and Future Work

method [Giselsson et al., 2012]. We have presented iteration bounds that
guarantee a prespecified dual function value and primal variable accu-
racy. The iteration bounds are used to create an optimal preconditioning
where optimal refers to the preconditioning that minimizes the iteration
bound for the dual function value. The provided numerical example shows
that the resulting preconditioning can reduce significantly the number of
iterations needed to achieve the desired accuracy of the dual function,
especially for ill-conditioned problems.
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Paper IV

A Generalized Distributed

Accelerated Gradient Method for

DMPC with Iteration Complexity

Bounds

Pontus Giselsson

Abstract

Most distributed optimization methods used for distributed model
predictive control (DMPC) are gradient based. Gradient based opti-
mization algorithms are known to have iterations of low complexity.
However, the number of iterations needed to achieve satisfactory accu-
racy might be significant. This is not a desirable characteristic for dis-
tributed optimization in distributed model predictive control. Rather,
the number of iterations should be kept low to reduce communica-
tion requirements, while the complexity within an iteration can be
significant. By incorporating hessian information in a distributed ac-
celerated gradient method in a well-defined manner, we are able to
significantly reduce the number of iterations needed to achieve sat-
isfactory accuracy in the solutions, compared to distributed methods
that are strictly gradient-based. Further, we provide convergence rate
results and iteration complexity bounds for the developed algorithm.

Submitted to 2013 American Control Conference, Washington, D.C., 2013.
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1. Introduction

Many distributed optimization algorithms are based on gradient meth-
ods, see [Boyd et al., 2011] and the references therein. Gradient-based
optimization methods have low computational complexity within each it-
eration. However, a limitation of gradient-based methods is the slow con-
vergence rate. For functions with a Lipschitz continuous gradient, i.e.,
smooth functions, classical gradient-based methods converge at a rate of
O( 1
k
) as shown in [Bertsekas, 1999, Nesterov, 2003], where k is the it-

eration number. This convergence rate is not optimal for gradient meth-
ods. It was in [Nemirovsky and Yudin, 1983] shown that a lower bound
on the convergence rate for gradient-based methods is O( 1

k2
). The first

method that achieves this accelerated convergence rate was presented
by Nesterov in [Nesterov, 1983] for unconstrained problems. This result
has been extended and generalized in several publications to handle con-
strained smooth problems and smooth problems with an additional non-
smooth term [Nesterov, 1988, Nesterov, 2005, Beck and Teboulle, 2009,
Tseng, 2008]. Recently the accelerated gradient methods has been gener-
alized in [Zuo and Lin, 2011] to allow for a step matrix instead of a scalar
step length with preserved convergence rate guarantees.
In the DMPC literature some distributed optimization methods have

been used to control sparsely interacting dynamical systems. These in-
clude [Negenborn et al., 2008,Wakasa et al., 2008,Doan et al., 2009] in
which different reformulations of the classical gradient method with sub-
optimal step sizes are used to solve the dual problem. In [Giselsson et al.,
2012] an accelerated gradient method is used to solve the DMPC problem
and the optimal step size is provided. Further, in [Giselsson, 2012] itera-
tion bounds for the method presented in [Giselsson et al., 2012] are given.
In [Trnka et al., 2011] a quasi-Newton method is used to solve the DMPC
problem in a water distribution network. The subproblems are solved in
parallel, but a central coordinator is needed for this approach.
In this paper we extend the results in [Giselsson et al., 2012] and

[Giselsson, 2012] using the generalized accelerated gradient algorithm
presented in [Zuo and Lin, 2011]. We present a distributed optimization
algorithm applicable to DMPC that use not only gradient information, as
is common in distributed optimization, but also hessian information in
each iteration. This significantly improves convergence rate compared to
previous gradient-based distributed optimization methods for DMPC as
is demonstrated by a numerical example. We also provide a bound on the
number of iterations needed to guarantee a prespecified dual accuracy and
indicate how an iteration bound for the primal variables can be computed.
The latter bound is left out for space considerations.
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2. Problem Setup

The problem of controlling a linear dynamical system in distributed fash-
ion to the origin is considered. We assume polytopic constraints and apply
a distributed MPC controller in which the following optimal control prob-
lem with initial condition x̄ ∈ Rn is solved iteratively

VN(x̄) := min
x,u

1
2

N−1∑

t=0
(xTt Qxt + uTt Rut)

s.t. (xt,ut) ∈ X $U, t = 0, . . . ,N − 1
xt+1 = Axt + But, t = 0, . . . ,N − 2
x0 = x̄.

(1)

Note that no terminal constraint set or terminal cost is present in the
problem formulation. Stability and feasibility results for distributed MPC
without terminal constraint set and terminal cost is presented in [Gisels-
son and Rantzer, 2012]. We introduce the following state and control vari-
able partitions

xt = [(x1t )T , . . . , (xMt )T ]T , ut = [(u1t )T , . . . , (uMt )T ]T

where xit ∈ Rni and uit ∈ Rmi are referred to as local variables and xt ∈
Rn, ut ∈ Rm are referred to as global variables. The dynamics matrices
A ∈ Rn$n and B ∈ Rn$m are partitioned accordingly

A =




A11 ⋅ ⋅ ⋅ A1M
...

. . .
...

AM1 ⋅ ⋅ ⋅ AMM


 , B =




B11 ⋅ ⋅ ⋅ B1M
...

. . .
...

BM1 ⋅ ⋅ ⋅ BMM




where Ai j = Rni$n j and Bi j = Rni$m j . These matrices are assumed to have
a sparse structure, i.e., that some Ai j = 0 and Bi j = 0. The neighboring
interaction is defined by the following sets

N i =
{
j ∈ {1, . . . ,M} p Ai j ,= 0 or Bi j ,= 0},

M i =
{
j ∈ {1, . . . ,M} p A ji ,= 0 or Bji ,= 0}

which gives the local dynamics

xit+1 =
∑

j∈N i

(
Ai jx

j
t + Bi ju jt

)
, xi0 = x̄i
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for i = 1, . . . ,M . The global constraint sets are assumed to be products of
local sets, i.e.,

X = X 1 $ . . .$ XM , U =U1 $ . . .$UM

where the local constraint sets X i and U i for i = 1, . . . ,M are bounded
polytopes containing zero in their respective interiors. The local constraint
sets can be represented as

X i = {xi ∈ R
ni p Cixxi ≤ dix}, U i = {ui ∈ R

mi p Ciuui ≤ diu}

where Cix ∈ R
nc
xi
$ni , Ciu ∈ R

nc
ui
$mi , dix ∈ R

nc
xi

>0 and d
i
u ∈ R

nc
ui

>0 . We de-
fine the total number of inequalities in X and U by nc =

∑
i(ncxi +

nc
ui
). The quadratic cost function in (1) is assumed separable, i.e., Q =

blkdiag(Q1, . . . ,QM ) and R = blkdiag(R1, . . . ,RM ) where Qi ∈ S
ni
++ and

Ri ∈ S
mi
++ for i = 1, . . . ,M and Sn++ denotes the set of symmetric positive

definite matrices in Rn$n. We create the stacked vectors

yi = [(xi1)T , . . . , (xiN−1)T , (ui0)T , . . . , (uiN−1)T ]T

for i = 1, . . . ,M and y = [yT1 , . . . ,yTM ]T . This implies that the optimization
(1) problem can more compactly be written as

VN(x̄) := min
y

1
2y
THy

s.t. Ay = bx̄
Cy ≤ d

(2)

where

H = blkdiag(H1, . . . ,HM ), x̄ = [x̄T1 , . . . , x̄TM ]T ,
A = [AT1 , . . . ,ATM ]T , b = [bT1 , . . . ,bTM ]T ,
C = blkdiag(C1, . . . ,CM ), d = [dT1 , . . . ,dTM ]T

113



Paper IV. A Generalized Distributed Accelerated Gradient Method

and

Hi = blkdiag(Qi, . . . ,Qi,Ri, . . . ,Ri),
Ai = [Ai1, . . . ,AiM ],

Ai j =








0 Bi j

Ai j
. . .

. . .

. . .
. . .

. . .

Ai j 0 Bi j



, j ∈N i\i




−I Bii

Aii
. . .

. . .

. . .
. . .

. . .

Aii −I Bii



, j = i

0, j /∈N i
bi = [bi1, . . . ,biM ],

bi j =
{
[−ATi j , 0, . . . , 0]T , j ∈N i
0, j /∈N i

Ci = blkdiag(Cix, . . . ,Cix,Ciu, . . . ,Ciu),
di = [(dix)T , . . . , (dix)T , (diu)T , . . . , (diu)T ]T .

We introduce dual variables λ ∈ Rn(N−1) for the equality constraints and
dual variables µ ∈ R

Nnc
≥0 for the inequality constraints to get the following

dual problem

max
λ,µ≥0

min
y

1
2
yTHy + λT (Ay− bx̄) + µT(Cy− d). (3)

As shown in [Giselsson et al., 2012], the inner minimization problem can
be solved explicitly which gives the following dual problem

max
λ,µ≥0

−1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd. (4)

We define the dual function for initial condition x̄ as

DN(x̄,λ,µ) := −
1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd (5)

which is concave and differentiable with gradient

∇DN(x̄,λ,µ) = −
[
A

C

]
H−1(ATλ+CTµ) −

[
bx̄

d

]
. (6)
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2.1 Assumptions and Definitions

We define by XN the set of initial conditions for which (2) is feasible. We
also define

P := bT (AH−1AT )−1b

which characterizes the optimal solution without inequality constraints
since

1
2
x̄TPx̄ = max

λ
DN(x̄,λ, 0) ≤ VN(x̄). (7)

We also introduce the following definition.

DEFINITION 1
We define κ ≥ 1 as the smallest scalar such that for every x̄ ∈ XN the
following holds

VN(x̄) ≤
κ

2
x̄TPx̄.

ASSUMPTION 1
We assume that A has full row rank and that ATA + CTC is invertible.

2.2 Notation

We denote by R real numbers and R≥0 non-negative real numbers. We use
the following norm notation qxqL =

√
xT Lx and qxq =

√
xT x and inner

product 〈x, y〉 = xT y. Also, [⋅]i denotes the i:th element in the vector.

3. Distributed Algorithm

In this section we show how the generalized accelerated gradient method
presented in [Zuo and Lin, 2011] can be used in distributed model predic-
tive control. The generalized accelerated gradient method can be applied
to problems of the form

min
x∈X

f (x)

where X is a closed, convex, and non-empty set and f : Rn → R is convex
and differentiable. Further, f should satisfy

f (x1) ≤ f (x2) + 〈∇ f (x2), x1 − x2〉 +
1
2
qx1 − x2q2L (8)
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for every x1, x2 ∈ Rn where L is a positive definite matrix. The generalized
accelerated gradient algorithm is defined by the iterations

vk = xk + k− 1
k+ 2 (x

k − xk−1)

xk+1 = argmin
x∈X

[
f (vk) + 〈∇ f (vk), x − vk〉 + 1

2
qx − vkq2L

]

where k is the iteration number. Straightforward verification gives that
these iterations can equivalently be written as

vk = xk + k− 1
k+ 2 (x

k − xk−1) (9)

xk+1 = argmin
x∈X

(∥∥x − vk + L−1∇ f (vk)
∥∥2
L

)
. (10)

We see that L−1 serves as a step matrix for the gradient. The algorithm
is a generalization of the algorithm in [Beck and Teboulle, 2009] with the
difference is that in [Beck and Teboulle, 2009], L is restricted to being a
multiple of the identity matrix.

REMARK 1
The convergence of the algorithm depends on the quadratic upper bound
(8) to f . The tighter this upper bound, the fewer iterations can be ex-
pected. For L being a multiple of the identity matrix, the quadratic part
of the upper bound has the same curvature in every direction, which typ-
ically leads to bad convergence rate for ill-conditioned problems. For an
appropriately chosen L-matrix the quadratic upper bound to f becomes
tighter and a better convergence rate is expected.

In the following proposition we show how L should be chosen to satisfy
(8) for f = −DN . Before the result is stated, we introduce the matrix

T := [ATCT ]TH−1[ATCT ]. (11)

PROPOSITION 1
Every positive definite matrix L that satisfies L 4 T satisfies (8) for
f = −DN where DN is defined in (5).

PROOF
We introduce � = [(bx̄)T d]T , z = [λTµT ]T and D̃N(x̄, z) = −zTTz− �T z.
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For every z1, z2 ∈ RN(n+nc)−n the following holds

1
2
qz1 − z2q2L ≥

1
2
qz1 − z2q2T

= 1
2
zT1 Tz1 +

1
2
zT2 Tz2 − zT1 Tz2

= −D̃N(x̄, z1) − �T z1 −
1
2
zT2 Tz2 − 〈Tz2, z1 − z2〉

= −D̃N(x̄, z1) − �T z1 + D̃N(x̄, z2) + �T z2+

+
〈
∇D̃N(x̄, z2), z1 − z2

〉
+ �T (z1 − z2)

= −D̃N(x̄, z1) + DN(x̄, z2) +
〈
∇D̃N(x̄, z2), z1 − z2

〉
.

Since D̃N(x̄, z) = DN(x̄,λ,µ) if z = [λTµT ]T and since DN is concave we
have that f = −DN is convex and satisfies (8). This concludes the proof.
�

We have shown that the generalized accelerated gradient method can
be applied to solve the dual problem provided that the matrix L satisfies
L 4 T = [ATCT ]TH−1[ATCT ]. The following semidefinite program can be
used to compute such an L-matrix:

min
L∈L
tr(L) (12)

s.t. L 4 [ATCT ]TH−1[ATCT ]
L ≻ 0

where L defines some structural constraint on the L-matrix.
To apply the generalized accelerated gradient method, defined by iter-

ations (9)-(10), to solve the dual problem (4) we introduce the dual vari-
able iterations λk and µk where k is the iteration number and λ̄k = λk +
k−1
k+2(λk−λk−1) and µ̄k = µk+ k−1

k+2(µk−µk−1). We also define primal vari-
able iterations as yk = −H−1(ATλk+CTµk) and ȳk = yk+ k−1

k+2(yk−yk−1).
By insertion into (6), the dual function gradient becomes

∇DN(x̄, λ̄k, µ̄k) =
[
A

C

]
ȳk −

[
bx̄

d

]
.

By restricting the set of L matrices to be of the form L = blkdiag(Lλ , Lµ)
it can be verified that the iterations (9)-(10) when applied to the dual
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problem (4) becomes

yk = −H−1(ATλk +CTµk) (13)

ȳk = yk + k− 1
k+ 2 (y

k − yk−1) (14)

λ̄k = λk + k− 1
k+ 2 (λ

k − λk−1) (15)

λk+1 = λ̄k + L−1λ (Aȳk − bx̄) (16)

µ̄k = µk + k− 1
k+ 2 (µ

k − µk−1) (17)

µk+1 = argmin
µ≥0

(∥∥µ − µ̄k − L−1µ (Cȳk − d)
∥∥2
Lµ

)
(18)

REMARK 2
For diagonal Lµ the projection operation in (18) becomes very cheap,
namely a max-operation for each element in µ. However, the number of
iterations to achieve satisfactory accuracy might be significant. For, non-
diagonal Lµ the projection operation is more computationally expensive
but for appropriately chosen L a reduced number of iterations is expected.
This is desirable in DMPC where the number of iterations, i.e., the amount
of communication, should be kept as low as possible.

We introduce dual variable partitions

λ = [λT1 , . . . ,λTM ]T , µ = [µT1 , . . . ,µTM ]T

according to the division of the equality and inequality constraint ma-
trices A and C. By restricting the set of possible step matrices Lλ to
Lλ = blkdiag(L1λ , . . . , LMλ ) and Lµ to Lµ = blkdiag(L1µ , . . . , LMµ ), where
the partitioning corresponds to the partitioning of A and C, and by noting
that

yki = −H−1i
(( ∑

j∈M i

ATjiλ
k
j

)
+CTi µki

)

we get the following distributed algorithm.

ALGORITHM 1—DISTRIBUTED ALGORITHM

Initialize λ0i = λ−1i ,µ0i = µ−1i and y0i = y−1i
In every node, i, the following computations are performed
For k ≥ 0
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1. Update primal variables according to

yki = −H−1i
(( ∑

j∈M i

ATjiλ
k
j

)
+CTi µki

)

ȳki = yki +
k− 1
k+ 2(y

k
i − yk−1i )

2. Send ȳki to each j ∈M i, receive ȳkj from each j ∈N i

3. Update dual variables according to

λ̄ki = λki +
k− 1
k+ 2 (λ

k
i − λk−1i )

λk+1i = λ̄ki + (Liλ )−1
( ∑

j∈N i

(Ai j ȳkj − bi j x̄ j)
)

µ̄ki = µki +
k− 1
k+ 2 (µ

k
i − µk−1i )

µk+1i = argmin
µ≥0

(∥∥µ − µ̄ki − (Liµ)−1(Ciȳki − di)
∥∥2
Liµ

)

4. Send λk+1i to each j ∈N i, receive λk+1j from each j ∈M i
End

We introduce the set of optimal dual variables

M∗(x̄) =
{
λ ∈ R

n(N−1),µ ∈ R
Nnc
≥0

∣∣ DN(x̄,λ,µ) ≥ VN(x̄)
}
.

The convergence rates for the dual function DN and the primal variables
when running Algorithm 1 are stated in the following theorem.

THEOREM 1
Suppose that x̄ ∈ XN and let (λ∗,µ∗) ∈ M∗(x̄). Then Algorithm 1 has the
following convergence rate properties:

1. For k ≥ 1 the convergence rate for the dual function is

DN(x̄,λ∗,µ∗) − DN(x̄,λk,µk) ≤
2

∥∥∥∥
[
λ∗

µ∗

]
−
[
λ0

µ0

]∥∥∥∥
2

L

(k+ 1)2 . (19)
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2. Let y∗(x̄) be the unique optimal solution to (2) with initial condition
x̄. For k ≥ 1 the convergence rate is

qyk − y∗(x̄)q22 ≤
4

∥∥∥∥
[
λ∗

µ∗

]
−
[
λ0

µ0

]∥∥∥∥
2

L

σmin(H)(k+ 1)2
(20)

where σmin(H) is the smallest eigenvalue to H.

PROOF
Argument 1 is proven in [Zuo and Lin, 2011] while argument 2 is a
straightforward generalization of [Giselsson et al., 2012, Theorem 1(2)].
�

4. Lagrange Multiplier Norm Bounds

From Theorem 1 we conclude that a bound on the norm of the optimal dual
variables is needed to bound the number of iterations necessary to achieve
a prespecified dual accuracy. First, we state a result from [Giselsson, 2012]
in which a bound on the optimal dual variables is presented. Before the
result is presented we define dmin := mini[d]i, and

Φ := AH−1AT , Ψ := (AH−1AT )−1AH−1CT .

The matrix Φ is invertible since H−1 has full rank and A has full row
rank due to Assumption 1.

LEMMA 1
For every x̄ ∈ βXN where β ∈ (0, 1) we have that

max
(λ∗,µ∗)∈M ∗(x̄)

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥ ≤ hβ (x̄) (21)

where

hβ (x̄) :=
∥∥∥∥
[

Ψ

I

]∥∥∥∥
κ − 1

2(1− β )dmin
x̄TPx̄ + qΦ−1bx̄q

and κ is defined in Definition 1.

For the cold starting case, i.e., with λ0 = 0 and µ0 = 0, the convergence
rates (19) and (20) depend on q[(λ∗)T , (µ∗)T ]TqL. A bound on this can
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be obtained by noting that q[(λ∗)T , (µ∗)T ]TqL ≤ qLqq[(λ∗)T , (µ∗)T ]Tq and
using Lemma 1. However, this bound becomes quite conservative and a
tighter bound can be computed. To achieve this, we introduce the following
decomposition of the dual variables, λ = λp+ λn and µ = µp+ µn, where

[
λp

µp

]
⊥N

(
[AT CT ]

)
,

[
λn

µn

]
∈N

(
[AT CT ]

)
(22)

and N denotes the null-space. We denote by Z an orthonormal basis to
the null-space of [AT CT ], i.e., [AT CT ]Z = 0 and ZTZ = I. Since the null-
space to [AT CT ] is perpendicular to the range of [AT CT ]T the decomposed
dual variables can be represented as

[
λp

µp

]
=
[
A

C

]
z̄p ,

[
λn

µn

]
= Z z̄n (23)

where z̄p and z̄n are new variables of smaller dimension. The KKT con-
ditions for the dual problem described by the decomposed dual variables
are presented next.

PROPOSITION 2
The KKT conditions to (4) are

−AH−1(ATλ∗
p +CTµ∗

p) = bx̄ (24)
−CH−1(ATλ∗

p +CTµ∗
p) = d+ s (25)

s ≤ 0 , µ∗
p + µ∗

n ≥ 0 (26)
[(µ∗

p) + (µ∗
n)]i[s]i = 0 (27)

where λ∗
p, λ∗

n, µ∗
p and µ∗

n satisfy (22) and the optimal dual variables λ∗,µ∗

satisfy λ∗ = λ∗
p + λ∗

n and µ∗ = µ∗
p + µ∗

n.

PROOF
The result is immediate from the KKT conditions [Boyd and Vanden-
berghe, 2004, §5.5.3], the dual variable decomposition λ∗ = λ∗

p + λ∗
n,

µ∗ = µ∗
p + µ∗

n, and due to (22) which implies that ATλ∗
n + CTµ∗

n = 0.
�

REMARK 3
The variables λ∗

p and µ∗
p satisfy the stationarity conditions while λ∗

n and
µ∗
n do not affect the stationarity conditions but instead ensure dual feasi-
bility and complementarity.
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Before we present bounds on the decomposed dual variables we define ζ
as the smallest positive scalar such that

[
A

C

]T
L

[
A

C

]
5 ζ

[
A

C

]T
T

[
A

C

]
(28)

where T is defined in (11). Such finite ζ exists since by Assumption 1
ATA+CTC is invertible and

[
A

C

]T
T

[
A

C

]
= (ATA+CTC)H−1(ATA+CTC)

which is positive definite since H−1 is positive definite. In the following
lemma, bounds for the decomposed optimal dual variables are presented.

LEMMA 2
Suppose that x̄ ∈ βXN and β ∈ (0, 1). Then

[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
≤ κζ x̄TPx̄ (29)

and

[
λ∗
n

µ∗
n

]T
L

[
λ∗
n

µ∗
n

]
≤ qZTLZq

((
hβ (x̄)

)2 − x̄
TPx̄

qLq

)
(30)

hold for every λ∗
p, λ∗

n, µ∗
p and µ∗

n that satisfies (22) and the KKT conditions
(24)-(27).
PROOF
To show (29) we have

[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
= z̄Tp

[
A

C

]T
L

[
A

C

]
z̄p ≤ ζ z̄Tp

[
A

C

]T
T

[
A

C

]
z̄p

= ζ

[
λ∗
p

µ∗
p

]T
T

[
λ∗
p

µ∗
p

]

= ζ

[
λ∗ − λ∗

n

µ∗ − µ∗
n

]T [
A

C

]
H−1

[
A

C

]T [ λ∗ − λ∗
n

µ∗ − µ∗
n

]

= ζ

[
λ∗

µ∗

]T
T

[
λ∗

µ∗

]
(31)
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where the first equality comes from (23), the first inequality from (28),
the second equality from (23) the third equality holds since λ∗ = λ∗

p + λ∗
n

and µ∗ = µ∗
p + µ∗

n and due to (11) and the last equality is due to (22)
which implies ATλ∗

n +CTµ∗
n = 0.

Further, the KKT conditions for the dual problem (24)-(25) give that

0 = T
[
λ∗
p

µ∗
p

]
+
[
bx̄

d+ s

]
= T

[
λ∗

µ∗

]
+
[
bx̄

d+ s

]
.

This implies that

0 = [(λ∗)T (µ∗)T ]
(
T

[
λ∗

µ∗

]
+
[
bx̄

d+ s

])

= [(λ∗)T (µ∗)T ]T
[
λ∗

µ∗

]
+ x̄TbTλ∗ + (s+ d)Tµ∗

= −VN(x̄) +
1
2
[(λ∗)T (µ∗)T ]T

[
λ∗

µ∗

]
(32)

where sTµ∗ = 0 from (27) is used in the final equality. Using (31) and
(32) we get

[
λ∗
p

µ∗
p

]T
L

[
λ∗
p

µ∗
p

]
≤ ζ

[
λ∗

µ∗

]T
T

[
λ∗

µ∗

]
= ζ 2VN(x̄) ≤ ζ κ x̄TPx̄

where Definition 1 is used in the last inequality. This proves (29).
Next we show that (30) holds. From (22) we have that

[(λ∗
p)T (µ∗

p)T ][(λ∗
n)T (µ∗

n)T ]T = 0,

hence Pythagoras’ theorem implies that

∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

=
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

−
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

. (33)

Further,

qLq
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

≥
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

L

≥
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

T

= 2VN(x̄) ≥ x̄TPx̄ (34)

where the equality comes from (32) and the final inequality comes from
(7). By applying Lemma 1 and (34) to (33), we get

∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

=
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

−
∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
2

≤
(
hβ (x̄)

)2 − x̄
TPx̄

qLq . (35)
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Further, from (23) we have

[
λ∗
n

µ∗
n

]
= Z z̄n = Z(ZTZ)−1ZT

[
λ∗
n

µ∗
n

]
= ZZT

[
λ∗
n

µ∗
n

]

since ZTZ = I. This implies

[
λ∗
n

µ∗
n

]T
L

[
λ∗
n

µ∗
n

]
=
[
λ∗
n

µ∗
n

]T
ZZTLZZT

[
λ∗
n

µ∗
n

]
≤ qZZTLZZTq

∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
2

≤ qZTLZq
((
hβ (x̄)

)2 − x̄
TPx̄

qLq

)

where the last equality holds since ZTZ = I and due to (35). This con-
cludes the proof. �

Using Lemma 2, we are now ready to state the following theorem on
dual variable bounds.

THEOREM 2
Suppose that x̄ ∈ βXN and β ∈ (0, 1). Then for every (λ∗,µ∗) ∈ M∗(x̄)
we have

[
λ∗

µ∗

]T
L

[
λ∗

µ∗

]
≤
(√

qZTLZq
[(
hβ (x̄)

)2 − x̄
TPx̄

qLq

]
+
√

κζ x̄TPx̄

)2
.

PROOF
Using the triangle inequality we get

[
λ∗

µ∗

]T
L

[
λ∗

µ∗

]
=
∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

L

≤
(∥∥∥∥
[
λ∗
p

µ∗
p

]∥∥∥∥
L

+
∥∥∥∥
[
λ∗
n

µ∗
n

]∥∥∥∥
L

)2

Insertion of the corresponding bounds in Lemma 2 gives the result. �

Most conservatism in the dual variable bound comes from the func-
tion hβ , which originates from the estimate of the dual variable bound in
Lemma 1. In Theorem 2 the function hβ is multiplied by qZTLZq. If L
approximates T well, it is anticipated that qZTLZq becomes small which
gives improved bounds compared to using qLqhβ (x̄).
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5. Iteration Bounds

The dual variable bounds presented in the previous section can be used
to bound the number of iterations necessary to guarantee a prespecified
accuracy of the dual function value and the primal variables. However, for
space considerations we omit the primal variable iteration bound result,
which is derived similarly to the dual function iteration bound. In the
following theorem we present an iteration bound for the cold starting
case. We have used a relative accuracy of the optimization problem to
avoid that a scaling of the cost-matrices affects the iteration bound.

THEOREM 3
Suppose that x̄ ∈ βXN and β ∈ (0, 1) and that Algorithm 1 is cold-started,
i.e., initialized with λ0 = 0, µ0 = 0, and y0 = 0. Then the dual function
satisfies

DN(x̄,λ∗,µ∗) − DN(x̄,λk,µk) ≤ ǫvDN(x̄,λ∗,µ∗) (36)
for every k ≥ kv(x̄) where

kv(x̄) =
2√
ǫv




√√√√qZTLZq
[(
hβ (x̄)

)2

x̄TPx̄
− 1
qLq

]
+
√

κζ


− 1. (37)

PROOF
For the cold starting case we have λ0 = 0 and µ0 = 0. Due to Theorem 1
and since 12 x̄

TPx̄ ≤ DN(x̄,λ∗,µ∗) we conclude that if k is such that

2
(k+ 1)2

∥∥∥∥
[
λ∗

µ∗

]∥∥∥∥
2

L

≤ ǫv

1
2
x̄TPx̄ (38)

then (36) holds. Insertion of the bound in Theorem 2 into (38) and rear-
ranging the terms gives the result. �

To compute a bound that holds for all x̄ ∈ βXN (37) is maximized
subject to x̄ ∈ βXN . A more conservative bound is obtained by removing
1/qLq from (37) which gives the following maximization problem

max
x̄∈βXN

2√
ǫv

(√
qZTLZq

(
ρ
√
x̄TPx̄ + γ

)
+
√

κζ

)
(39)

where

γ = qΦ−1bP−1/2q, ρ =
∥∥∥∥
[

Ψ

I

]∥∥∥∥
κ − 1

2(1− β )dmin
.

125



Paper IV. A Generalized Distributed Accelerated Gradient Method

An over-estimator to (39) can be computed by optimizing over βX , which
satisfies βXN ⊆ βX . This is beneficial since XN might be difficult to
express explicitly and X is of lower complexity. The resulting optimiza-
tion problem depends affinely on

√
x̄TPx̄. Hence, the maximizing x̄ can be

computed by maximizing x̄TPx̄ over βX which is a quadratic maximiza-
tion problem over a polytopic set. Such maximization problems are known
to be NP-complete, but can be rewritten as a mixed integer linear pro-
gram (MILP) as shown in [Jones and Morari, 2009, Lemma 2] for which
efficient solvers exist. In every iteration, MILP-software produce upper
and lower bounds to the optimal value. To compute an iteration bound,
an upper bound to the objective is enough. This implies that the MILP
optimization can be stopped when sufficient accuracy has been achieved.

6. Numerical Example

We evaluate the efficiency of the proposed distributed optimization algo-
rithm and the conservatism of the iteration bound by applying it to a
dynamical system with sparse structure that is randomly generated. The
largest eigenvalue of the dynamics matrix is 1.1, i.e., the system is un-
stable. The system has 3 subsystems with 5 states and 1 input each, i.e.,
15 states and 3 inputs in all. The state and input variables are bounded
from above and below by random numbers in the interval [0.5 1.5] and
[−0.15 − 0.05] respectively. The cost matrices Q and R are diagonal and
each diagonal element is randomly chosen from the interval [1 100] and
the control horizon is chosen to N = 6. We use two different L-matrices,
one block-diagonal denoted Ld with three blocks corresponding to each
of the three subsystems and computed using (12). The other L-matrix is
LI = qTqI which is the optimal L-matrix when restricted to being a mul-
tiple of the identity matrix as in standard distributed gradient-based opti-
mization (cf. [Giselsson et al., 2012]). The problem data is preconditioned
using the technique presented in [Giselsson, 2012]. All simulations are
performed in MATLAB and the semidefinite programs are solved through
YALMIP [Löfberg, 2004] using SeDuMi [Sturm, 1999] for the precondition-
ing and SDPNAL [Zhao et al., 2010] (which is more memory-efficient than
SeDuMi) for the L-matrix.
In Table 1 the number of iterations needed to achieve a prespecified

dual accuracy using the proposed method with L-matrices Ld and LI are
compared. We also compare the iteration complexity bounds presented in
Theorem 3 and the one presented [Giselsson, 2012] which was developed
for the case where L is a multiple of the identity matrix. The first col-
umn in Table 1 specifies the L-matrix used. The second column specifies
the duality tolerance and the third column specifies the set from which
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Table 1. Experimental results for Algorithm 1 with step matrix Ld and LI . The
number of algorithm iterations and iteration complexity bounds from Theorem 3
and [Giselsson, 2012] are presented.

L-mat. ǫv β # iters iter bound

avg. max. Thm 3 [Giselsson, 2012]
Ld 0.005 0.25 3.69 10 158 504

LI 0.005 0.25 9.59 69 - 484

Ld 0.005 0.5 5.62 11 231 1391

LI 0.005 0.5 23.93 126 - 1333

Ld 0.005 0.75 6.59 12 448 4047

LI 0.005 0.75 31.18 182 - 3878

the initial conditions are chosen where β is the scaling factor, i.e., initial
conditions are chosen from βXN . The fourth and fifth columns present av-
erage and max number of iterations while the sixth and seventh columns
specify the iteration bounds. The comparison is obtained by solving the
optimization problem for 10000 randomly generated initial conditions.
From Table 1 we conclude two things. The first is that by allowing for

block-diagonal L-matrices, the presented algorithm reduces significantly
the number of iterations needed to achieve a prespecified dual accuracy
compared to if LI is used. This is because second order information is
incorporated into the algorithm. The second conclusion is that the itera-
tion bound presented in Theorem 3 is conservative with about one to two
orders of magnitude. Further, the bound presented in Theorem 3 grows
slower with β and is much less conservative than the one in [Giselsson,
2012] when applied to the algorithm with block-diagonal L-matrix, Ld.

7. Conclusions and Future Work

We have presented a distributed optimization algorithm for distributed
MPC that reduces significantly the number of iterations compared to dis-
tributed optimization algorithms where only gradient information is used.
The reason for this improved iteration complexity is that we have shown
how to incorporate hessian information into the distributed algorithm.
Further, we have presented an iteration complexity bound for the proposed
algorithm that is conservative with about one to two orders of magnitude
for the presented numerical example.
A future work direction is to precondition the problem data optimally,

where optimally refers to the preconditioning that minimizes the provided
iteration bound.
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Paper V

On Feasibility, Stability and

Performance in Distributed Model

Predictive Control

Pontus Giselsson and Anders Rantzer

Abstract

We present a stopping condition to the duality based distributed
optimization algorithm presented in [Giselsson et al., 2012] when
used in a distributed model predictive control (DMPC) context. To
enable distributed implementation, the optimization problem has nei-
ther terminal constraints nor terminal cost that has become standard
in model predictive control (MPC). The developed stopping condition
guarantees a prespecified performance, stability, and feasibility with
finite number of algorithm iterations. Feasibility is guaranteed using
a novel adaptive constraint tightening approach that gives the same
feasible set as when no constraint tightening is used. Stability and
performance of the proposed DMPC controller without terminal cost
or terminal constraints is shown based on a controllability parame-
ter for the stage costs. To enable quantification of the control horizon
necessary to ensure stability and the prespecified performance, we
show how the controllability parameter can be computed by solving a
mixed integer linear program (MILP).

Submitted to IEEE Transactions on Automatic Control.
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1. Introduction

Model predictive control (MPC) is an optimization based control technol-
ogy for input and state constrained systems. The idea behind MPC is
to, in every time step, minimize some cost function based on predictions
of future states while respecting state and control constraints. A control
trajectory is obtained from the optimization and the first control action
from this trajectory is applied to the plant. In the following samples the
procedure is repeated with the latest state measurement as initial con-
dition to the state predictions. For a thorough description of MPC, see
[Maciejowski, 2002,Rawlings and Mayne, 2009]. There exist a variety of
methods to prove stability for system controlled by MPC, see [Mayne et al.,
2000] for a survey of such methods and [Rawlings and Mayne, 2009] for
further material. As pointed out in [Mayne et al., 2000], common ’ingre-
dients’ in these stability proofs are the use of a terminal cost and/or a
terminal constraint set in the optimization problem together with a ter-
minal controller that controls the system to the origin once the terminal
constraint set is reached. These ’ingredients’ are then used to, in various
ways, prove that the optimal value function to the optimization problem
is a Lyapunov function for the system.
The methods to prove stability in standard MPC [Mayne et al., 2000]

are not directly applicable in DMPC formulations where a centralized op-
timization problem is solved in distributed fashion. Such distributed op-
timization algorithms often require the cost function to be separable and
the constraints to be sparse. This is not the case for the terminal cost or
the terminal constraints in standard MPC [Mayne et al., 2000]. Further,
the terminal controller that is commonly used to show stability in stan-
dard MPC [Mayne et al., 2000] needs to be decentralized or distributed in
the context of DMPC. Such stabilizing controllers do not exist for all con-
strained linear systems [Sandell et al., 1978]. One approach to overcome
the aforementioned problems to prove stability in DMPC is to solve local
optimization problems sequentially that take neighboring interaction and
solutions into account. This is done in [Richards and How, 2007] for linear
systems and in [Dunbar, 2007] for nonlinear systems. In [R.M. Hermans,
2010] a DMPC scheme is presented in which stability is proven by adding
a constraint to the optimization problem that requires a reduction of an
explicit control Lyapunov function. In [Jia and Krogh, 2001, Camponog-
ara et al., 2002] stability is guaranteed for systems satisfying a certain
matching condition and if the coupling interaction is small enough. None
of the above methods solves a centralized MPC problem and worse global
performance is expected than if using an appropriate centralized MPC
controller.
To achieve the same performance in DMPC as in centralized MPC,
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a centralized problem formulation needs to be considered and solved in
distributed fashion. In [Venkat et al., 2008] a centralized MPC problem
is solved in distributed fashion and stability is guaranteed in every algo-
rithm iteration. A drawback to this method is that full model knowledge
is assumed in each node. Some methods in the DMPC literature rely on
duality theory to solve a centralized MPC problem in distributed fashion.
In [Negenborn et al., 2008,Wakasa et al., 2008, Doan et al., 2009, Doan
et al., 2010] a (sub)gradient algorithm is used to solve the dual prob-
lem while the algorithm in [Necoara and Suykens, 2008,Necoara et al.,
2008] is based on the smoothing technique presented in [Nesterov, 2005].
The only stability proof is given in [Doan et al., 2009, Doan et al., 2010]
where the terminal constraint is set to the origin which is very restrictive
and requires long control horizons. Other distributed MPC formulations
have been presented in [Maestre et al., 2011] where the DMPC controller
is based on a cooperative game and [Dunbar and Murray, 2006,Keviczky
et al., 2006] for dynamically decoupled systems. See also [Scattolini, 2009]
for a recent survey of distributed and hierarchical MPC methods.
In this paper, a centralized optimization problem is solved in dis-

tributed fashion using the distributed accelerated gradient method pre-
sented in [Giselsson et al., 2012]. We present a stopping condition for
this optimization algorithm that guarantees feasibility, stability, and pre-
specified performance of the closed loop system. However, the stopping
conditions are not restricted to the optimization algorithm in [Giselsson
et al., 2012] but any (distributed) optimization algorithm that produce
dual feasible points can be used. The stated optimization problem has
neither terminal cost nor terminal constraint set. Stability for MPC with-
out terminal constraints and terminal cost has previously been treated
in, e.g., [Grimm et al., 2005]. Further results were reported in [Grüne,
2009] where it was shown how to compute the minimal control horizon
necessary to achieve stability and a prespecified performance. The re-
sults in [Grüne, 2009] rely on relaxed dynamic programming that was
originally presented in [Lincoln and Rantzer, 2006] and extended to MPC
in [Grüne and Rantzer, 2008], and on a controllability assumption on the
stage costs. The parameters in the controllability assumption in [Grüne,
2009] may be very difficult to compute for a given system. In this paper
we take a similar approach as in [Grüne, 2009], but we specify a different
controllability parameter than in [Grüne, 2009]. We show, through an ex-
plicit expression, how the introduced controllability parameter relates to
the performance of the closed loop system. We also show how, for systems
with linear dynamics and linear constraints, the controllability parameter
can be computed by solving a mixed integer linear program (MILP). This
makes the stabilizing control horizon practically computable. We will see
that one benefit of not using terminal constraints is that the region of
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attraction can be increased significantly compared to standard MPC.
Previous work on MPC where a suboptimal solution to the optimiza-

tion problem is enough to prove stability has been reported in [Chisci
et al., 1996, Scokaert et al., 1999, Diehl et al., 2005]. These rely on that
the terminal constraint set can be reached also for suboptimal solutions,
which can be used to show closed loop stability. For MPC without a ter-
minal constraint set, stability was shown in [Grüne and Pannek, 2010] for
incomplete optimization. The optimization algorithm is terminated early
when a certain decrease in the cost has been obtained. However, they do
not provide any guarantees that this decrease is achievable in each step.
In this paper we use a different decrease condition than in [Grüne and
Pannek, 2010] which enables a priori guarantees that the condition will
hold with finite number of algorithm iterations in every time step.
An issue associated with duality-based optimization is that primal fea-

sibility cannot be guaranteed before convergence of the optimization algo-
rithm. Such feasibility problems have previously been addressed in [Doan
et al., 2011] using a constraint tightening approach. Constraint tighten-
ing can be used to generate feasible solutions but complicates stability
analysis. The reason is that the optimal value function without constraint
tightening is used to show stability, while the actual optimization is per-
formed with constraint tightening. This problem is overcome in [Doan
et al., 2011] by assuming that the difference between the optimal value
functions with and without constraint tightening is bounded by a con-
stant. However, to actually compute such a constant may be difficult. In
this paper we instead use a novel adaptive constraint tightening approach
that ensures feasibility w.r.t. the original constraint set with a finite num-
ber of algorithm iterations. We introduce a condition for the adaptation
that bounds the difference between the optimal value functions with and
without constraint tightening. This makes it possible to prove stability
without stating additional assumptions.
The paper is organized as follows. In Section 2 we introduce the prob-

lem and present the distributed optimization algorithm in [Giselsson et al.,
2012]. In Section 3 the stopping condition is presented and feasibility, sta-
bility, and performance is analyzed. Section 4 is devoted to computation
of the controllability parameter. A numerical example that shows the effi-
ciency of the proposed stopping condition is presented in Section 5. Finally,
in Section 6 we conclude the paper.
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2. Problem Setup and Preliminaries

We consider linear dynamical systems of the form

xt+1 = Axt + But, x0 = x̄ (1)

where xt ∈ Rn and ut ∈ Rm denote the state and control vectors at time
t and the pair (A, B) is assumed controllable. We introduce the following
state and control variable partitions

xt = [(x1t )T , (x2t )T , . . . , (xMt )T ]T , ut = [(u1t )T , (u2t )T , . . . , (uMt )T ]T (2)

where the local variables xit ∈ Rni and uit ∈ Rmi . The A and B matrices
are partitioned accordingly

A =




A11 ⋅ ⋅ ⋅ A1M
...

. . .
...

AM1 ⋅ ⋅ ⋅ AMM


 , B =




B11 ⋅ ⋅ ⋅ B1M
...

. . .
...

BM1 ⋅ ⋅ ⋅ BMM


 .

These matrices are assumed to have a sparse structure, i.e., some Ai j = 0
and Bi j = 0 and the neighboring interaction is defined by the following
sets

N i = { j ∈ {1, . . . ,M} p if Ai j ,= 0 or Bi j ,= 0}
for i = 1, . . . ,M . This gives the following local dynamics

xit+1 =
∑

j∈N i

(
Ai jx

j
t + Bi ju jt

)
, xi0 = x̄i

for i = 1, . . . ,M . The local control and state variables are constrained,
i.e., ui ∈ U i and xi ∈ X i. The constraint sets, X i, U i are assumed to be
bounded polytopes containing zero in their respective interiors and can
hence be represented as

X i = {xi ∈ R
ni p Cixxi ≤ dix}, U i = {ui ∈ R

mi p Ciuui ≤ diu} (3)

where Cix ∈ R
nc
xi
$ni , Ciu ∈ R

nc
ui
$mi , dix ∈ R

nc
xi

>0 and d
i
u ∈ R

nc
ui

>0 . We also
denote the total number of linear inequalities describing all constraint

sets by nc :=
∑M
i=1

(
nc
xi
+ nc

ui

)
. The global constraint sets are defined

from the local ones through

X = X 1 $ . . .$ XM , U =U1 $ . . .$UM .
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We use a separable quadratic stage cost

{(x,u) =
M∑

i=1
{i(xi,ui) =

1
2

(
M∑

i=1
(xi)TQixi + (ui)TRiui

)
(4)

where Qi ∈ S
ni
++ and Ri ∈ S

mi
++ for i = 1, . . . ,M and Sn++ denotes the set of

symmetric positive definite matrices in Rn$n. The optimal infinite horizon
cost from initial state x̄ ∈ X is defined by

V∞(x̄) := min
x,u

∞∑

t=0
{(xt,ut)

s.t. xt ∈ X , ut ∈U
xt+1 = Axt + But
x0 = x̄.

(5)

Such infinite horizon optimization problems are in general intractable to
solve exactly. A common approach is to solve the problem approximately
in receding horizon fashion. To this end we introduce the predicted state
and control sequences {zτ }N−1τ=0 and {vτ}N−1τ=0 and the corresponding stacked
vectors

z = [zT0 , . . . , zTN−1]T , v = [vT0 , . . . ,vTN−1]T (6)

where zτ and vτ are predicted states and controls τ time steps ahead.
The predicted state and control variables zτ , vτ are partitioned into local
variables as in (2). We also introduce the following stacked local vectors

zi = [(zi0)T , . . . , (ziN−1)T ]T , vi = [(vi0)T , . . . , (viN−1)T ]T . (7)

Further, we introduce the tightened state and control constraint sets

(1− δ )X i = {xi ∈ R
ni p Cixxi ≤ (1− δ )dix}, (8)

(1− δ )U i = {ui ∈ R
mi p Ciuui ≤ (1− δ )diu} (9)

where δ ∈ (0, 1) decides the amount of relative constraint tightening. The
following optimization problem is solved in the DMPC controller for the
current state x̄ ∈ Rn

Vδ
N(x̄) := min

zt,vt

N−1∑

τ=0
{(zτ ,vτ )

s.t. zτ ∈ (1− δ )X , τ = 0, . . . ,N − 1
vτ ∈ (1− δ )U, τ = 0, . . . ,N − 1
zτ+1 = Azτ + Bvτ , τ = 0, . . . ,N − 2
z0 = x̄.

(10)
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Such optimization problems can be solved in distributed fashion using,
i.e., the alternating direction of multipliers method [Boyd et al., 2011] or
dual ascent [Boyd et al., 2011]. In this work we have chosen to use the
recently developed distributed method presented in [Giselsson et al., 2012]
which is an accelerated dual ascent method which has superior conver-
gence properties O(1/k2) compared to the classical dual ascent method
which achieves O(1/k). For distribution purposes, we have neither a ter-
minal cost nor a terminal constraint set in the optimization problem (10).
Next, we present the distributed optimization algorithm in [Giselsson

et al., 2012]. We stack all decision variables into one vector

y = [zT0 , . . . , zTN−1,vT0 , . . . ,vTN−1]T ∈ R
(n+m)N . (11)

The optimization problem (10) can more compactly be written as

Vδ
N(x̄) := min

y

1
2y
THy

s.t. Ay = bx̄
Cy ≤ (1− δ )d

(12)

where H ∈ S
(n+m)N
++ ,A ∈ Rn(N−1)$(n+m)N ,b ∈ Rn(N−1)$n,C ∈ RncN$(n+m)N

and d ∈ R
Nnc
>0 are built accordingly. The separable structure of the cost

function (4) and constraint sets (3) gives block diagonal H and C-matrices.
Further, the matrix A is sparse since it is composed of sparse matrices A,
B and I that define the linear dynamic constraints (1). The dual problem
to (12) is created by introducing dual variables λ ∈ Rn(N−1) for the equal-
ity constraints and dual variables µ ∈ R

Nnc
≥0 for the inequality constraints.

The dual problems becomes

max
λ,µ≥0

min
y

1
2
yTHy + λT(Ay − bx̄) + µT(Cy − (1− δ )d) (13)

which, as shown in [Giselsson et al., 2012], can explicitly be written as

max
λ,µ≥0

−1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd(1− δ ). (14)

We define the dual function for initial condition x̄ ∈ R
n as

Dδ
N(x̄,λ,µ) := −

1
2
(ATλ+CTµ)TH−1(ATλ+CTµ) − λTbx̄ − µTd(1− δ ).

(15)
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2. Problem Setup and Preliminaries

It was in [Giselsson et al., 2012] shown that the smallest Lipschitz con-
stant to ∇Dδ

N is L = q[AT ,CT ]TH−1[AT ,CT ]q and that (12) can be solved
by the following accelerated dual gradient method

yk = −H−1(ATλk +CTµk) (16)

ȳk = yk + k− 1
k+ 2 (y

k − yk−1) (17)

λk+1 = λk + k− 1
k+ 2 (λ

k − λk−1) + 1
L
(Aȳk − bx̄) (18)

µk+1 = max
(
0,µk + k− 1

k+ 2 (µ
k − µk−1) + 1

L
(Cȳk − d (1− δ ))

)
. (19)

Due to the structure of the matrices H,C,A this algorithm can be imple-
mented in distributed fashion where communication between subsystems
i and j takes place if j ∈ N i or i ∈ N j , see [Giselsson et al., 2012] for
details.
In the following section we present a stopping condition to algorithm

(16)-(19) when solving (10) that guarantees feasibility, stability, and a
prespecified performance of the DMPC scheme. However, the stopping
condition is not developed exclusively for the presented algorithm. It is
directly applicable to any (distributed) optimization algorithm that pro-
duces dual feasible iterations that converge to the optimal dual variables.

2.1 Notation

We denote by R the set of real numbers, R≥c the set of real numbers d ≥ c
and R>c the set of real numbers d > c. We denote by Sn++ ⊂ Rn$n the
set of real symmetric positive definite matrices. Further N≥T is the set of
natural numbers t ≥ T . The norm q ⋅ q refers to the Euclidean norm or
the induced Euclidean norm unless otherwise is specified and 〈⋅, ⋅〉 refers
to the inner product in Euclidean space. The norm qxqT =

√
xTTx. The

interior of a set X is denoted int(X ). The optimal value function with
original constraint set, i.e. V 0N(x̄), is denoted VN(x̄). The optimal state
and control sequences to (10) for initial value x and constraint tightening
δ are denoted {z∗τ (x,δ )}N−1τ=0 and {v∗

τ (x,δ )}N−1τ=0 respectively and the opti-
mal solution to the equivalent problem (12) by y∗(x,δ ). The state and
control sequences for iteration k in (16)-(19) are denoted {zkτ (x,δ )}N−1τ=0
and {vkτ (x,δ )}N−1τ=0 respectively. We drop the initial state and constraint
tightening arguments (x,δ ) when no ambiguities can arise.

2.2 Definitions and Assumptions

We adopt the convention that Vδ
N(x̄) = ∞ for states x̄ ∈ Rn that result in

(12) being infeasible. We define by X∞ the set for which (5) is feasible.
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We also define the minimum of the stage-cost { for fixed x

{∗(x) := min
u∈U

{(x,u) = 1
2
xTQx.

Further, κ is the smallest scalar such that κQ − ATQA 4 0. The state
sequence resulting from applying {vτ}N−1τ=0 to (1) is denoted by {ξτ }N−1τ=0 ,
i.e.,

ξτ+1 = Aξτ + Bvτ , ξ0 = x̄. (20)

We introduce ξ = [(ξ0)T , . . . , (ξN−1)T ]T and define the primal cost

PN(x̄,v) :=





N−1∑

τ=0
{(ξτ ,vτ ) if ξ ∈ X N ,v ∈UN , and (20) holds

∞ else

(21)

where X N and UN are the state and control constraints for the full hori-
zon. We also introduce the shifted control sequence

vs = [(v1)T , . . . , (vN−1)T , 0T ]T .

We have PN(x̄,vk) ≥ VN(x̄) and PN(Ax̄ + Bvk0,vks ) ≥ VN(Ax̄ + Bvk0) for
every algorithm iteration k. We denote by {ξ kτ }N−1τ=0 the state sequence
that satisfies (20) using controls {vkτ }N−1τ=0 . The definition of the cost (21)
implies

PN(x̄,vk) = PN(Ax̄ + Bvk0,vks ) + {(x̄,vk0) − {∗(Aξ kN−1) (22)

if vk0 ∈U, x̄ ∈ X and Aξ kN−1 ∈ X .

3. Stopping Condition

Rather than finding the optimal solution in each time step in the MPC
controller, the most important task is to find a control action that gives
desirable closed loop properties such as stability, feasibility, and a de-
sired performance. Such properties can sometimes be ensured well before
convergence to the optimal solution. To benefit from this observation, a
stopping condition is developed that allows the iterations to stop when the
desired performance, stability, and feasibility can be guaranteed. Before
the stopping condition is introduced, we briefly go through the main ideas
below.
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3. Stopping Condition

3.1 Main Ideas

The distributed nature of the optimization algorithm makes it unsuitable
for centralized terminal costs and terminal constraints. Thus, stability
and performance need to be ensured without these constructions. We de-
fine the following infinite horizon performance for feedback control law
ν

Vν
∞(x̄) =

∞∑

t=0
{(xt,ν(xt)) (23)

where xt+1 = Axt+Bν(xt) and x0 = x̄. For a given performance parameter
α ∈ (0, 1] and control law ν it is known (c.f. [Lincoln and Rantzer, 2006,
Grüne and Rantzer, 2008,Grüne, 2009]) that the following decrease in the
optimal value function

V 0N(xt) ≥ V 0N(Axt + Bν(xt)) +α {(x,ν(xt)) (24)

for every t ∈ N≥0 gives stability and closed loop performance according to

αVν
∞(x̄) ≤ V∞(x̄). (25)

Analysis of the control horizon N needed for an MPC control law without
terminal cost and terminal constraints such that (24) holds, is performed
in [Grüne and Rantzer, 2008,Grüne, 2009] and also in this paper. Once a
control horizon N is known such that (24) is guaranteed, the performance
result (25) relies on computation of the optimal solution to the MPC opti-
mization problem in every time step. An exact optimal solution cannot be
computed and the idea behind this paper is to develop stopping conditions
that enable early termination of the optimization algorithm with main-
tained feasibility, stability, and performance guarantees. The idea behind
our stopping condition is to compute a lower bound to V 0N(x) through the
dual function D0N(x,λk,µk) and an upper bound to the next step value
function V 0N(Ax + Bvk0) through a feasible solution PN(Ax + Bvk0,vks ). If
at iteration k the following test is satisfied

D0N(x̄,λk,µk) ≥ PN(Ax̄ + Bvk0,vks ) +α {(x̄,vk0) (26)

the performance condition (24) holds since

V 0N(x̄) ≥ D0N(x̄,λk,µk) ≥ PN(Ax̄ + Bvk0,vks ) +α {(x̄,vk0)
≥ V 0N(Ax̄ + Bvk0) +α {(x̄,vk0).

This implies that stability and the performance result (25) can be guar-
anteed with finite algorithm iterations k by using control action vk0.
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The test (26) includes computation of PN(Ax̄+ Bvk0,vks) which is a fea-
sible solution to the optimization problem in the following step. A feasible
solution cannot be expected with finite number of iterations k for duality-
based methods since primal feasibility is only guaranteed in the limit of
iterations. Therefore we introduce tightened state and control constraint
sets (1− δ )X , (1− δ )U with δ ∈ (0, 1) and use these in the optimization
problem. By generating a state trajectory {ξ kτ }N−1τ=0 from the control trajec-
tory {vkτ }N−1τ=0 that satisfies the equality constraints (20), we will see that
{ξ kτ }N−1τ=0 satisfies the original inequality constraints with finite number of
iterations. Thus, a primal feasible solution PN(Ax̄ + Bvk0,vks ) can be gen-
erated after a finite number of algorithm iterations k. However, since the
optimization now is performed over a tightened constraint set, the dual
function value Dδ

N(x̄,λ,µ) is not a lower bound to V 0N(x̄) and cannot be
used directly in the test (26) to ensure stability and the performance spec-
ified by (25). In the following lemma we show a relation between the dual
function value when using the tightened constraint sets and the optimal
value function when using the original constraint sets.

LEMMA 1
For every x̄ ∈ Rn, λ ∈ Rn(N−1) and µ ∈ R

Nnc
≥0 we have that

V 0N(x̄) ≥ Dδ
N(x̄,λ,µ) − δµTd. (27)

PROOF
From the definition of the dual function (15) we get that

Dδ
N(x̄,λ,µ) = D0N(x̄,λ,µ) + δdTµ.

By weak duality we get

V 0N(x̄) ≥ D0N(x̄,λ,µ) = Dδ
N(x̄,λ,µ) − δdTµ. (28)

This completes the proof. �

The presented lemma enables computation of a lower bound to V 0N(x̄)
at algorithm iteration k that depends on δµTd. By adapting the amount
of constraint tightening δ to satisfy

δ (µk)Td ≤ ǫ{∗(x̄) (29)

for some ǫ > 0 and use this together with the following test

Dδ
N(x̄,λk,µk) ≥ PN(Ax̄ + Bvk0,vks) +α {(x̄,vk0) (30)
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we get from Lemma 1 and if (29) and (30) holds that

V 0N(x̄) ≥ Dδ
N(x̄,λk,µk) − δ (µk)Td ≥ PN(Ax̄ + Bvk0,vks ) +α {(x̄,vk0) − ǫ{∗(x̄)

≥ V 0N(Ax̄ + Bvk0) + (α − ǫ){(x̄,vk0).

This is condition (24), which guarantees stability and performance speci-
fied by (25) if α > ǫ.

3.2 Stopping Conditions

From the discussion in the previous section we conclude that two param-
eters need to be specified in the stopping condition. The first is the per-
formance parameter α ∈ (0, 1] which guarantees closed loop performance
as specified by (25). The larger α , the better performance is guaranteed
but a longer control horizon N will be needed to guarantee the specified
performance. The second is an initial constraint tightening parameter,
which we denote by δ init ∈ (0, 1], from which the constraint tightening
parameter δ will be adapted (reduced), to satisfy (29). A generic value
of δ init is δ init = 0.2, i.e., 20% initial constraint tightening. Also a third
parameter needs to be set. It is the relative optimality tolerance ǫ > 0
where ǫ < α . The effect of this parameter on the algorithm is smaller
than the effect of the other parameters and it is generically chosen to
satisfy ǫ ∈ [0.01, 0.001].

ALGORITHM 1—STOPPING CONDITION

Input: x̄
Set: k = 0, l = 0, δ = δ init
Initialize algorithm (16)-(19) with:
λ0 = λ−1 = 0,µ0 = µ−1 = 0 and y0 = y−1 = 0.
Do

If Dδ
N(x̄,λk,µk) ≥ PN(x̄,vk) − ǫ

l+1 {∗(x̄)
or δdTµk > ǫ{∗(x̄)
Set δ ← δ /2 // reduce constraint tightening
Set l ← l + 1
Set k = 0 // reset step size and iteration counter

End

Run ∆k iterations of (16)-(19)
Set k← k+ ∆k

Until Dδ
N(x̄,λk,µk) ≥ PN(Ax̄ + Bvk0,vks ) +α {(x̄,vk0) and

δdTµk ≤ ǫ{∗(x̄)
Output: vk0
Except for the initial condition x̄, Algorithm 1 is always identically initial-
ized and follows a deterministic scheme. Thus, for fixed initial condition
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the same control action is always computed. This implies that Algorithm 1
defines a static feedback control law, which we denote by νN . We get the
following closed loop dynamics

xt+1 = Axt + BνN(xt), x0 = x̄. (31)

The objective of this section is to present a theorem stating that the feed-
back control law νN is well defined on int(X0N) where

X
δ
N := {x̄ ∈ R

n p Vδ
N(x̄) < ∞ and Az∗N−1(x̄, 0) ∈ int(X )} (32)

which satisfies Xδ 1
N ⊆ X

δ 2
N for δ 1 > δ 2. First, however we state the following

definition.

DEFINITION 1
The constant ΦN is the smallest constant such that the optimal solution
{z∗τ (x̄, 0)}N−1τ=0 , {v∗

τ (x̄, 0)}N−1τ=0 to (10) for every x̄ ∈ X0N satisfies

{∗(z∗N−1(x̄, 0)) ≤ ΦN{(x̄,v∗
0(x̄, 0)) (33)

for the chosen control horizon N.

In Section 4 a method to compute ΦN is presented.

REMARK 1
In [Grimm et al., 2005,Grüne, 2009] an exponential controllability on the
stage costs is assumed, i.e., that for C ≥ 1 and σ ∈ (0, 1) the following
holds for τ = 0, . . . ,N − 1

{∗(z∗τ (x̄, 0),v∗
τ (x̄, 0)) ≤ Cσ τ {(x̄,v∗

0(x̄, 0)). (34)

This implies ΦN ≤ Cσ N−1.

We also need the following lemmas that are proven in Appendix A.1, Ap-
pendix A.2 and Appendix A.3 respectively to prove the upcoming theorem.

LEMMA 2
Suppose that ǫ > 0 and δ ∈ (0, 1]. For every x̄ ∈ Xδ

N we have for some
finite k that

Dδ
N(x̄,λk,µk) ≥ PN(x̄,vk) − ǫ{∗(x̄). (35)
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LEMMA 3
Suppose that ǫ > 0 and δ ∈ (0, 1]. For every x̄ ∈ Xδ

N and algorithm
iteration k such that (35) holds we have for τ = 0, . . . ,N − 1 that

1
2

∥∥∥∥
[

ξ kτ (x̄,δ )
vkτ (x̄,δ )

]
−
[
z∗τ (x̄, 0)
v∗

τ (x̄, 0)

]∥∥∥∥
2

H

≤ ǫ{∗(x̄) + δ (µk)Td

where H = blkdiag(Q,R).

LEMMA 4
Suppose that ǫ > 0 and δ ∈ (0, 1]. For x̄ ∈ X0N but x̄ /∈ Xδ

N we have that
δ (µk)Td > ǫ{∗(x̄) with finite k.
We are now ready to state the following theorem, which is proven in Ap-
pendix A.4.

THEOREM 1
Assume that ǫ > 0, δ init ∈ (0, 1] and

α ≤ 1− ǫ− κ (
√
2ǫ+

√
ΦN)2(

√
2ǫ+ 1)2. (36)

Then the feedback control law νN , defined by Algorithm 1, is well defined
for every x̄ ∈ int(X0N). Further

V 0N(x̄) ≥ V 0N(Ax̄ + BνN(x̄)) + (α − ǫ){(x̄,νN(x̄)). (37)

holds for every x̄ ∈ int(X0N).

COROLLARY 1
Suppose that α ≤ 1− κ ΦN and that ν ∗

N(x̄) = v∗
0(x̄, 0). Then

V 0N(x̄) ≥ V 0N(Ax̄ + Bν ∗
N(x̄)) +α {(x̄,ν ∗

N(x̄)).

holds for every x̄ ∈ X0N .

PROOF
For every x̄ ∈ X0N we have

V 0N(x̄) =
N−1∑

τ=0
{(z∗τ ,u∗

τ ) + {(Az∗N−1, 0) − {(Az∗N−1, 0)

≥ V 0N(Ax̄ + Bν ∗
N(x̄)) + {(x̄,v∗

0) − {(Az∗N−1, 0)
≥ V 0N(Ax̄ + Bν ∗

N(x̄)) + {(x̄,v∗
0) − κ {(z∗N−1, 0)

≥ V 0N(Ax̄ + Bν ∗
N(x̄)) + (1− κ ΦN){(x̄,v∗

0)
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where the first inequality holds since Az∗N−1 ∈ X by construction of X0N ,
the second due to the definition of κ and the third due to the definition
of ΦN . �

REMARK 2
By setting ǫ = 0 in Theorem 1 we get α ≤ 1−κ ΦN as in Corollary 1.

We have proven that the feedback control law is well defined on int(X0N).
The topic of the following section is to analyze feasibility, stability, and
performance of the proposed feedback controller.

3.3 Feasibility, Stability and Performance

The following proposition shows one-step feasibility when using the feed-
back control law νN .

PROPOSITION 1
Suppose that α satisfies (36). For every xt ∈ int(X0N) we have that xt+1 =
Axt + BνN(xt) ∈ X .
PROOF
From Theorem 1 we have that νN(xt) is well defined and from Algorithm 1
we have that PN(xt+1,vks ) < ∞ which, by definition, implies that xt+1 ∈ X .
�

The proposition shows that xt+1 is feasible if the control law νN(xt)
is well defined. We define the recursively feasible set as the maximal set
such that

Xrf = {x ∈ X p Ax + BνN(x) ∈ Xrf} (38)
In the following theorem we show that Xrf is the region of attraction and
that the control law νN achieves a prespecified performance as specified
by (23).

THEOREM 2
Suppose that α > ǫ satisfies (36). Then for every initial condition x̄ ∈ Xrf

we have that qxtq → 0 as t → ∞ and that the closed loop performance
satisfies

(α − ǫ)VνN
∞ (x̄) ≤ V∞(x̄). (39)

Further, Xrf is the region of attraction.

PROOF
From the definition of Xrf we know that x̄ = x0 ∈ Xrf implies xt ∈ Xrf

for all t ∈ N≥0. This implies that νN(xt) is well defined and that (37)
holds for all xt, t ∈ N≥0. In [Grüne and Rantzer, 2008, Proposition 2.2]
it was shown using telescope summation that (37) implies (39). Further,
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since the stage cost { satisfies [Grüne, 2009, Assumption 5.1] we get from
[Grüne, 2009, Theorem 5.2] that qxtq → 0 as t→∞.
What is left to show is that Xrf is the region of attraction. Denote by

Xroa the region of attraction using νN . We have above shown that Xrf ⊆
Xroa. We next show that Xroa ⊆ Xrf by a contradiction argument to conclude
that Xrf = Xroa. Assume that there exist x̄ ∈ Xroa such that x̄ /∈ Xrf. If
x̄ ∈ Xroa the closed loop state sequence {xt}∞t=0 is feasible in every step (and
converges to the origin) and consequently {Axt + BνN(xt)}∞t=0 is feasible
in every step. This is exactly the requirement to have x̄ ∈ Xrf, which is a
contradiction. Thus Xrf ⊆ Xroa ⊆ Xrf which implies that Xrf = Xroa.
This completes the proof. �

REMARK 3
The lack of terminal constraint sets implies that recursive feasibility can-
not be guaranteed. However, to actually guarantee recursive feasibility in
presence of disturbances, robust MPC formulations need to be considered.
These can be fairly restrictive and have a rather small region of attraction.
In the examples we will see that the region of attraction can be signifi-
cantly enlarged by not using terminal constraints.

To guarantee a priori that the control law νN achieves the performance
(39) specified by α , we need to find a control horizon N such that the
corresponding controllability parameter ΦN satisfies (36). This requires
the computation of controllability parameter ΦN which is the topic of the
next section.

4. Offline Controllability Verification

The stability and performance results in Theorem 2 rely on Definition 1.
For the results to be practically meaningful it must be possible to compute
ΦN in Definition 1. In this section we will show that this can be done by
solving a mixed integer linear program (MILP). For desired performance
specified by α , we get a requirement on the controllability parameter
through (36) for Theorem 1 and Theorem 2 to hold. We denote by Φα

the largest controllability parameter such that Theorem 1 and Theorem 2
holds for the specified α . This parameter is the one that gives equality in
(36), i.e., satisfies

α = 1− ǫ− κ (
√
2ǫ+

√
Φα )2(

√
2ǫ + 1)2 (40)

for the desired performance α and optimality tolerance ǫ. The parameters
α and ǫ must be chosen such that Φα > 0. The objective is to find a
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control horizon N such that the corresponding controllability parameter
ΦN satisfies ΦN ≤ Φα . First, we show that for long enough control horizon
N there exist a ΦN ≤ Φα .

LEMMA 5
Assume that α and ǫ are chosen such that Φα > 0 where Φα is implicitly
defined in (40). Then there exists control horizon N and corresponding
controllability parameter ΦN ≤ Φα .

PROOF
Since Xrf is the region of attraction we have Xrf ⊆ X∞. This in turn implies
that (12) is feasible for every control horizon N ∈ N≥1 due to the absence
of terminal constraints. We have

VN(x̄) =
N−2∑

τ=0
{(z∗τ ,v∗

τ ) + {(z∗N−1,v∗
N−1) ≥ VN−1(x̄) + {(z∗N−1,v∗

N−1).

Since the pair (A, B) is assumed controllable and since (12) has nei-
ther terminal constraints nor terminal cost we have for some finite M
that M ≥ V∞(x̄) ≥ VN(x̄) ≥ VN−1(x̄). Thus, the sequence {VN(x̄)}∞N=0
is a bounded monotonic increasing sequence which is well known to be
convergent. Thus, for N ≥ N̄ where N̄ is large enough the difference
VN(x̄)−VN−1(x̄) is arbitrarily small. Especially {(z∗N−1,v∗

N−1) = {∗(z∗N−1) ≤
VN(x̄) − VN−1(x̄) ≤ Φα {(x̄,v∗

0) since Φα > 0. That is, for long enough con-
trol horizon N ≥ N̄, ΦN ≤ Φα . This completes the proof. �

The preceding Lemma shows that there exists a control horizon N
such that ΦN ≤ Φα if Φα > 0 for the chosen performance α and tolerance
ǫ. The choice of performance parameter α gives requirements on how ǫ

can be chosen to give Φα > 0. Larger ǫ requires smaller Φα to satisfy
(40) which in turn requires longer control horizons N since ΦN must
satisfy ΦN ≤ Φα . In the following section we address the problem of how
to compute the control horizon N and corresponding ΦN such that the
desired performance specified by α can be guaranteed.

4.1 Exact Verification of Controllability Parameter

In the following proposition we introduce an optimization problem that
tests if the controllability parameter ΦN corresponding to control horizon
N satisfies ΦN ≤ Φα for the desired performance specified by α . Before
we state the proposition, the following matrices are introduced

T = blkdiag(0, . . . , 0,−Q,ΦαR, 0, . . . , 0,−R)
S = blkdiag(0, . . . , 0, I, 0, . . . , 0)
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where Q and R are the cost matrices for states and inputs and Φα is the
required controllability parameter for the chosen α . Recalling the parti-
tioning (11) of y implies that

yTTy = vT0 Rv0 − zTN−1QzN−1 − vTN−1RvN−1
Sy = zN−1

PROPOSITION 2
Assume that Φα > 0 satisfies (40) for the chosen performance parameter
α and optimality tolerance ǫ. Further assume that the control horizon N
is such that

0 = min
x̄

1
2

(
Φα x̄

TQx̄ + yTTy
)

(41)

s.t. x̄ ∈ X
0
N

y = argmin V 0N(x̄)

then ΦN ≤ Φα .

PROOF
First we note that x̄ = 0 gives y = 0 and Φα x̄

TQx̄ + yTTy = 0, i.e., we
have that 0 is always a feasible solution. Further, (41) implies for every
x̄ ∈ X0N that

0 ≤ Φα x̄
TQx̄ + yTTy = Φα {(x̄,v∗

0) − {(z∗N−1,v∗
N−1) = Φα {(x̄,v∗

0) − {∗(z∗N−1)

since v∗
N−1 = 0. This is exactly the condition in Definition 1. Since ΦN

is the smallest such constant, we have ΦN ≤ Φα for the chosen control
horizon N and desired performance α and optimality tolerance ǫ. �

The optimization problem (41) is a bilevel optimization problem with
indefinite quadratic cost (see [Colson et al., 2005] for a survey on bilevel
optimization). Such problems are in general NP-hard to solve. The prob-
lem can, however, be rewritten as an equivalent MILP as shown in the
following proposition which is a straightforward application of [Jones and
Morari, 2009, Theorem 2].

PROPOSITION 3
Assume that Φα > 0 satisfies (40) for the chosen performance parameter
α and optimality tolerance ǫ. If the control horizon N is such that the
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following holds

0 = min − 1
2

(
dTx µU1 + dTx µU2 + dTµUL1

)
(42)

s.t. β Li ∈ {0, 1} , βU1i ∈ {0, 1} , βU2i ∈ {0, 1}
Upper level


Primal and dual feasibility

Cx x̄ − dx − sx = 0
sx ≤ 0 , µU1 ≥ 0
CxASy− dx − sz = 0
sz ≤ 0 , µU2 ≥ 0

Stationarity

ΦαQx̄ + (Cx)TµU1 − bTλUL2 = 0
Ty+ HTλUL1 + ATλUL2 +CTµUL1 + (CxAS)TµU2 = 0
AλUL1 = 0
CλUL1 − µUL2 = 0

Complementarity
β Li = 1[ µUL2i = 0 , β Li = 0[ µUL1i = 0
βU1i = 1[ sxi = 0 , βU1i = 0[ µU1i = 0
βU2i = 1[ szi = 0 , βU2i = 0[ µU2i = 0

Lower level


Primal and dual feasibility
Ay− bx̄ = 0
Cy− d− s = 0
s ≤ 0 , µL ≥ 0

Stationarity⌊
Hy+ ATλ L +CTµL = 0

Complementarity⌊
β Li = 1[ si = 0 , β Li = 0[ µLi = 0

then Φα ≥ ΦN .

PROOF
The set X0N can equivalently be written as

X
0
N = {x ∈ R

n p Ay∗(x, 0) = bx,Cy∗(x, 0) ≤ d, (43)
CxASy

∗(x, 0) ≤ dx,Cxx ≤ dx}.
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4. Offline Controllability Verification

We express the set X0N in (41) using (43). The equivalence between the
optimization problems (42) and (41) is established in [Jones and Morari,
2009, Theorem 2]. The remaining parts of the proposition follow by apply-
ing Proposition 2. �

The transformation from (41) to (42) is done by expressing the lower
level optimization problem in (41) by its sufficient and necessary KKT
conditions to get a single level indefinite quadratic program with comple-
mentarity constraints. The resulting indefinite quadratic program with
complementarity constraints can in turn be cast as a MILP to get (42).

REMARK 4
Although MILP problems are NP-hard, there are efficient solvers available
such as CPLEX and GUROBI. There are also solvers available for solving
the bilevel optimization problem (41) directly, e.g., the function solvebilevel
in YALMIP, [Löfberg, 2004].
If the chosen control horizon N is not long enough for ΦN ≤ Φα , different
heuristics can be used to choose a new longer horizon to be verified. One
heuristic is to assume exponential controllability as in Remark 1, i.e., that
there exist constants C ≥ 1 and σ ∈ (0, 1) such that

Cσ τ {(x̄,vk0) ≥ {(zkτ ,vkτ ) (44)

for all τ = 0, . . . ,N − 1. The C and σ -parameters should be determined
using the optimal solution y to (12) for the x that minimized (42) in the
previous test. Under the assumption that (44) holds as N increases, a new
guess on the control horizon N can be computed by finding the smallest
N such that Cσ N−1 ≤ Φα .

4.2 Controllability Parameter Estimation

The test in Proposition 3 verifies if the control horizon N is long enough
for the controllability assumption to hold for the required controllability
parameter Φα . Thus, an initial guess on the control horizon is needed. A
guaranteed lower bound can easily be computed by solving (12) for a vari-
ety of initial conditions x̄ and compute the worst controllability parameter,
denoted by Φ̂N , for these sample points. If the estimated controllability
parameter Φ̂N ≥ Φα , we know that the control horizon need to be in-
creased for (42) to hold. If instead Φ̂N ≤ Φα the control horizon N might
serve as a good initial guess to be verified by (42).

REMARK 5
For large systems (42) may be too complex to verify the desired perfor-
mance. In such cases the heuristic method mentioned above can be used
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in conjunction with an adaptive horizon scheme. The adaptive scheme
keeps the horizon fixed for all time-steps until the controllability assump-
tion does not hold. Then, the control horizon is increased to satisfy the
assumption and kept at the new level until the controllability assumption
does not hold again. Eventually the control horizon will be large enough
for ΦN ≤ Φα and the horizon need not be increased again.

5. Numerical Example

We evaluate the efficiency of the proposed distributed feedback control
law νN by applying it to a randomly generated dynamical system with
sparsity structure. The random dynamics matrix is scaled such that the
magnitude of the largest eigenvalue is 1.1, i.e., the system is unstable. The
system has 3 subsystems with 5 states and 1 input each, i.e., 15 states
and 3 inputs in all. All state and input variables are upper and lower
bounded by random numbers in the intervals [0.5, 1.5] and [−0.15− 0.05]
respectively. The stage cost is chosen to be

{i(xi,ui) = xTi xi + uTi ui

for i = 1, 2, 3. We have chosen two different suboptimality parameters
α 1 = 0.01 and α 2 = 0.5. We need to find control horizon N(α i) such that
the controllability parameter ΦN(α i) ≤ Φα i for i = 1, 2. To compute Φα i the
optimality tolerance ǫ need to be chosen and κ need to be computed where
κ is the smallest constant such that κQ 4 ATQA. We have chosen ǫ =
0.005 and we have found that κ = 1.22. Using (40) we get Φα 1 = 0.51 and
Φα 2 = 0.22. This implies that we need to find a control horizon N(0.01)
such that ΦN(0.01) ≤ 0.51 and N(0.5) such that ΦN(0.5) ≤ 0.22. Verification
by solving the MILP in (42) gives that N(0.01) = 6 and N(0.5) = 9.
The efficiency of the optimization algorithm (16)-(19) is investigated

in [Giselsson et al., 2012]. The focus of this section is to evaluate the
efficiency of the proposed adaptive constraint tightening approach in Al-
gorithm 1. Further, we analyze the region of attraction for Algorithm 1,
which is based on an optimization problem without terminal constraint.
We compare the region of attraction to the region of attraction in standard
MPC where a terminal constraint set is used. The terminal constraint set
is computed as the maximal positive invariant set (see [Gilbert and Tan,
1991]) which in our example is a polytope defined by 288 linear inequality
constraints.
Table 1 presents the results obtained when the algorithm is running

with different suboptimality parameters, α 1 = 0.01 andα 2 = 0.5. The first

152



5. Numerical Example

Table 1. Experimental results for different performance requirements α and dif-
ferent initial constraint tightenings δ init in the DMPC-controller. Also, the region of
attraction (R.o.A.) for the DMPC-controller is compared to the region of attraction
in centralized MPC with terminal constraint set.

Algorithm comparison, α = 0.01, N = 6
ǫ δ init avg. # iters avg. δ R.o.A.

Alg. 1 0.005 0.0001 278.2 0.0001 82.4 %

Alg. 1 0.005 0.001 155.6 0.001 82.4 %

Alg. 1 0.005 0.01 66.6 0.01 82.4 %

Alg. 1 0.005 0.05 36.9 0.047 82.4 %

Alg. 1 0.005 0.1 35.6 0.056 82.4 %

Alg. 1 0.005 0.2 35.3 0.064 82.4 %

Alg. 1 0.005 0.5 35.3 0.080 82.4 %

CMPC - - - - 0.9 %

Algorithm comparison, α = 0.5, N = 9
ǫ δ init avg. # iters avg. δ R.o.A.

Alg. 1 0.005 0.0001 403.2 0.0001 92.2 %

Alg. 1 0.005 0.001 199.0 0.001 92.2 %

Alg. 1 0.005 0.01 82.5 0.01 92.2 %

Alg. 1 0.005 0.05 61.3 0.026 92.2 %

Alg. 1 0.005 0.1 60.6 0.030 92.2 %

Alg. 1 0.005 0.2 60.1 0.035 92.2 %

Alg. 1 0.005 0.5 59.8 0.042 92.2 %

CMPC - - - - 9.7 %

column specifies the stopping condition used, Alg. 1 refers to Algorithm 1
and CMPC refers to a centralized MPC-formulation with terminal con-
straints which is solved by a centralized solver. The second column spec-
ifies the tolerance ǫ and the third column specifies the initial constraint
tightening δ init.
Columns four, five and six contain the simulation results. The results

are obtained by simulating the system with 10000 randomly chosen initial
conditions that are drawn from a uniform distribution on X . Column four
contains the mean number of iterations needed and column five presents
the average constraint tightening δ used at termination of Algorithm 1.
The final column shows the fraction (in %) of initial conditions that where
steered to the origin using the different methods, i.e., an estimate of the
region of attraction.
We see that the adaptive constraint tightening approach gives consid-

erably less iterations for a larger initial tightening. However, for more
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than 10% initial constraint tightening (δ init = 0.1), the number of itera-
tions is not significantly affected. It is remarkable to note that 50% initial
constraint tightening (δ init = 0.5) is as efficient as, e.g., 5% (δ init = 0.05)
considering that more reductions in the constraint tightening need to be
performed. This indicates early detection of infeasibility. In the final col-
umn we have estimated the region of attraction, Xrf. We see that, for the
considered example, there is a huge improvement in the region of attrac-
tion using our method without terminal constraints compared to classical
MPC (CMPC) with terminal constraints.

6. Conclusions and Future Work

We have equipped the duality-based distributed optimization algorithm
in [Giselsson et al., 2012], when used in a DMPC context, with a stopping
condition that guarantees a prespecified performance, stability and feasi-
bility. We have used an optimization problem without terminal constraints
and have shown how to verify stability and a prespecified performance.
Further, we have developed an adaptive constraint tightening approach
that enables us to generate a feasible solution w.r.t. the original constraint
set with finite number of iterations. The numerical example shows that
the region of attraction can be significantly enlarged when no terminal
constraint set is used compared to when using (the maximal positive in-
variant) terminal constraint set as in standard MPC. Further, the nu-
merical example shows that the adaptive constraint tightening approach
can significantly reduce the number of iterations needed to guarantee
feasibility, stability, and the prespecified performance.
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A. Appendix

A.1 Proof for Lemma 2

We divide the proof into two parts, the first for x̄ = 0 and the second for
x̄ ,= 0. For x̄ = 0 we have at iteration k = 0 that y0 = 0 which is the
optimal solution. Hence (35) holds for k = 0 since all terms are 0 and
0 = Aξ 0N−1 ∈ X .
Next, we show the result for x̄ ,= 0. Whenever (12) is feasible we have

convergence in primal variables [Giselsson et al., 2012, Theorem 1]. This
together with the linear relation through which ξ is defined (20) gives
ξ kτ → z∗τ for τ = 0, . . . ,N − 1 as k→∞. We have z∗τ ∈ (1 − δ )X and since
(1 − δ )X ⊂ X for every δ ∈ (0, 1] this implies that there exists finite
kx0 such that ξ kτ ∈ X for all k ≥ kx0. Equivalent convergence reasoning
holds for vkτ . Together this implies that there exists finite k

P
0 such that

PN(x̄,vk) < ∞ and that PN(x̄,vk) → Vδ
N(x̄) for all k ≥ kP0 . Together with

convergence in dual function value [Giselsson et al., 2012, Theorem 1]
gives that

Dδ
N(x̄,λk,µk) ≥ PN(x̄,vk) − ǫ{∗(x̄)

holds with finite k since {∗(x̄) > 0 and ǫ > 0. This concludes the proof. �

A.2 Proof for Lemma 3

We introduce yk = [(ξk(x̄,δ ))T(vk(x̄,δ ))T ]T , where ξk(x̄,δ ) and vk(x̄,δ )
satisfies the dynamic equations (20). Whenever (35) holds we have that
ξ kτ (x̄,δ ) ∈ X and vkτ (x̄,δ ) ∈ U for τ = 0, . . . ,N − 1. We also introduce
y∗ = [(z∗(x̄, 0))T(v∗(x̄, 0))T ]T . This implies
1
2
(yk − y∗)TH(yk − y∗) = 1

2
(yk)THyk − 1

2
(y∗)THy∗ − 〈Hy∗,yk − y∗〉

≤ PN(x̄,vk) − V 0N(x̄)
≤ Dδ

N(x̄,λk,µk) + ǫ{∗(x̄) − V 0N(x̄)
≤ δ (µk)Td+ ǫ{∗(x̄)

where the first inequality comes from the first order optimality condition
[Nesterov, 2003, Theorem 2.2.5] and by definition of V 0N and PN . The sec-
ond inequality is due to (35) and the last inequality follows from Lemma 1.
Further, since H = blkdiag(Q, . . . ,Q,R, . . . ,R) we have for τ = 0, . . . ,N−1
that

1
2

∥∥∥∥
[

ξ kτ (x̄,δ )
vkτ (x̄,δ )

]
−
[
z∗τ (x̄, 0)
v∗

τ (x̄, 0)

]∥∥∥∥
2

H

≤ 1
2
(yk − y∗)TH(yk − y∗)

≤ δ (µk)Td+ ǫ{∗(x̄)
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where H = blkdiag(Q,R), whenever (35) holds. This completes the proof.
�

A.3 Proof for Lemma 4

Since x ∈ X0N but x /∈ Xδ
N we have that V

0
N(x̄) < ∞ and Vδ

N(x̄) = ∞. Fur-
ther, from the strong theorem of alternatives [Boyd and Vandenberghe,
2004, Section 5.8.2] we know that since Vδ

N(x̄) = ∞ for the current con-
straint tightening δ the dual problem is unbounded. Hence there exist λ f ,
µ f such that

δµTf d ≥ Dδ
N(x̄,λ f ,µ f ) − V 0N(x̄) ≥ 2ǫ{∗(x̄) (45)

where Lemma 1 is used in the first inequality. Further, the convergence
rate in [Beck and Teboulle, 2009, Theorem 4.4] for algorithm (16)-(19) is

Dδ
N(x̄,λ∗,µ∗) − Dδ

N(x̄,λk,µk) ≤
2L

(k+ 1)2
∥∥∥∥
[
λ∗

µ∗

]
−
[
λ0

µ0

]∥∥∥∥
2

.

By inspecting the proof to [Beck and Teboulle, 2009, Theorem 4.4] (and
[Beck and Teboulle, 2009, Lemma 2.3, Lemma 4.1]) it is concluded that
the optimal point λ∗,µ∗ can be changed to any feasible point λ f ,µ f and
the convergence result still holds, i.e.,

Dδ
N(x̄,λ f ,µ f ) − Dδ

N(x̄,λk,µk) ≤
2L

(k+ 1)2
∥∥∥∥
[
λ f

µ f

]
−
[
λ0

µ0

]∥∥∥∥
2

.

That is, there exists a feasible pair (λ f ,µ f ) such that with finite k we
have

Dδ
N(x̄,λk,µk) > Dδ

N(x̄,λ f ,µ f ) − ǫ{∗(x̄). (46)

This implies

δdTµk ≥ Dδ
N(x̄,λk,µk) − V 0N(x̄) > Dδ

N(x̄,λ f ,µ f ) − V 0N(x̄) − ǫ{∗(x̄) ≥ ǫ{∗(x̄)

where Lemma 1 is used in the first inequality, (46) in the second inequal-
ity and (45) in the final inequality. This completes the proof. �

A.4 Proof for Theorem 1

To prove the assertion we need to show that the do loop will exit for every
x̄ ∈ int(X0N). For every point x̄ ∈ int(X0N) there exists δ̄ ∈ (0, 1) such that
x̄

1−δ̄
∈ int(X0N). Since int(X0N) ⊆ X0N , we have that V

0
N( x̄

1−δ̄
) < ∞ and the
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optimal solution y( x̄

1−δ̄
, 0) satisfies Ay∗( x̄

1−δ̄
, 0) = b x̄

1−δ̄
and Cy∗( x̄

1−δ̄
, 0) ≤

d. We create the following vector

ȳ(x̄) := (1− δ̄ )y∗( x̄

1− δ̄
, 0) (47)

which satisfies

Aȳ(x̄) = Ay∗( x̄

1− δ̄
, 0)(1− δ̄ ) = bx̄1− δ̄

1− δ̄
= bx̄ (48)

Cȳ(x̄) = Cy∗( x̄

1− δ̄
, 0)(1− δ̄ ) ≤ d(1− δ̄ ). (49)

Hence, by definition (32) of Xδ
N we conclude that for every x̄ ∈ int(X0N)

there exist δ̄ ∈ (0, 1) such that x̄ ∈ Xδ̄
N . This implies that for every x̄ ∈

int(X0N) we have that either x̄ ∈ Xδ
N for the current constraint tightening

δ ∈ (0, 1) or x̄ /∈ Xδ
N but x̄ ∈ X0N . Thus, from Lemma 2 and Lemma 4

we conclude that either the do loop is terminated or δ is reduced and l is
increased for every x̄ ∈ int(X0N) with finite number of algorithm iterations
k.
To guarantee that the do loop will terminate for every x̄ ∈ int(X0N),

we need to show that the conditions in the do loop will hold for small
enough δ and with finite k. That is, we need to show that the following
two conditions will hold.

1. For small enough δ , i.e., large enough l, we have that

δ (µk)Td ≤ ǫ{∗(x̄) (50)

where δ = 2−lδ init holds for every algorithm iteration k.
2. For small enough δ , i.e., large enough l, the condition

Dδ
N(x̄,λk,µk) ≥ PN(Ax̄ + Bvk0,vks) +α {(x̄,vk0) (51)

with α satisfying (36) holds with finite k whenever

Dδ
N(x̄,λk,µk) ≥ PN(x̄,vk) +

ǫ

l + 1{(x̄,v
k
0) (52)

holds.

We start by showing argument 1. From the convergence rate of the
algorithm [Giselsson et al., 2012] it follows that there exists D > −∞
such that Dδ

N(x̄,λk,µk) ≥ D for every algorithm iteration k ≥ 0. This is
used below where we extend the result from [Nedić and Ozdaglar, 2009,
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Lemma 1] to handle the presence of equality constraints. For algorithm
iteration k ≥ 0, x̄ ∈ int(X0N) and δ ≤ δ̄ /2 we have

D ≤ Dδ
N(x̄,λk,µk)

= inf
y

1
2
yTHy+ (λk)T(Ay − bx̄) + (µk)T (Cy− (1− δ )d)

≤ 1
2
(ȳ(x̄))THȳ(x̄) + (λk)T (Aȳ(x̄) − bx̄) + (µk)T(Cȳ(x̄) − (1− δ )d)

≤ (1− δ̄ )2V 0N(
x̄

1− δ̄
) + (µk)T (Cȳ(x̄) − (1− δ̄ )d) + (µk)Td(δ − δ̄ )

≤ V 0N(
x̄

1− δ̄
) + (µk)Td(δ − δ̄ )

≤ V 0N(
x̄

1− δ̄
) − 1
2
(µk)Tdδ̄

where the equality is by definition, the second inequality holds since any
vector ȳ(x̄) is gives larger value than the infimum, the third and fourth
inequalities are due to (47), (48) and (49) and since (1− δ̄ ) ∈ (0, 1) and
the final inequality holds since δ ≤ δ̄ /2. This implies that

(µk)Td ≤
2(V 0N( x̄1−δ̄

) − D)
δ̄

which is finite. We denote by ld the smallest l such that δ̄ ≥ 2−ldδ init.
Since δ = 2−lδ init this implies that

δ (µk)Td ≤ δ
2(V 0N( x̄1−δ̄

) − D)
δ̄

≤ 2−lδ init
2(V 0N( x̄

1−δ̄
) − D)

2−ldδ init

≤ 2−l+ld+1(V 0N(
x̄

1− δ̄
) − D) → 0 (53)

as l → ∞. Especially, with finite l we have that (50) holds for every
algorithm iteration k. This proves argument 1.
Next we prove argument 2. We start by showing for large enough but

finite l that PN(Ax̄+ BνN(x̄),vks ) is finite whenever (52) holds. From the
definition of PN and vks we have that P

N(Ax̄+ BνN(x̄),vks ) is finite when-
ever PN(x̄,vks ) is finite and if Aξ kN−1(x̄,δ ) ∈ X . For algorithm iteration k
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such that (52) holds we have

qA(ξ kN−1(x̄,δ ) − z∗N−1(x̄, 0))q2 ≤

≤ qAq2
λmin(H)

qξ kN−1(x̄,δ ) − z∗N−1(x̄, 0)q2H

≤ 2qAq2
λmin(H)

(δ (µk)Td+ ǫ

l + 1{
∗(x̄))

≤ 2qAq2
λmin(H)

(
2−l+ld+1(V 0N(

x̄

1− δ̄
) − D) + ǫ

l + 1{
∗(x̄)

)
→ 0 (54)

as l → ∞, where H = blkdiag(Q,R) and, since H is positive definite,
the smallest eigenvalue λmin(H) > 0. The first inequality follows from
Cauchy-Schwarz inequality and Courant-Fischer-Weyl min-max principle,
the second inequality comes from Lemma 3 and the third comes from
(53). By definition of Xδ

N we have Az
∗
N−1(x̄, 0) ∈ int(X ) which through

(54) implies that Aξ kN−1(x̄,δ ) ∈ X for some large enough by finite l, i.e.,
small enough δ , and for algorithm iteration k such that (52) holds.
What is left to show argument 2 is that (51) holds for every α ≤

1− ǫ − κ (
√
2ǫ+

√
ΦN)2(

√
2ǫ+ 1)2 for large enough but finite l whenever

(52) holds. From Lemma 3 and (53) we know for large enough l and any
algorithm iteration k such that (52) holds that

1
2

∥∥∥∥
[

ξ kτ
vkτ

]
−
[
z∗τ

v∗
τ

]∥∥∥∥
2

H

≤ δ (µk)Td+ ǫ

l + 1{
∗(x̄)

= 2−lδ init(µk)Td+
ǫ

l + 1{
∗(x̄) ≤ ǫ{∗(x̄)

for any τ = 0, . . . ,N−1, where H = blkdiag(Q,R). Taking the square-root
and applying the reversed triangle inequality gives

∣∣∣∣
∥∥∥∥
[

ξ kτ
vkτ

]∥∥∥∥
H

−
∥∥∥∥
[
z∗τ

v∗
τ

]∥∥∥∥
H

∣∣∣∣ ≤
∥∥∥∥
[

ξ kτ
vkτ

]
−
[
z∗τ

v∗
τ

]∥∥∥∥
H

≤ 2
√
ǫ{∗(x̄). (55)
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This implies that
∥∥∥∥
[

ξ kN−1
vkN−1

]∥∥∥∥
H

≤
∥∥∥∥
[
z∗N−1
v∗
N−1

]∥∥∥∥
H

+ 2
√
ǫ{∗(x̄) =

√
2
√
{(z∗N−1,v∗

N−1) + 2
√
ǫ{∗(x̄)

≤
√
2ΦN

√
{(z∗0,v∗

0) + 2
√
ǫ{∗(x̄) ≤ (

√
2ΦN + 2

√
ǫ)
√
{(z∗0,v∗

0)

= (
√

ΦN +
√
2ǫ)
∥∥∥∥
[
z∗0

v∗
0

]∥∥∥∥
H

≤ (
√

ΦN +
√
2ǫ)
(∥∥∥∥
[

ξ k0
vk0

]∥∥∥∥
H

+ 2
√
ǫ{∗(x̄)

)

≤ (
√

ΦN +
√
2ǫ)(1+

√
2ǫ)
∥∥∥∥
[

ξ k0
vk0

]∥∥∥∥
H

where we have used (55), z∗0 = ξ k0 = x̄, q[zTvT ]TqH =
√
zTQz+ vTRv =√

2{(z,v) and Definition 1. Squaring both sides gives through the defini-
tion of κ that

1
κ
{∗(Aξ kN−1) ≤ {∗(ξ kN−1) = {(ξ kN−1,vkN−1)

≤ (
√

ΦN +
√
2ǫ)2(1+

√
2ǫ)2{(ξ k0 ,vk0). (56)

We get for large enough l and for k such that (52) holds that

Dδ
N(x̄,λk,µk) ≥ PN(x̄,vk) −

ǫ

l + 1{
∗(x̄) ≥ PN(x̄,vk) − ǫ{∗(x̄)

= PN(Ax̄ + Bvk0,vks ) + (1− ǫ){(ξ k0 ,vk0) − {∗(Aξ kN−1)
≥ PN(Ax̄ + Bvk0,vks )+

+
(
1− ǫ− κ (

√
ΦN +

√
2ǫ)2(1+

√
2ǫ)2

)
{(x̄,vk0)

≥ PN(Ax̄ + Bvk0,vks ) +α {(x̄,vk0) (57)

where the first inequality comes from (52), the second since l ≥ 0, the
equality is due to (22), the third inequality comes from (56), and the final
inequality comes from (36). This concludes the proof for argument 2. Thus,
the do loop will terminate with finite l and k which implies that νN(x̄) is
well defined for every x̄ ∈ int(X0N).
Finally, to show (37) we have that

V 0N(x̄) ≥ Dδ
N(x̄,λk,µk) − δdTµk

≥ PN(Ax̄ + Bvk0,vks) − ǫ{∗(x̄) +α {(x̄,vk0)
≥ V 0N(Ax̄ + Bvk0) + (α − ǫ){(x̄,vk0)
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where the first inequality comes from Lemma 1, the second from (50) and
(51), and the third holds since PN(Ax̄ + Bvk0,vks ) ≥ VN(Ax̄ + Bvk0) and by
definition of {∗. This concludes the proof. �
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Paper VI

Output Feedback Distributed Model

Predictive Control with Inherent

Robustness Properties

Pontus Giselsson

Abstract

We consider robust output feedback distributed model predictive
control (DMPC). The proposed controller is based on the results in
[Giselsson and Rantzer, 2012] in which nominal stability and feasibil-
ity was proven for a DMPC formulation without terminal constraint
set or terminal cost in the optimization. We extend these results to
show robust stability under state feedback as well as output feedback
when dynamics and measurements are affected by bounded noise.
The provided numerical example suggests that the region of attrac-
tion without terminal constraint set may be significantly larger than
if a terminal constraint set is used.

Submitted to 2013 American Control Conference, Washington, D.C., 2013.
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1. Introduction

In the model predictive control (MPC) literature nominal stability of the
closed loop system is a well studied subject and is usually proven using
a terminal constraint set, a terminal cost and a terminal controller, see
[Mayne et al., 2000] for a survey of such methods. Also robustness prop-
erties in MPC has received increased attention. In [Mayne et al., 2000]
different approaches from the literature to achieve robustness are pre-
sented. The survey shows three main approaches to guarantee robustness
in MPC: to exploit the inherent robustness in nominal MPC, to design the
MPC controller to deal with any possible realization of the disturbance, or
to introduce feedback in the design that compensates for the disturbances.
Within the first category, it was shown in [Grimm et al., 2004] that linear
systems with convex constraints are inherently robust to small distur-
bances. This is due to the fact that the value function of the optimization
problem is continuous [Bemporad et al., 2002, Grimm et al., 2004]. To
address both robust feasibility and robust stability, a tube-based model
predictive controller for linear systems was presented in [Mayne et al.,
2005]. This was extended to tube-based output feedback model predictive
control in [Mayne et al., 2006]. These tube-based MPC controllers also
rely on a terminal cost and terminal constraints to show stability.
It was pointed out in [Giselsson and Rantzer, 2012] that terminal costs,

terminal constraint sets, and terminal controllers usually involve all de-
cision variables and are therefore not directly applicable for distributed
model predictive control formulations where a centralized optimization
problem is solved in distributed fashion. This is circumvented in [Doan
et al., 2009] where stability is proven by setting a terminal point con-
straint in the origin, which is not desirable for performance and region of
attraction reasons. In [Giselsson and Rantzer, 2012] a DMPC controller
based on an optimization problem without terminal constraint set or ter-
minal cost is proposed. Nominal stability for this is shown based on a
controllability assumption on the optimal stage costs. Another formula-
tion that solves a centralized MPC problem in distributed fashion can be
found in [Negenborn et al., 2008] but no stability guarantees are given. In
the DMPC literature some formulations do not solve a centralized prob-
lem but local optimization problems that take neighboring interaction into
account, [Dunbar, 2007,Richards and How, 2007,R.M. Hermans, 2010]. In
[Dunbar, 2007,Richards and How, 2007] stability (and robustness in the
latter case) is guaranteed by letting the subsystems solve local optimiza-
tion problems sequentially and pass the local solutions downstream to be
used in the remaining local optimizations. In [R.M. Hermans, 2010] stabil-
ity is shown by setting explicit stabilizing constraints in the optimization.
In the case of output feedback, there are quite few contributions in the
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DMPC literature. One exception is [Venkat et al., 2006] in which nominal
stability is proven using a decentralized estimator and local optimizations
with full model data.
In this paper we extend the DMPC formulation presented in [Giselsson

and Rantzer, 2012] to guarantee robustness to small disturbances using
a constraint tightening approach and the inherent robustness of linear
MPC. In [Giselsson and Rantzer, 2012] stability is shown without the
use of a terminal constraint set which in many applications increases
the region of attraction since there are no constraints on the end point.
Using ideas from [Mayne et al., 2006] we also propose an output feedback
DMPC controller that is shown to be robustly stable and robustly feasible
for small disturbances. Stability is shown by containing the estimation
error within a positively robust invariant set and view the estimation
error as a (bounded) disturbance. The inherent robustness of linear MPC
is then used to show robust stability. To cope with the output feedback
case, we restrict our treatment to systems with input couplings only since
this allows for decentralized observer design. Such system descriptions
arise, for instance, when flow between subsystems is controlled. The flow
might be power in an electric network [Almassalkhi and Hiskens, 2011],
water in hydro power valley [Petrone, 2010] or intermediate products in a
supply chain [Dunbar and Desa, 2005].
The paper is organized as follows. In Section 2 we formulate the prob-

lem and present useful results from [Giselsson and Rantzer, 2012]. In
Section 3 we show robust stability and robust feasibility in the state feed-
back case. These results are used in Section 4 to show robust stability and
feasibility in the output feedback case. A numerical example is provided
in Section 5 and the paper is concluded in Section 6.

2. Setup and Preliminaries

We consider linear dynamical systems, where each subsystem i = 1, . . . ,M
is described by

xit+1 = Aiixit +
∑

j∈N i

Bi ju
j
t +wit xi0 = x̄i

yit = Cixit + ξ it

where xit ∈ Rni , uit ∈ Rmi , wit ∈ Rni , yit ∈ Rpi , ξ it ∈ Rpi , and N i is the
neighboring interaction defined by

N i = { j ∈ {1, . . . ,M} p Bi j ,= 0}.
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We assume that the system has some sparsity structure, i.e., that some
Bi j = 0. We introduce the global variables

x = [(x1)T , . . . , (xM )T ]T , u = [(u1)T , . . . , (uM )T ]T ,
w = [(w1)T , . . . , (wM )T ]T , y = [(y1)T , . . . , (yM)T ]T ,
ξ = [(ξ 1)T , . . . , (ξM )T ]T

where x ∈ Rn, u ∈ Rm, w ∈ Rn, y ∈ Rp and ξ ∈ Rp. This gives the
following global system

xt+1 = Axt + But +wt x0 = x̄ (1)
yt = Cxt + ξ t (2)

where the matrices A and C are block-diagonal and B is sparse. We as-
sume hereafter that the pair (A, B) is stabilizable and the pair (A,C)
is detectable. The local control and state variables as well as the distur-
bances are constrained, i.e., ui ∈U i, xi ∈ X i, wi ∈W i and ξ i ∈ Ξi where

X i = {xi ∈ R
ni p Fxi xi ≤ �xi }, U i = {ui ∈ R

mi p Fui ui ≤ �ui },
W i = {wi ∈ R

ni p Fwi wi ≤ �wi }, Ξi = {ξ i ∈ R
pi p Fξ

i ξ i ≤ �ξ
i }

where Fxi ∈ R
n f
xi
$ni , �xi ∈ R

n f
xi , Fui ∈ R

n f
ui
$mi , �ui ∈ R

n f
ui , Fwi ∈ R

n f
wi
$ni ,

�wi ∈ R
n f
wi , Fξ

i ∈ R
n f

ξ i
$pi and �ξ

i ∈ R
n f

ξ i . We denote the total number of
inequalities in X i andU i for all i = 1, . . . ,M by q, i.e., q =

∑
i(n fxi +n fui ).

The global constraint sets X ,U,W and Ξ are defined as the set product
of their respective local constraint sets. By introducing the predicted state
and control vectors

z = [zT0 , . . . , zTN−1]T v = [vT0 , . . . ,vTN−1]T (3)

we formulate the following optimization problem which was used in the
DMPC formulation in [Giselsson and Rantzer, 2012]

VN(x) := min
z,v

JN(z,v)
s.t. zτ ∈ X , τ = 0, . . . ,N − 1,

vτ ∈U, τ = 0, . . . ,N − 1,
zτ+1 = Azτ + Bvτ , τ = 0, . . . ,N − 2,
z0 = x.

(4)
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We denote the optimal state and control at time step τ for (4) by z∗τ (x) and
v∗

τ (x) respectively. The cost in (4) is assumed quadratic and separable

JN(z,v) :=
N−1∑

τ=0
{(zτ ,vτ ) =

N−1∑

τ=0

M∑

i=1
{i(ziτ ,viτ )

=
N−1∑

τ=0

M∑

i=1

(
1
2
(ziτ )TQiziτ +

1
2
(viτ )TRiviτ

)

where Qi ≻ 0 and Ri ≻ 0. Problem (4) can be solved efficiently in dis-
tributed fashion using the method developed in [Giselsson et al., 2012]
which was also used in [Giselsson and Rantzer, 2012]. A short description
of the optimization algorithm is given below. By introducing the vector
χ = [zT ,vT ]T the optimization problem (4) can more compactly be written
as

VN(x̄) := min
χ

1
2χ
THχ

s.t. Aχ = bx
Fχ ≤ g

where H and F are block-diagonal and A has the same structure as B in
(1). We introduce dual variables µ ∈ R

Nq
≥0 for the inequality constraints

and λ ∈ Rn(N−1) for the equality constraints. As shown in [Giselsson et al.,
2012] the dual problem can be written as

max
λ,µ≥0

−1
2
(ATλ+ FTµ)TH−1(ATλ+ FTµ) − λTbx − µTg. (5)

The dual function was in [Giselsson et al., 2012] shown to have Lipschitz
continuous gradient with Lipschitz constant L = q[AT FT ]TH−1[AT FT ]q
and can hence be maximized using accelerated gradient methods. The
algorithm from [Giselsson et al., 2012] is presented here

χk = −H−1
(
FTµk + ATλk

)
(6)

χ̄k = χk + k− 1
k+ 2 (χ

k − χk−1) (7)

λk+1 = λk + k− 1
k+ 2 (λ

k − λk−1) + 1
L

(
Aχ̄k − bx

)
(8)

µk+1 = max
[
0,µk + k− 1

k+ 2 (µ
k − µk−1) + 1

L

(
Fχ̄k − g

) ]
(9)

where k denotes the iteration number. Due to the structure of the matri-
ces A,F and H the algorithm can be implemented in distributed fashion
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where communication between subsystems i and j takes place if j ∈ N i
or i ∈ N j , see [Giselsson et al., 2012] for details. Further results from
[Giselsson et al., 2012] shows that the algorithm converges as O( 1

k2
) in

dual function value. This is a significant enhancement compared to if the
classical gradient method was used which converges as O( 1

k
).

In [Giselsson and Rantzer, 2012] feasibility, stability and performance
of the closed loop system when solving (4), which has neither terminal
cost nor terminal constraints, using (6)-(9) was established. Since (6)-(9)
gives a primal feasible solution only in the limit of iterations, an adaptive
constraint tightening approach was used to ensure feasibility, stability,
and performance with finite number of algorithm iterations. However, in
this paper we state all results as if the optimal solution to (6)-(9) is found
in each iteration. The generalization to allow for early termination using
the stopping condition in [Giselsson and Rantzer, 2012] is straightforward
but requires quite some notation to be introduced. We introduce

XN := {x ∈ R
n p VN(x) < ∞ and Az∗N−1(x) ∈ X }.

We also define the infinite horizon steerable set

X∞ := {x ∈ R
n p V∞(x) < ∞}

and the following definition.

DEFINITION 1
The constant ΦN is the smallest constant such that the optimal solution
{z∗τ (x)}N−1τ=0 , {v∗

τ (x)}N−1τ=0 to (4) for given N and every x ∈ XN satisfies

{∗(z∗N−1(x)) ≤ ΦN{(x,v∗
0(x)). (10)

We introduce the optimal feedback control law νN(x) := v∗
0(x) and define

the nominal and actual next states

x̄t+1 := Axt + BνN(xt)
xt+1 := Axt + BνN(xt) +wt

where wt ∈W . We define κ = qQ−1/2ATQAQ−1/2q and state the following
result from [Giselsson and Rantzer, 2012, Corollary 1].
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THEOREM 1
Suppose that α ≤ 1− κ ΦN . Then

VN(x) ≥ VN(Ax + BνN(x)) +α {(x,νN(x))

holds for every x ∈ XN .

Throughout the remainder of the paper we assume that α > 0 and N are
chosen in accordance with Theorem 1.

ASSUMPTION 1
We assume that the disturbance sets W ,Ξ are bounded and that 0 ∈
intW , 0 ∈ intΞ . Further we assume that Bni∞(rx) ⊂ X i, Bmi∞ (ru) ⊂U i for
some rx, ru > 0 where Bn∞(r) is defined in (11).

2.1 Notation

We denote by R the real numbers and by R≥0 non-negative real numbers.
The norm q⋅q refers to the Euclidean norm or the induced Euclidean norm
unless otherwise is specified. The norm ball is defined as

Bnl (r) := {x ∈ R
n p qxql ≤ r}. (11)

The ⊕ denotes the Minkowski sum defined by X 1 ⊕ X 2 , {x1 + x2 p x1 ∈
X 1, x2 ∈ X 2} and ⊖ denotes the Pontryagin difference defined by

X 1 ⊖ X 2 , {x p {x} ⊕ X 2 ⊆ X 1}. (12)

Finally hX (θ) is the support function which is defined as

hX (θ) , sup
x∈X

θT x.

REMARK 1
For polytopic sets X 1 = {x ∈ Rn p X1x ≤ y1}, X 2 = {x ∈ Rn p X2x ≤ y2}
we have from [Kolmanovsky and Gilbert, 1998, Theorem 2.3] that

X 1 ⊖ X 2 = {x ∈ R
n p [X1] j x ≤ [y1] j−hX 2([X1]Tj ), j = 1, . . . , p}

where X1 has p rows, [X1] j is the j:th row of X1 and [y1] j is the j:th
element of y1. Thus, X 1 ⊖ X 2 and X 1 can be described using the same
number of linear inequalities.
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3. Robust State Feedback DMPC

In this section we consider the state feedback problem, i.e., with C =
I and ξ = 0 in (2). We will see that by tightening the constraints in
the optimization problem we can guarantee robust stability and robust
feasibility. We start by investigating robust feasibility.

3.1 One-step Robust Feasibility

To guarantee that the system is one-step robustly feasible, a constraint
tightening approach is used. We introduce the sets X i⊖W i for i = 1, . . . ,M
which can be computed as in Remark 1. Since the number of constraints
that describes X i ⊖W i is the same as the number of constraints that de-
scribes X i, these tightened constraint sets can be used in the optimization
without increasing the complexity. Defining the corresponding global con-
straint set X ⊖W as the set product of the local sets, we get the following
optimization problem with tightened constraints

VN(x) := min
z,v

JN(z,v)
s.t. zτ ∈ X ⊖W , τ = 0, . . . ,N − 1,

vτ ∈U, τ = 0, . . . ,N − 1,
zτ+1 = Azτ + Bvτ , τ = 0, . . . ,N − 2,
z(0) = x.

(13)

The state constraint set is changed in (13) compared to in (4). Thus, we
get a different control law νN , infinite horizon steerable set X∞, set XN ,
and value function VN . To avoid introducing new notation we use the same
notation but the quantities are in this section based on optimization prob-
lem (13) instead of (4). The following proposition shows one-step robust
feasibility.

PROPOSITION 1
For any xt ∈ XN we have that xt+1 ∈ X for any disturbance wt ∈W .

PROOF
From the problem formulation we have that x̄t+1 ∈ X ⊖W . From [Kol-
manovsky and Gilbert, 1998, Theorem 2.1] we know that (X ⊖W )⊕W ⊆
X . Further, xt+1 = x̄t+1 + wt ∈ (X ⊖W ) ⊕W ⊆ X . This concludes the
proof. �

This shows that if the optimization problem is feasible, we get one-step
robust feasibility.
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3.2 Robust Stability

For systems with linear dynamics, quadratic cost and polytopic constraints
we know that the value function is continuous [Grimm et al., 2004,Bem-
porad et al., 2002]. Thus, for every x ∈ XN ⊖W we have for some finite
βw ≥ 0 that

max
w∈W

VN(x +w) − VN(x) ≤ βw (14)

since x + w ∈ XN for any x ∈ XN ⊖W and w ∈ W . This observation
is used to prove inherent robustness of the closed loop system to small
disturbance setsW . To show robust stability we need to introduce some
sets. The first is the following ellipsoid

E(γ ) := {x ∈ R
n p (α − ǫ){∗(x) ≤ γ } (15)

where {∗(x) = 1
2 x
TQx, ǫ > 0 is small and α > ǫ is from Theorem 1. The

second is the value function level sets

Ω(c) := {x ∈ R
n p VN(x) ≤ c}.

We also introduce the following recursive definition of the maximal posi-
tively robust invariant set

Xrf = {x ∈ XN p {Ax + BνN(x)} ⊕W ⊆ Xrf}.

Before we state the theorem about asymptotic convergence, we need the
following assumption.

ASSUMPTION 2
We assume that the disturbance set W is small enough to guarantee
Ω(δ ) ⊂ Xrf where δ = 2maxx∈E(βw) VN(x).

THEOREM 2
Suppose that Assumption 2 holds. Then for any initial condition x0 ∈ Xrf,
the closed loop system is asymptotically converging to Ω(δ ), where δ =
2maxx∈E(βw) VN(x). Further, xt ∈ X for all t ≥ 0.
PROOF
For any xt ∈ Xrf\E(βw) we have

VN(xt) ≥ VN(x̄t+1) +α {(xt,νN(xt))+
+max
w∈W

VN(x̄t+1 +wt) −max
w∈W

VN(x̄t+1 +wt)

≥ max
w∈W

VN(x̄t+1 +wt) +α {∗(xt) − βw

≥ VN(xt+1) + ǫ{∗(xt) ≥ VN(xt+1) +
ǫβw

α − ǫ

176



4. Output Feedback DMPC

where the first inequality comes from Theorem 1 since xt ∈ Xrf\E(βw) ⊆
XN . The second inequality is by definition of {∗ and from (14) since by
definition of Xrf and of ⊖ we have x̄t+1 ∈ Xrf ⊖W ⊆ XN ⊖W . The third
and fourth inequalities are from (15) since xt /∈ E(βw). By definition of
δ we have E(βw) ⊆ Ω(δ /2) which implies Xrf\Ω(δ /2) ⊆ Xrf\E(βw). This
implies that for any xt ∈ Xrf\Ω(δ /2) we have

VN(xt) ≥ VN(xt+1) +
ǫβw

α − ǫ

. (16)

By definition of Xrf we have xt+1 ∈ Xrf which implies that the preced-
ing argument can be applied recursively. Thus, for any initial state x0 ∈
Xrf\Ω(δ /2) there is a finite time t = t0 such that xt0 ∈ Ω(δ /2). Note that
if x0 ∈ Ω(δ /2) we get t0 = 0.
The system state can leave Ω(δ /2) ones entered. However, the depar-

ture from this set is bounded. We have that

δ

2
= max
x∈Ω(δ 2)

VN(x) ≥ max
x∈Ω(δ 2)

{∗(x) ≥ max
x∈E(βw)

{∗(x) = βw
α − ǫ

.

This gives that for every xt ∈ Ω(δ /2) we have

max
w∈W

VN(x̄t+1 +wt) ≤ VN(xt) −α {(xt,νN(xt)) + βw ≤ VN(xt) + βw

≤ δ

2
+ βw ≤

δ

2
(1+α − ǫ) ≤ δ .

Thus, for xt ∈ Ω(δ /2) we have xt+1 ∈ Ω(δ ) for any w ∈ W . Since by
Assumption 2 we have Ω(δ ) ⊂ Xrf get from (16) that system never leaves
Ω(δ ).
To show that xt ∈ X for all t ≥ 0 we note due to the definition of Xrf

that x̄t+1 ∈ Xrf ⊖W for any t ≥ 1. This implies that xt+1 = x̄t+1 + wt ∈
(Xrf ⊖W ) ⊕W ⊆ Xrf ⊆ X for any t ≥ 1.
This completes the proof. �

In the following section we will see that the result presented in this
section can be used to prove robust stability and robust feasibility for
output feedback DMPC.

4. Output Feedback DMPC

We will use the result presented in the previous section to prove feasi-
bility and stability properties in the output feedback setting. We start by
designing the observer.
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4.1 Observer Design

A crucial part for keeping the resulting output feedback controller sim-
ple is that the observer design can be performed in decentralized fash-
ion. With the assumed structure on the dynamics, i.e., block-diagonal A-
matrix, we can design local observers for each subsystem. In each subsys-
tem the following observer is used

x̂it+1 = Aii x̂it +
∑

j∈N i

(
Bi ju

j
t

)
+ Ki(yit − Ci x̂it).

The information, besides the local information, needed to update the local
estimates are the control action from neighboring nodes. This information
is available in node i from the optimization algorithm communications.
The local observers together form the following global observer

x̂t+1 = Ax̂t + But + K (yt − Cx̂t) (17)

where K = blkdiag(K1, . . . , KM). The error dynamics for the observer is
purely local. We introduce the local error variables as x̃i = xi− x̂i and get
the following local error dynamics

x̃it+1 = Aiixit +
∑

j∈N i

(
Bi ju

j
t

)
+wit − Aii x̂it −

∑

j∈N i

(
Bi ju

j
t

)
− Ki(yit − Ci x̂it)

= (Aii − KiCi)x̃it − Kiξ it +wit.

This shows that the poles of the observer dynamics can be placed arbi-
trarily using a block-diagonal observer gain K . For given Ki such that
ρ(Aii− KiCi) < 1 there exists a robust invariant set for the estimation er-
ror [Kolmanovsky and Gilbert, 1998]. In [Raković et al., 2005] it was shown
how an invariant outer approximation of the minimal robust invariant set
can be computed. The minimal robust invariant set is (cf. [Raković et al.,
2005])

R i =
∞⊕

j=0
F ji

where F ji := (Aii−KiCi) j [−KiΞi⊕W i]. In the approximation only a finite
number of terms in the Minkowski sum is used and the resulting set
sum is scaled to guarantee a certain accuracy of the approximation. The
approximation is

Rǫe

i =
1

1− κ i

si⊕

j=0
F ji
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where si and κ i can, for given accuracy ǫe, be computed without performing
the Minkowski summation (cf. [Raković et al., 2005]). The approximation
is also robust invariant and satisfies (cf. [Raković et al., 2005])

R i ⊆Rǫe

i ⊆ R i ⊕Bni∞(ǫe).

From the definition of a robust invariant set we get that if x̃i0 ∈ Rǫe

i we
have x̃it ∈ Rǫe

i for all t ≥ 0 and any disturbance sequences {ξ it}∞t=0, {wit}∞t=0.
We define the global robust invariant set as R = R 1 $ . . .$R M and the
approximation Rǫe accordingly. We get

R ⊆ Rǫe ⊆R ⊕Bn∞(ǫe)

since Bn∞(ǫe) = Bn1∞ (ǫe) $ . . .$BnM∞ (ǫe).

4.2 One-step Robust Feasibility

The feedback in the output feedback case is based on the estimated cur-
rent state x̂t. The objective of this section is to show how the original
constraints need to be tightened to guarantee feasibility of the next state
xt+1 and the estimated next state x̂t+1 for any disturbances w ∈W , ξ ∈ Ξ .
We rewrite the observer dynamics (17) as

x̂t+1 = Ax̂t + But + ŵt, ŵt = K (Cx̃t + ξ t) (18)

and introduce the following setW o = KCRǫe⊕KΞ and the corresponding
local setsW o,i = KiCiRǫe

i⊕KiΞi. We will see that the following optimization
problem gives one-step robust feasibility when the initial condition is the
estimated state:

VN(x̂) := min
z,v

JN(z,v)
s.t. zτ ∈ X ⊖W o ⊖Rǫe , τ = 0, . . . ,N − 1,

vτ ∈U, τ = 0, . . . ,N − 1,
zτ+1 = Azτ + Bvτ , τ = 0, . . . ,N − 2,
z0 = x̂.

(19)

REMARK 2
The tightened state constraint set X ⊖W o ⊖ Rǫe is the product of the
corresponding tightened local constraint sets X i⊖W o,i⊖Rǫe

i which can be
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computed efficiently by noting that

X ǫ

i ⊖W o,i ⊖Rǫe

i = X i ⊖ KiCiR
ǫe

i ⊖ KiΞi ⊖R
ǫe

i

= X ǫ

i

(
si⊖
j=0
( KiCi
1−κ i

F ji ) ⊖ KiΞi
si⊖
j=0
( 1

1− κ i
F ji )

)

= (X ǫ

i ⊖
KiCi

1− κ i
F 0i )

(
si⊖
j=1
( KiCi
1− κ i

F ji ) ⊖ KiΞi ⊖R
ǫe

i

)

where [Kolmanovsky and Gilbert, 1998, Theorem 2.1] is used in all steps.
This implies that the local tightened constraint set can be computed by
taking the Pontryagin difference ⊖ recursively set by set. The number of
inequalities that describes the final tightened constraint set is the same
as in X i due to Remark 1. This way, an explicit description of R

ǫe

i , which
can be very expensive to compute, is avoided.

The new optimization problem with tightened constraints gives a new
feedback control law νN , infinite horizon steerable set X∞, set XN and
value function VN . The notation is kept from previous sections, but the
respective definitions refer in this section to optimization problem (19).
Also, the definition of the recursively feasible set is different, we define

Xrf = {x̂ ∈ XN p ({Ax̂ + BνN(x̂)} ⊕Rǫe) ⊕W o ⊆ X
rf}.

We also define the one-step nominal prediction

x̄t+1 := Ax̂t + BνN(x̂t).

The following proposition shows that when using optimization problem
(19) one-step robust feasibility in plant state x and estimated state x̂ is
achieved regardless of disturbances w∈W , ξ ∈ Ξ .

PROPOSITION 2
Suppose that x̃t ∈Rǫe and x̂t ∈ XN . Then x̂t+1 ∈ X ⊖Rǫe and xt+1 ∈ X .

PROOF
From the problem formulation we have that x̄t+1 ∈ X ⊖Rǫe ⊖W o. Further
x̂t+1 = x̄t+1 + ŵt ∈ (X ⊖Rǫe ⊖W o) ⊕W o ⊆ X ⊖Rǫe . Since x̃t ∈Rǫe we have
x̃t+1 ∈ Rǫe and xt+1 = x̂t+1 + x̃t+1 ∈ X ⊖Rǫe ⊕Rǫe ⊆ X . This concludes the
proof. �

180



5. Numerical Example

4.3 Robust Stability

The estimation is affected by additive noise ŵt which satisfies ŵt ∈W o for
all t ≥ 0 if the estimation error x̃t ∈Rǫe for all t ≥ 0. From the discussion
in Section 3 we conclude that for every x ∈ XN ⊖W o we have with finite
βwo ≥ 0 that

max
ŵ∈W o

VN(x + ŵ) − VN(x) ≤ βwo .

In the following theorem we show that the estimated state x̂t and plant
state xt converges to robust invariant sets. Before we state the theorem,
the following assumption is needed.

ASSUMPTION 3
We assume that the disturbance setsW and Ξ are small enough to guar-
antee Ω(δ ) ⊂ Xrf where δ = 2maxx∈E(βw0 ) VN(x).

THEOREM 3
Suppose that Assumption 3 holds and that x̃0 = x0 − x̂0 ∈ Rǫ. Then
for any x̂0 ∈ Xrf the state estimation x̂t converges to Ω(δ ) where δ =
2maxx∈E(βwo ) VN(x) and the plant state xt converges to Ω(δ )⊕Rǫ. Further
xt ∈ X for all t ≥ 1.

PROOF
Since x̃0 ∈ Rǫ we have x̃t ∈ Rǫ for all t ≥ 0. This implies that the dis-
turbance to the estimated state (18) satisfies ŵt ∈ W o for all t ≥ 0.
Convergence of the estimated state x̂t to Ω(δ ) is then given by Theorem 2
since the situation for x̂t is analogous to the situation for xt in Theorem 2.
Further, Theorem 2 also gives together with the definition of Xrf that
x̂t ∈ Xrf ⊖Rǫe for all t ≥ 1.
Convergence of the plant state xt = x̂t+ x̃t to Ω(δ )⊕Rǫe follows directly

from the estimated state x̂t convergence to Ω(δ ) and since x̃t ∈Rǫe for all
t ≥ 0. That xt ∈ X for all t ≥ 1 follows directly from xt = x̂t + x̃t ∈
(Xrf ⊖Rǫe) ⊕Rǫe ⊆ Xrf ⊆ X .
This concludes the proof. �

5. Numerical Example

We evaluate the efficiency of the proposed output feedback controller by
applying it to a randomly generated system. The system is composed of
six subsystems with five states, one control signal, and one output each.
The measurement and system noise are bounded and within the following
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sets

Ξi = {ξ i ∈ R p pξ ip ≤ 0.01}, W i = {wi ∈ R
5 p qwiq∞ ≤ 0.01}

and the state and control constraint sets are

U i = {ui ∈ R p puip ≤ 0.1},
X i = {xi ∈ R

5 p − 0.11 ≤ [xi] j ≤ 2, j = 1, . . . , 5}.

The observer gain is chosen as Kalman gain computed using unit noise
variances. The tightened constraint set X ǫ

i ⊖ KiCiRǫe

i ⊖ KiΞi ⊖R
ǫe

i is com-
puted using accuracy ǫe = 0.0001 in Rǫe

i . The resulting set has upper
bounds on all state variables in the range [1.895, 1.959] and lower bounds
on the state variables in the range [−0.069,−0.005]. The nominal next
state must satisfy these constraints to ensure that the estimated and
true states satisfy the original constraints defined by X i. State and con-
trol costs are chosen, Q = I, R = I.
Numerical simulations suggest that for α = 0.5 we get N = 15 in

Theorem 1 and for α = 0.2 we get N = 6. In Figure 1 the largest and
smallest state values for each time step are plotted. The initial state vector
comes from a uniform distribution and is scaled such that the largest
element in the vector equals the original upper bound, i.e., 2 and the
smallest element in the vector equals the original lower bound, i.e., -0.11.
We also analyze the size of the region of attraction and compare it to

standard MPC where the terminal set is chosen as the maximal positive
invariant set for the LQ-feedback computed using Q = I, R = I (see
[Gilbert and Tan, 1991]). The system is initialized with 40000 different
initial conditions and each element in the initial state vector is chosen
from a uniform distribution in the interval [−0.11 2], i.e., in the original
constraint set. We have made two comparisons, the first is with α = 0.2
which gives N = 6. Using N = 6 our controller managed to steer 98.9%
of the initial conditions to the origin while respecting all constraints. The
corresponding number in standard MPC with terminal constraint set and
N = 6, was that 21.9% of the initial conditions were controlled to the
origin. In the case for α = 0.5 which gives N = 15 our controller managed
to steer 98.9% of the initial conditions to the origin. For standard MPC
with N = 15 the corresponding number was 52.8%. Note that the same
set of initial conditions was used for all controllers. This shows that by not
using a terminal constraint set, the region of attraction can be increased
significantly while the computational burden is reduced.
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Figure 1. Region within which all state trajectories are confined for N = 15 in the
output feedback case. Guaranteed upper and lower bounds for the all state variables
are −0.11 ≤ x ≤ 2.

6. Conclusions

A robust distributed output feedback DMPC controller is proposed where
the nominal behavior is optimized and the optimization problem has no
terminal constraint set or terminal cost. Nominal stability for such DMPC
formulations was proven in [Giselsson and Rantzer, 2012]. The results in
[Giselsson and Rantzer, 2012] are in this paper extended to show robust
stability in the state feedback case as well as the output feedback case.
The provided numerical example also suggests that the lack of terminal
constraint set can increase the region of attraction significantly.

183



Paper VI. Output Feedback Distributed Model Predictive Control

References

Almassalkhi, M. and I. Hiskens (2011): “Cascade mitigation in energy
hub networks.” In Proceedings of the 50th IEEE Control and Decision
Conference, pp. 2181–2188. Orlando, FL.

Bemporad, A., M. Morari, V. Dua, and E. Pistikopoulos (2002): “The ex-
plicit linear quadratic regulator for constrained systems.” Automatica,
38:1, pp. 3–20.

Doan, M. D., T. Keviczky, I. Necoara, M. Diehl, and B. De Schutter
(2009): “A distributed version of Han’s method for DMPC using local
communications only.” Control Engineering and Applied Informatics,
11:3, pp. 6–15.

Dunbar, W. (2007): “Distributed receding horizon control of dynamically
coupled nonlinear systems.” IEEE Transactions on Automatic Control,
52, pp. 1249–1263.

Dunbar, W. B. and S. Desa (2005): “Distributed model predictive control
for dynamic supply chain management.” In Proceedings of the Inter-
national Workshop on Assessment and Future Directions of NMPC.
Freudenstadt-Lauterbad, Germany.

Gilbert, E. and K. Tan (1991): “Linear systems with state and control
constraints: the theory and application of maximal output admissible
sets.” IEEE Transactions on Automatic Control, 36:9, pp. 1008–1020.

Giselsson, P., M. D. Doan, T. Keviczky, B. De Schutter, and A. Rantzer
(2012): “Accelerated gradient methods and dual decomposition in dis-
tributed model predictive control.” Automatica. To appear. Available:
http://www.control.lth.se/Staff/PontusGiselsson.html.

Giselsson, P. and A. Rantzer (2012): “On feasibility, stability and per-
formance in distributed model predictive control.” Submitted to IEEE
Transactions on Automatic Control. Available: http://www.control.

lth.se/Staff/PontusGiselsson.html.

Grimm, G., M. J. Messina, S. E. Tuna, and A. R. Teel (2004): “Examples
when nonlinear model predictive control is nonrobust.” Automatica,
40:10, pp. 1729–1738.

Kolmanovsky, I. and E. G. Gilbert (1998): “Theory and computation of
disturbance invariant sets for discrete-time linear systems.” Mathe-
matical Problems in Engineering, 4:4, pp. 317–367.

Mayne, D., S. Raković, R. Findeisen, and F. Allgöwer (2006): “Robust out-
put feedback model predictive control of constrained linear systems.”
Automatica, 42:7, pp. 1217–1222.

184



References

Mayne, D., M. Seron, and S. Raković (2005): “Robust model predictive
control of constrained linear systems with bounded disturbances.”
Automatica, 41:2, pp. 219–224.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000):
“Constrained model predictive control: Stability and optimality.” Auto-
matica, 36:6, pp. 789–814.

Negenborn, R., B. De Schutter, and J. Hellendoorn (2008): “Multi-agent
model predictive control for transportation networks: Serial versus
parallel schemes.” Engineering Applications of Artificial Intelligence,
21:3, pp. 353–366.

Petrone, F. (2010): “Model predictive control of a hydro power valley.”.
Master’s thesis, Politecnico di Milano, Italy.

Raković, S. V., E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne (2005):
“Invariant approximations of the minimal robust positively invariant
set.” Automatic Control, IEEE Transactions on, 50:3, pp. 406–410.

Richards, A. and J. How (2007): “Robust distributed model predictive
control.” International Journal of Control, 80:9, pp. 1517–1531.

R.M. Hermans, M. Lazar, A. J. (2010): “Almost decentralized Lyapunov-
based nonlinear model predictive control.” In Proceedings of the 29th
American Control Conference. Baltimore.

Venkat, A., I. Hiskens, J. Rawlings, and S. Wright (2006): “Distributed
output feedback MPC for power system control.” In Proceedings of the
45th IEEE Conference on Decision and Control, pp. 4038–4045.

185





Paper VII

A Distributed Accelerated Gradient

Algorithm for DMPC of a Hydro

Power Valley

Minh Dang Doan, Pontus Giselsson, Tamás Keviczky,

Bart De Schutter, and Anders Rantzer

Abstract

A distributed model predictive control (DMPC) approach based on
distributed optimization is applied to the power reference tracking
problem of a hydro power valley (HPV) system. The applied optimiza-
tion algorithm is based on accelerated gradient methods and achieves
a convergence rate of O

(

1
k2

)

, where k is the iteration number. Major
challenges in the control of the HPV include a nonlinear and large-
scale model, nonsmoothness in the power-production functions, and
a globally coupled cost function that prevents distributed schemes to
be applied directly. We propose a linearization and approximation ap-
proach that accommodates the proposed DMPC framework and pro-
vides very similar performance compared to a centralized solution
in simulations. The provided numerical studies also suggest that for
the sparsely interconnected system at hand, the distributed algorithm
we propose is faster than a centralized state-of-the-art solver, namely
CPLEX.

Submitted to Control Engineering Practice.
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1. Introduction

1. Introduction

Hydro power plants generate electricity from potential energy and kinetic
energy of natural water, and often a number of power plants are placed
along a long river or a water body system to generate the power at dif-
ferent stages. Currently, hydro power is one of the most important means
of renewable power generation in the world. In order to meet the world’s
electricity demand, hydro power production should continue to grow due
to the increasing cost of fossil fuels. However, hydro electricity, like any re-
newable energy, depends on the availability of a primary resource, in this
case: water. Most natural locations where power-generating infrastruc-
ture can be built economically have already been utilized [PEW Center
on Global Climate Change, 2011]. The expected trend for future use of
hydro power is to build small-scale plants that can generate electricity for
a single community. Thus, an increasingly important objective of hydro
power plants is to manage the available water resources efficiently, while
following an optimal production profile with respect to changes in the elec-
tricity market, to maximize the long-term benefit of the plant. This water
resource management must be compatible with ship navigation and irri-
gation, and it must respect environmental and safety constraints on levels
and flow rates in the lakes and the rivers. This is why real-time control
of the water flows in a hydro power valley (HPV) becomes important and
can increase significantly the power efficiency of these systems.
An HPV may contain several rivers and lakes, spanning a wide geo-

graphical area and exhibiting complex dynamics. In order to tackle the
plant-wide control of such a complex system, an HPV is often treated as a
large-scale system consisting of interacting subsystems. Large-scale sys-
tem control has been an active research area that has resulted in a variety
of control techniques, which can be classified in three main categories:
decentralized control, distributed control, and centralized control. Appli-
cation of these approaches can be found in a rich literature on control of
water canals for irrigation and hydro systems [Mareels et al., 2005,Litrico
and Fromion, 2009]. We are interested in applying model predictive control
(MPC), a control method that has been successfully used in industry [Qin
and Badgwell, 2003], thanks to its capability of handling hard constraints
and the simple way of incorporating an economical objective by means of
an optimization problem. For the control problem of open water systems,
centralized MPC has been studied in numerical examples using nonlin-
ear MPC approaches in combination with model smoothing and/or model
reduction techniques [Igreja and Lemos, 2009, Nederkoorn et al., 2011],
and in real implementations with linear MPC of low-dimensional systems
[van Overloop, 2006,van Overloop et al., 2010]. However, centralized MPC
has a drawback when controlling large-scale systems due to limitations
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in communications and the computational burden. These issues fostered
the studies of decentralized MPC and distributed MPC for large-scale wa-
ter systems. Early decentralized MPC methods for irrigation canals used
the decomposition-coordination approach to obtain decentralized versions
of LQ control [Fawal et al., 1998]. Several decentralized MPC simula-
tions applied to irrigation canals and rivers were presented in [Georges,
1994,Sawadogo et al., 1998,Gomez et al., 2002,Sahin and Morari, 2010].
Distributed MPC approaches based on coordination and cooperation for
water delivery canals were presented in [Georges, 1994,Negenborn et al.,
2009, Igreja et al., 2011,Anand et al., 2011]. The typical control objective
in these studies is to regulate water levels and to deliver the required
amount of water to the right place at some time in the future, i.e., the
cost function does not have any special term except the quadratic penal-
ties on the states and the inputs. On the other hand, in hydro power con-
trol, there are output penalty terms in the cost function that represent
the objective of manipulating power production. Recent literature taking
into account this cost function includes centralized nonlinear MPC with
a parallel version of the multiple-shooting method for the optimal control
problem using continuous nonlinear dynamics [Savorgnan et al., 2011],
and a software framework that formulates a discrete-time linear MPC
controller with the possibility to integrate a nonlinear prediction model
and to use commercial solvers to solve the optimization problem [Petrone,
2010]. The hydro power control problem considered in the current paper
is similar to the setup in [Savorgnan et al., 2011,Petrone, 2010]. However,
it distinguishes itself by using a distributed control structure that aims
to avoid global communications and that divides the computational tasks
into local sub-tasks that are handled by subsystems, making the approach
more suitable for scaling up to even more complicated hydro power plants.
The distributed MPC design approach proposed in this paper is en-

abled by a distributed optimization algorithm that has recently been de-
veloped by the authors in [Giselsson et al., 2012]. This optimization al-
gorithm is designed for a class of strongly convex problems with mixed
1-norm and 2-norm terms in the cost function, which perfectly suits the
power reference tracking objective in the HPV control benchmark. The
underlying optimization algorithm in [Giselsson et al., 2012], although
being implemented in a distributed way, is proved to achieve the global
optimum with an O( 1

k2
) convergence rate, where k is the iteration num-

ber. This is a significant improvement compared to the distributed MPC
methods presented in [Doan et al., 2011,Doan et al., 2009,Giselsson and
Rantzer, 2010,Negenborn et al., 2008], which achieve an O( 1

k
) convergence

rate. There are three main challenges in applying distributed MPC using
the algorithm from [Giselsson et al., 2012] to the HPV benchmark prob-
lem. The first one is that the nonlinear continuous-time model yields a

190



2. Problem Description

relatively large linear model after spatial and temporal discretizations. We
present a decentralized model order reduction method that significantly
reduces the model complexity while maintaining prominent dynamics. The
second challenge is that the power production functions are nonsmooth,
which prevents gradient-based methods to be applied directly. A method to
overcome this difficulty and to enable optimal control using the algorithm
from [Giselsson et al., 2012] is also presented. The third challenge is that
the whole system should follow a centralized power reference which, if the
algorithm from [Giselsson et al., 2012] is applied directly, requires central-
ized communication. We propose a dynamic power division approach that
allows to track this centralized power reference with only distributed com-
munications. By means of numerical examples, we will demonstrate the
fast convergence property of the distributed algorithm which, when im-
plemented on a single core, can outperform a state-of-the-art centralized
solver (CPLEX) when solving the same optimization problem.
The remaining parts of the paper are organized as follows. In Section 2,

we describe the HPV system and the power reference tracking problem
that were formulated in the HPV benchmark problem [Savorgnan and
Diehl, 2011]. Section 3 provides a summary of the distributed optimiza-
tion framework that the authors have developed in [Giselsson et al., 2012].
In Section 4, we present our approach for modeling and model reduction
of the HPV system, followed by a reformulation of the MPC optimization
problem, and developing a distributed estimator so that the closed loop
distributed MPC scheme can be implemented using neighbor-to-neighbor
communications only. The simulation results are presented in Section 5,
which also features a comparison with centralized MPC and decentralized
MPC. Through the various aspects of the comparison including perfor-
mance, computational efficiency, and communication requirements, the
advantages of the distributed MPC algorithm will be highlighted. Sec-
tion 6 concludes the paper and outlines future work.

2. Problem Description

In this section, we provide a summary of the hydro power valley bench-
mark [Savorgnan and Diehl, 2011] and we present the linearized model
that serves as the starting point of our controller design.

2.1 Hydro Power Valley System

We consider a hydro power plant composed of several interconnected sub-
systems, as illustrated in Figure 1. The plant can be divided into 8 subsys-
tems, of which subsystem S1 is composed of the lakes L1, L2, the duct U1
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Figure 1. Overview of the HD-MPC hydro power valley system [Savorgnan and
Diehl, 2011]

connecting them, and the ducts C1,T1 that connect L1 with the reaches1

R1, R2, respectively. Subsystem S2 is composed of the lake L3 and the
ducts C2,T2 that connect L3 to the reaches R4,R5, respectively. There are
6 other subsystems, each of which consists of a reach and a dam at the end
of the reach. These six reaches R1,R2,R3,R4,R5, and R6 are connected
in series, separated by the dams D1, D2, D3, D4, and D5. The large lake
that follows the dam D6 is assumed to have a fixed water level, which will
absorb all the discharge. The outside water flows enter the system at the
upstream end of reach R1 and at the middle of reach R3.
There are structures placed in the ducts and at the dams to control the

flows. These are the turbines placed in the ducts T1,T2 and at each dam
for power production. In the ducts C1,C2 there are composite structures
that can either function as pumps (for transporting water to the lakes) or
as turbines (when water is drained from the lakes).
The whole system has 10 manipulated variables, which are composed

of six dam flows (qD1, qD2, qD3, qD4, qD5, qD6), two turbine flows (qT1,
qT2) and two pump/turbine flows (qC1, qC2). Further, the system has 9
measured variables, the water levels in the three lakes (hL1, hL2, hL3)
and the water levels at the end of each reach (hR1, hR2, hR3, hR4, hR5,
hR6).

2.2 Power Reference Tracking Problem

One of the control problems specified in [Savorgnan and Diehl, 2011] is the
1A reach is a river segment between two dams.
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power reference tracking problem. We introduce state variables x, which
consist of water levels in the lakes and reaches and water flows within the
reaches, and control variables q, which are the manipulated water flows.
The problem is to track a power production profile, pref(t), on a daily basis
using the following cost function:

J ,

∫ T

0
γ

∣∣∣∣∣p
ref(t) −

8∑

i=1
pi(x(t), q(t))

∣∣∣∣∣ dt+

+
8∑

i=1

∫ T

0
(xi(t) − xssi )TQi(xi(t) − xssi )dt+

+
8∑

i=1

∫ T

0
(qi(t) − qssi )TRi(qi(t) − qssi )dt (1)

subject to the nonlinear dynamics and linear constraints on outputs and
inputs as specified in [Savorgnan and Diehl, 2011]. The weights Qi,Ri, i =
1, . . . , 8, γ , and the testing period T are parameters of the benchmark.
The quadratic term in the cost function represents the penalties on

the state deviation from the steady state xss and the energy used for
manipulating the inputs away from the steady state flows qss. The 1-
norm term represents the power reference tracking mismatch, in which
the function pref is the power reference and the function pi represents
the locally produced/consumed power by a subsystem i ∈ {1, . . . , 8}. For
i = 1, 2 the produced/consumed power is (cf. [Savorgnan and Diehl, 2011])

pi(x(t), q(t)) = kCi(qCi(t))qCi(t)∆xCi(t) + kTiqTi(t)∆xTi(t) (2)

where qCi and qTi are the flows through ducts Ci and Ti, ∆xCi and ∆xTi
are the relative differences in water levels before and after ducts Ci and
Ti respectively, kTi is the power coefficient of the turbine Ti, and

kCi(qCi(t)) =
{
kTCi , qCi(t) ≥ 0
kPCi , qCi(t) < 0

(3)

is a discontinuous power coefficient that depends on whether the duct Ci
acts as a turbine (qCi(t) > 0) or as a pump (qCi(t) < 0). For i = 3, . . . , 8
we have

pi(x(t), q(t)) = kDi−2qDi−2(t)∆xDi−2(t) (4)

which is the power produced by the turbine located at dam Di−2. The
produced/consumed power functions given in (2) and (4) are nonlinear
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and even nonsmooth for subsystems 1 and 2 due to (3), thus complicating
a direct application of a standard MPC scheme.
Still, the complexity of the system and control objective suggests an op-

timization based control strategy, such as MPC. Further, the distributed
nature of the system makes it possible to consider distributed MPC tech-
niques. However, the stated optimization problem (1) is a nonlinear con-
tinuous time dynamic optimization problem, which in general is very hard
to solve. In the next sections we will discuss the modeling of the hydro
power valley that leads to a linearized model.

2.3 Nonlinear Hydro Power Valley Model

The model of the reaches is based on the one-dimensional Saint Venant
partial differential equation, representing the mass and momentum bal-
ance (see [Savorgnan and Diehl, 2011] for details):




�q(t, z)
�z + �s(t, z)�t = 0

1
�
�
�t

(
q(t, z)
s(t, z)

)
+ 1
2�

�
�z

(
q2(t, z)
s2(t, z)

)
+ �h(t, z)�z + If(t, z) − I0(z) = 0

(5)
with z the spatial variable, t the time variable, q the river flow (or dis-
charge), s the cross-section surface of the river, h the water level w.r.t.
the river bed, If the friction slope, I0(z) the river bed slope, and � the
gravitational acceleration constant.
The partial differential equation (5) is converted into a system of or-

dinary differential equations by using spatial discretization. To achieve
this, each reach is divided into 20 cells, yielding 20 additional states,
which are the water levels at the beginning of the cells. For details of
the spatial discretization and the equations for the resulting nonlinear
dynamical system the reader is referred to [Savorgnan and Diehl, 2011,
Section 2.1.1]. The resulting nonlinear dynamical system has in total 249
states, 10 inputs, and 9 outputs.

2.4 Model Linearization and Discretization

As mentioned in Section 2.3 a set of nonlinear ordinary differential equa-
tions that describe the hydro power valley dynamics is presented in [Sa-
vorgnan and Diehl, 2011, Section 2.1.1]. A linear continuous-time model
which is linearized around the steady state operating point (xss, qss) is also
provided in the HPV benchmark package [Savorgnan and Diehl, 2011].
Discretizing this model using zero-order-hold gives a discrete-time linear
system with 249 states and 10 inputs. The coupling of the subsystems is
through the inputs only. This implies that discretization using zero-order-
hold of the continuous-time system keeps the structure of the original
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system description. Thus, the resulting discrete time system has a block-
diagonal dynamics matrix, a block-diagonal output matrix, and a sparse
input matrix, and each subsystem i = 1, . . . , 8 can be expressed in the
following form:

xdi (k+ 1) = Aiixdi (k) +
8∑

j=1
Bi jq

d
j (k) (6)

ydi (k) = Cixdi (k)

in which the variables xd, qd, and yd stand for the deviation from the
steady-state values, and the subscripts i, j stand for the subsystem indices.
As mentioned the subsystems are coupled through the inputs only and at
least for some j ∈ {1, . . . , 8} we have Bi j = 0 for every i = 1, . . . , 8.
The use of a discrete-time linearized model enables controller design

with some specific approaches, which include our proposed distributed op-
timization technique presented in [Giselsson et al., 2012]. Before describ-
ing our main contributions, we now provide a summary of this distributed
optimization framework in the next section.

3. Distributed Optimization Framework for MPC

In this section, we describe the distributed optimization algorithm devel-
oped in [Giselsson et al., 2012] which is based on an accelerated gradient
method. The first accelerated gradient method was developed in [Nes-
terov, 1983] and further elaborated and extended in [Beck and Teboulle,
2009,Nesterov, 1988,Nesterov, 2005,Toh and Yun, 2010,Tseng, 2008]. The
main idea of the algorithm presented in [Giselsson et al., 2012] is to ex-
ploit the problem structure of the dual problem such that accelerated
gradient computations can be distributed to subsystems. Hence, the dis-
tributed algorithm effectively solves the centralized optimization problem.
Dual decomposition has been used in the past to tackle the complexity of
large-scale optimization problems arising in water supply networks [Car-
pentier and Cohen, 1993]. In our work however, in addition to simplifying
the local computations, we apply this decomposition philosophy in order
to distribute the decision-making process.
The algorithm in [Giselsson et al., 2012] is developed to handle opti-
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mization problems of the form

min
x,xa

1
2
xTHx+ �Tx+ γ qxaq1 (7)

s.t. Ax = b
Cx ≤ d
xa = Px− p

where x ∈ Rn and xa ∈ Rm are vectors of decision variables, and x is
partitioned according to:

x = [xT1 , . . . ,xTM ]T , (8)

and xi ∈ Rni . Further, the matrix H ∈ Rn$n is positive definite and
block-diagonal, the matrices A ∈ Rq$n, C ∈ Rr$n, and P ∈ Rm$n have
sparse structures, and � ∈ Rn, p ∈ Rm, b ∈ Rq, d ∈ Rr. We introduce
the partitions � = [�T1 , . . . ,�TM ]T , p = [pT1 , . . . , pTM ]T , b = [bT1 , . . . ,bTM ]T ,
d = [dT1 , . . . ,dTM ]T ,

H =




H1

. . .

HM


 , A =




A11 . . . A1M
...

. . .
...

AM1 . . . AMM




C =




C11 . . . C1M
...

. . .
...

CM1 . . . CMM


 , P =




P11 . . . P1M
...

. . .
...

PM1 . . . PMM




where the partitions are introduced in accordance with (8) and �i ∈ Rni ,
pi ∈ Rmi , bi ∈ Rqi , di ∈ Rri , Hi ∈ Rni$ni , Ai j ∈ Rqi$n j , Ci j ∈ Rri$n j

and Pi j ∈ Rmi$n j . The assumption on sparsity of A, C and P is that
Ai j = 0, Ci j = 0, and Pi j = 0 for some i, j and we assume that the
constraint matrices are built such that Aii ,= 0, Cii ,= 0, and Pii ,= 0 for
all i = 1, . . . ,M . Based on the coupling, we define for each subsystem a
neighborhood set, denoted by N i, as follows:

N i =
{
j ∈ {1, . . . ,M}p Ai j ,= 0 or A ji ,= 0 or Ci j ,= 0 or C ji ,= 0 or

or Pi j ,= 0 or Pji ,= 0
}
. (9)

We introduce dual variables λ ∈ Rq, µ ∈ Rr,ν ∈ Rm for the equality con-
straints, inequality constraints, and equality constraints originating from
the 1-norm cost in (7) respectively. We also introduce the dual variable
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partitions λ = [λT1 , . . . ,λTM ]T , µ = [µT1 , . . . , µTM ]T , and ν = [νT1 , . . . ,νTM ]T
where λ i ∈ Rqi , µ i ∈ Rri , and ν i ∈ Rmi . Based on [Giselsson et al., 2012],
the dual problem of (7) can be cast as minimization of the negative dual
function

f (λ , µ,ν) = 1
2
(AT1 λ + AT2 µ + PTν)TH−1(AT1 λ + AT2 µ + PTν)+

+ BT1 λ + BT2 µ + pTν (10)

where the dual variables are constrained to satisfy

λ ∈ R
q, µ ∈ R

r
+, ν ∈ [−γ ,γ ]m (11)

and R+ denotes the non-negative real orthant. The negative dual function
(10) has a Lipschitz continuous gradient with constant (cf. [Giselsson
et al., 2012])

L = q[AT CT PT ]TH−1[AT CT PT ]q2 (12)

and can hence be minimized using accelerated gradient methods. The
distributed accelerated gradient method as presented in [Giselsson et al.,
2012] is summarized below in a slightly different form.

ALGORITHM 1—DISTRIBUTED ACCELERATED GRADIENT ALGORITHM

Initialize λ0 = λ−1, µ0 = µ−1, ν0 = ν−1 and x−1 with the last values from
previous sampling time. For the first sampling time, these variables are
initialized by zeros.
In every node, i, the following computations are performed:
For k = 0, 1, 2, . . .

1. Compute

xki = −H−1i
( ∑

j∈N i

(
ATjiλ

k
j +CTjiµkj + PTjiν kj

))

x̄ki = xki +
k− 1
k+ 2 (x

k
i − xk−1i )

2. Send x̄ki to each j ∈N i, receive x̄kj from each j ∈N i
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3. Compute

λk+1i = λki +
k− 1
k+ 2 (λ

k
i − λk−1i ) + 1

L

( ∑

j∈N i

Ai j x̄
k
j − bi

)

µk+1i = max
{
0, µki +

k− 1
k+ 2 (µ

k
i − µk−1i ) + 1

L

( ∑

j∈N i

Ci j x̄
k
j − di

)}

ν k+1i = min
{

γ ,max
[
− γ ,ν ki +

k− 1
k+ 2 (ν

k
i −ν k−1i )+

+ 1
L

( ∑

j∈N i

Pi jx̄
k
j − pi

)]}

4. Send λk+1i , µk+1i , ν
k+1
i to each j ∈ N i, receive λk+1j , µk+1j , ν

k+1
j from

each j ∈N i.

The Lipschitz constant L of ∇ f is used in the algorithm. For MPC
purposes, we only need to compute L once in a centralized way and use
it through all MPC problem instances.
Besides the suitability for distributed implementation, another merit

of Algorithm 1 is its fast convergence rate. The main convergence results
of Algorithm 1 are given in [Giselsson et al., 2012], stating that both
the dual function value and the primal variables converge towards their
respective optima with the rate of O

(
1
k2

)
where k is the iteration index.

This convergence rate is much better than the convergence rate of classical
gradient-based optimization algorithms, which is O

(
1
k

)
.

4. Control of HPV using Distributed MPC

We have so far described the linear discrete-time model of the HPV in
Section 2 and the fast distributed optimization method, Algorithm 1, that
serves as a basis for designing a distributed model predictive controller to
be applied to the HPV. However, there are three major challenges for this
application. First, the linear discrete-time model cannot be directly used
in an MPC context due to the existence of a number of unobservable and
uncontrollable modes. These unobservable/uncontrollable modes are a re-
sult of the discretization in space and time. Second, the power functions
associated with the ducts C1 and C2 are nonsmooth (cf. (2) and (3)). The
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nonsmoothness is caused by the fact that the flow through C1 and C2 is
bidirectional and the powers consumed/produced do not have equivalent
coefficients. The third major challenge is the global coupling in the cost
function due to the fact that we have to track a central power reference
function that specifies the desired sum of locally generated power outputs.
This global coupling prevents a distributed implementation of Algorithm 1
since the sparsity in the constraints is lost. These issues are addressed in
the following sections.

4.1 Modification of the Linear Model

In this section we show how to create a model of the HPV that is suitable
for the DMPC framework presented in [Giselsson et al., 2012]. First we
present a model reduction technique that keeps the system structure, then
the nonsmooth power function is treated.

Decentralized Model Order Reduction

The block-diagonal structure of the discrete-time dynamical system (6)
makes it possible to perform model reduction on each subsystem indi-
vidually. We use balanced truncation [Gugercin and Antoulas, 2004] to
reduce the order of each local model (6).
Let us introduce Bi = [Bi1 . . .Bi8] and q = [(qd1)T . . . (qd8)T ]T to get the

following discrete-time linear model of each subsystem:

xdi (k+ 1) = Aiixdi (k) + Biqd(k) (13)
ydi (k) = Cixdi (k).

Applying the balanced truncation technique yields transformation matri-
ces denoted by T ri and T

r,inv
i for each subsystem, where T ri T

r,inv
i = I. By

denoting the new state variables, xri = T ri xdi , and the control variable
qr = q, we represent the reduced order model as:

xri (k+ 1) = Ariixri (k) + Bri qr(k) (14)
yri (k) = Cri xri (k) (15)

where Arii = T ri AiiT r,invi , Bri = T ri Bi and Cri = CiT r,invi . It should be noted
that the block-sparsity structure of Bri is the same as in the non-reduced
input matrix Bi, since the model reduction is performed for each local
model separately.
The model reduction gives a 32-state reduced model that approxi-

mately represents the dynamics of the full linear model with 249 states.

199



Paper VII. Distributed Control of a Hydro Power Valley

Treatment of Nonlinear and Nonsmooth Power Function

One of the difficulties in applying a linear MPC approach to the hydro
power valley is the nonsmoothness of the power functions associated with
the ducts C1 and C2. The nonsmoothness is caused by the fact that the flow
through C1 and C2 is bidirectional and the power generated or consumed
have different coefficients. The consumed/produced power in ducts C1 and
C2 is included in the expression for power generation (2) in subsystem 1
and subsystem 2, respectively. In order to handle this nonsmoothness, we
use a double-flow technique, which means introducing two nonnegative
variables to express the flow in Ci, i = 1, 2 at a sampling step k:

• qCiP(k): virtual flow such that Ci functions as a pump
• qCiT(k): virtual flow such that Ci functions as a turbine

The introduction of virtual flows requires the input-matrices Bri to be aug-
mented with two extra columns identical to the ones multiplying qCi , i =
1, 2 with the opposite sign to capture that pump action is also introduced
with a positive flow. The resulting reduced order model has 12 inputs
instead of the original 10. Using the introduced flows qCiP and qCiT , the
power function (2) for subsystems 1 and 2 can be rewritten as

pi(x(k), q(k)) =
(
kTCi qCiT(k) − kPCi qCiP(k)

)
∆xCi(k) + kTiqTi(k)∆xTi(t)

(16)

with the additional constraints that

qCiT(k) ≥ 0, qCiP(k) ≥ 0, qCiT(k)qCiP(k) = 0.

The last constraint expresses the fact that water flows in only one direction
at a time, i.e., that either the pump or the turbine is active. The resulting
nonlinear expression (16) can in turn be linearized around the steady-
state solution (xss, qss). Since qssCi = 0 for i = 1, 2 we get the following
linear local power production/consumption approximation for subsystems
i = 1, 2:

p̂i(x(k), q(k)) = ∆xssCi

[
kTCi − kPCi

] [ qCiT(k)
qCiP(k)

]
+

+ kTiqssTi
(
∆xTi(k) − ∆xssTi

)
+ kTi∆xssTi

(
qTi(k) − qssTi

)
+

+ kTiqssTi∆h
ss
Ti
.

This reformulation results in a linear expression with a nonlinear con-
straint, that is qCiT(k)qCiP (k) = 0, that approximates the original nons-
mooth nonlinear power production/consumption expression (2). We pro-
pose a method to handle the nonlinear constraint in Section 4.2.
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For subsystems i = 3, . . . , 8 we have smooth power production expres-
sions (4) that can be directly linearized without introducing virtual flows:

p̂i(x(k), q(k)) = kDiqssDi∆x
ss
Di
+ kDiqssDi

(
∆xDi(k) − ∆xssDi

)
+

+ kDi∆xssDi
(
qDi(k) − qssDi

)
.

4.2 HPV Optimization Problem Formulation

In this section we will formulate an optimization problem of the form
(7) that can be used for power reference tracking in the HPV benchmark
using MPC. We have obtained a linear discrete-time dynamical system
(14)-(15) for the HPV with state variables xr and control variables qr.
The constraints are upper and lower bounds on the outputs and inputs
and their values can be found in [Savorgnan and Diehl, 2011]. Using the
transformations matrices T ri and T

r,inv
i , these constraints can readily be

recast as linear constraints for the reduced order model variables xr, qr.
The power reference problem formulation (1) specifies a quadratic cost on
states and control variables and a 1-norm penalty on deviations from the
provided power reference, pref. For control horizon, N, this optimization
problem can be written as

min
x,xa

N−1∑

t=0

{
8∑

i=1

[
xri (k)TQixri (k) + qri(k)TRiqri(k)

]
+ γ qxa(k)q1

}
(17)

s.t. (14), (15) k = 0, . . . ,N − 1 i = 1, . . . , 8
Cri x

r
i (k) ∈ Y i k = 0, . . . ,N − 1 i = 1, . . . , 8

qi(k) ∈ Q i k = 0, . . . ,N − 1 i = 1, . . . , 8
xa(k) = pref(k) −

∑8
i=1 p̂i(xr(k), qr(k)) k = 0, . . . ,N − 1

qCiT(k)qCiP(k) = 0 k = 0, . . . ,N − 1 i = 1, . . . , 2

where Y i and Q i are sets representing the local output and input con-
straints, the additional variable xa captures the power reference tracking
mismatch, and the notation x represents the stack of variables xri (k) and
qri (k) for all i and k, while xa is the stacked variable of xa(k) for all k. Note
that we can write x = [xT1 , . . . ,xT8 ]T where each xi, i = 1, . . . , 8 includes all
the variables that belong to subsystem i.

Power Reference Division

Since the original cost function contains a non-separable 1-norm term,
the power reference constraints in the optimization problem (17) are cou-
pled between all subsystems. This implies that Algorithm 1 requires some
global communication even though the only information that is sent to the
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global coordinator is p̂i(xr(k), qr(k)) for k = 0, . . . ,N−1 from each subsys-
tem i = 1, . . . , 8.
In order to obtain a suitable dual problem, we first need to reformulate

the cost function in a separable form. For the sake of brevity, we focus on
one sampling step and drop the time index k. Thus for now our simplified
objective is to decompose the following problem:

min
{xi}i=1,...,8

∣∣∣∣p
ref −

8∑

i=1
Pix

∣∣∣∣ (18)

with x = [xT1 , . . . ,xT8 ]T , and Pi the matrix coefficient such that the power
function produced or consumed by each subsystem p̂i(xr(k), qr(k)) is lin-
earized as Pix(k).
In this section we present two different ways that avoid global com-

munication when solving this problem. In the first approach, we divide
and distribute the global power reference to the subsystems in a static
fashion. In the second approach, we show how the subsystems can trade
power references between neighbors to achieve a satisfactory centralized
reference tracking.

Static local power references. The idea here is straightforward. We
divide the global power reference into local ones, i.e., pref is divided into
local parts prefi , i = 1, . . . , 8. We have chosen to compute prefi such that it
satisfies

prefi (k)∑8
i=1 p

ref
i (k)

= pi(xss, qss)∑8
i=1 pi(xss, qss)

, for k = 0, . . . ,N − 1 (19)

with pi(xss, qss) the power produced by subsystem i in the steady-state
condition.
This means that the fraction of the total power reference given to sub-

system i is constant. The optimization problem is changed accordingly,
i.e., the following cost function can be used instead of (18):

min
{xi}i=1,...,8

8∑

i=1

∣∣∣∣p
ref
i − Pix

∣∣∣∣ (20)

with x = [xT1 , . . . ,xT8 ]T . This allows for a distributed implementation since
the matrix Pi introduces only local couplings, i.e., subsystem i needs only
neighboring and local water levels and local water flows to compute the
corresponding power output. The disadvantage of the static power ref-
erence division is that the global power reference tracking is not very
accurate, as will be shown in the simulations section.
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Dynamic local power references. The static power division essen-
tially means that each subsystem always tracks a fraction of power refer-
ence that is equal to the proportion it produces in the steady-state con-
dition. When the total power reference deviates significantly from the
steady-state power, this idea may not work well since the proportional
change of the local power reference can lead to sub-optimal performance.
Inspired by an idea in [Madjidian et al., 2011], we now introduce the dy-
namic power division, in which the subsystems have more flexibility in
choosing the appropriate local power reference to be tracked. The main
idea is that each subsystem will exchange power references with its direct
neighbors.
Let us define for each pair (i, j) with j ∈ N i a node that is in charge

of determining the power exchange variable between subsystems i and j,
denoted by δ i j if node i is in charge and by δ ji if node j is in charge2.
Then, for each subsystem we form the set3:

∆i = { j p j ∈N i, i is in charge of δ i j}. (21)

Now we replace (18) by the following cost function:

min
{xi,δ i}i=1,...,8

8∑

i=1

∣∣∣∣p
ref
i +

∑

j∈∆ i

δ i j −
∑

j∈N i\∆ i

δ ji − Pix
∣∣∣∣ (22)

with δ i the vector containing all δ i j , j ∈ ∆i, and prefi the nominal power
reference for subsystem i. In words, the local power reference for each sub-
system i deviates from the nominal value by adding the exchange amounts
of the links that i manages and subtracting the exchange amounts of the
links that affect i but that are decided upon by its neighbors. Note that
problem (22) has a sparse structure that complies with the existing sparse
structure of the HPV system, i.e., this method does not expand the neigh-
borhood set of each subsystem.
The advantage of this dynamic power division is that it makes use of

the existing network topology to form a sparse cost function, and the total
power reference is preserved even if the local power references can deviate
from the nominal values, i.e., we always have:

8∑

i=1

{
prefi +

∑

j∈∆ i

δ i j −
∑

j∈N i\∆ i

δ ji

}
= pref. (23)

2Note that here we discuss the power division for each sampling step, i.e., there are δ i j(k)
or δ ji(k) with k = 0, . . . ,N − 1.
3A simple way is to let the subsystem with smaller index lead the exchange, i.e., ∆i =

{ jp j ∈N i, j > i}.
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Table 1. Neighborhoods of subsystems (N i)
Subsystem GLOBAL–REF LOC–REF–DYN LOC–REF–STAT

1 {1, . . . , 8} {1, 3,4} {1, 3, 4}
2 {1, . . . , 8} {2, 6,7} {2, 6, 7}
3 {1, . . . , 8} {3, 1,4} {3, 1, 4}
4 {1, . . . , 8} {4, 1,3, 5} {4, 1, 3, 5}
5 {1, . . . , 8} {5, 4,6} {5, 4, 6}
6 {1, . . . , 8} {6, 2,7, 5} {6, 2, 7, 5}
7 {1, . . . , 8} {7, 2,6, 8} {7, 2, 6, 8}
8 {1, . . . , 8} {8,7} {8, 7}

Now that we have a separable cost function by using either a static or a
dynamic power division technique, we can cast the approximate optimiza-
tion problem in the form (7) that has a separable dual problem, and apply
Algorithm 1 at every sampling step. However, due to the requirement of
positive definiteness of the quadratic term in the objective function, the
introduced power exchange variables δ i j must be penalized with a positive
definite quadratic term. This implies that power reference exchange has
an associated cost.

Communication structures. In the preceding sections we have pre-
sented three different ways to handle the power reference term. The first
is the one with centralized power reference term which we hereby denote
by GLOBAL–REF. The second is the one with static local power references
which we denote by LOC–REF–STAT. The third is the dynamic local power
reference which from here on is denoted by LOC–REF–DYN. In Table 1
we provide an overview of the neighborhood setsN i for the different power
reference tracking schemes. We can see that all subsystems have the same
neighborhood sets for the dynamic local reference tracking and the static
local reference tracking.

Relaxation of Nonlinear Constraint

The second issue that hinders the optimization problem (17) from being
solved using Algorithm 1 are the nonlinear constraints qCiT(k)qCiP(k) = 0
with i = 1, 2. In this section we present a way to relax these constraints.
Assuming a diagonal cost, we have the following penalty on the pump

and turbine action in ducts Ci, i = 1, 2

RCi =
[
RCiT 0

0 RCiP

]
. (24)
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We also have the constraints that

qCiP(k) ≥ 0, qCiT(k) ≥ 0, qCiT(k)qCiP(k) = 0.

We relax this by removing the nonlinear constraint and adding a cross-
penalty α

√
RC1PRC1T for some α ∈ (0, 1) in the cost function, i.e., we set

RCi =
[

RCiT α
√
RCiPRCiT

α
√
RCiPRCiT RCiP

]
. (25)

This relaxation is implementable using the proposed algorithm since the
nonlinear constraint is removed and replaced by a cross-penalty. The
cross-penalty gives an additional cost if both qCiT and qCiP are non-zero.
The closer α is to 1, the larger the penalty. For α ≥ 1 it is easily verified
that we lose strong convexity on the quadratic cost function, i.e., RCi loses
positive definiteness and such choices for α are therefore prohibited.
The relaxation is not equivalent to the original nonlinear constraint

and thus cannot guarantee that the nonlinear constraint is respected us-
ing this relaxation. However, it turns out that the optimal solution using
the cross-penalty in the cost (25) in most simulated cases coincides with
the optimal solution when the nonlinear constraint qCiT(k)qCiP(k) = 0 is
enforced and the original diagonal cost (24) is used. In some cases, how-
ever, the optimal solution using the relaxation does not respect the non-
linear constraint. To address this, a two-phase optimization strategy is
developed and presented next.

Two-phase Optimization

We propose a two-phase optimization strategy as an ad-hoc branch and
bound optimization routine that uses two consecutive optimizations. In
the first optimization, the relaxed optimization problem is solved. If the
nonlinear constraints are respected, i.e., we get a solution that satisfies
qCiT(k)qCiP(k) = 0, the global optimal solution for the non-relaxed problem
is found. If some of the nonlinear constraints do not hold, the optimization
routine is restarted with the smallest flow, qCiT(k) or qCiP(k) for i = 1, 2,
k = 0, . . . ,N−1, set to zero. The resulting algorithm is summarized below.

ALGORITHM 2—DISTRIBUTED BRANCH AND BOUND ALGORITHM

1. Solve the relaxed problem using Algorithm 1

2. If qCiT(k) > qCiP(k), i = 1, 2, k = 0, . . . ,N − 1
Add constraint: qCiP(k) = 0

Else

Add constraint: qCiT(k) = 0
End
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3. Solve relaxed problem using Algorithm 1 with the additional flow
constraints

This ad-hoc branch and bound technique does not theoretically guarantee
that the optimal flow directions are chosen. However, we can guarantee
that the nonlinear constraints are always satisfied. Further, for the dis-
tributed MPC formulation we will see in the simulations section that the
global optimal solution for the non-relaxed problem is found at every time
step using this branch and bound algorithm.

4.3 Distributed Estimation

From Section 2 we know that not all states can be measured, which im-
plies that an observer needs to be used to feed an initial condition to
the optimizer. The reduced-order linear model (14)-(15) has local dynam-
ics and outputs only, which implies that an observer can be designed in
decentralized fashion. We introduce the local estimate x̂ri and the local
observer-gain Ki and the following local observer dynamics

x̂ri (k+ 1) = Arii x̂ri (k) + Bri qr(k) + Ki(yri (k) − Cri x̂ri (k)).

Because of the sparse structure of Bri this observer can be implemented
in a distributed fashion where only the inflows to subsystem i need to be
communicated. The estimation error x̃ri = xri − x̂ri has local error dynamics

x̃ri (k+ 1) = (Arii − KiCri )x̃ri (k).

Thus, the observer can be designed in a decentralized fashion and be
implemented in a distributed fashion.

5. Simulation Results

We perform distributed MPC simulations of the hydro power valley using
3 different ways of handling the power reference: GLOBAL–REF, LOC–
REF–DYN, and LOC–REF–STAT, using the proposed Algorithm 2. We
also solve the problem (17) using a state-of-the-art MIQP-solver, namely
CPLEX. In CPLEX the nonlinear constraints given in (17) can be ad-
dressed by introducing binary variables. More specifically, for each duct
Ci, i = 1, 2, we define two virtual flows, qCiP and qCiT , and require that
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both values are nonnegative. Each virtual flow has a maximum capacity,
hence the constraints for these flows are:

0 ≤ qCiP ≤ qmaxCiP
0 ≤ qCiT ≤ qmaxCiT

(26)

We introduce binary variables bi ∈ {0, 1} and impose the following con-
straints:

qCiT ≤ qmaxCiT bi
qCiP ≤ qmaxCiP (1− bi)

(27)

The constraints (26) and (27) ensure that either qCiP = 0, qCiT ≥ 0 (if
bi = 1) or qCiT = 0, qCiP ≥ 0 (if bi = 0).
This formulation results in an MIQP for which there are efficient

Branch-and-Bound algorithms implemented in CPLEX. To make the 1-
norm term in (17) fit the MIQP-formulation used in CPLEX we introduce
auxiliary variables v and use the following equivalent reformulation

min
x
qPx − pq1 Z[ min

x,v
1Tv

s.t.− v ≤ Px − p ≤ v

We also compare the proposed distributed MPC method to a decentralized
MPC approach in which each subsystem solves its own local MPC problem
without any communication, in order to show the advantage of DMPC
w.r.t. decentralized MPC.

5.1 Simulation Details

We use the original nonlinear continuous model presented in [Savorgnan
and Diehl, 2011] as simulation model. The ode-solver ode15s in MATLAB
is used to perform the simulations. A MATLAB function that computes
the derivatives needed by ode15s is provided in the benchmark package
[Savorgnan and Diehl, 2011]. The control system consists of the distributed
observer from Section 4.3 which feeds Algorithm 2, with estimates of the
current state.
Besides the mismatch between the model used for control and the

model used for simulation, we have also added bounded process noise
to capture mismatch between the simulation model and the real plant.
The magnitude of the worst case process noise was chosen to be 1% of the
steady-state level xss. We also use bounded additive measurement noise
where the measured water levels are within ±3 cm from the actual water
levels.
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(d) DMPC and GLOBAL–REF

Figure 2. Comparison of power reference tracking performance using DMPC and
decentralized MPC approaches. Solid lines: produced power, dashed lines: reference
power, dotted lines: steady state power.

We use a sampling time of 30 minutes in all simulations and the control
horizon is N = 10, i.e., 5 hours. The simulations are performed over a 24
hour period since the power reference trajectories are periodic with this
interval.
All simulations and optimizations were implemented on a PC running

MATLAB on Linux with an Intel(R) Core(TM) i7 CPU running at 3 GHz
and with 4 GB RAM.

5.2 Control Performance Comparison

The power reference tracking results are plotted in Figures 2(a)–2(d)
where the full power reference and the sum of the local power produc-
tions are plotted. The scheme GLOBAL–REF achieves very good track-
ing performance, while the scheme LOC–REF–STAT shows a significant
deterioration in tracking performance. However, the introduction of the
possibility to exchange power references in LOC–REF–DYN between sub-
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Table 2. Comparison of computation time between Algorithm 2 and CPLEX for
48 instances of the same problem

Algorithm 2 CPLEX for MIQP CPLEX for QP

min t (s) 0.023 0.087 0.049

max t (s) 0.086 0.121 0.089

average t (s) 0.054 0.098 0.063

std dev t (s) 0.017 0.009 0.009

systems restores the very good tracking performance while keeping the
computations distributed. The tracking performance of the decentralized
MPC approach is very poor, due to the lack of communications. Hence, it
is recommended not to use a decentralized MPC approach, unless commu-
nication is prohibited due to the lack of communication facilities or due
to the policy of different authorities.
In Appendices A.1 and A.2 there are figures that show the input and

output evolutions and the corresponding constraints with the scheme
LOC–REF–DYN. We can observe that all constraints are satisfied de-
spite disturbances, model mismatch, and the use of an observer. For the
schemes GLOBAL–REF and LOC–REF–STAT all the constraints on the
inputs and outputs are also satisfied.

5.3 Computational Efficiency

In Table 2 we provide a comparison of the execution times of the central-
ized MPC problem (17). We compare the distributed Algorithm 2 to the
solver CPLEX when solving (17), i.e., with power-division GLOBAL–REF.
To solve this problem using CPLEX, an MIQP formulation is used, and to
solve the problem using Algorithm 2, the relaxed problem is solved twice.
We also compare the above execution times to the case when we solve the
first relaxed problem in Algorithm 2, which is a QP, using CPLEX. At each
sampling step, the same problem is solved with the different solvers, and
the execution times t are measured. Although in this example the solvers
easily solve the problem within the time frame of the sampling time, we
can see that the computation time for our MATLAB-implemented algo-
rithm is lower than the C-implemented CPLEX for both the MIQP and
QP cases. As previously discussed, Algorithm 2 cannot guarantee that
the global optimum for (17) is found. However, in the DMPC simulations
presented in this section the global optimum of (17) is found at every
sampling step using Algorithm 2.
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Table 3. Number of iterations to solve the MPC optimization in one step

Alg. 1 with Alg. 1 with Alg. 1 with

GLOBAL–REF LOC–REF–DYN LOC–REF–STAT

average niter 311.3 579.1 942.5

max niter 498 1054 2751

std dev niter 93.8 210.9 440.8

5.4 Communication Requirements

The sizes of the optimization problems using power reference division
GLOBAL–REF, LOC–REF–DYN or LOC–REF–STAT are almost equal.
Comparing GLOBAL–REF to LOC–REF–STAT we get some additional
constraints due to the power reference division and comparing LOC–REF–
DYN to LOC–REF–STAT we get some additional decision variables δ i j to
enable distributed power reference re-assignment.
In Table 3 the number of iterations niter needed to obtain the solution

is presented. The mean and max values of niter and the standard devia-
tion are computed using 48 simulation steps, i.e., 24 hours. We can notice
that different DMPC schemes converge with different average numbers of
iterations. The reason is that for LOC–REF–STAT it is more difficult to
satisfy the different 1-norm terms with equality, i.e., to follow the local
power references. This implies that the corresponding dual variable ν be-
comes large (close or equal to γ ) and it takes more iterations to achieve
convergence. As a result, the scheme LOC–REF–STAT with a simpler
communication structure might require more communication resources
than e.g., GLOBAL–REF, which has a more complicated communication
structure but needs fewer iterations.
The scheme LOC–REF–DYN performs very well in terms of communi-

cation, computation, as well as performance aspects and is therefore the
chosen candidate for distributed implementation for the given case study.

6. Conclusions and Future Work

The proposed distributed MPC approach has been applied to the power
reference tracking problem of the HD-MPC hydro power valley bench-
mark. Two distributed schemes have been compared to centralized and
decentralized MPC methods. We have provided relaxations and approxi-
mations for the original nonlinear nonsmooth problem formulation as well
as proposed a way to follow a centralized power reference in a distributed
fashion. Furthermore, we have presented a practical branch-and-bound
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algorithm that solves all optimization problems encountered in the sim-
ulations and achieves as good performance as the centralized MPC that
is known to have global optimum. The simulation results show that the
introduced approximations and relaxations capture the behavior of the
system well and that very good control performance is achieved. Finally,
a comparison to state-of-the-art optimization software (CPLEX) shows
that the proposed algorithm has better execution times in general.
As the next step before implementation in real plants, the proposed

distributed MPC approach should be tested against different hydraulic
scenarios and other HPV setups. To cope with varying water flows en-
tering the system, these should be estimated and compensated for. Fur-
thermore, a weather model could be included that estimates the future
inflows to the system.
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Figure 3. Input constraint satisfaction using Algorithm 2 and power division
LOC–REF–DYN. Dash-dotted lines: upper bounds, dashed lines: lower bounds.
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Figure 4. Output constraint satisfaction using Algorithm 2 and power division
LOC–REF–DYN. Dash-dotted lines: upper bounds, dashed lines: lower bounds.
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Paper VIII

Gradient-Based Model Predictive

Control in a Pendulum System

Pontus Giselsson

Abstract

Model predictive control (MPC) is applied to a physical pendulum
system consisting of a pendulum and a cart. The objective of the MPC
controller is to steer the system towards precomputed, time-optimal
feedforward trajectories that move the system from one stationary
point to another. The sample time of the controller sets hard limita-
tions on the execution time of the optimization algorithm in the MPC
controller. The MPC optimization problem is stated as a quadratic
program, which is solved using the algorithm presented in [Giselsson,
2012a]. The algorithm in [Giselsson, 2012a] is an accelerated gradi-
ent method that is applied to solve a dual formulation of the MPC
optimization problem. Experiments show that the optimization algo-
rithm is efficient enough to be implemented in a real-time pendulum
application.

Technical report based on and extending the conference paper

Giselsson, P. (2011): “Model predictive control in a pendulum system.” In Proceed-
ings of the 31st IASTED Conference on Modelling, Identification and Control.
Innsbruck, Austria.

and with some material from the conference paper

Giselsson, P., J. Åkesson, and A. Robertsson (2009): “Optimization of a pendulum
system using Optimica and Modelica.” In Proceedings of the 7th International
Modelica Conference 2009, pp 480–489. Como, Italy.
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1. Introduction

1. Introduction

Model predictive control (MPC) is a widely recognized control method-
ology for control of complex systems with state and control constraints.
The idea of model predictive control is to determine a control trajectory
by minimizing a cost function based on predictions of future states over
a finite time interval, with the current state of the system as initial con-
dition. The first control action in the obtained trajectory is applied to the
system. When new state measurements become available, the optimiza-
tion procedure is repeated with the new measurements as initial values
to the state predictions. There are hard timing constraints on the opti-
mization routine before the control action must be applied. Solving an
optimization problem can be a time consuming task, which is why MPC
has traditionally been considered a control methodology for systems with
relatively slow dynamics. Over the past decade, faster computers and in-
creasingly efficient algorithms have been developed. This development has
enabled for systems with faster dynamics to be controlled using MPC. If
the system dimensions are small, explicit MPC can be used, [Bemporad
et al., 2002,Bemporad and Filippi, 2001] for linear systems and [Johansen,
2004] for systems with nonlinear dynamics, to speed up online execution
times. In [Wang and Boyd, 2010] the structure and sparsity inherent in
MPC optimization problems are exploited to reduce the execution time
when using an interior point algorithm to solve the online optimization
problem. For systems with input constraints only, accelerated gradient
methods are used to solve the resulting MPC optimization problem in
[Richter et al., 2009]. For more on MPC see [Maciejowski, 2002,Morari
and Lee, 1999,Rawlings and Mayne, 2009], and for examples of industrial
processes that have successfully been controlled using MPC see [Camacho
and Bordons, 1997].
In this paper optimal control and model predictive control of a pen-

dulum system is considered. The pendulum system consists of a cart,
which is mounted on a track, and has a pendulum attached to it. The
track length sets limitations on the cart movement. Two minimum time
optimization problems for the pendulum system are posed: one swing-up
problem and one translation problem with constraints on the location of
the pendulum end-point. The solutions to the minimum time optimization
problems are precomputed and used as feedforward trajectories. We intro-
duce feedback by designing an MPC controller with the objective to steer
the system towards the optimal feedforward trajectories. The model used
in the MPC optimization problem is a time dependent linear system that
is obtained by linearizing the nonlinear pendulum dynamics around the
precomputed feedforward trajectories. We use a quadratic cost and linear
constraints in the MPC optimization problem. This gives a quadratic pro-
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gram to be solved in the MPC controller. To solve the quadratic program
the algorithm presented in [Giselsson, 2012a] is used. The algorithm is
an accelerated gradient method applied to a dual formulation of the opti-
mization problem.
This report is based on the material in [Giselsson, 2011] and to some

extent on the material in [Giselsson et al., 2009]. The paper is organized as
follows. In Section 2, the problem formulated is stated. Section 3 describes
the pendulum system. In Section 4 the minimum-time optimization prob-
lems are stated and the optimal trajectories are plotted. The model pre-
dictive controller is described in Section 5 and experimental results are
presented. Finally, in Section 6 the paper is concluded.

2. Problem Setup

The problem considered in this paper is to achieve time optimal transitions
through the nonlinear dynamics of the pendulum system. We use the
following minimum time optimization formulation

minimize t f

subject to ẋ = f (x) + �(x)u
(x,u) ∈ X
x(0) = x0
x(t f ) = xt f

(1)

where f (x) and �(x) describes the nonlinear dynamics of the pendulum
system. The optimization objective is to minimize the transition time,
t f , between the initial state, x(0), and the terminal state, x(t f ), while
satisfying state and control constraints defined by the set X . We consider
two different minimum time optimization problems. The first problem
concerns swing-up of the pendulum. The second problem is to move the
cart from one side of the track to the other with the pendulum starting and
stopping in the downward position, while the end-point of the pendulum
must avoid a prespecified fixed obstacle.
The resulting optimal control trajectories are applied to the pendulum

system as feedforward control trajectories. The problem considered in this
paper is to design an MPC controller that controls the system towards the
precomputed optimal feedforward trajectories. The resulting optimization
problem is solved using the method presented in [Giselsson, 2012a] in
which an accelerated gradient method is applied to a dual formulation
to the optimization problem. The dynamics of the system are relatively
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fast, which sets requirements on the execution time of the optimization
algorithm.

3. The Pendulum System

The pendulum system consists of a cart that is mounted on a track with
a pendulum freely hanging from the cart. The length of the pendulum
is l = 0.4 m. The cart is driven by a Faulhaber DC-motor and a rack
and pinion to convert the rotating motion of the motor to linear motion
of the cart. Further, the system is equipped with a Hall effect sensor to
measure pendulum angle, a current sensor to measure motor current,
and a magnetic motor encoder to extract position measurements of the
cart. There are also two programmable Atmel ATmega 16 microproces-
sors mounted on the cart for control purposes. The first microprocessor
can output motor voltage to the motor drive unit and receive current mea-
surements. The second microprocessor receives the motor encoder signals
and the angle measurement signal. The two microprocessors can commu-
nicate with each other and the second microprocessor communicates with
Matlab/Simulink on a PC via the serial interface.

3.1 Cart Control

The motion of the cart is controlled in a cascaded control structure. See
Figure 1 for a schematic view of the cascaded control structure. The in-
nermost loop controls the current through the DC-motor. P1 represents
the current dynamics that is modeled as a first order dynamical system
with a time constant of 0.17 ms. C1 represents the current controller,
which is a PI controller that controls the actual motor current, i, to its
reference, ir. This current controller runs at a sampling rate of 28.8 kHz
on the first microprocessor. The current reference, ir, is set by the outer
control loop that controls the cart velocity. The current dynamics are fast
in comparison to the velocity dynamics, which makes ir ( i a good ap-
proximation. The transfer function from i to v, i.e., P2, is modeled as an
integrator with a gain. The velocity dynamics are controlled with another

irvru ∫∫
C1C2 P1 P2

-1

-1

i

v

v x
ΣΣ

Figure 1. Cascaded control structure for the cart control.
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PI-controller, C2. This controller runs on the second microprocessor at a
sampling rate of 1 kHz. There are no velocity measurements available. A
velocity estimate is obtained by applying a derivative filter to the position
measurement in the micro processor at a frequency of 1 kHz. The ref-
erence to the velocity control loop, vr, is received from Matlab/Simulink
that runs on a PC. The velocity reference sent form the PC is updated at
a frequency of about 50 Hz. We denote the corresponding sampling time
by h. The settling time for the velocity controller is faster than the update
frequency of the velocity reference. To avoid nonsmooth behavior of the
cart, the velocity reference is updated in a first-order-hold manner in the
microprocessor. That is, a piece-wise constant acceleration reference u is
sent to the microprocessor. The velocity reference is updated internally in
the microprocessor at the same rate as the velocity controller. The refer-
ence is updated according to vr(t) = vr(t0) + u(t0)(t − t0) where vr(t0) is
the integrated velocity reference and u(t0) is the acceleration reference at
sampling time t0, and t ∈ [t0, t0 + h].
This cascaded control structure is suitable when fast closed loop dy-

namics from vr to v is desired. Since the PC communication is performed
at a much slower frequency than the velocity controller updates, vr = v is
a good approximation. Using this approximation, the cart motion can be
modeled as a double integrator from acceleration reference to cart posi-
tion.

3.2 System Modeling

Due to the low level control previously described, the cart position p de-
pends on the control signal u according to

p̈ = u. (2)

A pendulum is attached to the cart. When the pendulum is swinging,
reaction forces in the mounting point creates disturbances to the cart mo-
tion. These disturbances are attenuated by the cascaded control structure
on the cart, making the double integrator model of the cart accurate de-
spite these disturbances. The pendulum is modeled as a simple gravity
pendulum in which the weight of the rod is neglected. The pendulum dy-
namics are well known; let θ be the pendulum angle and the dynamics
are described by

θ̈ = −�
l
sinθ + u

l
cosθ , (3)

where θ = 0 is defined to be the pendulum downward position, � is the
gravitational acceleration, l is the length of the pendulum, and u is the
cart acceleration. The full system dynamics are described by Equations
(2) and (3). Note that since the cart acceleration is used as control signal,
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the cart and pendulum dynamics are decoupled. They can be seen as two
separate dynamical systems that are driven by the same control signal.
The position of the cart and the pendulum angle are defined such that

the pendulum end point in the horizontal direction, xp, and in the vertical
direction, yp, are given by

xp = p− l sinθ , yp = −l cosθ .

4. Optimal Feedforward Trajectories

Two different minimum-time optimal control problems are considered in
this paper. The first problem is a minimum-time swing-up problem with
additional constraints on cart position and control signal magnitude. The
second problem is a path-constrained minimum-time problem. The opti-
mization problems are solved using the JModelica.org platform [Åkesson
et al., 2009] which allow for solving dynamic optimization problems by
specifying the dynamical model, the cost function and constraints using a
high-level language. The optimal control problems and the solutions ob-
tained by the JModelica.org platform are presented below. For more infor-
mation on how these optimal control problems were solved, see [Giselsson
et al., 2009].

4.1 Pendulum Swing-Up

The optimization objective is to reach the inverted position as fast as pos-
sible, starting from the downward position. Further constraints include
that the cart should start and stop at the same position. The cart and
angular velocities should be zero when the pendulum has reached the in-
verted position. The applied control signal, i.e., the cart acceleration, u,
is limited to be in the interval ±5m/s2 and its derivative must satisfy
−100m/s3 ≤ u̇ ≤ 100m/s3. Since the cart track is finite, the cart posi-
tion must satisfy −0.5m ≤ p ≤ 0.5m. The optimization problem is stated
mathematically below.

minimize t f

subject to θ̈ = −�
l
sinθ + u

l
cosθ

p̈ = u
−0.5 ≤ p ≤ 0.5
pup ≤ 5 pu̇p ≤ 100
θ(0) = 0 θ̇(0) = 0 p(0) = 0 ṗ(0) = 0
θ(t f ) = π θ̇(t f ) = 0 p(t f ) = 0 ṗ(t f ) = 0

(4)
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Figure 2. Pendulum end point trajectories for swing-up problem. Both the optimal
trajectory and the trajectory obtained when optimal control trajectory is applied to
the physical pendulum system in open loop, are plotted.

where t f is the final time. To analyze the plant-model accuracy, the op-
timal feedforward trajectory was applied to the physical plant with the
same initial conditions as in the optimization. The resulting pendulum
end point trajectory, together with the optimal trajectory, is found in Fig-
ure 2. The optimal control trajectory for the swing-up example is found in
Figure 4(a).

4.2 Optimization with Path-Constraints

In this optimization problem, the cart should move from one side of the
track to the other side, while the end point of the pendulum must avoid
an obstacle defined by

(
xp + 0.3
0.05

)2
+
(
yp + 0.4
0.3

)2
= 1.

The pendulum should start and stop at rest in the downward position.
Track and control limitations are equivalent to in the swing-up problem.
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Figure 3. Pendulum end point trajectories for path-constrained problem. Both
the optimal trajectory and the trajectory obtained when optimal control trajectory
is applied to the physical pendulum system in open loop, are plotted.

We get the following optimization problem

minimize t f

subject to θ̈ = −�
l
sinθ + u

l
cosθ

p̈ = u
xp = p− l sinθ yp = −l cosθ(
xp+0.3
0.05

)2
+
(
yp+0.4
0.3

)2
≥ 1

−0.9 ≤ p ≤ 0.1 pup ≤ 5 pu̇p ≤ 100
p(0) = −0.8 ṗ(0) = 0 θ(0) = 0 θ̇(0) = 0
p(t f ) = 0 ṗ(t f ) = 0 θ(t f ) = 0 θ̇(t f ) = 0

(5)

where t f again is the final time. This is a highly nonconvex problem
due to the nonlinear dynamics and, more significantly, due to the obstacle.
To solve this problem using the JModelica.org platform, an initial guess
needs to be constructed and sent to the solver. An initial guess is created
by dividing the optimization problem into two parts. The first part has
the same initial condition as the original problem and the terminal point
constraint at a position above the obstacle. The second part has the initial
condition at the position above the obstacle and the same terminal con-
straint as the original problem. These trajectories are merged and sent to
the solver as initial condition. For more details on how these trajectories
were created, see [Giselsson et al., 2009]. Optimization results, as well as
the trajectory obtained when applying the control action to the physical
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Figure 4. Optimal control trajectories for the swing-up problem (a) and the path-
constrained problem (b).

system with the same initial condition as in the optimization, are found in
Figure 3. The optimal control trajectory for the path-constrained problem
is found in Figure 4(b).

4.3 Discretization of the Optimal Trajectories

The results from optimization problems (4) and (5) are continuous time
state and control trajectories which we denote by p⋆(t), ṗ⋆(t),θ ⋆(t) and
θ̇ ⋆(t) respectively. The sampling time of the PC communication is denoted
by h and we introduce the sampling counter n ∈ N. This implies that the
actual time t at sampling instant n is t = hn. We define the discrete time
variables p0, ṗ0,θ 0, θ̇ 0 and u0 at the sampling instants as

p0(n) := p⋆(nh), ṗ0(n) := ṗ⋆(nh),
θ 0(n) := θ ⋆(nh), θ̇ 0(n) := θ̇ ⋆(nh),
u0(n) := u⋆(nh),

for every n ∈ N such that nh ≤ t f . We also define

x0(n) = [p0(n) ṗ0(n) θ 0(n) θ̇ 0(n)]T .

Using these definitions, discrete time trajectories are created and used as
feedforward trajectories to the pendulum system.

5. Model Predictive Control

The feedforward control trajectories from the previous section gives close
to optimal state trajectories when applied to the physical pendulum sys-
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Figure 5. Pendulum end point trajectory for the swing-up problem when the real
pendulum is swinging initially and no feedback is used.
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Figure 6. Pendulum end point trajectory for the path-constrained problem when
the real pendulum is swinging initially and no feedback is used.

tem, see Figures 2 and 3. This behavior cannot be expected when distur-
bances are present. In the optimization problems in the previous section
it is specified that the pendulum should start at rest in the downward po-
sition. When disturbances are present in the initial condition of the pen-
dulum, the resulting pendulum end point trajectories are very far from
the optimal ones. This is shown in Figure 5 for the swing-up problem
and in Figure 6 for the path constrained problem. In the experiments, the
pendulum was initially swinging back and forth with a magnitude of ap-
proximately 45○. In this section we introduce MPC feedback to cope with
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such disturbances.

5.1 Discrete Time Pendulum Model

The continuous time dynamics of the pendulum system is discretized and
linearized to be used for model predictive control. In each sampling in-
stant, n, the system, (2)-(3), is linearized around the nominal states,
x0(n), and the nominal control, u0(n). We introduce actual states p(n),
ṗ(n), θ(n), θ̇(n) and x(n) = [p(n) ṗ(n) θ(n) θ̇(n)]T and the actual con-
trol u(n). We also introduce the deviation between the actual states and
nominal states

∆p(n) := p(n) − p0(n), ∆ ṗ(n) := ṗ(n) − ṗ0(n),
∆θ(n) := θ(n) − θ 0(n), ∆θ̇(n) := θ̇(n) − θ̇ 0(n),
∆x(n) := x(n) − x0(n), ∆u(n) := u(n) − u0(n).

Since the cart dynamics are linear, only the pendulum dynamics need to
be linearized. To achieve this, we introduce ∆zθ (t) which is the deviation
from the linearization point for the continuous pendulum states and ∆v(t)
which is the continuous control signal for the linearized model. This gives
the following linearized pendulum dynamics when linearized around pen-
dulum angle θ 0

˙∆zθ (t) =
(

0 1

−�
l
cosθ 0 0

)
∆zθ (t) +

(
0

1
l
cosθ 0

)
∆v(t)

=
(

0 1

−(ω 0)2 0

)

︸ ︷︷ ︸
A(θ0)

∆zθ (t) +
(
0

(ω 0)2
�

)

︸ ︷︷ ︸
B(θ0)

∆v(t)

where (ω 0)2 = �
l
cosθ 0. The resulting linear time-varying dynamics de-

pend on the nominal pendulum angle θ 0 only. To obtain a discrete time
model for sampling instant n, the linearization is performed around pen-
dulum angle θ 0(n) and the resulting linear model is discretized using zero-
order-hold. The discrete time control signal, which we denote by ∆u(n) is
constant during the sample. The discretized zero-order-hold equations be-
comes

∆xθ (n+ 1) = eA(θ
0(n))h∆xθ (n) +

h∫

s=0

eA(θ
0(n))(h−s)B(θ 0(n))ds∆u(n) (6)
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where

eA(θ
0(n))h = I + A(θ 0(n))h+ (A(θ

0(n))h)2
2!

+ (A(θ
0(n))h)3
3!

+ ⋅ ⋅ ⋅

= I +
(

0 1

−ω 0(n)2 0

)
h−

(
ω 0(n)2 0

0 ω 0(n)2
)
h2

2!

+
(

0 −ω 0(n)2
ω 0(n)4 0

)
h3

3!
+
(

ω 0(n)4 0

0 ω 0(n)4
)
h4

4!

+
(

0 ω 0(n)4
−ω 0(n)6 0

)
h5

5!
−
(

ω 0(n)6 0

0 ω 0(n)6
)
h6

6!

+
(

0 −ω 0(n)6
ω 0(n)8 0

)
h7

7!
+ ⋅ ⋅ ⋅

=




∞∑
l=0

(−1)l
(2l)! (ω 0(n)h)2l 1

ω 0(n)

∞∑
l=0

(−1)l
(2l+1)! (ω 0(n)h)2l+1

−ω 0(n)
∞∑
l=0

(−1)l
(2l+1)!(ω 0(n)h)2l+1

∞∑
l=0

(−1)l
(2l)! (ω 0(n)h)2l




=
(

cosω 0(n)h 1
ω 0(n) sinω 0(n)h

−ω 0(n) sinω 0(n)h cosω 0(n)h

)

with (ω 0(n))2 = �
l
cosθ 0(n). The last equality comes from the Taylor series

expansion of cosine and sine. The integral in (6) becomes

h∫

s=0

eA(θ
0(n))(h−s)B(θ 0(n))ds =

h∫

s=0




ω 0(n)
� sin

(
ω 0(n)(h− s)

)

ω 0(n)2
� cos

(
ω 0(n)(h− s)

)


 ds

=
[ 1

� cos
(
ω 0(n)(h − s)

)

−ω 0(n)
� sin

(
ω 0(n)(h− s)

)

]h

s=0

=
( 1
�(1− cosω 0(n)h)

ω 0(n)
� sinω 0(n)h

)
.

A discrete time model of the double integrator (2) is well known to be

∆xc(n+ 1) =
(
1 h

0 1

)
∆xc(n) +

(
h2

2

h

)
∆u(n)

where ∆xc = [∆p ∆ ṗ]T . This gives the following full linearized model

∆x(n+ 1) = Φ(θ 0(n))∆x(n) + Γ(θ 0(n))∆u(n) (7)
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where

Φ(θ 0(n)) =




1 h 0 0

0 1 0 0

0 0 cosω 0(n)h 1
ω 0(n) sinω 0(n)h

0 0 −ω 0(n) sinω 0(n)h cosω 0(n)h




Γ(θ 0(n)) =




h2

2

h
1
� (1− cosω 0(n)h)

ω 0(t)
� sinω 0(n)h




and (ω 0(n))2 = �
l
cosθ 0(n).

5.2 MPC Optimization Problem

The model developed in the previous section is unstable for some pendu-
lum angles. Due to this, predicting future states directly with (7) may
result in poor predictions. To avoid that, a discrete time LQ-feedback
term that depends on the nominal pendulum angle is introduced, ufb(n) =
−L(θ 0(n))∆x(n), where L(θ 0(n)) is the optimal LQ-feedback for (7). The
prediction model becomes

∆x(n+ 1) =
(
Φ(θ 0(n)) − Γ(θ 0(n))L(θ 0(n))

)
∆x(n) + Γ(θ 0(n))∆u(n)

= ΦL(θ 0(n))∆x(n) + Γ(θ 0(n))∆u(n) (8)

where ΦL(θ 0(n)) := Φ(θ 0(n))−Γ(θ 0(n))L(θ 0(n)). This model is stable for
every nominal pendulum angle θ 0(n). The decision variables in the MPC
problem are state and control signal deviations from the nominal trajec-
tories. In every sample instant, u(n) = u0(n) + ∆u(n) + ufb(n), is sent
as control signal (acceleration reference) to the system. The maximal al-
lowed acceleration is ±7m/s2 which is the maximal acceleration for which
the inner control loops do not saturate. The track on which the cart is at-
tached is one meter. The track length and control magnitude constraints
are captured in the following sample dependent constraint set

X (n) =
{

∆u(n) ∈ R,∆x(n) ∈ R
4
∣∣ p∆u(n) + u0(n) − L(θ 0(n))∆x(n)p ≤ 7,

∆p(n) + p0(n) ≤ 1− p0,
∆p(n) + p0(n) ≥ −p0

}
(9)

where p0 ∈ [0, 1] is the initial position of the cart on the track. We use
a quadratic cost, hence the MPC problem to be solved in each sampling
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instant, n, is

min
∆x,∆u

n+N∑

l=n
∆x(l)TQ∆x(l) + ∆u(l)TR∆u(l) (10)

s.t. ∆x(l + 1) = ΦL(θ 0(l))∆x(l) + Γ(θ 0(l))∆u(l), l = n, . . . ,n+ N − 1,
(x(l),u(l)) ∈ X (l), l = n, . . . ,n+ N,
∆x(n) = x̄

where Q 4 0 and R ≻ 0. The optimal ∆u(n + N) " 0 and can hence be
removed from the optimization. Since the objective function is quadratic
and the dynamics and constraints are linear, the resulting optimization
problem is a quadratic program.

5.3 Optimization Algorithm

The optimization problem (10) is solved using the algorithm presented in
[Giselsson, 2012a]. The algorithm in [Giselsson, 2012a] is an accelerated
gradient algorithm that is applied to the dual of a condensed version of
(10). A condensed version it obtained by eliminating the state variables
by expressing them in the control variables. We present the condensed
version of (10) and the optimization algorithm from [Giselsson, 2012a]
below. To this end we introduce the following matrices

A(n) :=




I

A1(n)
...

AN(n)



, B(n) :=




0 ⋅ ⋅ ⋅ 0

B11(n) ⋅ ⋅ ⋅ B1N(n)
...

. . .
...

BN1(n) ⋅ ⋅ ⋅ BNN(n)




where

Ai(n) :=
n+i−1∏

l=n
ΦL(θ 0(l)),

Bi j(n) :=









n+i−1∏

l=n+ j
ΦL(θ 0(l))



 Γ(θ 0(n+ j − 1)) j < i,

Γ(θ 0(n+ j − 1)) j = i,
0 j > i.
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We denote the predicted future state and control variables by

∆x(n) =




∆x(n)
...

∆x(n+ N)


 , ∆u(n) =




∆u(n)
...

∆u(n+ N − 1)


 .

The predicted future state variables can be expressed in the current state
∆x(n) = x̄ and in the control variables ∆u(n) as

∆x(n) = A(n)x̄ +B(n)∆u(n). (11)

By introducing the matrices Ip := [1, 0, 0, 0], Cp := blkdiag(Ip, . . . , Ip) and

CL(n) := blkdiag(−L(θ 0(n)), . . . ,−L(θ 0(n+ N − 1)))

the constraint set (9) for all n, . . . ,n+ N can be written as



Cp

−Cp
CL(n)
−CL(n)




︸ ︷︷ ︸
Cx(n)

∆x(n) +




0

0

I

−I




︸ ︷︷ ︸
Cu

∆u(n) ≤




1− p0 − p0(n)
p0 + p0(n)
7− u0(n)
7+ u0(n)




︸ ︷︷ ︸
d(n)

(12)

where

p0 = [p0, . . . , p0]T , p0(n) = [p0(n), . . . , p0(n+ N)]T ,
1 = [1, . . . , 1]T , u0(n) = [u0(n), . . . ,u0(n+ N − 1)]T ,
7 = [7, . . . , 7]T .

The constraints in (12) can, using the state predictions in (11), be written
as

(Cx(n)B(n) + Cu) ∆u(n) ≤ d(n) − Cx(n)A(n)x̄. (13)

By further defining

Q := blkdiag(Q, . . . ,Q), R := blkdiag(R, . . . ,R),
C(n) := Cx(n)B(n) + Cu, �(n, x̄) := d(n) − Cx(n)A(n)x̄

the optimization problem (10) at sample instant n is equivalently written
as

min
∆u(n)

1
2∆u(n)TH(n)∆u(n) + x̄TG(n)∆u(n)

s.t. C(n)∆u(n) ≤ �(n, x̄)

(14)
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where H(n) = B(n)TQB(n) + R and G(n) = A(n)TQB(n). To solve (14)
we introduce dual variables µ ∈ R

p
≥0 for the inequality constraints where

p is the total number of constraints. We get the following dual problem

max
µ≥0
min
∆u(n)

1
2

∆u(n)TH(n)∆u(n) + x̄TG(n)∆u(n) + µT (C(n)∆u(n) − �(n, x̄))

which, as shown in [Giselsson et al., 2012], can explicitly be written as

max
µ≥0

−1
2
(C(n)Tµ+ G(n)T x̄)T(H(n))−1(C(n)Tµ+ G(n)T x̄) − µT�(n, x̄).

(15)
We define the dual function as the maximand in (15) and denote the dual
function by DN(x̄,µ,n). The dual function DN has Lipschitz continuous
gradient with Lipschitz constant L(n) = qC(n)(H(n))−1C(n)Tq and the
gradient is given by

∇DN(x̄,µ,n) = −C(n)(H(n))−1(C(n)Tµ+ G(n)T x̄) − �(n, x̄).

As shown in [Giselsson et al., 2012,Giselsson, 2012a] this implies that the
dual function can be maximized using an accelerated gradient method.
The iterations defining the accelerated gradient algorithm applied to the
dual problem (15) are stated below (cf. [Giselsson, 2012a]).

∆uk = −(H(n))−1(C(n)Tµk + G(n)T x̄) (16)

∆ũk = ∆uk + k− 1
k+ 2 (∆u

k − ∆uk−1) (17)

µk+1 = max
{
0,µk + k− 1

k+ 2 (µ
k − µk−1) + 1

L(n)
(
C(n)∆ũk − �(n, x̄)

)}

(18)

where k is the iteration number. The algorithm converges as O(1/k2)
in both dual function value and in distance between the primal variables
∆uk and the optimal primal variables (cf. [Giselsson et al., 2012,Giselsson,
2012a]). For more on accelerated gradient methods the reader is referred
to [Nesterov, 2003,Beck and Teboulle, 2009,Tseng, 2008,Giselsson et al.,
2012].

5.4 Implementational Aspects and Stopping Conditions

The MPC controller is implemented in Matlab/Simulink and communi-
cates with the second microprocessor on the cart via the serial interface.
Not all state variables can be measured directly, only cart and pendu-
lum positions are measured. The cart velocity is estimated in the second
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Figure 7. Pendulum end point trajectory for the swing-up problem when the real
pendulum is swinging initially and feedback is used.

microprocessor and is sent to the PC when asked for by the MPC con-
troller. The pendulum angular velocity is estimated by a derivative filter
in Simulink that is updated ones in every MPC sample. This gives ac-
curate enough pendulum angular velocity estimates since the pendulum
dynamics are quite slow. The control horizon is chosen to N = 40. The
sampling time, which is chosen to h = 0.025s, sets hard limitations on the
allowed execution time of the MPC controller. In each sampling instant,
the matrices A(n), B(n), C(n) and �(n, x̄) are built. These matrices are
sampling dependent, but can be precomputed and stored for faster online
execution. The optimization algorithm (16)-(18) is warm-started in every
sample with the solution to the optimization problem in the previous sam-
ple, shifted one step, as initial guess. A constraint tightening approach is
used to guarantee a feasible solution with finite number of iterations. We
use a relative constraint tightening of 0.005, i.e., if the actual constraint is
x ≤ 0.5 the corresponding constraint is set to x ≤ (1− 0.005)0.5 = 0.4975
in the optimization problem. The stopping condition of the algorithm is to
have primal feasibility, i.e., x ≤ 0.5 in the example above and a relative
duality gap less than 0.005. By construction of the optimization problem,
the equality constraints originating from the dynamic equations always
hold.

5.5 Experimental Results

In Figures 7 and 8 pendulum end point trajectories when feedforward
and MPC feedback is used, are plotted. The experiments are initialized
with the pendulum swinging back and forth with a magnitude of approx-
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Figure 8. Pendulum end point trajectory for the path-constrained problem when
the real pendulum is swinging initially and feedback is used.
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Figure 9. Control trajectory applied to the real system (solid) and feedforward
trajectory (dashed) when initial swinging and feedback is used for the swing-up
problem (a) and the path-constrained problem (b).

imately 45○ as in the examples without feedback in Figures 5 and 6. The
weight matrices are chosen to be Q = diag(50, 0.1, 50, 0.1), and R = 0.3
in the path-constrained problem and R = 1 in the swing-up problem. The
feedback gain vector L is the LQ-gain computed using unit weights on
both states and control.
Due to the initial swinging of the pendulum, the trajectories are far

from the optimal ones at start but the feedback brings the actual trajec-
tories closer to the optimal trajectories with time. This shows that the
introduced model approximations are accurate enough to achieve good
performance in the physical pendulum system. Figures 9(a) and 9(b)
show the control trajectories that are applied to the system for the swing-
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Figure 10. Total (solid) and optimization algorithm (dashed) execution times for
the MPC algorithm when initial swinging and feedback is used for the swing-up
problem (a) and the path-constrained problem (b).

up problem and the path-constrained problem respectively. Figures 10(a)
and 10(b) show the execution time of the MPC controller for the swing-
up problem and path-constrained problem respectively. Both total execu-
tion time, which include setup of the matrices used by the optimization
algorithm and solving the problem, and execution time used by the op-
timization algorithm are plotted. Figures 10(a) and 10(b) show that the
optimization algorithm is efficient enough to find a close to optimal so-
lution well within the sampling time of h = 25 ms. Videos of similar
experiments, with and without initial swinging of the pendulum, can be
found in [Giselsson, 2012b].

6. Conclusions

We have developed an MPC controller that controls the actual system
trajectories towards precomputed feedforward trajectories in a pendulum
system. The feedforward trajectories take the system from one operating
point to another. One swing-up problem and one path-constrained problem
are considered and both have been applied to a physical pendulum system.
The MPC optimization problem is solved using an accelerated gradient
method technique presented in [Giselsson, 2012a]. The experiments show
that the algorithm is efficient enough for real-time implementation in a
pendulum system.
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Supplement A

Specification of Randomly Generated Systems

In this section, the randomly generated systems used in the numerical
sections of Paper III, Paper IV, Paper V, and Paper VI are presented. In
Paper III, Paper IV, and Paper V the same random system is used.

A.1. Random System in Paper III, Paper IV, and Paper V

Dynamics

The dynamical system consists of three subsystems with five states and
one input in each subsystem. The full system dynamics are described by

x(t+ 1) = Ax(t) + Bu(t)

where x ∈ R15, u ∈ R3, x = [x1, . . . , x15]T , and u = [u1,u2,u3]T . The
dynamics-matrix is block-diagonal while the input-matrix is sparse:

A =



A1

A2

A3


 , B =



B11 0 B13

B21 B22 B23

0 B32 B33


 .

The matrices for subsystem 1 are:

A1 =




0.265 0.237 0.001 0.193 0.056

0.054 0.426 0.154 0.209 0.079

0.101 0.243 0.455 0.145 0.148

0.084 0.111 0.059 0.453 0.210

0.058 0.238 0.236 0.083 0.326




and

B11 =




0

0

0

0

0.403



, B13 =




0

0

0

0

0.827



.
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The matrices for subsystem 2 are:

A2 =




0.455 0.109 0.098 0.070 0.127

0.027 0.398 0.109 0.157 0.132

0.208 0.177 0.495 0.149 0.023

0.213 0.188 0.145 0.496 0.229

0.090 0.192 0.215 0.022 0.476




and

B21 =




0

0

0

0

0.476



, B22 =




0

0

0

0

0.439



, B23 =




0

0

0

0

0.620



.

The matrices for subsystem 3 are:

A3 =




0.455 0.095 0.102 0.182 0.100

0.250 0.499 0.160 0.122 0.251

0.040 0.246 0.502 0.162 0.102

0.060 0.163 0.141 0.477 0.167

0.178 0.217 0.236 0.050 0.481




and

B32 =




0

0

0

0

0.304



, B33 =




0

0

0

0

0.995



.

Constraints

The states are subject to the following constraints:

−0.116 ≤ x1 ≤ 1.246, −0.076 ≤ x2 ≤ 1.023, −0.104 ≤ x3 ≤ 1.462,
−0.120 ≤ x4 ≤ 0.530, −0.056 ≤ x5 ≤ 1.020, −0.083 ≤ x6 ≤ 1.390,
−0.061 ≤ x7 ≤ 0.730, −0.073 ≤ x8 ≤ 0.811, −0.057 ≤ x9 ≤ 1.152,
−0.078 ≤ x10 ≤ 0.775, −0.094 ≤ x11 ≤ 1.380, −0.110 ≤ x12 ≤ 1.256,
−0.061 ≤ x13 ≤ 1.283, −0.135 ≤ x14 ≤ 1.479, −0.097 ≤ x15 ≤ 0.551,
and the controls are subject to the following constraints:

−0.608 ≤ u1 ≤ 1.153, −1.118 ≤ u2 ≤ 0.536, −1.462 ≤ u3 ≤ 1.067.
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Cost Function

Two different quadratic cost functions are used in Paper III, Paper IV, and
Paper V; one with identity-matrices defining the cost for states and con-
trols and one with randomly generated diagonal matrices. The randomly
generated matrices are

Q =



Q1

Q2

Q3


 ,

where

Q1 =




32.11

7.53

34.59

24.88

18.72



,

Q2 =




59.63

63.64

8.19

69.01

36.26



,

Q3 =




2.71

10.90

88.09

37.31

1.45



,

and

R =



53.66

51.05

83.70


 .

A.2. Random System in Paper VI

Dynamics

The dynamical system consists of six subsystems with five states, one
input, and one output in each subsystem. The full system dynamics are
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described by

x(t+ 1) = Ax(t) + Bu(t)
y(t) = Cx(t)

where x ∈ R30, u ∈ R6, y ∈ R6 x = [x1, . . . , x30]T , u = [u1, . . . ,u6]T , and
y = [y1, . . . , y6]T . The dynamics-matrix and the output-matrix are block-
diagonal:

A =




A1

. . .

A6


 , C =




C1

. . .

C6


 ,

while the input-matrix is sparse:

B =




B11 0 B13 B14 B15 0

0 B22 B23 B24 0 0

0 0 B33 0 B35 0

B41 0 B43 B44 0 0

0 0 0 0 B55 0

0 B62 0 0 0 B66




.

The output-matrices satisfy C1, . . . ,C6 = [0 0 0 0 1] and the matrices for
subsystem 1 are:

A1 =




0.299 0.144 0.015 0.236 0.248

0.088 0.449 0.123 0.011 0.226

0.175 0.137 0.449 0.101 0.028

0.086 0.015 0.054 0.322 0.140

0.045 0.242 0.111 0.197 0.422



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and

B11 =




0

0

0

0

0.169



, B13 =




0

0

0

0

0.740



,

B14 =




0

0

0

0

0.124



, B15 =




0

0

0

0

0.077



.

The matrices for subsystem 2 are:

A2 =




0.493 0.094 0.171 0.096 0.027

0.108 0.396 0.120 0.118 0.207

0.098 0.241 0.382 0.240 0.139

0.187 0.168 0.080 0.286 0.105

0.091 0.162 0.032 0.040 0.342




and

B22 =




0

0

0

0

0.748



, B23 =




0

0

0

0

0.127



, B24 =




0

0

0

0

0.712



.

The matrices for subsystem 3 are:

A3 =




0.382 0.069 0.240 0.146 0.071

0.228 0.416 0.167 0.100 0.230

0.040 0.162 0.275 0.155 0.246

0.058 0.123 0.119 0.311 0.142

0.244 0.155 0.070 0.250 0.489



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and

B33 =




0

0

0

0

0.135



, B35 =




0

0

0

0

0.586



.

The matrices for subsystem 4 are:

A4 =




0.356 0.147 0.015 0.160 0.190

0.076 0.463 0.008 0.223 0.042

0.034 0.072 0.326 0.063 0.177

0.115 0.033 0.158 0.306 0.140

0.252 0.139 0.173 0.118 0.318




and

B41 =




0

0

0

0

0.907



, B43 =




0

0

0

0

0.066



, B44 =




0

0

0

0

0.292



.

The matrices for subsystem 5 are:

A5 =




0.448 0.072 0.029 0.130 0.110

0.210 0.261 0.138 0.242 0.120

0.238 0.014 0.438 0.212 0.229

0.125 0.093 0.160 0.374 0.174

0.023 0.003 0.054 0.172 0.384



, B55 =




0

0

0

0

0.035



.

The matrices for subsystem 6 are:

A6 =




0.491 0.074 0.200 0.214 0.222

0.088 0.341 0.194 0.058 0.254

0.107 0.069 0.277 0.010 0.109

0.138 0.198 0.037 0.443 0.062

0.175 0.071 0.069 0.056 0.272



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and

B62 =




0

0

0

0

0.374



, B66 =




0

0

0

0

0.432



.

Constraints and Cost Function

The original state constraints are −0.11 ≤ x1, . . . , x30 ≤ 2. After constraint
tightening, which is performed to guarantee robust feasibility in the out-
put feedback case, the state constraints are:

−0.047 ≤ x1 ≤ 1.937, −0.045 ≤ x2 ≤ 1.935, −0.049 ≤ x3 ≤ 1.939,
−0.069 ≤ x4 ≤ 1.959, −0.041 ≤ x5 ≤ 1.930, −0.030 ≤ x6 ≤ 1.920,
−0.031 ≤ x7 ≤ 1.921, −0.015 ≤ x8 ≤ 1.904, −0.040 ≤ x9 ≤ 1.930,
−0.057 ≤ x10 ≤ 1.947, −0.037 ≤ x11 ≤ 1.927, −0.009 ≤ x12 ≤ 1.899,
−0.032 ≤ x13 ≤ 1.922, −0.046 ≤ x14 ≤ 1.936, −0.005 ≤ x15 ≤ 1.895,
−0.057 ≤ x16 ≤ 1.946, −0.062 ≤ x17 ≤ 1.952, −0.069 ≤ x18 ≤ 1.959,
−0.065 ≤ x19 ≤ 1.955, −0.051 ≤ x20 ≤ 1.941, −0.054 ≤ x21 ≤ 1.945,
−0.036 ≤ x22 ≤ 1.926, −0.029 ≤ x23 ≤ 1.915, −0.038 ≤ x24 ≤ 1.930,
−0.065 ≤ x25 ≤ 1.955, −0.018 ≤ x26 ≤ 1.913, −0.047 ≤ x27 ≤ 1.937,
−0.069 ≤ x28 ≤ 1.959, −0.041 ≤ x29 ≤ 1.931, −0.060 ≤ x30 ≤ 1.950.

The control constraints are:

−0.1 ≤ u1 ≤ 0.1, −0.1 ≤ u2 ≤ 0.1, −0.1 ≤ u3 ≤ 0.1,
−0.1 ≤ u4 ≤ 0.1, −0.1 ≤ u5 ≤ 0.1, −0.1 ≤ u6 ≤ 0.1.

The quadratic cost function has identity cost-matrices for both states and
controls.
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