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SUMMARY 
 
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is a 
complex of partially unfolded human alpha-lactalbumin and oleic acid 
that kills many different types of tumor cells and shows therapeutic 
efficacy in animal models and clinical studies. This thesis aims to 

I. elucidate the structure of HAMLET and the exposure of 
biologically active domains  

II. define the contribution of lipids to the tumoricidal effect of 
HAMLET 

III. characterize the membranes response to HAMLET and the 
perturbation of membrane associated signaling cascades 

IV. use proteomic screens to identify conserved features of 
HAMLET targets in tumor cells 

 
Elucidating the structure of HAMLET is important to understand its 
tumoricidal activity. Paper I presents the first low-resolution solution 
structure of HAMLET, derived from small angle X-ray scattering data. In 

HAMLET, α-lactalbumin is partially unfolded, with an enlarged globular 
domain and an extended C-terminal conformation from L105 to L123. 
Synthetic globular or extended domain peptides triggered rapid ion fluxes 
in the presence of oleate, were internalized by tumor cells and caused 
rapid changes in cell morphology and tumor cell death with comparable 
efficiency as HAMLET. These findings demonstrate that the gain of 
tumoricidal activity in HAMLET is due to a loss of tertiary structure 

definition compared to native α-lactalbumin, which lacks such activity.  
 
The contribution of the lipid to HAMLET’s tumoricidal activity has been 
debated. Paper II investigates the contribution of lipids to the tumoricidal 
effect of HAMLET. Deprotonated oleic acid (oleate) is identified as the 
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functional cofactor in HAMLET and shown to contribute to some but not 
all of HAMLET’s cellular interactions. Partial effects on ion fluxes were 
observed in tumor cells but unlike HAMLET, oleate did not cause 
metabolic paralysis or cell death at concentrations relevant to HAMLET. 
Furthermore, oleate did not trigger cancer related gene expression. 
Cellular responses to oleic acid were weak or absent, suggesting that fatty 
acids exert some of their essential effects on host cells when in the 
deprotonated state. The results highlight the unique properties of the 
HAMLET complex compared to the lipid alone and suggest that the 
cellular effects of lipids may be modified in the context of a partially 
unfolded protein.  
 
Membrane perturbations by HAMLET initiate cellular attack and death. 
Paper III identifies three critical molecular-level features for the conserved 
tumoricidal response. I. Rapid membrane perturbations in receptor-free 
model vesicles and tumor cells suggested that HAMLET-membrane 
interactions are receptor-independent. II. Formation of HAMLET-Ras 
membrane clusters in tumor cells and Ras inhibition provided a 
mechanism to activate a conserved cell death programs. III. Membrane 
responses were absent in differentiated cells, indicating tumor selectivity. 
The membrane perturbations might thus provide a physical means for 
HAMLET to excite membrane conformations serving as surrogate 
receptors for subsequent signal transduction, leading to cell death.  
 
Paper IV examines the hypothesis that the apparent multitude of cellular 
targets reflects structural homology and that HAMLET targets epitopes 
shared by molecules critical for cell survival. By protoarray, HAMLET 
targets represent protein families critically involved in energy metabolism 
and cellular homeostasis including ATPases, kinases and small GTPases. 
In an in vitro kinase activity assay, about 70 % of kinases were inhibited by 
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HAMLET. Broad kinase inhibition in HAMLET treated cells was 
confirmed by a phosphorylation antibody microarray, which identified 
kinases involved in cancer pathways. The results identify nucleotide-
binding proteins as HAMLET targets and suggest that dysregulation of the 
ATPase/kinase/GTPase machinery contributes to cell death, following the 
initial, selective recognition of HAMLET by tumor cells.   
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The Discovery 
 
 

"All things are ready if our minds be so." 
William Shakespeare 

 
"In the fields of observation chance favours only the prepared mind." 

Louis Pasteur 
 
The serendipitous finding of HAMLET (Human Alpha-lactalbumin Made 
LEthal to Tumor cells)1 started a now nearly two decade long period of 
research2-11, leading to successful clinical trials2,12-17. The HAMLET 
discovery triggered intriguing questions about protein folding and 
structural biology, conserved mechanisms of tumor cell death, therapeutic 
and prophylactic benefits, as well as more general, philosophical scientific 
questions about the nature of molecular recognition.  
 
HAMLET consists of a partially unfolded human alpha-lactalbumin and 
multiple oleic acid molecules. The experiment in which HAMLET was 
discovered investigated the molecular mechanism of Streptococcus 
pneumoniae attachment to host cells, using fractions from human milk to 
prevent bacteria from binding to A549 lung carcinoma cell line. A casein 
fraction was shown to inhibit bacterial attachment but in addition, 
dramatic cell death was observed, suggesting that casein components were 
able to kill tumor cells1. To identify the active constituent of the casein 
fraction, ion exchange chromatography was used, first without success as 
no active fraction could be eluted from the matrix using the normal 
protocol. After it was realized that the active component might be retained 
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on the column, it was successfully eluted as ‘’Fraction VI’’ with high salt 
(1M NaCl). This fraction contained human alpha-lactalbumin, as shown by 
N-terminal amino acid sequencing7. 
 
Interestingly, purified human alpha-lactalbumin did not cause cell death, 
suggesting that a structural difference must exist between the tumoricidal 
component and the native protein but mass spectrometry ruled out post-
translational modifications6. As casein is produced by low pH precipitation 
of milk and low pH has been shown to unfold alpha-lactalbumin, we 
investigated if the 3D structure of the protein might be changed in the 
active fraction. Near-UV CD spectroscopy showed decreased intensity for 
the 270 nm minimum and 294 nm maximum, indicating increased 
flexibility of aromatic residues, while higher exposure of solvent accessible 
hydrophobic surface was shown by increased ANS fluorescence and a 
blue-shifted emission spectrum.    
 
Furthermore, the active fraction was shown to contain oleic acid, which is 
the main fatty acid of human milk and present in human casein. The 
requirement of this lipid cofactor was demonstrated by producing the 
complex from the purified constituents18.  First, alpha-lactalbumin was 
partially unfolded by removal of the calcium ion and then a protein lipid 
complex was generated on an ion exchange matrix, which had been 
preconditioned with oleic acid. The protein-lipid complex was eluted with 
a NaCl gradient, yielding a single sharp peak. Tumoricidal activity of the 
eluted complex was demonstrated and the complex was named HAMLET. 
By screening of 14 fatty acids of different chain length, degree of saturation 
and cis/trans isomerism, oleic acid (C18:1:9cis) was identified as the 
optimal cofactor in the HAMLET complex11.  
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Alpha-lactalbumin 
 
General properties 
 
The structurally conserved alpha-lactalbumins consist of 123 amino acids, 
with the exception of rat alpha-lactalbumin, which contains a C-terminal 
extension of 17 residues. Native human alpha-lactalbumin is defined by a 
large alpha domain, comprising three major alpha-helices (residues 5-11, 
23-34 and 86-98) and two 310 helices (residues 18-20 and 115-118) and the 
smaller beta domain, composed of a small triple-stranded anti-parallel 
beta-pleated sheet (41-44, 47-50 and 55-56), a series of loops and a short 310 
helix (residues 77-80)19. A deep cleft separates the two domains and four 
disulfide bridges stabilize the overall structure (6-120, 61-77, 73-91 and 28-
111). In particular, residues 73-91 
connect the two domains. Two 
hydrophobic cores of alpha-lactalbumin 
are important for protein folding.  
 
The native structure of alpha-
lactalbumin is defined by a high-affinity 
calcium-binding site, coordinated by 
three Aspartate residues (82, 87 and 88) 
and two peptide-carbonyl oxygens (79 
and 84). One or two water molecules are 
commonly found to participate in the 
coordination. This calcium-binding site 
differs from the EF-hand motif in the 
majority of calcium-binding proteins20 as 
it is defined by a 10-residue stretch of 
amino acids (residues 79-88) rather than 

Figure 1 Crystallographic structure of 
human alpha-lactalbumin (PDB id: 
1B9O) 
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a 12-residue stretch with six coordinating residues in the canonical EF-
hand motif.  
 
Molten globule states 
 
In addition to the native state (N), alpha-lactalbumin populates several 
stable intermediately folded states (25) which include Acidic (A), Partly 
denatured (P), Temperature denatured (T), Apo and Unfolded (U) forms21. 
These molten globules of alpha-lactalbumin are characterized by a native-
like secondary structure, a slowly fluctuating tertiary structure, a lack of 
a cooperative thermal unfolding transition and retained compactness. In 
these molten globules, the predominant hydrophobic core is the A/B/310 
subdomain but the hydrophobic box is poorly formed. The molten 
globules produced under different conditions often exhibit broadly similar 
overall characteristics22,23. Using pulse-labeled photochemically induced 
dynamic nuclear polarization (photo-CIDNP), different alpha-lactalbumin 
molten globules were shown to have different patterns of hydrophobic-
core surface accessibilities, likely representing different local minima of the 
folding landscape24. 
 
 

Structural characterization of HAMLET 
 
Against the ‘one gene – one protein – one function’ paradigm25,26, we 
proposed that a protein may respond to different environments by 
changing their fold and that this process allows a single polypeptide chain 
to exert vastly different and beneficial biologic functions in different tissue 
compartments18. 
. 
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HAMLET exemplifies how a loss of three-dimensional structure definition 
may allow a protein to alter its function. To form HAMLET, alpha-
lactalbumin must undergo partial unfolding and bind the fatty acid 
cofactor10,18,27. In complex with oleic acid, alpha-lactalbumin retains its 
partially unfolded characteristics even at physiological solvent conditions, 
unlike alpha-lactalbumin molten globules. In the absence of the fatty acid 
the unfolded state is unstable, and at physiological solvent conditions the 
protein binds calcium and reverts to the native state.  
 
The loss of tertiary structural packing but a retention of secondary 
structural content was demonstrated by near- and far- UV CD 
spectroscopy and the flexibility of the proteins was confirmed by 1H-
NMR18. Enhanced ANS fluorescence indicated increased exposure of 
hydrophobic domains and differences in surface topology were detected 
by limited proteolysis and amide hydrogen/deuterium exchange 
experiments coupled to mass spectrometry, compared to the native 
protein28. In addition, HAMLET differed from the apo-alpha-lactalbumin, 
suggesting that the structural characteristics of the oleic acid bound form 
differ from the molten globule. Different sites in HAMLET, such as those 
in the beta sheet domain, were less accessible for enzymatic digestion as 
compared to the apo-alpha-lactalbumin28.   
 
In addition, the formation of HAMLET also tolerated a certain extent of 
sequence variation, as alpha-lactalbumin from different species, including 
bovine, caprine, porcine and equine were shown to form tumoricidal 
complexes29. A lower conversion yield was evident for alpha-lactalbumin 
derived from other species, however. Naturally occurring, active complex 
was found only in acid-precipitated human casein, showing that HAMLET 
formation is unique to human milk. Importantly, unfolding alone is not 
sufficient to make alpha-lactalbumin cytotoxic. The high affinity calcium-
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binding site mutant (D87A)10 and the fully reduced cysteine-free mutant 
(rHLAAll-Ala)27, in which all cysteines are substituted for alanines, show no 
tumoricidal activity, but could be converted to become active when bound 
to oleic acid. 
 
These structural studies show that a loss of tertiary structure definition can 
be a mechanism for a protein to attain a new physiological function. This 
gain of function and loss of 3D structural definition may appear 
paradoxical, as the functional state has mostly been equated with the 
lowest free energy state or the native state. Using bovine pancreatic 
ribonuclease in a system, Christian Anfinsen showed that the protein 
could refold completely from its fully denatured and reduced form30. Thus, 
the folding was driven entirely by the free energy of conformation. 
 
Protein folding is a dynamic 
process, through which the 
primary sequence assembles into 
the functional three-dimensional 
configuration. The loss of 3D 
structure often is equated with 
‘’misfolding’’ and related to the 
creation of harmful protein 
species31,32, rather than gain of 
beneficial biological properties. 

The folding process is illustrated by 
the energy landscape theory33,34. The 
folding funnel, which depicts the folding landscape, assumes a 
polypeptide chain to adopt a continuum of folding states on the way down 
the folding funnel through an increasing number of intra-molecular 
contacts. Various local free energy minima exist on the folding landscape, 

Figure 2 Protein folding energy landscape 
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depicting folding intermediates. The properties of HAMLET suggest that 
the binding of oleic acids help to stabilize a kinetic trap35, a local energy 
minimum, and keep the protein from reaching the native state. 
Remarkably, in this state a new biological function is obtained.  
 

Cellular targets of HAMLET 
 
In early studies, HAMLET was shown to invade tumor cells and to interact 
with different cellular compartments.  
 
Mitochondria and apoptosis 
 
HAMLET interacts with mitochondria, causing mitochondrial swelling 
and loss of mitochondrial membrane potential36. As a consequence, 
HAMLET-treated cells show responses typical of apoptosis, including 
cytochrome c release, proapoptotic caspase activation and exposure of 
phosphatidylserine on the cell surface37. Importantly, the apoptosis 
response is not the cause of cell death, as tumor cells die in the presence of 
pan-caspase inhibitor, overexpression of anti-apoptotic BCL-2 and BCL-XL 
proteins, and in Caspase-3 knockout cells. Furthermore, death is 
independent of the cellular p53 status.  
 
Nuclear uptake and histone interactions 
 
HAMLET crosses the cytoplasmic membrane and rapidly reaches the 
nuclei of tumor cells6. By confocal microscopy, biotinylated HAMLET was 
detected in the nuclei and >70 % of radiolabeled HAMLET was recovered 
from the nuclei after 1 hour. High-affinity interactions identified histones 
H3, H4 or H2B as nuclear targets for HAMLET and in vitro experiments 
demonstrated that HAMLET perturbed the formation of nucleosomes by 
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binding to these histones9. Furthermore, HAMLET acts in synergy with 
histone deacetylase inhibitors38 by enhancing histone hyperacetylation, 
leading to cell death. We have suggested that the interactions of HAMLET 
with histones and chromatin may ‘lock’ the cell into an irreversible death 
pathway.  
  
Proteasome 
 
Proteasomes controls the levels of endogenous misfolded proteins by 
degrading them in the proteolytic core. In view of HAMLET content of 
partially unfolded alpha-lactalbumin, the interaction with proteasomes 
was investigated. HAMLET was shown to target 20S proteasomes in 
tumor cells and to bind in vitro to intact proteasomes and proteasome 
subunits39. Interestingly, HAMLET was less efficiently degraded by 
proteasomal enzymes than the partially unfolded, fatty acid-free protein.  
Using intact proteasomes, in vitro, HAMET was shown to inhibit 
proteasome activity and to perturb the proteasome structure and to act as a 
proteasome inhibitor in intact cells. Thus, the interaction of HAMLET with 
20S proteasomes leads to structural changes and inhibition of proteasome 
activity, which may contribute to the tumoricidal effects of HAMLET. 
 

Prerequisites for the HAMLET sensitivity of tumor cells 
 
Cancer represents a large group of diseases manifested by uncontrolled 
cell growth. An organizing principle for oncogenesis has been summarized 
as the ‘hallmarks of cancer’40,41. These include sustaining proliferative 
signaling, evading growth suppressors, activating invasion and metastasis, 
enabling replicative immortality, inducing angiogenesis, resisting cell 
death, reprogramming of energy metabolism and evading immune 
destruction. Underlying these hallmarks is genome instability, which 
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accounts also for issues stemming from the intervention and treatment of 
cancer. 
  
Oncogene  
 
The behavior of tumor cells is defined by complex genetic alterations. Still, 
single oncogenes may be essential and according to the oncogene addition 
concept42, tumor cells become heavily reliant on a single oncogene, whose 
inhibition results in cell death. Dependency of at least two genes is 
described by the concept of synthetic lethality43, when inhibition of the 
inter-dependent components is required for cell death. An extension of the 
two concepts is the non-oncogene addiction42, where a wild type gene is as 
essential as an oncogene. 
 
HAMLET identifies conserved features in cancer cells, as shown by the 
diversity of tumor cell types that are killed by HAMLET1. To identify 
molecular determinants of HAMLET sensitivity, we used a combination of 
small-hairpin RNA inhibition, proteomic and metabolomics approaches44. 
The c-Myc- and Ras oncogenes were identified as essential determinants of 
HAMLET sensitivity in tumor cells. Furthermore, HAMLET sensitivity 
was influenced by the glycolytic status of tumor cells, with hexokinase 1 
(HK1), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 (PFKFB1) 

and hypoxia-inducible factor 1α (HIF-1α) as significant targets. Binding to 
HK1 was confirmed in vitro and HAMLET caused a rapid metabolic 
paralysis, characterized by a reduction in about 70 % of the altered 
metabolites. These studies demonstrated that the HAMLET sensitive 
phenotype is defined by classical, conserved oncogene defined features in 
cancer cells.  
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Membrane responses of tumor cells to HAMLET  
 
The effect on tumor cells is initiated at the cytoplasmic membrane, but 
distinct molecular changes to the membrane have been difficult to define. 
To address if the rapid change in cell morphology and the internalization 
of HAMLET might reflect direct effects on the cell membrane, lipid bilayer 
models were used in vitro4. HAMLET was shown to perturb the integrity 
of egg yolk and soybean membranes, causing membrane elongation and 
changes in fluidity. In addition, HAMLET caused leakage of vesicular 
contents, suggesting membrane permeabilisation. Native alpha-
lactalbumin or oleic acid had no effect, indicating that a concerted action 
by the partially unfolded protein and oleic acid for these membrane 
changes to occur.  
 
HAMLET triggers ion fluxes 
 
In early studies, HAMLET was shown to trigger calcium fluxes in tumor 
cells1. The dramatic membrane responses4 to HAMLET further suggested 
that ion fluxes across these perturbed membranes might be a general 
mechanism to alert tumor cells to the presence of HAMLET and to trigger 
the death response. Using fluorometry, real time imaging and patch-clamp 
measurement, HAMLET was shown to trigger K+, Na+ and Ca2+ fluxes in 
tumor cells45. The characteristics of HAMLET-induced current differ from 
the biophysical characteristics of widely expressed cation channels such as 
the transient receptor potential (TRP), epithelial Na+ channel (ENaC), 
cyclic-nucleotide-gated (CNG) channels as well as various K+ channels. 
Importantly, Amiloride and barium chloride (BaCl2), which inhibit Na+-
carrying channels and transporters or K+ fluxes, blocked the effects of 
HAMLET on tumor cells, including morphological changes, global 
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transcription, MAPK signaling, and cell death.  
 
Ion fluxes activate an early, p38 dependent death response  
 
Transcriptomic analysis of HAMLET-treated tumor cells showed that the 
p38 MAPK signaling pathway is activated by HAMLET after 1 hour45. The 
activated components included MKK3, a direct upstream activator of p38 
MAPK, two dual-specificity phosphatases (DUSP1 and DUSP10) and eight 
other members in the pathway. The levels of phosphorylated p38 MAPK 
were increased. In parallel, a loss of ERK1/2 phosphorylation was 
observed, indicating a shift from cell proliferation to cell death. Inhibition 

using pharmacological p38 inhibitors or siRNA specific for p38α and p38β 
delayed cell death by at least 6 hours. Importantly, the p38 activation and 
the loss of ERK1/2 were reversed by amiloride or BaCl2, suggesting an ion 
flux dependent activation of p38 MAPK pathway in response to HAMLET.   
 
Normal, differentiated cells showed a weaker ion flux response to 
HAMLET as well as a major difference in transcribed genes and signaling 
pathway activation.  
 
 
Therapeutic and prophylactic efficacies of HAMLET 
 
The mechanism of tumor cell death in response to HAMLET is complex, as 
HAMLET acts on multiple pathways and organelles concurrently. This 
complexity, however, does not reduce the importance of therapeutic and 
prophylactic efficacies of HAMLET, which have been demonstrated in two 
human studies and several animal models.  
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(1) HAMLET treatment delayed the progression of human glioblastoma 
xenografts in nude rats and increased survival, triggering apoptotic 
changes in the tumor without evidence of cell death in healthy tissue12.  
 
(2) In a placebo-controlled clinical study, topical administration of 
HAMLET removed skin papillomas, with no adverse effects13.  
 
(3) In patients with bladder cancer, local instillations of HAMLET reduced 
tumor size14. Biopsy specimens showed apoptotic response in tumor tissue 
but not in the surrounding healthy tissue. In addition, HAMLET triggered 
rapid shedding of tumor cells into the urine.  
 
(4) In mouse MB49 bladder carcinoma model, topical application of 
HAMLET reduced tumor development. Similar to the patient study, an 
accumulation of HAMLET was detected in tumor tissue but not in the 
surrounding healthy tissues2.  
 
(5) Peroral HAMLET administration reduced tumor progression and 
mortality in ApcMin/+ mice15. Moreover, in a prophylactic regimen, 
HAMLET significantly prevented tumor development.  
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PRESENT INVESTIGATIONS 
 
AIMS 
 

I. To elucidate the structure of HAMLET and the exposure of 
biologically active domains  

II. To define the contribution of lipids to the tumoricidal effect of 
HAMLET 

III. To characterize the membranes response to HAMLET and the 
perturbation of membrane associated signaling cascades 

IV. To use proteomic screens to identify conserved features of 
HAMLET targets in tumor cells 
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Paper I 
Low Resolution Solution Structure of HAMLET and the Importance of 
its Alpha-Domains in Tumoricidal Activity 
 
Background 
HAMLET is the first member of a new family of protein-lipid complexes 
with broad tumoricidal activity. Differences in tertiary structural 
characteristics and solvent exposure of alpha-lactalbumin protein in 
HAMLET have been documented by CD spectroscopy, ANS spectroscopy, 
proteolysis and support for the integration of oleate into the complex has 
been obtained by NMR spectroscopy. However, the structure of HAMLET 
and the exposure of functional domains have not been determined. 
Elucidating the structure of HAMLET and the domains interacting with 
tumor cells is essential, to understand the tumoricidal activity.  
 
Results 
In this study, we used small angle X-ray scattering (SAXS) to obtain the 
low-resolution solution structure of the HAMLET complex. HAMLET 
exists as a monomer in solution and shows a two-domain conformation 
with a large globular domain and an extended part of about 2.22 nm in 
length and 1.29 nm width. HAMLET has a radius of gyration (Rg) of 
1.78±0.05 nm and a maximum dimension (Dmax) of 5.69±0.1 nm. 
Comparison of the forward scattering of HAMLET with that of a reference 
solution yielded a molecular mass of 15±2 kDa, further supporting a 
monomeric complex. The increase in higher angles in the Kratky plot 
indicates that the protein is slightly flexible.  
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Superimposition of the 
crystallographic structure of native 
human alpha-lactalbumin onto the 
SAXS model revealed that the 
major part of alpha-lactalbumin 
accommodates well in the shape of 
HAMLET, yielding a good fit with 

χ2 of 1.531. The globular domain 
showed an increase in size, 
however, consistent with a less 
defined tertiary structure. An 
extended conformation of the C-
terminal residues from L105 to 
L123 in HAMLET was not present 
in the crystal structure of the 

human alpha-lactalbumin, 
suggesting that this alteration 
might be resulted from partial unfolding and oleic acid binding.  
 
To identify molecular motifs that become exposed in HAMLET, we further 
obtained synthetic peptides covering the N- (alpha1) and C- terminal 
(alpha2), as well as the beta domain (beta) of alpha-lactalbumin. The 
alpha1 or alpha2 peptides formed complexes with oleate, triggered rapid 
ion fluxes, were internalized by tumor cells, and caused rapid and 
sustained changes in cell morphology. The alpha1- and alpha2- oleate 
complexes also triggered tumor cell death with comparable efficiency as 
HAMLET. In contrast, the beta peptide was functionally negative in these 
assays. Further detail was obtained using a library of shorter 15-residue 
peptides covering the alpha-lactalbumin sequence. The most N-terminal 

Figure 3 Superposition of the SAXS 
structure of HAMLET with human alpha-
lactalbumin (PDB id: 1B9O) 
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peptide of alpha1 and two peptides in alpha2 formed complexes with 
oleate, triggered weak ion fluxes and were taken up by tumor cells.  
 
Conclusion 
These findings provide novel insights into the structural properties of 
HAMLET and the contribution of peptide motifs to the effects of HAMLET 
on tumor cells. The low resolution SAXS structure supports the notion of 
HAMLET as a largely monomeric molecular entity with alteration of its 
tertiary structure in the globular domain and gain of a tail domain due to 
an extended conformation of the C-terminal portion of the molecule. The 
alpha-helical domains of HAMLET are identified as functional domains, 
triggering many of the cellular responses seen in HAMLET-treated cells.  
 
 
Paper II 

Lipids as Tumoricidal Components of Human Alpha-lactalbumin Made 
Lethal to Tumor Cells (HAMLET); Unique and Shared Effects on 
Signaling and Death 
 
Background 
Long-chain fatty acids are internalized by receptor-mediated mechanisms 
or receptor-independent diffusion across cytoplasmic membranes and are 
utilized as nutrients, building blocks, and signaling intermediates. While 
fatty acids, specifically oleic acid, are integral components of the HAMLET 
complex, their structural and functional contribution has remained unclear 
and debated. Using techniques different from those defining HAMLET, 
other protein-lipid complexes have been produced and used to kill tumor 
cells, suggesting to some, that the tumoricidal response is triggered by 
oleic acid alone. Furthermore, effects of lipids on host cells depend on the 
protonation state.  
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Results 
This study first determined the chemical shifts of the carboxyl carbons of 
oleic acid (177 ppm) and oleate (182 ppm) by natural abundance 13C NMR. 
In the HAMLET spectrum, a prominent 182 ppm oleate peak was observed. 
A second, small and broad 130 ppm peak, corresponding to the olefinic 
carbon of bound oleate, suggested that oleate was bound to the protein in 
HAMLET. The function of oleate as a cofactor in HAMLET was further 
demonstrated by producing oleate-HAMLET, with similar tumoricidal 
activity as HAMLET.  By CD spectroscopy, the oleate-HAMLET complex 
was structurally identical to HAMLET but the melting temperature, Tm of 
oleate-HAMLET was higher, suggesting more stable complex that with 
oleic acid. The lipid concentration in the complexes was determined as 1:4 
or 1:5 by acid hydrolysis and GC/MS. 
 
We next compared the tumoricidal effect of HAMLET, oleate-HAMLET, 
oleate and oleic acid. HAMLET and oleate-HAMLET showed no difference 

in dose-dependent cytotoxicity (> 80 % dead cells after 3 hour at 35 μM). 
Oleate or oleic acid did not alter cell viability at the concentration present 

in HAMLET (175 μM oleate and 35 μM protein). At higher concentrations 
(15 times), oleate was more cytotoxic than oleic acid and at 25 times, all 
cells were killed, as expected from the unspecific cytotoxic effects of high 
lipid concentrations. By real time holography imaging, HAMLET and 
oleate-HAMLET caused rounding up of cells with similar kinetics. The 
effect of oleate alone was less pronounced.  
 
HAMLET and oleate-HAMLET triggered rapid K+, Na+, and Ca2+ fluxes 
across cell membrane but oleate was a weak inducer of Na+ and K+ fluxes. 
High oleate concentrations did not reproduce the ion flux pattern of 
HAMLET.  
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HAMLET causes a metabolic paralysis in tumor cells, with > 60 % 
reduction in metabolite abundance after 1 hour. By non-targeted 
metabolite profiling by GC/MS, the effect of oleate was weaker and 
cellular responses to oleic acid were marginal, suggesting that 
deprotonation favors cellular interactions of fatty acids. To further 
characterize the metabolic response, we subjected the samples to targeted 
metabolite profiling of fatty acids, amino acids and citric acid cycle 
constituents. HAMLET caused an accumulation of fatty acid metabolites, a 
loss of early metabolites in the citric acid cycle but an accumulation of late 
metabolites, and a reduced level of metabolites feeding into the citric acid 
cycle. In comparison, oleate caused less pronounced change in the fatty 
acid metabolites, a similar loss of early and accumulation of late citric acid 
cycle metabolites and a more apparent change in amino acid metabolism 
with an additional nine showed decreased level. 
 
Furthermore, genome wide transcriptomic analysis was used to compare 

the cellular effects of HAMLET and oleate (175 μM). A pronounced effect 
of HAMLET (74 up- and 128 down- regulated) was observed compared 
with oleate (19 up- and 2 down- regulated). Increased transcription of 
genes associated with cell death and transcriptional regulation was 
detected while DNA damage and repair and cell cycle regulation genes 
were suppressed. Most cancer-related genes that were regulated by 
HAMLET were not regulated by oleate. More overlap was observed in the 
high oleate samples, but with important qualitative differences compared 
to HAMLET and equimolar oleate concentrations.  
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Conclusion 
In this study, oleate is identified as a relevant HAMLET constituent but 
oleate alone did not reproduce the effects of HAMLET on tumor cells, 
arguing against oleate as the sole tumoricidal constituent of the HAMLET 
complex. The results suggest that fatty acids may exert some of their 
essential effects on host cells when in the deprotonated state and when 
presented in the context of a partially unfolded protein, like alpha-
lactalbumin. 

Figure 4 A network of cancer-related genes differentially regulated by HAMLET (left panel) 
is shown. Down-regulated genes were colored in green, and up-regulated genes are in red. 
Expression values from the oleate sample (right panel) were overlaid onto the same 
network, showing that most genes were not regulated. 
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Paper III 
HAMLET Drives Plasma Membrane Remodeling and Tumor Cell Death 
by Receptor-independent Mechanisms 
 
Background 
The dynamic membrane bilayer is more than merely a barrier, separating 
the external environment from the cell interior. Membranes play an active 
role in virtually all cellular functions, guiding molecular recognition and 
signaling, membrane trafficking and endocytosis, the generation of energy 
in the mitochondria, ribosomal localization to the endoplasmic reticulum 
and nuclear integrity.  Since the seminal work on the fluid mosaic model of 
the plasma membrane by Singer and Nicolson46, the use of simplified 
model membrane systems have advanced the understanding of physical 
properties and responses to stimuli that alter the membrane structure.  
Such properties include curvature, rigidity, tension and elastic moduli47. 
The effects of HAMLET on tumor cells and lipid vesicles suggested that 
HAMLET perturbs the membrane, per se, but mechanisms and effects have 
not been characterized.  
 
Results 
This study addressed how HAMLET modifies cell membranes and if these 
modifications may be propagated into oncogene-specific intracellular 
signals. We identify three critical effects, proposed to characterize the 
conserved tumoricidal response. I. HAMLET triggered rapid membrane 
perturbations in receptor-free artificial vesicles, converting the well-
defined structures into a dense tangle of HAMLET-integrating protrusions. 
The massive membrane remodeling was reproduced in tumor cells, where 
HAMLET induced the formation of membrane blebs. II. Clusters of 
HAMLET and Ras were formed in tumor cell membranes, leading to the 
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inactivation of Ras. The interactions of different Ras family members with 
HAMLET were supported by protein microarray. III. These responses 
were absent in differentiated cells, suggesting that HAMLET-membrane 
interactions provide a receptor-independent mechanism to activate a 
conserved cell death program in cancer cells, otherwise conditioned to 
outlive healthy cells.  
 
Conclusions 
This study suggest that membrane perturbations provide a physical means 
to excite membrane conformations, serving as surrogate receptors for 
downstream signal transduction, ultimately leading to cell death. These 
findings also propose a mechanistic basis for tumor-specific cell death. 
Physical principles underlying this mechanism might explain how 
HAMLET initiates a universal cell death program conserved in cancer cells, 
otherwise conditioned to outlive healthy cells.  

Figure 5 Membrane co-localization (yellow) of HAMLET (red) with Ras (green). R = 
Pearson coefficient for co-localization. 
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Paper IV 
Broad recognition of nucleotide-binding proteins by HAMLET  
 
Background 
HAMLET interacts with multiple organelles and molecular targets. It is not 
clear if these broad and apparently unrelated interactions may represent 
molecular motifs, which are conserved among the different HAMLET 
targets. This study examined the hypothesis that the apparent multitude of 
cellular HAMLET targets reflects some degree of structural homology 
among these targets.  
 
Results 
Using a proteomic screening approach, nucleotide-binding proteins were 
identified as HAMLET targets, including ATPases, kinases and GTPases. 
Remarkably, nucleotide-binding proteins accounted for about 50 % of all 
HAMLET targets in a protoarray 
comprising 8000 human proteins. 
The interaction with HAMLET was 
verified using purified ATPase/ATP 
synthase and protein kinases. As 
mentioned in Paper III, GTPases 
have previously been shown to 
interact with HAMLET.  
 
HAMLET was shown to bind in vitro 
to the ATPase/ATP synthase and by 
confocal microscopy, colocalization 
with HAMLET was detected 
throughout the cells. Furthermore, 

Figure 6 Kinases targeted by HAMLET are 
mapped onto the human Kinome (blue dots). 
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HAMLET inhibited ATPase/ATP synthase activity, in vitro, and in tumor 
cells, a reduction in cellular ATP was observed, consistent with an 
inhibitory effect. 
 
HAMLET targets were present in all branches of the Kinome map, 
including Tyrosine kinases, Tyrosine kinase-like and Casein kinase. By 
cellular functions, 24 belonged to the MAPK signaling pathway, 17 were 
receptors and 22 were kinases involved in the regulation of mitosis. 
Inhibition of protein kinases from all branches of the Kinome tree was 
observed in vitro. Phosphorylation array and examination of 
phosphorylated targets in HAMLET-treated cells confirmed inhibition for 
a small number of targets. A pathways in cancer analysis demonstrated 
that the majority of cancer-related kinases are inhibited. 
 
Conclusions 
Protein kinases are crucial for signal transduction and over-activity of 
kinase-dependent cellular functions in tumor cells contributes to increased 
proliferation and other ‘’Hallmarks’’ of cancer. According to the 
‘’oncogene addiction’’ concept, the interference with individual oncogene-
driven functions can cause tumor cell death. This study suggests that 
HAMLET reverses this phenotype by broadly inhibiting nucleotide-
binding proteins.  
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GENERAL DISCUSSION 
 
This thesis addresses the structure-function relationship of HAMLET and 
the molecules that it perturbs. Specific areas of study include (1) the 
structure of HAMLET and the function of individual domains in HAMLET, 
(2) how the lipid influences HAMLET’s structure and effects on tumor 
cells (3) HAMLET’s membrane perturbation mechanisms (4) conserved 
molecular targets of HAMLET in tumor cells.  
 
The structure of HAMLET  
 
To form HAMLET, alpha-lactalbumin undergoes a loss of tertiary 
structural packing, resulting in increased surface hydrophobicity, as well 
as differences in surface topology compared to native alpha-lactalbumin. 
Biophysical characterizations have suggested that HAMLET represents a 
kinetically trapped intermediate in the folding pathway of alpha-
lactalbumin35.  
 
Paper I provided the first 3D structural model of HAMLET. Based on the 
resolved two-domain structure and the retained structural similarity to the 
compact precursor protein alpha-lactalbumin, we demonstrated that 
alpha-lactalbumin in HAMLET is non-native with an expanded volume of 
the globular domain and an extended conformation of the C-terminal end 
of the protein. This structural alteration is predicted to allow the binding of 
multiple oleic acids, leading to the formation of the functional non-native 
complex, which is stable at physiological conditions.  
 
Two alpha domain peptides functionally reproduced the effects of 
HAMLET. This was expected for the alpha2 domain, which corresponded 
to the C-terminal extension in HAMLET. The SAXS structure did not 
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resolve the changes in the alpha1 domain structure, but the activity of the 
alpha1 peptide suggested that N-terminal modifications also help to create 
the properties of tumoricidal complex. The findings also enabled us to 
formulate a step-wise unfolding sequence from native alpha-lactalbumin, 
to a kinetically trapped intermediate, stabilized by binding to oleate. Initial 
unfolding of the alpha2 domain is proposed to lead to the exposure of a 
hydrophobic core, which might serve as a primary oleate-binding site. By 
destabilizing intra-molecular interactions, these events may initiate the 
unfolding of the alpha1 domain and the resulting exposure of the 
hydrophobic core in alpha1 would provide a secondary oleate-binding site. 
     
Proposing that unfolding can generate functional diversity challenges the 
dogma that a rigid three-dimensional structure is needed for a protein to 
perform its proper function. Since this was suggested by the HAMLET 
studies1,18, it has been reported that more than 50 % of total eukaryotic 
proteins and 75 % of signaling proteins in mammals contain at least one 
disordered region48,49. Even though functionality of these regions has not 
been confirmed, this immense structural complexity suggests an 
alternative paradigm of structure-function relationship of proteins in 
general50,51 and HAMLET in particular. These effects are not to be confused 
with ‘’Moonlighting’’ proteins52-54, used as a term to describe proteins with 
one main function but able to adopt several additional functions without 
loosing native structure. Intrinsically unstructured proteins lack a native 
state and can alternate between different folded states with different 
functions. A classical example is p53, which can interact with a large 
number of targets55,56. Distinct from this group of proteins, native alpha-
lactalbumin unfolds to form HAMLET and remains as such when binding 
to oleic acid and executing the new biological function.  
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Paper I shows that the tumoricidal activity of HAMLET is reproduced by 
alpha-domain peptides bound to oleate, demonstrating that certain amino 
acid sequences are favorable for host cell interactions. Furthermore, 
support for independent membrane associations of specific alpha-
lactalbumin peptides has been obtained with higher membrane affinity for 
lipid vesicles57. The functional differences between the alpha1- and alpha2-
oleate complexes and native alpha-lactalbumin mixed with oleate confirm 
the importance of de novo exposure of these peptide epitopes, which are 
protected in the native protein structure. These include ion flux induction, 
membrane remodeling, active transcriptional regulation and tumoricidal 
activity. Further functional and structural studies are under way, using 
shorter peptides from the exposed domains. Interestingly, antibodies 
raised, against these epitopes inhibited HAMLET-induced cell death, 
confirming that these epitopes are exposed and involved in the cell death 
response.  
 
Contribution of oleic acid/oleate to HAMLET’s tumoricidal activity  
 
In early studies, we demonstrated that both oleic acid alone and partially 
unfolded alpha-lactalbumin alone lacks tumoricidal activity and that oleic 
acid alone does not reproduce HAMLET’s effects, suggesting that the 
complex possesses unique novel properties not found in its constituents. 
The extent to which the lipid contributes to the tumor cell death in 
response to HAMLET has been extensively debated, however. A number 
of investigators have emphatically claimed that the effects of HAMLET are 
nothing but lipid toxicity58-65. As a consequence, the HAMLET literature is 
becoming increasingly fragmented, with inconsistencies and contradictory 
views. These contradictions reflect the use of production methods to 
generate protein-lipid complexes that are different from HAMLET and less 
well characterized, structurally and functionally.  
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The chromatographic method used to produce HAMLET yields 
reproducible and stable complexes with a defined lipid stoichiometry and 
the effects summarized in Paper II exemplify the detailed understanding 
of their cellular effects. Other protein-lipid complexes have been made, by 
heating at neutral pH, under acidic66 or alkaline64 conditions, or in the 
presence of EDTA, using bovine alpha-lactalbumin61,64,65,67, lysozyme68, 
beta-lactoglobulin69, pike parvalbumin65 or alpha-lactalbumin fragments60. 
The more characterized cytotoxic complexes are ELOA (a complex 
between equine lysozyme and oleic acid)68  and BAMLET (Bovine Alpha-
lactalbumin Made LEthal to Tumor cells)70-72.   
 
These complexes carry a large number of oleic acid molecules. For example, 
ELOA exists as an oligomer with up to 48 oleic acid molecules68 while 
BAMLET may contain about twice the amount of oleic acid in ELOA, due 
to oligomer formation59,67. The high lipid content changes the mechanism 
of cellular attack and the high lipid complexes trigger a different mode of 
cell death, compared to HAMLET. ELOA causes membrane rupture, 
which lead to cell death. Cytotoxic effects for different cancer cell lines 
have been reported but detailed mechanistic characterization of the 
pathways leading to death have not been studied, making comparisons 
with HAMLET difficult.  
 
In Paper II structural studies and extensive functional studies were used to 
define the protonation state of the lipid in HAMLET and the cellular 
responses to the lipid alone, as compared to HAMLET. The production 
method for HAMLET has been assumed to favor the deprotonated state of 
oleic acid, but this has not been documented previously.  HAMLET is 
produced at pH 8.5, at which the protonated as well as the deprotonated 
state exist in equilibrium shifted towards the deprotonated state with 
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increasing pH. In Paper II, we demonstrated by NMR that the 
deprotonated form of oleic acid is the functional cofactor in HAMLET as 
oleate-HAMLET was structurally and functionally identical to HAMLET. 
Furthermore, we detected protein-bound oleate in HAMLET, reflected by 
the broad olefinic carbon peak, suggesting that oleate binds to specific sites 
in human alpha-lactalbumin, and not just by weak, non-specific 
attachments to hydrophobic surfaces. The functional comparison of oleate 
to HAMLET also suggested that tumor cells respond differently to a 
deprotonated versus a protonated lipid and that the recognition of the 
lipid is modified when presented in the context of a partially unfolded 
protein, such as human alpha-lactalbumin.  
 
In contrast to HAMLET, a recently obtained SAXS structure of BAMLET73 
showed a coiled and elongated globular conformation. Further, in an NMR 
study comparing lipid binding sites of human- or goat- alpha-lactalbumin 
the lipid was shown to bind to several protein sites, which differed 
between the proteins74, suggesting that the formation of the protein-lipid 
complexes may reflect sequence specificity. As a consequence, these 
protein-lipid complexes may have different cellular effects, confirming the 
notion that the lipid function varies with the protein to which it binds. This 
argues against the view that the lipid is the sole cytotoxic component of 
HAMLET and HAMLET-like complexes.   
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Membrane perturbations by HAMLET initiate tumor cell death 
 
Membranes act as fluid matrices for lateral- and axial- signal propagation 
along or across the membrane. Equally important is the membrane 
association of transmembrane and cytosolic proteins, often in their active 
state. For lateral propagation, the membrane involves in domain 
partitioning to facilitate oligomerization-induced trapping75-77, cellular 
polarisation for transcytosolic vectorial transport78 and reaction-diffusion 
to generate a high local concentration of substrates79,80. Immediate axial 
signaling often involves a cascade of coupled reaction cycles, which bridge 
multiple local phosphorylation gradients, to ensure global signal 
propagation, exemplified by Ras pathway. Extended axial signaling 
involves endocytic receptor recycling and signaling endosomes, which 
impact on gene expression81-83. Given that many of the proteins involved in 
oncogenesis are membrane associated, it is not surprising that membrane 
alterations may perturb cellular homeostasis84.  
 
HAMLET alters the shape of tumor cells, crosses the plasma membrane 
and trigger ion fluxes45, suggesting that the membrane is an essential first 
point of the attack that leads to tumor cell death. In Paper III, we identify 
three critical molecular-level features, which characterize the conserved 
tumoricidal response. I. Membrane perturbations in receptor-free model 
vesicles and in tumor cells, forming HAMLET-integrating protrusions. II. 
Formation of HAMLET-Ras membrane foci in tumor cells, also detected in 
vivo in intestinal tumors. III. The absence of these responses in 
differentiated cells. 
 
There are multiple ways, by which these membrane shape changes could 
be generated by HAMLET, including asymmetric insertion of amphipathic 
molecules like oleate, adsorption of the protein through a crescent-shaped 
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domain85, self-assembly of the complex into specialized domains86 and 
protein-protein crowding87,88. Membrane perturbation was found to be a 
unique property of the HAMLET, not reproduced by native human alpha-
lactalbumin or oleate.  Native human alpha-lactalbumin retains 
membrane-binding capacity, suggesting that the protein crowding and 
adsorption is not sufficient to cause tubulation. Similarly, as insertion of 
oleate did not induce similar tubulation, the amphifile mechanism should 
not be responsible for the observed membrane perturbations.  We suggest 
that the membrane-perturbing event may involve a new mechanism 
defined jointly by the lipid and partially unfolded protein.  
 
The translation of membrane perturbations into cellular responses involve 
ion fluxes, which are specifically activated by the HAMLET complex, but 
not the native protein or oleic acid. Inhibition of potassium fluxes even 
blocked membrane blebbing in response to HAMLET in tumor cells. Based 
on these observations, we propose that HAMLET interacts with and 
perturbs the tumor cell membrane by an ion flux-dependent mechanism 
that requires the insertion of both the partially unfolded protein and oleic 
acid. Furthermore, the membrane insertion of HAMLET from the 
extracellular space also distinguishes it from endogenous scaffolding 
proteins such as COPII and BAR domain proteins89,90. 
 
HAMLET perturbs membrane-associated GTPases 
 
The membrane acts as a fluid matrix for transmembrane and also cytosolic 
proteins that become membrane associated, often in their active states. A 
key mediator in this form of signal propagation is the anchorage of 
proteins on the membrane via lipidation, which is exemplified by the small 
GTP-binding proteins of the RAS family. The GTP/GDP binding states of 
RAS dependent on the GEFs and GAPs are facilitated by a reduction in 
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dimensionality when GEFs and GAPs are located at proximity to the 
plasma membrane. In the active state, RAS proteins become lipidated and 
associate with the cytoplasmic leaflet of the plasma membrane91. 
Irreversible post-translational farnesylation of a cysteine residue at the 
CAAX motif followed by the cleavage of AAX sequence and 
carboxymethylation of the terminal cysteine establishes membrane affinity 
for RAS. Subsequent reversible palmitoylation on cysteine residues, 
immediately upstream of the CAAX motif92,93 or at a series of upstream 
positively charged Lysine residues (K-RAS-4B), confer specificity and 
higher affinity for different membrane compartments. Computational 
simulations revealed that a dynamic acylation cycle of RAS is needed for 
maintaining an asymmetric spatial organization of RAS between the 
plasma membrane and Golgi84. In fact, fully palmitoylated RAS has been 
shown to redistribute equally between membrane compartments leading 
to lower oncogenic signaling94.  
 
Ras95,96 is a classical oncogene implicated in 20-30 % of all cancers. Ras 
protein family has shown direct influence on oncogenesis, as Ras acts as 
master regulator of cell proliferation. When constitutively active, Ras 
enhances the survival and proliferation of tumor cells. We identified 
membrane-anchored GTPases as HAMLET targets in a protein microarray 
screen. HAMLET modified the cellular distribution of Ras as drastic 
relocalization and accumulation to the membrane blebs was observed, 
resulting in Ras colocalized with HAMLET. The specificity of the Ras 
response to HAMLET in tumor cells was also extended to additional Ras 
family members, suggesting the HAMLET targets GTPases, likely leading 
to a functional perturbation of these proteins.  
 
The effect of HAMLET on Ras activity is biphasic, with an early activation 
phase followed by inactivation. Direct binding of HAMLET to membrane 
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associated Ras probably results in inactivation of Ras as shown by co-
immunoprecipitation, suggesting that HAMLET acts as a Ras inhibitor. 
Structural studies in Paper IV further suggested that HAMLET may bind 
to Ras via a novel mechanism, involving a larger binding surface on Ras 
than the GTP binding site, which has been so inaccessible for small 
molecule inhibitors, due to the picomolar affinity of Ras for GTP97. To 
enhance the effect of this inhibition, HAMLET also interacts with targets 
downstream of Ras. Direct binding of HAMLET to BRAF in vitro and 
cellular colocalization of HAMLET with Braf support that HAMLET 
causes a global inhibition of this pathway, which commonly shows 
enhanced activation in cancer cells.  
 
In contrast, membranes of normal cells were refractory to HAMLET, 
exemplified by intact cell morphology, weak ion fluxes, an absence of Ras 
redistribution and HAMLET-Ras membrane foci. Furthermore, tissue 

sections from APCMin/- mice with intestinal tumors, showed colocalization 

of HAMLET with Ras exclusively in individual tumor cells and not in 
surrounding healthy tissue. These contrasting responses may be a 
consequence of differences in tumor cell membrane composition, including 
increased fluidity due to decreased cholesterol content. In addition, tumor 
cells have more short-chain, unsaturated fatty acids as compared to long-
chain, unsaturated fatty acid, as well as a more disordered asymmetrical 
distribution of phospholipids, in comparison to those in normal cells.  
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Figure 7. A model depicting how physical remodeling of the membrane 
by HAMLET drives the activation of transmembrane signaling in the 

absence of cell-surface receptors. The interaction of tumor cells with 

HAMLET (1) induces major changes in membrane curvature and integrity; (2) 

triggers ion fluxes, which activate RAS family proteins; (3) translocates activated 

RAS family members to the membrane of tumor cells and into membrane blebs; 

and (4) produces colocalized clusters within the plasma membrane that include 

HAMLET and several activated RAS family members. This mechanism might 
explain how HAMLET initiates a universal cell death program conserved 
in cancer cells, otherwise conditioned to outlive healthy cells.   
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Nucleotide binding proteins as conserved molecular targets of HAMLET 
in tumor cells.  
 

Ships that pass in the night and speak  
 Each other in passing 
Only a signal shown and distant voice 
 in the darkness 

- Henry Wadsworth Longfellow, 
“The Theologian’s Tale” (1863) 

 
Protein phosphorylation is the most common post-translational 
modification and protein kinases are key regulators and catalysts of signal 
transduction and cellular homeostasis98. To date, 538 human protein 
kinases have been described99,100, making up almost 2 % of the human 
genome. The majority of kinases phosphorylate serine/threonine residues 
but 90 kinases phosphorylate tyrosine residue, first observed by Hunter 
and colleagues101. More than half of the known tyrosine kinases have a 
causal relationship with disease, and mutated or overexpressed kinases are 
common in cancer 102. Kinase inhibitors are important novel therapeutics, 
the most notable example being Imatinib, which inhibits BCR-Abl in the 
targeted therapy for chronic myelogenous leukemia (CML) and other 
tumors103.   
 
In Paper IV, we showed that HAMLET binds to a large number of 
ATP/GTP-binding proteins, of which the majority belongs to the kinase 
family. All subfamilies in the kinome were included, suggesting that 
HAMLET targets molecular motifs shared by the different kinase families. 
The direct binding of HAMLET to kinases causes a loss of kinase activity 
and as a result, HAMLET acts as a broad-spectrum kinase inhibitor for 
about 50 % of the kinases in vitro. Interestingly, a small group of kinases 
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show enhanced activity in the presence of HAMLET but no specific 
structural characteristics were detected.  
 
Kinases are identified by the conserved sequence in the catalytic domain. 
The typical kinase structure consists of an N-terminal lobe, composed of a 
beta-sheet and a single C helix as well as a large globular C-terminal lobe 
domain connected by a hinge. The activation segment in the inactive 
conformation is often partially disordered for substrate recognition104, in 
contrast to the structured, active conformation105,106. Preliminary results 
show weak binding of HAMLET to synthetic activation segment peptides, 
defined by the conserved DFG motif and a less conserved APE motif, 
supporting the binding of HAMLET to this region. In view of the 
difference in binding to wild type or mutant kinases and the flexible 
conformation of alpha-lactalbumin in HAMLET, we propose that 
HAMLET interacts with the activation segment of wild-type kinases and 
restricts the flexibility of this domain, leading to a reduction in kinase 
activity. 
 
Broad-spectrum kinase inhibitors such as staurosporine, induce non-
selective cell death in a wide range of cells, including tumor cells, 
lymphocytes, neurons, primary- and transformed cells107-110. HAMLET, in 
contrast, showed higher selectivity for tumor cells and acted as a broad-
spectrum kinase inhibitor. HAMLET thus appears to act differently as 
compared to other kinase inhibitors. Unlike peptide inhibitors111, however, 
HAMLET is not a structural derivative of a substrate protein, engineered 
to target specific kinases with high affinity. The inhibitory micromolar IC50 
values of HAMLET, based on seven kinases from different families, were 
similar to other peptide inhibitors. On the other hand, the inhibitory effect 
of HAMLET is also distinct as compared to small molecule inhibitors such 
as staurosporine, which targets specifically the ATP-binding pocket with 
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nanomolar IC50 values. In HAMLET-treated tumor cells, multiple signaling 
cascades involved in cancer were inhibited, including the 
PI3K/Ras/Raf/MEK/ERK- and p38 MAPK- signaling cascades.  This set 
of changes compatible with a cell death phenotype, is consistent with the 
response of tumor cells treated with HAMLET, suggesting that the 
functional perturbation of the large number of nucleotide-binding proteins 
contributes, in part, to the tumor cell death response.  
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Appendix 
 
Tracing the History of Alpha-lactalbumin 
 
(i) The biosynthesis of lactose 
 
The biosynthesis of lactose has been dubbed one of the most exciting 
natural transformations in carbohydrate metabolism112. The observation 
that led to the eventual proof of the monosaccharide constituents of lactose 
could be traced back to as early as 1880s.  Physiological evidence in the 
early days suggested a link between blood glucose level and the formation 
of lactose. In animals with the mammary gland removed followed by 
pregnancy, hyperglycaemia was observed and glucose was found in the 
urine113,114. Glucose in blood was found to be the source of lactose 
formation in the mammary gland115. Moreover, observation showed that 
the degree of hypoglycaemia corresponded to the amount of milk 
produced116.  
 
Direct in vitro evidence of the biosynthesis of lactose was first shown 
approaching the 1920s117 in an extract of the mammary gland upon added 
sucrose. In 1935, Grant demonstrated quantitatively, using sliced 
mammary gland tissue from guinea pig, that glucose allowed complete 
conversion into lactose, but not other hexoses tested, including fructose, 
mannose and galactose112.  
 
The ‘chase’ for elucidating the lactose synthesis pathway intensified in the 
1950s. With the knowledge that various enzymatic activities, which 
included hexokinase, phosphoglucomutase, uridyl transferase and UDP-
D-galatose 4-epimerase, were present in mammary tissue, as well as the 
evidence for a galactosyl transferase, which transfers D-galactose from 
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UDP-D-galactose to alpha-D-glucose 1-phosphate118,119, a 5-step synthesis 
process was proposed. However, several contradictory results mainly 
concerning the unclear identity of lactose 1-phosphate, an intermediate in 
the proposed synthesis process, prompted a reinvestigation. Eventually, it 
led to a confirmation by Watkins and Hassid that the final stage in the 
formation of lactose involves the following reaction120.  
     

 
 
Using homogenized mammary tissue from guinea pigs and cows, lactose 
formation was shown chromatographically when incubated with 14C-
labeled UDP-galactose and glucose. Fractionation experiment isolating 
nuclear, mitochondrial and microsomal fractions revealed that only the 
latter two fractions were active. Importantly, critical concentration of D-
glucose permissive for lactose synthesis was demonstrated.  Babad and 
Hassid, in 1964, successfully obtained a soluble form of the lactose-
synthesizing enzyme from bovine milk121.  
 
 (ii) The origin of alpha-lactalbumin 
 
Milk proteins were once thought to be identical with the corresponding 
serum proteins, with parallels shown between different components, such 
as colostrum globulin with serum globulin. Hence, in the early 1910s, 
physiologists assumed a simple transfer of proteins from the blood stream 
to mammary gland secretion122-124. In the following years, chemical 
methods were used to demonstrate the difference between milk and blood 
serum proteins. By using electrometric titration method, it was confirmed 
that lactalbumin was indeed different from serum albumin122. 
 

UDP-D-galactose + D-glucose  galactosyl 
transferase 

Lactose + UDP 
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The lactalbumin fraction was 
considered a homogenous 
fraction until Palmer125 isolated 
and crystalized a protein that 
shared albumin- and globulin- 
like properties. It was called 
beta-lactalbumin (which was 
later renamed beta-lactoglobulin), 
following its identity as the beta-
peak in free-boundary 
electrophoretograms of milk 
proteins. Identification of alpha-
lactalbumin originally derived from what was called a “crystalline 
insoluble substance” (CIS) from the mother liquor of beta-lactoglobulin 
crystallization126,127. Subsequent works on the preparation of CIS128,129 
showed that the electrophoretic mobility and sedimentation coefficient of 
CIS were identical to those of the alpha-peak in the electrophoretogram. 
CIS was then renamed alpha-lactalbumin.  
 
(iii) Alpha-lactalbumin as Protein B of lactose synthase and acts as a ‘glucose 
specifier’ 
 
Following the successful isolation of the solution form of lactose-
synthesizing enzyme, Brodbeck and Ebner identified two components of 
lactose synthase from bovine milk130. Gel filtration of ammonium sulphate-
precipitated bovine skim milk revealed a two unsymmetrical protein peaks 
– fraction A, of higher molecular weight, and fraction B. Individually, they 
appeared as inactive protein. When they were combined, however, lactose 
synthase activity was obtained. The possibility of a dissociation of the 
lactose synthase complex by the purification procedure was ruled out as 

Figure 8 Crystalline insoluble substance 
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the two fractions were readily obtained when acid and ammonium 
sulphate precipitation was replaced with centrifugation. Similar 
observations were obtained from sheep, goat and human milk.  
 
The biological function of alpha-lactalbumin had been known solely for its 
nutritional value in milk131. Based on several similar properties, namely 
their molecular weight, gel filtration profiles, heat stability, the response to 
10% trichloroacetic acid precipitation and the ultraviolet spectra, it was 
tested if alpha-lactalbumin could replace the B protein. Using 
spectrophotometric and incorporation rate assays, for the first time, alpha-
lactalbumin was recognized for its function as one of the two subunits of 
lactose synthetase132.  

 
The A protein was identified as UDP-
galactose:N-acetylglucosamine [NAG] 

β1-4 galactosyltransferase (N-
acetyllactosamine [NAL] synthase)133,134, 
which transfers the galactosyl moiety 
from UDP-galactose to NAG, the 
acceptor oligosaccharide in the absence 
of alpha-lactalbumin. Alpha-lactalbumin 
alone lacks any enzymatic activity. The 
acceptor specificity of the 
galactosyltransferase was modified from 
NAG to glucose in the presence of alpha-
lactalbumin. As such, the biological 
function as a “specifier” protein was 
ascribed to alpha-lactalbumin.  
 

 

Figure 9 Lactose synthase consists of 
alpha-lactalbumin (red) and 
galactosyltransferase (blue). PDB id: 
1NF5. 
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Molten globule states of alpha-lactalbumin 
 
One of the most pronounced properties of alpha-lactalbumin is the ability 
to exist as stable intermediate folding states. Dolgikh and colleagues21 
compared the different states, including the Native (N), Acidic (A), Partly 
denatured (P), Temperature denatured (T), Apo and Unfolded (U) forms, 
in terms of native-like characteristics by far- and near- UV spectroscopy for 
secondary and tertiary structural content, intrinsic viscosities for 
compactness of molecule, Tryptophan fluorescence for symmetrical 
environment of aromatic residues, microcalorimetry for cooperative 
temperature-transition and deuterium exchange for measuring 
unfoldedness of the molecules. These comparisons resulted in the 
definitive description of the intermediate state model as a “compact globule 
with native-like secondary structure and with slowly fluctuating tertiary 
structure.” The lack of a cooperative thermal unfolding transition and the 
retained compactness, form the four characteristics defining a molten 
globule. 
 
The protein dissection approach has been used to study protein folding 
intermediates, whereby one removes regions thought to be unnecessary 
for the structural properties of interest135. For instance, by removing the 

beta domain, the isolated alpha helical domain of alpha-lactalbumin (α-
Domain) was shown to exhibit characteristics of a molten globule, lacking 
native near-UV CD signal, chemical shift dispersion in 1H NMR and is less 
compact than the native alpha-lactalbumin, though the overall tertiary fold 
was similar to the intact alpha-lactalbumin.  
 

The α-Domain behaves as an autonomous folding unit136 and resembles 
early kinetic folding intermediates, emphasizing that the formation of 
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kinetic intermediates reduce the subsequent conformational space search. 
Further studies elucidated that alpha-lactalbumin molten globules behave 
as a bipartiate structure, with a native-like helical alpha domain and an 
unstructured beta sheet domain. This folding mechanism for specific 
domains in a protein supports the resemblance of molten globules to 
expanded native-like proteins, rather than nonspecific collapse of 
polypeptides137,138.   
 
Molten globules produced under different conditions often exhibit broadly 
similar overall characteristics22,23. Using pulse-labeled photochemically 
induced dynamic nuclear polarization (photo-CIDNP), different alpha-
lactalbumin molten globules were shown to have different patterns of 
hydrophobic-core surface accessibilities, likely demonstrating different 
local minima on the folding landscape24. This relates well also to proteins 
at the native states having side-chain conformation variations139. 
 
The hydrophobic cores in alpha-lactalbumin molten globules 
 
Are the hydrophobic cores in alpha-lactalbumin molten globules properly 
formed? The effects of point mutations on the stability of human alpha-
lactalbumin molten globules were studied140. As known from previous 
study that 28-111 disulfide bond plays an important stabilizing role (while 
the 6-120 disulfide bond the weakest), the equilibrium constant for the 
formation of the 28-111 disulfide bond was used to monitor the effect of 
the mutations141.  
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The subdomain surrounded by 
A/B/310 helices, was found to form 
a stabilizing hydrophobic core in 
alpha-lactalbumin molten globule, 

reflected by the destabilizing 
effects of amino acid substitution 
on L8, I27, M30 or W118 (blue 
spheres) in contrast to I95 and 
W104 (red spheres), which show 
minimal effect on the stability. 
Taken together the alanine 
scanning mutagenesis experiment 
on hydrophobic residues in the 
helical domain142 and residue-
specific NMR study of the 
denaturation of wild-type alpha-

lactalbumin molten globule143,144, the predominant hydrophobic core in the 
molten globule was the A/B/310 subdomain (blue spheres). In contrast, the 
hydrophobic box (red spheres) was poorly formed.  
 
 
Protein folding 
 
The number of possible conformations for a polypeptide is astronomically 
large (10300), suggesting that a folding mechanism must exist for efficient 
folding of the polypeptide chain145,146. Anfinsen addressed the protein 
folding problem with the ‘thermodynamics hypothesis’, which describes 
that a polypeptide has the lowest Gibbs free energy when it reaches the 
native conformation, at a defined solvent condition. Using bovine 
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pancreatic ribonuclease, he showed that the protein could refold 
completely from its fully denatured and reduced form.  
 
Evolving from the energy 
landscape theory33,34, the present 
folding funnel hypothesis for 
protein folding assumes that the 
native state of a protein 
corresponds to its free energy 
minimum under the conditions in 
the cells. The driving force for a 
protein to reach the free energy 
minimum is the sequestration of 
hydrophobic side chains from the 
aqueous environment to minimize the entropy of the water solvent, 
described by the hydrophobic collapse hypothesis. To assume the global 
minimum, further lowering of the free energy of the polypeptide chain is 
facilitated by the positioning of electrostatically charged side chains on the 
solvent accessible surface, neutralization of salt bridges within the protein 
core and the formation of close native contacts. 
 
Other hypotheses have been raised to explain how a protein searches 
through its vast conformational space so quickly. For example, in the 
Zipping and Assembly hypothesis (ZA)147,148, small local fragments of the 
protein first form local metastable structures and grow into larger, more 
stable structures, which then assemble into the native structure. Other 
similar models include the diffusion-collision149, hierarchical150 and the 
foldon model151. 
 
 

Figure 10 Protein folding energy landscape. 
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