
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Towards Pseudospectral Control and Estimation

Reuterswärd, Philip

2012

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Reuterswärd, P. (2012). Towards Pseudospectral Control and Estimation. [Licentiate Thesis, Department of
Automatic Control]. Department of Automatic Control, Lund Institute of Technology, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/cbe4cf31-9eaa-4d5f-8029-67232d9c8144

Towards Pseudospectral
Control and Estimation

Philip Reuterswärd

Department of Automatic Control

Lund University

Lund, December 2012

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

ISSN 0280–5316
ISRN LUTFD2/TFRT--3257--SE

c© 2012 by Philip Reuterswärd. All rights reserved.
Printed in Sweden,
Lund University, Lund 2012

Errata

Errata

p.15 Line 11: “. . . problems of the type

min
u

∫ t1

t0

g(x, u) dt.

”

p.16 Line 2: “. . . and sampled output

min
x̂

∫

I

‖h(x̂(t)) − y(t)‖2 dt

”

p.18 Line 14: “. . . the directional derivative vanishes at an extrema

∇f(z∗) = 0.

”

p.44 The theorem is adapted from [Gong et al., 2008].

p.46 The theorem is adapted from [Gong et al., 2008].

p.46 Line 6: “. . . the sequence {(ẋN (t), uN (t))}.”

1

Karl-Erik
Rectangle

p.59 Line 5: “. . . up with
























F1

F2 F ′′
2

. . .
. . .

FN−1 F ′′
N−1

FN F ′′
N

F ′
1 −I

F ′
2

. . .

. . .
. . .

F ′
N−1 −I














































z1

z2

...

zN−1

zN

d1

...

...

dN−1























=




















F1z1

F2z2 + F ′′
2 d1

...

FN−1zN−1 + F ′′
N−1dN−2

FNzN + F ′′
N

dN−1

F ′
1z1 − d1

...

F ′
N−1zN−1 − dN−1




















=



















g

0
...

0

0

0
...

0



















.

”

p.66 Item 3: “An optimal control is then solved using [x(s), x(s)+H] as
initial value.”

p.73 Line 8: “. . . Consider solving

min
x̂

∫
T

T−Th

‖h(x̂(t)) − y(t)‖2 dt

”

2

Karl-Erik
Rectangle

Errata

p.73 Line 11: “. . . The discrete counterpart becomes

min
x̂

N∑

k=0

wk‖h(x̂(k)) − y(k)‖2

”

p.73 Footnote should be removed.

p.75 Line 6: “. . . water tank example

{

ẋ1 = −a1
√

x1 + bu

ẋ2 = a1
√

x1 − a2
√

x2

.

”

p.89 Author is Fornberg, not Fornbern.

3

Karl-Erik
Rectangle

Lukas 17:32

Abstract

This thesis covers different topics related to the application of pseudospec-
tral optimization methods in the field of automatic control. Pseudospec-
tral optimization methods solve dynamic optimization problems by dis-
cretizing the state-space, creating a discretized version of a continuous
problem. The resulting discretized optimization problems are solved by
standard software for nonlinear optimization.

An evaluation of pseudospectral optimal control in a model predictive
control (MPC) setting is presented, as a double-tank process is controlled
from one set point to another. The method quite often experiences diver-
gence, which makes its use in a real setting limited.

The thesis proposes a way to use pseudospectral optimization as a
nonlinear state estimator together with Out-Of-Sequence-Measurements
(OOSM). The main idea is outlined; however, it represents future work
as a lot remains to be done.

The thesis also evaluates possible performance gains when solving op-
timization problems governed by ODE system dynamics in parallel. For
large systems, with very many discretization points, substantial speed-
ups are possible. However, the application is shown only on randomly
generated systems, as real world examples of such large sizes are elusive.

5

Acknowledgments

I thank God, Sweden, the Department of Automatic Control, my super-
visor Karl-Erik Årzén, Anders Rantzer and you.

7

Contents

Abstract . 5

Acknowledgments . 7

1. Introduction . 13
1.1 Dynamic Optimization at a Glance 13
1.2 Pseudospectral Control Applications 14
1.3 Contribution . 16
1.4 Outline . 16

2. Optimal Control . 18
2.1 Variational Calculus . 18
2.2 An Optimal Control Problem 20
2.3 Analytic Solution . 20
2.4 Numerical Solution . 22

3. An Example . 24
3.1 Problem . 24
3.2 Discretization . 25
3.3 QP Formulation . 26

4. Nonconvex Optimization 29
4.1 A General Optimization Problem 29
4.2 Nonconvex Implications 30
4.3 An Informal Approach 31
4.4 The KKT Conditions 33

5. Discretizations . 35
5.1 Numerical Solution of ODEs 35

9

Contents

5.2 Collocation . 36
5.3 Quadrature and Differentiation 37
5.4 Local vs Global . 40

6. Pseudospectral Optimization Theory 42
6.1 Some Notation . 42
6.2 The Continuous Problem (P) 43
6.3 The Discrete Problem (PN) 43
6.4 Feasibility . 44
6.5 Convergence . 45

7. Numerical Solution . 48
7.1 Numerical Optimization Methods 48
7.2 The Mehrotra Method 49
7.3 Inner-point Algorithms 51
7.4 SQP . 54

8. Parallel Solution . 55
8.1 Domain Subdivision . 55
8.2 Parallel Solution . 60
8.3 Numbers . 61
8.4 Conclusion . 62

9. Pseudospectral Model Predictive Control 63
9.1 Pseudospectral Optimization in Automatic Control . . 63
9.2 MPC Controller Structure 64
9.3 Optimization Loop . 65
9.4 Numerical Evaluation 66
9.5 Conclusions . 70

10. Pseudospectral Observers 71
10.1 An Output System . 71
10.2 Observability . 72
10.3 Optimization Problem 73
10.4 A Possible Observer Structure 74
10.5 Sensor Fusion and OOSM 75

11. Conclusions . 78
11.1 Parallel Solution . 78
11.2 Observer . 79

A. A Pseudospectral Optimizer MATLAB Implementation 80
A.1 The fmincon Function 80

10

A.2 The mex-backend . 82
A.3 Code Generation . 83
A.4 Example Usage . 84

B. Bibliography . 86

11

1

Introduction

Optimization-based methods in industry gain more and more interest as
there is potentially a lot of money to gain. Also the word ‘optimal’ has in
recent years become a catch-phrase which by itself seems to generate inter-
est [Kang and Bedrossian, 2007]. Optimization can be used; for example,
to minimize the resources required in production and thus the money be-
ing spent. Examples include grade-changes in large chemical plants; that
is, going from production of one product to another using the same plant,
or the computation of optimal trajectories in space-craft applications.
In this thesis we look at pseudospectral methods in the field of optimal
control. Related to the pseudospectral methods are the so called direct
methods for dynamic optimization, and we will look at the parallelization
of such methods.

1.1 Dynamic Optimization at a Glance

Pseudospectral optimization at its core deals with minimizing an integral
cost function ∫ t1

t0

g(x, u) dt,

for some system dynamics described by an ODE

ẋ = f(x, u); (1.1)

for example, with prescribed initial condition x(t0) = x0. The control
input u yields a state trajectory x.

13

Chapter 1. Introduction

There are ways to solve such problems analytically, but this gets com-
plicated as the complexity of the functions f and g increases. Complexity
also increases with different end point constraints; for example, on the
state at the final time x(t1) = x1. Specifying general path constraints

h(x, u) ≤ 0,

makes it even harder.
These problems may be overcome by calculating a numerical approx-

imation using a computer. This way the time interval [t0, t1] is divided
into a finite set of points. By numerical quadrature the value of the cost
function can be calculated, up to a given accuracy. To link the states at
different time points, analytically described by the ODE (1.1), methods
taken directly from or inspired by the vast field of numerical solution of
ODEs are used.

By discretization the continuous problem can now be put in the form

min
z∈Rn

f(z)

F1(z) ≤ 0

F2(z) = 0.

This is a general nonconvex optimization problem that we can solve using
numerical algorithms. They work iteratively, in each step getting closer
and closer to the true solution usually using some sort of Newton type
iteration. Most of the time spent during optimization is spent solving a
linear system, stemming from the KKT conditions of the optimization
problem.

However, for this to work we need convergence; that is, when the grid
gets finer the numerical solution should get increasingly closer to the true
analytic solution. Depending on the problem, this can not always be guar-
anteed.

1.2 Pseudospectral Control Applications

The pseudospectral approach is one way to discretize the optimal control
problems just described. It gives high accuracy of approximation with a

14

1.2 Pseudospectral Control Applications

low number of grid points. This reduces the computation time, since we
are able to use a coarser discretization while still retaining a high enough
solution accuracy, as compared to other methods.

The pseudospectral methods are quite new at least in the control com-
munity. However, the theory behind them is relatively well developed. It
boils down to checking to see if the optimization converges, assuming some
system regularity conditions. If it does it must have converged to the true
solution. However, the theory says only what happens if the computation
converges, it does not specify how often it does. This is highly dependent
on the initial values, the cost function and system dynamics.

Pseudospectral optimization allows us to solve problems of the type

∫ t1

t0

g(x, u) dt

ẋ = f(x, u),

where the cost function is taken to minimize some true system quantity
like energy or time. However, from a feedback control perspective this
is not really desirable as this implies open-loop control. No feedback is
used, we solely depend on model accuracy as the optimization constructs
a control trajectory u(t) that produces x(t) given exact system dynamics.

Given a fast and reliable dynamic optimizer we could construct a feed-
back control by sampling the system and solving a sequence of optimiza-
tion problems. We shall later try an MPC type scheme where the optimizer
runs and then the computation is used to construct a control input valid
until the next one is calculated.

We shall also try the pseudospectral optimizer as a nonlinear observer,
where we instead look at an output system

ẋ = f(x(t), u(t), t)

y = h(x(t)).

Here we wish to find the state of the system, x, by observing the output y.
The right hand side of the ODE wears a hat to distinguish it from (1.1).
In this context we can limit the feasible trajectories through prior infor-
mation, since we usually have some knowledge of the system state. This
is described by

r(x̂(t)) ≤ 0,

15

Chapter 1. Introduction

and we use x̂ to denote the observed system state. The optimizer now
minimizes the difference between the simulated and sampled output

min
u

∫

I

‖h(x̂(t)) − y(t)‖2 dt

˙̂x = f(x̂(t), u(t) t)

r(x̂(t)) ≤ 0,

over some time interval I. We propose to use this in the emerging field of
sensor fusion and out-of-sequence measurements, where the pseudospec-
tral optimizer may be viewed as a sensor with delay, the delay being the
computation time.

1.3 Contribution

This is the collection of some of my thoughts and experiences using
pseudospectral-based and similar optimization methods in the field of au-
tomatic control.

I have evaluated pseudospectral optimal control in an model predic-
tive control (MPC) setting. I propose a way to use pseudospectral opti-
mization as a nonlinear state estimator together with Out-Of-Sequence-
Measurements (OOSM). This is the embryo of an idea, out of which I
believe something later could be developed. I have also evaluated possible
performance gains when solving optimization problems governed by ODE
system dynamics in parallel.

I have also implemented a programming framework for running the
optimizations presented in this thesis. The code is not included in the
thesis, although it is used for all presented computations. The overall
structure of my approach to solving pseudospectral optimization problems
in MATLAB is descried in an appendix.

1.4 Outline

The outline of the thesis is as follows. In Chapter 2 we introduce opti-
mal control. Chapter 3 solves an example problem by discretization, and

16

1.4 Outline

Chapter 4 discusses nonconvex optimization. Discretizations are discussed
in Chapter 5, and the theory of pseudospectral optimization is given in
Chapter 6. In Chapter 7 we look at various ways to numerically solve
nonconvex problems. Chapter 8 tests pseudospectral optimal control in
an MPC type scheme. In Chapter 9 we look at observers in pseudospec-
tral setting, and finally we try to reduce the computation time by solving
dynamic optimization problems in parallel in Chapter 10. Thoughts on
implementing a pseudospectral optimizer are found in appendix A, along
with code snippets in MATLAB and C.

17

2

Optimal Control

The term optimal control is very broad and typically people from dif-
ferent fields mean different things. Here we give our definition, and the
problems presented are the ones that we later seek numerical solutions
to. We shall speak of analytic solutions; however, with nonlinear system
dynamics it becomes impossible to solve or represent the solutions in a
tractable way. We start by looking at variational calculus, as it is needed
for the presentation.

2.1 Variational Calculus

Variational calculus is loosely speaking the differential calculus of func-
tions, see for example [Arnold, 1978]. Differential calculus deals with func-
tions of real numbers, here we consider functions of functions. In optimal
control we seek the extremals of functionals, were the solution is a func-
tion. A functional is any mapping from the space of curves to the real
numbers.

For functions defined on R
n the directional derivative vanishes at an

extrema

∇f(z) = 0, ∀z ∈ R
n.

Now instead we look at functionals J : Z 7→ R, where Z is the space of
functions under consideration. Here the Gateaux variation

δJ(z) := lim
ǫ→0

J(z + ǫδ) − J(z)

ǫ
=

∂

∂ǫ
J(z + ǫδ)

∣
∣
∣
∣
ǫ=0

, z ∈ Z, (2.1)

18

2.1 Variational Calculus

at an extrema must be zero; that is,

∂

∂ǫ
J(z + ǫh)

∣
∣
∣
∣
ǫ=0

= 0.

Let us look at the variation of the following functional

Φ(y) :=

∫ b

a

L(y(t), ẏ(t)) dt, (2.2)

which for a given function [a, b] ∋ t 7→ y(t) yields a real number. Later we
shall construct a function such that it minimizes a given cost functional
at the same time fulfilling some system dynamics described by an ODE.
According to Definition (2.1) we have

δΦ(y) =
∂

∂ǫ

∫ b

a

L(y + ǫδ, ẏ + ǫδ̇) dt

∣
∣
∣
∣
∣
ǫ=0

=

∫ b

a

∂L

∂y
δ +

∂L

∂ẏ
δ̇ dt =

∂L

∂ẏ
δ

∣
∣
∣
∣

b

t=a

+

∫ b

a

(∂L

∂y
− ∂

∂t

(∂L

∂ẏ

))

δ dt,

where we have used integration by parts. 1 The boundary term is zero if
we assume the value of L to be fixed at the boundary; that is,

∂L

∂ẏ
δ

∣
∣
∣
∣

b

t=a

= 0.

Summarizing we have that

δΦ(y) =

∫ b

a

(∂L

∂y
− d

dt

∂L

∂ẏ

)

δ dt,

must be zero for the variation to vanish. This is true if

∂L

∂y
− d

dt

∂L

∂ẏ
= 0,

which is referred to as the Euler-Lagrange equation [Arnold, 1978].

1This assumes that the appearing functions are smooth enough.

19

Chapter 2. Optimal control

2.2 An Optimal Control Problem

By optimal control we mean to minimize a functional while at the same
time adhering to some system dynamics. A lot of variations exist, let us
look here at a problem that prescribes initial and final states

minimize
u

∫ tf

t0

g(x(t), u(t)) dt (2.3)

subject to ẋ = f(x, u) (2.4)

x(t0) = x0, x(tf) = x1. (2.5)

The solution is a trajectory starting at x0 and ending at x1 subject to the
system dynamics ẋ = f(x, u). We seek the control input u that makes x
follow the ODE and at the same time minimizes the cost assigned to the
trajectory by the cost function.

The solution we find is the control input u that we need to make
the system follow the optimal path. However, planning the trajectory
in advance means open-loop control of the system, something generally
avoided by the control community. We shall later look at how to combine
this with feedback to make for some interesting control applications.

The solution is optimal with regards to the cost function. With differ-
ent cost functions we usually get different solutions to the optimization
problem. This means that the choice of cost function is very important.
For example, a constant cost function makes any feasible solution optimal,
so care must be exercised.

2.3 Analytic Solution

The survey [Polak, 1973] gives a good overview of optimality conditions for
these problems. Let us now look at some conditions that must be fulfilled
for a solution to be optimal. To this end we rewrite the cost function

∫ tf

t0

g(x, u) dt =

∫ tf

t0

g(x, u) + λT(f(x, u) − ẋ) dt,

where we have omitted the time-dependence of x and u for sake of clarity.

20

2.3 Analytic Solution

This is a functional on the form (2.2), with

y =






x

u

λ




 , L(y, ẏ) = g(x, u) + λT(f(x, u) − ẋ).

The Euler-Lagrange equation becomes






∂L
∂x
∂L
∂u
∂L
∂λ




 − d

dt






∂L
∂ẋ
∂L
∂u̇
∂L
∂λ̇




 =






∂g
∂x + ∂

∂xλ
Tf − λ̇

∂g
∂u + ∂

∂uλ
Tf

f(x, u) − ẋ




 = 0.

If we define the Hamiltonian as

H(x , u , λ) = g(x, u) + λTf(x, u),

we can rewrite the Euler-Lagrange equation as






HT
x − λ̇

HT
u

f(x, u) − ẋ




 = 0, (2.6)

where we use the shorthand

Hx :=

[
∂

∂x1
H . . .

∂

∂xn
H

]

, Hu :=

[
∂

∂u1
H . . .

∂

∂up
H

]

.

The Euler-Lagrange equations (2.6) give conditions for optimality. They
state that the ODE holds and gives conditions on the Hamiltonian, valid
for an optimal solution to the control problem. From this an analytical
solution can be found, however then some extra conditions need be satis-
fied. For example; if the Hamiltonian is positive definite with respect to
the control input; that is

∂2

∂u2
H > 0,

then the optimal control input can be found as

u∗ = arg min
u
H(x∗, u, λ∗).

21

Chapter 2. Optimal control

This is sometimes referred to as the maximum principle, see for exam-
ple [Pontryagin et al., 1962]. Fixing various end point constraints results
in variations to this formulation. As the complexity of the problem in-
creases, both in terms of system dynamics and end point constraints, an
analytical solution gets harder and harder to find this way (see [Polak,
1973] for a list of variations). For example; incorporating general path
inequalities

h(x(t), u(t)) ≤ 0, t ∈ [t0, t1],

is more easily done in a numerical setting.
Hamiltonians are commonly used in conjunction with mechanical sys-

tems. There they represent the total energy of a system. Here instead we
speak of energy in a more general system, valid outside the laws of physics.

2.4 Numerical Solution

There are various ways to solve optimal control problems numerically.
Early methods are surveyed in [Polak, 1973], and more recent develop-
ments in [Magni et al., 2009].

When the complexity of the problems increases we tend to look for
numerical alternatives. Methods can be classified as direct or indirect. The
former methods work directly on the initial optimization problem (2.3),
whereas the latter work with the Euler-Lagrange equations (2.6), as such
solving the original optimization problem indirectly.

Indirect Methods

The formulation with a Hamiltonian in the last section naturally leads to
Two-Point Boundary Value (TPBV) problems. The values prescribed at
the boundaries stem from the various possible end-point conditions in the
original optimization formulation.

One way to solve these problems is by means of the shooting method
[Betts, 2001]. From an initial control input the system is simulated. When
the simulation reaches the end-point, we check if the end-point condition
is fulfilled. If it is not we refine our initial input and start over. This is
repeated until convergence is found. There is also multiple shooting [Betts,
2001], where the control interval is divided into sub intervals. The same

22

2.4 Numerical Solution

procedure is now carried out over these sub intervals, and when the end-
points of the sub intervals meet, convergence is declared.

Another way to solve the optimization problem is by using sequential
methods [Betts, 2001]. These approximate the states and controls in the
TPBV by polynomials, and then iteratively find the solution.

Direct Methods

The direct methods are conceptually simpler, as they work directly with
the original optimization formulation. The last twenty years, so called si-
multaneous methods have gained in popularity. Here the complete state
and control trajectories are discretized and the solution over the whole in-
terval is calculated at once using an optimization code. Various discretiza-
tion styles exist, most of them stemming from the vast field of numerical
solution of ODE. Especially collocation methods have been popular, due
to the high order of numerical accuracy they possess. The pseudospectral
method is a direct method and forms the basis of this thesis.

23

3

An Example

We shall now try to solve an optimal control problem. This is done by
discretization and the discretized problem is solved using a numerical
algorithm. This is quite straightforward; however, the procedure raises
some questions. The choice of discretization seems arbitrary, as anything
can be fed to a numerical optimizer. In later chapters we shall look at the
underlying theory which will then make clear what choices make sense.

3.1 Problem

The optimization methods we shall consider later are able to deal with
nonlinearities, but here we use a linear version to more easily show how
the numerical solution proceeds. To this end consider a linear system

ẋ = Ax+Bu.

In a real setting usually we have a limit on the control input, we model
the limitations of the actuator as

ẋ = Ax+Bu

umin ≤ u ≤ umax.

Now assigning a cost function to the system we arrive at an optimal
control problem on the form discussed in previous chapters. The cost
function could, for example, penalize the control power. This is the choice

24

3.2 Discretization

here as we consider the problem to minimize the control power of a general
linear system going from an initial to a final state in a given time

min
x, u

∫ T

0

u2

ẋ = Ax +Bu

umin ≤ u ≤ umax

x(0) = xinitial, x(T) = xfinal.

It would also be possible to use another cost function and further constrain
the states and control input.

3.2 Discretization

To solve this numerically we need to discretize the system in some way.
Using zero-order-hold sampling we can, for example, rewrite the linear
system above as a discrete update system

x(k+1) = Φx(k) + Γu(k),

with

Φ = eAh, Γ =

∫ h

0

eAt dtB.

Here we have set the sampling time to h and introduced the nonstan-
dard notation x(k) := x(tk), which we shall use henceforth. See for exam-
ple [Åström and Wittenmark, 1996] for the derivations.

We use the discrete update system onN+1 points in the interval [0, T],
equally spaced with step size h. The integral of the objective function is
evaluated by numerical quadrature. This turns the original problem into
its discrete counterpart

min
x, u

N∑

k=0

u(k)u(k) (3.1)

x(k+1) = Φx(k) + Γu(k), k = 0, . . . , N − 1 (3.2)

x(0) = xinitial, x
(N) = xfinal (3.3)

umin ≤ u(k),≤ umax, k = 0, . . . , N − 1. (3.4)

25

Chapter 3. Example

3.3 QP Formulation

Now let us put the discretized problem in a more convenient form. To
simplify the notation let us stack the discrete states and control together

z =












x(0)

u(0)

...

x(N)

u(N)












.

We shall use this convention in later chapters. Rewrite the optimization
problem (3.1) as

min
z











x(0)

u(0)

...

x(N)

u(N)











T

︸ ︷︷ ︸

zT











0

I

. . .

0

I











︸ ︷︷ ︸

H











x(0)

u(0)

...

x(N)

u(N)











︸ ︷︷ ︸

z

.

subject to












I

Φ Γ −I
. . .

Φ Γ −I
I 0












︸ ︷︷ ︸

F

z =












xinitial

0

...

0

xfinal












︸ ︷︷ ︸

g

, (3.5)

26

3.3 QP Formulation

and inequality constraints












0 I

0 −I
. . .

0 I

0 −I












︸ ︷︷ ︸

C

z ≤












umax

−umin

...

umax

−umin












︸ ︷︷ ︸

d

.

If we put this in matrix form we get the optimization problem

min
z

1

2
zTHz

Fz − g = 0

Cz − d ≤ 0.

This is now a Quadratic Program, a standard form for optimization prob-
lems (see [Jarre and Stoer, 2004]). The problem is constrained only by
relations involving constant matrices. In the case for optimal control of
systems governed by nonlinear ODEs and possibly nonlinear path con-
straints we would instead have ended up with a system of the form

min
z∈Rn

f(z)

F1(z) ≤ 0

F2(z) = 0

In the next chapter we look closer at these problems.

Discretizations

Looking back the choice of discretization seemed arbitrary. We simply
chose a sampling rate and sampled the system accordingly; then assuming
zero-order-hold we integrated the ODE to link the sampling points. For
general systems, the task of integrating the ODE is not possible in closed
form, even for zero-older-hold control inputs. Here it is natural to ask what

27

Chapter 3. Example

type of discretizations we can use and expect a solution that converges
to the analytic solution as the grid is refined. The pseudospectral method
of discretization forms the basis of this thesis, and we shall return to this
question.

28

4

Nonconvex Optimization

We shall here have a look at the general nonconvex nonlinear optimization
problems that form the basis for our discussions in the coming chapters.
The approach we follow is informal, as we first develop by expansion
the optimality conditions. Nonlinear optimization is a huge subject, and
we present the most important results only, based on [Jarre and Stoer,
2004]. We leave for the coming chapters to discuss numerical algorithms
for finding solutions to the optimization problems.

4.1 A General Optimization Problem

We consider a general optimization problem, let us call it (P) for later
reference:

min
z∈Rn

f(z)

F1(z) ≤ 0

F2(z) = 0

All appearing functions f , F1 and F2 are nonlinear, with

F1(z) :=







f1(z)
...

fp(z)






, F2(z) :=







fp+1(z)
...

fm(z)






,

29

Chapter 4. Nonconvex Optimization

and f , fk, k = 1, . . . ,m are scalar-valued functions. Associated with (P)
is the feasible set

S = {z ∈ R
n |F1(z) ≤ 0, F2(z) = 0}; (4.1)

that is, the set of points in real n-dimensional vector space fulfilling the
constraints. By solving (P) we mean to find a, possibly local, minimum
z∗ of the objective function f , with z∗ ∈ S.

We try to find the solution to (P) numerically using an iterative algo-
rithm. If no optimum exists this would make no sense, so we assume that
such a point exists. Also we need some sort of regularity of the optimal
point z∗. This means that the constraint set is such that we can find a
solution in an incremental fashion; that is, in each iteration we can always
take a small step within the feasible set.

4.2 Nonconvex Implications

Convex problems are nice, since for these local and global minima are the
same. If an optimization algorithm converges to a local minimum for a
convex problem it always converges to the global minimum. Conversely,
for nonconvex problems we might end up in a local minimum, depending
on our starting point (the initial value). Having knowledge of all the local
minima, we might see that the one we have found is not very favorable;
however, there is no way for the optimizer to know this. Figure 4.1 depicts
the situation.

Figure 4.1 A nonconvex function with multiple minima. Depending on the
starting point, a numerical optimization algorithm may end up in any of these.

30

4.3 An Informal Approach

4.3 An Informal Approach

Consider first an unconstrained optimization problem

min
z∈Rn

f(z),

with the point z∗ as a local minimum. Without constraints there can be
no direction of descent at the minimum, that is

∇f(z∗) = 0. (4.2)

Also, the Hessian at the minimum must be positive semi-definite

sT∇2f(z∗)s ≥ 0, s ∈ R
n, (4.3)

to rule out saddle points. These conditions are called the first- and second-
order necessary optimality conditions for unconstrained problems.

By adding equality constraints to the unconstrained problem we get

min
z∈Rn

f(z)

F2(z) = 0.

Starting at a local minimum z∗ of the equality constrained problem we
now try to take a step in a feasible direction. In each constraint this means

fk(z∗ + s) = fk(z∗) + (∇fk(z∗))Ts+ o(‖s‖), k = p+ 1, . . . ,m.

We call the step s to remind us that it is taken to lie inside the feasible
set S, even as the step size changes. This way we know that fk(z∗ + s) =
fk(z∗) = 0, and if we pass to the limit as s tends to zero we see that

(∇fk(z∗))Ts = 0, k = p+ 1, . . . ,m,

for all feasible directions s. Since by assumption z∗ is a minimum the
objective function can not decrease in any feasible direction, hence the
system

∇f(z∗)Ts < 0

[∇fp+1(z
∗) . . . ∇fm(z∗)]Ts = 0

31

Chapter 4. Nonconvex Optimization

admits no solution. By Farka’s lemma, we know that there exists a vector
λ∗ such that

∇f(z∗) + [∇fp+1(z
∗) . . . ∇fm(z∗)]Tλ∗ = 0

Together with the constraints F2(z
∗) = 0, these are the so called KKT

conditions of the equality constrained optimization problem. These con-
ditions hold for optimal points in the sense that for each (local) optimal
point z∗ there exists a corresponding vector λ∗ of Lagrange multipliers.

By adding the inequality constraints, F1(z) ≤ 0, we are again consid-
ering the original optimization problem (P). We consider very small steps
only so the interesting inequality constraints are the ones that are active,
that is fk(z∗) = 0 for some k ∈ [1, p]. Expanding an active constraint
using Taylor’s theorem we have

fk(z∗ + s) = fk(z∗) + (∇fk(z∗))Ts+ o(‖s‖) = (∇fk(z∗))Ts+ o(‖s‖).

For feasible steps s and active constraints fk we must have (∇fk(z∗))Ts <
0. Again, since the objective function cannot decrease in any feasible di-
rection at the minimum, we can write this as an unsolvable linear system

∇f(z∗)Ts < 0

(∇fk(z∗))Ts ≤ 0, k is active

[∇fp+1(z
∗) . . . ∇fm(z∗)]Ts = 0.

Once more by Farka’s lemma, this gives the existence of a vector λ̄∗ ≥ 0

such that

∇f(z∗) +
∑

k active

λ̄∗k∇fk(z∗) +

m∑

k=p+1

λ̄∗k∇fk(z∗) = 0,

with some abuse of index notation. By augmenting λ̄∗ with zeros and
dropping the bar, we can instead write

∇f(z∗) +

m∑

k=1

λ∗k∇fk(z∗) = 0.

The constraints of λ∗ together with F1 and F2 constitute the KKT con-
ditions for the problem (P). The λ∗ vector comprises the Lagrange mul-
tipliers associated with the optimization problem.

32

4.4 The KKT Conditions

4.4 The KKT Conditions

The last section developed and stated the so called KKT conditions for a
general nonconvex optimization problem informally. Now let us be more
strict. This can be done in several ways, we base our presentation on [Jarre
and Stoer, 2004]. To this end consider the optimization problem (P’)

inf{f(z)|fk(z) ≤ 0 for 1 ≤ k ≤ p, fk(z) = 0 for p+ 1 ≤ m ≤ p}.

The theorem of Kuhn and Tucker states conditions for optimal points of
this problem.

Theorem (Kuhn and Tucker) Let C = R
n, K = {λ ∈ R

m|y1 ≥
0, . . . , yp ≥ 0, yp+1 = . . . = ym = 0} and the following conditions be
fulfilled

• f, fk ∈ C1(Rn)

• z∗ is a local optimum of (P’)

• (P’) is regular in z∗ (see 4.4)

Then there exists a y∗ ∈ R
m such that

• λ∗k ≥ 0, 1 ≤ k ≤ p

• λ∗kfk(z∗) = 0, 1 ≤ k ≤ m

• ∇f(z∗) +
∑m

k=1 λ
∗
k∇fk(z∗) = 0

To rule out degenerate points we need to impose some sort of regularity
condition on the optimization problem. This implies that the constraint
set is ‘nice’ in some way. Among other things it means that we can al-
ways find a direction in which to try to step when trying to solve these
optimization problems numerically. We call (P’) regular in z ∈ S, if 0 is
an inner point of the set

M := F (z) +DF (z)(C − z) +K, (4.4)

where we use

F (z) = [f1(z) . . . fm(z)] ,

33

Chapter 4. Nonconvex Optimization

and

DF (z) =







∂z1f1(z) . . . ∂zn
f1(z)

...
. . .

...

∂z1fm(z) . . . ∂zn
fm(z)






.

Additional optimality tests, on for example second order conditions,
exist but the nature of the problems make their use limited in practice.
Also as the complexity of (P’) increases determining regular points gets
harder and harder. Usually these tests would not be done anyway as long
as the optimization converges. Arguably most use cases are completely
ignorant of issues like convergence and mathematical optimality.

34

5

Discretizations

We look here at ways to discretize the state-space, in which the solutions
to our optimal control problems lie. This allows us to put our continuous
problems in discrete form. First we talk briefly about the numerics for
ODE, as this forms the basis for many simultaneous methods. We make a
distinction between local and global discretizations. Local discretizations
divide the interval into many small cells, each one being further divided
into sub intervals. The global discretizations, often referred to as pseu-
dospectral, use just one interval. An introduction is found in [Betts, 2001],
and more recent developments can; for example, be found in [Campbell
and März, 2007] and references therein.

5.1 Numerical Solution of ODEs

Consider solving the ordinary differential equation (ODE)

ẋ = f(x, t), (5.1)

given an initial value x(t0) = x0, at some time t0. We know that if the
right hand side of the ODE (5.1) is Lipschitz continuous then the ODE
has a unique solution. For numerical solution; that is, using a numerical
scheme that step-wise constructs the solution, we need the scheme to be
convergent and consistent. Consistency roughly means that it produces
the right solution, and convergence that it does so as we decrease the
numerical step size.

35

Chapter 5. Discretizations

We speak of the numerical scheme’s order as the relation between the
step size and the accuracy of the solution. It is usually expressed in big-O
notation.

5.2 Collocation

Collocation is the point-wise approximation of derivatives. It has given rise
to several numerical schemes for solving ODE and loosely speaking the
term refers to all such numerical ODE schemes. It is also used to denote all
optimal control methods that work by discretizing the complete state and
control input trajectories. In this section we look at collocation for solving
ODEs. This is standard text book material, see for example [Deuflhard
and Bornemann, 2002].

Consider solving the ODE (5.1) forward in time. Given an initial point
x and stepsize h we wish to construct a polynomial u such that

u(t) = x

u′(t+ cih) = f(t+ cih, t+ cih), i = 1, . . . , s;

that is, the polynomial interpolates the point x and its derivatives are
given by the function f . When designing a collocation scheme the param-
eters free of choice are

0 ≤ c1 < . . . < cs ≤ 1,

with all ci unique. The consistency/convergence limits the choice of ci,
also we wish to choose them such that the order of the numerical approx-
imation is high.

We proceed by approximating the value of the solution at the next
time step as

x(t+ h) = u(t+ h).

This corresponds to numerical integration. For this to work we need con-
vergence and consistency of the scheme, as discussed in the last section.
When the solution is known at the new time point, t + h, the process is
repeated and this way we construct a point wise solution to the ODE.

If the value of the solution is sought between two grid points, the
numerical solution can be repeated with a smaller time step. Remember

36

5.3 Quadrature and Differentiation

also that the solution we have found is correct to the given accuracy, hence
it does not make much sense to speak of the values in between grid points.

The collocation schemes with highest accuracies are Gauss, Radau and
Lobatto. The Lobatto scheme fixes the end points, c1 = 0 and cs = h, and
this is the scheme we use later on. Radau fixes one end point, and Gauss
leaves all free to chose. The order for Gauss, Radau and Lobatto colloca-
tion, when solving ODE, are O(h2s), O(h2s−1) and O(h2s−2) respectively.

5.3 Quadrature and Differentiation

Now let us grid up our optimal control problem state space using collo-
cation from the last section. Two approaches exist — local and global.
Local discretizations splits the time interval in subsections, each one then
uses the a collocation scheme to fix the derivatives locally. If we only use
one sub interval we end up with a global, pseudospectral, discretization.

Let us bring back our optimization problem

∫ 1

−1

g(x, u) dt

ẋ = f(x, u),

where we have normalized the time interval to [−1, 1], By affine transfor-
mations we can map any time interval [t0, tf] to [−1, 1]. We discretize
this problem in time with t(k), k = 0, . . . , N , chosen as the Legendre-
Gauss-Lobatto (LGL) nodes on the interval [−1, 1]. These are the points
t(0) = −1, t(N) = 1 together with the zeros of

ṖN (t(k)) = 0, k = 1, . . . , N − 1, (5.2)

where PN (t) is the Nth degree Legendre polynomial. It is also possible
to use other discretization points, see for example [Chyba et al., 2009]
and [Zhang and Heping, 2008]. The Legendre polynomials solves Legen-
dre’s differential equation

d

dx

(

(1 − x2)
d

dx
PN (x)

)

+N(N + 1)PN (x) = 0;

37

Chapter 5. Discretizations

however, the details of these polynomials are not important here. The
choice of points (5.2) gives high accuracy of approximation relative to
the number of discretization points when approximating the cost function
integral

∫ 1

−1

g(x(t), u(t), t) dt ≈
N∑

k=0

wkg(x
(k), u(k), t(k)), (5.3)

where wk are the quadrature weights associated with the LGL nodes. Here
we have defined

x(k) := x(t(k)), u(k) := u(t(k)), k = 0, . . . , N.

Henceforth we shall make use of this notation. The sum converges to
the integral at spectral rate; that is, faster than any polynomial, as N
increases.

In this thesis we use LGL nodes for our discretization needs. This
rules out infinite horizon problems. To solve problems over infinite time
horizons, one could, for example, use the Radau nodes, as is done in [Garg
et al., 2011a]. With Radau the fixed end point can be used for the initial
value and the other end maps close to infinity.

We can approximate the states as

x(t) ≈
N∑

j=0

x(j)Lj(t), (5.4)

where Lj(t) are the Lagrange polynomials of the Nth degree

Lj(t) =

N∏

k=0
k 6=j

t− t(k)

t(j) − t(k)
, j = 0, . . . , N.

By differentiating the states (5.4) we get an approximation of the state
derivatives,

ẋ(t) ≈
N∑

j=0

x(j)L̇j(t).

38

5.3 Quadrature and Differentiation

For the optimization we only need the values in the discretized points t(k),
thus we can precompute L̇j(tk) for j, k = 1, . . . , N . This can be expressed
as a matrix multiplication







ẋ
(0)
i

...

ẋ
(N)
i






≈ D







x
(0)
i

...

x
(N)
i







i = 1, . . . , n,

which calculates the derivatives at the grid points along a state trajectory.
The matrix elements are given by

Djk =







LN (t(j))

LN (t(k))
1

t(j)−t(k) j 6= k

−N(N+1)
4 j = k = 0

N(N+1)
4 j = k = N

0 else

.

In the general case, with x ∈ R
n and u ∈ R

m, and using the convention
presented earlier

z := [x
(0)
1 . . . x(0)

n u
(0)
1 . . . u(0)

m . . . x
(N)
1 . . . x(N)

n u
(N)
1 . . . u(N)

m]T,

we can simply write

[In 0n×m] ⊗D z ≈







d
dtx

(0)

...
d
dtx

(N)







to calculate at once the approximation of all state derivatives in each
discretization point. Here we have made use of the Kronecker product,
which makes it easy to calculate derivatives in mathematical scripting
languages. Derivation of differentiation matrices for different choices of
grid points can be found in [Elgindy, 2009].

39

Chapter 5. Discretizations

5.4 Local vs Global

Global discretization; that is, pseudospectral discretization, means using
just one interval whereas local discretization uses many intervals with
fewer discretization points in each. Figure 5.1 shows the difference between
local and global discretizations. In each interval, be it only one or many,
the same discretization technique is used, in our case we use LGL nodes.
As the accuracy of the global discretization converges at spectral rate and
the local as O(h2s−2) we expect to need much less grid points for a given
accuracy, and hence fewer decision variables in our discrete optimization
problem this way. Less variables of course implies less computation time.

0 1 2 3 4 5 6 7

−1

−0.5

0

0.5

1

1.5

2

Figure 5.1 The difference between local (top) and global (bottom) dis-
cretization. The squares marks interval intersections. The points are clustered
more towards the end points.

The value of the derivatives in each point depends on the values in all
pseudospectral points along the trajectories. For the local discretizations,
this link is not as direct as only the values at the interval intersections
need to agree. As for accuracy of solution one might think that the local
approach would better describe bang-bang solutions. It seems intuitive
that the local discretizations capture this phenomenon better, since the
interval is split up into to sub intervals and this may seem a better way
to describe jumps in the control signal. However, experimental studies

40

5.4 Local vs Global

suggest global is better at capturing discontinuities [Huntington and Rao,
2007].

41

6

Pseudospectral
Optimization Theory

The mathematical theory behind pseudospectral optimization has ma-
tured the last fifteen years. It has developed a link between the computer-
based solution of a discrete optimization problem to its continuous coun-
terpart. Here we give a strong enough foundation to later inspect nu-
merical results with confidence. The results are quite straightforward but
some corner cases exist. The method was first proposed in [Elnagar et al.,
1995]. Various versions, using different grid points exist; for example [Garg
et al., 2011b] and [Gong et al., 2009]. See for example [Gong et al., 2008]
and [Kang, 2008] and references therein for a more thorough theoretic
treatment.

6.1 Some Notation

We shall later be faced with two problems — the continuous problem (P)
and its discrete counterpart (PN). The solution of (PN) is calculated by
computer but we are really interested in the solution of (P). Naturally
we would like these to agree in some sense; this is what we refer to as
convergence.

Solutions to (P) are in the form of state-control function pairs t 7→
(x(t), u(t)), where the time interval is implied by the problem. Discrete
solutions to (PN) are of the form (x(k), u(k)), k = 0, . . . , N . We denote
optimal solutions with a star; for example, (x∗, u∗) and (x(k)∗, u(k)∗), k =

42

6.2 The Continuous Problem (P)

0, . . . , N are optimal state-control pairs for the continuous problem (P)
and discrete problem (PN) respectively.

6.2 The Continuous Problem (P)

We consider here a general optimization problem governed by a set of ordi-
nary differential equations, constrained by path inequalities and endpoint
constraints. We call it (P) and its solution is an optimal state-control
function pair (x, u) on the normalized interval [−1, 1].

min
x,u

∫ 1

−1

F (x, u) dt

x′ = f(x, u)

e(x(−1), x(1)) = 0

h(x, u) ≤ 0.

The initial and end point conditions are captured in the more general
equality constraint e. State and control trajectories are restricted by the
path inequalities h.

For the problem to be well-posed we assume that all appearing func-
tions are sufficiently smooth; that is, continuously differentiable with Lip-
schitz continuous gradients. Also we assume an optimal solution (x∗, u∗)
to exist. The optimal state trajectory x∗ is assumed to lie in the Sobolev
space Wm,∞, m ≥ 2. This Sobolev space consists of the functions with
distributional derivatives up to a given degree. The optimal control tra-
jectory we assume to be at least continuous.

6.3 The Discrete Problem (PN)

To discretize (P) we use LGL, Legendre-Gauss-Lobatto nodes, as dis-

43

Chapter 6. Pseudospectral optimization theory

cussed in the previous chapter. The discretized problem (PN) looks like

min
x,u

N∑

wkF (x(k), u(k))

‖
N∑

l=0

Dklx
(k) − f(x(k), u(k))‖ ≤ (N − 1)3/2−m, k = 0, . . . , N

‖e(x(0), u(0))‖ ≤ (N − 1)3/2−m

h(x(k), u(k)) ≤ (N − 1)3/2−m, k = 0, . . . , N,

where D is the differentiation matrix. The integral of problem (P) is
approximated by numerical quadrature and the derivatives of the state
trajectory by matrix multiplication, as was shown in the previous chapter.
The numerical approximation is given some slack with regards to fulfilling
the constraints, instead of zero we use a ‘small’ value dependent on N and
m, (N − 1)3/2−m (see for example [Gong et al., 2008] for details). In the
limit we have that limN→∞(N − 1)3/2−m = 0,

6.4 Feasibility

Suppose the problem (P) has a solution, the next theorem tells us that
so has (PN), if the grid is fine enough.

Theorem Given a feasible solution, t 7→ (x, u) for the continuous
problem, and suppose x ∈ Wm,∞ with m ≥ 2. Then there exists M such
that for any N > M the discretized problem has a solution. This solution
satisfies uk = u(tk) and

‖x(tk) − x(k)‖∞ ≤ L(N − 1)1−m, k = 0, . . . , N,

with tk LGL nodes and L a positive constant.

So if the continuous problem is feasible then so is the discretized prob-
lem, as long as the number of nodes is large enough.

44

6.5 Convergence

6.5 Convergence

When solving ODEs numerically, the recommended practice is to resolve
using a finer grid and then see if the successive solutions agree. The theory
of numerical solution of ODEs tells us that certain methods produce the
correct result, but only when the step size is small enough. For example,
any oscillatory behavior should be viewed by suspicion. If it remains with
fixed frequency through increasing grid refinement, we know that is not
a numerical artifact. Next we introduce a way to compare solutions of
pseudospectral optimal control problems.

To compare solutions of increasing accuracy (i.e. larger N), we shall
introduce interpolations of solutions. Given an optimal solution of the
discrete problem (PN), (x(k)∗, u(k)∗), k = 0, . . . , N , we construct interpo-
lation polynomials as

xN (t) :=
N∑

k=0

x(k)∗φk(t), uN(t) :=
N∑

k=0

u(k)∗ψk(t).

Here φk are the Lagrange interpolation polynomials and ψk any continu-
ous function such that ψk(tj) = δjk, where the Kronecker delta is defined
as

δjk =

{

1 j = k

0 j 6= k
.

Corresponding to each solution of (PN) there is an interpolating func-
tion (xN (t), uN(t)). Next we shall look at sequences of interpolating func-
tions, which we later assume to come from solutions to (PN).

Definition Consider a sequence of continuous functions {ρN(t)}∞N=N0

with t ∈ [−1, 1]. If a sub-sequence of {ρN (t)}∞N=N0
converges uniformly

to a continuous function ρ(t), we call ρ(t) a uniform accumulation point
of the sequence.

Consider solving a sequence of (PN) problems for N >= M . This
generates a sequence of solutions {(xk, uk), k = 0, . . . , N}∞N=M . The next
theorem tells us that if the sequence of solutions to (PN) of increasing
grid refinement converges, then it converges to a solution of (P).

45

Chapter 6. Pseudospectral optimization theory

Theorem Let {(xk, uk), k = 0, . . . , N}∞N=M be a sequence of optimal
solutions to the discretized problem (PN) with interpolating sequence
{xN (t), uN(t)}∞N=M . Moreover, assume that the sequence has a uniform
accumulation point with initial element x∞0 (i.e. the initial point of the
state trajectory). Let {(q(t), u∞(t))} be a uniform accumulation point of
the sequence {(xN (t), uN(t))}. Then u∞(t) is an optimal control to the
original continuous problem (P) and

x∞(t) = x∞0 +

∫ t

−1

q(s) ds

is the corresponding optimal solution.

This means that we can run the optimizer on the discretized problem
and check convergence. If we convergence, in the sense outlined above,
we have converged to an optimal solution. Figure 6.1 shows a convergent
control input.

46

6.5 Convergence

0 0.5 1 1.5 2 2.5 3
−4

−3

−2

−1

0

1

2

3

4

Figure 6.1 Convergence of a pseudospectral method. For coarse grids no
feasible solution is found. The dash-dotted line is the solution at the coarsest
grid, followed by the dashed and full line refinements. On the large grid the
solution diverges and fails to approximate the function properly, but as the
number of grid points is increased the solution converges.

47

7

Numerical Solution

Previous chapters discussed discretization of optimal control problems
and conditions for optimality. If our optimization problem has an optimal
solution, the theory tells us that we can discretize the problem and then
try to solve the problem numerically. If the grid is fine enough then a
solution will be found, given appropriate initial conditions. We discuss
here different optimization algorithms for general nonconvex problems.
For ease of presentation we start out by considering a linear method before
moving to the more advanced nonlinear alternatives. We also show the
structure of the linear system we seek to parallelize in Chapter 8.

7.1 Numerical Optimization Methods

Many numerical algorithms work iteratively trying to find a (local) opti-
mal solution to

min
z∈Rn

f(z)

F1(z) ≤ 0

F2(z) = 0

starting from an initial guess z0. To this end they look for a Kuhn-Tucker
pair; that is, a point (z, λ) that fulfills the KKT conditions. In each itera-
tion they try to find a direction of descent, in which the objective function
decreases, at the same time being feasible. If this is the case we step in this

48

7.2 The Mehrotra Method

direction. When we reach a point where the Kuhn-Tucker conditions are
fulfilled up to the tolerance of the solver, we abort and declare a minimum.

Optimization theory states optimality conditions that should hold for a
point to be an optimum. Usually one does not really bother with checking
optimality conditions as this is often cumbersome. Comparing this to the
numerical solution of an ODE the user does not usually bother to check to
see if the ODE admits a unique solution prior to simulating it. However;
a solid theoretical foundation is needed, otherwise one would not know
what the solution is meant to represent.

Popular methods for solving nonlinear optimization problems include
inner point methods and Sequential Quadratic Programming (SQP), see
any standard reference; for example, [Jarre and Stoer, 2004]. The SQP
method solves a quadratic optimization problem, which is much easier
than the original problem in each iteration step. Inner-point methods work
on an augmented system which forces the current iterate to lie completely
inside the feasible set. As the iterates proceed we get closer and closer to
the boundary, given that is where the minimum is.

7.2 The Mehrotra Method

The Mehrotra method [Jarre and Stoer, 2004] is used to solve Quadratic
programs of the form

min
z

1

2
zTHz

Fz − g = 0

Cz − d ≤ 0.

The Lagrangian for this problem is

L(z, λ1, λ2) =
1

2
zTHz + cTz + λT

1 (Fz − g) + λT
2 (Cz − d),

49

Chapter 7. Numerics

and the corresponding KKT conditions

Hz∗ + c+ FTλ∗1 + CTλ∗2 = 0

Fz∗ − g = 0

(λ∗2)
T(Cz∗ − d) = 0, λ∗2 ≥ 0

Cz∗ − d <= 0.

Now we move to solving the problem numerically. We introduce slack
variables t as

Cz + t− d = 0, t ≥ 0,

and define

Ψ(z, λ1, λ2, t) =









Hz + c+ FTλ1 + CTλ2

Fz − g

Cz + t− d

Λ2t









,

with Λ2 = diag(λ2). We try to locate an optimum by finding a zero of Ψ
iteratively by constrained Newton stepping. The Newton step becomes

Ψ(z + ∆z, λ1 + ∆λ1, λ2 + ∆λ2, t+ ∆t) ≈

Ψ(z, λ1, λ2, t) +DΨ(z, λ1, λ2, t)









∆z

∆λ1

∆λ2

∆t









,

where DΨ denotes the Jacobian of Ψ. As we iterate towards the optim-
imum we have to make sure that λ2 and t are non-negative, this corre-
sponds to staying inside the feasible set. The Newton step is determined
by









H FT CT

F

C I

T Λ2

















∆z

∆λ1

∆λ2

∆t









=









r1

r2

r3

r4









, (7.1)

50

7.3 Inner-point Algorithms

with T = diag(t), and









r1

r2

r3

r4









= −









Hz + c+ FTλ1 + CTλ2

Fz − g

Cz + t− d

Λ2t









.

Many methods involve solving systems of this kind. The Mehrotra algo-
rithm solves (7.1) for two different right hand sides in each iteration.

Later we shall look at parallel solutions to linear systems of this kind.
To this end we shall work with a symmetric reformulation, which we
develop here. From the fourth row in (7.1) we have

∆t = Λ−1
2 (r4 − T∆λ2),

which we use to eliminate ∆t from the system. This results in a symmetric
formulation






H FT CT

F

C Σ











∆z

∆y1

∆y2




 =






r1

r2

r3 − Λ−1
2 r4




 , (7.2)

with Σ = −Λ−1
2 T . We can work with this system and then recover ∆t by

∆t = r3 − C∆z,

in case the algorithm needs it.

7.3 Inner-point Algorithms

Now lets turn to general, not necessarily convex, optimization problems.
In the last twenty-five years the inner-point methods have gained in pop-
ularity. The code IpOpt [Wächter and Biegler, 2006] is an example of
an implementation. A variant is also available in MATLAB’s fmincon

solver. We give here an overview of a general inner-point optimizer. The

51

Chapter 7. Numerics

algorithm we describe is generic, the more advanced codes build on this
base.

For the general nonlinear optimization problem

min
z∈Rn

f(z) (7.3)

F1(z) ≤ 0 (7.4)

F2(z) = 0, (7.5)

the KKT conditions are

∇f(z∗) +

m∑

k=1

λk∇fk(z∗) = 0

fk(z∗)λ∗k = 0, k = 1, . . . , p

fk(z∗) ≤ 0, λ∗k ≥ 0, k = 1, . . . , p

fk(z∗) = 0, k = p+ 1, . . . ,m

where λ are the Lagrange multipliers.
We try to find the optimum and the Lagrange multipliers for an aug-

mented system looking like

F1(z) + s = 0, s > 0

F2(z) = 0

∇f(z) + (λTDF (z))T = 0

Λs = µ , λ > 0,

with Λ = diag(λ). This represents the KKT conditions of the nonlinear
problem (7.3) along with slack variables. Here extra variables s and µ

have been added, to keep the current iterate inside the constraints. We
define Λ := diag(λ) and := [1 . . . 1]T. Stacking all appearing variables
in a vector we try to find a zero of the augmented system, a minimum of
the original optimization problem, by some Newton type iteration.

As the iterations proceed the parameter µ is decreased. This allows
us to move closer to the boundary of the feasible set, if that is where
the optimum is located. The fact that the iterates are taken to lie within

52

7.3 Inner-point Algorithms

the feasible set; that is, the iterate is an inner point of the set, gives the
method its name.

We group all equality relations of the augmented system together and
define

Ψµ(z, s, λ) :=









F1(z) + s

F2(z)

∇f(z) + (λTDF (z))T

Λs− µ









.

Now we seek a zero of Ψµ(z∗, s∗, λ∗) = 0 given an initial guess (z∗0 , s
∗
0, λ

∗
0).

An appropriate Newton type step can be derived from

0 = Ψµ(z∗, s∗, λ∗) = Ψµ(z + ∆z, s+ ∆s, λ+ ∆λ) ≈

Ψµ(z, s, λ) +DΨµ(z, s, λ)






∆z

∆s

∆λ




 .

The length of the step is then determined, assuring that the constraints
on s and λ are satisfied.

On an implementational note, when using a numerical optimization
code we need to implement the gradient of f and the jacobians of F1 and
F2. It is often possible for the optimizer to approximate the derivatives
numerically but this results in performance loss and accuracy loss. Highly
nonlinear problem might fail to convergence in cases like this. Also some-
times the Hessian can be given to the optimizer; however, this can more
easily be approximated, for example using Broyden-Fletcher-Goldfarb-
Shanno (BFGS) updates [Jarre and Stoer, 2004].

Most part of the optimization time is spent solving the linear system
of the Newton type step. The system is symmetric, or can made this way
by clever augmentation. This way a symmetric solver can be utilized,
which saves time. The appearing system is then symmetric indefinite and,
for example; an LDLT factorization [Duff et al., 1991] can be used. If
the matrix is sparse, as is often the case when solving optimal control
problems using local discretization (see e.g. [Betts, 2001]), a sparse solver
is recommended. For example, the solver IpOpt works solely on sparse
systems [Wächter and Biegler, 2006]; however using sparse solvers to solve
dense systems of course results in a performance loss.

53

Chapter 7. Numerics

7.4 SQP

The Sequential Quadratic Programming (SQP) algorithm also works by
iteratively finding a zero of the KKT conditions [Jarre and Stoer, 2004].
It works with the original KKT system, not an augmented version which
is the case for the inner point algorithm. Given an initial iterate a Newton
step is taken to further get closer to an optimum. Each such step gives
rise to a quadratic problem, a problem which is then solved and a step is
taken. The final solution is obtained by solving a sequence of quadratic
programs, this gives the method its name.

54

8

Parallel Solution

We turn now to parallel solution of dynamic optimization problems. Here
we show that speedup can be achieved by parallel solution of the linear
system that is solved in each Newton type step of the optimization al-
gorithm. Optimization algorithms spend most of their time solving this
system. We show how to proceed for a discrete update system, analogous
to the example in Chapter 3, based on local discretizations and the Mehro-
tra method presented in Chapter 7. Trying to speed up large computations
is common, see for example [Laird and Biegler, 2006] and [Tanartkit and
Biegler, 1996]. Many deal with DAE since they naturally have more vari-
ables [Cervantes and Biegler, 1998].

8.1 Domain Subdivision

We refer here again to the example and discretization in Chapter 3, where
we formed an optimization problem with a discrete update system as
constraint

x(k+1) = Φx(k) + Γu(k),

and initial condition prescribed. Also the controls are interval limited

umin ≤ u(k) ≤ umax.

Here we skip the end point constraints, as this makes the derivation less
cluttered.

55

Chapter 8. Parallel solution

Previously, in chapter 7, we derived a symmetric linear system corre-
sponding to the Mehrotra method

M ′ =






H FT CT

F

C Σ




 . (8.1)

We look now at solving this system in parallel. For linear examples the
Mehrotra method suffices; however, the principle is the same for nonlinear
optimization algorithms as they too solve similar linear systems.

Let us use 2N sample points, as this allows us to split the interval in
half easily. We write the discrete update system as

x(1) = Φx(0) + Γu(0)

...

x(2N) = Φx(2N−1) + Γu(2N−1).

We now introduce n extra constraints d = x(N), one for each state. This
way we can rewrite it as

x(1) = Φx(0) + Γu(0)

...

x(N) = Φx(N−1) + Γu(N−1)

d = xN

x(N+1) = Φd+ Γu(N)

...

x(2N) = Φx(2N−1) + Γu(2N−1).

56

8.1 Domain Subdivision

This naturally partitions the appearing variables as

z1 =












x(0)

u(0)

...

u(N−1)

x(N)












, z2 =












u(N)

x(N+1)

u(N+1)

...

x(2N)












, z =

[

z1

z2

]

.

This way the F matrix of 3.5 turns into the new extended equality con-
straints1






F1

F2 F ′′
2

F ′
1 −I











z1

z2

d




 =






0

0

0




 . (8.2)

The sub matrices are

F1 =







Φ Γ −I
. . .

Φ Γ −I






,

and

F2 =









Γ −I
Φ Γ −I

. . .

Φ Γ −I









.

The superscripted matrices read

F ′
1 =

[

0 . . . 0 I

]

,

1For ease of presentation we have omitted any initial or final states prescribed by
the optimization problem.

57

Chapter 8. Parallel solution

and

F ′′
2 =









Φ

0
...

0









.

Now the linear system matrix corresponding to (8.1) can be written as

M =



















H1 FT
1 F ′T

1 CT
1

H2 FT
2 CT

2

F ′′T
2 −I

F1

F2 F ′′
2

F ′
1 −I

C1 Σ1

C2 Σ2



















.

By a symmetric permutation, tantamount to what we did in Chapter 7 ,
we get

PMPT =



















H1 FT
1 CT

1 F ′T
1

F1

C1 Σ1

H2 FT
2 CT

2

F2 F ′′
2

C2 Σ2

F ′
1 −I

F ′′T
2 −I



















. (8.3)

Now define

Wk =






Hk FT
k CT

k

Fk

Ck Σk




 ,

58

8.1 Domain Subdivision

and write (8.3) as

PMPT =






W1 DT
1

W2 DT
2

D1 D2 T




 ,

which has an arrow head form. Here D1 and D2 can be found by inspect-
ing (8.3).

If we instead had worked with m sub intervals we would have ended
up with














F1

F2 F ′′
2

. . .
...

FN−1 F ′′
N−1

FN F ′′
N

F ′
1 F ′

2 . . . F ′
N−1 −I



























z1

z2
...

zN−1

zN

d














=














F1z1

F2z2 + F ′′
2 d

...

FN−1zN−1 + F ′′
N−1d

FNzN + F ′′
Nd

∑N−1
k=1 F ′

kzk − d














=














g

0
...

0

0

0














.

The resulting symmetric arrow head system matrix is now

PMPT =









W1 DT
1

. . .
...

Wm DT
m

D1 . . . Dm T









, (8.4)

where for each k the corresponding Dk would be a sparse matrices made
up of zeros, F ′

k and F ′′
k . The Dk matrices are long and thin when the

number of data points in each interval N is large.

59

Chapter 8. Parallel solution

8.2 Parallel Solution

Consider solving the arrow head system derived in the previous section









W1 DT
1

. . .
...

WN DT
N

D1 . . . DN T

















w1

...

wN

wT









=









b1
...

bN

bT









, (8.5)

where we here use an arbitrary right hand side consisting of bk. Rewrite (8.5)
as 





W1wk +DT
1 wT = b1

...

WNwk +DT
NwT = bN

∑N
k=1Dkwk + TwT = bT

Formally we have

wk = W−1
k (bk −DT

kwT), k = 1, , . . . , N,

and from this we get

(T −
N∑

k=1

DkW
−1
k DT

k)wT = bT −
N∑

k=1

DkW
−1
k bk. (8.6)

Here the Schur complement

S = T −
N∑

k=1

DkW
−1
k DT

k

is dense.
If we start by factoring Wk, we can then solve

Wkzk = bk, k = 1, . . . , N,

and
WkZk = DT

k , k = 1, . . . , N,

60

8.3 Numbers

for zk and Zk. This can be done in parallel. Now (8.6) turns into

(T −
N∑

k=1

DkZk)wT = bT −
N∑

k=1

Dkzk

which we solve for wT . This must be done on a single CPU, and must be
completed before we can proceed.

Next solve

Wkwk = bk −DTwT , k = 1, . . . , N,

for wk, again in parallel.
For the pseudospectral case we would instead of using only one differ-

entiation matrix we would make use of one matrix for each subinterval.

8.3 Numbers

We test the proposed algorithm on a current PC @ 2.66 GHz running
Linux, using FORTRAN95 for the implementation. We make use of randomly
chosen linear systems; that is, with no real world connection, for the tests.
With three states gives the following results

N \ CPUs 1 2 4

32 0.062 0.069 0.074

64 0.12 0.10 0.14

128 0.49 0.35 0.41

256 5.38 2.81 1.52

512 47.1 24.1 12.1

The timings are in seconds and measures the computation time per
iteration. Since most of the time of the optimization is spent solving the
linear system, the one that we solve on multiple cores, a considerable speed
up can be increased. For the example with few grid points; however, we
loose total time because of the overhead induced by the parallelization.

61

Chapter 8. Parallel solution

8.4 Conclusion

As seen by the numerical experiments in the last section for small sys-
tems the overhead takes considerable time, and as such the parallelization
scheme proposed results in longer computation times. For larger systems;
however, a considerable speed-up can be achieved as long as the number
of grid points N increases with compared to the number of states n. But,
in real applications usually not that many discretization points are needed
to get a good enough accuracy, and as such the proposed method is not
of much use for the current application.

Others have shown similar possibilities in speed up [Laird et al., 2011],
also based on randomized systems. The class of systems here is enlarged
to include Differential Algebraic Equations (DAE). As the optimization of
DAEs lacks theoretical foundation in literature running optimizations on
random systems is questionable. In the case of the proposed parallelization
algorithm the extra number of algebraics increases the size of the linear
system without increasing the coupling (as described by d in the matrix of
(8.2)). However, as long as systems with industrial relevance stay elusive,
both for linear ODE and DAE systems, these theoretical speed-ups are
of little use. In theory the time spent on solving the linear system can be
divided by the number of available CPUs. In the limit the speed-up factor
equals the number of available processors.

62

9

Pseudospectral Model
Predictive Control

Here we present pseudospectral control in an Model Predictive Control
(MPC) setting, see [Magni et al., 2009] and [Rao et al., 1998]. When solv-
ing an optimal control problem over a given time interval we are really
doing open-loop control, this is not desirable. In a feedback setting the
optimizer would run many times, using a receding horizon, and the re-
sult of the previous optimization is used for controlling the plant until
a new control is calculated by the optimizer. The computation time de-
pends on the size of the problem and thus on the discretization of the
model. With long computation times we need an accurate model so that
the system does not drift away. Pseudospectral optimization enables low-
dimensional numerical optimization problems, due to the high accuracy
of approximation. This cuts computation time severely, in comparison to
other methods [Huntington and Rao, 2007].

9.1 Pseudospectral Optimization in Automatic Control

The use of pseudospectral collocation methods initially found widespread
use in the solution of partial differential equations (PDE), as an alternative
to finite differences and finite elements. Presently they can be considered
a well developed technology, see for example [Fornbern, 1998], They were
first applied to the field of automatic control in [Elnagar et al., 1995]. So
far they have not received a thorough treatment by the control community,

63

Chapter 9. MPC

although [Gong et al., 2007] is a step in this direction. Examples are scarce,
but include [Song and Dyke, 2011].

9.2 MPC Controller Structure

K P

PS
r

x(t)

u(t)

Figure 9.1 Pseudospectral MPC controller structure. The actuator K uses
the last computed results to generate and input for the plant P . Computations
are carried out int the pseudospectral block PS.

The controller structure is shown in Figure 9.1. The output of the plant,
P , is fed to the pseudospectral optimizer, PS. After computing a control
trajectory PS hands it to the actuator K which at a given sampling rate
gives inputs to the plant. When the optimizer is done with the computa-
tions it once again samples the plant and starts a new computation and
the cycle repeats.

The plant P in this case is a system that can be described by an ODE

ẋ = f(x, u).

The optimizer PS implements a pseudospectral optimal control algorithm
as described in previous chapters.

The actuator K is run at a fixed sampling rate, at a higher frequency
than the optimizer PS. At the sampling points of K the value of the
control signal is computed using interpolation

u(t) =

N∑

k=0

ukLk(t),

64

9.3 Optimization Loop

where uk is the control sequence calculated by the optimizer. We could
also use a resampled version of the control sequence or parts of it since
the optimization horizon will be equal to or further off in the future than
the next expected control update.

Note that at the start of a control sequence there is no precomputed
control signal. We assume that we start off at an equilibrium, produced
e.g. by a constant control signal. It would also be possible to stabilize the
plant using a simpler controller, e.g. a PID-controller, but then K must
also be fed the output of the plant.

9.3 Optimization Loop

x(t)

t

R
n

s s+ Topt s+ Tmax
opt s+ Tmax

opt +H

Figure 9.2 Control loop timing.

The timing of the optimization loop is shown in Figure 9.2. Here Topt is
the computation time of the current optimization, Tmax

opt is the maximum
allowed computation time and H is the time horizon of the optimization
problem.

1. The plant P is sampled at time s, which gives x(s).

2. Using x(s) as starting point we simulate the plant

x(s+ Tmax
opt) = x(s) +

∫ s+Tmax
opt

s

f(x(t), u(t)) dt,

using some numerical ODE method. This way we calculate the state
of the system, given the current control sequence, at the time the
optimization is expected to have finished.

65

Chapter 9. MPC

3. An optimal control is then solved using x(t+ Tmax
opt) as initial value

x0 = x(s+ Tmax
opt),

over the horizon H . This corresponds to t0 = s + Tmax
opt and tf =

s+ Tmax
opt +H .

4. The control sequence given at the nodes of the optimization are fed
to the actuator K at time s+Tmax

opt . If the actual computation time
exceeds tmax

opt we stop and hand the current iterate to the actuator.

5. Return to the first step and iterate.

We need an estimate for the computation time to use as Tmax
opt . This can

be acquired from simulation runs. If the optimizations need to be stopped
prematurely in step four of the last section then we might need to increase
our computation time estimate. It would be possible to use some sort of
adaptive scheme to estimate the computation time as the iterations pro-
ceed. In the open-loop scenario many optimization runs may be needed to
determine a suitable grid refinement. At coarser grids the problem might
not converge. Suitable parameters can be found by repeated simulations.

9.4 Numerical Evaluation

We now proceed to test the proposed pseudospectral controller on a stan-
dard control problem, a nonlinear double tank.

Double Tank Control

Consider the double tank process in Figure 9.3. It comprises two tanks
and a pump inlet to the upper tank. The states are the liquid levels of the
tanks, x1 and x2. Liquid is fed to the upper tank using a pump, which
acts as our control signal, u. Assuming laminar flow the dynamics can be
written {

x′1 = −a1
√
x1 + bu

x′2 = a1
√
x1 − a2

√
x2

,

The constant b depends on the pump, which we assume to be linear. The
amount of liquid that leave the tanks is proportional to the square root

66

9.4 Numerical Evaluation

u

x1

x2

Figure 9.3 Two interconnected tanks with one inlet.

of the liquid level, according to Torricelli’s law. Also the density, tank
outlet and geometry effect the outflow. This is captured in the constants
ak, k = 1, 2.

The aim here is to control the water level of the lower tank, x2, to
a new set point. This puts constraints on the states, as the tanks have
limited volume with a non-negative water level. The actuator also limits
the feasible controls since the pump has limited range and cannot suck
water from the upper tank; that is, the control input is positive.

Optimization Problem

The optimal control problem is to minimize

min
x,u

∫ tf

t0

(x2(t) − xref
2 (t))2 dt

67

Chapter 9. MPC

subject to the dynamics

{

x′1 = −a1
√
x1 + bu

x′2 = a1
√
x1 − a2

√
x2

,

with initial condition
x(t0) = x0,

and path inequalities

0 ≤ x(t) ≤ xmax

0 ≤ u(t) ≤ umax

}

t ∈ [t0, tf].

The reference trajectory xref
2 describes the desired water level of the lower

tank as a function of time.

Simulation

We test the controller on the double tank process described earlier. In the
simulation the plant is to be controlled to a new set point, and we use

xref
2 (t) ≡ x

setpoint
2 ,

to have the optimization penalise deviations from it. We used a value of
N = 25 when discretizing the problem, which we found to give a fine
enough grid. For the sake of the simulation we set the constants as

parameter x0
1 x0

2 xmax
1 xmax

2 xref
2 umax a1 a2 b

value 0.25 0.3 0.8 0.8 0.4 3 1 1 1

For these values we found a suitable maximum time for the com-
putations as Tmax

opt = 0.05 by simulation. We set the time horizon to
H = 2Tmax

opt .
The control of the system is shown in Figure 9.4. It is bang-bang type

solution, which starts to fill the upper tank by giving full pump input.
After a while it stops and the water in the upper tank continues to fill
the lower. Later it reaches the desired set point, and pump is started to
achieve a stationary tank level.

68

9.4 Numerical Evaluation

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

x 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

x 2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

u

Figure 9.4 Simulation run showing the tank levels and control signal.

The simulations were carried out using the MATLAB nonlinear pro-
gramming solver fmincon using compiled mex-files for function evalua-
tions, on a recent desktop computer. The computation time depends on
the size of problem, i.e. the discretization. The mean computational times
for the optimization run were

Discretization (nodes) CPU time (s)

PS (25) 0.027

Local (150) 3.2

In parenthesis are the number of nodes, including all sub intervals. The
number of nodes were chosen as to achieve the same accuracy level. We
have included the corresponding local discretization method for compar-
ison; that is, using the same node placement but with several sub inter-
vals. In general, local discretizations are much more time consuming than
global. Further comparisons between local and global discretizations can
be found in [Huntington and Rao, 2007].

69

Chapter 9. MPC

9.5 Conclusions

We have proposed a pseudospectral model predictive control technique.
The relatively low computation time allows us to use pseudospectral opti-
mization for online optimization. Through numerical experiments we have
shown its application to a double tank process.

Looking at the figures it looks decent; however, it took some of tuning
the model and the initial conditions to avoid divergence. Even though
the repeated simulations are initialized with the value of the last optimal
value, and as such we expect the new value to move very little, the algo-
rithm sometimes diverges. Even if the optimizations diverges only once,
using these kinds of optimizations in real life scenarios can be disadvan-
tageous. It would then require operator supervision, or some other type
of fail safe mechanism. This suggests the plant only to be run through re-
gions of high accuracy and nice convergence properties, presumably found
by simulation, and is alluded to in[Kang and Bedrossian, 2007]. Also the
need to set a maximum computation time can turn out to be problematic,
if this time is exceeded1.

In a real setting model inaccuracy will make the system drift in the
simulation stage of the controller which will effect performance. If the
computations are fast enough in comparison to this drift the method is
appropriate. We should do trajectory changes through regions were the
model is known to be good and optimizations converge, which can be
verified by simulations first. To avoid drift over time it would be possible
to use a different controller at the set points, and then have the proposed
pseudospectral controller handle set point changes in an optimal fashion.

1Issues like this are all too often overlooked in the literature.

70

10

Pseudospectral Observers

Now we look at using pseudospectral optimization to construct observers
for general nonlinear systems. We build upon the pseudospectral opti-
mization theory developed in previous chapters. Next we look at a possible
observer implementation by Qong and associates [Gong et al., 2007], and
we discuss its shortcomings. We then propose a fix for this, building upon
the results out-of-sequence measurements and sensor fusion [Bar-Shalom,
2002]. This is proposed future work and as such we allow ourselves latitude
as to detail.

10.1 An Output System

When observing the output of a system the control input is assumed to
be known. This makes sense since the observer is part of the controller.
This allows us to rewrite the ODE governed system dynamics

ẋ = f(x(t), u(t)) = f̂(x(t), t),

as we henceforth treat the control input as time-dependent dynamics.
The output system we consider is now

ẋ = f̂(x(t), t)

y = h(x(t)),

where we may sample the output y at will or at some given rate. We may
also incorporate a constraint set

r(x(t)) ≤ 0.

71

Chapter 10. Observers

This way me may add extra information of what we know about the states
already; for example, that they lie within a certain interval.

In practice the sensors and microcontroller of the implementation plat-
form limits the possible sampling rate. We shall assume that we are always
allowed to use the values we present with mathematics.

10.2 Observability

For a linear system

ẋ = Ax+Bu

y = Cx,

checking if the system is observable or not comes down to checking the
rank of the observability gramian

Wo :=









C

CA
...

CAn−1









.

If the determinant of this matrix has full rank we may reconstruct the
state trajectory x only by looking at the output y. In practice this means
that we can not have two different state trajectories x(t) that result in the
same system output y(t) over the time interval we observe. This makes
appropriate the following observability condition for our nonlinear system:

Definition There exists a positive constant Th such that if two state
trajectories, u(t) and v(t), produces the same output over any interval

∫ T

T−Th

‖h(u(t)) − h(v(t))‖2 dt = 0,

with T ∈ [Th, ∞]; , then u(t) must equal v(t) in the interval.

72

10.3 Optimization Problem

We may restrict the allowed trajectories in the definition to lie within
the constraint set r(x(t)) ≤ 0. This way me might turn some unobservable
systems into observable ones, in terms of our definition. For example, if
the system under consideration is linear, time-varying and is uniformly
observable, then our observability condition holds.

10.3 Optimization Problem

Assuming we have an output system satisfying the observability condition,
we now phrase the observability problem as an optimization problem.
Consider solving

min
x̂

∫ T−Th

T

‖h(x̂(t)) − y(t)‖2 dt

˙̂x = f̂(x̂(t), t)

r(x̂(t)) ≤ 0.

Here we let the observed states wear a hat1. This way the distinction
between the true and observed states and control inputs becomes clear.

The discrete counterpart becomes

min
x̂

N∑

k=0

‖h(x̂(k)) − y(k)‖2

‖
N∑

l=0

Dklx
(l) − f̂(x̂(k), t(k))‖ ≤ (N − 1)

3
2−m, k = 0, . . . , N

r(x̂(k)) ≤ (N − 1)
3
2−m, k = 0, . . . , N,

where D is the pseudospectral differentiation matrix. Here, as previously,
the discretized problem needs some slack when trying to fulfill the equal-
ities, for the optimization to converge.

To see that the problem has a solution we argue like this. The cost
function is nice and smooth, given that the output function y = h(x(t)) is,

1In this formulation we include the control inputs. It would also be possible to
disguise the control inputs as a time dependence.

73

Chapter 10. Observers

and as such the quadratic cost should admit a solution. If the continuous
problem has a solution then so has the discrete problem, if the grid is fine
enough. Also since no two different state trajectories can produce the same
output, assuming our definition of observability , then if the optimization
converges we have recovered the states we wish to observe.

10.4 A Possible Observer Structure

We introduce here a possible observer structure, due to Gong and asso-
ciates [Gong et al., 2007]. The algorithm is naturally divided into two
phases. In an initial phase the observer collects data by sampling the
system at regular intervals, this is to collect data over a given time hori-
zon. Next the system is sampled continuously and for each new point the
optimizer is run. From the previously collected samples we can then in-
terpolate to get the values we are looking for; that is, the values at the
pseudospectral discretization points.

The initial phase proceeds as follows.

1. Select tuning parameters N and L, and initial guess x(t0). The pa-
rameter N is the number of grid points used by the optimizer, and
L is the number of samples we collect for the time horizon.

2. Calculate the pseudospectral nodes and other data needed by the
pseudospectral algorithm that can be done offline; for example, the
differentiation matrix.

3. Simulate the system using the initial guess. This forms the initial
guess of the optimization.

4. Collect initial data; that is, L equally spaced samples.

The pseudospectral algorithm needs outputs sampled at the Lobatto
nodes but sampling is usually performed at equally spaced intervals, To
overcome this spline interpolation is used. After the initial phase the ob-
server repeatedly samples the system and performs a pseudospectral op-
timization run. The main phase of the algorithm looks like this.

1. Collect the next measurement.

2. Construct spline function to get data at the pseudospectral nodes.

74

10.5 Sensor Fusion and OOSM

3. Solve the resulting discrete optimization problem. The result of the
optimization at the final time is an estimate of the system states at
the current sampling time.

4. Simulate to get the system state at the next sampling point and
then repeat, this will be the initial guess of the next optimization.

Let us try the proposed algorithm on our water tank example
{

ẋ1 = −a1
√
x1 + bu

ẋ′2 = a1
√
x1 − a2

√
x2

.

as introduced in Chapter 9. Using only one sensor we measure now only
the water level in the lower tank; that is, setting

y = x2.

Our aim is to measure the water level of the upper tank, x1, by watching
y.

For the experiment we use L = 8; that is, we use six samples to initially
collect process output. The pseudospectral optimizer makes use of N = 35
grid points, and as proposed we use the sample values to interpolate the
values at the grid. We use a constant pump input, u = uconst. The results
are compared to a standard linear observer, based on linearization around
the steady state corresponding to the given input and zero order hold. The
results are shown in Figure 10.1, where we have not taken into account
the computational delay associated with the pseudospectral optimization.

The observed states, stemming from the pseudospectral controller cor-
responds well to the simulated states. The linear observer converges more
slowly to the true states, which approach the linearization point. In Fig-
ure 10.2 the output with optimization delay is shown. We see that the
computation times vary between computations. The random compution
times will be hard to account for if we wish to close the loop and use the
observed states when calculating a control input.

10.5 Sensor Fusion and OOSM

A problem of the proposed observer scheme is that if we wish to close the
control loop we will have problems if the computation time exceeds the

75

Chapter 10. Observers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

x1

x2

x̂
ps
1

Figure 10.1 The pseudospectral observer compared to a standard linear
observer. The computational delay of the optimization is not accounted for.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10

x1

x2

x̂
ps
1

Figure 10.2 The pseudospectral observer compared to a standard linear
observer, with computational delay.

sampling rate; that is, the problem must be solved online within a given
time. The algorithm uses fixed sampling, this means we need to adjust the
sampling rate to some worst-case computation time. If this is exceeded
some fail-safe mechanism would have to be implemented. We would rather
like to use the computed value as soon as possible.

Consider a system comprising a single sensor. Using the pseudospec-

76

10.5 Sensor Fusion and OOSM

tral observer in this case we would have to rely on low model error to
be successful. This is because the pseudospectral computation time is
quite large compared to common sampling rates of industrial controllers,
which means that for long times the controller would need to rely on
the correctness of the model. A better idea would be to combine the pseu-
dospectral observer with a fast sensor. This would mean incorporating the
pseudospectral observer computations as Out-Of-Sequence Measurements
(OOSM); see for example [Bar-Shalom, 2002].

In this settings the pseudospectral observer can be viewed as a, in some
sense, slow sensor with random delay. This is comparable to the graphics
processing used in[Berntorp et al., 2011], where a computationally inten-
sive computer vision algorithm is used in conjunction with a much faster
sensor. However, in this setting we also need a faster and more steady sen-
sor to be used in conjunction with the pseudospectral observer. Perhaps
even a standard linear observer could be used as a faster sensor. In such a
setting the states of the linear observer could be used for feedback, which
would then periodically be corrected by using the states calculated by the
pseudospectral observer. In the future we are looking to implement and
test this use of pseudospectral observers more thoroughly.

77

11

Conclusions

This thesis has covered applications of pseudospectral optimization ap-
plied in the field of automatic control. Pseudospectral optimal control in
an model predictive control (MPC) setting has been evaluated. We also
propose a way to use pseudospectral optimization as a nonlinear state
estimator together with Out-Of-Sequence-Measurements (OOSM). It has
also dealt with parallel soluation of optimization problems governed by
system dynamics described by ODE. To carry out numerical tests a pro-
gramming framework has been developed, although the implementation
is not the subject of the thesis.

11.1 Parallel Solution

When solving numerically optimization problems governed by ODE, much
time is spent solving a linear system. We proposed a way to carry out the
computations in parallel. By the numerical experiments we found the over-
head related to the parallelization to take considerable time. Sometimes
the parallelization scheme proposed results in longer computation times,
compared to using a single CPU. For larger systems; however, a consid-
erable speed-up can be achieved as long as the number of grid points
increases. In real applications usually not that many discretization points
are needed to get a good enough accuracy, and as such the proposed
method can be questioned.

78

11.2 Observer

MPC Application

We proposed a pseudospectral model predictive control (MPC) technique.
The relatively low computation time allows make possible the use of a
current PC workstation for the implementation. Through numerical ex-
periments we showed its application to a double tank process.

The results were not completely satisfying, as it took quite a lot of
tuning of both the model and the initial conditions to avoid divergence.
Sometimes the algorithm diverge, which makes its industrial usage limited,
as it would then require operator supervision, or some other type of fail
safe mechanism. This suggests the plant only to be run through regions
of high accuracy and nice convergence properties, presumably found by
simulation.

In a real setting model inaccuracy will make the system drift in the
simulation stage of the controller which will effect performance. If the
computations are fast enough in comparison to this drift the method is
appropriate. We should do trajectory changes through regions were the
model is known to be good and optimizations converge, if we are to use
the method at all.

11.2 Observer

We looked at using pseudospectral optimization to construct observers for
general nonlinear systems. The pseudospectral observer show promising
results. Compared to a linear observer the observed states much better
agrees with the true solution. However, the larger computaional overhead
needs to be accounted for. For future work we proposed a way to incor-
porate a pseudospectral optimizer in the framework of Out-Of-Sequence-
Measurements (OOSM), to account for the random delays inherit in the
optimization based approach.

79

A

A Pseudospectral
Optimizer MATLAB
Implementation

We discuss here the implementation of a pseudospectral optimizer, using
MATLAB [MATLAB, 2010] as a base. The proposed implementation uti-
lizes the fmincon function for optimization, and makes use of the symbolic
toolbox for automatic generation of optimization code for a mex-based
back end. It is similar in design to the JModelica.org [JModelica.org, 2012]
compiler, although much simpler.

A.1 The fmincon Function

The MATLAB programming package has many possibilities for optimiza-
tion. To solve our nonlinear problems we use the function fmincon. It
finds a constrained minimum of a function of several variables and has
many options and variations in usage.

80

A.1 The fmincon Function

The optimization problem fmincon solves is

min
z∈Rn

f(z)

Az ≤ b

Aeqz = beq

c(z) ≤ 0

ceq(z) = 0

bl ≤ z ≤ bu.

Here the linear constraints are stated independently, to allow the solver
to cut some corners of efficiency. MATLAB also makes special the case of
linear bounds. In terms of the general nonlinear optimization problem of
Chapter 4. we would have

F1(z) :=









Aeqz − beq

ceq(z)

bl − z

z − bu









, F2(z) :=

[

Az − b

c(z)

]

.

A standard call would look like

z = fmincon(@f, z0, A,b, Aeq,beq, lb,ub, @nonlincon)

where z0 is the initial and nonlincon a function returning the nonlinear
constraints, c(z) and ceq(z).

Linear constraints are specified directly in the call by matrices. Stan-
dard or sparse matrices describe A, b, Aeq and beq.

The objective function looks like

function [f, dfdz] = objective(z)

f = ...;

if nargout > 2

dfdz = ...;

end

end

and the constraint function like

81

Appendix A. MATLAB implementation

function [c, ceq, dcdz, dceqdz] = nonlincon(z)

c = ...;

ceq = ...;

if nargout > 2

dcdz = ...;

dceqdz = ...;

end

end

It is possible to use analytic derivatives, these are returned in the variable
dfdz for the objective, and in dcdz and dceqd for the constraints. To turn
on the functionality, use for the constraints

options = optimset(optimset, ’GradConstr’, ’on’);

and for the objective

options = optimset(optimset, ’GradObj’, ’on’);

If sparse matrices are used the jacobians of nonlincon must also use the
sparse format.

The fmincon optimizer can choose from different optimization algo-
rithms. For example, to select the solver to use an interior point solver
use

options = optimset(optimset, ’Algorithm’, ’interior-point’);

or for an active set solver

options = optimset(optimset, ’Algorithm’, ’active-set’);

A.2 The mex-backend

The objective and constraint functions of last section, written in MAT-
LAB scripting language, dispatch calls to underlying mex-functions. The
main work is done in precompiled functions, as we use mex-files written
in the C programming language to facilitate fast computations. The idea
is to exploit that the discretizations of the ODEs describing the system
dynamics consists of the same function evaluated in each discretization

82

A.3 Code Generation

point. For example, assume that the optimization problem is governed by
dynamics

ẋ = f(x(t), u(t)).

Using discretized variables

z =












x0

u0

...

xN

uN












.

we require the ODE to hold (approximately) in each discretized point as

Dz =






f(x0, u0)

. . .

f(xN , uN)




 (A.1)

The differentiation matrix is D and the calculation of derivatives is most
easily done by matrix multiplication directly in the MATLAB scripting
language. The right hand side of (A.1) is the reevaluation of the ODE-
function for different points and is programmed into a C-language mex-file.
The grid size; that is, the number of discretization points is changed as
this C-style-pseudo-code shows for a scalar ODE

int N = ...;

double F[N];

for (int k = 0; k <= N; k++) {

F[k] = f(x[k], u[k]);

}

This allows for optimization at different accuracies, to test for conver-
gence.

A.3 Code Generation

The MATLAB package facilitates calculation of analytic derivatives through
the symbolic toolbox. We make use of this to generate first and second

83

Appendix A. MATLAB implementation

order functions for the solver. Consider the simple ODE

{

ẋ1 = x2
1

ẋ2 = 2x1 + x2

.

We need to calculate the jacobian of the right hand side to be able to
generate second order information for the solver. The calculation of the
jacobian is easily done using the symbolic toolbox as

syms x1 x2

f = [x_1*x_1; 2*x1 + x2];

variables = [x1, x2];

J = jacobian(f, variables)

This is used in each grid point to form a large matrix, typically looking
like 





J0

. . .

JN






,

where we make use of Jk to mean the jacobian evaluated at point (xk, uk).

A.4 Example Usage

The top level interface of our MATLAB optimizer specifies the optimiza-
tion functions as strings. By some clever use of the sprintf and eval

functions we can make use ot the symbolic toolbox for automatic code
generation. Various objective functions can be used, the quadratic is com-
mon and very easy to implement by squaring the appearing variables and
multiplying by the pseudospectral quadrature weights.

An example problem formulation would look like

ode_rhs = {’x2’, ’x3^3’, ’u’};

vars = {’x1’, ’x2’, ’x3’, ’u’};

time_final = 3.0;

N = 32;

84

A.4 Example Usage

Input constraints can then be specified as

b1 = 3.0*ones(pee.N+1, 1);

A1 = kron(eye(pee.N+1), [0 0 0 1]);

A = [A1; -A1];

b = [b1; b1];

to limit the control input to |u| ≤ 3.
After the generation of nonlinear constraints and objective function

we can call the fmincon to finish the optimization.

85

B

Bibliography

Arnold, V. I. (1978): Mathematical methods of classical mechanics.
Springer.

Bar-Shalom, Y. (2002): “Update with out-of-sequence measurements
in tracking: Exact solution.” IEEE Transactions on Aerospace and
Electronic Systems, 38:3, pp. 769–778.

Berntorp, K., K.-E. Årzén, and A. Robertsson (2011): “Sensor fusion
for motion estimation of mobile robots with compensation for out-
of-sequence measurements.” In Proc. 11th international conference on
control, automation and systems.

Betts, J. T. (2001): Practical methods for optimal control using nonlinear
programming, vol. 3 of Advances in Design and Control. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA.

Betts, J. T., N. Biehn, and S. L. Campbell (2002): “Convergence of
nonconvergent irk discretizations of optimal control problems with
state inequality constraints.” SIAM journal of scientific computing,
23:6, pp. 1981–2007.

Campbell, S. L. and R. März (2007): “Direct transcription solution of high
index optimal control problems and regular euler-lagrange equations.”
Journal of computational and applied mathematics, 202, pp. 186–202.

Cervantes, A. and L. T. Biegler (1998): “Large-scale DAE optimization
using a simultaneous nlp formulation.” AIChe Journal, 44:5, pp. 1038–
1050.

86

Chyba, M., E. Hairer, and G. Vilmart (2009): “The role of symplectic
integrators in optimal control.” Optimal control applications and
methods, 30, pp. 367–382.

Deuflhard, P. and F. Bornemann (2002): Numerische Mathematik II.
Walter de Gruyter.

Duff, I. S., N. I. M. Gould, J. K. Reid, and J. A. Scott (1991): “The
factorization of sparse symmetric indefinite matrices.” IMA journal of
numerical analysis, 11, pp. 181–204.

Elgindy, K. T. (2009): “Generation of higher order pseudospectral in-
tegration matrices.” Applied Mathematics and Computation, 209:2,
pp. 153–161.

Elnagar, G., M. A. Kazemi, and M. Razzaghi (1995): “The pseudospectral
legendre method for discretizing optimal control problems.” IEEE
transactions on automatic control, 40:10, pp. 1793–1796.

Engelsone, A., S. L. Campbell, and J. T. Betts (2007): “Direct transcrip-
tion solution of higher-index optimal control problems and the virtual
index.” Applied numerical mathematics, 57, pp. 281–296.

Fornbern, A. (1998): A Practical Guide to Pseudospectral Methods.
Cambridge University Press.

Garg, D., W. W. Hager, and A. V. Rao (2011a): “Pseudospectral methods
for solving infinite-horizon optimal control problems.” Automatica, 47,
pp. 829–837.

Garg, D., M. A. Patterson, C. Francolin, C. L. Darby, G. T. Huntington,
W. W. Hager, and A. V. Rao (2011b): “Direct trajectory optimization
and costate estimation of finite-horizon and infinite-horizon optimal
control problems using a radau pseudospectral method.” Computa-
tional optimization and application, 49, pp. 335–358.

Gong, Q., W. Kang, and I. M. Ross (2006): “A pseudospectral method
for the optimal control of constrained feedback linearizable systems.”
IEEE transactions on automatic control, 51:7, pp. 1115–1129.

Gong, Q., I. M. Ross, and F. Fahroo (2009): “A Chebyshev pseudospectral
method for nonlinear constrained optimal control problems.” In Proc.
of the 48th conference on decision and control, pp. 5057–5062.

87

Appendix B. Bibliography

Gong, Q., I. M. Ross, and W. Kang (2007): “A unified pseudospectral
framework for nonlinear controller and observer design.” In Proc. of
the 2007 american control conference, pp. 1943–1949.

Gong, Q., I. M. Ross, W. Kang, and F. Fahroo (2008): “Connections be-
tween the covector mapping theorem and convergence of pseudospec-
tral methods for optimal control.” Computational optimization and
application, 41, pp. 307–335.

Huntington, G. and A. Rao (2007): “A comparison between global
and local orthogonal collocation methods for solving optimal control
problems.” In American Control Conference, 2007. ACC ’07, pp. 1950
–1957.

Jarre, F. and J. Stoer (2004): Optimierung. Springer.

JModelica.org (2012): version 1.8. JModelica.org.

Kameswaran, S. and L. T. Biegler (2008): “Convergence rates for direct
transcription of optimal control problems using collocation at radau
points.” Computational optimization and application, 41, pp. 81–126.

Kang, W. (2008): “The rate of convergence for a pseudospectral optimal
control method.” In Proc. of the 47th IEEE conference on decision
and control, pp. 521–527.

Kang, W. and N. Bedrossian (2007): “Pseudospectral optimal control
theory makes debut flight, saves NASA 1M in under three hours.”
SIAM News, 40:7.

Kang, W., Q. Gong, I. M. Ross, and F. Fahroo (2007): “On the con-
vergence of nonlinear optimal control using pseudospectral methods
for feedback linearizable systems.” International journal of robust and
nonlinear control, 17, pp. 1251–1277.

Laird, C., A. Wong, and J. Åkesson (2011): “Parallel solution of large-
scale dynamic optimization problems.” In 21st European Symposium
on Computer-Aided Process Engineering.

Laird, C. D. and L. T. Biegler (2006): “Large-scale nonlinear programming
for multi-scenario optimization.”

88

Magni, L., D. Raimondo, and F. Allgöwer (2009): Nonlinear Model
Predictive Control: Towards New Challenging Applications. Lecture
Notes in Control and Information Sciences. Springer.

MATLAB (2010): version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts.

Polak, E. (1973): “An historical survey of computational methods in
optimal control.” SIAM Review, 15:2, pp. 553–584.

Pontryagin, L. S., V. G. Boltyanskii, R. V. Gamkrelidze, and
E. Mishchenko (1962): The mathematical theory of optimal processes
(International series of monographs in pure and applied mathematics).
Interscience Publishers.

Rao, C. V., S. J. Wright, and J. B. Rawlings (1998): “Application
of interior-point methods to model predictive control.” Journal of
optimization theory and applications, 99:3, pp. 723–757.

Song, W. and S. J. Dyke (2011): “Application of pseudospectral method
in stochastic optimal control of nonlinear structural systems.” In Proc.
of the 2011 american control conference, pp. 2504–2509.

Tanartkit, P. and L. T. Biegler (1996): “A nested, simultaneous approach
for dynamic optimization problems - I.” Computers chemical engineer-
ing, 6, pp. 735–741.

Wächter, A. and L. T. Biegler (2006): “On the implementation of
an interior-point filter line-search algorithm for large-scale nonlinear
programming.” Mathematical Programming, 106, pp. 25–57.

Zhang, W. and M. Heping (2008): “The chebyshev-legendre collocation
method for a class of optimal control problems.” International Journal
of Computer Mathematics, 85:2, pp. 225–240.

Åström, K.-J. and B. Wittenmark (1996): Computer-controlled systems.
Prentice Hall.

89

