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Abstract—The Mobile Service Support system (MSS), which 

Ericsson AB develops, handles the setup of new subscribers and 

services into a mobile network. Experience from deployed 

systems show that traffic monitoring and control of the system 

will be crucial for handling overload situations that may occur at 

sudden traffic surges. In this paper we identify and explore some 

important control challenges for this type of systems. Further, we 

present analysis and experiments showing some advantages of 

proposed solutions. First, we develop a load-dependent server 

model for the system, which is validated in testbed experiments. 

Further, we propose a control design based on the model, and a 

method for estimation of response times and arrival rates. The 

main contribution of this paper is that we show how control 

theory methods and analysis can be used for commercial telecom 

systems. Parts of our results have been implemented in 

commercial products, validating the strength of our work. 

 
Keywords— Performance management; telecommunication 

systems; queuing theory; control theory; database servers; 

admission control; Kalman filters  

I. INTRODUCTION 

 

Resource management of computer systems, which has 

gained increased attention during recent years, was explored 

already in the late 60's [2][3]. It is an essential mechanism to 

handle load disturbances such as traffic surges and changes in 

user behavior. Poorly managed resources can severely degrade 

the performance of a system with potentially large financial 

consequences. 

The work presented in this paper is motivated by a 

commercial Mobile Service Support System (MSS), 

developed and produced by Ericsson AB. Mobile Service 

Support Systems are used by the network operators for all 

processing regarding new subscribers and services in the 

network. Each new subscriber or service requires processing 

and data storage in several network nodes. The systems are in 

general multi-tier systems, implemented as distributed server 

clusters, where web and application servers process the 

incoming requests and database servers are used for data 

 
1 This work represents the outcome of a long-term collaboration between 

Lund University and Ericsson AB and the contributors are listed in alphabetic 

order. 

storage. The resource management of these systems, based on 

measurements of the system states such as actual utilization 

and response times, is crucial for the optimization of operation 

cost and the guarantee of service level agreements during load 

surges, for example during marketing campaigns or various 

events. 

Therefore, the challenge is how to control system 

performance while providing guarantees on convergence and 

disturbance rejection. The solution is based on dynamic 

control schemes, which monitors the systems and provides 

actions when needed. Several types of resource–management 

mechanisms have been proposed and evaluated in the 

literature. In larger computer systems, load balancing is 

performed in order to distribute the demand for resources 

uniformly over a number of resource units (computers, CPUs, 

memory, etc.), thus avoiding the case that among the nodes 

with similar functionalities some are under-utilized while 

others are overloaded [4][5]. During overload periods, when 

more resources are requested than are available, admission 

control mechanisms reduce the load to the system by blocking 

or delaying some of the requests [6][7][8][9]. For Internet 

applications, virtualized server systems can be used to divide 

physical resources into a number of separated platforms where 

different web applications are allowed to operate without 

affecting one another. Dynamic resource allocation between 

the virtualized platforms serves as a new and easy way to 

perform resource optimization on web server systems 

[10][11][12]. In the last years, the field of power and energy 

management has become important. Large software systems 

have high energy consumption, which means that dynamic 

resource optimization of these systems may considerably 

lower the operating costs for the network operators 

[13][14][15][16]. 

However, all optimization techniques require accurate 

performance models of the involved computing systems. The 

operation region is mainly high traffic load scenarios, which 

means that the computing systems show non-linear dynamics 

that needs to be characterized accurately [17]. A software 

system is basically a network of queues, as examples, the CPU 

ready queue, semaphore queues, socket queues, and I/O device 

queues, which store requests in waiting of service in the 

processors. Therefore, queuing models can be used when 
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describing the dynamic behavior of server systems 

[2][18][19][20].  

The concept of Load-Dependent Server (LDS) models, in 

which the response time of the jobs in the system is a function 

of the service time of the jobs and current number of jobs 

waiting to be served has, to the best of our knowledge, firstly 

been introduced in [21]. In [21][22][23], standard benchmarks 

were used for workload generation and also regression models 

to capture the system dynamics. In [24], a queuing network 

model which represents the load dependent behavior of the 

LDS was presented and validated with simulations. In [25], a 

theoretical analysis of the D/G/1 and M/G/1 models with load 

dependency assumptions was presented. 

In this paper, we investigate solutions to some important 

control challenges identified for the commercial MSS 

developed by Ericsson AB. We present a load-dependent 

server model, which is validated in experiments. The model 

has been previously published in [1]. Further, we extend [1] 

by proposing and validating an admission control mechanism 

based on a load-adaptive controller. A modified version of the 

controller has been implemented in the Ericsson product. 

Finally, we show how extended Kalman filters can be used for 

estimating the response times and arrival rates in the system.  

The paper is organized as follows. In Section II, the 

Ericsson product is described and the control challenges 

identified for the system are presented. In Section III, the 

testbed used for some of the experiments is described. In 

Section IV, the load-dependent server model is presented and 

validated. In Section V, the load-adaptive controller is 

presented and experiments validating its performance are 

described. In Section VI, our work on response time 

estimation based on extended Kalman filters is presented. 

Finally, in Section VII, some conclusions are presented. 

II. SYSTEM AND PROBLEM DESCRIPTION 

The Mobile Service Support system (MSS), which Ericsson 

AB develops, handles the setup of new subscribers and 

services into a mobile network. It presents to the operator and 

its business support systems a unified middleware where 

complex functions, such as setting up a new subscriber or 

modifying services for an existing subscriber, can be easily 

invoked. The software architecture is complex with several 

layers and distributed infrastructures, which means that 

specific parts of the system will not have complete knowledge 

of the interactions among other parts of the system.   

A. System architecture 

The system architecture is illustrated in Figure 1. One 

request to the MSS from an upstream system normally results 

in a number of requests downstream out on the mobile 

network to several different network elements (NEs). A 

network element is usually a database storing subscriber and 

service data, for example, the Home Location Register (HLR). 

A user id, which needs to be fetched from one database, needs 

to be supplied in a query to another database to get the system 

consistent. 
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Figure 1. Mobile service support system (MSS) 

 

In parallel to the changes and setups that the MSS performs, 

the network is also used by the end users. Services being set 

up by the MSS are queried by base stations and other systems 

requiring that information. In respect to the MSS, this traffic 

can be considered as unknown background traffic, in contrast 

to the known traffic flowing through the MSS. 

B. Control challenges 

The experience from deployed Ericsson systems shows that 

there can be problems with overload in the NEs. The 

measurable load arriving from the MSS and the unknown (not 

directly measurable) load arriving from mobile users may 

interfere with each other, creating a race for resources that 

may lead to overload in a NE. When one NE becomes 

overloaded and unresponsive, this may result in the entire 

transaction requiring rollback to avoid in-consistencies in the 

network. Such a rollback may require manual work which is 

of course costly for the operator.   

To protect against such situations, traffic monitoring and 

control are crucial. In cooperation with Ericsson AB, some 

important control challenges have been identified for this type 

of system. These challenges are described below. In the 

following sections our collaborative work on these challenges 

will be presented. The models and control designs are based 

on response times, as this metric is rather easily measurable in 

the real system and because the response times can be mapped 

to the load status of the controlled system using the proposed 

model.  

1) Performance models 

The first challenge is to design a performance model for the 

NEs, since good control designs are based on sufficiently 

accurate system models. The model should capture the 

dominant load dynamics of the NEs. Most service 

performance metrics such as response times and service rates 

depend on queue state dynamics, which means that queue 

models are suitable for these systems.   
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Figure 2.  M/M/1 model 

 

For the objective of performance control, simple models, 

such as single server queues, are often preferred. The model 

should only capture the dominating load dynamics of the 

system, since a well-designed control system can handle many 

model uncertainties [26]. 

The classical M/M/1 model, where a single-server queue 

processes requests that arrive according to a Poisson process 

with exponential distributed service times, see Figure 2, has 

been shown to accurately capture the response time dynamics 

of a web server system [27]. However, experience from 

deployed systems and lab measurements have shown that 

databases may not have M/M/1 dynamics [28]. Therefore, 

other models are required that more accurately captures the 

dynamics of database servers. 

2) Admission control in MSS 

The NEs are loaded by two traffic sources, the measurable 

traffic coming to the MSS and the unknown (unmeasurable) 

traffic coming from the mobile users, as illustrated in Figure 3. 

The average arrival rates can be denoted as l for the 

measurable traffic and lu for the unknown traffic. Overload in 

the NEs can be detected by monitoring the response time of 

requests sent to each node. When the average requests’ 

response times exceed some threshold, the MSS can classify 

the involved NE as overloaded and thereby start actions to 

lower the arrival rate to that particular NE, in order to achieve 

an acceptable arrival rate, denoted as lc. Therefore, the second 

control challenge is to design an admission control scheme 

that can handle the unknown traffic at the NEs and further can 

handle the time varying mean measured traffic rates 

experienced in the systems. 

3) Monitoring and estimation 

One of the problems when designing control mechanisms in 

these types of systems is the lack of performance information. 

The designed protocols basically provide no means of control 

communication between the MSS and the NEs that can be 

used by a control system. Therefore, the third control 

challenge that has been identified is the design of monitoring 

and estimation mechanisms that could help in the design of, 

for example, an admission control scheme. The estimation 

scheme can be used as feed-forward control in the control 

system, and thereby improving the performance of the control 

system compared to when only using feedback control. In 

collaboration with Ericsson AB, some preliminary work on the 

application of extended Kalman filters for load estimation 

have been started for systems as in Figure 3.  
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Figure 3. Load at the NEs 
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Figure 4. Testbed for the experiment. 

III. TESTBED 

To validate some of the proposed solutions, we have 

performed a series of experiments in our server lab. We 

developed a MSS testbed with two traffic generators, one for 

the measurable traffic and one for the unknown traffic, and a 

MySQL 5.1.41 database server as depicted in Figure 4. The 

computers were connected to a local 100 Mbit/s Ethernet 

network. 

The traffic generators were implemented in Java, using the 

JDBC MySQL connector, and they were executed on 

computers with an AMD Phenom II X6 1055T Processor at 

2.8 GHz and 4 GB main memory. The operating system was 

Ubuntu 10.04.2 LTS. The traffic generators use 200 working 

threads and generate MySQL queries according to a Poisson 

process with average rate l and lu queries per second. Both 

traffic generators were validated in order to guarantee that 

they were not a bottleneck in the experiments. 

The database server has several relations with the same 

structure but with different number of tuples. The maximum 

number of allowed concurrent connections is set to 100. The 

structure of the relations comes from the Scalable Wisconsin 

Benchmark [29] with 10 million tuples. Two basic types of 

queries are used, SELECT (read) and UPDATE (write). 

The queries look like this: 
SELECT * FROM <relation> WHERE unique1=?; 

UPDATE <relation> SET unique2=? WHERE 

unique1=?; 

The question marks are replaced with uniformly distributed 

random numbers from zero to ten million. 

IV. PERFORMANCE MODELS 

In this section, we focus on the modeling aspects of 

database servers. The objective is to develop a performance 

model for the database server that captures the dynamics 

during high loads.  The performance model can be used in 

resource optimization schemes, as admission control systems, 

in order to maximize the throughput of the database server, 

while keeping some latency constraints. One of the challenges 

for these database servers is that they have a write-heavy 

workload, which means that the CPU is not the bottleneck 

during high loads. This means that previous work on 



 

 

performance modeling of server systems may not be 

applicable since they assume CPU-intensive workload.  

A. M/M/m model with load dependency (M/M/m-LDS) 

We propose to add load-dependency to an M/M/m system. 

In all load-dependent server models, the service time for a 

request will be dependent on the number of concurrent 

requests in the system. This load-dependency will model 

effects of the operating system, memory use, etc., which may 

cause service degradation when there are many concurrent 

jobs in a computing system [23]. In the experiment section, we 

will show that the M/M/m-LDS model accurately captures the 

behavior of various database workload. 

The properties of the load dependent M/M/m model 

(M/M/m-LDS) are set by an exponential distributed base 

processing time, xbase =1/m and a dependency factor, f. When a 

request enters the system, it gets the base processing time xbase 

assigned to it.  A single request in the system will always have 

a processing time of xbase. Each additional request inside the 

system increases the residual work for all requests inside the 

system (including itself) by a percentage equal to the 

dependency factor f. When a request leaves the system all 

other requests have their residual work decreased by f percent 

again. This means that if n concurrent requests enter the 

system at the same point, they will all have a processing time 

of 

 1( ) (1 )n

s basex n x f     (1) 

A special case is when f = 0. It means that there is no load 

dependency, and all requests will have processing time xbase. 

The system can process a maximum of m concurrent 

requests at each time instance. Any additional request will 

have to wait in the queue. New requests arrive according to a 

Poisson process with average rate l.  

Therefore, the system can be modeled as a Markov chain as 

illustrated in Figure 5. 

The average service rate of the system depends on the 

number of concurrent requests in the system,  , derived as 

follows: 
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By solving the balance equations, stationary probability 

distribution of existence of k concurrent requests in the system 

is calculated as below: 
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Figure 5. Illustration of M/M/m-LDS model as a Markov chain. 

 

As the sum of the probabilities of all possible states equals 

to one, 0 
can be derived as follows: 
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The stability condition in this case is 
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The average number of requests in the system, N, can be 

calculated as below: 
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Finally by means of Little’s theorem [30], the average time 

each request spends in the system, T, can be derived as 

follows. 

 

N
T

l
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B. M/M/m/n model with load dependency (M/M/m/n-LDS) 

In case that the queue is limited to n positions, the 

probability for an empty system, 0, can be determined as 

follows. This queuing system is named as M/M/m/n-LDS. 
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Further, the average number of requests in the system is as 

follows: 
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Finally, the average response time for a request can be 

derived using Little’s theorem. 

C. Parameter tuning 

In a telecom system with latency constraints, the dominant 

dynamic of the system is often characterized by the average 

response time, T, when varying the average arrival rate, l. 

Tuning of the parameters of the LDS model in a way that it 

fits the measured data from the actual server system is a 

necessary step in modeling of such systems. Assuming that l 

and T are measureable, there are three main parameters for the 

M/M/m-LDS model, m, f and mto tune in order to fit the 

model on the measured data. Further, for the M/M/m/n-LDS 

there is an extra parameter, n, to tune.  

Therefore, in Figures 6-10, the effects of changing model 

parameters on dynamics of average response time versus mean 

arrival rate of queries are illustrated. In the rest of the paper, 

this graph will be called the l/T graph. In each figure, it is 

assumed that two (three) of the parameters are fixed and the 

one that is mentioned is the variable. As the equations for 

calculating the mean response times are rather complex and 

the parameters are interdependent, more than one set of 

parameters can be fit on the measured data. Thus using these 

figures, a heuristic rule for tuning the parameters of the LDS 

model can be achieved.  

In the cases where the M/M/m-LDS model is used, the first 

parameter to be tuned is the number of servers, m. As it can be 

seen in Figure 6, by increasing the maximum number of 

concurrent requests that can be processed in the system, the 

linear part of the l/T graph will be shorter and the exponential 

rising rate of the graph is increased. In this case it is assumed 

that (f, m) = (0.6, 22). 

The second parameter to be tuned is the dependency factor, 

f. As shown in Figure 7, by decreasing the dependency factor, 

the linear part of the l/T graph is increased, however, the 

change is slower than in the case where m is decreased. On the 

other hand the exponential rising rate of the graph is increased 

in comparison with the case where m is decreased. Here, it is 

assumed that (m, m) = (3, 22). 

The effects of changing mon thel/T graph while fixing the 

two other parameters is illustrated in Figure 8. As shown in 

the figure, by increasing m in equal steps, the l/T graph will be 

shifted to the right in equal steps. In this case, where (m, f) = 

(3, 0.6),  the rate of rising of the graph is decreased.  

In cases where the M/M/m/n-LDS model is used, there will 

be a saturation of the response times when the load is high 

enough to overload the queue. Here, it is assumed that the 

default values are (m, n, f, m) = (4, 15, 0.6, 22). Figure 9 and 

Figure 10 show the effects when varying m and f respectively. 

In each case, the values of the other three parameters are 

constant. The general effect of changing the parameters is 

similar as for the case with the infinite queue, with the 

difference that the response times saturate when the load is 

high. 

 

 
 

 

Figure 6. Variations of the l/T graph for a special scenario with m 

as variable when (f,m) = (0.7, 22). 

 

 
Figure 7. Variations of l/T graph for a special scenario with f as 

variable when (m,m) = (3, 22). 

 



 

 

 
Figure 8. Variations of l/T graph for a special scenario with m as 

variable when (m, f) = (3, 0.6). 

 

 

Figure 9. Variations of l/T graph for a special scenario with m as 

variable when (n, f, m) = (15, 0.6, 22). 

 

 
Figure 10. Variations of l/T graph for a special scenario with f as 

variable when (m, n, m) = (4, 15, 22). 

 

D. Experiments 

In order to validate the model, we have performed a series 

of experiments in our testbed, as described in Section III. In 

this case, the arrival rate of the unknown traffic was set to 

zero. The dynamics of the database server highly depends on 

the mix of requests, since SELECT and UPDATE queries 

require different amount of server capacity. Therefore, 

experiments with varying workload mix have been performed.  

Figure 11, Figure 12, and Figure 13 show the results from 

experiments where the arrival rate is varied from low load to 

high load. The graphs show the average response times of 

queries as a function of the arrival rate. We have fitted 

M/M/m/n-LDS models for the data using the tuning steps 

described in the previous section. In both scenarios, the CPU 

utilization was very low, also for high loads. The maximum 

CPU load was about 5%.  

In order to model the network delays, we have added a bias 

of 0.023 seconds in the average response times of the 

proposed models. 

In Figure 11, the workload is based on 100% UPDATE 

queries. The fitted model in this case has the following 

parameters (m, n, f, m) = (3, 81, 0.75, 37.1). Figure 12 depicts 

the same experiment setup when using a mix of 25% SELECT 

queries and 75% UPDATE queries. The fitted M/M/m/n-LDS 

model in this case has the following parameters (m, n, f, m) = 

(6, 73, 0.44, 35.2). In Figure 13 only SELECT queries are 

used. In this case the model parameters are (m, n, f, m) = (6, 

240, 1.39, 38).  

The results verify that the proposed model can represent the 

average dynamics of a database server with various workloads 

very well 

 

 
Figure 11. Performance of the M/M/m/n-LDS queuing model in 

modeling steady state dynamics of a MySQL database server using 

UPDATE queries. 

 

 
Figure 12. Performance of the M/M/m/n-LDS queuing model in 

modeling steady state dynamics of a MySQL database server using 

mixed queries. 



 

 

 
Figure 13. Performance of the M/M/m/n-LDS queuing model in 

modeling steady state dynamics of a MySQL database server using 

SELECT queries.  

V. ADMISSION CONTROL 

As part of the collaboration with Ericsson AB, we have 

designed an admission control mechanism for the measurable 

traffic to the NEs, as illustrated previously in Figure 3. As a 

direct effect of this work, a modified version of the control 

mechanism has been implemented in the Ericsson product. In 

this section, the controller design and its validation are 

described.  

A. Control structure 

The MSS includes a control system, as illustrated in Figure 

14, which should ensure that the load on a specific NE is kept 

at an acceptable level. The control objective is to keep the 

mean response times of the NE queries below a desired value 

while maximizing the throughput. The control actions must be 

based on a limited amount of control information, due to the 

standardized protocols and the layered software architecture. 

The control system includes a controller and a gate.  

The controller uses a response time reference value, Tref, 

and measurements to determine an acceptable workload to the 

database server. The acceptable workload is defined by the 

normalized rate of admitted queries, lA, which corresponds to 

the ratio of the average arrival rate of the admitted requests 

over the higher bound of the average arrival rate of the 

requests. It is desired that the control system performs robustly 

in presence of fluctuations in the average arrival rate of the 

queries sent to the database. Therefore, the controller design is 

crucial for guaranteeing the control objectives. 

The gate ensures the ratio lA of arriving queries is admitted 

to the database. In the experiments, the gate rejects requests 

that cannot be admitted. However, in the real product, this is 

not feasible. Instead, the real product has a traffic shaping 

mechanism that adds delays to the responses to the customer 

administration system. Since the communication with the 

customer administration system is synchronous, adding delays 

to the responses will lower the arrival rate of requests.  
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Figure 14. Control system 

 

In this paper, we focus on the controller performance. 

Therefore, the implementation of the gate is not the main 

focus as long as it can be assumed that the gate actuates the 

control signal accurately.  

B. Controller design 

We have designed a controller that can guarantee the 

control objectives for the system. The controller, called the 

Load-Adaptive Controller (LAC), only uses measurements of 

the query response times. A classical PID controller [26] 

includes one Proportional part (P), one Integral part (I), and 

one Derivative part (D) that determines the control signal 

based on the deviation of the input signal from the reference 

value. For stochastic systems, the derivative part will amplify 

the effect of high frequency noise in the response time error 

and thus deteriorate the overall performance of the system.    

Therefore, the LAC is based on a modified PI controller 

with anti-windup. The LAC adapts its proportional gain with 

the variations in the mean arrival rates of queries sent to the 

database. The structure of the modified PI controller is 

illustrated in Figure 15.  

The total load of the NE is determined by the aggregated 

arrival rates of the measurable and the unknown traffic 

streams. However, assuming that the unknown traffic is 

stationary during a limited time period and that the database 

server behaves as a conservative queuing system [30], a 

specific admitted ratio of the traffic will correspond to a 

specific mean response time, as illustrated in Figure 16. 
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Figure 15. Load-adaptive controller (LAC) 
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Figure 16. An illustration of the LAC calculations. 

 

The controller continuously keeps track of two points in this 

graph, one low point, (llow, Tlow), which is situated below the 

reference response time, Tref, and one high point, (lhigh, Thigh), 

which is situated above Tref. As the control system operates 

only based on measured response times of NE queries, llow 

guarantees that those measurements exist for all sampling 

intervals.  The upper limit for mean arrival rates of the queries 

processed by the NE while not overloading the database is 

represented by lhigh. The starting values for llow and lhigh are 

set to 5% and 100% respectively.  

The admittance rate of the incoming queries is iteratively 

updated so that its corresponding response time meets the 

desired value. Every sampling time, the controller calculates 

the average response time, T, over the last period. If the 

average response time during sampling period k, Tk, is too 

high, (Tk>Tref), the high point is updated as (lhigh, Thigh) = (lk, 

Tk) where lk is the normalized admitted arrival rate during 

interval k.  If the average response time during interval k is too 

low, (Tk<Tref), the low point is updated as (llow, Tlow) = (lk, Tk).  

It is now assumed that the optimal normalized arrival rate, lo, 
which gives a response time of exactly Tref is in the interval 

[llowlhigh]. Therefore, the next normalized admitted arrival 

rate, lk+1, can be interpolated from these points using classic 

geometry: 
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Therefore, the quotient (lhigh-llow)/(Thigh-Tlow) is used as 

proportional gain in the P-part of the controller. The algorithm 

will converge to the desired response time value assuming that 

the arrival process is stationary or slowly changing. It is 

obvious that the control gate cannot admit more queries than 

the incoming ones. This upper limit will be noted in the 

calculations and treated as a saturation limit of the control 

signal. 

The integral I-part of the controller is used when the P-part 

is not enough for keeping the steady state error to zero. The 

integral part uses a controller parameter,   , which in 

conventional PI controllers are equal to the proportional gain. 

However, in this case, as the proportional gain changes 

drastically due to the load-adaptive algorithm, using the 

conventional PI structure will lead to a reduced phase margin 

which will drive the system to unstable region. Therefore, Ki is 

chosen as a static gain and its suitable value is determined in 

tuning phase of the controller.  

Further, the parameter    is the integration time constant 

and    is the integrator‘s reset time constant in the anti-windup 

mechanism. Anti-windup is added to avoid building up of the 

integration part when the control gate is saturated or 

completely open. It is desired to choose small values for    so 

that the integrator resets quickly. Generally,    is chosen to be 

less than   .  
A low pass filter is added after the proportional gain to 

smoothen the response time error signal as it is very noisy. 

The bandwidth of this filter should be suitably chosen so that 

its effect on the in-band characteristics of the response time 

errors is minor while attenuating high frequency components 

of that signal.  

C. Experiments 

To investigate the controller performance, a Java 

implementation of the controller was deployed as a web 

application to a Glassfish application server, placed on the 

server acting as traffic generator in Figure 4. The web 

application also included the traffic generator that generated 

requests for the web application. For each request, the 

admission control decides whether to allow the request to be 

sent to the database or rejected. The traffic generator for 

unknown traffic did not have an admission control, and was 

set to a specific average arrival rate that could be altered 

during run time. All requests sent to the database server were 

SELECT queries (according to the query structure described 

earlier). The l/T graph for this particular scenario setting is 

shown in Figure 17. The saturation of the system is not shown 

in the graph for clarity reasons, since the operation region is 

around the “knee”.  

To test the performance of the controller, a scenario was 

chosen where the load changed from slight overload to high 

overload. The reference response time, Tref, was set to 0.2 

seconds. According to the l/T graph in Figure 17, this 

corresponds to a total arrival rate of approximately 40 queries 

per second.  

In this paper, two experiments are shown, one with a step in 

the unknown traffic and one with a step in the measurable 

traffic. The controller parameters were set to Ti=4, Ki=0.5, 

Tr=1, and the sampling time h=0.5 seconds. Ti was determined 

as a multiple of the sampling time, chosen so that the 

controller was able to maximize the throughput while keeping 

the mean response times below Tref. Ki was set equal to the 

sampling time. To give the controller time to settle this state 

was kept for 100 seconds after which a step in the traffic was 

performed. The resulting graphs are shown in Figure 18 and 

Figure 19. The graphs show the average dynamics from 100 

runs.  

In the first experiment, shown in Figure 18, the starting 

arrival rate was set to 23 requests per second for the measured 

traffic and 22 requests per second for the unknown traffic. The 

step increased the arrival rate of the unknown traffic by 10 (to 

32) requests per second, resulting in a more severe overload 

situation.  

 

 

 



 

 

 
Figure 17. l/T graph for the admission control experiments. 

 

The second experiment, shown in Figure 19, was similar to 

the first experiment. However, the arrival rate step was in the 

measurable traffic instead. To obtain a similar control signal 

response as in the first experiment, the step in the controllable 

traffic had to be larger. Therefore, the observable arrival rate 

was increased from 23 requests per second to 51 requests per 

second.  

Both experiments show a well-behaved controller, with a 

reasonable settling time and smooth dynamics after the step. 

VI. MONITORING AND ESTIMATION 

The system in Figure 1 is complicated with many different 

queues, caches and databases. Attempting to capture all details 

gives models that are too complex for on-line control. 

Extensive experience in the field of control has clearly 

demonstrated that simple models that capture essential 

behavior can be very beneficial [31]. One aspect of the 

collaboration with Ericsson has been to explore if benefits can 

also be obtained for monitoring and control of the MSS. A 

crucial issue is what complexity of the models is required for 

estimation and control of the MSS.  

Response time and arrival rates are variables of prime 

concern. The variables have strong variations, which can be 

reduced by averaging. A more effective way is to construct 

estimators that exploit the dynamic behavior of the system. 

Exploration of such estimators has been one of the goals of the 

project.  

A key feature of the system shown in Figure 1 is that there 

are two traffic streams. The measured traffic, generated by the 

customer administration system has a known arrival rate lc, 

can be controlled. The unknown stream, which is created by 

the mobile phone users, has an arrival rate lu that cannot be 

controlled. Monitoring and control of the system can be 

improved if good estimates of the average service time are 

available. 

An abstraction of the system in Figure 1 is shown in Figure 

20, where an estimator and the controller have been included. 

In this section, we will focus on the estimator, which only has 

access to measurements of the measured arrival stream l and 

the response time T. All actions by the NEs and the MSS have 

been represented by one queue that represents the aggregated 

behaviors. 

 
Figure 18. Performance of the LAC with step in unknown traffic. 

 

 
Figure 19. Performance of the LAC with step in observable traffic. 

 

The queue length is represented by the variable x, which 

captures the aggregated behavior of many different queues in 

the real system. The variable x can be interpreted as a virtual 

queue length. The queue length cannot be measured. The 

actual response time T and the actual arrival times can, 

however, be measured. Variations in x reflect changes in the 

system‘s load. 

A. Flow Model 

To model the system, we will make an additional 

abstraction by assuming that the variables x and T are 

continuous and that they vary continuously in time. The 

behavior of the system can then be captured by the simple 

flow model: 

 

)(max xf
dt

dx
ml          (11)

      

where x is the virtual queue length,lcis the known arrival 

rate, lu is the unknown arrival rate, mmax is the maximum 

service rate and f is a monotone function with the range [0, 1]. 

The response time is given by 
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where t0 = 1/mmax is the average time to serve one job when the 

queue is empty and  is the normalized service rate or the 

utility =l/mmax.  
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Figure 20. Schematic diagram of an abstraction of the MSS in 

Figure 1 with a controller and estimator. 

 

The response time goes to infinity as l approaches mmax if 

the range of the function f is [0, 1]. The function f gives 

significant freedom in adjusting the behavior to real queue 

behavior. 

The model (11), (12) has been used extensively to model 

queuing systems [33]. The simple M/M/1 queue can be 

represented by (12) with f = x/(x + 1) [32]. 

Even if the model (11), (12) is simple it captures some 

important features of real queuing systems, for example the 

fact that response time increases with queue length. The model 

also captures the behavior that the rate of change of the 

response time increases with increasing arrival rate. The 

behavior of the system can be shaped by the function f. 

 In the project, we have investigated simulated models with 

servers and we have demonstrated that it is possible to find 

functions f which matches the steady state behavior of 

simulated systems. An illustration is given in Figure 21. 

B. Estimation algorithm 

There are significant variations in the arrival and response 

times due to their discrete nature. To monitor and control the 

system it is necessary to smooth these variations. For example, 

the average arrival rate of the controlled stream can be 

estimated the simple exponential smoother 
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where ti is the arrival time and ha is the time since the last 

arrival update. 

One advantage with the model (11), (12) is that it is 

possible to use Kalman filtering [31] to combine the model, 

which captures the gross behavior of the queuing system, with 

measured data.  

If continuous data was available, an extended Kalman filter 

for the service time is given by 
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This filter will capture the behavior that response time 

increases with increasing queue length and arrival rate. The 

detailed behavior can be shaped by the function f. 

It must be considered that the real measurements are events 

that represent arrival of a request or a completed response. To 

deal with this, we have developed an event-based Kalman 

filter.  

 
Figure 21. Service times for the operations SELECT (left) and 

UPDATE on an SQL server and predictions based on the model (12) 

with f(x)=(1/(1+x))n, n = 1.5 and mmax = 880 for SELECT and n = 

0.15 and mmax = 132 for UPDATE. 

 

At arrivals, the queue length is updated according to the flow 

model: 

))ˆ(ˆˆ(ˆˆ
max xfhxx uca mll        (15) 

This difference equation is simply a forward Euler 

approximation of (11). Equation (15) is simply a prediction of   

x based on the model (11). Information about x is obtained 

when a service is completed. The queue length and the 

unknown arrival rate are then updated as 
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where hd is the time since the last departure update. The 

arrival rate can be estimated because it results from the model 

(11) and (12) that the arrival rate is observable from a 

measurement of service time [31]. 

C. Experiment 

The Kalman filter estimator was evaluated using a discrete-

event simulation program written in Java, The program 

simulates a single server queue with exponentially distributed 

service times with mean mmax=100 requests per second. The 

queue has two arrival processes, representing the measurable 

and unknown traffic. The Kalman filter has been evaluated for 

a number of scenarios validating its performance. However, in 

this paper we show the results of one specific scenario. 

In this scenario, the unknown arrival process was a 

stationary Poisson process with mean 42.5 requests per 

second. The measurable arrival process was basically a 

Poisson process with changing average rate. The arrival rate, 

l, was the sum of one constant part and one part represented 

by a sine function as given by 

 

 )sin()( ktaCt l         (18) 

The parameters were chosen so that the system can handle 

the workload over long time but with periodic overloads, 

hence 

maxmax
mm  Ca          (19) 

Therefore, the numerical values used in the simulations are 

C=42.5 and a = 20 requests per second. 

The differential equations describing the behavior of the 

estimates between events were approximated using first order 

forward Euler discretization. 

Figure 22 shows the response times and the arrival rate, 

both real values and estimates for a time period of 20 seconds 



 

 

during the simulation. The estimate error is shown in Figure 

23. It can be seen how the Kalman filter manages to follow the 

real system during the quick rises in response time around 

time 424 and 427. Here the mean square error is 4104.7 

for the period 415 < t < 420 and 2101.1   for the period 

425 < t < 430. The mean square error for the entire experiment 

is 2109.1  . 

VII. CONCLUSIONS 

Accurate control designs using control theory are essential 

for resource management in computer systems. In this paper 

we have presented work performed in collaboration with 

Ericsson AB, investigating how control theory can improve 

the performance of a commercial mobile service support 

system. Together with Ericsson AB, we have identified three 

major control challenges, and investigated solutions. The first 

challenge is to find accurate performance models for the 

system, with the objective to capture the system dynamics. 

The second challenge is to develop an admission control 

scheme that can handle unknown traffic and load surges. The 

final challenge is to develop estimation methods for accurate 

prediction of response times and arrival rates in systems with 

unknown traffic.  

In this paper, the challenges have been treated rather 

independent of each other. However, the future goal is to be 

able to use all solutions together, in order to improve the 

system performance and speed up the development process. 

The performance model could be tuned using real data and 

then used for validating control designs, which is much easier 

than implementing the designs in testbeds or the real system. 

Also, in the future, the estimation algorithms should be 

incorporated in the control system, improving the control 

decisions.   
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