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Introduction

This thesis starts with an example.

You have just read a declarative sentence, the first in this section. Perhaps it shaped your
idea of what is to come: You might now expect an example, where before you did not. If
you’ve read these lines before, it may have changed nothing. In either case, you partook in
a dynamics: You began reading this section in some state of mind. You then exposed that
state to a piece of information, embodied by the first sentence. Whether affected or not,
the result again is a belief state. The pattern is this: Belief state, information, belief state.
That is an example of an information dynamics.

The topic of this thesis is information dynamics and how to formally model them. To
be more precise, the topic is how to model information dynamics using dynamic epistemic
logic. The perspective investigated is simple, yet not quite community practice: Formalize
the model as a mapping that allows for the formulation of reduction laws. Then, with a bit
of math sprinkled on top, the model will be a topological dynamical system.

With that, the main contribution of this thesis is not an analysis of a philosophical para-
dox or the development of a methodology in the philosophy of science. Nor is it a set of
logics for this purpose or that. Rather, the contribution is the formulation of a bond be-
tween relatives—from dynamic epistemic logic to the sister field of topology and dynamical
systems. With that, the thesis makes a contribution to logic and formal epistemology.

Why the perspective is reasonable, and why the stated consequence follows, is what the
thesis argues. This preliminary chapter situates dynamic epistemic logic in the field of for-
mal epistemology in Section 1, exemplifies its use in modeling in prerequisite-free manner
in Section 2, and presents the individual papers constituting the thesis, couching them in
preceding considerations, in Sections 3–8. The final Section 9 concludes the chapter, sum-
marizing the contributions of the individual papers and listing venues for further research.
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1 Formal Epistemology and Dynamic Epistemic Logic

‘Dynamic epistemic logic’ has both a narrow and a broad reading. In the narrow reading,
the term refers to a class of formal logics, touched later. In the broad sense, it refers to a
research area in a broader field labeled formal epistemology.

Formal epistemology, in turn, is broadly characterized as a research field by both its subject
matter and its methodology. The subject matter is epistemology, the study of knowledge,
justification, rational beliefs, and related notions, questions and problems, for single agents
and for groups. This is where the epistemic in dynamics epistemic logic enters: Epistemic
is of the Greek epistēmē, knowledge. The methodology of formal epistemology is formal,
employing a suite of tools from formal logic, probability theory, decision and game theory,
recursion and complexity theory, various simulation approaches, and more.

Formal epistemology is—relative to other areas of philosophy—a young field of research.
In the first anthology on the subject, the 2016 Readings in Formal Epistemology [5], the
earliest paper included is F. P. Ramsay’s paper Truth and Probability from 1921, and the
earliest of the remaining 36 papers is an excerpt from David Lewis’ 1969 Convention. The
denomination ‘formal epistemology’ itself stems from the 1990’s,1 but what is to be counted
as work falling under the heading of course depends on formal epistemology’s subject matter
and methodology.

Just as its arsenal of methods vary from those of mainstream epistemology, so has the subject
matter of formal epistemology taken on a non-classic tinge: Apart from including formal
takes on traditional epistemological problems, the field is further influenced by topics in
neighboring disciplines like game theory, computer science, linguistics, and the cognitive
and social sciences. As a result, the field concerns not only traditional epistemic notions
like knowledge, belief and justification, but also less traditionally epistemological topics
like rationality in decision making and strategic interaction, cryptography, preference dy-
namics, abstract argumentation and formal pragmatics, information pooling and judgment
aggregation, learning, and social influence and network effects, to mention but a few [5].

Knowledge, belief and information stand central in formal epistemology, and these con-
cepts are typically discussed in relation to an idealized or hypothetical agent—or more
than one, in many cases. In these cases, the rational agency of the agent is often a matter
of scrutiny: It may be discussed whether a given way of making decisions is rational, or
whether a given way of incorporating new information is rational. In such cases, it is for
most investigations a prerequisite to fix an epistemic representation of agents. It is a prerequi-
site to choose a formal representation of the propositional attitudes agents hold to pieces of
information, be these attitudes knowledge, belief, justification, awareness, or other. Taken

1Cf. the introductions of [5, 55].
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at large, two main families of approaches exist, the probabilistic and the logical.

Among probabilistic approaches, the most widely adopted doctrine is Bayesianism. For the
Bayesian epistemologist, the primary attitude of interest is belief. The doctrine holds that
agents’ beliefs come in degrees: An agent’s belief in a proposition is assigned a number, and
this number must fall between 0 and 1. This is a consequence of the first of two core norma-
tive tenets of Bayesianism: An agent’s degrees of beliefs must obey the laws of probability. A
Bayesian agent’s beliefs are thus identified with a probability distribution, and the degree of
belief in a proposition is identified with the probability assigned to that proposition by the
distribution. With P the probability distribution for some agent’s beliefs, the agent’s belief
in the proposition A could then be P(A) = 0.8, for example. The second normative tenet
of Bayesianism specifies how agents should change their beliefs in the light of new infor-
mation: When an agent learns of new evidence, it should update its beliefs by conditioning
in accordance with Bayes’ rule. Jointly, these two requirements characterize the Bayesian
epistemically rational agent. So, at least, goes for the rough presentation: Bayesianism is not
a position without internal debate, cf. e.g. [149].

If one thinks that it is an unduly high demand that agents must be able to specify an
exact probability distribution for their beliefs in order to be rational, the field of imprecise
probabilities [46, 69, 78, 145] offers an alternative approach. Using imprecise probabilities,
agents’ beliefs are represented using sets of probability distributions. In this case, the agent
above would not have to specify that it’s degree of belief in A is exactly 0.8. Instead, it could
be more imprecise and accept all probability distributions that assign between 0.75 and 0.85
to A, for example, as constituting it’s beliefs. Alternatively, there are logical approaches.

Within the logical approaches to formal epistemology, the predominant framework is modal
logic. The starting point of a modal logic is its language. A prototypical modal logical lan-
guage is given by first fixing a set of propositional variables p1, p2, .... For applications, these
are given specific readings: For example, p1 could be taken to represent the proposition
‘The trashcan is green’ and p2 the proposition ‘The train is approaching’, etc. The propo-
sitional variables represent propositions which in the language are represented in no finer
detail: They are therefore often referred to as atomic propositions or simply atoms.2 Apart
from the atoms, modal languages also include formulas with more complex structure. The
full set of formulas may be given using a Backus-Naur form:

φ := p | ¬ψ |ψ ∧ ψ′ |□ψ

The Backus-Naur form gives a recursive definition of the formulas of the modal language
under construction. It says that φ is a formula if it is a propositional variable, or if it is
of one of the forms presented where ψ and ψ′ are already formulas. The symbol ‘¬’ is a

2Grammatically and conceptually, the examples contain additional structure. To reflect it, one may move
to richer languages, like first-order languages, which may also be made modal.
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negation and ‘∧’ a conjunction. In most modal logical application, they are given very
straightforward readings of ‘not’ and ‘and’. From these, one can define disjunction ‘ψ∨ψ′’
(‘ψ or ψ′’) and implication ‘ψ → ψ′’ (‘if ψ, then ψ′’) and other Boolean connectives.

The tricky bit lies in the the modal operator □, often referred to as the box. Apart from the
interpretation of the atoms, the understanding of this operator details what the modal logic
is about. In the majority of interpretations, the box makes an universal statement about
things seen from a local perspective. To exemplify, think of standing at a train station, tracks
leading to neighboring stations. Reading p1 as ‘The trashcan is green’, the formula □p1
could be read ‘At every train station one stop away, the trashcan is green’, for example. Dual
to this universal statement is an existential statement: ‘There exists a train station one stop
away where the trashcan is green’. With the current interpretation of the box, this statement
is captured by the formula ¬□¬p1: ‘Not at every train station one stop away is the trashcan
not green’. Such statements are used so often that ‘¬□¬’ is typically shortened to ‘♢’, which
is referred to as the diamond. The diamond is called the dual of the box. More directly, the
formula ♢p1 is read ‘There exists a train station one stop away where the trashcan is green’.
To further exemplify, the modal language also contains formulas that describe stations more
than just one stop away, for example ♢♢p1 and □♢p1. The first states that going two stops
can bring one to a green trashcan, while the second state at every train station one stop
away, there exists a train station one stop away where the trashcan is green. If the trashcan
is green at the current station and the trains go both ways along the tracks, □♢p1 would,
in this example, be making a true statement.

The train example serves two purposes: First, thinking of the modal operators as talking
about train stations reachable from the current position will hopefully aid intuitions when
the type of formal models primary to this thesis, namely pointed Kripke models, in Section
2 are introduced as abstract semantics for modal logic. Second, the example is meant to
illustrate the interpretational freedom of modal operators: They are not inherently doxastic,
epistemic, metaphysical, or other. They are box and diamond, until further notice.

In formal epistemology, the most common interpretation of the box operator is that it
represents either knowledge or belief. As these concepts are often of interest simultaneously,
it is not rare that the languages used are multi-modal : They include one box operator for
knowledge and one for belief. The Backus-Naur form for a prototypical epistemic-doxastic
language is then

φ := p | ¬ψ |ψ ∧ ψ′ |Kiψ |Biψ

with Ki and Bi both boxes. The subscript i refers to an agent: The formula Kiψ reads
‘Agent i knows that ψ’ and Biψ reads ‘Agent i believes ψ’. The i is a variable, like the p,
ranging over some specified set of agents, say A. If A = {1, 2, 3}, then the language
would be build on 6 box operators in total and allow formulas like B1K2ψ—that agent 1
believes that agent 2 knows ψ. When the set A contains more than one agent term, the
language is not only multi-modal, but also multi-agent. In any case, the language allows

4



for the expression of higher-order information, i.e., information about information, and so
forth. The single-agent formula KaKaφ illustrates the point: It expresses that agent a knows
something about it’s own information, namely that it knows φ.

From the above Backus-Naur form, the sharpest contrast between the probabilistic and log-
ical approaches is apparent: Using a language as the above, beliefs do not come in degrees—
they are all-or-nothing.3 That beliefs are all-or-nothing means that for every proposition,
either the proposition is believed or it is not: There is nothing in between, no degrees of
belief. Following the Backus-Naur form, graded beliefs are simply not expressible: The lan-
guage includes the formula Biψ expressing that i believes ψ and it includes the formula
¬Biψ expressing that i does not believe ψ, but no formula expressing that ψ is believed
to some degree. All-or-nothing beliefs are also referred to as qualitative beliefs, in contrast
with the quantitative beliefs of probabilistic approaches.4

The first of the two normative tenets of Bayesianism provides an answer to what constitutes
rational quantitative beliefs: The beliefs must be probabilistic. In epistemic logic, similar
foundational questions arise concerning the governing principles for rational knowledge
and rational all-or-nothing belief, considered as modal logical notions. First to provide a
systematic answer was the Finnish philosopher and logician Jaakko Hintikka (1929-2015)
in his seminal book from 1962, Knowledge and Belief: An Introduction to the Logic of the Two
Notions, cited here as [91].5

Hintikka’s analysis starts from the commitment made by a speaker when uttering “I know
that φ”. Asking Hintikka, the speaker not only commits to the truth of φ, but also to being
in an evidential situation with conclusive grounds strong enough to warrant the claim.6

Hintikka’s subsequent analysis feeds strongly on a particular consequence of such grounds:

If somebody says “I know that p” in this strong sense of knowledge, he implicitly
denies that any further information would have led him to alter his view. He commits
himself to the view that he would still persist in saying that he knows that p is true –
or at the very least persist in saying that p is in fact true – even if he knew more than
he now knows. [91, p. 18]

This consequence of the speaker’s commitment lies at the heart of Hintikka’s analysis, and
3A qualification: Logical approaches exist where belief are not all-or-nothing. These include multi-valued

logics and probabilistic logics, where varieties of graded beliefs may be represented.
4Strong connections exist between the two: Recent works bridge rational quantitative and qualitative be-

liefs [99, 112], show correspondence between structures modeling higher-order information [64], and design
dynamic epistemic logics with probabilities [29, 101].

5Hintikka was not the first to consider an epistemic application of modal logic. Seemingly, that was his
doctoral adviser, Georg Henrik von Wright (1916-2003) in An Essay in Modal Logic (1951), [150], cf. [43, 86].

6Hintikka takes a pragmatic view of conclusive grounds: “We must realize, however, that having this right
[to claim knowledge] need not mean that one’s grounds are so strong that they logically imply that what one
claims to know is true. It may merely mean that the grounds one has are such that any further inquiry would
be pointless for the normal purposes of the speakers of the language.” [91, p. 17-18], footnotes omitted.

5



throughout Knowledge and Belief he routinely returns to re-castings of it. In particular, it
is decisive for the nature of an epistemic alternative:

The conditions into which we are trying to catch the logic of knowledge and belief
are in terms of certain alternatives to a given state of affairs. Roughly speaking, these
alternatives are possible states of affairs in which a certain person knows at least as
much as – and usually even more than – he knows in the given state. In short, we
are concerned with the different possibilities there are for somebody to gain further
information. [91, p. 44]7

Hence, the commitment on the side of the speaker is one relating his current informational
state to other such states—in essence, those in which the speaker has the same or more
information. In the train metaphor, the epistemic alternatives are the stations quantified
over with the epistemic operators.

In his epistemological program, Hintikka held that the axioms or principles of epistemic
logic serves as conditions of a special kind of general (strong) rationality: The statements
which may be proved false by application of the epistemic axioms are not inconsistent in
the sense that their truth is logically impossible. They are rather rationally ‘indefensible’.
Indefensibility is annexed as the agent’s epistemic laziness, sloppiness or perhaps cognitive
incapacity whenever to realize the implications of what he in fact knows:

In order to see this, suppose that a man says to you, ‘I know that p but I don’t know
whether q’ and suppose that p can be shown to entail logically q by means of some
argument which he would be willing to accept. Then you can point out to him that
what he says he does not know is already implicit in what he claims he knows. If
your argument is valid, it is irrational for our man to persist in saying that he does
not know whether q is the case. [91, p. 31]

Defensibility thus means not falling victim of ‘epistemic neglience’ [38]. The notion of in-
defensibility gives away the status of the epistemic axioms and logics embraced by Hintikka
in Knowledge and Belief. Some epistemic statement for which its negation is indefensible is
called ‘self-sustaining’. The notion of self-sustenance corresponds to the concept of valid-
ity. Corresponding to the self-sustaining statement is the logically valid statement. This,
in turn, is be a statement which it is rationally indefensible to deny. Hence, to Hintikka,
epistemic axioms are descriptions of epistemic rationality.

For an idea of Hintikka’s position, and for later reference, a selection of epistemic princi-
ples discussed by Hintikka are presented in Table 1. The table also includes principles not
directly touched on in [91], but which are standard in epistemic and modal logic at large.

7The formulation “knows at least as much” should be taken to mean “the same and possibly more”, not
“more” given some measure.
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Table 1: Standard modal axiom schemes given for the knowledge operator, Ka. In the doxastic reading, replace Ka by Ba.

Axioms Rule of inference
K Ka(φ→ ψ) → (Kaφ→ Kaψ) N From ⊢ φ, infer ⊢ Kaφ
D ¬Ka(φ ∧ ¬φ)
T Kaφ→ φ
 Kaφ→ KaKaφ
 ¬Kaφ→ Ka¬Kaφ

To evaluate the self-sustainability of epistemic and doxastic principles, Hintikka introduces
a semantic construct called a model system. A model system consists of a set of model
sets—partial descriptions of the state of affairs using the epistemic language, including the
state of the agents knowledge and beliefs—and a relation between them. For knowledge,
a model system’s relation is interpreted as relating epistemic alternatives—formally model
sets—where one is epistemically accessible from another just in case the agent in the former
holds at least as much information as in the latter.8

Hintikka’s model systems are reminiscent of to the relational, possible worlds semantics of
Kripke models (see Section 2), but Hendricks and I have recently argued (see [89]) that—
when taking Hintikka’s epistemic program into consideration—identifying model systems
with Kripke models mis-represents important aspects of Hintikka’s analysis. Rather, we
argue, a model system could be seen as a set of Kripke models linked by a relation obtained
through arbitrary public announcements [9, 50, 42, 108, 153].

Of the principles listed in Table 1, Hintikka explicitly discusses T, 4 and 5, endorsing T
and 4 for knowledge and 4 for belief, while explicitly rejecting 5 for both. Endorsement is
a result of the self-sustainability in model systems. In case of knowledge, the principle T,
capturing the veracity of knowledge, is self-sustaining as one any epistemic alternative is an
alternative to itself: In any situation, an agent will have a least as much information as it in
fact has. The principle 4 is argued for by appeal to the transitivity of the epistemic accessi-
bility relation: In an agent holds at least as much information in w1 as it does in w0 and at
least as much information in w2 as in w1, it must hold at least as much information in w2
as in w0. From this, it follows that 4 is self-sustaining—but not a product of introspection,
as the principle is often taken to be.9 Contra 5, the argument also uses the accessibility
relation: There exists, Hintikka argues, situations where the relation is not symmetric, i.e.,
where an agent may have strictly more information in w1 than in w0. In this case, w0 is not
accessible from w1. If in w1 the agent has attained enough information to obtain knowl-
edge onwards, while not having so in w0, principle 5 would not be satisfied—but again,
not due to arguments from introspection.

Of the remaining principles, not explicitly discussed by Hintikka, both K and N seem to fit
8The interpretation relating to beliefs is omitted here, as they are secondary in the work: See [91] for details.
9Hintikka is very explicit on this point and includes a discussion of philosophical position pro introspection.
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the spirit of his epistemic program, cf. [89], and so does D for belief: The quote immediately
strongly indicates that he would support logical closure of for rational knowledge, and I
would suppose the same—together with consistency—for belief.10

From Hintikka’s work in Knowledge and Belief, formally informed discussions have perme-
ated through both mainstream and formal epistemology [88]. Questions raised includes,
for example, the acceptability of closure principles, like the axioms K or 4 above, by e.g.
Nozick [126], Williamson [154] and Holliday [94, 95], the problem of logical omniscience
and suggestions for its resolve by e.g. Hintikka [92] and Rantala [134], and the acceptability
of alternative epistemic principles by e.g. Lenzen [113] and Stalnaker [147].

Though the research questions in contemporary epistemic logic may vary substantially from
the work of Hintikka, there is a strong sense in which the general methodology of Knowl-
edge and Belief is seen in much recent work: The logic of a given epistemic concept is
investigated by constructing a suitable formal language and a model theoretic represen-
tation of said concept over which one may seek the set of validities and a corresponding
axiomatic base. A recent work along these lines in Baltag and Smets’ [17], where “weak non-
introspective knowledge”, introduced by Stalnaker [146, 148] to modally capture Lehrer’s
defeasibility analysis of knowledge [110, 111] is analyzed.

Terminologically, contemporary research makes claims less bold than that of Hintikka and
often they concern knowledge or belief in varying circumstances, ranging from reasoning
about finite cases occurring in the now, like uncertainty about the current state of play in
games [19, 23, 25, 49, 129, 140, 147], to uncountable cases in infinitely evolving temporal
settings, like the learning of scientific theories [67, 68, 87, 98]. With such varying structures
the objects of epistemic analyses, the main focus in contemporary research in epistemic logic
is not to find an axiomatization of the logic of knowledge and belief. Rather, it focuses on
logically capturing different types of knowledge, belief, certainty and uncertainty, and their
interplay to compare them systematically [17, 90].

With several contemporary research topics requiring an underlying logic of knowledge and
belief, two systems very strong in terms of rationality requirements have become obtained
a role close to the community standard. These are the systems S5 for knowledge and KD45
for belief, axiomatically given by the systems attributed to Hintikka above, in both cases
plus the axiom 5.

Also in terms of models especially one framework has become a standard, namely the re-
lational, possible worlds semantics offered by Kripke models, accredited to Saul Kripke’s
1963 [107], cf. [10]. Kripke models also constitute the basic semantic approach pursued
in this thesis, and are revisited in greater detail in Section 2 together with their close-to-

10Jointly, these principles do not quite constitute a modal logic in the standard technical reading, cf. [89].
This is due to the partiality of models sets.
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standard epistemic interpretation based on informational indistinguishabilty. The interpre-
tation holds that an agent know a given proposition if that proposition is true in all the
states of the world not ruled out by current evidence, i.e., the states indistinguishable from
the actual state of affairs. Evidence thus partitions the state space into sets respectively com-
patible and incompatible with current information. The logic of the resulting knowledge
operator is S5, with an accompanying “near-partitioning” of states in the case of belief,
accommodating that such may be false, following a KD45 logic.

Historically, the idea of knowledge as given by the partitioning of the set of states based on
present information has traces back to Hintikka’s 1962, with the idea penetrating his author-
ship: See for example his 2007 [93]. Mathematically, the partition approach to knowledge
goes back at least to Aumann’s 1976 paper Agreeing to Disagree [8] while the logic S5 as
the default for knowledge reached a large audience through Fagin, Halpern, Moses and
Vardi’s seminal 1995 monograph Reasoning about Knowledge [58]. The use of S5 as the logic
of knowledge has older roots: It was used for modeling by McCarthy et al. in 1978 [122].
On the side of belief, KD45 was suggested as early as 1984 by Levesque [115, 114], while the
semantic plausibility interpretation dates back to Grove’s 1988 paper [73], discussed below.

The two tenets of Bayesianism—that rational beliefs are probabilistic and that rational belief
change is by conditionalization—reflect two perspectives both of interest also to logical
approaches. The first is a static perspective, concerning properties of epistemic states. The
second is dynamic, concerning how epistemic states change under informational influence.

In dynamic terms, knowledge and belief differ in that the former is more conservative than
the latter: If a proposition is known, no new information will change this, but if it is merely
believed, new information may cause the belief to be dropped. The process of how beliefs
should rationally change in the light of new information has been a topic of considerable
interest to philosophers and computer scientists alike. The topic and surrounding field of
research is commonly referred to as belief revision.

Following earlier work by Isaac Levi and William L. Harper, the formal study of belief
revision was initiated by Carlos Alchourrón, Peter Gärdenfors and David Makinson in a
series of publications through the 1980’s [2, 4, 76, 77]. The formal take on belief revision
developed through these papers – which have varying configurations of subsets of the three
as authors – is often referred to as AGM belief revision.

Where the prototypical modal logical language for knowledge and belief allows for both
multiple agents and the expression of higher-order information, the subject of study for
AGM belief revision is a single agent’s beliefs about a set propositions not taken to include
statements about the agent’s own beliefs. For expositional purposes, the Backus-Naur form

φ := p | ¬ψ |ψ ∧ ψ′

may be taken to specify the language of AGM belief revision, though the approach does
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require the language to be propositional. Denote this language—i.e.,the set of expressions
deemed formulas by the Backus-Naur form—by L.

Further, fix a classic logicΛ in the language given and let ⊢ be the proof relation ofΛ: Where
Γ is a set of formulas, Γ ⊢ φmeans that the formula φ is provable from the assumption of
the premises Γ in the logic Λ. Denote by Cn(Γ) the set of logical consequence of Γ, i.e., the
set of formulas provable in Λ from Γ.

From this basis, AGM belief revision represents an agent’s beliefs as a set K of formulas,
satisfying two rationality criteria for static belief: The set K must be consistent and it must
be logically closed. I.e., the set Cn(K) must not contain a contradiction and K must equal
Cn(K). A set K satisfying these two criteria is called a (nonabsurd) belief set.11

Belief sets represent the beliefs of the agent in question. Like the modal logical approach,
belief sets represent all-or-nothing beliefs. In the terminology of Gärdenfors [76], a belief
set may express three different attitudes to a formula φ:

i) If φ ∈ K, then φ is accepted.
ii) If ¬φ ∈ K, then it is rejected.
iii) If neither φ ∈ K nor ¬φ ∈ K, then φ is indetermined.

These three attitudes correspond respectively to Baφ, Ba¬φ and ¬Baφ ∧ ¬Ba¬φ from the
modal logical approach, recalling that the formula φmay not contain any modal operators.
The AGM approach thus treats a similar and simpler static belief notion.

On the dynamic side, AGM belief revision is concerned with three types of transitions
possible between these attitudes towards a proposition φ.

The first transition concerns moving from a belief state indeterminate about φ to one de-
terminate about φ, i.e., to one where φ is either accepted or rejected. This is the simplest
form of belief change, referred to as expansion. Expansion is simple as it is both conflict-free
and unique: Adding φ to K causes no inconsistencies, so no old beliefs need be removed
due to conflict, and there is a unique minimal way to ensure that K expanded with φ is a
belief set: Taking it’s logical closure.12

The second transition is in the opposite direction, where the agent gives up a belief about
φ. It is the transition moving from a belief state determined about φ to one indetermined
about φ, retracting the belief in φ (or ¬φ), but not adding new beliefs. The operation is
referred to as contraction. Contraction is not as simple as expansion: Though no conflicts
may arise when removing φ from K, the operation of doing so successfully is not unique.
Obstructing success is that φ may be logically implied by other formulas in K, some of

11Cf. [76, p. 24]. The notation K for the belief set is standard notation, used systematically already in the
early [76]. It should not be confused with the modal operator for knowledge.

12The operation may also be given an equivalent basis in terms of rationality postulates: See [76, p. 48-51].
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Table 2: The Gärdensfors/AGM rationality postulates for contraction functions.

The basic contraction postulates
C K − φ is a belief set (i.e., K − φ = Cn(K − φ)) (Closure)
C K − φ ⊆ K (Inclusion)
C If φ /∈ K, then K − φ = K (Vacuity)
C If not ⊢ φ, then φ /∈ K − φ (Success)
C If φ ∈ K, then K ⊆ (K − φ) + φ (Recovery)
C If ⊢ φ↔ ψ, then K − φ = K − ψ (Extensionality)

The supplementary contraction postulates
C (K − φ) ∩ (K − ψ) ⊆ K − (φ ∧ ψ) (Conj. Overlap)
C If φ /∈ K − (φ ∧ ψ), then K − (φ ∧ ψ) ⊆ K − φ (Conj. Inclusion)

which must also be removed to ensure that φ is not re-added by logical closure. If, e.g., K
contains φ,ψ and ψ → φ, then removing only φ will not suffice—either ψ or ψ → φ
must be removed as well. Hence the complexity of contraction: What beyond φ should be
removed?

The third transition is between two belief states, the first where φ is accepted, the second
whereφ is rejected (or vice versa). This is the case of revision: In accepting¬φ (i.e., rejecting
φ), the currently held belief that φ must, on pain of contradiction, be given up. Hence,
for reasons similar to the case of contraction, a unique revision operation involves a choice
not settled on logical grounds alone.

AGM belief revision theory does not settle the question of how to uniquely contract or
revise a given belief set. Rather, it posses a set of criteria that any contraction function or
revision function that does make a unique choice should satisfy to be deemed rational.

Contraction and revision functions are, respectively, operationalizations of the contraction
and revision transitions. Both function types take as input a belief set and a formula and
both output a belief set. Hence they are functions f : K × L −→ K, where K is the set of
all possible belief sets. One not uncommon notation is to use − for contraction functions
and ∗ for revision functions. Additionally, infix notation is used, with K−φ the output of
contracting K with φ using the contraction function −. Similarly, K ∗φ is the output of ∗
applied to K and φ. Lastly, also expansion is considered a function with notation +.

An example of a rationality postulate for a contraction function is Success, hinted at above.
Success requires that ifφ is not a logical truth (theorem), then the contracted belief set K−φ
should not include φ. The formal representation of Success and the additional postulates
for contraction may be found in Table 2.

In Gärdenfors’ 1988 monograph Knowledge in Flux [76], a conservative principle motivates
the rationality postulates: The heuristic criterion of informational economy requires that
when changing beliefs, these should be changed in a fashion minimal to obtain the desired
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effect.13 The criterion is often referred to as the principle of minimal change, and is now
standard [139]. Minimal change, in turn, is motivated by a simple rationality consideration:
Information seldom comes for free, so unnecessary information loss is undesired.

The basic principles may be argued for as follows: C1 captures that the result of revision
is a rational belief set, which seems reasonable for rational contraction. C2 states that
no new beliefs should be added when something is to be removed: It may be seen as a
consequence of minimal change. So may C3, stating that if φ is not believed in the first
place, then there is not reason to change anything. C4 captures that contraction should be
successful, mentioned above. C5 is more controversial: It states that whenφ is believed, if it
is first retracted, but then re-added, then all beliefs possibly lost by the first contraction are
recovered. With minimal change applying to both contraction and expansion, the principle
may seem valid: It is however the cause of controversy, with an early counterexample due
to Sven-Ove Hansson [84]; Rott and Pagnucco investigate contraction without recovery
[138]. C6, finally, states that the revision of agents are concerned with the content and not
the form of the information they receive.

The most striking contribution of the seminal AGM paper [2]— the unique paper authored
by all three authors—is a representation theorem for the class of contraction functions that
satisfy rationality postulates C1–C6 of Table 2. The class of contraction functions consid-
ered rational, on this account, is the explicitly constructable class of partial meet contraction
functions.

Fixing a class of functions for contraction equally fixes a class of functions for revision
and vice versa. At least this holds true if one is willing to accept respectively the Levi and
Harper identities. The Levi identity originates from Isaac Levi (1977), who argued that only
expansion and contraction are legitimate forms of belief change from which revision should
be analyzed as a composite. In particular, revision withφ is equivalent with first contracting
beliefs in ¬φ, followed by expansion with φ. I.e., revision is given by the identity

K ∗ φ = (K − ¬φ) + φ.

The Levi identity thus allows the definition of revision from contraction and expansion.
With the mentioned result of [2], this thus fixes a class of revision functions. Moreover,
as shown in [76], the class of revision functions obtained may equally well be motivated
on rational grounds: When the contraction function satisfies C1–C6, the corresponding
revision function will satisfy R1–R6 of Table 3, which contains the AGM postulates for re-
vision. As with the contraction postulates, these are justified using informational economy
considerations in [76].

13The AGM postulates trace back to earlier suggestions by Gärdenfors [74, 75] and was conveniently re-
represented by Alchourrón and Makinson [3] and Makinson [121].
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Table 3: The AGM postulates for revision functions.

The basic revision postulates
R K ∗ φ is a belief set (i.e., K ∗ φ = Cn(K ∗ φ)) (Closure)
R φ ∈ K ∗ φ (Success)
R K ∗ φ ⊆ K + φ (Inclusion)
R If ¬φ ̸∈ K, then K + φ = K ∗ φ (Vacuity)
R K ∗ φ inconsistent only if K or φ is (Consistency)
R φ↔ ψ implies K ∗ φ = K ∗ ψ (Extensionality)

The supplementary revision postulates
R K ∗ (φ ∧ ψ) ⊆ K ∗ φ+ ψ (Subexpansion)
R If ¬ψ ̸∈ K ∗ φ, then K ∗ φ+ ψ ⊆ K ∗ (φ ∧ ψ) (Superexpansion)

For the opposite direction, William L. Harper (1977) first advanced the suggestion of defin-
ing contraction through revision. The Harper identity captures the relationship:

K − φ = K ∩ K ∗ φ.

As with the Levi identity, also the Harper identity “preserves” rationality: If a revision
function satisfies R1–R6, the contraction function induced by the Harper identity satisfies
C1–C6, cf. [76].

Beyond the six basic postulates for respectively contraction and revision, Gärdenfors also
suggests two supplementary principles for each operation, postulates C7 and C8 of Table 2,
and R7 and R8 of Table 3. These postulates are intended to facilitate iterated belief revision
under the principle of minimal change, cf. [76, p. 55]. The postulates are pairwise preserved
by the Levi and Harper identities [76].14

In combination with the the six basic postulates for contraction, the supplementary postu-
lates C7 and C8 characterize the sub-class of partial meet contraction functions that are also
transitively relational [2]. Partial meet contraction functions are not the only candidates for
contraction functions, though. In [76], Gärdenfors shows that revision functions based
on epistemic entrenchment relations are equally characterized by R1–R8. The corresponding
contraction functions are, by Hans Rott in [137], shown equivalent to the safe contractions
of Alchourrón and Makinson [4].

The approaches to belief revision just mentioned all share the fundamental structure of the
AGM approach: They concern contraction and revision functions f : K×L −→ Kworking
on belief sets. A different approach was taken by Adam Grove in his 1986 paper [73], which
marks a move towards approaching belief revision in an epistemic logical setting.

Recall that underlying the AGM belief sets was a language L and a logic Λ. Let LΛ be the
set of all maximal consistent sets of formulas from L. Each such set A may be thought of as

14I.e., if − satisfies C7 (resp. C8), then the induced ∗ will satisfy R7 (resp. R8) and vice versa.
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Figure 1: A Grove sphere system with center sphere [K ] (left) and its revision with φ (right).

a possible world, assigning a truth value to every formula of the language: If φ ∈ A, then A
evaluates φ as true, and if ¬φ ∈ A, then A evaluates φ as false. For each maximal consistent
set of formulas, exactly one of these two options realizes. To enforce this intuition, denote
the elements of LΛ by w,w′, etc.

In this construction, the proposition made by a formula φ may be identified with the set
of possible worlds that makes φ true. Formally, this proposition is

[φ] = {w ∈ LΛ : φ ∈ w}.

Likewise, every AGM belief set may be identified with a set of possible worlds. Intuitively,
these are the worlds that the agent in question considers the very most compatible with the
currently held beliefs [73].15 For the belief set K, the set of very most compatible worlds is

[K ] = {w ∈ LΛ : K ⊆ w}.

I.e., a world is very most compatible with the current beliefs if it makes everything currently
believed true.

In addition to the worlds very most compatible with current beliefs, Grove builds on the
semantics used by David Lewis for counterfactual statements in [117] and adds a system of
spheres of less and less compatible worlds around the center sphere, [K ]. Figure 1 illustrates
a sphere system while Table 4 contains the formal requirements.

For a sphere system centered on [K ], Grove suggests revising the belief set K with φ by
taking as the new set of very most compatible worlds exactly those among the worlds in
[φ] that are most compatible with current beliefs. In a sense, the spheres may be thought
of as a sequence of fall-back hypotheses: When told that the hypothesis the agent holds,

15Grove does not use the terminology “very most compatible”. I take responsibility for that. It is to avoid
conflation below.
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Table 4: The requirements for S, a Grovian system of spheres centered on a belief set [K ].

S S is totally ordered by ⊆: If S, S′ ∈ S, then either S ⊆ S′ or S′ ⊆ S.
S [K ] is the ⊆-minimum of S: For all S ∈ S, [K ] ⊆ S.
S LΛ is in S (and is thus the maximal sphere).
S For every formula φ, if any sphere in S intersects [φ], then there is a

smallest sphere that intersects [φ].

[K ], is wrong—because φ is the case—the agent moves to the closest fall-back hypothesis
compatible with the new information. The move is presented graphically in Figure 1.

Formally, Grove’s suggestion yields a revision function in the following way: Let C(φ) be
the set [φ]∩ Sφ, where Sφ is the ⊆-smallest sphere in S which has non-empty overlap with
[φ]. By S3 of Table 4, this exists unless φ is inconsistent, in which case C(φ) is defined
to be LΛ. Let KC(φ) be the belief set consisting of the formulas satisfied at every world in
C(φ). A revision function may then be defined by, for all φ and all K,

K ∗ φ = KC(φ).

The main results of Grove’s [73] are then that i) Any such revision function is AGM rational
in the sense of satisfying R1–R8,16 and ii) For any revision function ∗ satisfying R1–R8 and
any belief set K, there exists a sphere system centered on [K ] for which K∗φ = KC(φ) for all
φ. Point ii) thus shows that any R1–R8 revision function may be represented by a family
of sphere systems containing a system for each belief set K.

Two remarks concerning Grove’s sphere systems point to aspects outside classic AGM belief
revision. The first remark concerns what is given by a Grove revision—and importantly,
what is not. What is given is a revised belief set, neatly represented by the set of worlds
C(φ). What is not given is a sphere system centered on C(φ). The lack of such a “revised”
sphere system means that the formal structure for making a further revision is missing:
To C(φ), the agent has no fall-back hypotheses. Solving this problem in general—how to
capture rational re-revision under the restriction of minimal change—is the study of iterated
belief revision. The study of this topic was systematically started in the 1990’s with important
contributions by Boutilier [37], Darwiche and Perle [44] and Nayak [125], cf. [70].

The second remark on Grove’s models concerns its relation to epistemic logic, and specif-
ically to the belief operator. For a simple interface, the belief operator Ba may be given a
semantics over a Grove sphere system S centered at [K ] representing the beliefs and fall-
back hypotheses of the (only) agent a by the following clause:

S ⊨ Baφ iff for all w ∈ [K ], φ ∈ w.
16Essentially: Grove does not take the logical closure of C(φ) to obtain R1 in his Theorem 1; this is done

silently by Gärdenfors in his presentation [76, p. 84].
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The clause states that the system S makes Baφ true if, and only if, all the very most com-
patible worlds makes the formula φ true. The clause successfully captures the essence of
AGM-style beliefs: Baφ if, and only if, φ is in the belief set K—at least for any formula
φ of the propositional language of AGM. For more general formulas of the prototypical
epistemic language, the right-hand side is not yet well-defined. Omitting the knowledge
operator, the situation may be remedied by the clause

Baφ ∈ w iff for all w′ ∈ [K ], φ ∈ w′

stating that agent a believes φ anywhere in the sphere system S just in case a’s AGM belief
set contains φ.17

Baring details, Grove sphere systems with these semantics are a special case of so-called
plausibility models—a Kripke type models which over the last decade have been of much
interest in epistemic logic research. From the epistemic logic community, van Benthem
[22] and Baltag and Smets [16] independently introduced conditional belief operators on
plausibility-like models. A conditional belief formula is of the form

Bφ
a ψ

where both φ and ψ are formulas. Like a conditional probability, it is read ‘Agent a believes
ψ, conditional on learning that φ’.

Over a Grove sphere system S, conditional belief formulas may be evaluated in the style of
[22] by the clause

Bφ
a ψ ∈ w iff for all w′ ∈ min[φ],w′ ∈ ψ

where min[φ] is the intersection of [φ] with the most compatible sphere S in S for which
this intersection is non-empty. Stated using the AGM notation from above, min[φ] is
thus the set C(φ). Hence, by the first result of Grove, it follows that the belief revision
function ∗ defined by for all K, for all formulas φ,ψ from the propositional language L,
K ∗ φ = {ψ ∈ L : Bφ

a ψ} satisfies the rationality postulates R1–R8.

Using conditional beliefs, one may thus describe elements of AGM belief revision. In
dynamic epistemic logic, this form of belief revision is often called static, as it involves no
changes to the model representing beliefs: The model is merely described from a different
perspective. Static belief revision stands in contrast with dynamic belief revision, which
involves a change in the model. In the context of Grove sphere systems, a dynamic belief
revision would involve a change to the system of sphere itself. A different update could be
a strong knowledge gain, where some of the possible worlds were removed.

In the terminology of Katsuno and Mendelzon [97], static and dynamic belief revision
corresponds to the difference between belief revision and belief update: Belief revision is a

17The properties of belief under these semantics are captured by the KD45 axioms.
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process where both the beliefs and the revised beliefs refer to the same situation, whereas
in belief update, beliefs are brought up to date with a changing world. In case of a single
agent having beliefs only about the propositional nature of an unchanging world—as in
the AGM case—belief revision suffices. However, when multiple agents with higher-order
information are in play, the change of one agent’s beliefs mitigates a change in the model,
which the remaining agents—and the agent itself—must take into account. Hence the case
for belief update.

Even a single-agent with higher-order information may serve to illustrate: Consider an
agent a that does not explicitly believe some p and who is informed of this fact by a credible
source. I.e., the agent is told p ∧ ¬Bap: ‘p is the case, but you do not believe it.’ For this
type of information, the Success postulate fails: After the update, the agent should rationally
believe p, but should not believe that it does not believe it. Propositions of this form are
called Moore sentences, attributed to G.E. Moore. Such unsuccessful updates is one topic of
interest in dynamic epistemic logic [15, 52, 54, 96, 142].

Belief revision and belief update were not per se the topics first studied under the heading
of dynamic epistemic logic, though several works have since the mid-2000’s dealt explicitly
with the topic [7, 16, 17, 18, 32, 22, 48, 54, 67]. Topically, the field comes from a close
neighborhood: The paper typically accredited with initiating the field, the 1989 Logics of
Public Communication by Jan A. Plaza [133], concerned knowledge change in multi-agent
systems as the result of so-called truthful public announcements.

Truthful public announcements ensure that their content is afterwards common knowledge
[8, 116]. Continuing in the Grove sphere system framework with a single agent, this would
amount to the agent simply knowing the content stated. To illustrate, evaluate the knowl-
edge operator Ka over a Grove sphere system S by the clause

S ⊨ Kaφ iff for all w ∈ S, φ ∈ w.

I.e., the agent knowsφ if its negation is simply not on the radar: It is not considered possible
at all. Allowing for a generalization of sphere models where not all possible worlds need be
present in S, the public announcement of φ in S is the updated sphere model S|φ where
all worlds containing ¬φ have been deleted, but the sphere system among the remaining
worlds stay the same. No matter whether the original model satisfies Kaφ or not, then the
updated model will make the formula true.

Public announcements serve to illustrate one of two main foci in dynamic epistemic logic,
namely model change. Semantically, it is the hall-mark topic of study: Given a static model,
operations are defined to systematically change it. Such updates—or, more generally, such
model transformations—are then defined for a variety of purposes. The most well-known
examples are of communicative acts, broadly construed, in epistemic and doxastic multi-
agent systems. Model change is a main focus in this thesis.
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The second focus of dynamic epistemic logic concerns the logics of model change. The
modus operandi involves adding so-called dynamic operators to a static language. Back to
public announcement as an illustration: Construct a dynamic language from the static
prototypical epistemic language by allowing formulas of the form

[!φ]ψ

whenever φ and ψ are dynamic formulas. The formula [!φ]ψ reads ‘It is now the case that
if it is announced that φ, then after the announcement, it will be the case that ψ.’ Over
Grove sphere systems, the formula could be evaluated by the clause18

S ⊨ [!φ]ψ iff S ′ ⊨ ψ.

The logic of dynamic epistemic logic is then the logic involving such dynamic operators.
In the present thesis, dynamic modalities are used in Papers i and ii, while the standard
method for obtaining logics proper is touched on in Paper vi. The method, also introduced
by Plaza in [133], is by translation: Essentially, it is shown that every formula with a dynamic
modality may be translated to an equivalent static formula. In a slogan, talk about dynamics
may be reduced to talk about statics. The method involves adding so-called reduction laws
as axioms to a suitable static logic, a method returned to in Section 8 on Paper vi.

Since the publication of Plaza’s [133], dynamic epistemic logic has grown into a small re-
search field. Early contributions are the operations for truthful public announcements, un-
truthful announcements and non-public announcements, i.e., announcements to subgroups
of agents, defined, independently of Plaza cf. [54], by Gerbrandy [65] and Gerbrandy &
Groeneveld [66] in the late 1990’s, though with heavy influences from the general ‘dynamic
turn’ in logic, for more on which [24, 54] are sources.

The dominant approach to model transformation representation, however, came with Bal-
tag, Moss and Solecki’s 1998 paper The Logic of Public Announcements, Common Knowledge,
and Private Suspicions [13]. The authors introduced a general methodology for constructing
complex transformations. The key insight, both technically and intuitively, was that infor-
mation events may be represented as models. An example of such a model, in general called
action models or event models, is illustrated in Figure 2. The effect of the action model can-
not be illustrated in the hitherto introduced Grove sphere models: For that, the situation
must be represented by a Kripke model. The details involve taking the product of a Kripke
model and an action model using product update, in loose terms a type of graph theoretic
“multiplication”, exemplified in the next section.

Action models and product update jointly constitute the main type of model transforma-
tions used in this thesis. Exceptions are Paper i, which uses a similar construct, but tailored

18The clause does not cover the case where S contains only ¬φ worlds, in which case [φ!]ψ is standardly
assumed satisfied.
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p ¬pba,b a,b

Figure 2: An example of an action model with two agents, a and b. The boxes represent information events: In the left, it is
truthfully announced that p, in the right that ¬p. The left event is what in fact happens, indicated by the double line.
The labeled arrows represent what the agents cannot distinguish: Agent b cannot distinguish whether p or ¬p is being
announced, but a can. Agent b will therefore learn nothing about p, but a will learn that p is the case. Agent b will
learn something, though, namely that a learn whether p or not.

for beliefs (the action-priority update of Baltag and Smets [17]), and Paper vi, which ab-
stracts away from the details of the transformations. The versions of action models and
product update used in Papers ii-v are not precisely those of Baltag, Moss and Solecki, but
generalizations thereof. In particular, the papers use multi-pointed action models [20] with
postconditions [27, 53], allowing for complex program constructions and factual change.
The reason for this focus is the generality and wide applicability of action models: The
framework is not perfect for every occasion, but it is simple, rich, and of broad interest, as
witnessed by the vast literature that employ, investigate or build on it. In seeking to apply
topological and dynamical systems concepts to logical dynamics in the dynamic epistemic
logic tradition, it is a natural starting point.

However, action models and product update are not a natural stopping point for what falls
in the field of dynamic epistemic logic. Quite to the contrary, the literature sports a wide
variety of model transformation types, designed for belief revision [7, 16, 17, 18, 22, 32, 48,
54, 67], as general alternatives or supplements to action models [27, 35, 53, 56, 71, 102], for
hybrid [81] and probabilistic extensions [29, 101], for topological variations [14, 51, 128],
and for dynamics of awareness [151], evidence [11, 31], preferences [30, 119], and diffusion
in social networks [12, 39, 40, 41, 120, 136, 144], to illustrate.

2 Elements of Dynamic Epistemic Logic

For all its variety, there is one perspective on dynamics shared by most works in dynamic
epistemic logic: A dynamics is a sequence of self-contained models m1,m2,m3, ...where all
but the initial is obtain from the former by some transformation. This perspective stands
in contrast to models representing dynamics internally, from the outset offering a full, un-
folded view of time. This is the contrast between the local and global—or Grand Stage—
views on dynamics, in the terms of van Benthem [24]. Grand Stage models are touched on
in Section 5 on Paper iii.

The local view on dynamics is not unique to dynamic epistemic logic. The the perspective
is, for example, shared by the works on belief revision from the previous section: An agent’s
belief state is a self-contained model, a snap-shot of the agent’s information here-and-now,
independent of past or future changes. When this belief state is changed, a new, again
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self-contained belief state is the result. Equally, the local view is shared by discrete-time
dynamical systems, with one restriction: In the case of a dynamical system, the sequence is
the result of iterating a map on the initial model.

In the classic and most common dynamic epistemic logical setting—that which this thesis
is on—the self-contained snap-shot models are so-called pointed Kripke models.19 A pointed
Kripke model is a simple beast. Described graphically, it consists of some dots, each marked
with zero or more colors. One of these dots is bigger than the others, and is called the point.
Between some of the dots are drawn arrows. Here is an example, using the colors red and
green:

In this drawing, the left dot has no color, the center dot is red, and the right dot is green.
There could be a dot with two colors, but there is not.

A transformation of a pointed Kripke model is then just changing the model to another one.
Typically, transformations are given in some systematic, rule-based manner. An example
could be “If a dot points at a green dot, then it must point at itself, too.” This rule would
transform the above to this model:

That’s it—a dynamics in the spirit of dynamic epistemic logic. The sequences of inter-
est typically have a deeper interpretation, a longer time-span and well-motivated rules for
transformations, but in the abstract, the idea is the same.

One possible interpretation of a pointed Kripke model could be as a network of train sta-
tions with the point marking the commuter’s current position, the colors the colors of
trashcans, the arrows the running lines. Transformations could then involve changing the
commuter’s position, painting trashcans, adding or removing stations, closing redundant
lines or opening new ones—maybe even some running both directions.

The standard interpretation in dynamic epistemic logic, however, has little to do with trains.
In the standard interpretation, each pointed Kripke model represents a state of affairs and
one or more agents’ information and higher-order information about this state. Under
an informational interpretation, a pointed Kripke model is consequently often called an
epistemic state. A sequence of epistemic states then represents an information dynamics,

19See e.g. [34, 72] for textbook references
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where the state of affairs may change, the agents’ information about the state of affairs
may change, or the agents’ information about others’ information may change—in any
combination.

Such sequences constitute a main object of study in the field of dynamic epistemic logic, and
has a number of applications, mainly in theoretical philosophy and theoretical computer
science. In philosophy, one may be interested in which types of knowledge or belief are
robust when agents learn new information; in computer science, one may be interested in
whether some communication protocol is secure even when messages are overheard.

To model a dynamics using dynamic epistemic logic, there are three essential elements
to consider: i) what aspects to include, both in the state of affairs, but also in terms of
the agents’ information, ii) how to represent these aspects, and iii) how to update the
representations to obtain dynamics.

For i), what to include depends, of course, on application: In one case, certain features
may be abstracted away that may be considered essential in another. To model an agent
undergoing the information dynamics of the example in the introduction, it might be
deemed relevant to include propositions concerning the content of this thesis, but less so
to include propositions about the position of the moon. Likewise, knowledge and beliefs
may seem germane, while the agents’ ethical considerations might be safe to omit.

For a simple exposition which still illustrates the key elements of dynamics as modeled
using dynamic epistemic logic, take the following view on the initial example: Two agents
are sitting in a room, one them holding this thesis, closed and unread. Call this agent a, the
other b. Of interest is only whether the first section contains an example or not, together
with a and b’s (lack of ) knowledge about this fact.20

With the relevant features selected, describing them using a formal language has the ad-
vantage of conciseness. First, use p to denote the proposition ‘The first section contains an
example’. Then p corresponds to a color in the illustration above, and represents a propo-
sition considered “atomic” in the sense that no attempt to represent its internal linguistic
structure is made: The p in the language cannot be further broken down into subformulas.
For knowledge, let Kiφ read that agent i knows thatφ, with i either a or b. Include negation
(¬) and conjunction (∧), so the formal language of the model is given by the Backus-Naur
form

p | ¬φ |φ ∧ ψ |Kiφ

read as described on page 3.

For ii), the representation of the relevant aspects, choose pointed Kripke models, to be
interpreted as epistemic states. The standard interpretation is as follows, starting with the

20To include beliefs, too, would be more natural, but the constructions are slightly more involved, cf. Paper i.
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dots, interpreted as states of affairs. Each such state is colored by a selection of our chosen
atomic propositions: When an atomic proposition is present at a state, it is considered true
at that state. Otherwise, it’s false, indicated here by marking the state with its negation.
In the example with p the only atomic propositions of interest, there are only two possible
states of affairs:

p ¬p

Here, the double line indicates the point, representing the actual state of affairs. Given the
introduction, it seems the most reasonable representation of the real world. The second
state represents an alternative state of affairs, one where there is no example.

Last, the arrows. Enter the representation of information and knowledge. When two states
are connected by an arrow labeled by an agent name, this represents that the agent cannot
tell the two states apart—to the agent, the dots are informationally indistinguishable. Infor-
mational indistinguishability is the central epistemic notion in the standard interpretation.
Per the semantic definition of truth for knowledge formulas given below, it is on this notion
the standard interpretation’s understanding of knowledge rests.

To exemplify, consider the following off-scale black-and-white illustration of one of the
dots from the colored Kripke model above:

Is it the white, the red, or the green dot? We can eliminate white: The brightness is off.
But whether it is red or green, we lack color and size information to determine. Stated
differently, if it does illustrate the green dot, then for all we know, it might as well be the
red dot. Vice versa, if it is the red dot, then given our information, it might as well be the
green. Conversely, if two states are not connected, then it means the agent does possess the
information to distinguish one from the other: If asked whether the dot above is white, we
have sufficient information to answer no.

When states are indistinguishable in this informational sense, they are called epistemic al-
ternatives to each other. Arrows, then, connect epistemic alternatives.

Returning to the two agent example, to determine which states are epistemic alternatives
to each other, we should ask whether the agents possess any information that allow them to
distinguish the states. If they do not, arrows are drawn, not otherwise. With the thesis held
by a, closed an unread, neither agent has any information about whether the introduction
contains an example or not. I.e., neither agent can distinguish the left from the right state,
nor vice versa:

p ¬pa,b
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A final question and the epistemic state is complete: Are there any of the states the agents
can distinguish from themselves? It’s not a trick question—the answer is just a trivial no. No
information will ever allow them to distinguish something from itself, seeing as there are
no differences between “the two”. Hence, the epistemic state:

p ¬pa,b
a,b a,b

This epistemic state captures the situation where the agents have no information about the
state of affairs. In the literature, such an epistemic state, where all the possible states are
connected by bi-directional arrows, are sometimes referred to as one of blissful ignorance.

The ignorance in the epistemic state may be expressed using the formal language, in par-
ticular the knowledge operators Ka and Kb. Their interpretation over an epistemic state
provides the link between the standard interpretation’s view on knowledge and the notion
of indistinguishability: A state in an epistemic state is makes the formula Kiφ true if, and
only if, the formula φ is true in all of agent i’s epistemic alternative to that state. Hence,
for an agent to know φ, it must have information that eliminates all the alternatives that
falsify φ.

The agents’ ignorance is exposed by checking which knowledge formulas are true at the
actual state of the epistemic state. The formula Kap, for example, is false: Agent a has an
epistemic alternative where ¬p is true. Likewise Ka¬p is false because of the p alternative—
the actual state itself. Hence, both ¬Kap and ¬Ka¬p are true: Jointly, they state that, in
the epistemic state, agent a knows nothing about the example in the first section. The same
goes for agent b. No information, no knowledge, only blissful ignorance.

The denotation ‘blissful ignorance’ comes with a caveat: It refers only to ignorance with
respect to the atomic propositions. Agents a and b possess quite a lot of information about
each others’ information: For example, the actual state satisfies Kb(¬Kap ∧ ¬Ka¬p)—that
agent b knows that agent a has no information. To check this requires checking epistemic
alternatives for both agents, but the modal logical semantics ensures that the formula has
a definitive truth value. Likewise, any formula of the language is evaluated as either true
or false. An epistemic state thus represents all the agents’ higher-order information—their
information about other’s information (about others’ information, etc.)—in quite a small
construct.

There is much more to be said about epistemic states, both formally and on interpretation,
than it is feasible to recant here. In passing, it may be mentioned that the arrows represent
binary relations, under the standard interpretation taken to constitute equivalence relations,
resulting in the logic of the knowledge operators being S5, mentioned in Section 2, and
that operators for the information of groups—like common and distributed knowledge—are
often included in the language. In-depth introductions may be found in e.g. [24, 54, 58, 88].

23



For iii), how to update an epistemic state with new information to obtain dynamics, the
example initiated first requires a continuation. Assume, for narrative purposes, that agent a
opens the thesis and reads the first sentence of the introduction. Assume further that agent
b witnesses this, but does not know what agent a reads. Finally, assume that both agents
take whatever is read as absolutely guaranteed to be irrevocably true (and that all this is
common knowledge).

This continuation of the example encapsulates more than the agents’ individually receiving
a new piece of information. Rather, the continuation is a complex informational event,
where one agent receives new information directly, while the other’s information changes as
a consequence. The ability to represent events of this complexity is one of the strong suits of
dynamic epistemic logic, and in particular of the action model approach touched in Section
2. As mentioned there, a key insight of Baltag, Moss and Solecki’s [13] is that informational
events may be represented as semantic structures, so-called pointed action models.

The standard interpretation of a pointed action model is very close to that of an epistemic
state, but where the individual ‘dots’ do not represent states, but instead events, with an
event colored not with the atomic propositions it makes true, but with the information that
the event truthfully conveys. The point, then, represents the event that actually occurs. The
arrows between events still represent indistinguishability.

One possible modeling of the continuation is the following action model:

p ¬pb b

b

a,b

a,b

a,b

This pointed action model represents that, in fact, the information that p is being truthfully
conveyed (somewhat unnaturally, to both agents simultaneously), but that agent b cannot
tell whether the information truthfully conveyed is p, ¬p or no information at all. Agent
a, however, can tell all three events apart (but cannot distinguish any event from itself ).

To obtain a new epistemic state from the old and the action model, the two are “multiplied”.
The process takes two steps.

An intuition for the first step is that each event in the action model works like an informa-
tional “filter” which allows some states through, but not others. Take the left most event,
for example. It truthfully conveys the information that p. Hence it rules out the state where
¬p is the case: This state does not satisfy the precondition that p is the case, and so does
not pass through that filter. The ¬p state is however compatible with both the middle and
right most events: Nothing in the information conveyed there rules out that ¬p.
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This “filtering” through preconditions determines the set of states in the new epistemic
state. In this example, there will be four states:

p ¬p p

¬p

The left most state is the child of the original p state and the p event: It is the actual state
because is is the result of what was actually the case and what actually happened; the middle
is the child of the ¬p state and event; and the two right most states are the children of the p
and ¬p states with the null information event. Though some a identical in the propositions
they evaluate, none are redundant.

In the second step, the arrows are calculated. The device here is that two children are
indistinguishable if, and only if, all of their parents are indistinguishable. For an example,
think of a person of whom you do not know whether they prefer A or B—you cannot
distinguish one case from the other. In answering your query, they mumble to the degree
that you miss the answer: You cannot tell whether they answered A or B. You are no wiser,
and still do not know their preferences. Had you been able to distinguish either set of
parents—either the preferences or the answers—there would have been no uncertainty.

In a more sterile formulation, the arrows are calculated as follows: If states s1 is the child of
state s and event 1, and t2 the child of state t and event 2, then an i-arrow must be drawn
from s1 to t2 if, and only if, there is an i-arrow from state s to state t and an i-arrow from
event 1 to event 2. For fully detailed introductions, see e.g. [15, 54, 123].

Applying the second step complete the construction of the new epistemic state, which be-
comes a bit of a mouthful. Perhaps it helps to notice that for agent b all the states are
linked together, while for agent a, the epistemic state can be chopped into three discon-
nected components (left, middle and right).

p ¬p p

¬p

b b

b

a,b

b
b

a,b

a,b

a,b

a,b

In this updated epistemic state, both agents have new information, but it is information of
very different kinds. Agent a has learned something, namely that p: The actual state now
satisfies Kap. Agent b, however, has not so much gained knowledge as gained confusion:
The agent now considers more things possible than previously—for example that agent a
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may know that p. Specifically, where agent b before knew that a had no information—
as Kb(¬Kap ∧ ¬Ka¬p) was true—agent b now knows that they new do not know this:
Kb¬Kb(¬Kap ∧ ¬Ka¬p). Whether to call this new information for agent b may be con-
tested, but that it is a change in information is certain.

To finalize the example, consider a last informational event: Let agent a tell b—without
mumbling—of the newfound knowledge that p. This event may be represented by the
pointed action model

Kapa,b

which in effect is equivalent to the truthful public announcement of Kap in the style of
Plaza [133], mentioned in Section 2.

This time around, the calculation of the product is quite a lot simpler: Only the actual state
of the epistemic state satisfies the precondition of the single event in the action model, so
the resulting epistemic state has only one state, indistinguishable from itself:

pa,b

In this final epistemic state, both agents know p, know that the other knows p, and so forth,
for all levels of higher-order information.

The now modeled example illustrates one of two aspects of what dynamic epistemic logic
does well, namely the semantic aspect of constructing information dynamics. The second
aspect concerns how to obtain logics for such dynamics, a topic postponed to Section 42 on
Paper vi. The example also implicitly illustrates an aspect of information dynamics which
the standard dynamic epistemic logic framework does not handle, as the framework only
represents a part of the story of how the dynamics come about. Specifically, the framework
includes the machinery to formally represent epistemic states, informational events, and
how to update one of the former with one of the latter. The framework, however, is silent on
what informational event a given epistemic state should be updated with. This is perfectly
fine for epistemic analyses where the interest is on how a given epistemic state will evolve
under some sequence of informational events. As with Bayesianism, it is a full-fledged
theory of rational epistemic agency. Bayesianism, however, is easily coupled with decision
theoretical frameworks, such as expected utility maximization. For dynamic epistemic logic,
no such standard decision framework exists. When a dynamics partially develops as the
result of agents’ decisions, dynamic epistemic logic thus requires an augmentation. Such
an augmentation is a topic in Paper i.
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3 Paper i: Decision Making in the Bystander Effect

The path this thesis has taken was not foreseen: The papers included are each the product
of ideas that sprung from the writing of those before. They progress from attempting to
solve a practical modeling task in Paper i to abstract characterization theorems in Paper iv.

Paper i is an attempt to use formal information dynamics—like those of the previous
section—to model an empirical phenomenon known as the bystander effect. The bystander
effect is a well-documented phenomenon in social psychology, where the term covers the
tendency that witnesses are less prone to offer assistance when others are present.

In the social psychological literature (see e.g. [109, 124]) the phenomenon is explained by a
composite of three features: First, that the presence of others may cause us to overlook an
accident; second, that the presence of others may offer misleading information causing us
to mis-classify the accident as inconsequential; and third, that the presence of others may
cause us to not take responsibility for intervening. Paper i focuses on the second of the
three sub-explanations.

The second sub-explanation consists of an information dynamics in which the observation
of an event, the observation of others, and informed choices are key components. In a
nutshell, the story goes as follows:
A group of agents all witness an accident. Privately, they conclude that there is need of
help, but they are uncertain. To not rush to unwanted aid, they choose to observe their
co-witnesses: Do they think help is needed? As each agent observes the others covertly,
their act of observation is observed by the others as inaction—they are not rushing to help.
From this observation of others, each agent concludes that they other witnesses think that
help is unnecessary: Else they would be rushing to help.

This belief state, where everybody believes the same one thing, while believing that the
others believe the opposite, is in the literature called a state of pluralistic ignorance.

In the state of pluralistic ignorance, the agents re-evaluate the situation at hand. Based
on their new information—that no-one else believes that help is needed—they revise their
beliefs: They treat the perceived inaction of the others as social proof that help is unneces-
sary. From this, each agent privately concludes that help indeed is unnecessary: They just
misinterpreted the original situation. In the story’s final act, each agent therefore chooses
to not offer aid.

This pluralistic ignorance explanation of the bystander effect is contrasted by another,
shorter and for a time also popular explanation: People just don’t care about each other.
This apathy explanation also explain the unresponsiveness of witnesses, but it does not ex-
plain why people intervene when alone. It is therefore a poor explanation, but returned to
below.
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Several reasons made it compelling to attempt a modeling of the bystander effect.

First—very generally—there is the interest in having a formal model in the first place, cf.
e.g. the recent thesis by Dominik Klein [100]: A formal representation of a phenomenon—
or its various explanations, as in this case—typically offers a clarification of the involved
concepts by a rigid, formal representation. This in turn allows the verification of said
explanation—a test of whether involves explanatory gaps more easily missed in the nat-
ural language presentation. Finally, a formalization allows exploration of the phenomenon,
e.g. by the varying of parameters to find the boundaries of a particular outcome—like the
unresponsiveness of witnesses. In Paper i, these three aspects are all present: The dynamic
transfer of information between agents is clarified compared to the informal social psy-
chological model, elements required to make the explanation complete are identified and
boundary parameters are estimated (roughly: the data is scarce).

Second, modeling the bystander effect presented an opportunity to attempt a modeling of
an interesting empirical phenomenon. Based on a paper co-authored with P. G. Hansen and
V. F. Hendricks [83], the hope was, through modeling a sequence of information dynamical
phenomena, to obtain overarching structural insights into why reasonable individuals as a
group gets it wrong. Given the freedoms that dynamic epistemic logic offers in terms of
information updates, modeling the bystander effect using specifically this tool seemed a
good way to put the tool to the test.

Third, the pluralistic ignorance explanation in it self is an interesting information dynamics,
posing several open questions concerning modeling choices. The explanation involves in-
formational social influence by revision based on aggregated social proof obtained through
action interpretation, all elements that offered interesting challenges. In addition, the ex-
planation involves agents’ decisions, an aspect of dynamic phenomena not standardly treated
in dynamic epistemic logic, cf. the above.

In particular the aspect of agent decisions presented a conundrum: If one chose to impart
a game theoretic payoff structure [127], it would be over the terminal outcomes of the
bystander effect story. But for the agents to reason about these terminal outcomes, the
model would have to included them from the outset. Such a model would then no longer be
just the representation of a current epistemic state: It would include all the possible choices,
the full temporal structure—the Grand Stage. But then the model would no longer be cast
in dynamic epistemic logic, but something else entirely, somewhat defeating the second
point of motivation. Hence, I tried to come up with an mechanism for invoking agent
choices suited to dynamic epistemic logic. The resulting “transition rules” are the thesis’
first step towards identifying models with maps.

Paper i, then, is in summary as follows: After having presented the dynamics of the by-
stander effect in a step-by-step fashion, it includes an introduction to a dynamic epistemic
logic framework, namely the plausibility models and plausibility action models of Baltag and
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Smets [17], augmented with postconditions. It is shown how the occurrence of an accident
may be modeled using a plausibility action model capturing that each agent perceives the
event as an accident, while being in the blind about other agents’ perception.

At this stage, agents’ decisions enter the picture. Agents are modeled as having three possible
actions: To intervene, to evade, or to observe. Each action is modeled as a pointed action
model where the acting agent know her action, while others cannot distinguish between
evasion and observation, but find the former more plausible. As the agents are assumed
to act simultaneously, the paper defines an operation for composing individual actions
into a joint (pointed) action model. The accident state is then updated with one of these
composite models—which one depends on the agents’ individual choices.

To formally model how the agents decide their actions, the paper introduces transition rules.
Informally, a transition rule is a requirement to the next action of an agent. It is of the form
“If φ is the case, make a choice that makes Y the case.” The choice of the agent in a situation
making φ the case would then be a solution to this “equation”, with the available solution
candidates the actions above.

Using transition rules, the paper defines four different types of agents. One of them is
apathetic and just doesn’t care about others. That agent type’s rule colloquially reads “No
matter what, make a choice that makes you not be in the middle of this.” This apathetic
agent type always chooses to evade. The other three types are first responders, observers,
observers that are affected by social proof. The latter represents the agents hypothesized by
the pluralistic ignorance explanation of the bystander effect.

The individual actions, the transition rules and the composition operation jointly allow for
the definitions of variety of models for the bystander effect, depending on the composition
of types in the population. The paper investigates only the four pure populations, the mod-
els of which are compared to data from classic studies in social psychology. It is concluded
that only the observer influenced by social proof fits the bill.

For the thesis at large, the key point of Paper i, at best implicit in the paper itself, is method-
ological: In adding transition rules as a decision making framework on top of the standard
dynamic epistemic logic, the models of the various explanations become mathematically self-
contained : Given an epistemic state, the augmented framework fully specifies how the next
epistemic state is to be calculated from the former.21 To underline the point, then irrespec-
tive of whether decision making is at stake or not, such self-containedness is not a default in
dynamic epistemic logic modeling practices. As it is a prerequisite for a rigid comparison of
models that they explicit in their assumptions and constructions on all points, it is in such
cases a desideratum that the models are fully—rather than only partially—formal. In such

21In retrospect, this self-containedness essentially amounts to identifying models with maps: From an epis-
temic state m, a set of transition rules t dictate a joint action model t(m) subsequently applied using a product,
⊗, all in all specifying the next epistemic state f(m) = m ⊗ t(m).
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cases, the standard dynamic epistemic logic framework requires additional functionality.
Whether transition rules specifically are a good choice for obtaining this functionality is a
topic in Paper ii.

4 Paper ii: On the Plurality of Choice Mechanisms

In evaluating explanations for the bystander effect, Paper i follows the lead of the social
psychological literature: A small collection of models are compared to the empirical find-
ings and the best fitting is concluded the best explanation of the phenomenon. Best, that
is, among the small collection of conceived of models. To this small collection of models,
there might, however, exists a large collection of alternatives. One thing is that the pluralis-
tic ignorance model contains a free parameter that could possibly be estimated for a better
fit, but there may also be completely different dynamic epistemic logic models that—in
general—would do a better job of explaining the bystander effect. Hence, having gotten
some distance to Paper i, the following question arose: Given that the paper already used
non-standard functionality, what tricks could these hypothetical, alternative models pos-
sibly invoke? Asking the same differently, when seeking the best model of the bystander
effect, then the best among what?

To answer, another question presented itself: Mathematically, set-theoretically, what are
these thing referred to as “the models”? Abstract away from the concrete form of the tran-
sition rules and look at their function: They pick actions. Specifically, given a pointed
Kripke model as input, a transition rule picks an individual action which, when composed
with the individual actions picked by other transition rules on the same input, produce an
action model. Zooming out a bit, a set of transition rules thus simply specify an action
model, given a pointed Kripke model as input. In other words, a set of transition rules
induce a mapping from a set of pointed Kripke models to a set of action models.

As an action model and a product jointly define mappings taking pointed Kripke models
to pointed Kripke models, the big picture structure of the type of models is that they are
maps from a set of pointed Kripke models to the set of maps on that set of Kripke models.
With Q the set of pointed Kripke models in question and QQ the set of maps from Q to
Q, “the models” are thus of the form f : Q −→ QQ.

However, in answering the among what? question, not all maps f of this form seemed
relevant. First, the set of maps QQ seemed too unrestricted: Reasonably, it seemed, the
subset A ⊆ QQ of maps representable using action models should suffice. Second, not
every map f : Q −→ A would be of interest either: At least, the map should be reasonably
representable.

At this point, a lesson from a Grand Stage model type—interpreted systems—enters the
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picture. In their seminal Reasoning about Knowledge, Fagin, Halpern, Moses and Vardi
dedicate a number of chapters to the design of protocols for interpreted systems, a widely
used Grand Stage framework for multi-agent systems. In particular, they spend a chapter
on knowledge-based programs. In essence, a knowledge-based program is a set of instructions
for an agent: Each instruction takes the form “If φ, then do a”, where a is some individual
action. In the context of dynamic epistemic logic, it is natural to think of a as an individual
action model. As with transition rules, a set of knowledge-based programs may thus be used
to define a map f : Q −→ A. Hence, they offer an alternative way of representing models.

This realization caused doubt: The approach using transition rules is somewhat cumber-
some compared to knowledge-based programs, but it also seemed to required that the agents
solve a problem to decide on an action—akin to solving a utility maximization problem22

in game theory—instead of having an action just dictated to them whenever a particular
condition arose. This doubt motivated Paper ii: It is more pleasant to check whether there
is a difference than to toss and turn under uncertainty.

The particular question asked in Paper ii is inspired by dynamical systems theory: With
a map f : Q −→ QQ, the map given by g(x) = f(x)(x) maps Q to Q and is hence
an instantiation of the broadest understanding of a discrete-time dynamical system: A set
together with a map acting on it (cf. e.g. [57]). Paper ii then asks which types of orbits,
i.e. sequences of pointed Kripke models from the set Q, that may be produced by different
types of update mechanisms.

The three update mechanisms are transition rules (referred to in the paper as problems),
knowledge-based programs and and deterministic multi-pointed action models. The latter
shares the functionality of the other two: Given a pointed Kripke model as input, it supplies
an action model as output with which the input model is updated.

The main result shows that knowledge-based programs and multi-pointed action models
are equivalent in the orbits produceable, that these are a subset of the orbits produceable
by problems,23 and that under two finiteness conditions, the three are equivalent. The two
finiteness conditions are quite liberal, and it is on a conceptual note concluded that the
orbits produceable are adequate for modeling empirical phenomena finite in nature while
befitting of the modeling style of dynamic epistemic logic.

For the thesis at large, the main result contributes that there exists natural ways of fully
formalizing dynamic epistemic logical models as maps, and that this approach is sufficient
for most empirical purposes.

On a different conceptual note, Paper ii initially makes an argument akin to that conclud-
ing Section 3 on Paper i: The standard dynamic epistemic logic framework leaves something

22Or other choice principle problem: See e.g. Paolo Galeazzi’s [63].
23Whether it is a strict subset is not checked.
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to be desired when seeking full formalization: Its models are not sufficiently described to
be identified with any one type of mathematical object. The dynamical systems framework
is suggested as a way to achieve precision, settling the among what? question. The paper
shortly compares the approach with a different framework playing a similar role: The ex-
tensional protocols framework of van Benthem, Gerbrandy, Hoshi and Pacuit’s [28]. Paper
iii contributes with a deeper comparison.

5 Paper iii: Intensional and Extensional Protocols

When supplying procedures for action—when specifying protocols—to specification forms
stand out. One dictates a sequence of action, not unlike a cooking recipe: First crack the
eggs into a bowl. Beat them, and then stir in the vanilla. The second is conditional, not
unlike a survival guide: In case of hypothermia, raise the body temperature; in case of
hyperthermia, lower the body temperature.

In the terminology of Parikh and Ramanujam [130], the two instruction forms are referred
to as extensional and intensional protocols, respectively.

The transition rules, the knowledge-based programs and the multi-pointed action mod-
els of Paper ii are all—when applied iteratively as per the dynamical systems approach—
intensional protocols.

Paper iii compares the intensional protocols of dynamic epistemic logical dynamical sys-
tems with the extensional protocols for dynamic epistemic logic of van Benthem, Ger-
brandy, Hoshi and Pacuit’s [28]. The comparison is mediated by the models of epistemic
temporal logic, following the methodology of [28].

The semantic structures of epistemic temporal logic are Grand Stage models—one is illus-
trated in Figure 3. Grand Stage models were hinted at in the consideration surrounding
Paper i: Instead of a step-by-step modeling in the style of dynamic epistemic logic, the
model of the bystander effect could also have been constructed using a single, all-including
model, representing both information, time, interplay of the agents’ possible choices, and
the resulting outcomes.

Such epistemic temporal models are based on histories: Branching strings of the states of
Kripke models, linked by a relation representing the passing of time. Each time step, in
turn, represents actions taken by agents—this is the temporal dimension. The epistemic
dimension is as in epistemic states: States of the world are linked to the effect that agents
may be uncertain about the current state of the world and may in addition have detailed
knowledge, beliefs or expectations about what past actions were taken, what futures are
possible, or what futures they or others can force about.
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Figure 3: A simple epistemic temporal model for two agents, a and b, with states named by time and position. Arrows represent
epistemic indistinguishability—reflexive and transitive links are implicit. The dashed line represents the passing of time.
In the model, neither agent knows which state is the case at time 1, but at state 2c, they are both certain. Agent a
does not always know the time, cf. the links between 2a and 3b. Agent b does not have perfect recall: At time 3, it
has forgotten that it knew whether it was at a b or a c state at time 2.

Epistemic temporal models are common-place in computer science and game theory, ex-
emplified by interpreted systems or extensive-form games, where they allow the modeling
of agents that undertake long-term reasoning. They thus stand in contrast with the ap-
proach of dynamic epistemic logic, where only the current time is represented in any one
pointed Kripke model.

As both time and information are portrayed in epistemic temporal models, interplay be-
tween these may be represented. For example, two dots different numbers of times-steps
away from some time zero may be connected by an arrow: Then the agent doesn’t know
what time it is. Another example is memory: If a history is epistemically ruled out at one
time-point—i.e., if there are no arrows connecting that time-point to any of the history’s
dots—then it will remain ruled out at later time-points. This property is called perfect re-
call and epitomizes the opposite of Douglas Quayle’s problems in Philip K. Dick’s We Can
Remember It for You Wholesale, adapted to film as Total Recall, twice.

Properties such as these may be used as design requirements for rational agents. Agents may
be required to, e.g., have perfect recall, to always know the time, to learn systematically from
events, among others.

As dynamic epistemic logic models do not have explicit temporal structure, it is not readily
possible to determine whether their agents satisfy such temporal rationality requirements.
Enter van Benthem, Gerbrandy, Hoshi and Pacuit: In the paper Merging Framework for
Interaction [28], they show how dynamic epistemic logic models may be used to build
epistemic temporal models. Moreover, as the resulting all-in-one models always exhibit
certain properties—perfect recall being one of them—they obtain a characterization of the
types of agents implicitly assumed by the dynamic epistemic logical approach.

In obtaining the characterization, the authors must show that any dynamic epistemic logic
model will result in an epistemic temporal model that possesses the properties in question.
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For this, it is a prerequisite to fix what is meant by a dynamic epistemic logic model—as in
Paper ii.

The framework used in [28] is based on a formal representation of extensional protocols.
Simplified, an extensional protocol is a finite string of actions: a, a, b, a, ..., c, b, d. Such a
string together with an initial pointed Kripke model then constitute a dynamics: For the
string here, the initial pointed Kripke model is first updated by a, then by a again, then by
b, and so forth. The result is a sequence of pointed Kripke models, just as in the example
of Section 2 and as with the dynamical systems approach.

To build an epistemic temporal model from an extensional protocols model, then, one
simply stacks the pointed Kripke models in the order they are produced, connecting their
dots with temporal links whenever one is results from another.

The dynamical systems approach to building epistemic temporal models is in many ways
the same, but in an essential way different. It is the same in starting from an initial model
which is sequentially updated by actions, leading to a string of stackable Kripke models, but
it is different in how the actions that update the Kripke models are specified; in how—and
when—they are selected. In the extensional protocol approach, the full string of actions is
pre-specified by the modeler, given only the initial Kripke model. In the dynamical systems
approach, the modeler instead pre-specifies a map, which at the initial and subsequent
Kripke models pick an action to be executed.

Both approaches supply instructions for action, for detailing protocols, but one is exten-
sional, the other is intensional. Like cooking recipes and survival instructions, both are
useful, but serve different purposes.

In Paper iii, Hanna van Lee, Suzanne van Wijk and I compare these two approaches to
protocols for dynamic epistemic logic. To do this, we copy the methodology of van Ben-
them, Gerbrandy, Hoshi and Pacuit, and characterize which types of epistemic temporal
models that are constructable when taking the dynamical systems approach to model build-
ing. Given the results in Paper ii, we choose, for simplicity, to use multi-pointed action
models for the update mechanism. The two frameworks are then compared by contrast-
ing the properties—like perfect recall—they induce in the epistemic temporal models they
produce.

Following a presentation of the intensional and extensional protocol frameworks, these are
initially compared in a simple modeling task, the muddy children [58]. Modeling this puzzle,
it is concluded that the intensional protocols approach has an advantages in being finitely
representable.

Ensuingly, the epistemic temporal structures are introduced, along with 8 structural proper-
ties. Having defined how to generate a big model from an intensional protocol, a first result
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is shown: 7 of the 8 properties are necessary consequences, but the 8th is not. Conversely,
it is shown that if a epistemic temporal model possesses all 8 properties, then there exists
an intensional protocol that will generate it. These two results almost constitute a charac-
terization of the epistemic temporal models that can be build using intensional protocols,
but not quite. When attention is restricted to situations where both the epistemic temporal
model and the intensional protocol satisfy two additional finiteness criteria, then a proper
characterization is obtained: The eight properties are both necessary and sufficient. These
technical results are the main results of the paper.

Subsequently, the paper focuses on a difference between the two protocol frameworks not
mentioned above: Originating from mappings, dynamical systems are deterministic: Given
an input, they produce one output only. Extensional protocols are more general, and allow
for non-deterministic protocols. To facilitate comparison, Paper iii therefore turns to epis-
temic temporal models generated by sets of dynamical systems, imitating non-deterministic
evolution, and identifies necessary properties inherited by the resulting epistemic temporal
models.

Finally, the paper compares the two protocol frameworks. It would be wonderful to be able
to shortly list the exact difference between the two, but a comparison is not trivial: There
are subtle details in the two frameworks that make some properties of the generated mod-
els natural for the one, but not for the other, and vice versa. In particular, working with
pointed Kripke and action models is a prerequisite in the dynamical systems approach and,
as a consequence, some of the characterizing properties are relative to structural features
of models’ points. Working with pointed models is not a prerequisite in the extensional
protocols framework, so the results of van Benthem, Gerbrandy, Hoshi and Pacuit concern
properties without reference to such. This makes a direct comparison difficult: In attempt-
ing to abstract away from the points of pointed models, structural features important to
the dynamical systems approach are ignored, yielding a sub-optimal comparison.24

In a rough summary, the comparison of the two frameworks shows that i) every intensional
protocol may be mimicked by an extensional protocol but not vice versa, albeit even for
finitely represented intensional protocols, the mimicking extensional protocol may require
a countably infinite representation; ii) as a consequence of the possibility of mimicking,
the epistemic-temporal agent types implicitly encoded using intensional protocols inherit
the rationality properties shown in [28] to characterize extensional protocol agents; iii) in
addition, intensional protocol driven agents (and models) satisfy the stronger uniformity
property that identical circumstances produce identical reactions, reflecting that intensional
protocols are mappings. This property is not satisfied by extensional protocols, as these
dictate actions upon consulting an “external clock”.

24Should one seek an exact comparison between the two frameworks, my suggestion would be to re-
undertake the original study of van Benthem, Gerbrandy, Hoshi and Pacuit, but using pointed models.
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For the thesis at large, the results of Paper iii contribute that the dynamical systems ap-
proach to modeling information dynamics does not stand back to the extensional protocols
approach: Each has benefits over the other and framework choice would advisably be made
based on application.

6 Paper iv: Proof of Concept

Like Paper iii, Papers iv and v also concern two frameworks, though this time around,
the relationship of interest is not a comparison, but an embedding. In these two papers,
Dominik Klein and I approach the problem of how logical dynamics of dynamic epistemic
logic may be recast in a manner that allows for analysis through topology and dynamical
systems theory.

When discussing dynamical systems up to this point, this has been done with reference
to the broad conception from Paper ii: A set together with a map acting on it. In most
treatments, however, a more advanced starting point is taken by assuming that the set has
some sort of structure and that the map somehow behaves reasonably with respect to this
structure. Specifically, a topological dynamical system is often defined as a metrizable compact
topological space together with a continuous map acting on it (see e.g. [57, 152]).

The two questions of what that means and why one would want it are not equally hard to
answer. The latter is easier: The properties are desirable as they impart structure, structure
facilitates proving theorems, and theorems aids in understanding the often complex beast
under investigation. As topological dynamical systems have been investigated extensively in
both pure and applied mathematics since the early twentieth century, the hope Dominik
and I share is that some of the theoretical developments will aid our understanding of logical
dynamics. Paper iv is a first proof of concept.

On to the harder question: First, what is relevant here is first the slightly simpler notion
of a compact metric space. An intuition is an ordinary room with objects in it, including a
ruler. The ruler may be used to measure the distances between the objects: It provides a
metric on the set of objects. The walls of the room provide boundaries: They ensure that
all the objects in the room are within finite distance of each other, that there are no infinite
horizons. The room is then called compact. Jointly, the objects, the ruler and the walls
constitute a compact metric space.

To illustrate continuity, put a person in the room and watch them behave, watch them move
about. At a later time, it becomes of interest to duplicate the first behavior, up to some given
margin of error. If we are then allowed also a very small margin of error in putting them
back into their original position while their behavior still stays within the desired range,
then they are continuous. In short, If close outputs are desired, then close enough inputs
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suffice. On the other hand, if the person sometimes immediately does something erratic
just because the initial position was off the slightest, then they are discontinuous. Erratic
people are not the easiest to work with—and the same goes for maps.

A topological dynamical system is, then, a room with a non-erratic person, and the study
of a topological dynamical system concerns how the person moves through the room as
time progresses. Questions asked may include where the person moves given some start
state, whether there are points in the space with respect to which the always stays close, or
perhaps whether there are points that the person always returns to after some time.

Paper iv contains a set of results on the long-term dynamics of multi-pointed action models,
recast as topological dynamical systems. The paper relies heavily on the work on metrics
and topologies developed in Paper v, detailed in the next section.25 Paper iv is included
before Paper v in this thesis as it includes a self-contained overview of the approach as well
as a concrete motivating problem of study, two features which in combination hopefully
eases the reading of the theoretical Paper v.

The results concern a conjecture by Johan van Benthem, concerning the long-term behavior
of a particular type of maps: Those based on finite action models and without postcondi-
tions. The conjecture was that whenever a such was iteratively applied to a finite pointed
Kripke model, it would have a periodic orbit. I.e., after finite time, it would return to to a
point previously visited, from where it would loop. This was the content of van Benthem’s
Finite Evolution Conjecture [21]. The conjecture was refuted using a counterexample by
Thomas Sadzik in his 2006 paper, [141].

In the Finite Evolution Conjecture, the requirement is that the map returns exactly to a
point it has previously visited. However, if working in a metric (or just topological) space,
there are weaker concepts of “returning to”. In particular, the concept of a recurrent point
is of interest: Roughly, a point is recurrent if, when the map moves on from it, then no
matter where the map goes, it will again return to being arbitrarily close to the point. This
may not happen in finite time, but the map will—in the very long run—return.

Paper iv, then, in a sense, investigates a weakening of the Finite Evolution Conjecture: Will
every finite action model when iteratively applied to a finite pointed Kripke model give rise
to a finite set of recurrent points?

To use the topological notion of recurrence, a topology is required. However, the topology
will taint the results: What is recurrent in one topology may not be recurrent in another.
In general, the topological results are only interesting to the degree that the topology fits
with the intuitions of the subject matter. Paper iv therefore first seeks a topology that fits

25The difference between the settings in Paper iv and Paper v is small, with the setting of Paper v slightly
simpler: In defining modal spaces, the logic is not necessary in defining the quotient, and is consequently
omitted in Paper v.
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with natural intuitions about logical dynamics.

Though our approach to topology was originally driven by metrics—as is visible from Paper
v—Paper iv takes a different starting point, namely convergence. Informally, a sequence of
points converge to some final destination when for no matter how small a distance, there
is some element in the sequence that is within that distance from the destination, and
so is every element after it. Roughly, the sequence forever grows closer and closer to the
destination.

In Paper iv, we suggest a logical analogue of this geometric intuition: A sequence of models
logically converge to some destination when for every formula of the chosen language which
is satisfied at the destination, there is some element in the sequence that satisfies that for-
mula, and so does every element after it. Roughly, the sequence forever grows more and
more like the destination.

Logical convergence is then used to discriminate between topologies: We seek one satisfying
the intuitive demand that a sequence topologically converges to a point if, and only if,
the sequence logically converges to the point. We find that the Stone topology satisfies the
desideratum where others fail. The Stone topology is further natural from a logical point
of view: It is induced by a basis of clopen sets with each basis element the truth set of a
formula. Based on these reasons, we feel that the Stone topology is sufficiently natural to
make results concerning recurrence in it interesting.

Paper iv could have contained a stronger argument for the choice of topology: In Paper v,
it is shown that the desideratum in fact characterizes the Stone topology.

Relative to the Stone topology, Paper iv then shows three main proposition concerning up-
date with finite action models. The first result is immediate when combining the topolog-
ical approach with a result shown by Sadzik: Every finite action model with only Boolean
preconditions and without postconditions have exactly one recurrent point. Somewhat
ironically, an application of the proposition shows that Sadzik’s counterexample to the Fi-
nite Evolution Conjecture in the topological setting converges: It has a single recurrent
point. Where in the non-topological setting, the example constitutes a complex dynamics
never returning to the same point, in the topological setting, it constitutes a very simple
sequence.

The analysis of Sadzik’s example shows the usefulness of the topological approach to log-
ical dynamics. Analyzing the example in the non-topological setting is somewhat akin to
analyzing the sequence 1, 1

2 ,
1
4 ,

1
8 , ...without a metric for measuring distance between num-

bers: That sequence, too, never returns to the same point. Treating numbers as—well, as
numbers, the sequence may never return to the same place, put it’s clearly going somewhere:
To 0. In this light, the sequence is not infinitely complex, but nicely structured.
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Paper iv’s last two propositions on recurrence show that once updates are allowed to be
more complex, they are no-longer guaranteed to produce so nicely structured dynamics:
Both finite action models with Boolean preconditions and with postconditions, and finite
action models with non-Boolean preconditions, but no postconditions, may produce orbits
with uncountably many recurrent points. Hence, a conjecture concerning the finiteness of
the sets of recurrent points would be incorrect.

The proofs of two latter propositions rely on the Turing completeness of the respective classes
of maps, the first class shown such by Thomas Bolander and Mikkel Birkegaard Andersen in
[36], the second by Dominik Klein and I in the note Turing Completeness of Finite Epistemic
Programs, included as an appendix to Paper iv.

For the thesis at large, the results of Paper iv provide a proof of concept for the applications
of the topological concepts from dynamical systems theory to logical dynamics: In light
of the concepts of convergence and recurrence, insights into the structure of the unfolding
dynamics are discernible where without they are not. To iterate the point, then these results
are only interesting to the degree that the Stone topology is found natural, a point which
recurs in Paper v.

7 Paper v: Metrics and a Topological Basis

Where Paper iv concerns recurrence in the Stone topology, the joint work with Dominik
initiated with a search for metric between pointed Kripke models: As a metric induces a
topology while representing distance in an intuitive manner, finding a natural metric is a
possibly more intuition-rich approach to obtain a natural topology.

Indeed, the first metric we designed was heavily based on our intuitions of what makes
pointed Kripke models more or less alike: It is included in Paper v in the example Close
to Home, Close to Heart. It is included as one among several examples as we have since its
design severely generalized the approach. Thus, the starting point of Paper v is not a metric
applicable to sets of pointed Kripke models, but a family of metrics applicable to sets of
countably infinite strings. By extension, these metrics are applicable in general to formal
structures serving as semantics for countable languages. Among such are pointed Kripke
models, on which the paper focuses.

The intuition behind the original metric illustrates the general approach: Think of going
out the door, taking a walk past a sequence of features. You pass by an open shop, a broken
tile, a filled bike-rack, and so forth. The next day, take the same walk: The shop is still
open, the tile has been fixed, the bike-rack is still filled. Throughout the walk, you witness
similarities and differences. How alike are these walks? If all the possible walks were objects
in a room, how far would these two be apart?
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If the all the walks are finite, then one solution is straightforward: Simply count the number
of differences between any two walks. If there are three differences, then the distance is 3.
If the walks pass by some number n features, then the most different walks will be n apart.
This way of measuring distance, this metric, is known as the Hamming distance [80].

If the walks are infinite, however, then the Hamming distance doesn’t work: Two walks
may then be different on an infinity of features, but as “infinitely far apart” is not an entry
on any regular ruler, it is not an acceptable answer.

Working with formal models, infinite walks occur more often than not, so the Hamming
distance is not applicable. This is where the intuition behind the Close to Home, Close to
Heart metric enters the picture. The idea is that all differences should weigh in, but not
equally much. Specifically, the further from the front door a difference is seen, the less
it counts. If the weights of the different features are then picked suitably, adding all the
weighed differences between any two walks will be a real number, present on the ruler.

One way to pick the weights in a suitable manner is to pick them so they give rise to a
convergent series: An example is 1, 1

2 ,
1
4 ,

1
8 , ... Thought the sum of these numbers, 1 + 1

2 +
1
4 +

1
8 + ..., contains infinitely many terms, the result is still finite: In this case, it’s 2. That,

then, is the maximum distance between two walks, using these weights. If only the two
walks differ on features 2 and 4, the difference is 5

8 .

Interpreting the features met on the walk as formulas being either true or false, this weighted
Hamming distance for infinite sequences26 defines a metric on (quotients of ) sets of formal
structures, in particular on sets of pointed Kripke models.

This first metric induces a well-behaved topology, with respect to which maps induced by
multi-pointed action models with postconditions applied using product update are con-
tinuous. Under this metric, then, sets of pointed Kripke models under the action of such
induced maps constitute topological dynamical systems. Success.

However, as in the case of the choice of topology in Paper iv, results obtained using a metric
are tainted by the choice of metric: If the metric is not right for the subject matter, then
neither will be the results.27

There are many cases where this first metric is not right, as when one cares more about
other properties of features than when on the walk they are met. Very reasonably, one
might consider that it makes a bigger difference between walks if a favorite café on the
other side of town is one day a bookstore, than if a tile just outside the door has been fixed.

26To the best of our knowledge, the generalization is new—at least we have failed to find it in the compre-
hensive Encyclopedia of Distances [47].

27We thank Johan van Benthem for this critical point, without which we might have stayed satisfied with
the single metric. The point was in private conversation: Any possible misconstrual is fully my responsibility.

40



Moreover, one may no even care about certain features, like the tile.

Based on these considerations, Paper v presents a general approach to defining metrics
for formal structures described by countable languages. The approach combines weighing
with the Hamming distance, but allows adjustments of the weights as one sees fit together
with a few additional generalizations. Paper v makes the the approach formally precise and
investigates it.

Having introduced the approach to metrics and their application to formal structures in
general, the paper turns specifically to pointed Kripke models, initially illustrating the gen-
eral approach applied. Ensuingly, the paper shows a number of examples, defining various
metrics natural from a modal logical point. One of the examples show that the syntactic
approach adopted strictly generalizes several other metrics from the very recent literature.

The paper then turns to topology. Initially, the paper shows that two metrics are topo-
logically equivalent whenever they agree on which formulas of the modal language should
receive strictly positive weight. The resulting topologies are slight generalizations of the
Stone topology, which we refer to as as Stone-like topologies.

Having established this initial result, Stone-like topologies become the focal point. They
are shown to be always Hausdorff and totally disconnected. Moreover, if one is so lucky that
certain assumptions apply, they are also compact.

The same section also paints a picture of Stone-like topologies by relating their open, closed
and clopen sets to formulas of the modal language. In this respect, Stone-like topologies
are well-behaved, in particular in the compact case. There, a set is clopen if, and only if, it
is the truth set of some formula.

The paper then turns to convergence and limit points. Here, the result mentioned in Sec-
tion 6 on Paper iv is stated and shown: The Stone-like topology for a set of formulas D
is the unique topology for which logical convergence with respect to D is equivalent with
topological convergence.

It is not in the style of Paper v to dwell on its results, but for the sake of this exposition, the
result should be highlighted: Conceptually, the results implies that if one agrees that logical
convergence captures the intuition of convergence when working with logical dynamics,
then the unique topology that will be satisfactory is the corresponding Stone-like topology.
Essentially, then, if one want to work with logical convergence, then working with the
Stone-like topology is the choice of topology that does not taint results.

Beyond this key conceptual result, Paper v presents a simple characterization of isolated
points and exemplifies perfect, imperfect and discrete spaces. In the compact case, the
former of these types are homeomorphic to the Cantor set.
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Figure 4: The three epistemic states of the dynamics from Section 2, labeled on the left by time.

Finally, the paper turns to mappings, where the continuity result mentioned above is gen-
eralized: Maps induced by multi-pointed action models with postconditions applied using
product update are continuous with respect to the Stone-like topology. With this result, the
paper establishes the desired connection between dynamic epistemic logic and topological
dynamical systems, essential for the thesis at large.

8 Paper vi: Reduction Laws and Continuity

Papers i-v have focused on one aspect of the perspective mentioned in the, namely to for-
malize models as mappings, a not quite common community practice. That the updates
used in model building allow for reduction laws, though, is so much common practice as
to almost characterize the community.

Reduction laws have hitherto been mentioned but in parsing, as they make no entries in
the thesis but in the final Paper vi. Equally, the logic which is dynamic epistemic logic has
been glanced over: Up to now, only the semantic side of dynamics has been considered.

To sketch the approach, consider again the sequence of the three epistemic states produced
by the dynamics in Section 2, as shown in Figure 4.

The formal language introduced included knowledge formulas to talk about the agents’
information. The first epistemic state satisfies¬Kap∧¬Kbp, the second satisfies Kap∧¬Kbp
and the third Kap ∧ Kbp.

The first step in creating a logic of these dynamics involve extending the formal language
in a way so it can also talk about dynamics. This is done by augmenting the language with
so-called dynamic operators. To describe the above dynamics, two such are needed, one for
each informational event. Let Σ1 denote the model transformation defined by the pointed
action model that applied using product update produced epistemic state 2 from epistemic
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state 1, and let Σ2 denote that produced 3 from 2. The “dynamic diamonds” ⟨Σ1⟩ and
⟨Σ2⟩ are then our two dynamic operators.

To include the dynamic operators in the language, augment the grammar so that both
⟨Σ1⟩φ and ⟨Σ2⟩φ are formulas whenever φ is. The formula ⟨Σ1⟩φ states, roughly, that
applying Σ1 to the current epistemic state produces an epistemic state in which φ is true.
For a precise semantics, see e.g. [20].

In epistemic state 1, the dynamic formula ⟨Σ1⟩Kap is then true, as verified by checking
that Kap is satisfied in epistemic state 2. On the contrary, both ⟨Σ1⟩Kbp and ⟨Σ2⟩p are
false, but for different reasons: The first fails as Kbp is false in epistemic state 2, the second
because Σ2 cannot be applied successfully to epistemic state 1—its execution requires that
the precondition Kap of the actual event is true in the epistemic state, but it is not. However,
the more complex ⟨Σ1⟩⟨Σ2⟩p again is true: In epistemic state 1, applying Σ1 takes us to
epistemic state 2 where applying Σ2 produces epistemic state 3, satisfying p.

With dynamic operators, it thus possible to talk about the semantic dynamics using the
formal language. As a result, it is possible to construct logics for the dynamics: Formal
theories proving properties about the dynamics, cast in the formal language. Now, logics
for Kripke models cast in languages without dynamic operators are common place: If we
ignore the dynamic part of the story, then it is often a simple task to find a logic that is
sound and complete with respect to the class of models use to represent the static states.28

Enter reduction laws: A reduction law is a formula which claims the equivalence of a for-
mula with a dynamic operator and a formula without it.29 If such a reduction law is valid
on the class of models of interest, then it allows one to reformulate the dynamic statement
to a static statement—it allows the reduction of dynamics to statics.

Here’s the kicker: If one can find a reduction for every dynamic formula, then adding
the corresponding (valid) reduction laws to the static logic as axioms results in a dynamic
logic that is sound and complete for the dynamic semantics of interest. As logicians revel
in sound and complete axiomatizations for semantics, and dynamic semantics have been
immensely popular over recent years, the contemporary literature is brimming with new
semantic dynamics, dynamic languages, and dynamic logics based on reduction laws.

This is point of entry of Paper vi. It proves two characterization theorems linking the topo-
logical approach of Papers iv and v with the reduction law approach to completeness. The
theorems are of similar form and apply to respectively compact and non-compact logics.
Roughly, the theorem for the compact case states the following:

28A logic sound with respect to a class C proves only things that are true (valid) in C. A logic complete with
respect to C proves all the true (valid) things. Thus, a sound and complete logic complete with respect to C
captures all and only truths (validities). In short, it’s a very, very nice theory.

29Or at least with a lower dynamic complexity, but for details see e.g. [54].

43



Let f : S → S be a map on a set of structures S described by a static language L. Let ⟨f ⟩ be
the dynamic operator of f and Lf the dynamic extension of L. Then Lf is reducible to L
if, and only if, f is continuous with respect to the Stone topology on S.

The left-to-right direction also holds in the non-compact case, but the right-to-left direction
needs a stronger notion than continuity. Paper vi shows that requiring that the preimage
of any basis element is a basis element does the job. Maps of this type are dubbed confined.

In one reading, the characterization theorems of Paper vi thus show that to recast reduction
law-friendly logical dynamics as topological dynamical systems, one only needs to sprinkle
on a bit of math: The Stone topology.

9 Concluding Remarks

As stated in the introduction, the topic of this thesis is information dynamics and how to
formally model them using dynamic epistemic logic. The perspective investigated is simple:
Formalize the model as a map that allows for the formulation of reduction laws. Then, with
a bit of math sprinkled on top, the model will be a topological dynamical system.

Though Papers i-vi were not written with the forethought of composing a coherent argu-
ment concerning why this perspective is reasonable nor with the forethought of establishing
the stated consequence, I hope that the above exposition lends credit to the case. In sum-
mary, a tentative argument may be put together as follows.

Paper i on the bystander effect shows how augmenting the standard machinery of dynamic
epistemic logic with a decision making framework yields mathematically self-contained
models of dynamic processes, a prerequisite for rigid model comparison.

Paper ii extrapolates from Paper i’s construction, showing how the added decision making
framework and its natural peers may be construed as maps. It makes the link to dynamical
systems explicit, and shows that under the restriction of dynamics produced by the iteration
of the identified maps still falls a collection rich enough to be of interest.

Paper iii compares the dynamical systems approach of Paper ii with the main existing aug-
mentation to dynamic epistemic logic for obtaining self-contained models, namely exten-
sional protocols. It concludes that each framework has its benefits, depending on appli-
cation. In favor of the dynamical systems approach, it shows how extensional protocols
designed to mimic simple, finite models of the former kind require infinite representations.

With Paper iv, the focus shifts to topological dynamical systems. The paper argues that
the Stone topology is a natural topology under which to investigate logical dynamics by
showing that it satisfies the intuitive desideratum that an introduced notion of ‘logical con-
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vergence’ coincides with topological convergence. Ensuingly, the paper investigates the
recurrent behavior of the map types from Papers ii and iii, where it is shown that the topo-
logical perspective adds novel, structural insights to the analysis of their long-term behavior.

Paper v provides the theoretical backbone of Paper iv, but also shows an important strength-
ening of the argument underlying the choice of analyzing logical dynamics under specifi-
cally the Stone topology: It shows that the Stone topology is the unique topology for which
the logical and topological convergences are equivalent. It further includes a metric-based
proof that the hitherto analyzed maps are continuous with respect to the Stone topology.

Paper vi, finally, shows a tight connection between continuity in the Stone topology and
the existence of reduction laws for dynamic modalities, in the compact case even yielding
a characterization. With showing that reducibility always implies continuity, the results of
Paper vi makes it straightforward to recast many types of logical dynamics of contemporary
interest as topological dynamical systems.

In sum, then, taking a dynamical systems perspective on logical dynamics increases rigidity
in model construction while allowing large freedoms in the dynamics representable, on
top of which there is a unique natural candidate topology allowing for novel structural
insights of the behavior of maps that may in addition be shown continuous by the well-
established logical method of reduction laws. With that, the thesis formulates a bond
between relatives, with the hope that it will be seen as a reasonable contribution to logic
and formal epistemology.

Of course, nothing shows a contribution reasonable as the further research it can help
facilitate. The following three venues stand salient:

A first venue is to explore the promised lands of dynamical systems theory and its region
of logical dynamics. The dynamical systems theory is rich with concepts, methodologies
and results which may be of aid and interest in analyzing logical dynamics. To under-
stand which tools are applicable and how to wield them in the logical setting is a broad
endeavor. With Paper iv, the thesis takes a first step, showing that the maps induced by
multi-pointed action models and product update show so-called nontrivial recurrence, a
term adopted from Hasselblatt and Katok’s survey of the dynamical systems field, [85]. The
authors remark that it is the first indication of complicated asymptotic behavior, but that it
in come low-dimensional systems it is possible to obtain comprehensive description of it.
As the Stone topology is 0-dimensional, a concrete place to start a survey is on recurrence,
in the references provided by Hasselblatt and Katok on low-dimensional spaces. Similarly
starting from 0-dimensionality is in seeking insights from of well-known setting sharing
this feature, such as Cantor spaces, and shifts and symbolic dynamics [118, 152]. Hopefully,
studies on these topics will provide general tools to illuminate structural features of logical
dynamics.
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A second venue is applications in formal epistemology. Paper iv remarks on a puzzling
aspect of common knowledge: Where it cannot be attained by asynchronous communi-
cation in finite time [58, 59, 79], it may be obtained semantically in the limit—but only
in languages without the formal operator. Hence, you can attain common knowledge in
the limit iff you cannot talk about it. There is an interplay here between expressibility,
non-compactness, topology and formal epistemology which I hope to address with Do-
minik in later work. Of interest here is also whether the alternative notion of relativized
common knowledge [27]—which in contrast to the standard notion plays nice with reduc-
tion axioms—will facilitate agents’ getting it right. But formal epistemology is not only
about getting it right—it’s also about understanding the structures involved in getting it
wrong. Paper i is an example, and so is the classic model of informational cascades [33].
Logical models have captured the higher-order reasoning by which individually rational
agents as a group go wrong when cascading [1, 11, 135]. With dynamics highly dependent
only initial conditions, it is possible that these—and other social influence dynamics—are
chaotic, but might be nudged towards socially desirable attractors [152]. How specifically
to study such information control problems is an open, but engaging problem [82, 83]. As a
final topic pertaining to formal epistemology, then the relations between logical dynamics
cast in dynamical systems and formal learning theory [67, 68, 87, 98] deserve clarification.
Formal learning theory is well-established in formal epistemology and deals with topics
and concepts also arising with the dynamical systems approach, such a long-term and limit
behavior, topology and convergence, applied in relation to rational learners. With the link
between dynamic epistemic logic and formal learning theory already established [67], the
hope is that the addition of the topological, dynamical systems perspective could be of
mutual interest.

A third venue concerns the logic of the dynamical systems approach to dynamic epistemic
logic. As mentioned in Section 8 on Paper vi, sound and complete logics may be obtained
through reduction laws for certain model transformations. However, formulas with dy-
namic operators are still finite, and can therefore only talk of finite dynamics from any
given pointed Kripke model. With the Finite Evolution Conjecture mentioned in Section
6 on Paper iv is refuted and relevant properties of dynamic epistemic logical dynamics oc-
curring in the limit, it thus seems that the finite horizon language of dynamic modalities
stay silent on dynamically relevant properties. To capture these aspects of the dynamic
epistemic logical semantics, it seems that a different language is required. To find a suitable
language, it may serve to consult a body of logical literature which takes perspective on the
interplay of logic and dynamical systems opposite of this thesis: Applying logics to dynam-
ical systems. In this line, Sarenac takes a modal approach to describing iterated function
systems[143] and Platzer takes a dynamic logic approach to hybrid systems [131, 132], while
van Benthem outlines possible approaches to fixed points and limit cycles of dynamical sys-
tems by applying fixed-point and oscillation operators galvanized by modal µ-calculus [26].
Directly focused on logics of topological dynamical systems is the literature on dynamic
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topological logic, springing from early work by combinations of Artemov, Davoren, Kre-
mer, Mints, Narode and Rybakov [6, 45, 103, 104, 106] in the late 1990’s. Both Kremer and
Mints’ handbook chapter [105] and the series of papers by Fernandéz-Duque [60, 61, 62]
seem of especial interest, with results on, respectively, continuous maps on Cantor spaces
and metric spaces. Whether either of these approaches may capture the dynamics of dy-
namic epistemic logic to satisfaction is an open question—looking at logical dynamics as
dynamical systems allows it to be posed.
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Abstract The goal of the present paper is to construct a formal explication of the
pluralistic ignorance explanation of the bystander effect. The social dynamics leading
to inaction is presented, decomposed, and modeled using dynamic epistemic logic
augmented with ‘transition rules’ able to characterize agent behavior. Three agent types
are defined: First Responders who intervene given belief of accident; City Dwellers,
capturing ‘apathetic urban residents’ and Hesitators, who observe others when in
doubt, basing subsequent decision on social proof. It is shown how groups of the latter
may end in a state of pluralistic ignorance leading to inaction. Sequential models for
each agent type are specified, and their results compared to empirical studies. It is
concluded that only the Hesitator model produces reasonable results.

Keywords Bystander effect · Pluralistic ignorance · Social dynamics · Social proof ·
Social influence · Dynamic epistemic logic

1 Introduction: the bystander effect and pluralistic ignorance

On March 13, 1964, in Queens, New York, Catherine Susan “Kitty” Genovese was
raped and stabbed, the assailant fleeing multiple times during the ongoing assault that
resulted in Genovese’s death. Multiple residents witnessed parts of the nearly one hour
long attack, without successfully intervening.

The foremost explanation put forth in the ensuing media coverage was apathy
among urban citizens. Through the pressures of city life, “homo urbanis” has lost his
sense of empathy for fellow man, all but grown indifferent to their quarrels (Latané and
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Darley 1968, 1970). This explanation struck social psychologists John M. Darley and
Bibb Latané as incorrect, whereupon they set out to provide an alternate explanation.
The first publication of experimental results is the classic (Latané and Darley 1968),
which was soon followed by a vast amount of studies (see Latané and Nida 1981 for a
review). In these studies, focus has been moved from why urban citizens do not help,
to why people in groups are less prone to help. The collected data shows a robust
tendency, namely that the chance of help being offered diminishes as the number of
witnesses increases. This tendency will be referred to as the bystander effect.

1.1 An explanation of the intervention process

One currently used text-book explanation (see e.g. Myers 2012) of the bystander
effect stems from Latané and Darley (1970), and involves three steps which each
bystander must go through before he or she will intervene.1 First, a bystander must
notice the event in question. With busy street life involving traffic and pedestrians, the
risk of overlooking a seizure is higher than on desolate streets. Where the problematic
situation goes unnoticed, help will not be offered. Second, if noticed, the bystander
must interpret the event in order to decide whether an emergency is occurring or not.
In many cases, this will not prove to be a problem: situations involving car accidents
or bleeding victims are seldom epistemically ambiguous. However, a man slumped on
a bench may provide an epistemic conundrum, as he may be merely mumbling curses
against the general youth, marooned following a too Saké intense business lunch, or
moaning in pain from the onset of a seizure. Such ambiguities may be sought resolved
by the acquisition of further information, readily present in the form of social proof :
if other bystanders are not showing signs of distress, the event will be perceived as
less critical and therefore ultimately bypassed. Third, in case the event is interpreted
as requiring help, the bystander has to gauge whether to take responsibility: when
alone, there is no question as to who should intervene, but when gathered in groups,
diffusion of responsibility may arise. Such diffusion may be caused by uncertainty as
to whether we are among the best qualified to handle the situation, whether others have
already called for paramedics or are just about to act. When alone, the responsibility to
intervene rests on one individual, but when in a group, the same pressure is apparently
distributed among all, thereby diminishing the chances that anyone will act.

1.2 Pluralistic ignorance

The goal of this paper is to model the social informational dynamics and decision
procedures running the second of these steps, specifying conditions under which a
group of agents in an ambiguous situation may choose to seek social proof in order
to individually determine a correct course of action and the associated consequences
thereof, hereby providing a detailed explanation for (this part of) the bystander effect.
This narrower focus is taken as the second step of the bystander effect explanation

1 For a comprehensive walk-through of this explanation and supportive data, refer to Latané and Darley
(1970).
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constitutes an interesting informational dynamics in its own right, useful to the analysis
of social situations in which neither distractions nor diffusion play important roles.

The second step of the dynamics revolve around a belief state often referred to
as one of pluralistic ignorance: a situation in which everybody believes that every-
body else believes a given proposition/endorses a given norm, while no-one in fact
believes it/endorses it.2 Pluralistic ignorance has been put forth as a decisive factor in
a plethora of social situations, including the introduction of various unpopular norms
such as college binge drinking (Prentice and Miller 1993) and violent gang behavior
(Bicchieri and Fukui 1999), the persistence of poor strategies in light of poor firm per-
formance (Westphal and Bednar 2005) and lack of help seeking in class rooms (Miller
and McFarland 1987); the allowance of ongoing mortgage deed merry-go-rounds in
Denmark during the financial ‘upswing’ of 2007 (Hendricks and Rasmussen 2012;
Hansen et al. 2013).

Pluralistic ignorance may cause individuals not to act for more than one reason.
One may be due to social inhibition—you may not wish to be the only one raising
your hand to ask a question. Here, inaction results from vanity and social identity.
There may be doubt—you may not wish to call the police if there is no cause for
alarm. In case of doubt, inaction follows from incorrect information processing. Both
causes may individually lead to inaction and may further co-occur. In the following,
‘pluralistic ignorance’ will be used to refer only to processes of the latter kind.

1.3 Structure of the paper

In Sect. 2, an example of a social dynamics involving pluralistic ignorance which
lead to unfortunate inaction is presented, and an informal sketch of the information
processing involved is outlined, the structure of which is used as a guideline for the
formal representation. In Sect. 3, elements from dynamic epistemic logic (DEL) are
presented. DEL is the primary modeling tool, used to represent static epistemic states
and belief revision in light of new information. Section 3 also presents the modeling of
the occurrence of ‘the accident’. In Sect. 4, it is shown how agent types may be defined
for DEL, hereby augmenting the framework with a notion of choice agency. Three
agent types relevant to the bystander effect are defined: First Responders, a ‘good
samaritan’ type agent, who will choose to intervene in emergencies if she believes
one such is occurring; City Dwellers, capturing the ‘apathetic urban resident’ and
Hesitators, who observes others when in doubt. In Sect. 5, it is shown how Hesitators’
misinterpretation of other Hesitators’ choice to observe may lead to a state of pluralistic
ignorance. Coupled with Hesitators basing subsequent action on social proof obtained
through observation, it is further shown that this agent type will choose to evade the
scene of the accident, though they privately believe there is cause for intervention.
In Sect. 6, models run with each of the three agent types are compared to empirical
studies. It is concluded that the Hesitator model is the only of the three producing
reasonable results. In Sect. 7, we conclude.

2 Halbesleben and Buckley (2004) provides an illuminating overview of the history and development of
the term.
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2 From ambiguity to inaction

Consider the following example, inspired by Halbesleben and Buckley (2004). A firm
is performing poorly and this is caused by the currently implemented business strategy.
Every member of the board of directors has equal access to the relevant information
pertaining to strategic choice and firm performance, which to each member strongly
indicates that the prudent action is to change strategy. The available information is,
however, not conclusive: the possibility that a strategy change will leave the firm
performance-wise worse off cannot be ruled out. Hence, every board member is in an
epistemically ambiguous situation, where they privately believe intervention will be
fruitful, but all would prefer additional information before settling for a vote against the
status quo. As the voting situation arises, all seek such further information from their
peers, hoping that the votes of others will illuminate them. As all look to each other,
nobody initially raises an objection, which is interpreted by others as the choice that no
objection need be raised. Hereby, all conclude that their intelligent peers believe that
the status quo should not be changed. This perceived consensus among peers is then
seen as providing evidence to the conclusion that the currently implemented strategy
is in fact desirable. Having thus reflected, board members choose not to intervene in
the status quo, and the low firm performance continues another term or two. Though a
fictitious example, pluralistic ignorance does occur on corporate boards, often resulting
in poor strategic decisions (see Westphal and Bednar 2005).

While the example differs in topic from a street accident, the two share common
information dynamics. The street incident revolves around the commonly unwanted
case of physical pain, the board meeting example focuses on the commonly unwanted
event of a sub-optimal status quo strategy. Both involve uncertainty about whether an
unwanted situation is the case or not, both require intervention in case the unwanted
situation indeed is occurring, and both allow for the gathering of further information
by observing peers.

Notice how the example implicitly utilizes two instances of pluralistic ignorance.
First, there is one instance of what may be called norm-based pluralistic ignorance:
though every member uses the decision rule “if in doubt, seek further information”,
they assume that others will follow a different rule, namely “if in doubt, raise an objec-
tion”. This is an instance of pluralistic ignorance as everybody believes that everybody
else follows a given norm (here, a decision rule), while in fact no-one follows it. The
second instance of pluralistic ignorance is proposition-based: everybody ultimately
believes that everybody else believes that status quo is fine, while everybody privately
believes the strategy should be changed.

The dynamics involved in the example may be decomposed into eleven elements
(see Fig. 1): six static states and five state-altering transitions. To start from scratch,
in the first state, nothing has happened (1). This is followed by the occurrence of an
event, epistemically ambiguous between being an accident (stabbing, onset of poor
performance) or nothing of consequence (dispute, reasonable performance) (2). This
event results in a second state, where everybody privately believes that an accident
occurred, while remaining ignorant about the beliefs of others (3). Based on this state,
one may choose to intervene (rush to help, object to strategic choice), may choose
actively to evade (ignore the stabbing, withhold objection), or may choose to seek
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Fig. 1 Flowchart of the dynamics leading to the bystander effect. Boxes with solid lines represent epistemic
states—boxes with dotted lines indicate events

further information by observing the choice made by others. Crucially, the performed
actions of evasion and observation are here considered to be epistemically ambiguous:
in seeking further information, we do not want to flaunt our ignorance, so further
observation is made discretely. Given the ambiguity of the accident, observation is
chosen and executed (4). It is claimed here that a crucial further element for the
dynamics is the resulting mis-perception of this choice when made by others: though
we ourselves may choose to observe, when we see others do the same, we consider it
plausible that they in fact chose to evade. Given this norm-based pluralistic ignorance,
in the ensuing third state (5), all still believe there was an accident, while believing that
all others evaded. To obtain information about the beliefs of others, their perceived
actions must now be interpreted (6): given that you evaded, what may I conclude
about your beliefs pertaining to the accident? Under the assumption that you are a
reasonably decent person, only that you believed there was none. Such interpretations
conducted by all then results in a fourth state (7) of proposition-based pluralistic
ignorance: though we all believe there was an accident, we also believe that no-one
else believes so. Revising our beliefs in the light of the obtained social proof (8), all
conclude that no accident occurred (9). Given a further chance to act (10), evasion will
be the natural choice, leading to the final state (11), where the accident in fact occurred,
everybody believed so, but nevertheless chose to evade it, due to the social information
dynamics.

3 Plausibility models for states and actions

The sketch presented above suggests several ingredients required for a suitable model,
including propositional- and higher-order beliefs (beliefs about beliefs), belief change
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Fig. 2 A simple, two agent plausibility frame, denoted F1

in light of new information and agent action. To that end, dynamic epistemic logic3 with
updating by action models with postconditions is a suitable framework: All higher-
order beliefs are specified in relatively small models, factual change may be modeled
using postconditions, and the dynamics may be built step-by-step, allowing for a
detailed overview of each step. Step-by-step construction allows for easy replacement
of single ‘modules’, whereby alternative runs may be investigated. For each such run,
the dynamics terminate when either someone agent intervenes, or all agents choose to
evade. The dynamics presented concern a three agent case, with group size variations
presented in Sect. 6. Throughout, the same complete graph ‘all see all’ social network
structure is assumed.

3.1 Statics

Multi-agent plausibility frames Where A is a finite set of agents, a multi-agent plau-
sibility frame (MPF) is a structure S = (S,≤i )i∈A where S is a finite set of states and
each ≤i is a well-preorder.4

The idea behind plausibility frames is that such encode the knowledge and beliefs
of a group of agents, A, capturing which states each agent may tell apart, and how
plausible these states are relative to one another. If two states s, t are connected by
≤i , then i cannot tell these states apart, but if s <i t (i.e. s ≤i t and t �≤i s), then
i considers s more plausible than t .5 Figure 2 illustrates a simple plausibility frame
F1 with two states, s and t , and two agents, a and b. The arrow from t to s captures
that s <b t , i.e. that b cannot distinguish between s and t , but finds s strictly more
plausible.6 Reflexive arrows will only be drawn if they are the only arrows for a given
agent. In Fig. 2, a cannot tell s from s nor t from t .

3.1.1 Indistinguishability relation: information and plausibility cells

Given an MPF S = (S,≤i )i∈A, the indistinguishability relation for agent i is the
equivalence relation ∼i :=≤i ∪ ≥i . Further, the information cell of agent i at state
s is Ki [s] = {t : s ∼i t} and the plausibility cell of agent i at state s is Bi [s] =
Min≤i Ki [s] = {t ∈ Ki [s] : t ≤i s′, for all s′ ∈ Ki [s]}. The plausibility cell Bi [s]

3 Technically, no logic is introduced; the dynamics are investigated using only model theory.
4 Reflexive and transitive binary relation where every non-empty subset has a minimal element, cf. (Baltag
and Smets 2008).
5 The relation≤i may therefore more appropriately be thought of as an implausibility relation, where s ≤i t
is read ‘t is as implausible as s, or more so’.
6 A heuristic to aid recall is that s < t in form is similar to s ← t when looking at the arrowhead. When
s ≤i t and t ≤i s, arrowheads are omitted altogether.
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contains the worlds the agent find most plausible from the information cell Ki [s] and
represent the “doxastic appearance” (Baltag and Smets 2008, p. 25) of s to i .7 Notice
that s ≤i t means that s is at least as plausible as t for i .

In Fig. 2, it is the case that s ∼a s and t ∼a t , but not s ∼a t . Hence Ka[s] = {s}
and Ka[t] = {t}. For agent b, s ∼b s, t ∼b t and s ∼b t , entailing that Kb[s] =
Kb[t] = {s, t}. However, even if the actual state is t , agent b finds s more (most)
plausible, so it is the sole element in b’s plausibility cell at t : Bb[t] = {s}.

3.1.2 Doxastic propositions

When considering plausibility frames, sets of states may be identified with propo-
sitions; e.g. the set {s} could be identified with the proposition that intervention is
desirable, and {t} with the same proposition’s negation. In this case, Fig. 1 would
represent a situation in which 2 finds it more plausible that intervention is desirable
than that it is not, while 1 would know whether or not this was the case.

More specifically, let a doxastic proposition (henceforth just proposition) be a map
P that assigns to every MPF S with state-space S a subset (P)S ⊆ S.8 Denote true,
�, false, ⊥, and Boolean operations for arbitrary propositions P and Q by

(�)S := S (P ∧ Q)S := PS ∩ QS
(⊥)S := ∅ (P ∨ Q)S := PS ∪ QS
(¬P)S := S\PS (P → Q)S := (S\PS) ∪ QS

Propositions with epistemic and doxastic modalities are given by

(Ki P)S := {s ∈ S : Ki [s] ⊆ PS}
(Bi P)S := {s ∈ S : Bi [s] ⊆ PS}

The Boolean case simply follows the immediate set-theoretic interpretation. Propo-
sitions with epistemic and doxastic operators represent statements of knowledge and
belief: Ki P / Bi P reads ‘agent i knows / believes that P’, and (Ki P)S / (Bi P)S are
the sets of states of these propositions given an MPF S. For knowledge, the definition
entails that s ∈ (Ki P)S iff for all t in i’s information cell relative to s, t is a P-state.
Belief has the same reading, but restricted to the plausibility cell for i at s.9

3.1.3 Example: King or Queen?

Assume a situation with two players, a and b, where a has one card in hand, being
either a King or a Queen. Let Q be the doxastic proposition “a has a Queen on hand”

7 The notation for information and plausibility cells are adopted from Dégremont (2010).
8 Parentheses will be omitted where no confusion should arise.
9 The reason for using this atypical definition of propositions is that it allows us to speak about the same
proposition across multiple models. This is practical as model transformations will play a large role in
the latter. A Kripke model valuation may easily be extracted from set of doxastic atomic propositions; see
(Baltag and Smets 2008) for details.
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and K ditto for King. Over F1, Fig. 1, set (Q)F1 = {s} and (K )F1 = {t} (hence
(¬Q)F1 = (K )F1 ). In this case, (Ka Q)F1 = {s}, (Kb Q) = ∅ and (Bb Q)F1 = {s, t}.
That is, in state s, agent a knows Q, in no state does b know Q, but b believes Q
in both states. The structure thus models a situation in which a knows whether she
holds a Queen, while b only has a belief this regarding. Whether this belief is correct
depends on which of the two states is the actual. Combined with such a valuation
of propositions, a plausibility frame is called a model. Denote F1 with the described
valuation SQ/K.

3.1.4 Epistemic plausibility models

Let a valuation set be a setΦ of doxastic propositions, considered the atomic proposi-
tions. An epistemic plausibility model (EPM) is an MP frame together with a valuation
setΦ, denoted S = (S,≤i , Φ)i∈A. For s ∈ PS, write S, s |� P , and say that P is true
or satisfied at state s in model S. A pointed EPM S = (S,≤i , Φ, s0)i∈A is an EPM
with a designated state s0 ∈ S, called the actual state. Where s0 ∈ PS, write S |� P .

3.1.5 EPMs and Kripke models

Where epistemic plausibility frames are special instances of Kripke frames (see e.g.
Blackburn et al. 2001), epistemic plausibility models are not special instances of
Kripke models.10 However, every EPM S gives rise to a Kripke model MK . First, let
Φ ′ be Φ where the functional nature of each doxastic proposition is ignored. Φ ′ may
then be treated as a set of atomic proposition symbols. Second, define a valuation map
‖·‖ : Φ ′ −→ P(S), assigning to the elements ofΦ ′ a set of states from the state-space
of the underlying frame. Simply let MK and S be based on the same frame, and let
the valuation map ‖·‖ for MK be given by ‖P‖ := PS, for all P ∈ Φ. The alternative
definition of EPMs is used as it is natural when dealing with doxastic propositions
rather than a syntactically specified language.

3.1.6 Relevant propositions and the initial state

To model the second step of the bystander effect dynamics for three agents, ten atomic
propositions are required. First, use A to denote that an accident has occurred. This is
the basic fact about which the agents must establish a belief. Second, each agent i ∈
A = {a, b, c}must choose one of three actions: either to intervene, Ii , to observe, Oi , or
to evade the scene, Ei . The set of these atoms is denotedΦ. As the model constructed is
temporally simple, the propositions are best read as “agent i has intervened / observed /
evaded”. It is assumed that no agent can perform two actions simultaneously, i.e. that
Ii∩Oi = Ii∩Ei = Oi∩Ei = ∅. Denote the set of all doxastic propositions obtainable
from Φ and the above construction rules by PropΦ .

The initial state (where nothing has happened) may now be represented by the EPM
S0, Fig. 3.

10 As opposed to the terminology of Baltag and Smets (2008), Benthem (2007), Demey (2011) where
epistemic plausibility models are Kripke models.
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Fig. 3 The initial state where nothing has happened; all atoms are set to false: (A)S0 = (Ii )S0 = (Oi )S0 =
(Ei )S0 = ∅

In this simple state, every agents knows exactly what has transpired so far: nothing.
All propositions are false, everybody knows this, which is again known by all, etc.
Among others, it is the case that S0, s0 |� ¬(A ∨ I1 ∨ O2 ∨ E3) ∧∧

i∈A(Ki (¬A ∧∧
j∈A K j¬A)).
The end conditions of runs mentioned in the beginning of Sect. 3 may now formally

be specified: identify the end of a run with any EPM satisfying at its actual state either∨
i∈A Ii or

∧
i∈A Ei , capturing respectively that at least one agent intervenes, or all

evade.

3.2 Changing models: action models and action-priority update.

To capture factual and informational changes that occur due to events, a static epistemic
plausibility model may be transformed using an action model, capturing the factual
and epistemic representation of the event, and the action-priority update product. The
guiding idea is that an action model encodes the belief and knowledge agents have
about an ongoing event, the information from which is combined with the static model
by taking the two models’ product: the result is a new static model in which the agents’
new information takes priority over that of the previous static model. The present
formulation rests on Baltag and Smets (2008)), with the addition of postconditions,
as used in Ditmarsch and Kooi (2008), Bolander and Birkegaard (2011). The latter
allows action models to not only change the knowledge and belief of agents, but also
effectuate ontic11 changes, needed when the environment or agents perform actions.

3.2.1 Action plausibility models

A (pointed) action plausibility model (APM)

E = (Σ,≤i , pre, post, σ0)i∈A
is an MP frame (Σ,�i )i∈A augmented with a precondition map, pre : Σ −→ PropΦ
and a postcondition map post : Σ −→ PropΦ such that post (σ ) = ψ where
ψ ∈ {�,⊥} or ψ = ∧n

i=1 ϕi with ϕi ∈ {P,¬P : P ∈ Φ}. Finally, σ0 ∈ Σ is the
actual event.

Just as every world in an EPM represents a possible state of affairs, specified by
the world’s true propositions, so every action in an APM represents a possible change.
What change is specified by the pre- and postconditions; preconditions determine what
is required for the given action to take place, i.e. what conditions a world must satisfy
for an action to be executable in that world, and postconditions what factual change
the action brings about.

11 Ontic facts are all non-doxastic facts, i.e. propositions that do not contain belief or knowledge operators.
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3.2.2 Example: King or Queen?, cont.

Continuing the example above, let now a play her card face down. Assuming that a
knows which cards she is playing, this situation may again be presented by the MPF
F1 in Fig. 1, with s representing the action ‘a plays a Queen’ and t ‘a plays a King’.
The precondition for s, that a is playing a Queen, is Q, that a has a Queen on hand,
and vice versa for t and K . Hence pre(s) = Q and pre(t) = K . Following the
play, a will either no longer have a Queen on hand, or no longer have a King. Hence,
post (s) = ¬Q and post (t) = ¬K . With these pre- and postconditions, F1 is an
action model, call it EQ/K, representing the event where a is certain that she is playing
a Queen, while b is uninformed about which of the two plays is the actual, finding it
more plausible that a plays Q.

3.2.3 Doxastic programs

Where EQ/K represents a situation where a plays her card face down, a show-and-
tell play by a is captured by the two strict subsets of the model, i.e. by the doxastic
programs ΓQ = {s} and ΓK = {t}. A doxastic program is the action model equivalent
of a proposition, i.e. a subset of all actions in the models’ event space: Γ ⊆ Σ . Over
EQ/K, the programΓQ captures the event where a plays Queen and b sees this, andΓK

the same for a playing King. In the ensuing, it will be assumed that doxastic programs
contain the actual action.

3.2.4 An accident occurs

What is a suitable APM capturing both the factual change that the accident occurs, as
well as a, b and c’s information about this? Given that the accident in fact occurs, it
is clear that the actual event σ0 of the model must change the truth value of A from
false in S0 to true in the ensuing EPM S1. Further, no agents perform actions during
the event, so post (σ0) = A.

Focusing on a, then how does she perceive the occurrence of accident? As “[m]ost
emergencies are, or at least begin as, ambiguous events” (Latané and Darley 1968,
p. 216) a will at least be uncertain regarding whether it occurs or not, and therefore
considers an alternative event τ0 with post (τ0) = � possible.12 Moreover, ex hypoth-
esi, her perception of the event indicates that in fact A, so σ0 ≺a τ0. How does a
perceive that b and c perceive the accident? Not being telepathic, a cannot tell, and
she considers it possible that both, neither, or either of b and c perceive the event as
she does. It is assumed, though, that a perceives b and c during the event as forming
an opinion about whether or not A. This assumption is made for two reasons: (1) it
produces a smaller model, and (2) pertaining to social proof, only agents perceived as
informed are interesting from a’s point of view. Variations to this assumption would
be interesting, but are not dealt with here. Finally, a must consider it possible that b

12 The postcondition� leaves all atomic propositions as they were in the previous model. This is specified
by the action priority update product below.
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Fig. 4 Agent a’s perception of the accident, σ0. All σk actions have post (σk ) = A; for all τk , post (τk ) =
�. Some links are gray only for presentation; they mirror the labels above. Diagonal links implied by
transitivity are omitted; so are many links for b and c (see Fig. 5)

and c are wrong about the way a perceives the event. Taking this into consideration,
Fig. 4 illustrates a’s doxastic perception of the accident.

Agent a considers it more plausible that an accident is occuring, but is (at this point)
agnostic about the beliefs of her peers; she finds it possible they all ‘agree’ (σ0, τ0),
that she agrees with only b (σ1,τ1) or with only c (σ3,τ3), or that both b and c perceive
the ongoing event as non-hazardous (σ2,τ2). Finally, she cannot rule out that b and c
both find the event unproblematic and that they perceive a as doing the same (σ7,τ7).

Assuming that b and c perceive the accident in an identical manner, the model in
Fig. 3 may be suitably duplicated and combined, resulting in the joint model E0, Fig. 5.
Notice that b and c’s perceptions are identical to a’s. The only states not obtained from
a duplication of Fig. 3 are σ7 and τ7. In fact, no one considers these possible, but neither
can anyone rule out that others entertain them.

To incorporate the (new) information from an action model or a doxastic program
in an EPM, the two must be combined. A natural procedure for doing so is the action-
priority update product (Baltag and Smets 2008).

3.2.5 Action-priority update

The action-priority update is a binary operation⊗with first argument an EPM S with
relations≤i and second argument a doxastic program Γ ⊆ Σ over some APM E with
action space Σ and relations �i . The APU product is an EPM

S⊗ Γ = (S ⊗ Γ,≤ ↑i , Φ↑, (s0, σ0))

where the updated state space is S ⊗ Γ = {(s, σ ) ∈ S × Γ : S, s |� pre(σ )}; each
updated pre-order ≤ ↑i is given by (s, σ ) ≤ ↑i (t, τ ) iff either σ ≺i τ and s ∼i t , or
else σ �i τ and s ≤i t ;13 the valuation set Φ↑ is identical to Φ, with the requirement
that for every atom P ∈ Φ,

PS⊗Γ = {(s, σ ) : s ∈ PS and post (σ ) �|� ¬P} ∪ {(s, σ ) : post (σ ) |� P}
for states (s, σ ) ∈ S ⊗Σ . Finally, (s0, σ0) is the new actual world.

13 �i is from E and ≤i from S. σ ≺i τ denotes (σ �i τ and not σ �i τ ), σ �i τ denotes (σ �i τ and
σ �i τ ).
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Fig. 5 The EPM denoted E0, representing the joint perception of the occurrence of an accident for three
agents a, b and c. All σk actions have post (σk ) = A; for all τk , post (τk ) = �. Grey links are only for
presentation; they mirror the labels above. Links implied by transitivity are omitted, e.g. between σ6 and
σ4 for a. In essence, E0 captures (1) that the accident in fact occurs, (2) that this is ambiguous for every
agent, who all find it more plausible that it does occur and (3) that no agents learns anything about others’
perception of the event, except that all have an opinion as to whether or not the accident occurred

The APU product gives priority to new information encoded in Γ over the old
beliefs from S by the anti-lexicographic specification of ≤ ↑i that gives priority to
the APM plausibility relation �i . The definition further clarifies the role of pre- and
postconditions; if a world does not satisfy the preconditions of an action, then the
given state-action pair does not survive the update, and if postconditions are specified,
these override earlier ontic facts, else leave all as was.14

3.2.6 Example, concl.: King or Queen?

The factual and doxastic consequences of a’s play of the Queen is calculated by finding
the APU product of SQ/K and EQ/K. The result is (again) an EPM SQ/K⊗EQ/K with
underlying frame F1, with state space {(s, s), (t, t)}. The state (s, s) ‘survives’ as
s from SQ/K satisfies the preconditions of s from EQ/K, while (s, t) does not, as

14 The definition is based on Baltag and Smets (2008) for the anti-lexicographic order, adding postconditions
from Ditmarsch and Kooi (2008), Bolander and Birkegaard (2011).
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pre(t) = K while (K )SQ/K = {t}. Further, in the actual state, Q changes truth value
from true in s ∈ SQ/K to false in (s, s) ∈ SQ/K⊗EQ/K as a result of the postconditions
of s ∈ EQ/K. Finally, the information of the agents have changed: e.g., b now knows
that a does not hold a Queen ((s, s) |� Kb¬Q).

3.2.7 Updating with the accident

Updating the simple initial state model S0 with accident event model E0 results in a
state of great uncertainty. In summary, every agent believes that A: an accident has
occurred (though no-one knows), all know that their peers either believe or disbelieve
A (none are indifferent between A and ¬A states), and all consider it possible that the
others consider it possible that all believe there is no accident.

Formally, updating the simple structure of S0 with E0 produces the EPM S1 := S0⊗
E0 which shares frame with E0 (Fig. 5) and has (s0, σ0) as actual state. In S1, for all i ∈
{0, ..., 7}, (s0, σi ) ∈ AS1 , and (s, τi ) ∈ (¬A)S1 . Among others, the following doxastic
propositions are true at (s0, σ0): A,

∧
i∈A Bi A, Ka(Bb A ∨ Bb¬A), ¬Ka Bb¬A.

Based on this second static state, the agents must make their first decision, as
specified by their decision rules, which jointly determine the type of agent they are.

4 Decisions: agent behavior characterized by transition rules

Though agent action may be represented in the introduced DEL framework using
suitable atoms and postconditions, the notion of agency in DEL is purely doxastic.
To move from only believing agents to acting agents, a richer framework is called
for. One possibility would be to introduce a game- or pay-off structure in parallel to
the DEL framework or embed the entire dynamics modeled in a temporally extended
game tree, whereby actions could be made ‘rationally’, based on utility maximization
at end nodes. A drawback to this method is the large models required: every branch
must be fully specified before decisions may follow. Further, considering all possible
branches is a cognitively complex task, making the approach empirically unrealistic.

Instead, an alternative approach involves utilizing ‘rule of thumb’ decisions, brute-
forced by the current beliefs of agents. This method, detailed below, forfeits “rational”
decisions, but overcomes the two drawbacks of the game theoretic approach by letting
choice be dictated locally by current beliefs. Given an EPM, a set of doxastic programs
provides a multitude of possible updates. In modeling a dynamic process, the modeler
must choose which model is suitable for the next update, based on no strict directions
from the to-be-updated EPM. However, environment or agent behavior will often be
seen as dictated to some degree by facts or beliefs from the current EPM, thus used as
a guideline. To incorporate the next action model choice in a formal manner, transition
rules are introduced, locally specifying the next update as a function of the current
EPM.

Transition rules are used to characterize agent behavior. Each behavior is specified
by a set of transition rules, each with a trigger condition and a goal formula. If an
EPM satisfies some trigger conditions, the ensuing EPM must satisfy the matching
goal formulas. An APM that ensures that the goals are obtained then satisfies, or solves,
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the rules, and is seen as a possible choice for the agent in question. Hereby an EPM,
a set of behavior-governing rules and a set of APMs jointly specify the transition to
the next EPM.

4.1 Transition rules

A transition rule T is an expression ϕ � [X ]ψ where ϕ,ψ ∈ PropΦ . Call ϕ the
trigger and ψ the goal. If EPM (S, s0) satisfies the trigger of a transition rule T , T is
said to be active in S (else inactive).

Specified below, transition rules may be used to choose the next update based
on local conditions of the current EPM. E.g., updates by the ‘environment’ may be
specified using atoms in the trigger. To exemplify, let R and W be atoms with resp.
readings ‘it rains’ and ‘the street is wet’, then the transition rule T1 = R � [X ]W reads
‘if it rains, then the next update must be such that after it, the street is wet’. Transition
rules may also be used as agent decision rules for factual change, using Biϕ/Kiϕ-
formulas as triggers and suitable formulas as effects. E.g., the set of transition rules
{Bi R � [X ]Ui , Bi¬R � [X ]¬Ui }may be used to specify agent behavior relative to
rain: if i believes it rains, then next i will have an umbrella, and if i believes it does
not rain, then next i will not have an umbrella. Used thus, transition rules are akin to
the programs and knowledge-based programs of Fagin et al. (1995), here tailored to
the DEL framework. They further instantiate one-step epistemic planning problems,
in the terminology of Bolander and Birkegaard (2011).

4.2 Dynamic modalities

Note that transition rules are not doxastic propositions: the “modality” [X ] has no
interpretation, and construed as a formula, T 1 has no truth conditions. Instead, transi-
tion rules are prescriptions for choosing the next action model. The choice of model
is made by implementing a transition rule over an EPM S and a set G of doxastic
programs over one or more APMs using dynamic modalities.

For any program Γ over APM E, [Γ ] is a dynamic modality, and the doxastic
proposition [Γ ]ϕ is given by

([Γ ]ϕ)S := {s ∈ S : ∀σ ∈ Γ, if (s, σ ) ∈ S ⊗ Γ then (s, σ ) ∈ ϕS⊗Γ }.

That is, a state s from S is a [Γ ]ϕ-state iff every resolution of Γ over s is a ϕ-world in
S⊗ Γ . [Γ ]-modalities are natural when ϕ is desired common knowledge among A.

Further, where a Γ is doxastic program, let [Γ ]iϕ be given by

([Γ ]iϕ)S := {s ∈ S : ∀σ ∈ Γ, if (s, σ ) ∈ S ⊗ Γ ∩Ki [(s0, σ0)] then (s, σ ) ∈ ϕS⊗Γ }.

That is, a state s from S is a [Γ ]iϕ-state iff every resolution of Γ over s that is included
in i’s information cell relative to the actual world (s0, σ0) in S ⊗ Γ is a ϕ-world in
S⊗ Γ . Hence S, s |� [Γ ]iϕ iff S⊗ Γ, (s0, σ0) |� Kiϕ.
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The [Γ ]i -modalities are natural when transition rules prescribe prescribe agent
choices, as they ensure that the performing agent knows her choice following the
action, while allowing others to be unaware of the choice made.

4.3 Solutions and next APM choice

A set of transition rules dictates the choice for the next APM by finding the transition
rule(s)’s solution. A solution to T = ϕ � [X ]ψ over pointed EPM (S, s) is a doxastic
program Γ such that S, s |� ϕ → [Γ ]ψ . Γ is a solution to the set T = {T1, ..., Tn}
with Tk = ϕk � [X ]ψk over (S, s) if S, s |�∧n

1(ϕk → [Γ ]ψk), i.e. if Γ is a solution
to all Ti over (S, s) simultaneously.15 Finally, a set of doxastic programs G is a solution
to T over S iff for every t of S, there is a Γ ∈ G such that Γ is a solution to T over
(S, t).16

If G is a solution to T over S, then given a state from S, the transition rules in T
will specify one (or more) programs from G as the next choice. A deterministic choice
will be made if G is selected suitably, in the sense that it contains a unique Γ for each
s. In the ensuing, solution sets will be chosen thus.

4.4 Example: looping system

Consider the very simple ‘system’, consisting of an EPM S with s0 ∈ PS, and APM
E with pre(σ0) = P, post (σ0) = ¬P , and the set T = {T0, T1} of transition rules:

T0 = P � [X ]¬P
T1 = ¬P� [X ]P S : s0

P
E : σ0 σ1
〈P; ¬P〉 〈¬P; P〉

WithΓ0 = {σ0} andΓ1 = {σ1}, G = {Γ0, Γ1} is a solution to T over S. ForT1, S, s0 |�
¬P → [Γ0]P as s0 �∈ (¬P)S. For T0, it is easy to check that S⊗ Γ, (s0, σ0) |� ¬P ,
entailing that S, s0 |� [Γ0]¬P . As Γ0 is unique, this is chosen as next update. It should
be easy to see that G is also a solution to T over S⊗ Γ0, where Γ1 is chosen. Further
re-application of T loops the system.17

4.5 Three agent types

Transition rules may be used to provide general characterizations of agent behavior
determined by belief. Rules with a doxastic trigger will be referred to as decision rules,
by sets of which an abundance of possible agent types may be defined. Of interest are
the following three, corresponding to three types of human behavior relevant to the
bystander effect (Table 1).

15 Note the analogy with numerical equations; for both 2+ x = 5 and {2 + x = 5, 4+ x = 7}, x = 3 is
the (unique) solution.
16 The definition is altered to suit transition rules using [X ]i “modalities” by suitable replacing [X ] with
[X ]i and [Γ ] with [Γ ]i throughout.
17 For a definition of system, see (Rendsvig 2013a).
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Table 1 Decision rules specifying three agent types

First Responder City Dweller Hesitator

Bi A � [X ]i Ii Bi A � [X ]i Ei Ki A � [X ]i Ii

Bi¬A � [X ]i Ei Bi¬A � [X ]i Ei Bi A ∧ ¬Ki A � [X ]i Oi

Bi¬A � [X ]i Ei

Denote by F1i and F2i resp. the upper and lower first responder rule indexed for i , and set Fi := {F1i ,F2i }
and treat C1i ,C2i ,H1i ,H2i ,H3i , Ci and Hi in a similar manner

The First Responder will intervene if she believes there is an accident, otherwise
not. First Responders thus reflect the normally expected, but not witnessed, behavior
in relation to emergencies. A City Dweller will evade the scene no matter what his
beliefs, hereby reflecting the media’s grim picture of the “apathetic” urban citizen,
ignoring the murder of Kitty Genovese. Finally, a Hesitator will choose to observe if
she believes but does not know that there is an accident, and will else evade. Hereby
the Hesitator rules capture (part of, see below) the behavior used as explanation for the
bystander effect [e.g. by Latané and Darley (1968) when they write “it is likely that
an individual bystander will be considerably influenced by the decisions he perceives
other bystanders to be taking” (p. 216)]. Presently, focus will be on Hesitators, with
comments on First Responders and City Dwellers. The latter two are subjects of Sect. 6.

4.6 Possible choices

To implement either of the rule sets, a suitable set of doxastic programs for X to range
over must be specified. It seems natural to assume that when an agent is intervening,
then this is epistemically unambiguous for all agents. When b and c see a choose
either to observe or evade, it seems more plausible that they cannot tell these actions
apart, as neither action has an observable, distinguishing mark.18 It is assumed that
agents find it more plausible that others evade than that they observe. 19 In sum, these
consideration give rise to the APM E1i of Fig. 6.

E1i does not facilitate simultaneous choice, in the sense that it does not contain a
solution to e.g. {H1a,H1b} over S1. Combining, however, a copy of E1i for each of
a, b and c while respecting the doxastic links in an intuitive way may easily be done.
Specifically, a combined APM E1 may be obtained by taking the reflexive, transitive

18 Unless evading entails leaving the scene or observation is performed in a non-discrete manner. Often this
is not the case, though: “Among American males it is considered desirable to appear poised and collected
in times of stress. ... If each member of a group is, at the same time, trying to appear calm and also looking
around at the other members to gauge their reactions, all members may be led (or misled) by each other
to define the situation as less critical than they would if alone. Until someone [intervenes], each person
only sees other nonresponding bystanders, and ... is likely to be influenced not to act himself.” (Latané
and Darley 1968, p. 216); “... Apparent passitivity and lack of concern on the part of other bystanders may
indicate that they feel the emergency is not serious, but it may simply mean that they have not yet had time
to work out their own own interpretation or even that they are assuming a bland exterior to hide their inner
uncertainty and concern.” (Latané and Rodin 1969, p. 199).
19 The second quote in the previous note seems to indicate the plausibility of this assumption.
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Fig. 6 The APM E1i , representing the three moves available to i as well as the doxastic perception of
these for the remaining agents. State names specify postconditions; all preconditions are �. If i chooses to
intervene, Γi will be next APM choice, whereas if i chooses to either observe or evade, Δi will be used,
with actual event resp. Oi or Ei

Fig. 7 The APM E1, representing simultaneous move programs, omitting (most) reflexive and transitive
arrows; states are labeled with postconditions, with I O E representing 〈�; Ii O j Ek 〉, etc.; all preconditions
are �. Notice the rise in dimensions; Type I is a point, Type IV is a cube

closure of the Cartesian graph product E1a�E1b�E1c (see e.g. Hammack et al.
2011 for definition) and specifying pre- and postconditions as follows: for (s, t, u) ∈
E1a�E1b�E1c, let pre(s, t, u)E1 = � and post (s, t, u) = post (s)E1a∧post (t)E1b∧
post (u)E1c . The resulting APM E1 has eight mutually disconnected components of
four types, see (Fig. 7).
In Fig. 7, the Type I model is obtained by the Cartesian product of Γi , Γ j and Γk ; Type
II from Γ j , Γk and Δi ; Type III from Γi and Δ j ,Δk and Type IV from Δi ,Δ j ,Δk .
Notice that reflexive and transitive closure is required to ensure that all ≤i ’s are pre-
orders. Euclidean closure is not required, but is doxastically reasonable: in e.g. the
Type III component, i should not be able to distinguish between I O E and I E O , nor
consider either more plausible.

Doxastic programs over E1 identical to each of the four sub-model types give rise
to the desired solution space EΓ . Let E be the set consisting of all pointed E1 models,
and let EΓ be the set of all doxastic programs over models in E such that each Γ ∈ EΓ

contains exactly one of the type I-IV sub-models. Then EΓ contains a unique solution
to every combination of the three agent types. (recall, def. of solution set: for every
s ∈ S.)

Over S1 and EΓ , the Type I program is the unique solution to F1 ∪ F2 ∪ F3; the
Type II program with i = 2 and σ0 = E I I is the unique solution to C1 ∪ F2 ∪ F3 –
with σ0 = O I I , it is the unique solution to H1 ∪ F2 ∪ F3; the Type III program with
i = 1, j = 2, k = 3 and σ0 = I E O is unique solution to F1 ∪ C2 ∪ H3; the Type
IV program with σ0 = O O O is unique solution to H1 ∪ H2 ∪ H3. Interestingly, the
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Type IV program with actual state O O O reflects an implicit norm-based pluralistic
ignorance: though every agent is observing, each perceive the situation as one where
they are the only ones doing it.

4.7 Choosing to observe

Given the above, the system based on S1 with H1 ∪ H2 ∪ H3 as rules over E1
dictates the type IV program with σ0 = O O O as next APM choice. That is, every
agent chooses to observe. The ensuing EPM S2 := S1 ⊗ ΓI V contains 128 states, but
is easily described. Take ΓI V and replace every state with a complete copy of S1’s
frame, connect two states from two different copies [(s, σ1) ≤i (s′, σ2)] iff s = s′
and σ1 ≤i σ2, and finally take the reflexive-transitive closure. The new actual world
is [(s0, σ0), O O O], satisfying

A, Oa ∧ Ob ∧ Oc and
∧

i∈A

⎛

⎝Ki Oi ∧ Bi

∧

i∈A\{i}
Ei

⎞

⎠ .

The latter captures the post-factual effects of the mentioned norm-based pluralistic
ignorance of ΓI V : all have the belief that they individually were the only ones to
observe, while all others evaded. Importantly, had EPM E1i on the previous page been
such that agents perceived actions according to their own decision rules, i.e. found
observation more plausible than evasion in others, all would have correct beliefs about
the actions of others.

5 Action interpretation and social proof

Albeit all agents have formed the belief that their co-witnesses evaded, none has
formed any beliefs rationalizing these choices: All are still doxastically indifferent
between whether the others believe A or ¬A. Neither does any agent have means of
deducing others’ beliefs, given the introduced formal framework. Such a deduction
would require e.g. the ability to rationalize by forward induction, which requires
information from both past play and future possibilities (Benthem 2014) couched
in a game framework representing preferences, rationality, etc. (see e.g. Rendsvig
and Hendricks 2013 for an implementation). Though structures akin to game trees
may be defined using EPMs, APMs and protocols (Benthem et al. 2007; Dégremont
2010), a simpler, more superficial construct may be used to facilitate the reasoning.
The suggested approach utilizes an ‘inverse’ version of decision rules, brute forcing
conclusions about belief from observations about action.

In making decisions, our beliefs about the relevant state of affairs dictate our action,
up to error and human factors. Hence the route from beliefs to actions is often func-
tional. As this function will often not be injective, moving from actions to beliefs
is not as straightforward, since multiple different belief states may result in the same
action. Having to provide a rationalization of a given action will therefore often include
abductive reasoning. An abductive hypothesis to rationalize an action allows inferring
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as explanation of the observed action a previous belief state of the acting agent. Below,
such hypotheses are called interpretation rules.

5.1 Interpretation rules

An interpretation rule is a doxastic proposition ϕ→ [S]Biψ , with ϕ called the basis
and ψ the content, with the underlying idea that on the basis of an action (e.g. Ei ),
agents may deduce something about the content of i’s beliefs (e.g. that Bi¬A).

Doxastic propositions involving the modality of the consequent are given by

([S]χ)S′ := {s′ ∈ S′ : ∃s ∈ S such that s ∈ s′ and (S, s) |� χ},

where S is the domain of S, and where s ∈ s′ means that s is a predecessor20 of s′.
Hence [S]χ is true in (S′, s′) just in case s′’s predecessor in S was a χ -world. The
modality is included to respect the temporal aspect introduced by updates, and S is to
be substituted with the EPM based on which i made the choice in question.

A set of interpretation rules may in general be implemented using an APM where the
preconditions of each state is a conjunction of interpretation rules with different bases
with a conjunct for each action to be interpreted. Hereby each state represents a dif-
ferent hypothesis regarding the acting agent’s type, i.e. how the agent made decisions.
The plausibility order then specifies the ‘abductive hierarchy’ of such hypotheses.21

To simplify, agents are given only one hypothesis about types, the hypothesis also
being correct in the sense that the interpretation rules are (close to) the converse of
the transition rules that are in fact applied. Hence the interpretation rule model APM
E2i j that determines how agents A\{ j} interprets the actions of j is a one state model.
Let ρ j ∈ E2 j and set

pre(ρ j ) := E j → [S1]B j¬A ∧
I j → [S1]K j A ∧
O j → [S1]B j A ∧ ¬K j A

Applying such rules for all agents may be done by sequential application of E2 j for
each j ∈ {a, b, c} on S2 (and the resulting models).22 Call the APU product S3.

20 When constructing APU products, a state in the product model is an ordered pair (s, σ ) of a state s and
and action σ . In this pair, s may again be such a pair. Say that a predecessor of s′ is any s that occurs in
any of the ordered pairs of s′, including s′ itself.
21 It is possible to give agents a choice of interpretation by invoking transition rules with interpretation
rules as possible solutions. In the present, agents are given no choice of interpretation, and this construction
is consequently skipped for simplicity.
22 Each E2 j functions as a truthful public announcement of pre(ρ), for which the order of announcements
does not matter (Baltag and Smets 2009): states are deleted, the remaining orderings staying as previous.
Deleting simultaneously or in some sequence makes no difference.
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5.2 Belief-based pluralistic ignorance

By application of interpretation rules, agents establish beliefs about each others previ-
ous beliefs, but even though the applied interpretation rules were correct, the obtained
beliefs are wrong: S1 |� Bb A, but S3 |� Ba[S1]Bb¬A. This is a direct consequence
of the mis-perception of actions occurring in E1.23

In the actual world of S3, the agents are in a state of belief-based pluralistic ignorance
with respect to A: S3 |�∧

i∈A(Bi A∧∧
j∈A\{i} Bi B j¬A), cf. the definition in Hansen

(2011), ch. 6. To see this, notice what happens when a interprets the actions of b
and c over S2. In S2, the most plausible copy of S1 (Fig. 4) is the one in which all
states satisfy Oa ∧ Eb ∧ Ec (Fig. 7). Of these 16 states, only 4 satisfy both pre(ρb)

and pre(ρc), namely the successors of σ2, τ2, σ7 and τ7, and only the first is in a’s
plausibility cell relative to (s0)S2 . As all other states in this S1-copy are deleted upon
update with E2b;E2c, it follows that a’s plausibility cell Ba[(s0)S3] contains only the
state ((((s0, σ2), O E E), ρb), ρc), which in turns satisfies A∧ Bb¬A∧ Bc¬A. Hence
S3 |� Ba(A ∧ Bb¬A ∧ Bc¬A). Analogous reasoning for b and c shows that (s0)S3 is
a state of pluralistic ignorance w.r.t. A.

Again, importantly, had EPM E1i been defined so that agents considered observa-
tion more plausible than evasion, this state of pluralistic ignorance would not have
arisen.

5.3 Social proof

In the portrayal of the bystander effect, witnesses alter their beliefs following their
mutual act of orientation, and in the light of the newly obtained information that
no one else believes that there is cause for alarm, concludes that no intervention is
required. To represent the revised beliefs of agents 24, introduce a new operator SBi |G ,
representing the beliefs of agent i when socially influenced by her beliefs about the
beliefs of agents from group G. SBi |G is defined using simple majority ‘voting’ with
a self-bias tie-breaking rule: let

s ∈ (SBi |Gϕ)S iff α + |{ j ∈ G : s ∈ (Bi B jϕ)S}| > β + |{ j ∈ G : s ∈ (Bi B j¬ϕ)S}|

with tie-breaking parameters α, β given by

α =
{

½ if s ∈ (Biϕ)S

0 else
β =

{
½ if s ∈ (Bi¬ϕ)S
0 else

23 Though time has passed, beliefs have not changed, and this is known to all: S3 |�
∧

i∈A
Ki (

∧
j∈A[S1]B jϕ→ B jϕ) for ϕ ∈ {A,¬A}.

24 Strictly speaking, in the present model agents do not revise their beliefs. An additional operator is instead
introduced to facilitate comparison with private beliefs. A belief revision policy may easily be defined using
decision rules to the effect that agents update their beliefs under the suitable circumstances, see (Rendsvig
2013b).
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This definition leaves agent i’s ‘social beliefs’ w.r.t. ϕ undetermined [(i.e.
¬(SBi |Gϕ∨ SBi |G¬ϕ)] iff both i is agnostic whether ϕ and there is no strict majority
on the matter.

Applying the notion of social belief to A in S3, it is easily seen that S3 |�∧
i∈A SBi |A¬A. That is, upon incorporating social proof, all agents ‘socially believe’,

contrary to their private beliefs, that no accident occurred.

5.4 Action under influence

Notice that none of the three agent types introduced so far will change their action
if presented again prompted to intervene, observe or evade. First Responders will
again intervene, City Dwellers will again choose to evade, and Hesitators will again,
irrespective of social proof, choose to observe.

To make Hesitators pay heed to the observation they chose to make, their decision
rules are changed (in the ensuing section, a fusion of the two types is defined). Let an
‘influenced’ agent act in accordance with the following rules:

Influenced :
SBi |G A � [X ]i Ii

SBi |G¬A � [X ]i Ei

Note that an Influenced agent acts like a First Responder who bases her actions on
social beliefs.

A Hesitator-now-turned-Influenced presented with the choice to intervene, observe
or evade (as given by EΓ ) will choose to evade. More precisely, if a, b and c are
Influenced, the unique next APM choice will be the Type IV program with σ0 = E E E .
The actual world in the ensuing EPM S4, the final step of the model, will then satisfy

A ∧
∧

i∈A
Bi A ∧

∧

i∈A
SBi |G¬A ∧

∧

i∈A
Ei .

The last conjunct is an (unfortunate) end condition, as specified in Sect. 3.1.6. Hereby,
informational dynamics leading to an observable bystander effect has been modeled.

6 Comparison to empirical studies

The presented sequence of models, transition rules and updates conjoined captures
important informational aspects of the observable bystander effect, given that the
model is accepted. As presented, the sequence may be regarded as one possible exe-
cution of a broader, implicit system. Other runs of this system may be constructed by
varying parameters relevant to the bystander effect.

In this section, the effect of changing two parameters will be presented. The first
change is of agent types, where it is seen that for non-mixed groups, both City Dwellers
and (Influenced) Hesitators will produce the observable bystander effect. The second
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Table 2 Re-specification of agent types

City Dweller Hesitator Influenced Hesitator First Responder

Bi A � [X ]i Ei Ki A � [X ]i Ii Ki A � [X ]i Ii Bi A � [X ]i Ii

Bi¬A � [X ]i Ei Bi¬A � [X ]i Ei Bi¬A � [X ]i Ei Bi¬A � [X ]i Ei

Bi A ∧ ¬Ki A � [X ]i Oi ¬Ki A ∧ ¬(SBi |G A ∨
SBi |G¬A) � [X ]i Oi

Oi ∧ SBi |G A � [X ]i Ii

Oi ∧ SBi |G¬A � [X ]i Ei

variation is group size, and it is shown that of non-mixed populations, only (Influenced)
Hesitator behavior varies as a function of group size.

Let us briefly outline the implicit system before changing parameters. The system
has initial state S0 in Sect. 3.1.6, where everybody knows nothing has happened and
end conditions either

∨
i∈A Ii or

∧
i∈A Ei . S0 is updated with the occurrence of

the accident, E0 (Fig. 5) resulting in S1 (Sect. 3.2.7), where all believe an accident
has occurred, while having no information about others’ beliefs. Apart from adding
further agents to the population, these steps will remain fixed.25 Next, agents make a
first decision over EΓ and S1 is updated with the next APM choice.26 Depending on
agent types, the run might end at S2. If not, the interpretation rule model of Sect. 5.1 is
applied for all agents, and a second decision is made based on the outcome, possibly
involving the aggregation of the perceived beliefs of others’. Again, if the system does
not satisfy one of the end conditions, it will continue, in which case the interpretation
rule model is re-applied (suitably altered to accommodate the temporal shift), followed
by decisions, etc.

In the run described in the previous sections, two different agent types were used.
For the first choice made, agents were assumed to be Hesitators, making them choose
to observe. For their second choice, they were assumed to be Influenced, making them
act on their social beliefs.27 To facilitate comparison of models, this ‘mixed’ type may
be properly defined as Influenced Hesitators (Table 2):

Notice that Influenced Hesitators behave as a mixture of Hesitators (first three rules)
and First Responders (last two), but who take social proof into account. Notice the
difference between third rule for Hesitators and the same for Influenced Hesitators.
The latter requires that Influenced Hesitators have undetermined social beliefs before
they choose to observe. The altered First Responder rules (rows four and five) capture
that if the agents has observed and have determined social beliefs, observation gives
way to intervention or evasion.28

25 Concerning E0, it should be obvious how the APM must be altered to include further agents, while
maintaining complete higher-order ignorance.
26 Again, it should be obvious how EΓ may be altered to accommodate for a larger population.
27 The shift was made to ease the exposition. Influenced agents require the notion of social beliefs, not
necessary for Hesitators’ first choice.
28 The requirement that i must have observed before acting on social beliefs ensures that agents do not
intervene immediately after seeing the accident (a private belief that A would imply that SBi |G A, as agents
then hold no beliefs regarding others’ beliefs).
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Table 3 Summary of end
conditions and times as a
function of agent type and group
size

1 2 3 k ≥ 4

FR I2 I2 I2 I2

CD E2 E2 E2 E2

H − − − −
IH I3 I3 E3 E3

6.1 Varying types and group size

Table 3 summarizes the end conditions and the EPM number where they arise relative
to agent types and group size. For end conditions, Ik and Ek represent

∨
i∈A Ii and∧

i∈A Ei respectively being satisfied in EPM Sk, with k rising as described in the
previous sections. ‘–’ means that no end conditions are met.

In words, for any group size, First Responders will intervene in S2, i.e. immedi-
ately following the accident. At the same time, City Dwellers will evade the scene, no
matter the group size. ‘Simple’ Hesitators, as defined in Table 2, will never reach an
end conclusion, as they will never come to either believe there is no accident, or know
that there is one. That all these three agent types’ actions are invariant over group
size is due to their inherently non-social decision rules. The ‘social’, or Influenced,
Hesitators will however change their behavior according to group size: they will inter-
vene immediately if the group size is small enough for their private belief not to be
‘overridden’ by social proof. If the group size is 3 or above, Influenced Hesitators will
conclude, by the mis-perception of others’ choice to observe as an act of evasion and
the resulting state of pluralistic ignorance, that enough agents believe that no accident
occurred for themselves to be ‘socially convinced’ that this is the case. Consequently,
they will choose to evade in S3 for any group size of 3 or above.

At group size 2 these agents still decide to intervene because they use their own
belief to break the tie between what they perceive as an even split on whether an
accident is happening.29

6.2 Comparison to empirical studies

Running the system with each of the four agent types may be considered as providing
four different models of the bystander effect, each of which may be compared to
empirical results to evaluate consistency with data. Table 3 allows for only a simple
comparison, checking whether end conditions as a function of group size correlates
properly with the observed.

A wide variety of studies have been performed on the inhibiting effect of the pres-
ence of others in situation requiring intervention (see e.g. Latané and Nida 1981 for a
meta-study). Many of these have different, more specific foci, e.g. the role of diffusion
of responsibility, friendship, gender, and more. As the focus of this paper is the second
step of the bystander effect, only studies on the effect of social proof on the perception

29 Cf. the tie-breaking rule used in the definition of social beliefs.
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of the accident are relevant. Alas, no one such has been found that provides suitable
data for all group sizes. Comparison can therefore only be made using multiple studies
invoking different experimental settings.

Inherently, the presented models are deterministic, while experimental data provides
information about the percentage of individuals who intervene. Given this, data will
not be correctly matched. To evaluate tendency of correctness, acceptance or rejection
of models are therefore based not on strict consistency, but on the weak requirement
that a model must correctly match the binary experimental end conditions in strictly
more than 50 % of cases.

6.3 Smoky room and the rejection of FR, CD and H

The classic ‘smoky room’ experiment of Latané and Darley (1968), specifically
designed to test the hypothesis of the second step of the explanation of the bystander
effect (see p. 2), has served as a strong guide for the construction of the models, and
provides data which allows the rejection of three of them. In the study, groups of size 1
or 3 where sat in a waiting room, completing questionnaires. The groups of size 3 either
consisted of 1 individual naive to the experiment and 2 of the experimenters’ confed-
erates, or 3 naive subjects. While completing the questionnaire, smoke was introduced
to the room through a visible vent, ambiguously indicating either an emergency (e.g.
fire) or not (e.g. steam). As the possible accident will have dire consequences for the
subjects themselves, the experimenters assumed that no diffusion of responsibility
arose.

The experiment was stopped when either one agent intervened, or after six minutes
of smoke introduction and questionnaire completion, at which point smoke was heavy.
Compared to the model, these end conditions are identified with

∨
i∈A Ii and

∧
i∈A Ei ,

respectively.
Of the subjects that were alone, 75 % reported the smoke, a number high enough

to warrant the rejection of the City Dweller model, which would have it that all
evade. Likewise, the Hesitator model is rejected, as it would have it that individuals
would continuously observe (instead of completing their questionnaires). Both the
First Responder and Influenced Hesitator models score better than 50 %.

With 2 confederates in the room, only 1 in 10 naive subjects intervened. With 75 %
of individuals intervening when alone, it should be expected that 98 % of groups of
size 3 with three naive subjects would intervene if individuals acted independently, 30

but only 38 % of the 8 groups did so.
The First Responder model is 10 % correct in the confederates condition31 and

38 % in the naive group condition, hereby falling below the 50 % mark. The Influence
Hesitators model does better: it is 90 % correct of the confederates condition32 and
62 % correct in the naive group condition. Hence, it fairs better than 50 % overall.

30 See Latané and Darley (1968) for calculation of hypothetical baseline based on the alone condition.
31 In a mixed population model, using City Dweller agents for the two confederates.
32 Again in a mixed population model, using City Dweller agents for the two confederates.
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Interestingly, the response time for intervention in the three naive subjects case
was considerably longer than the single subject case, indicating (1) that individuals in
groups did pay heed to social proof before acting, and (2) that in many cases (38 %),
social proof from only two peers was not enough to preclude intervention.

6.4 Is One Additional Witness Enough for Intervention Inhibition?

The smoky room study only compares groups of size 1 and 3, whereby it does not
supply sufficient data to evaluate the IH model for group sizes of 2 or above 3. To
evaluate the model for group size of 2, another classic experiment may be consulted,
namely the ‘lady in distress’ case of Latané and Rodin (1969). Three conditions where
tested in this experiment: with a lone, naive subject, with one naive subject and one
confederate, and with two naive subjects, again filling out questionnaires. In a simu-
lated accident, the female interviewer faked a fall in an easily accessible and audible
adjacent room. The fall was indicated by a loud crash, a scream and subsequent moan-
ing of complaints and hurt. Contrary to the smoky room, this accident is ambiguous
between either a serious accident (e.g. broken leg) or a not-so-serious one (weakly
sprained ankle).

In the first condition, 70 % of the alone subjects intervened, with a strong drop to
7 % when an inactive confederate was introduced. With two naive subjects, 91 % of
groups would be expected to intervene if subjects acted independently, whereas only
40 % of such groups in fact did so.

These percentages strongly contradict the IH model for group size 2, as the expec-
tation is that neither of the two agents would be sufficiently influenced by each other to
not act on their private beliefs. Both would therefore intervene following observation.
This makes the model incorrect in 60 % of cases, making it worse than a random bet.

Partly, the model may misfire as the experiment does not conform to the plural-
istic ignorance explanation of the bystander effect. Specifically, the experiment does
not preclude the possibility of a mix of social proof and diffusion of responsibility
effects, given that the accident in question did not put the subjects in faked danger. An
experiment precluding diffusion effects may be conjectured to show a higher degree
of intervention, yielding a better fit.

The meta-study (Latané and Nida 1981) strongly indicates that determining social
influence occurs in groups of size 2. Summarizing 33 studies with face-to-face inter-
action, the effective individual probability of helping was 50 %, with an effective
individual response rate in groups only 22 %. Most of these studies involved groups
of 2.33 Hence, it seems that the model misfires when it comes to groups of size 2.

The obvious parameter to tweak for a better fit is the self-biased majority voting
definition of social beliefs, which does not put enough weight on the other in the 2
person case. Changing this to one favoring the perceived beliefs of the other would
yield a better model for the 2 subject case, while it would not alter the results for the

33 How well these individual studies conform to the pluralistic ignorance explanation of the bystander
effect has not been checked.

123

89



Synthese

Table 4 Summary of end
conditions as a function of agent
type and group size for
others-biased social beliefs

1 2 3 k ≥ 4

IH′ I3 E3 E3 E3

group size 3 case. Table 4 summarizes the effect of the Influenced Hesitator model
run using a tie-breaking rule favoring the opposite belief of ones own.34

Though this model does not fair very well on the data from the smoky room and
lady in distress studies, it does at least do better than a random bet.

7 Conclusions

Accepting the individual modeling steps as reasonable explications of the reasoning
steps occurring in bystander effect-like scenarios, the constructed dynamics allows for
a number of conclusions about such phenomena:

– The sub-optimal choice for all to evade is not a consequence of “apathetic” agents:
City Dweller evasion is not influenced by group size.

– The sub-optimal choice for all to evade is a direct result of considering social proof
in a state of proposition-based pluralistic ignorance: Influenced Hesitators with
correct beliefs about their peers beliefs would choose to intervene.

– Proposition-based pluralistic ignorance arises due to norm-based pluralistic igno-
rance: that all agents assume others are evading when they themselves are observing
is a necessary condition for the state of proposition-based pluralistic ignorance to
arise.

– Subjects do not incorporate social proof by self-biased majority voting, but rather
the opposite.

Several venues further for both formal and empirical research present themselves. As
no pure agent type group fits data very well, two possibilities are worth investigating.
First, how well will models with mixed groups perform? That not all subjects chose to
intervene in the single agent case seems to indicate that at least some behave as City
Dwellers; that some chose to intervene in the three agent case indicates that some act
as First Responders. With suitable proportions of each agent type, a model may be
produced which will match data more closely with an average of end conditions of
runs based on random picks from the mixed population. To fit both population mix
and the social influence parameter, a data set from a large-scale smoky room-style
study would be required.

Finding implementable resolution strategies for the pluralistic ignorance state could
be of benefit, if these turn out to work in practice. Some such have been suggested
in the literature; in the study of Schroeder and Prentice (1998), information on the
subject diminished the alcohol consumption among college students. How information
should provoke changes in agent type in the present framework is an open question. A

34 I.e., interchanging the α, β tie-breaking parameters. Alternatively, social beliefs could be defined by
weighing others’ perceived beliefs higher than one’s own, or by moving to a threshold rule requiring e.g.
perceived agreement with all peers as done in Seligman et al. (2013), Christoff and Hansen (2013).
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shorter term strategy for obtaining help is suggested by Cialdini (2007): Single out an
individual and ask only her for help. If an agent is singled out, the inaction of others
will no longer be eligible as a source of information about the event. Hence the agent
is forced to act on her private beliefs, in which case both Influenced Hesitator models
predicts intervention. Of formal studies, Proietti and Olsson (2013) show how a state
of pluralistic ignorance state may be dissolved by a series of announcements of private
beliefs heard by matrix neighbors. Specifying an agent type replicating the behavior
and varying only the network structure of the model might provide further insights
into the fragility of the phenomenon.

For a complete model of the bystander effect, both the first (noticing the event) and
third step (assuming responsibility) of the explanation provided in the introduction
must be modeled. The former may rest less on information processing than features
of physical space: as more people are present, less may notice the event e.g. due to
obscured line of sight. Modeling the third step may require a more expressive logical
framework in which beliefs regarding agent types may be held: if all agents falsely
believe a First Responder is present, all may believe that intervention is required while
no-one will take action.
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Abstract. This paper takes a dynamical systems perspective on the se-
mantic structures of dynamic epistemic logic (DEL) and asks the ques-
tion which orbits DEL-based dynamical systems may produce. The class
of dynamical systems based directly on action models produce very lim-
ited orbits. Three types of more complex model transformers are equiva-
lent and may produce a large class of orbits, suitable for most modeling
purposes.
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1 Introduction

When modeling socio-epistemic phenomena, working with the temporally local
models of dynamic epistemic logic (DEL) is both a blessing and a bane. It is a
blessing as both epistemic state models and their updates are small relative to a
fully explicated epistemic temporal structure. This eases both model construc-
tion and comprehension. It is a bane as the small models are incomplete: each
is an individual time-step while we seek to model temporally extended dynam-
ics. To form a ‘complete model’, we must specify the ‘temporal glue’ that ties
individual epistemic states together to dynamics.

This ‘temporal glue’ is often presented informally in the DEL literature by
way of a natural language problem description, typically involving conditional
tests to determine which update to apply. Methodologically, this leaves modelers
with a small gap: when modeling information dynamics using the semantic tools
of DEL, what mathematical object shall we identify as the model of our target
phenomenon?

It is an advantage of the DEL approach that a full sequential model need
not be specified from the outset, but a drawback that a complete formalization
of the problem under investigation is missing. Ideally, such ‘complete models’
should be both

1. Computably tractable (for each step), and
2. Informative (model the problem, not just describe the solution).

c� Springer-Verlag Berlin Heidelberg 2015
W. van der Hoek et al. (Eds.): LORI 2015, LNCS 9394, pp. 316–327, 2015.
DOI: 10.1007/978-3-662-48561-3_26
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The first desideratum is for implementation purposes. By the second, it is sought
that eventual implementations are interesting: models that formalize problems
without requiring they be solved first, allows one to draw informative conclusions
about the modeled phenomena. The informal approach is typically informative.

This paper suggests a dynamical systems approach to specifying ‘complete
models’ of information dynamics and provides some preliminary results.1 As a
(discrete time) dynamical system consists of only a state space X and a map
τ : X −→ X iteratively applied, the future development of the dynamics depend
only on the current state and the map τ . Dynamical systems thus provide a
formal container for dynamical models in the local spirit of DEL. This stands in
contrast to the only formal alternative, DEL protocols [3], which define dynamics
globally. This approach is discussed in Section 3.

Dynamical systems are simple but may therefore also be limiting. E.g., if
one’s chosen model transformer class contains only action models, then the set
of scenarios that can be modeled is very narrow: the same action model will
be reapplied by the dynamical system, scenarios such as the well-known Muddy
Children example [10] are among the unrepresentable phenomena. This provides
a motivation for seeking broader classes of model transformers, the topic of
Section 5. Three methods for defining complex model transformers are defined,
being multi-pointed action models, programs and problems. The main technical
results compare these approaches with respect to the orbits they can produce
when used in dynamical systems.

2 DEL Preliminaries

Let be given a finite, non-empty set of propositional atoms Φ and a finite, non-
empty set of agents, A.

Definition 1 (Kripke Model). A Kripke model is a tuple M = (�M� , R, �·�)
where

�M� is a non-empty set of states;
R : A −→ P(S × S) is an accessibility function;
�·� : Φ −→ P(S) is a valuation function.

A pair (M, s) with s ∈ �M� is called an epistemic state.

Definition 2 (Language, Semantics). Where p ∈ Φ and i ∈ A, define a
language L by

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | Kiϕ

with non-propositional formulas evaluated over epistemic state (M, s) by

(M, s) |= Kiϕ iff ∀t ∈ Ri(s), (M, t) |= ϕ.
1 The approach to dynamical systems taken here thus differs from that [14], which

mainly seeks modal logical descriptions of dynamical system concepts.
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With a normal modal logical language like L, the natural notion of equality
of epistemic states is bisimulation:

Theorem 1 (Hennessy-Milner, [4], Thm.2.24). Let M and M � be image-
finite, i.e., ∀s ∈ �M� , ∀i ∈ A, the set {t : (s, t) ∈ Ri} is finite. Then for all
s ∈ �M� , s� ∈ �M ��, s and s� are modally equivalent iff (M, s) and (M �, s�) are
bisimilar.

When working with finite models, L is strong enough to distinguish any two
non-bisimilar models:

Theorem 2 ([11], Thm.32). Let (M, s) and (M �, s�) be finite epistemic states
that are not n-bisimilar. Then there exists δ ∈ L such that (M, s) |= δ and
(M �, s�) �|= δ.

Dynamics are introduced by transitioning from one epistemic state to the
next:

Definition 3 (Model Transformer). Let M be the set of epistemic states
based on A. A model transformer is a (possibly partial) function τ : M −→M.

Several model transformers have been suggested in the literature, the most
well-known being public announcement, !ϕ [12]. Primary to this paper is the rich
class of action models [2] with postconditions [8].

Definition 4 (Action Model). An action model is a tuple Σ=(�Σ�,R,pre,post)
where

�Σ� is a finite, non-empty set of actions;
R : A −→ P(�Σ� × �Σ�) is an accessibility function;
pre : �Σ� −→ L is a precondition function;
post : �Σ� −→ {�n

i=0 ϕi � ⊥ : ϕi ∈ {�, p,¬p : p ∈ Φ}} is a postcondition
function.

A pair (Σ,σ) with σ ∈ �Σ� is called an epistemic action.

The precondition of an action σ specifies the conditions under which σ is ex-
ecutable; the postconditions specify how σ sets the values of select atoms. If
post(σ) = �, then σ changes nothing.

An epistemic state is informationally updated with an epistemic action by
taking their product:

Definition 5 (Product Update). The product update of epistemic state
(M, s) = (�M� , R, �·� , s) with epistemic action (Σ,σ) = (�Σ� ,R, pre, post,σ)
is the epistemic state

(M ⊗Σ, (s,σ)) = (�M ⊗Σ� , R�, �·�� , (s,σ))
where

�M ⊗Σ� = {(s,σ) ∈ �M� × �Σ� : (M, s) |= pre(σ)}
R�

i = {((s,σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri}
�p�� = {(s,σ) :s ∈ �p�, post(σ) � ¬p} ∪ {(s,σ) :post(σ) � p}.
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In combination, an epistemic action (Σ,σ) and product update ⊗ thus define a
model transformer. Denote the class of such transformers by Σ. Each τ ∈ Σ has
the following pleasant property:
Fact (Bisimulation Preservation). ∀τ ∈ Σ, if (M, s) and (M �, s�) are bisim-
ilar, then so are τ(M, s) and τ(M �, s�).

Σ is a very powerful class: for any finite epistemic state (M, s), it contains a
transformer that will map (M, s) to any other finite epistemic state (M �, s�), as
long as no agents with empty access in M has non-empty access in M � and as
long as M and M � differ only in the truth value of a finite number of atoms. The
restrictions are due to the ‘and’-condition used in defining R�

i in product update
and the finite conjunction used in defining postcondition maps. If the directed
relation given by these restrictions holds from (M, s) to (M �, s�), then call the
transition from the first to the second reasonable:

Definition 6 (Reasonable Transition). Let (M, s)= (�M� , R, V, s) and
(M �, s�) = (�M �� , R�, V �, s�) be two epistemic states. Then the transition from
(M, s) to (M �, s�) is reasonable iff

1. it preserves insanity: there exists a submodel M s of M such that s ∈ �M s�
and ∀i ∈ A, if R�

i �= ∅, then Ri is serial in M s, and
2. it invokes finite ontic change:

{p : �p� �= ∅ and �p� �= �M�}
∪ {p : �p� = ∅} \

�
p : �p�� = ∅

�

∪ {p : �p� = �M�} \
�
p : �p�� = �M ��

�

is finite.

Theorem 3 (Arbitrary Change, [8], Prop.3.2). Let the transition from fi-
nite (M, s) to finite (M �, s�) be reasonable. Then there exists a (Σ,σ) ∈ Σ such
that (M, s)⊗ (Σ,σ) and (M �, s�) are bisimilar.

3 DEL Protocols

One framework which could be used to construct ‘complete models’ is DEL
protocols [3,7,13,15].

Definition 7 (DEL Protocol). Let Σ∗ be the set of all finite sequences of
transformers τ ∈ Σ. A set P ⊆ Σ∗ is a (uniform) DEL protocol iff P is closed
under non-empty prefixes.

A DEL protocol specifies which model transformers may be executed at a
given time—whether they can be executed depends on the model transformers,
e.g. their preconditions.

Where P is a DEL protocol and σ = (τ1, ..., τn) ∈ P, set
(M, s)σ := τn◦· · ·◦τ1(M). From an initial model (M, s) and time 0, a DEL proto-
col P produces a set of possible evolutions to each time n, namely
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{(M, s)σ : len(σ) = n}. Notice that len(σ) = n does not imply that (M, s)σ ex-
ists: one of the transformers from σ may have been unexecutable at some earlier
stage.

DEL protocols are dismissed as suitable for constructing ‘complete models’ as
the results will be unexecutable, incorrect or uninformative. To see this, assume
that some phenomenon that involves multiple model transformers
T = {τ1, ..., τn}, as e.g. Muddy Children does.

If the DEL protocol used is T ∗ (the set of all finite strings sequences of trans-
formers from T ) a very nice model is obtained: it is applicable to multiple initial
states with varying mud distributions, and it may accordingly be used to obtain
answers to questions about e.g. how the scenario unfolds as a function of the
number of muddy children. Alas, T ∗ is infinite and as a model therefore un-
executable: given some initial state (M, s) it will not be possible to run T ∗ on
(M, s) in finite time as the input to any function that is to determine the set
{(M, s)σ : len(σ) = 1} will be infinite.

To obtain an executable model, T ∗ could be pruned to obtain a finite DEL
protocol T ⊆ T ∗, e.g. by setting some upper bound on the length of σ ∈ T. The
risk associated with this move (pruning) is that the model becomes useless or
uninformative: if the upper bound is set too low, the model will terminate too
soon and not provide a correct output; to ensure the upper bound high enough,
the problem must have been solved beforehand, leading to an uninformative
model. In the extreme case where the only included maximal σ is ‘the correct
one’ given some natural language protocol and initial state, a descriptive model
is produced, but such a ‘gold in, gold out’ model is of little interest from an
investigative perspective.

4 DEL and Dynamical Systems

Given Theorem 3, one might expect that dynamical systems based on the class
of action models Σ would allow modeling of a plethora of phenomena. Surpris-
ingly, not even even simple and well-known epistemic puzzles such as Muddy
Children can be modeled by this class. To see this, let us first clarify the notion
of dynamical system.

As standardly defined [6], a dynamical system is a tuple D = (X,T, E) where
X is set, called the state space, T ⊆ R is a time set which forms an additive
semi-group (t1, t2 ∈ T ⇒ t1 + t2 ∈ T ) and E : X × T → X is an evolution map
satisfying that E(x, 0) = 0 and E(E(x, t1), t2) = E(x, t1 + t2).

To obtain a state space for DEL-based dynamical systems, it is natural, given
Theorem 1, to equate bisimilar epistemic states, and let the state space con-
sist of each bisimulation type’s smallest representative. For an epistemic state
(M, s), this representative is given by (M, s)’s generated submodel rooted at s’s
bisimulation quotient (M [s]/ρM , [s]Mρ ), see [11], Sec. 3.6. Setting

M := {(M [s]/ρM , [s]Mρ ) : (M, s) is an epistemic state},
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a class is obtained that contains a canonical representative of each epistemic
state, each unique up to isomorphism.

As DEL updates are discrete and non-invertible, the suitable time set for a
DEL-based dynamical system is Z+. The evolution function of any dynamical
system D = (X,Z+, E) with time set Z+ may be defined by the iterations of
a function e : X → X by E(x, n) = en(x). Given the chosen state space, the
suitable class of such functions e is the set of model transformers τ : M → M,
denoted by T.

Given these considerations, the following definition of DEL-based dynamical
systems is obtained:

Definition 8 (DEL-based Dynamical System). A DEL-based dynamical
system is a pair D = (X, τ) where X ⊆ M and τ : X → X.
The orbit of D from initial state x0 ∈ X is the sequence o(D, xo) = (τn(x0))n∈Z+ .

Remark. Given an epistemic action τ ∈ Σ, x ∈ M does not imply that
τ(x) ∈ M. There will however be a x� ∈ M that is bisimilar to τ(x). Given
Fact 1, each τ ∈ Σ may be identified with a τ � ∈ T by if τ(x) = (M, s), then
τ �(x) = (M [s]/ρM , [s]Mρ ). Henceforth, when executing an epistemic action (Σ,σ)
in x ∈ M, it is thus assumed that x⊗ (Σ,σ) ∈ M.

It is immediately clear that any dynamical system D = (X, τ) with τ ∈ Σ will
be limited in its orbits. In particular, where s0 is the actual state in the initial
epistemic state x0 and σ0 is the actual state of τ , then for any n, the actual state
of τn(x0) will be of the form (...(s0,σ0), ...,σ0). Consequently, any phenomenon
that involves the occurrence of more than one actual action is unmodelable. As
most phenomena do involve shift in the performed action, e.g. by a shift in the
announcement made, there is a motivation for seeking out a more general class
of model transformers.

5 Complex Model Transformers

The limitation of DEL-based dynamical systems does not stem from action mod-
els, but rather from the fact that their usage is not controlled. This problem is
solved by DEL protocols or update streams; simply specify at which time which
action model should be executed. However, this requires a description of the
evolution before execution, leaving little of the local DEL spirit intact.

A natural way to specify which transformer should be applied next that still
remains local in spirit is by using a map π : M −→ T. Composing such a π with
the model transformers it picks at each epistemic state is then again a model
transformer τπ : M −→ M given by τπ(x) = π(x)(x).

To be interesting from modeling and implementation perspectives, such π
must be finitely representable. This puts constraints on the dynamical systems
definable, but, as will be shown, the restriction is still to a vast class of such
systems.

We focus on three ways of specifying maps π, each picking model transformers
from Σ. The choice to restrict attention to maps picking transformers from
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Σ is warranted by Theorem 3: As basic transformers, this class has sufficient
transformational power to construct a rich class of dynamical systems.

The first type is closely related to the (knowledge-based) programs known
from interpreted systems [10], though defined to specify transformers based on
the global, epistemic state rather than specifying sub-actions based on agents’
local states:2

Definition 9 (Program). A (finite, deterministic,(L,Σ)) program is a finite
set of formula-transformer pairs

P = {(ϕi, τi) : ϕi ∈ L, τi ∈ Σ}

where ∀i, j if ϕi �= ϕj and (ϕi, τj), (ϕj , τj) ∈ P , then M |= ϕi ∧ ϕj → ⊥.
Each program P gives rise to a model transformer τP given by τP (x) = τi(x)

if x |= ϕi and (ϕi, τi) ∈ P . Denote this class by P.

Each program may be read as a set of conditional tests of the form if ϕi, do τi,
in form similar to the informal specifications often used in DEL literature.

The explicit specification of programs stands in contrast with the implicit
specification of the second transformer type, problems, where each instruction
may be read if ϕi, obtain ψi. Problems as defined here are related to epistemic
planning problems, also know from the DEL literature [5].

Definition 10 (Problem). A (finite (L,Σ)) problem is a pair

Π = (Q,ΣΠ)

where Q = {(ϕi,ψi) : ϕi,ψi ∈ L} is a finite set of formula-formula pairs and
ΣΠ ⊂ Σ is a finite set of model transformers with an associated strict order <.

A solution to Π = (Q, T ) at epistemic state x is a model transformer τ ∈ T
such that ∀(ϕi,ψi) ∈ Q, if x |= ϕi, then τ(x) |= ψi. Denote the set of solution to
Π at x by Π(x).

Each problem Π gives rise to a model transformer τΠ given by
τΠ(x) = min< Π(x). Denote this class by Π.

The model transformer τΠ is defined using the strict order < on ΣΠ to ensure
that τΠ is a function: nothing in the definition ensures that |Π(x)| ≤ 1.

The last model transformer type to be considered is a slight generalization
of action models [1], where each such may have multiple actual states. In the
definition it is required, non-standardly, that the preconditions of the actual
states must be mutually exclusive. This is to ensure that executing a multi-
pointed action model using product update remains a single-pointed epistemic
state.

2 Programs based on agents’ local states is also at least to some degree feasible in a
DEL setting, using parallel action model composition [9].
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Definition 11 (Multi-Pointed Epistemic Actions). A (finite, determinis-
tic) multi-pointed epistemic action is an epistemic action (Σ,σ) with σ replaced
by a finite, non-empty set S ⊆ �Σ�, where for each σ,σ� ∈ S, if σ �= σ�, then
M |= pre(σ) ∧ pre(σ�) → ⊥.

Applied using product update, each (Σ, S) is a model transformer
τ : (M⊗Σ, (s, S)) �→ (�M ⊗Σ� , R�, �·�� , (s,σi)) where (M, s) |= pre(σi). Denote
this class by Σ+.

With mutually exclusive preconditions, a multi-pointed action model (Σ, S) en-
codes a map π : M −→ T with image {(Σ,σ) : σ ∈ S} by π(x) = (Σ,σ),
x |= pre(σ).

6 Results

Note initially that DEL-based dynamical systems fair better than DEL proto-
cols in regard to executability and informativity. DEL-based dynamical systems
resting on either a program or a multi-pointed action model are step-wise com-
putable, as both transformer types are finite and therefore require only check of
a finite set of formulas at each (M, s). The case for problems must be checked
against [5]. Moreover, DEL-based dynamical systems will provide informative
models: once a system is defined, one may start investigating how its orbits be-
have as a function of initial state without having pre-solved the encoded problem.

The first main result shows that dynamical systems based on the class Π
of problem-based model transformers can model any reasonable, deterministic,
finite or cyclic sequence of finite epistemic states. Problem-based dynamical sys-
tems can thus model a large class of phenomena.

The proof of Proposition 1 is by brute force. The construction results in a
large, cumbersome problem fully pre-encoding the target orbit. For many mod-
eling purposes, far more economical complex model transformers will do.

Definition 12 (Finite Variation, Deterministic). Let x = (x0, x1, ...) be a
sequence of epistemic states from M. x has finite variation iff

1. x is finite, or
2. ∃n,m, k∈ Z+\{0} : xk = xk+m for all k ≥ n.

x is deterministic iff if xk, xk+1, xm ∈ x and xk = xm, then xm+1 ∈ x and
xk+1 = xm+1.

Proposition 1 (Arbitrary Orbits). Let the sequence x = (x0, x1, ...) of finite
epistemic states be deterministic, with finite variation and where the transition
between each xi and xi+1 is reasonable. Then there exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D, x0) = x.

Proof. By constructing a problem Π = (Q,ΣΠ) that gives rise to the sought τΠ .
For each xi, xj ∈ x, xi �= xj , let δi,j be a formula that distinguishes xi from

xj such that xi |= δi,j and xj �|= δi,j ; this δi,j exists by Theorem 2. As x has
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finite variation, δi :=
�

j:xj∈x\{xi} δi,j is a formula that distinguishes xi from all
other xj ∈ x. For each xi, xi+1 ∈ x, let τi ∈ Σ be a model transformer such that
τi(xi) = xi+1; this exists by Theorem 3.

Let Q be the smallest set that for each xi, xi+1 ∈ x contains (δi, δi+1). Let ΣΠ

be the smallest set that for each xi, xi+1 ∈ x contains τi. Both Q and ΣΠ are
finite by the assumption of finite variation, so Π = (Q,ΣΠ) is a finite program,
so τΠ is a model transformer.

That o(D, x0) = x when D = (M, τΠ) is shown by induction on xn:
Base: τΠ

0(x0) = x0. Step: Assume τΠ
n(x0) = xn. If x = (x0, ..., xn), then

o(D,x0) = x as (δn,ϕ) �∈ Q for any ϕ, by determinism of x, so τΠ(xn) is
undefined. If xn+1 ∈ x, then (δn, δn+1) ∈ Q and τn ∈ ΣΠ . By construction,
Π(xn) = τn, so τΠ(x) = xn+1. ��

Proposition 2 (Problem Orbit Properties). Let o(D, x0) = x with
D = (M, τΠ), τΠ ∈ Π. Then x is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. x is deterministic as τΠ is a function; each transition is reasonable as
xi+1 = τ(xi) for some τ ∈ Σ.

Propositions 1 and 2 cannot be strengthened to a characterization result as not
all problem-based dynamical system have finite variation:

Proposition 3 (Infinite Variation). There exists a dynamical system
D = (M, τΠ) with τΠ ∈ Π such that o(D, x0) does not have finite variation.

Proof. Let D = (M, τΠ) with problem Π = ({(�,�)}, {(Σ,σ1)}). This trivial
problem has unique solution (Σ,σ1) for all (M, s) ∈ M. Hence, for all x ∈ M,
τΠ(x) = (M, s)⊗ (Σ,σ1).

Let M and Σ given by

Then o(D, (M, s)) does not have finite variation: for each iteration of τΠ , the
state not satisfying p will split, inserting a new p state as it’s child with σ2:

All other states have only one child, with σ3.
In all further applications of (Σ,σ1), the circular structure seen in (M, s) ⊗

(Σ,σ1) is preserved, only with an additional p state. No two such models are
bisimilar, and hence the orbit does not have finite variation. ��

The second main result shows that also program-based dynamical systems
and dynamical systems based on multi-pointed action models can produce a
vast class of orbits.
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Proposition 4 (Equivalence). Let x = (x0, x1, ...) be a sequence of epistemic
states. Then

1. ∃τΠ ∈ Π such that for D = (M, τΠ), o(D, x0) = x.
⇑

2. ∃τP ∈ P such that for D = (M, τP ), o(D, x0) = x.
�

3. ∃τΣ+ ∈ Σ+ such that for D = (M, τΣ+), o(D, x0) = x.

If x = (x0, x1, ...) has finite variation and x0 is finite, then the three statements
are equivalent.

Proof.
Case: 2. ⇒ 1. Let D = (M, τP ), τP ∈ P with o(D, x0) = x = (x0, x1, ...) be
given.

Construct a problem Π = (Q,ΣΠ) as follows: Let Q be the smallest set that
for each (ϕi, τi) ∈ P contains (ϕi,�). Let ΣΠ be the smallest set that for each
(Σ,σ) ∈ ΣP contains (Σ,σ∗) identical to (Σ,σ) in all respects except that
pre(σ∗) = pre(σ) ∧ ϕi. As P is finite, Π = (Q,ΣΠ) is a finite problem; τΠ is a
model transformer as the ϕi’s of P are mutually exclusive.

Then o((M, τΠ), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then
xi+1 = τ(xi) for some τ = (Σ,σ) such that for some ϕ, (τ,ϕ) ∈ P . Hence
for some ϕ, (τ,ϕ) ∈ P, it holds that xi |= ϕ. Given the preconditions and that
(ϕ,�) ∈ Q, τ∗ = (Σ,σ∗) ∈ ΣΠ will be the only solution to Π at xi. As xi |= ϕ,
τ∗(xi) = τ(xi).

Assume x = (x0, ..., xn) is finite. Then either xn �|= ϕi for all (ϕi, τi) ∈ P or if
xn |= ϕi for (ϕi, (Σ,σ)) ∈ P , then xn �|= pre(σ). In the first case, xn �|= ϕi for all
(ϕi,�) ∈ Q; in the second, xn �|= pre(σ∗). In either case, τΠ(xn) is undefined.

Case: 2. ⇒ 3. Let D = (M, τP ), τP ∈ P with o(D, x0) = x = (x0, x1, ...) be
given. Let ΣΠ be as in the case 2. ⇒ 1. Define a multi-pointed action model
(Σ+, S) by Σ+ =

� {Σ : (Σ,σ∗) ∈ ΣΠ} and S = {σ∗ : (Σ,σ∗) ∈ ΣΠ}. Let τΣ+

be the associated model transformer.
Then o((M, τΣ+), x0) = o((M, τP ), x0): Assume xi, xi+1 ∈ x. Then

xi+1 = τ(xi) for some τ = (Σ,σ) such that for some ϕ, (τ,ϕ) ∈ P . Hence
for some ϕ, (τ,ϕ) ∈ P, it holds that xi |= ϕ ∧ pre(σ), so by construction,
xi |= pre(σ∗). Hence only the submodel (Σ,σ∗) of Σ+ is executable at xi, so
τΣ+(xi) = τP (xi).

If x = (x0, ..., xn) is finite, then either xn �|= ϕi for all (ϕi, τi) ∈ P or if xn |= ϕi

for (ϕi, (Σ,σ)) ∈ P , then xn �|= pre(σ). In the first case, xn �|= pre(σ∗) for all
(Σ,σ∗) ∈ Σ+; in the second, xn �|= pre(σ∗). In either case, τΣ+(xn) is undefined.

Case: 3. ⇒ 2. Let D = (M, τΣ+), τΣ+ ∈ Σ+ with o(D, x0) = x = (x0, x1, ...)
be given. Let the Σ+ of τΣ+ be Σ+ = (Σ, S) and create from it a set of |S| single-
pointed action models A = {(Σ,σ) : σ ∈ S}. Create a program
P = {(pre(σ), (Σ,σ)) : (Σ,σ) ∈ A}. P is both finite and deterministic.

Then o((M, τP ), x0) = o((M, τΣ+), x0): Assume xi, xi+1 ∈ x. Then
xi |= pre(σ) for exactly one σ ∈ S. As (pre(σ), (Σ,σ)) ∈ P , τP (xi) = τΣ+(xi).
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If If x = (x0, ..., xn) is finite, then xn �|= pre(σ) for all σ ∈ S. Hence for all
(ϕ, τ) ∈ P , xn �|= ϕ, so τP (xn) is undefined.

Case: 1. ⇒ 2., if x = (x0, x1, ...) has finite variation and x0 is finite: Let
D = (M, τΠ), τΠ ∈ Π = (Q,ΣΠ) with o(D, x0) = x = (x0, x1, ...) having finite
variation. Brute force construct a program using characteristic formulas: let δi
be the characteristic formula of xi ∈ x. For each pair xi, xi+1 ∈ x, there is a
unique τi ∈ ΣΠ such that τi(xi) = xi+1. Let P = {(δi, τi) : xi ∈ x}. As x has
finite variation, P is finite and gives rise to a model transformer τP .

Then o((M, τP ), x0) = o((M, τΠ), x0): Assume xi, xi+1 ∈ x. Then
(δi, τi) ∈ P , so τP (xi) = xi+1. If x = (x0, ..., xn) is finite, then by Proposi-
tion 2, for no xi, i < n is xi = xn. Hence (δn, τ) �∈ P , for any τ . Hence τP (xn) is
undefined. ��

Corollary 1 (Orbit Properties). For any dynamical system D = (M, τ) with
τ ∈ P∪Σ+ and any x0 ∈ M, o(D,x0) is deterministic and for each xi, xi+1 ∈ x,
the transition from xi to xi+1 is reasonable.

Proof. Let D be as described. By Proposition 4 there exists a D� = (M, τΠ),
τΠ ∈ Π, that recreates o(D, x0). The corollary then follows from Proposition 2.

7 Conclusion

The main contributions are

✄ that although dynamical systems defined using epistemic action models can
produce only very limited orbits, dynamical systems that control when par-
ticular action models are used may produce orbits sufficient for most mod-
eling purposes, and

✄ that the three methods for controlling which action models are applied are
equivalent under the presented conditions.

The first result shows that DEL-based dynamical systems provide a rich frame-
work for producing mathematically specified models of information dynamics.
The latter shows that there are multiple ways of extending the DEL toolbox
compatible with modeling using dynamical systems.

It would be interesting to make an in-depth comparison between DEL proto-
cols and DEL-based dynamical systems, comparing the orbits they may produce
and under which conditions such might be equivalent. Two considerations here
involve the finite nature of DEL protocols, guaranteeing finite variation not
guaranteed by DEL-based dynamical systems, and the ‘bisimulation respecting’
behavior of DEL-based dynamical systems, which is not necessarily followed by
DEL protocols. Obtaining such results could be used to link DEL-based dynam-
ical systems with Epistemic Temporal Logic via the results in [3].

Moreover, it would be interesting to investigate any deeper relationship be-
tween dynamic epistemic logic and dynamical systems; the latter field is well-
developed, and one could envision that methods and results may be transferable.
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Abstract In dynamical multi-agent systems, agents are controlled by proto-
cols. In choosing a class of formal protocols, an implicit choice is made con-
cerning the types of agents, actions and dynamics representable. This paper
investigates one such: An intensional protocol class for agent control in Dy-
namic Epistemic Logic (DEL), called `DEL dynamical systems'. After illustrat-
ing how such protocols may be used in formalizing and analyzing information
dynamics, the types of epistemic temporal models that they may generate are
characterized. This facilitates a formal comparison with the only other formal
protocol framework in Dynamic Epistemic Logic, namely the extensional `DEL
protocols'. The paper is concluded with a conceptual comparison, highlighting
modeling tasks where DEL dynamical systems are natural.

Keywords dynamic epistemic logic, multi-agent systems, protocols, epis-
temic temporal logic, dynamical systems

1 Introduction

In logically modeling dynamics in multi-agent systems � whether by global-
perspective frameworks like Interpreted Systems [21] and Epistemic Temporal
Logic [36], or by local-perspective frameworks like Dynamic Epistemic Logic
[4] � the dynamics rely on protocols: control mechanisms that determine which
actions may occur when.
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Protocols take a plethora of forms, ranging from natural language descrip-
tions, over pseudo-code renderings, to fully formalized representations. More-
over, protocol speci�cations may vary in their fundamental structure. Speci�-
cally, one may distinguish between extensional protocols and intensional pro-
tocols.1

Extensional protocols are temporal : They consult an external clock to spec-
ify which actions are available for execution at a given time of a run of a sys-
tem. Roughly speaking, an extensional protocol is a set of sequences of actions
that allows the execution of action a at time t if a is on the tth position of
a sequence in the protocol. Abstractly, think of a function assigning to each
natural number a set of allowed actions.

Intensional protocols, in contrast, are conditional : They consult the cur-
rent state of the system to specify which actions are available for execution
now. Roughly speaking, a conditional protocol is a set of �if ϕ, then do a�
statements. Such a statement � or rule � allow the execution of action a now if
the current state satis�es the test condition ϕ. Abstractly, think of a function
assigning to each possible state of the system some set of allowed actions.

Both extensional and intensional protocols qua protocols have been inves-
tigated in the epistemic agency literature, but mainly in di�erent paradigms:
Where the Interpreted Systems literature has favored intensional protocols [21,
44,34], the literature on protocols in Dynamic Epistemic Logic has favored ex-
tensional protocols [13,18,29,30,43,41].

There is, however, no formal reason to avoid intensional protocols in the
Dynamic Epistemic Logic setting. In fact, such protocols may be both intuitive
and compact in representation. Moreover, the mathematical basis and logical
theory for intensional protocols enjoys established results, albeit not cast as
results concerning protocols (cf. Sec. 1.2 on related literature).

This paper concerns intensional protocols for Dynamic Epistemic Logic
(DEL). In particular, it investigates intensional protocols as represented by
multi-pointed action models applied iteratively. By this, the paper takes a
discrete-time dynamical systems perspective on protocols for information dy-
namics. The resulting intensional protocols are referred to as DEL dynamical
systems.

The overarching question of the paper is how such intensional protocols
relate to their closest extensional relative, namely the DEL protocols of van
Benthem, Gerbrandy, Hoshi and Pacuit, [13]. The main motivation for this
question is a wish to clarify similarities and di�erences in the implicit as-
sumptions and restrictions inherent in the two frameworks. This, in turn, is
motivated by a desire to understand up- and downsides of protocol frameworks
from a design and modeling perspective.

Methodologically, the main comparison is achieved by characterizing the
types of Epistemic Temporal Logic (ETL) models generatable by intensional
protocols coded as DEL dynamical systems, and compare the resulting ETL

1 The terms and distinction is adopted from Parikh and Ramunjam, see [36, Sec. 2.2].
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properties with those previously obtained for extensional DEL protocols by
van Benthem, Gerbrandy, Hoshi and Pacuit.

This methodology has a two-fold incentive, foremost of which is that ETL
models provide an assumption-free common point of reference between the
two protocol forms, thus allowing a comparison of induced properties.2 This
is desirable as the fundamental di�erence between extensional and intensional
protocols � that one relies on an external clock whereas the other reacts to the
current state � makes it di�cult to compare the protocol frameworks directly.
In particular, then the structure of an extensional protocol is not, in general,
enough to determine whether the resulting sequence of models may be obtained
from an intensional protocol. The second aspect of the motivation is that the
methodology as a by-product relates DEL dynamical systems to ETL models,
thus yielding results illuminating the former, on which there has been a recent
interest, cf. Sec. 1.2 on related literature.

1.1 Structure of the Paper

Section 2 de�nes core DEL components as well as intensional protocols (�DEL
dynamical systems�) and extensional protocols (�DEL protocols�). These are
informally compared and contrasted by example. Finally, it is illustrated how
DEL dynamics may be seen as producing ETL models.

Section 3 presents ETL models and eight structural properties of key rele-
vance to the paper.

Section 4 formally de�nes how to generate ETL models from DEL dynamical
systems and contains a �rst result: For an ETL model to be generatable by a
DEL dynamical system, it must necessarily satisfy speci�c seven of the eight
structural properties, but not necessarily the eighth.

Section 5 concerns the other direction: Constructing DEL dynamical systems
that will generate a given ETL model. It will be shown that if an ETL model
possesses all eight structural properties, then this is su�cient for a suitable
DEL dynamical system to exist.

Jointly, the results of Sections 4 and 5 almost yield a characterization of
the ETL models generatable by DEL dynamical systems, but not quite.

Section 6 restricts attention to a subclass of DEL dynamical systems and
a subclass of ETL models: When a DEL dynamical system is image-�nite
and concluding, it generates an image-�nite and concluding ETL model. In
this case, a proper characterization is obtained: The eight properties are both
necessary and su�cient.

Section 7 moves the attention to non-deterministic intensional protocols,
implemented by running several (deterministic) DEL dynamical systems in

2 It is also a point of reference for other frameworks, like interpreted systems or extensive
games with imperfect information, cf. the motivation in [13].
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parallel. The motivation is a tighter correspondence with the methodology
of extensional DEL protocols, of which only special cases are deterministic.
The section presents weaker, necessary properties of ETL models generated
by families of DEL dynamical systems.

Section 8 contains the main comparison of intensional and extensional proto-
cols for DEL, based on the di�erences in structural properties of generatable
ETL models. The section thus compares and discusses the present results with
those of van Benthem, Gerbrandy, Hoshi and Pacuit [13].

Section 9 concludes with open questions.

1.2 Related Literature

The two main bodies of research to which this paper relates is that on protocols
for DEL and that on DEL and dynamical systems.

The �rst body of research � on protocols for DEL � comprises [18,29,30,
43,41,11] and van Benthem, Gerbrandy, Hoshi and Pacuit's 2009 [13]. All
papers in this collection uses extensional protocols in the style of Parikh and
Ramanujam [36], to various ends. Of special interest to the present is [13]: In
[13], the authors investigate which classes of ETL models one may generate
using action models, product update and extensional protocols. Their results
are illuminating in elucidating epistemic and logical properties inherent in
the DEL methodology. The approach and results of [13] are presented and
discussed throughout.

The second body of research � on DEL and dynamical systems � considers
the iterated application of DEL model transformers on sets of pointed Kripke
models as a dynamical system.3 This idea was �rst explicitly put in play
in Exploring the Iterated Update Universe by T. Sadzik in 2006.4 The paper
investigates frame conditions for action models that guarantee a stabilizing
orbit modulo bisimulation, drawing on conceptual ideas from van Benthem,
advanced in 2002 [8].

Since, various papers have honed in on long-run behavior of iterated an-
nouncements (see e.g. [1,7,17]) without explicit ties to dynamical systems. In

3 For the reader interested so interested, there also exists a body of literature taking the
converse perspective, using logics to describe qualitative aspects of long-run behavior. On
this approach, logic meets dynamical systems by the latter playing the role of semantics to
the former. Papers falling in this category, detailing logics of dynamical topological systems,
include Kremer and Mints' 2007 handbook chapter [33] (on research from 1997 onwards by
e.g. Artemov [2] and the authors of [32]) and several recent papers by Fernandéz-Duque
[23,22,24]; Sarenac's paper from 2011 [42] exploring modal logical approaches to describing
iterated function systems; and �nally van Benthem's work in [8,10], outlining various pos-
sible logical approaches to �xed points and limit cycles of dynamical systems by applying
�xed-point and oscillation operators galvanized by modal µ-calculus. The latter two papers
additionally provide an excellent bridge between the high abstraction level approach to logic
and dynamical systems of this note and the micro-perspective literature in the main text.
4 Available as Report PP-2006-26, Institute for Logic, Language, and Computation, Uni-

versity of Amsterdam.
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[38,39], intensional protocols are used to model information dynamics, using
constructions similar to (one-step) planning problems of [16]. In these papers,
no link is made to either protocol nor dynamical systems literature. In [40],
the protocol format of [38,39] is cast in dynamical systems terms and related
to the multi-pointed action models [4,3] and the knowledge-based programs of
[21]. In [31], iterated dynamics are construed in a topological setting, inves-
tigating objects satisfying the common de�nition of a dynamical system: A
compact, metric space under the action of a continuous function.5

In neither of the mentioned papers is DEL investigated as a dynamical
system qua its role as protocol de�ning, nor has the resulting sequences been
related to ETL models or extensional protocols.

2 Protocols for DEL

In this section, standard notions from Dynamic Epistemic Logic are introduced
together with intensional and extensional DEL protocols. The reader is referred
to the excellent literature on the topic of epistemic logic and DEL for more
information and philosophical interpretation: See e.g. [28,21,4,6,19,9,5,14,12,
20].

2.1 Pointed Kripke Models and Language

Let be given a countable, non-empty set of propositional atoms Φ and a �nite,
non-empty set of agents, I. Throughout the paper, it will be assumed that
these sets remain �xed.

A Kripke model is a tuple M = (JMK , R, J·K) where
JMK is a countable, non-empty set of states;

R : I −→ P(JMK × JMK) assigns to each agent i an accessibility
relation R(i), also denoted Ri;

J·K : Φ −→ P(JMK) is a valuation, assigning to each atom an extension
of states.

A pair (M, s) with s ∈ JMK is called a pointed Kripke model. Throughout,
the pair (M, s) is written Ms.

Where p ∈ Φ and i ∈ I, de�ne a language L(Φ,I) by

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ | �iϕ
with non-propositional formulas evaluated over pointed Kripke model Ms by

Ms |= �iϕ i� for all t ∈ JMK, sRit implies Mt |= ϕ,

and standard propositional semantics.

5 In the present paper, this topological augmentation is not made. The reason is that the
arguments used in comparing sequences of models obtained through some protocol to ETL
models rely on structural features of concrete models: The required moves between concrete
models and abstract, quotient models would thus add super�uous steps.
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2.2 Action Models and Product Update

In Dynamic Epistemic Logic, dynamics are introduced by transitioning be-
tween pointed Kripke models from some set X using a possibly partial map
f : X −→ X. Such a map is often referred to as a model transformer. Many
model transformers have been suggested in the literature, the most well-known
being truthful public announcement, !ϕ [37]. Truthful public announcements
are a special case of a rich class of model transformers, here referred to as the
class of clean maps.

In essence, a clean map f is given by f(x) = c(x⊗ a) with speci�c term a,
product ⊗ and restricting operation c. The term a is based on a deterministic
multi-pointed action model, de�ned below.6 Intuitively, one may think of a
such as a set of program lines, each of the form �If ϕi, then do ai�, where
the preconditions ϕi are mutually exclusive. When �run� on a pointed Kripke
model x, the program checks if x satis�es any ϕi. If so, it executes action ai
(a sub-action of a) on x, obtaining the result x⊗ a. If not, the the product of
x and a is unde�ned. Finally, the operation c removes redundant states. Their
usage is exempli�ed in Section 2.6.

De�ne an action model as a tuple Σ = (JΣK ,R, pre, post), sharing lan-
guage L(Φ,I) with models in X, where

JΣK is a countable, non-empty set of actions σ;

R : I −→ P(JΣK× JΣK) assigns an accessibility relation R(i) to each
index i ∈ I, with R(i) denoted Ri;

pre : JΣK −→ L(Φ,I) assigns to each action a precondition, specifying
the conditions under which σ is executable;

post : JΣK −→ L(Φ,I) assigns to each action a postcondition (a con-
junctive clause7 over Φ, or >). The postcondition speci�es whether σ
changes the values of select atoms.

A pair (Σ,Γ ) with ∅ 6= Γ ⊆ JΣK is a multi-pointed action model; (Σ,Γ )
is also written ΣΓ . If Γ is a singleton {σ}, then ΣΓ is called single-pointed
and is written Σσ. If X |= pre(σ) ∧ pre(σ′) → ⊥ for each σ 6= σ′ ∈ Γ , then
ΣΓ is called deterministic over X, for X a set of pointed Kripke models.
The term deterministic is used as the requirement ensures that at most one
designated action from Γ �survives� when ΣΓ is applied to a pointed Kripke
model Ms ∈ X using product update ⊗. The product Ms ⊗ ΣΓ is the

6 Action models and product update was introduced in [4]. The extension to multi-pointed
action models came with [3]. The present version of postconditions is inspired by [20] and
the usage of deterministic models by [40].
7 I.e. a conjuction of literals, where a literal is an atomic proposition or a negated atomic

proposition.
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pointed Kripke model (JMΣK , R′, J·K′, s′) with

JMΣK = {(s, σ) ∈ JMK× JΣK :Ms |= pre(σ)}
R′ = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri} , for all i ∈ I

JpK′ = {(s, σ) :s ∈ JpK, post(σ) 6|= ¬p} ∪ {(s, σ) :post(σ) |= p} , for all p ∈ Φ
s′ = (s, σ) : σ ∈ Γ and Ms |= pre(σ)

If Ms does not satisfy the precondition of any action σ in Γ or if ΣΓ is not
deterministic over {Ms}, then product is unde�ned.

In the product Ms⊗ΣΓ , there may be states that are not reachable from the
point (s, σ) via any collection of relations. Such states are, for present purposes,
super�uous: They neither a�ect the formulas satis�ed at (s, σ) nor the set of
models with which (Ms ⊗ ΣΓ , (s, σ)) is bisimilar. As it is later convenient
to work with correspondence between structures up to isomorphism, in the
current paper such super�uous states are always deleted.

Super�uous states are deleted by regarding only the substructure of any
pointed Kripke model Ms that is connected to the actual state s. This sub-
structure is denoted C(Ms) and is de�ned as follows:

Let R∗ be the re�exive, transitive and symmetric closure of {Ri}i∈I . Let
R∗(s) be the set of states reachable from s via R∗, i.e., R∗(s) := {s′ ∈
JMK : (s, s′) ∈ R∗}. Then the connected component of Ms is the unpointed
substructure C(Ms) := (JMK|R∗(s) , R|R∗(s), V|R∗(s)). With s′ ∈ JC(Ms)K,
C(Ms)s′ is thus again a pointed Kripke model. In particular, C(Ms)s is bisim-
ilar to Ms.8,9

2.3 Intensional Protocols: DEL Dynamical Systems

The most general class of maps � the intensional protocols � of interest in the
following may now be de�ned as follows:

De�nition 1 (Clean Map) Let X be a set of pointed Kripke models. A
clean map on X is any possibly partial model transformer f : X −→ X
given by f(x) = C(x ⊗ ΣΓ)s′, for all x ∈ X, with ΣΓ a multi-pointed action
model deterministic over X.

De�ning intensional protocols using mappings, it is required that also their
domain and range be speci�ed:

De�nition 2 (DEL dynamical system) A DEL dynamical system is a
pair (X, f) where X is a set of pointed Kripke models and f is a clean map
on X. A pointed DEL dynamical system (X, f, x) is augmented with an
initial model x ∈ X, assumed to be connected.

8 This is not a bisimulation contraction (cf. [27]): C(Ms)s need not be bisimulation min-
imal.
9 The authors apologize for the cumbersome notation: It is useful when later working with

connected components in unpointed epistemic, temporal structures.
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The orbit of (X, f, x) is the (possibly �nite) sequence x, f(x), f(f(x)), ....
Misusing notation if fk(x) is unde�ned for some k ∈ N, the orbit is denoted
〈fk(x)〉k∈N.

Remark 1 This de�nition of a DEL dynamical system is restrictive. A broader
de�nition would allow f to be any bisimulation-preserving map.

2.4 Extensional Protocols: DEL Protocols

In [13], two types of DEL protocols are de�ned, one allowing the protocol to
vary from state to state of the initial model and one where the protocol is
�common knowledge�:

De�nition 3 (DEL Protocol) Let E be the class of all L(Φ,I) single-pointed
action models. Let E∗ be the class of all �nite sequences of elements from E.
A set P ⊆ E∗ is a DEL protocol i� P is closed under non-empty pre�xes. Let
Ptcl(E) denote the class of all DEL protocols.

Let Ms be a pointed Kripke model. A state-dependent DEL protocol
on Ms is a map

p : JMK −→ Ptcl(E).

If p is constant over JMK, i.e., if for all s, t ∈ JMK, p(s) = p(t), then p is a
uniform DEL protocol.

A DEL protocol speci�es which pointed action models may be executed at a
given time � whether they can be executed then again depends on the precon-
ditions of the designated action. Their usage is exempli�ed in Section 2.6.

2.5 An Initial Comparison

Although DEL protocols and DEL dynamical systems invoke the same rudi-
mentary changes by using action models, they di�er vastly in structure. In
particular, where every DEL dynamical systems encodes a deterministic10

protocol � by virtue of being de�ned as a mapping � DEL protocols may be
non-deterministic. Roughly, DEL dynamical systems may be correlated with
state-dependent and uniform DEL protocols in the following manner:

. A DEL dynamical system is analogous to a deterministic, uniform DEL
protocol: A DEL protocol P ⊆ E∗ for which all sequence ς, ς ′ ∈ P, either ς
is a pre�x of ς ′ or vice versa.

. A non-deterministic, uniform DEL protocol is analogous to a family of
DEL dynamical system, executed in parallel on the same pointed Kripke
model.

10 In the sense that given any input state (pointed Kripke model), the protocol outputs at
most a single resulting state.
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. A non-deterministic, non-uniform DEL protocol is analogous to a family of
DEL dynamical systems, executed in parallel on di�erent pointed Kripke
models, all of which are identical up to the choice of designated point.

In the present, dealing with non-uniform DEL protocols or their DEL dynam-
ical systems counterparts will be omitted.

Without going through ETL models, DEL dynamical systems and uniform
DEL protocols may be related, showing that the orbits obtainable from DEL
dynamical systems is a sub-class of those obtainable using DEL protocols:

Proposition 1 Let (X, f, x) be a pointed DEL dynamical system. Then there
exists a singleton uniform DEL protocol that produces the orbit of f from x.

Proof At each iteration, the clean map f is � in e�ect � going to execute a
single-pointed action model. Copying the sequence of thusly executed action
models provides a uniform DEL protocol. For details, see Appendix.

The converse of Proposition 1 does not hold: There exists pointed Kripke
models with associated singleton uniform DEL protocols that produce se-
quences of pointed Kripke models not duplicatable by any DEL dynamical
system.11 This is is a consequence of DEL protocols being extensional : Not
only do they consult the information inherent in the present model to deter-
mine ensuing actions, but also the current time, exogenously provided by the
sequential nature of the protocol. This information is not available to DEL
dynamical systems and can therefore not be used in guiding dynamics.

As remarked in the introduction, this feature makes it di�cult to compare
DEL protocols and DEL dynamical systems directly: The structure of the DEL
protocol may not be enough to determine whether the resulting sequence of
pointed Kripke models may be obtained as the orbit of a DEL dynamical
system. Hence the current approach, a comparison using ETL models.

2.6 Example: The Muddy Children Puzzle

To illustrate the di�erences in use of DEL dynamical systems qua intensional
protocols and uniform DEL protocols qua extensional protocols, two such for-
mal protocols of the classic Muddy Children Puzzle, well-known in the DEL
literature (see e.g. [26,19]), are presented. As a simpli�ed version of the puzzle
is su�cient for present purposes, attention is restricted to the case with three
children.

The puzzle initiates with a partial description of an epistemic state:

11 An example is the following: Let a two-state pointed Kripke model Ms with Ms |=
p ∧ q and Mt |= p ∧ ¬q be given. Let p(s) = {(!p), (!p, !p ∧ q)} with !ϕ the truthful public
announcement of ϕ. Then p on Ms produces the sequence (Ms,Ms,M ′s) with JM ′K =
JMK\{t}. No clean map can duplicate this sequence: As f(Ms) = Ms, the system has
reached a �xed point from which it will never deviate to produce M ′s.
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s : abc

t2 : abct1 : abc t3 : abc

t4 : abc t6 : abct5 : abc

M :

c

c c

b

b b

a

aa

Fig. 1 Unpointed Kripke modelM representing the initial situation of the Muddy Children
Puzzle. Each state speci�es which children are muddy, where for all i ∈ Φ, i := ¬i, that is,
�child i is not muddy�. Labelled relations between states represent ignorance of the children.
Re�exive relations are omitted.

Three brilliant children have been playing outside. During play, each
may have obtained a muddy forehead. Each can tell whether or not
others have muddy foreheads, but cannot tell this of themselves. Upon
returning home from play, an adult of unspeci�ed gender informs the
children that at least one of them is muddy.

Following standard practice in DEL, this partial description is modeled
as an unpointed Kripke model for a language L(Φ,I) with the set of agents
I = {a, b, c} and the set of atoms Φ = {a, b, c} with i ∈ Φ read �child i is
muddy�. The unpointed model M is illustrated in Figure 1. A pointed Kripke
model results when a designated state is determined: This corresponds to �xing
which children became muddy during play. Denote the set of resulting pointed
Kripke models XM .

The puzzle speci�cation continues by the adult detailing a protocol by
which the children should update the initial epistemic state:

�Concurrently with this metronome,� the adult instructs, �repeatedly
and simultaneously announce aloud whether or not you know whether
or not you are muddy.�

By means of a suitable model of this protocol, it is desirable to be able to
answer the main question of the puzzle, namely:

If there are n muddy children, how many times does the metronome
have to tick before all three children know whether or not they are
muddy?

As the uniform DEL protocol and the DEL dynamical systems protocol will
share the same informational actions, these will be introduced �rst.

2.6.1 Muddy Children: Announcements

As standard, each of the announcements made is treated as a truthful public
announcement, cf. [37]. A truthful public announcement of the formula ϕ may
be modeled using a single-pointed action model with a single action with ϕ as
precondition.
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Intensional Protocols for Dynamic Epistemic Logic 11

Each epistemic announcement is modeled using the same singleton single-
pointed action model, changing only the precondition. Build the formulas for
the group announcements as follows:

1. Interpret the �i modality as reading �child i knows that...�, and denote the
operator by Ki.

2. Let knowi be short for Kii ∨ Ki¬i. If knowi is true, then child i knows
whether he or she is muddy or not.

3. Let knowS for S ⊆ I be the formula
∧
i∈S knowi ∧

∧
i6∈S ¬knowi. Then

knowS states that exactly the children in S know their status.
4. For each S ⊆ I, let ΣSσS = ({σS},RS , preS , postS , σS) be the singleton

single-pointed action model with pre(σS) = knowS , post(σS) = > (as
the announcement makes no changes to atomic valuations), and RS(i) =
{(σS , σS)} each i ∈ I. As in the initial Kripke model, the epistemic relations
are thus equivalence relations.

2.6.2 Muddy Children: Intensional Protocol

Notice that the instructions of the parent in the natural language protocol are
already provided in an intensional (conditional) form. Essentially, the parent
instructs the children to follow the rules

�If you know whether you are muddy, then announce so.�, and

�If you don't know, then announce so.�

Aggregated to rules for the group, the antecedents in these conditional
rules are exactly the preconditions of the actions in the ΣSσS models. As
these preconditions are pairwise jointly unsatis�able over any set of pointed
Kripke models and the models are disjoint, their union is a deterministic
multi-pointed action model: Let ΣΓ = (JΣK ,R, pre, post, Γ ) with, for B ∈
{JΣK ,R, pre, post, }, B = ∪S⊆IBS and Γ = ∪S⊆I{σS}.

Let X be a superset of the muddy children models XM of Fig. 1, closed
under the operation ⊗ΣΓ . With f the clean map onX based on ΣΓ , (X, f) is a
DEL dynamical system. Moreover, applied to any x ∈ XM ⊆ X, f implements
the desired protocol and produces, tractably and in �nite time, an answer to
the puzzle. Figure 2 illustrates this for the case of three muddy children.

With this implementation, the intensional protocol may straightforwardly
be applied to pointed models di�ering in other respects then the number of
muddy children, e.g., with di�erent initial announcements of the parent.

2.6.3 Muddy Children: Extensional Protocol

Constructing an extensional protocol for the Muddy Children given some ini-
tial Kripke model is straightforward: Simply run the intensional protocol above
on the initial model, taking note which designated actions' preconditions were
satis�ed when and encode this sequence as a extensional protocol. The re-
sulting extensional protocol will induce the motions appropriate for the given
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s : abc

t2 : abct1 : abc t3 : abc

t4 : abc t6 : abct5 : abc

Ms :

c

c c

b

b b

a

aa

s′ : abc

t′2 : abct′1 : abc t′3 : abc

t5 : abc

f1(Ms) :

c
b

a

s′′ : abc

t2 : abc

t5 : abc

f2(Ms) :

Fig. 2 The three models of the Muddy Children Puzzle in the case of three muddy children.
For any r′ ∈

q
f1(Ms)

y
, let r′ := (r, σ∅) and let s′′ := ((s, σ∅), σ∅). Points are distinguished

by a thick contour. It can be seen that after two rounds of question and answers all children
know whether or not they are muddy. Furthermore, fk(Ms) is isomorphic to f2(Ms) for all
k ≥ 2.

initial model. However, the protocol will not be useful in answering the ques-
tion of the puzzle: It is a once-o� solution for the given Kripke model only,
constructed with knowledge of the answer sought.

A more informative extensional DEL protocol may be constructed, but it
requires a countably in�nite representation: Assume to construct an exten-
sional DEL protocol that will adequately encode the natural language instruc-
tions, is applicable to any model in XM and presumes no prior knowledge of
the developing information dynamics. The set of relevant announcements is, as
above, {ΣSσS : S ⊆ I}. For the announcement made at the �rst time step, the
protocol must allow ΣSσS for each S ⊆ I, seeing that no information about
the development of the dynamics may be assumed. Similarly, each possible an-
nouncement must be allowed to follow the �rst, etc. Hence, only satisfactory
extensional protocol is P = {ΣSσS : S ⊆ I}∗. This set is countably in�nite.

This protocol facilitates �nding an answer to the Muddy Children Puzzle:
For a given initial model Ms ∈ XM , �nd the actions that the protocol allows
to be executed at time 1. These are all the actions models ΣSσS for which the
length 1 sequence 〈ΣSσS〉 is in P (i.e., all the actions the protocol allows at time
1). For each of these, calculate the product Ms⊗ΣSσS . As the preconditions
are, in the current example, mutually inconsistent, only one such model will
be well-de�ned. The result is exactly f(Ms), for f the intensional protocol
given above. For time 2, take all the models produced at time 1 � in this case
{f(Ms)} � and execute on each of them all the actions in the continuations
of the sequence from which that model stems. This produces a second set of
pointed Kripke models � in this case {f(f(Ms)}. This process thus leads to
a model in which all children will announce that they know whether they are
muddy.

Remark 2 If one is interested in implementing a DEL protocol to seek com-
putational assistance in puzzle solving, the countably in�nite representations
required for the extensional protocol may prove cumbersome.12

12 It was not suggested in [13] that DEL protocols be implementable nor that they are
suited for modeling purposes.
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3 Epistemic Temporal Logic

The run of a pointed DEL dynamical system may be recorded as a sequence of
pointed Kripke models. Using information from the action models, an insight
of [13] was that this may naturally be regarded as a temporal, modal structure,
a so called Epistemic Temporal Logic model.

ETL models, introduced in [36], form a both simple and general framework.
Such models allow the representation of epistemic and temporal interplay, and
allow doing so without in an assumption-free manner. Hence, in generating
ETL models from DEL dynamics, any structural properties (e.g., Synchronic-
ity, Perfect Recall) shared by the generated ETL models are features induced
by the DEL operations. Thus, characterizing the classes of generatable ETL
models elucidates assumptions implicit in DEL dynamics about epistemic and
temporal interplay. This is a main conceptual insight of [13].

An ETL model is a temporal forest with additional modal (epistemic)
relations between notes. With E∗ the set of all �nite sequences of elements from
the set E, an ETL model for the language L(Φ,I) is a tuple H = (E,H, R, V )
where

E is a set of events e;

H ⊆ E∗ is a set of histories, closed under non-empty pre�xes;13

R : I −→ P(H ×H) is a map assigning to each agent an accessibility
relation R(i), written Ri;

V : Φ −→ P(H) is a valuation.

In contrast with pointed Kripke models, ETL models are not equipped with
actual states. To obtain a tighter connection between DEL dynamical system
orbits and ETL models, the latter is augmented to include multiple points.
Figure 3 on the following page illustrates such an augmented (�saturated�)
ETL model and its relation to the orbit of a DEL dynamical system.

As in Sec. 2.2, let R∗ be the re�exive, symmetric and transitive closure
of R, and let R∗(h) := {h′ ∈ H : (h, h′) ∈ R∗}. Then de�ne the connected
component of h ∈ H in H � denoted C(Hh) � as the restriction of H to
R∗(h), i.e., let C(Hh) := (H|R∗(h), R|R∗(h), V|R∗(h)). If h∈ H|R∗(h), then C(Hh)h
is a pointed Kripke model.

Finally, de�ne the ETL structures of interest as follows:

De�nition 4 (Saturated ETL Model) Let H = (E,H, R, V ) be an ETL
model. Let H ⊆ H be a set of histories closed under pre�xes, called points.
The pair (H, H) is saturated i� for all h ∈ H, the connected component
C(Hh) contains a unique point h from H.

13 It is overall assumed that any ETL model contains no redundant events relative to the
model's set of histories. That is, for any ETL model H, it holds that any event e ∈ E is
either a history (e ∈ H) or part of a history (∃h ∈ H such that he ∈ H).
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e1e8e12 : abc C2

e1e8 : abc

e3e10 : abce2e9 : abc e4e11 : abc

c
b

a C1

e1 : abc

e3 : abce2 : abc e4 : abc

e5 : abc e7 : abce6 : abc

c

c c

b

b b

a

aa

e9 e11

e8

e10

e12

...

C0

Fig. 3 A saturated ETL model (H, H). Time �ows upwards where labelled dashed lines
represent events. Connected components are marked by dotted circles, points by thick con-
tours. Each pointed connected component is isomorphic to a pointed Kripke model from
Figure 2 on page 12. Moreover, a history h′ is the successor of h in H i� the Fig. 2 counter-
part of h′ is a state (s, σ) for s the counterpart of h.

Remark 3 The addition of points to ETL models is vital for the ensuing con-
structions: When computing the k+1th element of an orbit of a DEL dynamical
system, any clean map uses information from the designated point of the kth
element. Thus, it is essential information for the evolution of a DEL dynamical
system which point of a Kripke model is designated. Hence, to structurally re-
late ETL models to orbits of DEL dynamical systems (each element of which
is pointed), it is necessary to add a notion of points to the former.

3.1 ETL Isomorphism

For simplicity of arguments, saturated ETL models are identi�ed up to iso-
morphism. This allows arguments without repeated references to bisimulation
contractions or other speci�c representatives. In the de�nition of isomorphism
between ETL models, note that the temporal structure of the models is also
preserved:

De�nition 5 (ETL Isomorphism) Let saturated ETL models (H, H) =
(E,H, R, V,H) and (H′, H ′) = (E′, H ′, R′, V ′, H ′) be given. Let f : E −→ E′.
For h = e0...en ∈ E∗, let f(h) := f(e0)...f(en). The map f is an ETL iso-
morphism i� f is a bijection and for all h ∈ H, h′ ∈ H ′

1. h ∈ H i� f(h) ∈ H ′, and h ∈ H i� f(h) ∈ H ′,
2. hRih

′ i� f(h)R′if(h
′), for all i ∈ I,

3. h ∈ V (p) i� f(h) ∈ V ′(p), for all p ∈ Φ.
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(H, H) and (H′, H ′) areETL isomorphic i� there exists an ETL isomorphism
between their domains.

In the remainder, �ETL isomorphism� and �isomorphism� are used interchange-
ably.

3.2 ETL Model Properties

When generating an ETL model from a DEL dynamical system, the resulting
forest will inherit a set of properties. Some stem from the graph theoretic na-
ture of action models, product update and the associated pruning to connected
components of clean maps, some from the workings of pre- and postconditions,
and yet some stock from the functional modus operandi of dynamical systems.
Def. 6 lists the eight properties of main relevance to this paper.

Of these, Synchronicity, Perfect Recall and Local No Miracles are well-
known . In models interpreted epistemically, they roughly require, respec-
tively, that agents know the current time, never forget what they have learned
(though new uncertainty may be introduced), and that events carry the same
information in all states in the same �context� � in each connected component.
These were identi�ed by van Benthem et al. [13] to be inherited in any ETL
model generated using sequences of actions models (see Sec. 8 for discussion
and comparison).14

Connected Time-Steps is almost the converse of Synchronicity: It requires
that a time-step contains at most one connected component. It relates to the
deletion of super�uous states by clean maps.

From the use of product update simpliciter comes Precondition Describ-
able while Postcondition Describable results from using action models with
postconditions. The formula δe required to exist by Precondition Describable
describes exactly those histories h in a connected component in the ETL model
on which e is executed. This is required in order to formulate the precondition
of the action σe that will `simulate' event e in the DEL dynamical system. The
formula in Postcondition Describable describes the propositional change due
to e. This is necessary for the postcondition of σe based on e to be well-formed.

In property Component Collection Describable, it is demanded that any
(bisimulation-closed) collection of pointed connected components is de�nable
by a formula. The existence of these formulas is required to ensure that the
preconditions for each σ ∈ Γ are well-de�ned such that the right action points
may be executed at the right times.

The three formula properties Precondition Describable, Postcondition De-
scribable and Component Collection Describable are given as existence re-
quirements without listing criteria that ensure their satisfaction.

Related to the functional nature of DEL dynamical systems is Point Bisim-
ulation Invariance. As this property is somewhat tricky, it is here explained:

14 Among the four core properties of [13], the authors also included Atomic Permanence,
stating that atom values do not change. Working with action models with postconditions,
this no longer applies.
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Take two connected components, C(Hh1) and C(Hh2), from the saturated
ETL model (H, H). Each component will then have a single designated point.
Let h be the designated point of C(Hh1) and h′ that of C(Hh2). The prop-
erty then states the following: If the points h and h′ are bisimilar, then if two
other histories, say h3 and h4, from respectively C(Hh1) and C(Hh2) are also
bisimilar, then h3 and h4 will be extended by exactly the same events. The
property thus re�ects two aspects of clean maps. First, that they are map-
pings: When applied to identical elements (pointed Kripke models that have
bisimilar points), then the same action is executed on these elements. Second,
it re�ects the workings of the preconditions in action models: If the same ac-
tion model is executed on any two pointed Kripke models, then if any points
in those two models are bisimilar, then they will be treated equally under the
product with the action model. The second aspect is the content of the weaker
property Local Bisimulation Invariance of [13], to which Point Bisimulation
Invariance is related in Sec. 8.

Write Ms - Nt i� the pointed Kripke models Ms,Nt are bisimilar, cf.
[15]. With len(h) denoting the length of history h, he denoting the sequence
extending history h with event e and h v h′ denoting that h is a pre�x of h′,
consider the properties formally:

De�nition 6 (Saturated ETLModel Properties) LetH = (E,H, R, V,H)
be a saturated ETL model. H satis�es

Synchronicity i� ∀h, h′ ∈ H, if hRih′, then len(h) = len(h′);

Perfect Recall i� ∀h, h′ ∈ H,∀e, e′ ∈ E : he, h′e′ ∈ H, if heRih
′e′, then hRih

′;

Local No Miracles i� ∀h, h′, h1, h2 ∈ H,∀e, e′ ∈ E : he, h′e′ ∈ H, if hRih
′,

h1eRih2e
′ and hR∗h1, then heRih

′e′;

Connected Time-Steps i� ∀h, h′ ∈ H, if len(h) = len(h′), then hR∗h′;

Precondition Describable i� ∀e ∈ E, the exists a δe ∈ L(Φ,I) such that if there
is a h′e ∈ H, then for all h ∈ H, if h′R∗h, then C(Hh)h |= δe i� he ∈ H;

Postcondition Describable i� ∀he ∈ H, there exists a δDe
∈ L(Φ,I) such that

δDe |= De for De the union
{p ∈ Φ : h 6∈ V (p), he ∈ V (p)} ∪ {¬q : q ∈ Φ, h ∈ V (q), he 6∈ V (q)};

Component Collection Describable i� ∀A ⊆ H such that h ∈ A and h′ - h
implies h′ ∈ A and such that ∀h, h′ ∈ A, h v h′ or h′ v h, there exists a
ϕA ∈ L(Φ,I) such that C(Hh)h |= ϕA i� h ∈ A;

Point Bisimulation Invariance i� ∀h1, h2, h3, h4 ∈ H, if C(Hh1)h - C(Hh2)h′
and C(Hh1)h3 - C(Hh2)h4, then h3e ∈ H i� h4e ∈ H.

4 Generated ETL Models and their Properties

A saturated ETL model is generated from an initial pointed Kripke models x
and a clean map f by, essentially, recording the orbit of f from x as a temporal
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structure: The states of x become histories of length 1 and states of fk(x)
become histories of length k + 1; the actual state in each fk(x) becomes an
ETL model point; epistemic relations and valuations are directly transferred.
Formally:

De�nition 7 (Generated Structure) For any pointed DEL dynamical sys-
tem (X, f, x), its generated structure is the tuple (E,H, R, V,H) given by

E := {eσ : σ ∈ JΣKk for some k ∈ N}
for JΣK0 := JxK and JΣKk+1 := {σ : (s, σ) ∈ Jfk+1(x)K}

H := {γ(s) : s ∈ Jfk(x)K for some k ∈ N}
with γ : JΣK −→ E given by γ(σ) = eσ

and for s = ((σ1, σ2), ..., σn) use γ(s) := γ(σ1)γ(σ2)...γ(σn)

Ri := {(h, h′) ∈ H ×H : γ−1(h)Riγ
−1(h′)} for all i ∈ I

V (p) := {h ∈ H : ∃k ∈ N, γ−1(h) ∈ JpKk}

H := {h : ∃k ∈ N, fk(x) =Ms and h = γ(s)}

If (E,H, R, V,H) is isomorphic to a saturated ETL model (H′, H ′), then (X, f, x)
generates (H′, H ′).

Property 1 For any DEL dynamical system, the structure generated is a satu-
rated ETL model: H is indeed closed under pre�xes and it is saturated as for
all h ∈ H, C(Hh) shares a unique h with H.

The �rst main result furnishes a set of properties that any DEL dynamical
system generated ETL model will necessarily satisfy:

Proposition 2 If saturated ETL model (H, H) is generated by a pointed DEL
dynamical system, then (H, H) satis�es seven of the eight properties of Def.
6, namely Synchronicity, Perfect Recall, Local No Miracles, Connected Time-
Steps, Precondition Describable, Postcondition Describable, and Point Bisim-
ulation Invariance.

Proof All proofs may be found in Appendix starting on page 29.

The second result shows that the last property of Def. 6 is indeed only a
contingent feature of some generated ETL models:

Proposition 3 Not all saturated ETL models generated by pointed DEL dy-
namical systems are Component Collection Describable.

Proof See Appendix.

5 From ETL Model to Dynamical System

For certain ETL models, there exists DEL dynamical systems that will gener-
ate them. The following result lists su�cient conditions of an ETL model to
be generatable:
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e1e3e4 : p e1e3e5 : p, qC2

e1e3 : pC1 e1e6 : p e2e7 : C3

e1 : p, r e2 : rC0

e3

e4 e5

e6 e7

... ...

Fig. 4 An ETL model (H, H) with two saturated component branches. Connected com-
ponents C0, C1 and C2 form one saturated component branch b. The in�nite set consisting
of components C0, C3, etc. form another saturated component branch b′ .

Proposition 4 If (H, H) is a saturated ETL model that satis�es all eight
properties of Def. 6, then there exists a pointed DEL dynamical system that
generates (H, H).

The proof, which may be found in the Appendix, rests on the idea of regarding
an ETL model as a collection of saturated component branches, illustrated in
Figure 4. Each such branch is a sequence of pointed Kripke models and hence
potentially the orbit of a DEL dynamical system.

To obtain the notion of a saturated component branch, decompose ETL
model into branches, lump these together in connected components and satu-
rate:

De�nition 8 (Branches) A branch of an ETL model H = (E,H, R, V ) is
a set b ⊆ H that

1. has a unique root, i.e., contains a unique history that has length 1;
2. is maximal with unique extension: If h ∈ b and he ∈ H for some e ∈ E,

then |{he′ : he′ ∈ b}| = 1;
3. is closed under �nite pre�xes.

The component branch of b is the sequence b = b1,b2, ... of connected
components, ordered according to history length with pre�x (C(Hh))h∈b, ex-
tended to be either either maximal in H (∃k ∈ N∀h′ ∈ bk¬∃e ∈ E : h′e ∈ H)
or in�nite (∀k ∈ N∃h′ ∈ bk∃e ∈ E : h′e ∈ bk+1). A saturated compo-
nent branch is a pair (b, H) with H ⊆ H a set of points closed under �nite
pre�xes such that every component in b has exactly one point.

Enumerating H by history length, the following link to pointed Kripke models
is obtained:

Property 2 For saturated component branch (b, H), the pair (bk, hk) is a
pointed Kripke model.

Moreover, the construction emphasizes how select ETL models have a strong
resemblance to DEL dynamical system orbits:

Property 3 If saturated ETL model (H, H) has property Connected Time-
Steps, then H has a unique component branch b.
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Jointly, these two properties allow us to illustrate the proof methodology of
Proposition 4: Take an ETL model H that has Connected Time-Steps and is
saturated by points H. Envision the model as a component branch b saturated
by H. Extract from this the sequence of pointed Kripke models (bk, hk)k∈N.
For each k, �nd an action model that transforms (bk, hk) into (bk+1, hk+1).
Join all these action models into a deterministic multi-pointed action model
and construct its clean map f . Then ({(bk, hk) : k ∈ N}, f, (b1, h1)) is a
pointed DEL dynamical system that generates (H, H). Full details may be
found in the Appendix.

The relation between DEL dynamical systems and ETL models taht do
not have Connected Time-Steps is discussed in Sec. 7.

6 Characterization: Image-�nite and Concluding

Propositions 2 and 4 do not quite yield a characterization result pertaining
to the ETL model generatable by DEL dynamical systems. This is due to the
fact that Component Collection Describable is not implied for ETL models
generated by an DEL dynamical system when working with a normal, �nitary
modal logical language, as shown by Proposition 3.

Imposing two restrictions on ETL models and DEL dynamical systems
yields a characterization result. Both are �niteness assumptions. The �rst an
assumption of image-�niteness for the modal relations:

A binary relation B ⊆ A×A is image-�nite i� the set {y : (x, y) ∈ B} is
�nite for all x ∈ A. On sets of image-�nite structures, the Hennessy-Milner
Theorem ensures that bisimilarity and modal equivalence relate exactly the
same models, cf. e.g. [15,27]. The assumption is therefore natural from a modal
logical point of view. The notion may be applied to DEL dynamical systems
and ETL models: Call a pointed DEL dynamical system (X, f, x) image-�nite
if both x and the action model of f are image-�nite for all I-indexed relations.
This ensures that fk(x) is image-�nite for all i ∈ I, all k ∈ N. An ETL model
is image-�nite if all its I-indexed relations are image-�nite.

The second restriction concerns the temporal evolution, which is required
to show �nite variety:

De�nition 9 (Concluding DEL Dynamical System) A pointed DEL dy-
namical system (X, f, x) is periodic i� fk(x) = fk+m(x) for some k ≥ 0,
m > 0. It terminates i� for some k ∈ N, fk(x) is unde�ned. If it does either,
it is said to conclude.

De�nition 10 (Concluding ETL Model) A point h∈ H of a saturated
ETL model (H, H) is repeating if there exists points h′, h′′ ∈ H with h v
h′ @ h′′ and C(Hh′)h′ - C(Hh′′)h′′. A point h is �nite if there exists a point
h′ with h v h′ while there is no e ∈ E for which h′e ∈ H. The model (H, H)
concludes if every point in H is either repeating or �nite.
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Restricting attention to the classes of image-�nite and concluding DEL dy-
namical systems and ETL models, a proper characterization result exists:

Theorem 1 A saturated ETL model (H, H) is image-�nite, concluding and
satis�es all eight properties of Def. 6 if, and only if, it is generatable by an
image-�nite and concluding pointed DEL dynamical system.

Proof Left-to-right: The existence of a generating DEL dynamical system is
guaranteed by Proposition 4. The constructions in the proof of Prop. 4 more-
over ensure that the DEL dynamical system is both image-�nite and conclud-
ing.

Right-to-left: Proposition 2 ensures that the model will satisfy all eight
properties, except maybe Component Collection Describable. Lemma 1 ensures
the model is image-�nite and concluding, which by Lemma 2 ensures that it
does satisfy Component Collection Describable. Proofs of both lemmas are
provided in the Appendix.

Lemma 1 If there exists an image-�nite and concluding pointed DEL dynam-
ical system that generates (H, H), then (H, H) is image-�nite and concluding.

Lemma 2 If a saturated ETL model (H, H) is image-�nite, concluding and
satis�es Connected Time-Steps, then (H, H) is Component Collection Describ-
able.

Remark 4 The converse of Lemma 2 does not hold, as Component Collec-
tion Describable does not imply image-�niteness.15

7 Non-Deterministic Intensional Protocols

In the previous sections, the ETL models regarded have been limited to single
component branches as this is a requirement to be generatable from a DEL
dynamical system � or a deterministic extensional DEL protocol. Extensional
DEL protocols are in general non-deterministic and may therefore generate
ETL models with multiple component branches, as e.g. the ETL model in Fig.
4. To facilitate comparison, this section is dedicated to non-deterministic inten-
sional protocols, implemented as families of DEL dynamical systems running
in parallel.

De�nition 11 (Component Branch Sub-Model) Let H = (E,H, R, V )
be an ETL model and let (b, H) be a terminal component branch obtained
from H. The component branch sub-model of H given by (b, H) is then
Hb = (Eb, Hb, R|Hb

, V|Hb
, H)i∈I such that Eb = {e ∈ E : e ∈ b or ∃h ∈

b, he ∈ b} , Hb = {h ∈ H : h ∈ b} and |Hb
denotes restriction.

15 Being Component Collection Describable does not imply being image-�nite: Let the
model have two components in one component branch. Let the root component b0 be
image-in�nite and satisfy p at b0h. Let b1h′ satisfy ¬p. Then the model satis�es Compo-
nent Collection Describable with ϕ{h} := p, ϕ{h′} := ¬p and ϕ{h,h′} := p ∧ ¬p, but it is
not image-�nite.
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Property 4 If H is an ETL model and (b, H) obtained from H is both terminal
and saturated, then (Hb, H) is a saturated ETL model.

To (re-)produce ETL models that consist of more than one component branch,
a family of dynamical systems each generating a terminal component branch
of the ETL model is used. The complete ETL model is obtained by taking the
union of all ETL component branches.

De�nition 12 (ETL Model Union) Given a countable family of satu-
rated ETL models {(Hj , Hj)}j∈J with each (Hj , Hj) = (Ej , Hj , Rj , Vj , Hj)
for j ∈ J , their (unpointed) union model is UJ = (EJ , HJ , RJ , VJ) with
?J :=

⋃
j∈J ?j for ? ∈ {E,H, R, V }.

An ETL model H is generated by a family of pointed DEL dynam-
ical systems {(Xk, fk, xk)}k∈K i� each (Xk, fk, xk) generates a saturated
ETL model (Hk, Hk) such that H is the union model of{(Hk, Hk)}k∈K . The
family {(Xk, fk, xk)}k∈K is minimal in generating H i� no proper subset of
the family also generates H.

Lemma 3 Let {(Xk, fk, xk)}k∈K be minimal in generating H and let
(Xk, fk, xk) generate the saturated ETL model (Hk, Hk). Then (Hk, Hk) is
the component branch sub-model for some terminal component branch b of H.

Proof See Appendix.

Theorem 2 Let an image-�nite and concluding ETL model H be given. H
is generatable up to ETL isomorphism by a family of image-�nite, concluding
pointed DEL dynamical systems, if, and only if, there exists a saturation of
each terminal component branch b of H such that (Hb, H) satis�es all eight
properties of Def. 6.

Proof See Appendix.

7.1 Persistence Under Union

The properties in Theorem 2 are associated with the component branches
of the ETL model, instead of the ETL model itself. However, several of the
eight properties are not inherited from component branches to union model:
Some are not de�ned for unpointed structures, and some are simply not robust
under union. In the following �nal set of results linking DEL dynamical systems
and ETL models, properties de�nable for general, unpointed ETL models are
detailed.

Lemma 4 The saturated ETL model properties Synchronicity, Perfect Re-
call and Postcondition Describable persist under ETL model union. I.e.: Let
{(Hj , Hj)}j∈J be a countable set of saturated ETL models. If all (Hj , Hj) sat-
isfy either of the mentioned properties, then the (unsaturated) union model UJ
satis�es that property.
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Proof See Appendix.

Property 5 Local No Miracles, Precondition Describable, Point Bisimulation In-
variance and Connected Time-Steps do not persist under union.

Proof See Appendix.

Though neither Local No Miracles nor Point Bisimulation Invariance per-
sist under union, weaker versions of each property do recur in the union model:
See Proposition 5 below. Both properties persevere as they are independent of
structure outside a given component. They are therefore not a�ected by union.
Local Bisimulation Invariance originates from [13] and is further discussed in
Sec. 8.

De�nition 13 (ETL Model Properties) An unsaturated ETL model
H = (E,H, R, V ) satis�es

Very Local No Miracles i� ∀h, h′, h1, h2 ∈ H,∀e, e′ ∈ E : he, h′e′ ∈ H, if
hRih

′, h1eRih2e
′, heR∗h1e and hR

∗h1, then heRih
′e′;

Local Bisimulation Invariance i� for all h, h′ ∈ H, e ∈ E, if h and h′ are
bisimilar, hR∗h′ and he ∈ H, then h′e ∈ H.

Proposition 5 If an ETL model H is generated by a family of pointed DEL
dynamical systems (possibly neither image-�nite nor concluding), then H satis-
�es Synchronicity, Perfect Recall and Postcondition Describable and Very Lo-
cal No Miracles and Local Bisimulation Invariance.

Proof See Appendix.

8 Protocol Comparison

This paper is in line with the approach of van Benthem et al. [13] in inves-
tigating the generative power of DEL dynamical systems with respect to the
class of ETL models. In this section, the above results are compared to those
obtained in [13] relating DEL protocols to ETL models.

8.1 Generating ETL Models from DEL Protocols

Generating ETL models from DEL protocols is somewhat simpler than from
sets of DEL dynamical systems. Unsaturated ETL forests are generated di-
rectly from a DEL protocol, without e.g. �rst de�ning saturated component
branches. For the special case of uniform DEL protocols, an ETL model is
generated from an initial pointed Kripke model as follows, cf. [13]:16

16 The method for generating an ETL model from a state-dependent DEL protocol has a
slightly more complex de�nition. As uniform DEL protocols is the case closest to the cases
for DEL dynamical systems dealt with in this paper, the reader is referred to [13] for the
de�nition for state-dependent DEL protocols.
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De�nition 14 (ETL Model Generated from a Uniform DEL Proto-
col) Let p be a uniform DEL protocol for the pointed Kripke model Ms, let
ρ = ρ1...ρn ∈ p(s) and let (Ms)ρ := (Ms ⊗ ρ1)... ⊗ ρn. The generated ETL
model of Ms and p is H = (E,H, R, V ) with (H, R, V ) =

⋃
ρ∈p(Ms)ρ.

Remark 5 Notice that no restriction to connected components is required pos-
terior to taking products.

8.2 ETL Properties from DEL Protocols

The properties of ETL models generated from DEL protocols [13] results in
a list of properties not identical to that of Def. 6. But there is overlap: Syn-
chronicity, Perfect Recall and Local No Miracles. The remaining properties
from [13] are Local Bisimulation Invariance, Propositional Stability and Fi-
nite Executions:

De�nition 15 (ETL Model Properties of [13]) An ETL model H =
(E,H, R, V ) satis�es

Propositional Stability i� for all propositional formulas p and for all h ∈
H, e ∈ E such that he ∈ H, it holds that h ∈ V (p) i� he ∈ V (p);

Finite Executions i� for each n, for each e ∈ E, the set {h : he ∈ H and len(h) =
n} is �nite.

Remark 6 The property Propositional Stability is required as [13] concerns
action models without postconditions.17 There is a comment on the resulting
di�erence below.

Before relating DEL protocols to DEL dynamical systems and the ETL model
properties they induce, recall the main results of [13].

Theorem (Main Representation Theorem of [13]) 1) If an ETL model
is generated by a uniform DEL protocol, then it satis�es the �ve proper-
ties Propositional Stability, Local Bisimulation Invariance, Synchronicity, Per-
fect Recall and Local No Miracles.

2) If an ETL model satis�es the six properties Finite Executions, Proposi-
tional Stability, Local Bisimulation Invariance, Synchronicity, Perfect Recall
and Local No Miracles, then it is generatable by some uniform DEL protocol.

Theorem (Theorem 2 of [13]) An ETL model is generatable by a state-
dependent DEL protocol i� it satis�es Propositional Stability, Synchronicity,
Perfect Recall and Local No Miracles.

17 Equivalently in the current setting would be action models with post(σ) = > for all
events σ.
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8.3 Discussion and Comparison of DEL Protocols and DEL Dynamical
Systems

With results established for both DEL dynamical systems and extensional DEL
protocols, these may now be compared, �rst on a technical level concerning
the induced properties, and second from a modeling perspective.
For both DEL dynamical systems and DEL protocols the generated ETL
model satis�es the core DEL properties Synchronicity, Perfect Recall and Lo-
cal No Miracles. This is no surprise, as these properties � as was mentioned
in Sec. 3.2 � stem from the very nature of product update. Beyond these,
di�erences emerge:

Connected Time-Steps:

An ETL model generated using a single DEL dynamical system has connected
time-steps as a consequence of the use of the restriction to connected com-
ponents. This property does not survive model union, and is therefore not
inherited by ETL models generated by families of DEL dynamical systems, cf.
Remark 5. DEL protocols do not induce the property in generated ETL mod-
els, irrespective of whether such are de�ned using a restriction to connected
components or not: DEL protocols may contain several sequences of action
models, producing disjoint new time steps.

Finite Executions vs. Precondition Describable:

Finite Executions (referred to as �the �niteness assumption� in [13]) is meant
to ensure the existence of the precondition formula of the action model event
σe for each ETL event e. Thus, it shares a role with the abstract Precon-
dition Describable, but is weaker than this direct existence requirement. It is
conjectured that a compilation error occurred post-submission of [13], omitting
further requirements.18

Propositional Stability vs. Postcondition Describable:

That the theorems of van Benthem and co-authors include Propositional Sta-
bility is a result of their use of action models without postconditions. DEL
dynamical systems limited to complex model transformers built over the same

18 Finite Executions is not enough to guarantee the existence of suitable preconditions
formulas: Let a single-agent ETL model H be given with histories of length 1 divided into
two disconnected R1-components, H1 and H′1 with e ∈ H1, and e′ ∈ H′1. Let the sub-model
H1, H′1 be non-image-�nite and non-bisimilar but let (H1, e) (H′1, e

′) be modally equivalent.
Such pointed Kripke model exist, cf. e.g. [15, Ex. 2.23, p. 68]. Let the set of histories of
length 2 be given by {ee∗} and let H contain no further histories. Then H satis�es Finite
Executions (and the other properties), but there exists no suitable precondition formula for
σe∗ as e and e′ are modally equivalent, but e∗ only executed on e. An additional requirement
of image-�niteness would solve this problem.

132



Intensional Protocols for Dynamic Epistemic Logic 25

class of action models would generate ETL models also satisfying this prop-
erty. Conversely, it is hypothesized that any ETL model generated by a DEL
protocol de�ned over action models with postconditions would satisfy the ab-
stract requirement of being Postcondition Describable by exhibiting only �nite
atomic change between successive histories.

Component Collection Describable:

The Component Collection Describable requirement ensures the existence of
suitable preconditions for the designated actions of the multi-pointed action
model underlying the clean map, which control the temporal �ow of the dy-
namical system when seeking to build a particular ETL model. This is not
needed when working with DEL protocols, as the temporal occurrence of events
is exogenously given. The requirement is not inherited by every ETL model
build from a DEL dynamical system, but is implied when the system is aptly
�nite.

Local vs. Point Bisimulation Invariance:

Whether generated by a uniform DEL protocol, single DEL dynamical system
or a family of DEL dynamical systems, the resulting ETL model satis�es Lo-
cal Bisimulation Invariance. This is due to the nature of preconditions in prod-
uct update. Any saturated ETL model generated by a single DEL dynamical
system satis�es the stronger property of Point Bisimulation Invariance, which
also involves a temporal component, re�ecting that clean maps are mappings
acting on the points of pointed Kripke models. As the temporal invariance is
de�ned on points, it is lost when moving to unsaturated models, exactly as
these are unpointed. As DEL protocols react to an external clock rather than
to the structure of the current pointed Kripke model, such protocols do not
induce this strong version of bisimulation invariance.

Protocols for Modeling Information Dynamics:

As mentioned in the introduction, logical modeling of dynamics in multi-agent
systems relies on protocols as control mechanisms. With multiple protocol
frameworks available, the question naturally arises which, if any, is better
suited for a given modeling task. From a conceptual point of view, the prop-
erty Point Bisimulation Invariance re�ects that intensional protocols repre-
sented as clean maps are mappings, and hence output equivalent values given
equivalent inputs. Again, this is the aspect of Point Bisimulation Invariance
not shared with Local Bisimulation Invariance. In many multi-agents settings,
this property is natural. E.g., in extensive games with imperfect information
of game theory, it is standardly assumed that agents have knowledge of their
own actions, i.e., that if two histories belong to the same information cell of
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the agent, then the agent will choose the same action in the two nodes.19 Such
knowledge of own actions is guaranteed in DEL dynamical systems, but not
in extensional DEL protocols.

Extensional DEL protocols are very handy for encoding extensional pro-
tocols: In case one wishes to answer a question concerning how a particular
sequence of actions will in�uence a given initial model, then directly specifying
that sequence of actions is a straightforward formalization. Dynamics thusly
run on an external clock is not possible using DEL dynamical systems.20

In case one seeks to model an intensional protocol, possibly applicable to
more than a single initial model, then DEL dynamical systems enjoys a par-
ticular bene�t: As exempli�ed using the Muddy Children example, intensional
natural language protocols may in a natural way be encoded as clean maps.
Finally, as also exempli�ed, the clean map may be an incomparably more
succinct representation of the protocol than the extensional DEL protocol
counterpart.

9 Conclusion

In logically modeling dynamics in multi-agent systems, the main control mech-
anism of agents' actions are protocols. In choosing a class of protocols in which
to cast a model, an implicit choice of agency, actions and dynamics is thus
made. In this paper, an implementation of intensional protocols as DEL dy-
namical systems have been investigated. On the technical side, the type of epis-
temic temporal models that DEL dynamical systems may generate have been
characterized. Conceptually, DEL dynamical systems qua intensional protocols
have been compared to the main protocol framework in Dynamic Epistemic
Logic, namely the extensional DEL protocols of [13]. In conclusion, DEL dy-
namical systems do not severely restrict the class of ETL models generatable.
In addition, there are several situations where intensional protocols seem a
reasonable choice over extensional protocols when modeling dynamic infor-
mation phenomena using Dynamic Epistemic Logic. Given the popularity of
intensional protocols in other multi-agent paradigms, it is surprising that such
have not previously been systematically investigated for Dynamic Epistemic
Logic.
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Appendix: Proofs

Proposition 1. Let (X, f, x) be a pointed DEL dynamical system given by
multi-pointed action model ΣΓ . Then there exists a singleton uniform DEL
protocol that produces the orbit of f from x.

Proof For each k ∈ N, let σk ∈ Γ be such that fk(x) |= pre(σk). As ΣΓ is
X-deterministic, for each k there is at most one such σk. De�ne a uniform
DEL protocol p as the smallest protocol for which pk(s) = Σσk (for all s ∈ x)
whenever σk exists. Then when p is sequentially applied to x using product
update, it produces the sequence 〈fk(x)〉k∈N of pointed Kripke models (up to
the deletion of redundant states not connected to the designated points, cf.
Sec. 2). ut

Proposition 2. If saturated ETL model (H, H) is generated by a pointed DEL
dynamical system, then (H, H) satis�es seven of the eight properties of Def. 6,
namely Synchronicity, Connected Time-Steps, Perfect Recall, Local No Mira-
cles, Precondition Describable, Postcondition Describable, and Point Bisimu-
lation Invariance.

Proof Let (X, f, x) be a pointed DEL dynamical system with orbit (fk(x))k∈N.
The length of a state s in fk(x) is len(s) := k + 1.

Let (H, H) be the saturated ETL model generated by (X, f, x). Given the
construction of γ in Def. 7, there exists a family of isomorphisms {gk}k∈N with
each gk mapping

q
fk(x)

y
to Hk := {h ∈ H : len(h) = k} satisfying g1(s) = es

and gk+1((s, σ)) = gk(s)eσ. Using this family, it is shown that (H, H) satis�es
the listed properties in order:

Synchronicity. Assume for arbitrary h, h′ ∈ H that hRih
′. Then by the

construction of the generated Ri (Def. 7), ∃k ∈ N : g−1k (h)Rig
−1
k (h′). Hence

g−1k (h), g−1k (h′) ∈
q
fk(x)

y
. Thus, len(g−1k (h)) = len(g−1k (h′)). Hence, by the

construction of g, len(h) = len(h′).

Perfect Recall. Assume for arbitrary he, h′e′ ∈ H that heRih
′e′. Then ∃k ∈

N : g−1k (he)Rig
−1
k (h′e′). By construction of f , fk(x) = C(fk−1(x)⊗ΣΓ)s′ for

ΣΓ the multi pointed action model. As g−1k (he)Rig
−1
k (h′e′), by de�nition of ⊗

and clean maps, g−1k−1(h)Rig
−1
k−1(h

′). Hence, by de�nition of Ri, it follows that
hRih

′.

Local No Miracles. Assume that 1) hRih
′, 2) h1eRih2e

′ and 3) hR∗h1 for
arbitrary he, h′e′, h1e, h2e

′ ∈ H. 1) implies that 1*) g−1k (h)Rig
−1
k (h′) for k =

len(h). 3) implies that len(h) = len(h1) by Synchronicity. In conjunction with
2), this implies that 2*) g−1k+1(h1e)Rig

−1
k+1(h2e

′).

By construction of f , fk+1(x) = C(fk(x)⊗ΣΓ)s′. By 2*) and the de�nition
of ⊗ and clean maps, there must be 4) σe, σe′ ∈ ΣΓ such that σeRiσe′ , for σe
the σ such that gk+1((s, σ)) = h1e, for some s ∈

q
fk(x)

y
, and σe′ the σ

′ such

that gk+1((t, σ
′)) = h2e

′, for some t ∈
q
fk(x)

y
.

137



30 Hanna S. van Lee et al.

Now assume that (g−1k (h), σe), (g
−1
k (h′), σe′) ∈

q
fk+1(x)

y
. Then 1*), 4)

and Def. ⊗ jointly imply that (g−1k+1(h), σe)Ri(g
−1
k+1(h

′), σe′). By the de�nition
of the generated Ri, it thus follows that heRih

′e′.

Connected Time-Steps. For arbitrary h, h′ ∈ H assume len(h) = len(h′).
Let k ∈ N such that h, h′ ∈ Hk. Then g−1k (h), g−1k (h′) ∈ Jfk(x)K. By def-
inition of product update ⊗, clean maps and the fact that x is connected,
g−1k (h)R∗g−1k (h′). By de�nition of (H, H) it follows that hR∗h′.

Precondition Describable. For arbitrary e ∈ E, let δe = pre(σe). Recall
that by de�nition of ⊗, ∀k ∈ N, (g−1k (h), σe) ∈ Jfk+1(x)K i� g−1k (h) |= pre(σe)
and σe ∈ Σk+1 (∗). Assume ∃h′ ∈ H : h′e ∈ H and let h ∈ H such that h′R∗h.

⇒: Assume for some k ∈ N that (Hk, h) |= δe. Then g−1k (h) |= pre(σe).
By assumption, σe ∈ Σk+1. By (∗), thus (g−1k (h), σe) ∈ Jfk+1(x)K. Therefore,
he ∈ H.

⇐: Assume he ∈ H. Then for some k ∈ N, g−1k+1(he) = (g−1k (h), σe) ∈
Jfk+1(x)K. By (∗), g−1k (h) |= pre(σe). And thus h |= δe.

Postcondition Describable. For arbitrary he ∈ H (in speci�c for some
k ∈ N, he ∈ Hk+1) let δDe

= post(σe) where De = D1 ∪D2, for p, q ∈ Φ such
that D1 = {p : h 6∈ V (p), he ∈ V (p)} and D2 = {¬q : h ∈ V (q), he 6∈ V (q)}.

Consider an arbitrary p ∈ D1. Then by de�nition of the generated ETL
model (H, H), g−1k (h) 6∈ JpKk and g−1k+1(he) ∈ JpKk+1 (∗). By construction,

g−1k+1(he) = (g−1k (h), σ) for some σ ∈ JΣKk+1 (∗∗). By de�nitions of (H, H) and

⊗, (g−1k (h), σ) ∈ JpKk+1 i� post(σ) |= p. Then, by (∗) and (∗∗), post(σ) |= p.
As p ∈ D1 was arbitrary, post(σ) |= D1.

The argument for post(σ) |= D2 is identical. Conclude that post(σ) |= De

and thus δDe
|= De.

Point Bisimulation Invariance. Let be given arbitrary C(Hh)h = (Hk, h)
and C(Hh′)h′ = (Hl, h

′) such that (Hk, h) - (Hl, h
′). Then fk(x) - f l(x) (∗).

Further, assume for arbitrary h ∈ Hk and h′ ∈ Hl that (Hk, h) - (Hl, h
′).

⇒: Assume he ∈ H. By construction of g and de�nition of clean maps,
both Hk and Hl are connected components, i.e, ∀h, h′ ∈ Hk : hR∗h′ and
idem for Hl. By the Hennessy-Milner Theorem (see Section 6), it follows that
h and h′ satisfy exactly the same modal formulas. Hence, by construction
of g and the de�nition of H, g−1k (h) and g−1l (h′) satisfy exactly the same
modal formulas as well. Now as he ∈ H, g−1k+1(he) ∈

q
fk+1(x)

y
and thus

g−1k (h) |= pre(σe). Hence g
−1
l (h′) |= pre(σe) (∗∗). By (∗) and (∗∗), it follows

that (g−1l (h′), σe) ∈
q
f l+1(x)

y
. Hence h′e ∈ H.

⇐: By the same argument, h′e ∈ H implies he ∈ H.

This concludes the proof of Proposition 2. ut

Property 3. Not all saturated ETL models generated by DEL dynamical
systems are Component Collection Describable.
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Proof Let Ms and f be as in Fig. 5 (cf. [40]) and X be the orbit of f from
Ms. Then the ETL model generated by the DEL dynamical system (X, f)
from initial model Ms is not Component Collection Describable.

s : ¬p t : p

Ms :
σ :

(¬p,>)
τ :

(¬p, p)
υ :

(p,>)

f :

Fig. 5 Initial Kripke modelMs and pointed action model. The orbit of f fromMs produces
non-bisimilar models forever: the unique state not satisfying p will split, inserting a new p-
state as it's child with τ ; any other state gets exactly one child:

sσ : ¬p sτ : p tυ : p

f(Ms) :

Consider A = {fn(Ms) : n is even}. There does not exist a ϕ such that for
all x ∈ X, x |= ϕ i� x ∈ A: Assume the modal depth of ϕ is k. Let m > k.
Then fm(Ms) |= ϕ i� fm+1(Ms) |= ϕ as such two models will not di�er in the
�rst m + 1 relational steps from the point. Hence the ETL model generated
by (X, f) from Ms will not be Component Collection Describable. ut

Proposition 4. If (H, H) is a saturated ETL model that satis�es all eight
properties of Def. 6, then there exists a pointed DEL dynamical system that
generates (H, H).

Proof Proposition 4 is shown by constructing a DEL dynamical system (X, f)
with f the clean map of a X-deterministic multi-pointed action model ΣΓ and
an initial Kripke model x ∈ X such that the saturated ETL model (H′, H ′) =
(E′, H ′, R′, V ′, H ′) generated by (X, f) from x is ETL isomorphic to (H, H).
The latter is shown by induction on len(h) of h ∈ H for a map γ∗ : E −→ E′.
As in Def. 5, for h = e0...en, write γ

∗(h) := γ∗(e0)...γ
∗(en).

As (H, H) satis�es property Connected Time-Steps, the ETL model is a
saturated terminal component branch. To emphasize this, in this proof (H, H)
is written (Hb, H).

1. Initial Kripke model
To obtain a practical and consistent naming of states, the initial Kripke model
x = (JxK, R, J·K, s) is set to be a re-naming of the initial component of b: Let
JxK = {σe : e ∈ b0h}. For the relations and valuation of the initial model,
simply copy over the relations and valuation from the initial component of b:
For all i ∈ A, let σeRiσe′ i� eRie′, and for all p ∈ Φ, let σe ∈ JpK i� e ∈ V (p).
Finally, let the point of x be the copy of the point of b0h: Let s = σh.

2. Constructing (X, f)
To de�ne the DEL dynamical system (X, f), �rst construct a multi-pointed

action model ΣΓ = (JΣK ,R, pre, post, Γ ). Construct ΣΓ so that for each time-
step bk of the component branch b, it will contain a designated action σk
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and associated component that will from the Kripke model-equivalent of bkh
produce the equivalent if bk+1h. In the precondition of σk, include a formula
δbkh characterizing bkh. As (Hb, H) is Component Collection Describable by
assumption, such a formula exists.

Construct ΣΓ piecewise as follows: Let bkh and bk+1h be given. Σk+1σ is
constructed such that C(fk(x)⊗Σkσ)s′ mirrors the structure of bk+1h:

Let the single-pointed action model Σk+1σk+1 be
(JΣk+1K ,Rk+1, prek+1, postk+1, σk+1), given by

JΣk+1K = {σe : he ∈ bk+1} with σk+1 = σe such that ∃h : he ∈ bk+1 ∩H.

(σe, σe′) ∈ Ri i� ∃he, h′e′ ∈ bk+1 : (he, h′e′) ∈ Ri.

pre(σe) =

{
δe if σe 6= σk+1

δe ∧ δbkh if σe = σk+1

with δe and δbkh given by Precondition Describable and Component Collec-
tion Describable, respectively.

post(σe) = δDe as given Postcondition Describable.

Let the multi-pointed action model ΣΓ = (JΣK ,R, pre, post, Γ ) be given
by, for B ∈ {JΣK ,R, pre, post, }, B =

⋃
k:bk∈b Bk and Γ =

⋃
k:bk∈b{σk}. This

is well-de�ned: For pre and post, this follows from Precondition Describable
and Postcondition Describable.

Let X be the closure of {x} under the operation ⊗ΣΓ . On X, ΣΓ is guaran-
teed deterministic as any two characteristic formulas δbkh and δ′bk′h

′ will be

mutually excluding. Finally, let f be the clean map of ΣΓ on X. Then (X, f)
is a DEL dynamical system with x ∈ X.

3. Constructing the Isomorphism
Let (H′, H ′) = (E′, H ′, R′, V ′, H ′) be the saturated ETL model generated by
(X, f) from x. De�ne the two mappings: γ† : E −→ JΣK with γ†(e) = σe and
γ : JΣK −→ E′ for γ(σ) = eσ cf. Def. 7. From these, de�ne γ∗ : E −→ E′ as
γ∗ := γ ◦ γ†.

De�ne subsets of E based on history length: For all k ∈ N let E0 = {e :
e ∈ b0} and Ek+1≥1 = {e : h ∈ bk, he ∈ bk+1} ⊆ E. Let E′k, k ∈ N, be
given mutatis mutandis. Let γ†k : Ek −→ JΣkK, γk : JΣkK −→ E′k and γ∗k :
Ek −→ E′k be the restrictions of γ†, γ and γ∗ to Ek × JΣkK, JΣkK × E′k and
Ek×E′k, respectively. Then, of course, γ∗ =

⋃
k∈N γ

∗
k , whereby γ

∗(e) = e′σe
. By

induction on len(h), h ∈ H, it is now shown that γ∗ is an ETL isomorphism.

Claim: The map γ∗ is a bijection. By the construction of γ† and γ, each
γ∗k is an injection: if e 6= e′, then γ∗k(e) 6= γ∗k(e

′). By construction, it is also
guaranteed that γ∗k is a surjection: ∀e′ ∈ E′∃e ∈ E : γ∗k(e) = e′. Hence for each
k ∈ N, γ∗k is a bijection.
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Furthermore, γ∗ is a total map: if e ∈ Ek ∩ Em, then γ†k(e) = γ†m(e) (i.e.,
σe ∈ JΣkK∩ JΣmK) and γk(σe) = γm(σe). Thus γ ◦ γ†(e) is well-de�ned and in
E′k ∩ E′m.

Finally, γ∗ inherits injectivity and surjectivity from its restrictions. Hence,
the map γ∗ is a bijection.

Claim: The map γ∗ is an ETL isomorphism. The claim is shown by 4
inductive sub-proofs.

1) Domain and Temporal Structure.

Base. Let h ∈ H0. This is the case i� γ
†(h) ∈ f0(x) (by construction of initial

Kripke model) i� γ ◦ γ†(h) ∈ H ′0 (by Def. 7).
Step. It is shown that he ∈ Hk+1 i� γ∗(he) ∈ H ′k+1.

⇒: Assume he ∈ Hk+1. Then h ∈ Hk. By the induction hypothesis, γ†(h) ∈q
fk(x)

y
. By construction of Σk+1, γ

†(e) ∈ JΣk+1K. By the same construc-
tion and Precondition Describable, γ†(h) |= pre(σe). Hence (γ†(h), γ†(e)) ∈q
fk+1(x)

y
. By Def. 7, in particular the construction ofHk+1, γ((γ

†(h), γ†(e))) ∈
H ′k+1.

⇐: Assume γ((γ†(h), γ†(e))) ∈ H ′k+1. Then (γ†(h), γ†(e)) ∈
q
fk+1(x)

y
by

Def. 7, so γ†(h) ∈
q
fk(x)

y
and γ†(e) ∈ JΣk+1K. By the induction hypothesis,

h ∈ Hk. If he 6∈ Hk+1, a contradiction is reached: pre(γ†(e)) is satis�ed by
exactly those γ†(h) ∈

q
fk(x)

y
such that (γ†(h), γ†(e)) ∈

q
fk+1(x)

y
� by the

construction of action models in this proof and as (Hb, H) is Precondition De-
scribable. So he ∈ Hk+1.

2) Epistemic relations.

Base. It follows by construction of initial Kripke model and Def. 7.
Step. It is shown that ∀he, h′e′ ∈ bk+1, heRih

′e′ i� γ∗(he)R′iγ
∗(h′e′).

⇒: Assume that heRih
′e′. By Perfect Recall, hRih

′. By the induction hy-
pothesis, γ†(h)Riγ

†(h′). By construction of Σk+1, γ
†(e)Riγ

†(e′). By de�nition
of ⊗,
(γ†(h), γ†(e))Ri(γ

†(h′), γ†(e′)). By Def. 7, γ((γ†(h), γ†(e)))Riγ((γ
†(h′), γ†(e′))).

⇐: Assume γ((γ†(h), γ†(e)))Riγ((γ
†(h′), γ†(e′))). By Def. 7,

(γ†(h), γ†(e))Ri(γ
†(h′), γ†(e′)). By de�nition of ⊗, both γ†(h)Riγ

†(h′) and
γ†(e)Riγ

†(e′). So by construction of Σk+1, ∃h1e, h2e′ ∈ bk+1 : h1eRih2e
′. By

the induction hypothesis, hRih
′. Further, note that ∀h, h′ ∈ bk : hR∗h′. Hence,

by Local No Miracles, heRih
′, e′.

3) Valuation.

Base. It follows by construction of initial Kripke model and Def. 7.
Step. It is shown that ∀he ∈ bk+1, he ∈ V (p) i� γ(he) ∈ V ′(p).
⇒: Assume he ∈ V (p) . Either i) h ∈ V (p) or ii) h 6∈ V (p). If i), then

by the induction hypothesis, γ ◦ γ†(h) ∈ V ′(p). By construction of Σk+1,
post(γ†(e)) 6|= ¬p. Hence (γ†(h), γ†(e)) ∈ JpKk+1. By Def. 7, γ((γ

†(h), γ†(e))) ∈
V ′(p). If ii), then by the induction hypothesis, γ†(h) 6∈ JpKk. As (Hb, H) is
Postcondition Describable, by construction of Σk+1, post(γ

†(e)) |= p. Thus
(γ†(h), γ†(e)) ∈ JpKk+1. By Def. 7, γ((γ†(h), γ†(e))) ∈ V ′(p).
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⇐: Assume γ((γ†(h), γ†(e))) ∈ V ′(p). Then (γ†(h), γ†(e)) ∈ JpKk+1 by

Def. 7. Again, either i) γ†(h) ∈ JpKk or ii) γ†(h) 6∈ JpKk. If i), then by the
induction hypothesis, h ∈ V (p). For a contradiction, suppose he 6∈ V (p).
Then post(γ†(e)) |= ¬p. But by construction of Σk+1, post(γ†(e)) 6|= ¬p.
This is a contradiction. Hence he ∈ V (p). If ii), then by the de�nition of
⊗, post(γ†(e)) |= p. By the induction hypothesis, h 6∈ V (p). If it was the case
that he 6∈ V (p), then post(γ†(e)) 6|= p. Contradiction. Thus he ∈ V (p).

4) Points.
Base. It follows by construction of initial Kripke model and Def. 7.
Step. It is shown that he ∈ Hk+1 i� γ∗(he) ∈ H ′k+1. Let f

k(x) = Nt and
fk+1(x) =Ms.
⇒: Assume he ∈ Hk+1. By the induction hypothesis, γ†(h) = t. By saturation
of bk, ∃e ∈ E : he ∈ bk+1 ∩H. By construction of Σk+1, γ

†(e) ∈ JΣk+1K and,
as (Hb, H) is Precondition Describable, γ†(h) |= pre(γ†(e)). By construction
of f , fk+1(x) = C(Nt ⊗ (Σk+1, γ

†(e))) = C(N ⊗ Σk+1, (t, γ
†(e))) = Ms. By

Def. 7, γ(s) = γ(γ†(he)) ∈ H ′k+1.
⇐: Assume γ(γ†(he)) ∈ H ′k+1. By Def. 7, f

k+1(x) = (C(N⊗Σk+1), (t, γ
†(e))).

By induction hypothesis, γ†−1(t) = h ∈ Hk. By construction of the Action
Model, γ†(e) = γ−1(e) for e such that ∃h′ : h′e ∈ Hk+1 and h′ ∈ Hk. As
points in Hm are unique for all m by Def. 8, h′ must be h. Thus he ∈ Hk+1.

This concludes the proof of Proposition 4.21 ut

Lemma 1. If there exists an image-�nite and concluding pointed DEL dynam-
ical system that generates (H, H), then (H, H) is image-�nite and concluding.

Proof As the DEL dynamical system is image-�nite, the construction of the
generated ETL model (see De�nition 7) ensures that all Hk are image-�nite.
Hence (H, H) is image-�nite.

If the DEL dynamical system terminates, then, by construction, the ETL
model is �nite and thus it concludes. If the DEL dynamical system is periodic,
then the ETL model is, by construction, repeating and thus it concludes. ut

Lemma 2. If a saturated ETL model (H, H) is image-�nite, concluding and
satis�es Connected Time-Steps, then (H, H) is Component Collection Describ-
able.

Proof Let (H, H) be an image-�nite and concluding saturated ETL model. Set
B := {C(Hh) : h ∈ H}, the set of all connected components in (H, H). As all
C(Hh) ∈ B are image-�nite, by the Hennessy-Milner Theorem (see Sec. 6), for

21 When constructing an action model that produces a pointed Kripke model isomorphic
to a particular level in the to-be-generated ETL model, Proposition 3.2 of [20] (which states,
roughly, that for almost any two pointed Kripke models, there exists an action model with
postconditions that will produce one from the other using product update) is not applicable.
The proposition is not applicable as the transforming action model allows only the designated
point to survive, from which the desired Kripke model is unfolded. The resulting generated
ETL models would therefore (most often) not be ETL isomorphic to the original ETL model,
as ETL isomorphisms require that the temporal structure is preserved.
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each pair h1, h2 ∈ H if h1 6- h2, there exists a formula ϕh1,h2
distinguishing

between h1 and h2: h1 |= ϕh1,h2
while h2 6|= ϕh1,h2

.

Let [C(Hh)h]- be the equivalence class {C(Hh′)h′ : C(Hh′) ∈ B and h′ -
h}. Then, since (H, H) is concluding, the set B- := {[C(Hh)h]- : h ∈
H,C(Hh) ∈ B} is �nite. Therefore, the conjunction

∧
h2∈{h∈H : h6-h1}

ϕh1,h2
is

well-de�ned for any h1 ∈ H. This conjunction distinguishes h1 from any point
in H that is not bisimilar to h1. Denote this formula ϕh1 .

Moreover, as B- is �nite, all sets A ⊆ H for which h ∈ A and h′ - h
implies h′ ∈ A are �nite. Hence, for any such A, the disjunction

∨
h1∈A

ϕh1

is well-de�ned. This disjunction distinguishes the connected components in A
from those not in A. ut

Lemma 3. Let {(Xk, fk)}k∈K be minimal in generating H and let (Xk, fk)
from xk generate the saturated ETL model (Hk, Hk). Then (Hk, Hk) is the
component branch sub-model for some terminal component branch b of H.

Proof As H is obtained from {(Hk, Hk)}k∈K , each Hk is a sub-model of
H. Hence (Hk, Hk) is the component branch sub-model for a component
branch b of H, with b = (C(Hh))h∈Hk

. That b is terminal in H follows from
{(Xk, fk)}k∈K being minimal in generating H: If (Hk, Hk) was not terminal,
there would be some (Hj , Hj) extending it, generated by some (Xj , fk). But
then (Xk, fk) would be redundant in generating H and {(Xk, fk)}k∈K thus
not minimal. ut

Theorem 2. Let an image-�nite and concluding ETL model H be given. H
is generatable up to ETL isomorphism by a family of image-�nite, concluding
pointed DEL dynamical systems, if, and only if, there exists a saturation of
each terminal component branch b of H such that (Hb, H) satis�es all eight
properties of Def. 6.

Proof Left-to-right: Suppose H is generatable by a family of image-�nite, con-
cluding DEL dynamical systems {(Xk, fk)}k∈K . Let (Hk, Hk) be the saturated
ETL model generated by (Xk, fk) (cf. Def. 7). By Lemma 3, (Hk, Hk) is a com-
ponent branch sub-model of H for some terminal component branch of H. As
(Hk, Hk) was generated by an image-�nite and concluding DEL dynamical
system, the saturation Hk of Hk makes (Hk, Hk) satisfy all 8 properties of
Def. 6 by Proposition 2 and Lemma 2.

Right-to-left: Let B be the set of terminal component branches of H and
assume that for each b ∈ B, there exists a saturation such that (Hb, Hb)
satis�es all eight properties of Def. 6. As H is image-�nite and concluding,
also each (Hb, Hb) is image-�nite and concluding. By the constructions in the
proof of Proposition 4, it follows that each (Hb, Hb) is generatable up to ETL
isomorphism by an image-�nite and concluding DEL dynamical system.

Let (Xb, fb), xb be the DEL dynamical system and initial Kripke model
that generates (Hb, Hb) up to isomorphism, as given by the construction in
the proof of Proposition 4. Let (H′b, H

′
b) be the speci�c ETL model gener-

ated by (Xb, fb) from xb, as given by Def. 7. It is shown that the union
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structure UB = (EB, HB, RB,a, VB)a∈A of {(H′b, H
′
b)}b∈B is isomorphic to

H = (E,H, Ra, V )a∈A. To this end, the existence of a bijection g : H −→ HB

is shown. That g is also the sought ETL isomorphism follows from the ETL
isomorphism of (Hb, Hb) and (H′b, H

′
b), for all b.

Let gb be the isomorphism between (Hb, Hb) and (H′b, H
′
b), guaranteed

to exist by Proposition 4 and speci�cally given by 1) the construction of a
DEL dynamical system from a component branch of the proof of Proposition
4 and 2) the construction for generating an ETL model from a DEL dynamical
system of Def. 7. Combining the state-history naming schemes used in these
two constructions yield gb given by gb(h) = h for len(h) = 1 in Hb, and
gb(he) = gb(h)e

′
σe

for len(h) = k. Notice that the history names from H are
carried over, either directly or as indices, to the histories of UB.

De�ne a mapping g : H −→ HB by g(h) = gb(h) for h ∈ Hb. This mapping
is well-de�ned as either i) for exactly one b ∈ B, h ∈ Hb (in which case g(h)
is well-de�ned), or ii) if h ∈ Hb and h ∈ Hb′ , then gb(h) = gb′(h). The
latter is ensured as history names are carried over. This and that each gb is
an isomorphism implies that g is a bijection. This completes the proof. ut

Lemma 4. The saturated ETL model properties Synchronicity, Perfect Recall
and Postcondition Describable persist under ETL model union.

I.e.: Let {(Hk, Hk)}k∈K be a countable set of saturated ETL models. If all
(Hk, Hk) satisfy either of the mentioned properties, then the (unsaturated)
union structure UK satis�es that property.

Proof Synchronicity, Perfect Recall and Postcondition Describable persist be-
cause they are de�ned on histories which occur uniquely in the ETL forest,
which makes them local by nature. Hence these properties are evaluated lo-
cally within a branch to ensure that there will be no con�icts when taking the
union of di�erent ETL sub-models. ut

Property 5. Local No Miracles, Precondition Describable, Point Bisimula-
tion Invariance and Connected Time-Steps do not persist under union.

Proof Local No Miracles does not persist under union: Consider a family of two
DEL dynamical systems (that each individually satisfy property Local No Mir-
acles.) with multi-pointed action models f and g with equal initial Kripke
model x = {h, h′, h1, h2} where hRih′ and hR∗h1 (by default, as initial models
are connected), but disjunct Kripke models at the next level: f1(x) = {he, h′e′}
and g1(x) = {h1e, h2e′} where h1eRih2e′ while not heRih

′e′. In this example,
Local No Miracles fails because not heR∗h1e.

Precondition Describable does not persist under union: Consider a family
of two DEL dynamical systems (that each individually satisfy property Pre-
condition Describable) with multi-pointed action models f and g with equal
initial Kripke model x = {h, h′} with hR∗h′ (by default as initial models are
connected), but disjunct Kripke models at the next level: f1(x) = {he} and
g1(x) = {h′e}. Then it is possible that h′ |= δe while h 6|= δe, which breaks
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property Precondition Describable. It is left as an open question whether a
suitably weakened version of Precondition Describable exists.

That Point Bisimulation Invariance is not preserved under union follows
as the property is stated based on a saturation, but the union structure is
unpointed, and hence unsaturated. If the union structure would be pointed
with the set of points chosen as the union of the sets of points from the united
ETL models, then the resulting set of points need not be a saturation, as the
united ETL models may overlap, but have distinct points. In that case, the
union structure would be �oversaturated�.

Connected Time-Steps does not persist under union as histories within the
same time-step are no longer necessarily epistemically connected in a union of
disconnected ETL sub-models. ut

Proposition 5. If an ETL model H is generated by a family of pointed DEL
dynamical systems (possibly neither image-�nite nor concluding), then H sat-
is�es Synchronicity, Perfect Recall, Postcondition Describable and Very Lo-
cal No Miracles and Local Bisimulation Invariance.

Proof That H satis�es Synchronicity, Perfect Recall and Postcondition De-
scribable follows from Proposition 2 on page 17 and Lemma 4.

That H satis�es Very Local No Miracles follows directly by the additional
requirement compared to Local No Miracles that heR∗h1e.

ThatH satis�es Local Bisimulation Invariance follows as 1) any ETL model
that satis�es Point Bisimulation Invariance also satis�es Local Bisimulation In-
variance, 2) Local Bisimulation Invariance is a property local to a connected
component, and 3) connected components remain untouched under union. ut
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Abstract. The paper analyzes dynamic epistemic logic from a topolog-
ical perspective. The main contribution consists of a framework in which
dynamic epistemic logic satisfies the requirements for being a topological
dynamical system thus interfacing discrete dynamic logics with contin-
uous mappings of dynamical systems. The setting is based on a notion
of logical convergence, demonstratively equivalent with convergence in
Stone topology. Presented is a flexible, parametrized family of metrics
inducing the latter, used as an analytical aid. We show maps induced
by action model transformations continuous with respect to the Stone
topology and present results on the recurrent behavior of said maps.

Keywords: Dynamic epistemic logic · Limit behavior · Convergence ·
Recurrence · Dynamical systems · Metric spaces · General topology ·
Modal logic

1 Introduction

Dynamic epistemic logic is a framework for modeling information dynamics. In it,
systematic change of Kripke models are punctiliously investigated through model
transformers mapping Kripke models to Kripke models. The iterated application
of such a map may constitute a model of information dynamics, or be may be
analyzed purely for its mathematical properties [6,8,10,11,13,16,18,40–43].

Dynamical systems theory is a mathematical field studying the long-term
behavior of spaces under the action of a continuous function. In case of discrete
time, this amounts to investigating the space under the iterations of a continuous
map. The field is rich in concepts, methodologies and results developed with the
aim of understanding general dynamics.

The two fields find common ground in the iterated application of maps. With
dynamic epistemic logic analyzing very specific map types, the hope is that
general results from dynamical systems theory may shed light on properties
c� Springer-Verlag GmbH Germany 2017
A. Baltag et al. (Eds.): LORI 2017, LNCS 10455, pp. 108–122, 2017.
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of the former. There is, however, a chasm between the two: Dynamical systems
theory revolves around spaces imbued with metrical or topological structure with
respect to which maps are continuous. No such structure is found in dynamic
epistemic logic. This chasm has not gone unappreciated: In his 2011 Logical
Dynamics of Information and Interaction [10], van Benthem writes

From discrete dynamic logics to continuous dynamical systems

“We conclude with what we see as a major challenge. Van Benthem [7,8]
pointed out how update evolution suggests a long-term perspective that
is like the evolutionary dynamics found in dynamical systems. [...] Inter-
facing current dynamic and temporal logics with the continuous realm is
a major issue, also for logic in general.” [10, Sect. 4.8. Emph. is org.
heading]

This paper takes on the challenge and attempts to bridge this chasm.
We proceed as follows. Section 2 presents what we consider natural spaces

when working with modal logic, namely sets of pointed Kripke models modulo
logical equivalence. These are referred to as modal spaces. A natural notion of
“logical convergence” on modal spaces is provided. Section 3 seeks a topology
on modal spaces for which topological convergence coincides with logical con-
vergence. We consider a metric topology based on n-bisimulation and prove it
insufficient, but show an adapted Stone topology satisfactory. Saddened by the
loss of a useful aid, the metric inducing the n-bisimulation topology, a family
of metrics is introduced that all induce the Stone topology, yet allow a variety
of subtle modelling choices. Sets of pointed Kripke models are thus equipped
with a structure of compact metric spaces. Section 4 considers maps on modal
spaces based on multi-pointed action models using product update. Restrictions
are imposed to ensure totality, and the resulting clean maps are shown con-
tinuous with respect to the Stone topology. With that, we present our main
contribution: A modal space under the action of a clean map satisfies the stan-
dard requirements for being a topological dynamical system. Section 5 applies
the now-suited terminology from dynamical systems theory, and present some
initial results pertaining to the recurrent behavior of clean maps on modal spaces.
Section 6 concludes the paper by pointing out a variety of future research venues.
Throughout, we situate our work in the literature.

Remark 1. To make explicit what may be apparent, note that the primary con-
cern is the semantics of dynamic epistemic logic, i.e., its models and model
transformation. Syntactical considerations are briefly touched upon in Sect. 6.

Remark 2. The paper is not self-contained. For notions from modal logic that
remain undefined here, refer to e.g. [14,27]. For topological notions, refer to
e.g. [37]. For more on dynamic and epistemic logic than the bare minimum
of standard notions and notations rehearsed, see e.g. [2–5,10,20,22,30,38,39].
Finally, a background document containing generalizations and omitted proofs
is our [31].
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2 Modal Spaces and Logical Convergence

Let there be given a countable set Φ of atoms and a finite set I of agents.
Where p ∈ Φ and i ∈ I, define the language L by

ϕ := � | p | ¬ϕ | ϕ ∧ ϕ | �iϕ.

Modal logics may be formulated in L. By a logic Λ we refer only to exten-
sions of the minimal normal modal logic K over the language L. With
Λ given by context, let ϕ be the set of formulas Λ-provably equivalent to ϕ.
Denote the resulting partition {ϕ : ϕ ∈ L} of L by LΛ.1 Call LΛ’s elements
Λ-propositions.

We use relational semantics to evaluate formulas. A Kripke model for L is
a tuple M = (�M�, R, �·�) where �M� is a countable, non-empty set of states,
R : I −→ P(�M� × �M�) assigns to each i ∈ I an accessibility relation Ri,
and �·� : Φ −→ P(�M�) is a valuation, assigning to each atom a set of states.
With s ∈ �M�, call Ms = (�M�, R, �·�, s) a pointed Kripke model. The used
semantics are standard, including the modal clause:

Ms � �iϕ iff for all t : sRit implies Mt � ϕ.

Throughout, we work with pointed Kripke models. Working with modal logics,
we find it natural to identify pointed Kripke models that are considered equiv-
alent by the logic used. The domains of interest are thus the following type of
quotient spaces:

Definition 1. The LΛ modal space of a set of pointed Kripke models X is the
set X = {x : x ∈ X} for x = {y ∈ X : y � ϕ iff x � ϕ for all ϕ ∈ LΛ}.
Working with an LΛ modal space portrays that we only are interested in differ-
ences between pointed Kripke models insofar as these are modally expressible
and are considered differences by Λ.

In a modal space, how may we conceptualize that a sequence x1, x2, ... con-
verges to some point x? Focusing on the concept from which we derive the notion
of identity in modal spaces, namely Λ-propositions, we find it natural to think
of x1, x2, ... as converging to x just in case xn moves towards satisfying all
the same Λ-propositions as x as n goes to infinity. We thus offer the following
definition:

Definition 2. A sequence of points x1, x2, ... in an LΛ modal space X is said
to logically converge to the point x in X iff for every ϕ ∈ LΛ for which x � ϕ,
there is an N ∈ N such that xn � ϕ for all n ≥ N .

To avoid re-proving useful results concerning this notion of convergence, we
next turn to seeking a topology for which logical convergence coincides with
topological convergence. Recall that for a topology T on a set X, a sequence of
points x1, x2, ... is said to converge to x in the topological space (X, T ) iff
for every open set U ∈ T containing x, there is an N ∈ N such that xn ∈ U for
all n ≥ N .
1 LΛ is isomorphic to the domain of the Lindenbaum algebra of Λ.
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3 Topologies on Modal Spaces

One way of obtaining a topology on a space is to define a metric for said
space. Several metrics have been suggested for sets of pointed Kripke models
[1,17]. These metrics are only defined for finite pointed Kripke models, but
incorporating ideas from the metrics of [36] on shift spaces and [26] on sets of
first-order logical theories allows us to simultaneously generalize and simplify
the n-Bisimulation-based Distance of [17] to the degree of applicability:

Let X be a modal space for which modal equivalence and bisimilarity
coincide2 and let �n relate x, y ∈ X iff x and y are n-bisimilar. Then proving

dB(x, y) =

�
0 if x �n y for all n
1
2n if n is the least intenger such that x ��n y

a metric on X is trivial. We refer to dB as the n-bisimulation metric, and to
the induced metric topology as the n-bisimulation topology, denoted TB . A
basis of the topology TB is given by the set of elements Bxn = {y ∈ X : y �n x}.

Considering the intimate link between modal logic and bisimulation, we con-
sider both n-bisimulation metric and topology highly natural.3 Alas, logical con-
vergence does not:

Proposition 1. Logical convergence in arbitrary modal space X does not imply
convergence in the topological space (X, TB).

Proof. Let X be an LΛ modal space with L based on the atoms Φ = {pk : k ∈ N}.
Let x ∈ X satisfy �⊥ and pk for all k ∈ N. Let x1, x2, ... be a sequence in X
such that for all k ∈ N, xk satisfies �⊥, pm for all m ≤ k, and ¬pl for all l > k.
Then for all ϕ ∈ LΛ for which x � ϕ, there is an N such that xn � ϕ for all
n ≥ N , hence the sequence x1, x2, ... converges to x. There does not, however,
exist any N � such that xn� ∈ Bx0 for all n� ≥ N �. Hence x1, x2, ... does not
converge to x in TB . 
�

Proposition 1 implies that the n-bisimulation topology may not straight-
forwardly be used to establish negative results concerning logical convergence.
That it may be used for positive cases is a corollary to Propositions 2 and 6
below. On the upside, logical convergence coincides with convergence in the n-
bisimulation topology – i.e. Proposition 1 fails – when L has finite atoms. This
is a corollary to Proposition 5.

An alternative to a metric-based approach to topologies is to construct the
set of all open sets directly. Comparing the definition of logical convergence with
that of convergence in topological spaces is highly suggestive: Replacing every
occurrence of the formula ϕ with an open set U while replacing satisfaction
� with inclusion ∈ transforms the former definition into the latter. Hence the

2 That all models in X are image-finite is a sufficient condition, cf. the Hennessy-
Milner Theorem. See e.g. [14] or [27].

3 Space does not allow for a discussion of the remaining metrics of [1,17], but see [31].

152



112 D. Klein and R.K. Rendsvig

collection of sets Uϕ = {x ∈ X : x � ϕ}, ϕ ∈ LΛ, seems a reasonable candidate
for a topology. Alas, this collection is not closed under arbitrary unions, as all
formulas are finite. Hence it is not a topology. It does however constitute the
basis for a topology, in fact the somewhat influential Stone topology, TS .

The Stone topology is traditionally defined on the collection of complete the-
ories for some propositional, first-order or modal logic, but is straightforwardly
applicable to modal spaces. Moreover, it satisfies our desideratum:

Proposition 2. For any LΛ modal space X, a sequence x1, x2, ... logically con-
verges to the point x if, and only if, it converges to x in (X, TS).

Proof. Assume x1, x2, ... logically converges to x in X and that U containing
x is open in TS . Then there is a basis element Uϕ ⊆ U with x ∈ Uϕ. So x � ϕ.
By assumption, there exists an N such that xn � ϕ for all n ≥ N . Hence
xn ∈ Uϕ ⊆ U for all n ≥ N .

Assume x1, x2, ... converges to x in (X, TS) and let x � ϕ. Then x ∈ Uϕ,
which is open. As the sequence converges, there exists an N such that xn ∈ Uϕ

for all n ≥ N . Hence xn � ϕ for all n ≥ N . 
�
Apart from its attractive characteristic concerning convergence, working on

the basis of a logic, the Stone topology imposes a natural structure. As is evident
from its basis, every subset of X characterizable by a single Λ-proposition ϕ ∈
LΛ is clopen. If the logic Λ is compact and X saturated (see footnote 7), also
the converse is true: every clopen set is of the form Uϕ for some ϕ. We refer
to [31] for proofs and a precise characterization result. In this case, a subset is
open, but not closed, iff it is characterizable only by an infinitary disjunction
of Λ-propositions, and a subset if closed, but not open, iff it is characterizable
only by an infinitary conjunction of Λ-propositions. The Stone topology thus
transparently reflects the properties of logic, language and topology. Moreover,
it enjoys practical topological properties:

Proposition 3. For any LΛ modal space X, (X, TS) is Hausdorff and
totally disconnected. If Λ is (logically) compact4 and X is saturated5, then
(X, TS) is also (topologically) compact.

Proof. These properties are well-known for the Stone topology applied to com-
plete theories. For the topology applied to modal spaces, we defer to [31]. 
�

One may interject that, as having a metric may facilitate obtaining results,
it may cause a loss of tools to move away from the n-bisimulation topology.
The Stone topology, however, is metrizable. A family of metrics inducing it,
generalizing the Hamming distance to infinite strings by using weighted sums,
was introduced in [31]. We here present a sub-family, suited for modal spaces:
4 A logic Λ is logically compact if any arbitrary set A of formulas is Λ-consistent iff

every finite subset of A is Λ-consistent.
5 An LΛ modal space X is saturated iff for each Λ-consistent set of formulas A,

there is an x ∈ X such that x � A. Saturation relates to the notion of strong
completeness, cf. e.g. [14, Proposition 4.12]. See [31] for its use in a more general
context.
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Definition 3. Let D ⊆ LΛ contain for every ψ ∈ LΛ some {ϕi}i∈I that Λ-
entails either ψ or ¬ψ, and let ϕ1, ϕ2, ... be an enumeration of D.

Let X be an LΛ modal space. For all x,y ∈ X, for all k ∈ N, let

dk(x, y) =

�
0 if x � ϕ iff y � ϕ for ϕ ∈ ϕk

1 else

Let w : D −→ R>0 assign strictly positive weight to each ϕk in D such that
(w(ϕn)) forms a convergent series. Define the function dw : X2 −→ R by

dw(x, y) =
∞�

k=0

w(ϕk)dk(x, y)

for all x,y ∈ X. The set of these functions is denoted DX . Let DD,X =
∪D⊆LΛ

DX .

We refer to [31] for the proof establishing the following proposition:

Proposition 4. Let X be an LΛ modal space and dw belong to DX . Then dw

is a metric on X and the metric topology Tw induced by dw on X is the Stone
topology of Λ.

For a metric space (X, d), we will also write Xd.
With variable parameters D and w, DX allows one to vary the choice of

metric with the problem under consideration. E.g., if the n-bisimulation metric
seems apt, one could choose that, with one restriction:

Proposition 5. If X is an LΛ modal space with L based on a finite atom set,
then DX contains a topological equivalent to the n-bisimulation metric.

Proof (sketch). As L is based on a finite set of atoms, for each x ∈ X, n ∈ N0,
there exists a characteristic formula ϕx,n such that y � ϕx,n iff y �n x, cf. [27].
Let Dn = {ϕx,n : x ∈ X} and D = ∪n∈N0Dn. Then each Dn is finite and D
satisfies Definition 3. Finally, let w(ϕ) = 1

|Dn| · 1
2n+1 for ϕ ∈ Dn. Then dw ∈ DX

and is equivalent to the n-bisimulation metric db. 
�

As a corollary to Proposition 5, it follows that, for finite atom languages, the
n-bisimulation topology is the Stone topology. This is not true in general, as
witnessed by Proposition 1 and the following:

Proposition 6. If X is an LΛ modal space with L based on a countably infinite
atom set, then the n-bisimulation metric topology on X is strictly finer than the
Stone topology on X.

Proof (sketch). We refer to [31] for details, but for TB �⊆ TS , note that the set
Bx0 used in the proof of Proposition 1, is open in TB , but not in TS . 
�

With this comparison, we end our exposition of topologies on modal spaces.
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4 Clean Maps on Modal Spaces

We focus on a class of maps induced by action models applied using product
update. Action models are a popular and widely applicable class of model trans-
formers, generalizing important constructions such as public announcements. An
especially general version of action models is multi-pointed action models with
postconditions. Postconditions allow action states in an action model to change
the valuation of atoms [12,19], thereby also allowing the representation of infor-
mation dynamics concerning situations that are not factually static. Permitting
multiple points allows the actual action states executed to depend on the pointed
Kripke model to be transformed, thus generalizing single-pointed action models.6

A multi-pointed action model is a tuple ΣΓ = (�Σ�, R, pre, post, Γ )
where �Σ� is a countable, non-empty set of actions. The map R : I →
P(�Σ� × �Σ�) assigns an accessibility relation Ri on �Σ� to each agent i ∈ I.
The map pre : �Σ� → L assigns to each action a precondition, and the map
post : �Σ� → L assigns to each action a postcondition,7 which must be � or a
conjunctive clause8 over Φ. Finally, ∅ �= Γ ⊆ �Σ� is the set of designated actions.

To obtain well-behaved total maps on a modal spaces, we must invoke a set of
mild, but non-standard, requirements: Let X be a set of pointed Kripke models.
Call ΣΓ precondition finite if the set {pre(σ) ∈ LΛ : σ ∈ �Σ�} is finite. This
is needed for our proof of continuity. Call ΣΓ exhaustive over X if for all
x ∈ X, there is a σ ∈ Γ such that x � pre(σ). This conditions ensures that the
action model ΣΓ is universally applicable on X. Finally, call ΣΓ deterministic
over X if X � pre(σ) ∧ pre(σ�) → ⊥ for each σ �= σ� ∈ Γ . Together with
exhaustivity, this condition ensures that the product of ΣΓ and any Ms ∈ X is
a (single-)pointed Kripke model, i.e., that the actual state after the updates is
well-defined and unique.

Let ΣΓ be exhaustive and deterministic over X and let Ms ∈ X. Then the
product update of Ms with ΣΓ , denoted Ms ⊗ ΣΓ , is the pointed Kripke
model (�MΣ�, R�, �·��, s�) with

�MΣ� = {(s, σ) ∈ �M� × �Σ� : (M, s) � pre(σ)}
R� = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri} , for all i ∈ N

�p�� = {(s, σ) :s ∈ �p�, post(σ) � ¬p} ∪ {(s, σ) :post(σ) � p} , for all p ∈ Φ

s� = (s, σ) : σ ∈ Γ and Ms � pre(σ)

Call ΣΓ closing over X if for all x ∈ X, x⊗ΣΓ ∈ X. With ΣΓ exhaustive and
deterministic, ΣΓ and ⊗ induce a well-defined total map on X.

The class of maps of interest in the present is then the following:

6 Multi-pointed action models are also referred to as epistemic programs in [2], and
allow encodings akin to knowledge-based programs [22] of interpreted systems, cf. [42].

7 The precondition of σ specify the conditions under which σ is executable, while its
postcondition may dictate the posterior values of a finite, possibly empty, set of
atoms.

8 I.e. a conjuction of literals, where a literal is an atom or a negated atom.
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Definition 4. Let X be an LΛ modal space. A map f : X → X is called clean
if there exists a precondition finite, multi-pointed action model ΣΓ closing, deter-
ministic and exhaustive over X such that f(x) = y iff x ⊗Σ Γ ∈ y for all x ∈ X.

Clean maps are total by the assumptions of being closing and exhaustive. They
are well-defined as f(x) is independent of the choice of representative for x:
If x� ∈ x, then x� ⊗ ΣΓ and x ⊗ ΣΓ are modally equivalent and hence define
the same point in X. The latter follows as multi-pointed action models applied
using product update preserve bisimulation [2], which implies modal equivalence.
Clean maps moreover play nicely with the Stone topology:

Proposition 7. Let f be a clean map on an LΛ modal space X. Then f is
continuous with respect to the Stone topology of Λ.

Proof (sketch). We defer to [31] for details, but offer a sketch: The map f is
shown uniformly continuous using the ε-δ formulation of continuity. The proof
relies on a lemma stating that for every dw ∈ DX and every � > 0, there are
formulas χ1, . . . , χl ∈ L such that every x ∈ X satisfies some χi and whenever
y � χi and z � χi for some i ≤ l, then dw(y, z) < �. The main part of the
proof establishes the claim that there is a function δ : L → (0, ∞) such that
for any ϕ ∈ L, if f(x) � ϕ and da(x, y) < δ(ϕ), then f(y) � ϕ. Setting δ =
min{δ(χi) : i ≤ l} then yields a δ with the desired property. 
�

With Proposition 7, we are positioned to state our main theorem:

Theorem 1. Let f be a clean map on a saturated LΛ modal space X with Λ
compact and let d ∈ DX . Then (Xd, f) is a topological dynamical system.

Proof. Propositions 2, 3, 4 and 7 jointly imply that Xd is a compact metric space
on which f is continuous, thus satisfying the requirements of e.g. [21,29,44]. 
�

With Theorem 1, we have, in what we consider a natural manner, situated
dynamic epistemic logic in the mathematical discipline of dynamical systems. A
core topic in this discipline is to understand the long-term, qualitative behavior
of maps on spaces. Central to this endeavor is the concept of recurrence, i.e.,
understanding when a system returns to previous states as time goes to infinity.

5 Recurrence in the Limit Behavior of Clean Maps

We represent results concerning the limit behavior of clean maps on modal
spaces. In establishing the required terminology, we follow [29]: Let f be a con-
tinuous map on a metric space Xd and x ∈ Xd. A point y ∈ X is a limit point9

for x under f if there is a strictly increasing sequence n1, n2, ... such that the
subsequence fn1(x), fn2(x), ... of (fn(x))n∈N0 converges to y. The limit set of
x under f is the set of all limit points for x, denoted ωf (x). Notably, ωf (x) is
closed under f : For y ∈ ωf (x) also f(y) ∈ ωf (x). We immediately obtain that
any modal system satisfying Theorem 1 has a nonempty limit set:
9 Or ω-limit point. The ω is everywhere omitted as time here only moves forward.
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Proposition 8. Let (Xd, f) be as in Theorem 1. For any point x ∈ X, the limit
set of x under f is non-empty.

Proof. Since X is is compact, every sequence in X has a convergent subsequence,
cf. e.g. [37, Theorem 28.2].

Proposition 8 does not inform us of the structure of said limit set. In the
study of dynamical systems, such structure is often sought through classifying
the possible repetitive behavior of a system, i.e., through the system’s recur-
rence properties. For such studies, a point x is called (positively) recurrent if
x ∈ ωf (x), i.e., if it is a limit point of itself.

The simplest structural form of recurrence is periodicity : For a point x ∈ X,
call the set Of (x) = {fn(x) : n ∈ N0} its orbit. The orbit Of (x) is periodic if
fn+k(x) = fn(x) for some n ≥ 0, k > 0; the least such k is the period of Of (x).
Periodicity is thus equivalent to Of (x) being finite. Related is the notion of a
limit cycle: a periodic orbit Of (x) is a limit cycle if it is the limit set of some
y not in the period, i.e., if Of (x) = ωf (y) for some y �∈ Of (x).

It was conjectured by van Benthem that certain clean maps—those based
on finite action models and without postconditions—would, whenever applied
to a finite x, have a periodic orbit Of (x). I.e., after finite iterations, the map
would oscillate between a finite number of states. This was the content of van
Benthem’s “Finite Evolution Conjecture” [8]. The conjecture was refuted using
a counterexample by Sadzik in his 2006 paper, [43].10 The example provided by
Sadzik (his Example 33) uses an action model with only Boolean preconditions.
Interestingly, the orbit of the corresponding clean map terminates in a limit
cycle. This is a corollary to Proposition 9 below.

Before we can state the proposition, we need to introduce some terminology.
Call a multi-pointed action model ΣΓ finite if �Σ� is finite, Boolean if pre(σ) is
a Boolean formula for all σ ∈ �Σ�, and static if post(σ) = � for all σ ∈ �Σ�. We
apply the same terms to a clean map f based on ΣΓ . In this terminology, Sadzik
showed that for any finite, Boolean, and static clean map f : X → X, if the orbit
Of (x) is periodic, then it has period 1.11 This insightful result immediates the
following:

Proposition 9. Let (Xd, f) be as in Theorem 1 with f finite, Boolean, and
static. For all x ∈ X, the orbit Of (x) is periodic with period 1.

Proof. By Proposition 8, the limit set ωf (x) of x under f is non-empty. Sadzik’s
result shows that it contains a single point. Hence (fn(x))n∈N0 converges to this
point. As the limit set ωf (x) is closed under f , its unique point is a fix-point. 
�

Proposition 9 may be seen as a partial vindication of van Benthem’s conjec-
ture: Forgoing the requirement of reaching the limit set in finite time and the
possibility of modal preconditions, the conjecture holds, even if the initial state
has an infinite set of worlds �x�. This simple recurrent behavior is, however, not
10 We paraphrase van Benthem and Sadzik using the terminology introduced.
11 See [16] for an elegant and generalizing exposition.
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the general case. More complex clean maps may exhibit nontrivial recurrence,
i.e., produce non-periodic orbits with recurrent points:

Proposition 10. There exist finite, static, but non-Boolean, clean maps that
exhibit nontrivial recurrence.

Proposition 11. There exist finite, Boolean, but non-static, clean maps that
exhibit nontrivial recurrence.

We show these propositions below, building a clean map which, from a selected
initial state, has uncountably many limit points, despite the orbit being only
countable. Moreover, said orbit also contains infinitely many recurrent points.
In fact, every element of the orbit is recurrent. We rely on Lemma 1 in the proof.
A proof of Lemma 1.1 may be found in [32], a proof of Lemma 1.2 in [15].

Lemma 1. Any Turing machine can be emulated using a set X of S5 pointed
Kripke models for finite atoms and a finite multi-pointed action model ΣΓ deter-
ministic over X. Moreover, ΣΓ may be chosen 1. static, but non-Boolean, or 2.
Boolean, but non-static.

Proof (of Propositions 10 and 11). For both propositions, we use a Turing
machine ad infinitum iterating the successor function on the natural numbers.
Numbers are represented in mirrored base-2, i.e., with the leftmost digit the
lowest. Such a machine may be build with alphabet {�, 0, 1,�}, where the sym-
bol � is used to mark the starting cell and � is the blank symbol. We omit the
exact description of the machine here. Of importance is the content of the tape:
Omitting blank (�) cells, natural numbers are represented as illustrated in Fig. 1.

0 : � 0 2 : � 0 1 4 : � 0 0 1 6 : � 0 1 1 8 : � 0 0 0 1
1 : � 1 3 : � 1 1 5 : � 1 0 1 7 : � 1 1 1 9 : � 1 0 0 1

Fig. 1. Mirrored base-2 Turing tape representation of 0, .., 9 ∈ N0, blank cells omitted.
Notice that the mirrored notation causes perpetual change close to the start cell, �.

Initiated with its read-write head on the cell with the start symbol � of a tape
with content n, the machine will go through a number of configurations before
returning the read-write head to the start cell with the tape now having content
n + 1. Auto-iterating, the machine will thus, over time, produce a tape that will
have contained every natural number in order.

This Turing machine may be emulated by a finite ΣΓ on a set X cf. Lemma 1.
Omitting the details12, the idea is that the Turing tape, or a finite fragment,

12 The details differ depending on whether ΣΓ must be static, but non-Boolean for
Proposition 10, or Boolean, but non-static for Proposition 11. See resp. [15,32].
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e, ϕ�

c0

u, ϕ0

c1

e, ϕ1

c2

u, ϕ0

c3

e, ϕ1

c4

a b a b

Fig. 2. A pointed Kripke model emulating the configuration of the Turing machine
with cell content representing the number 10. The designated state is the underlined
c0. Each state is labeled with a formula ϕ�, ϕ0 or ϕ1 expressing its content. Relations
a and b allow expressing distance of cells: That c0 satisfies ♦a(u ∧ ♦b(e ∧ ϕ1)) exactly
expresses that cell c2 contains a 1. Omitted are reflexive loops for relations, and the
additional structure marking cell content and read-write head position.

thereof may be encoded as a pointed Kripke model: Each cell of the tape cor-
responds to a state, with the cell’s content encoded by additional structure,13

which is modally expressible. By structuring the cell states with two equivalence
relations and atoms u and e true at cells with odd (even) index respectively, (cf.
Fig. 2), also the position of a cell is expressible. The designated state corresponds
to the start cell, marked �.

Let (cn)n∈N0 be the sequence of configurations of the machine when initiated
on a tape with content 0. Each cn may be represented by a pointed Kripke
model, obtaining a sequence (xn)n∈N0 . By Lemma 1, there thus exists a ΣΓ such
that for all n, xn ⊗ΣΓ = xn+1. Hence, moving to the full modal space X for the
language used, a clean map f : X → X based on ΣΓ will satisfy f(xn) = xn+1

for all n. The Turing machine’s run is thus emulated by (f k(x0))k∈N0 .
Let (c�

n)n∈N0 be the subsequence of (cn)n∈N0 where the machine has finished
the successor operation and returned its read write head to its starting position
�, ready to embark on the next successor step. The tape of the first 9 of these
c�
n are depicted in Fig. 1. Let (x�

n)n∈N0 be the corresponding subsequence of
(fk(x0))k∈N0 . We show that (x�

n)n∈N0 has uncountably many limit points:
For each subset Z of N, let cZ be a tape with content 1 on cell i iff i ∈ Z

and 0 else. On the Kripke model side, let the corresponding xZ ∈ X be a model
structurally identical to those of (x�

n)n∈N0 , but satisfying ϕ1 on all “cell states”
distance i ∈ Z from the designated “�” state, and ϕ0 on all other.14 The set
{xZ : Z ⊆ N} is uncountable, and each xZ is a limit point of x: For each Z ⊆ N
and n ∈ N, there are infinitely many k for which xk � ϕ iff xZ � ϕ for all ϕ
of modal depth at most n. Hence, for every n, the set {xk : db(xk, xZ) < 2−n}
is infinite, with db the equivalent of the n-bisimulation metric, cf. Proposition 5.
Hence, for each of the uncountably many Z ⊆ N, xZ is a limit point of the
sequence x.

Finally, every x�
k ∈ (x�

n)n∈N0 is recurrent: That x�
k ∈ ωf (x�

k) follows from x�
k

being a limit point of (x�
n)n∈N0 , which it is as x�

k = xZ for some Z ⊆ N.15 As
the set of recurrent points is thus infinite, it cannot be periodic. 
�
13 For Proposition 11, tape cell content may be encoded using atomic propositions,

changeable through postconditions, cf. [15]; for Proposition 10, cell content is written
by adding and removing additional states, cf. [32].

14 The exact form is straightforward from the constructions used in [15,32].
15 A similar argument shows that all xZ with Z ⊆ N co-infinite are recurrent points.

Hence ωf (x�
k) for any x�

k ∈ (x�
n)n∈N0 contains uncountably many recurrent points.
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As a final result on the orbits of clean maps, we answer an open question:
After having exemplified a period 2 system, Sadzik [43] notes that it is unknown
whether finite, static, but non-Boolean, clean maps exhibiting longer periods
exist. They do:

Proposition 12. For any n ∈ N, there exists finite, static, but non-Boolean
clean maps with periodic orbits of period n. This is also true for finite Boolean,
but non-static, clean maps.

Proof. For the given n, find a Turing machine that, from some configuration,
loops with period n. From here, Lemma 1 does the job. 
�

Finally, we note that brute force determination of a clean map’s orbit prop-
erties is not in general a feasible option:

Proposition 13. The problems of determining whether a Boolean and non-
static, or a static and non-Boolean, clean map, a) has a periodic orbit or not,
and b) contains a limit cycle or not, are both undecidable.

Proof. The constructions from the proofs of Lemma 1 allows encoding the halting
problem into either question. 
�

6 Discussion and Future Venues

We consider Theorem 1 our main contribution. With it, an interface between the
discrete semantics of dynamic epistemic logic with dynamical systems have been
provided; thus the former has been situated in the mathematical field of the
latter. This paves the way for the application of results from dynamical systems
theory and related fields to the information dynamics of dynamic epistemic logic.

The term nontrivial recurrence is adopted from Hasselblatt and Katok, [29].
They remark that “[nontrivial recurrence] is the first indication of complicated
asymptotic behavior.” Propositions 10 and 11 indicate that the dynamics of
action models and product update may not be an easy landscape to map. Has-
selblatt and Katok continue: “In certain low-dimensional situations [...] it is pos-
sible to give a comprehensive description of the nontrivial recurrence that can
appear.” [29, p. 24]. That the Stone topology is zero-dimensional fuels the hope
that general topology and dynamical systems theory yet has perspectives to offer
on dynamic epistemic logic. One possible direction is seeking a finer parametriza-
tion of clean maps combined with results specific to zero-dimensional spaces, as
found, e.g., in the field of symbolic dynamics [36]. But also other venues are
possible: The introduction of [29] is an inspiration.

The approach presented furthermore applies to model transformations
beyond multi-pointed action models and product update. Given the equivalence
shown in [33] between single-pointed action model product update and general
arrow updates, we see no reason to suspect that “clean maps” based on the
latter should not be continuous on modal spaces. A further conjecture is that
the action-priority update of [5] on plausibility models16 yields “clean maps”
16 Hence also the multi-agent belief revision policies lexicographic upgrade and elite

change, also known as radical and conservative upgrade, introduced in [9], cf. [5].
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continuous w.r.t. the suited Stone topology, and that this may be shown using
a variant of our proof of the continuity of clean maps. A more difficult case
is the PDL-transformations of General Dynamic Dynamic Logic [25] given the
signature change the operation involves.

There is a possible clinch between the suggested approach and epistemic logic
with common knowledge. The state space of a dynamical system is compact.
The Stone topology for languages including a common knowledge operator is
non-compact. Hence, it cannot constitute the space of a dynamical system—
but its one-point compactification may. We are currently working on this clinch,
the consequences of compactification, and relations to the problem of attaining
common knowledge, cf. [28].

Questions also arise concerning the dynamic logic of dynamic epistemic logic.
Propositions 10 and 11 indicate that there is more to the semantic dynamics of
dynamic epistemic logic than is representable by finite compositional dynamic
modalities—even when including a Kleene star. An open question still stands on
how to reason about limit behavior. One interesting venue stems from van Ben-
them [10]. He notes17 that the reduction axioms of dynamic epistemic logic could
possibly be viewed on par with differential equations of quantitative dynamical
systems. As modal spaces are zero-dimensional, they are imbeddable in R cf.
[37, Theorem 50.5], turning clean maps into functions from R to R, possibly
representable as discrete-time difference equations.

An alternative approach is possible given by consulting Theorem 1. With
Theorem 1, a connection arises between dynamic epistemic logic and dynamic
topological logic (see e.g. [23,24,34,35]): Each system (Xd, f) may be consid-
ered a dynamic topological model with atom set LΛ and the ‘next’ operator’s
semantics given by an application of f , equivalent to a �f� dynamic modality of
DEL. The topological ‘interior’ operator has yet no DEL parallel. A ‘henceforth’
operator allows for a limited characterization of recurrence [35]. We are wonder-
ing about and wandering around the connections between a limit set operator
with semantics x � [ωf ]ϕ iff y � ϕ for all y ∈ ωf (x), dynamic topological logic
and the study of oscillations suggested by van Benthem [11].

With the focal point on pointed Kripke models and action model transfor-
mations, we have only considered a special case of logical dynamics. It is our
firm belief that much of the methodology here suggested is generalizable: With
structures described logically using a countable language, the notion of logical
convergence will coincide with topological convergence in the Stone topology
on the quotient space modulo logical equivalence, and the metrics introduced
will, mutatis mutandis, be applicable to said space [31]. The continuity of maps
and compactness of course depends on what the specifics of the chosen model
transformations and the compactness of the logic amount to.
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Turing Completeness of

Finite Epistemic Programs

Dominik Klein? and Rasmus K. Rendsvig??

In this note, we present the proof of Lemma 1.1 of [8], namely that the class
of epistemic programs [1] is Turing complete. Following preliminary de�-
nitions in Section 1, Section 2 states and proves the theorem.

1 De�nitions

Let there be given a countable set Φ of atoms and a �nite set I of agents.
Where p ∈ Φ and i ∈ I, de�ne the language L by

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ | �iϕ.

We use relational semantics to evaluate formulas. A Kripke model for L is
a tuple M = (JMK , R, J·K) where JMK is a countable, non-empty set of states,
R : I −→ P(JMK × JMK) assigns to each i ∈ I an accessibility relation Ri,
and J·K : Φ −→ P(JMK) is a valuation, assigning to each atom a set of states.
With s ∈ JMK, call Ms = (JMK , R, J·K , s) a pointed Kripke model. The used
semantics are standard (see e.g. [4, 7]), including the modal clause:

Ms |= �iϕ i� for all t : sRit implies Mt |= ϕ.

Pointed Kripke models may be updated using action models and product
update [1�3,5,6]. We here invoke a set of mild, but non-standard, requirements
to �t the framework of [8].

A multi-pointed action model is a tuple ΣΓ = (JΣK,R, pre, Γ ) where
JΣK is a countable, non-empty set of actions. The map R : I → P(JΣK × JΣK)
assigns an accessibility relation R(i) on Σ to each agent i ∈ I. The map
pre : JΣK → L assigns to each action a precondition. Finally, ∅ 6= Γ ⊆ JΣK is
the set of designated actions.

Where X is a set of pointed Kripke models, call ΣΓ deterministic if |=
pre(σ) ∧ pre(σ′)→ ⊥ for each σ 6= σ′ ∈ Γ .

Let ΣΓ be deterministic over X and letMs ∈ X. Then the product update
ofMs withΣΓ , denotedMs⊗ΣΓ , is the pointed Kripke model (JMΣK , R′, J·K′, s′)

? Department of Philosophy, Bayreuth University, and Department of Political Science,
University of Bamberg. dominik.klein@uni-bayreuth.de

?? Theoretical Philosophy, Lund University, and Center for Information and Bubble
Studies, University of Copenhagen. rendsvig@gmail.com
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with

JMΣK = {(s, σ) ∈ JMK× JΣK : (M, s) |= pre(σ)}
R′ = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri} , for all i ∈ N

JpK′ = {(s, σ) :s ∈ JpK} , for all p ∈ Φ
s′ = (s, σ) : σ ∈ Γ and Ms |= pre(σ)

As ΣΓ is assumed deterministic over X at most one suitable s′ exists. If Ms |=
¬pre(σ) for all σ ∈ Γ , Ms⊗ΣΓ is unde�ned.

2 Theorem and Proof

Call a �nite, deterministic multi-pointed action an epistemic program.1 We
then show:

Theorem 1. The set of epistemic programs is Turing complete.

Remark 1. The proof uses a strict sub-class of the mentioned action models, all
with only equivalence relations as suited for multi-agent S5 logics, and requires
only the use of �nite, S5 pointed Kripke models. ut

Preliminaries. De�ne a Turing machine as a 7-tuple

M = (Q, q0, qh, Γ, b,Σ, δ)

where Q is a �nite set of states with q0 ∈ Q the start state and qh ∈ Q the
halt state, Γ a �nite set of tape symbols with b ∈ Γ the blank symbol and
Σ = Γ\{b} the set of input symbols, and δ a partial function

δ : Q× Γ → Q× Γ × {l, h, r}

with δ(qh, γ) unde�ned for all γ ∈ Γ , called the transition function. If δ(q, γ)
is unde�ned, the machine will halt.

A Turing machine acts on a bi-in�nite tape with cells indexed by Z and
labeled with Γ such that only b occurs on the tape in�nitely often. With the
machine in state q ∈ Q and reading label γ ∈ Γ , the transition function deter-
mines a possibly new state of the machine q′ ∈ Q, a symbol s′ to replace s at the
current position on the tape, and a movement of the metaphorical �read/write
head�: Either one cell to the left (l), none (stay here, h), or one cell to the right
(r).

A con�guration of a machine is fully given by i) the current labeling of
the tape, ii) the position of the r/w-head on the tape, and iii) the state of
the machine. The space of possible con�gurations of a machine M is thus C =
T×Z×Q, where T is the set of bi-in�nite strings t = (. . . , γ−2, γ−1, γ0, γ1, γ2, . . . )

1 The term stems from the seminal [1] in which postconditions where not included.
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over Γ such that only b occurs in�nitely often in t. The transition function δ of
M may thus be recast as a partial function δ : C→ C.

We want to recast δ in a slightly di�erent manner. Each tape t has in-
�nite head and tail consisting solely of bs. Ignoring all but a �nite segment
of these yields a �nite non-unique representation of the tape. Formally, for a
string t = (. . . , γ−2, γ−1, γ0, γ1, γ2, . . . ) and k < k′ let t�[k,k′] be the substring
(γk, . . . , γk′). The set of all such �nite representations of T is then given by
T = {t = (γk, . . . , γk′) : ∃t ∈ T s.t. t= t�[k,k′] and ∀j < k, ∀j′ > k′, tj = tj′ = b}.
Each t ∈ T corresponds to a unique t ∈ T. Conversely, each con�guration c =
(t, i, q) ∈ C may be represented by the equivalence class {(t�[k,k′], i, q) : k < k′}
of its �nite approximations. In each such equivalence class, there exists repre-
sentatives for which the position i of the read-write head is �on the tape�, i.e.,
satis�es that γi ∈ t. We impose this as a requirement and de�ne a restricted
equivalence class for each c = (t, i, q) ∈ C by [c] = {(t�[k,k′], i, q) : k ≤ i ≤ k′}.
With C = {[c] : c ∈ C}, i.e., the set of equivalence classes of �nite representa-
tions of con�gurations for which the read-write head is on the �nite tape, the
transition function may �nally be recast as a partial function δ : C→ C.

Remark 2. The class of Turing machines with Γ = {0, 1}, b = 0, is Turing com-
plete. Henceforth, we restrict attention to this sub-class. ut

Proof

To prove Theorem 1, it must be shown that any Turing machine can be simulated
by an epistemic program. We show that as follows: First, we de�ne an invertible
operator K that for any �nite representation of a con�guration c ∈ [c] ∈ C
produces a pointed Kripke model K(c). Second, we de�ne an epistemic program
ΣΓ which satis�es that

K−1(K(c)⊗ΣΓ) ∈ δ([c]), (1)

for any [c] ∈ C. Hence P may be used to calculate the trajectory of δ.

Machine, Language and Logic. Fix a Turing machine M with states Q, and
�x from this a set of relation indices Q′ = Q ∪ {a, b, 1}. Let the modal language
L be based on the single atom p and operators �i, i ∈ Q′.

Con�guration Space. Let C = {[c] : c ∈ C} be the set of equivalence classes of
�nite representations of con�gurations for which the read-write head is on the
�nite tape for M and let c = (t, i, q) ∈ C. We construct a pointed Kripke model
K(c) representing (t, i, q). We exemplify the construction to be in Fig. 1.

First, in three steps, we construct the set of worlds: i) Construct slightly
too many �tape cells�: Let due = max{|k|, |k′|} if this is even, else let due =
max{|k|, |k′|}+1 and take a set of worlds C = {cj : − (due+5) ≤ j ≤ due+5}.
ii) Represent the content of a cell: Add worlds S = {sj : γj = 1} to indicate
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c−1

p

c0 c1

p

c2 c3

p
s1s2 h3

c−(due+5) cdue+5

b a b a

11 q0

Fig. 1. An emulation of a Turing machine in state q0 with the read/write head in
position 3. Cells 1 and 2 are marked with 1 (or A), cells -1, 0 and 3 are not.

�cells� with the unique non-blank �symbol� 1. Let iii) Add a �read/write head�:
Let H = {hj : j = r/w}. Finally, we de�ne the set of worlds as W = C ∪ S ∪H.

Second, we add relations between the worlds, also in three steps. In the
following let R∗ denote the re�exive, symmetric, and transitive closure of the
relation R on a given base set, here W . In particular (w,w) ∈ R∗ for all w ∈
W . i) We structure the cells ci into a tape using relations Ra and Rb: Ra =
{(cj , cj+1) : j is even}∗, Rb = {(cj , cj+1) : j is odd}∗. ii) We attach the non-
blank symbols to the appropriate cells: Let R1 = {(cj , sj) : sj ∈ S}∗. iii) We
mount the read/write head at the correct position and in the correct state, q: Let
Rq = {(cj , hj) : hj ∈ H}∗. For the remaining states q′ ∈ Q\{q}, let Rq′ = {}∗.
Finally, let JpK = {cj , sj,, hj ∈ C ∪S ∪H : j is even} and the actual world be c0.

We thus obtain a pointed Kripke model K(c) = (W, {Ri}i∈Q′ , J·K , c0) for the
�nite con�guration representation c of Turing machine M. Figure 1 illustrates
this, depicting the model K(c) for con�guration c = (t, 3, q0). Given K(c), we may
clearly invert the construction process and re-obtain an element of [c]. Finally
let C = {K(c) : c ∈ C}.

Expressible Properties. To construct an epistemic program that simulates
δ : C → C, i.e., satis�es Eq. (1), we take advantage of the fact that various
properties of con�gurations are modally expressible. Hence, we can use these as
preconditions. The relevant properties and formulas are summarized in Table 1.

Epistemic Program. We construct ΣΓ = (Σ, {Rj}j∈Q′ , pre, Γ ), an epistemic
program that simulates δ : C→ C, cf. Eq. (1). An example of such an epistemic
program is illustrated in Fig. 2. We argue for the adequacy of the epistemic
program in parallel with its construction. In the following, the precondition of
action σϕ is the formula ϕ.

Actual Actions, Halting, and Tape Enlargement. Let the set of actual
actions be given by Γ = {γϕ : ϕ ∈ Φ} with Φ = {R,L, 2AM} ∪ {hqi, lqi, rqi : q ∈
Q, i ∈ {0, 1}}, cf. Table 1.

Then, for any K(c) ∈ C, for every cell state cj ∈ C of K(c), cj will satisfy
exactly one of the formulas in Φ. ΣΓ is thus deterministic over C, and the actual
world of K(c) ⊗ ΣΓ is a cell. Finally, formulas from Φ are only satis�ed at cell
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Property Formula

Being a cell† c := (♦ap ∨ ♦bp) ∧ ♦a¬p
Being a 1 symbol s := ¬c ∧ ♦1c

Being a cell with symbol 1 1 := c ∧ ♦1¬c
Being a cell with symbol 0 0 := c ∧ ¬♦1¬c
Being the cell of the r/w-head is while the

machine is in state q

hj := c ∧ ♦q¬c

Being the cell immediately left of the r/w-

head while the machine is in state q

lq := c∧¬hq∧((p ∧ ♦ahq) ∨ (¬p ∧ ♦bhq))

Being the cell immediately right of the r/w-

head while the machine is in state q

rj := c∧¬hq∧((p ∧ ♦bhq) ∨ (¬p ∧ ♦ahq))

Being the cell of/im. left of/im. right of the
r/w-head while the machine is in state j

and the cell of the r/w-head contains a 1/0

hq1/lq1/rq1/hq0/lq0/rq0 :

Replace c in hq/lq/rq with formula 1/0.

Being a cell at least two cells away from

the r/w-head

h≥2 := c ∧
∧

q∈Q (¬hq ∧ ¬lq ∧ ¬rq)

Being the rightmost† cell R := c ∧�b¬p
Being the leftmost† cell L := c ∧�a¬p
Being the penultimate cell to the right PR = c ∧ ¬R ∧3aR

Being the penultimate cell to the right PL = c ∧ ¬L ∧3bL

Being at least two steps away from the r/w-

head and not being the left- or rightmost

cell

2AM := h≥2 ∧ ¬R ∧ ¬L

Table 1. Expressible properties used as preconditions. Notes. †: Recall that the ex-
treme states of C are c−(due+5) and cdue+5 with due even.

states of K(c). Jointly, this implies that Γ �copies� the set of tape cells from K(c)
to K(c)⊗ΣΓ .

The copied over tape may not be long enough for future operations, so
we include a set of actions to preemptively enlarge it.2 To this end, let Υ =
{υL, υPL, υR, υPR}. The precondition ϕ of each υϕ ∈ Υ is satis�ed by exactly
one state cj of K(c) which is a cell state. These cell state will thus have two
successors in K(c) ⊗ ΣΓ : (cj , γϕ) de�ned before and (cj , υϕ). We thus gain four
new cell states. Setting

Ra = {(γϕ, γψ) : ϕ,ψ ∈ Φ\{L}}∗ ∪ {(υPR, υR), (γL, υPL)}∗

Rb = {(γϕ, γψ) : ϕ,ψ ∈ Φ\{R}}∗ ∪ {(γR, υPR), (υPL, υL)}∗

2 To save tape, this could be done in a more economical manner, only creating extra
cells where actually needed.
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Σ
Γ

Ra

Rb

R1

γR

γL

υPR

υPL

υR

υL

πϕ

γ2AM

γlq0γrq0

γrq1γlq1

γhq0

γhq1

Θhq0

Θhq1

δhq0

δhq1

a

b

b

a

1

q′

q

Fig. 2. An illustration of the epistemic program (Σ,Γ ) for a Turing machine with t
δ(q, 0) = (q′, 1, l) and δ(q, 1) = (q, 0, r). That Θhq0Rq′γlq0 ensures that on input (q, 0)
the r/w-head moves to the left and the machine is set to state q′ and the relation
γhq0R1δhq0 ensures that the content of the current cell is set to 1. Similarly that
Θhq1Rqγrq1 ensures that on input (q, 1) the r/w-head moves to the right, the machine
remains in state q and the absence of relation γhq1R1δhq1 ensures that the content of
the current cell is set to 0.

copies over the tape structure and suitably extends it to the new cell states,
which are as the left most, penultimate left, penultimate right, and right most
tape cells. Fig. 3 illustrates.

p

(c0, γ2AM ) (c1, γ2AM )

p

(c2, γlq00) (c3, γhq00) (cdue+5, γR)

p

(cdue+4, νPR) (cdue+5, νR)(c−due−5, νL)

b a b b a

Fig. 3. Illustration of the extended tape resulting from applying P to the model in
Figure 1.

Symbol Transfer. We copy all symbols from the old tape to the new, safe for
the symbol at the current position of the r/w-head. To this end, add an action πϕ
with ϕ = s∧¬♦1(

∨
3q∈Q hq). The formula ϕ is then satis�ed in K(c) exactly at the

symbols states sj ∈ S on which the r/w-head is not. Let Γ ′ = {γϕ : ϕ ∈ Φ} with
Φ = {R,L, 2AM}∪{lqi, rqi : q ∈ Q, i ∈ {0, 1}}. Requiring that (Γ ′×{πϕ})∗ ⊆ R1

ensures that the symbol states copied over to K(c) ⊗ ΣΓ are connected to the
correct cell world. We give the precise de�nition of R1 below.

Symbol Writing. We implement the symbol writing part of the transition
function δ. De�ne a new set of actions by

∆ = {δhqi : q ∈ Q, i ∈ {0, 1} and δ(i, q) is de�ned}.
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At most one action from ∆ will have its precondition satis�ed at any K(c) and
just in case δ(c) is de�ned. The world satisfying this precondition is a cell world,
cj , which will have two successors in K(c)⊗ P :3 a cell world successor (cj , γhqi)
de�ned above and a symbol world successor (cj , δhqi) de�ned here. We ensure
that the emulation writes the correct symbol by connecting (cj , δhqi) to (cj , γhqi)
by R1 or not: Let

Rtmp = {{(δhqi, γhqi) : γ ∈ Γ} | δ(i, q) = (·, 1, ·)}

and let R1 = ((Γ
′ × {πϕ}) ∪Rtmp)∗. This and the above ensures that the emu-

lation produces a correctly labeled tape.

State Change and Head Repositioning. We �nally implement the state
change and head repositioning encoded by δ. To this end, de�ne a set of events

Θ = {θhqi : q ∈ Q, i ∈ {0, 1} and δ(i, q) is de�ned}.

Again, at most one action from Θ will have its precondition satis�ed at any
K(c) and just in case δ(c) is de�ned. The world satisfying this precondition is a
cell world, cj , which will hence have two successors in K(c) ⊗ ΣΓ :4 a cell world
successor (cj , γϕ) de�ned above and a r/w-head world successor (cj , θhqi) de�ned
here. We �mount� the r/w-head world at the correct position and in the correct
state using the relations {Rq′}q′∈Q: For all q′ ∈ Q, let

Rq′ = {(γxq′ , θhqi) : δ(q, i) = (q′, ·, x), i ∈ {0, 1}, q ∈ Q}∗.

The de�nition of {Rq}q∈Q ensures that the r/w-head is moved and changes
state appropriately, whenever δ(i, q) is de�ned. When δ(i, q) is not de�ned, the
r/w-head world (cj , θhqi) will be disconnected from the tape cell worlds. In that
case, K(c)⊗P will not be in C, and the emulation is said to halt. This concludes
the construction and proof. QED

Remark 3. The proof generalizes to k-tape Turing machines or bigger input sym-
bol sets by replacing modality 21 with 21,2k and the corresponding formula 1
with 1, .., k. ut
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METRICS FOR FORMAL STRUCTURES, WITH AN APPLICATION TO

KRIPKE MODELS AND THEIR DYNAMICS

DOMINIK KLEIN AND RASMUS K. RENDSVIG

Abstract. This paper introduces a broad family of metrics applicable to �nite and count-

ably in�nite strings, or, by extension, to formal structures serving as semantics for count-

able languages. We introduce the metrics in a general setting, and then focus on their

application to sets of pointed Kripke models, a semantics for modal logics. We study the

topological properties resulting from equipping sets of Kripke models with said metrics:

We classify which metrics give rise to the same topological spaces, provide su�cient con-

ditions for compactness, characterize clopen sets, characterize convergence by a logical

convergence concept, and characterize isolated points. Moreover, we relate our metrical

approach to concepts known from dynamic epistemic logic. In our main result, we show

that a widely used type of model transformations, product updates with action models,

gives rise to continuous maps in the induced topology, allowing to interpret iterated up-

dates as discrete time dynamical systems.

Keywords: metric space, general topology, modal logic, Kripke model, model transfor-

mation, dynamic epistemic logic.

�1. Introduction. This paper introduces and investigates a family of metrics
applicable to �nite and countably in�nite strings and, by extension, formal struc-
tures described by a countable language. This family of metrics is a weighted
generalization of the Hamming distance [40]. On formal structures, each such
metric corresponds to assigning positive weights to a chosen subset of some lan-
guage describing the structure. The distance between two structure, then, is the
sum of the weights of formulas on which the two structures di�er in valuation.
While the approach is generally applicable, our main target is metrics on sets

of pointed Kripke models, the most widely used semantic structures for modal
logic. Apart from mathematical interest, there are several motivations for having
a metric between pointed Kripke models. Among these are applications in iter-
ated multi-agent belief revision [3, 4, 23, 25, 27, 46], logical meta-theory [37], and
the application of dynamical systems theory to information dynamics modeled
using dynamic epistemic logic [11�14,42,55,56]. The latter is our main interest.
In a nutshell, this paper contains a theoretical foundation for considering the log-
ical dynamics of dynamic epistemic logic as discrete time dynamical systems:
Compact metric spaces (of pointed Kripke models) together with continuous
transition functions acting on them.
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2 DOMINIK KLEIN AND RASMUS K. RENDSVIG

The paper lays this foundation by the following progression: In Section 2, we
introduce a weighted generalization of the Hamming distance. In Section 3, we
present a general case for applying the metrics to arbitrary sets of structures,
given that the structures are abstractly described by a countable set of formu-
las within a possibly multi-valued semantics. In Section 4, we start focusing
on pointed Kripke models: We show how the metrics may be applied to these
and how the family of metrics de�ned here allows to represent various metrics
that are natural from a modal logical point of view. Section 5 is on topological
properties of the resulting spaces: We show that two metrics are topologically
equivalent whenever they agree on which formulas of the modal language should
receive strictly positive weight. The resulting topologies are a generalization of
the Stone topology. We refer to these as Stone-like topologies, and show that
each such is Hausdor�, totally disconnected and, under certain additional as-
sumptions, compact. In the same section, we characterize the open, closed and
clopen sets of Stone-like topologies and relate Stone-like topologies to a natural
semantic topology, the n-bisimulation topology. In Section 6, we turn to con-
vergence and limit points: We characterize convergence in Stone-like topologies
by a logical analogue thereof, strengthening a result of [42]. Moreover, we show
a characterization theorem for isolated points and exemplify perfect, imperfect
and discrete spaces. In Section 7, we turn to mappings. In particular, we inves-
tigate the widely used family of mappings de�ned through product updates with
multi-pointed action models, a particular graph product, well-known from the
literature on dynamic epistemic logic [6�8, 13, 30]. As �nal our result, we show
such product updates continuous with respect to Stone-like topologies, thus es-
tablishing the desired connection between dynamic epistemic logic and discrete
time dynamical systems.

The approach and results presented may be applied in several domains, but
our main goal is to bridge the �elds of discrete time dynamical systems and
dynamic epistemic logic. The aim is to render tools and theories from the �eld
of dynamical systems applicable to logical dynamics, and in particular to the
form of dynamics found in dynamic epistemic logic.1 With this purpose in
mind, it may seem a limited result to show speci�cally the mentioned family
of maps continuous. However, we hold that the result and its proof consti-
tute a signi�cant step forward towards the general goal: Product update is
a natural and �exible framework for modeling information dynamics, gener-
alizing truthful public announcements [7, 36, 50], untruthful announcements [1]
and partially observable announcements [7, 36]. Moreover, its �exibility allows
it to mimic other natural update forms, such as arrow-deletion updates [44].
Such features have caused product update to be widely used and studied (see
e.g. [2, 13, 21, 53, 61, 63] for usage and [6, 7, 16, 17, 21, 22, 29�32, 43, 45, 55, 56] for
theoretical studies). Moreover, product update has inspired a host of similar
update forms (see e.g. [5, 9, 10, 18, 19, 24, 26, 52, 54, 60]), to which we believe our
framework is applicable mutatis mutandis.

1As to why this in turn should be a worthwhile pursuit, we refer the reader to [11�14,55,56]
and in particular [42], which rests on results shown here.
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METRICS FOR FORMAL STRUCTURES 3

Remark. This paper is not self-contained. We only include de�nitions for
selected standard terms and do so mainly to �x notation. For modal logic notions
that remain unde�ned here, refer to e.g. [20, 38]. For topological notions, refer
to e.g. [49]. For more than the bare minimum of standard notions and notations
of dynamic and epistemic logic rehearsed here, see e.g. [6�9, 13, 16, 29, 30, 33, 41,
50,51].

1.1. Related Work. Metrics for formal structures have been considered else-
where. In particular, Caridroit et al. [23] present metrics on pointed Kripke
models for the purpose of belief revision. In Example 10, we show their six
semantic metrics, de�ned on �nite sets of �nite Kripke models, special cases of
our syntactic approach. The authors also consider a semantic similarity mea-
sure of Aucher [3, 4] from which they de�ne a distance between �nite pointed
Kripke models. The exact weights in this distance are somewhat involved and
we do not attempt a quantitative comparison. As to a qualitative analysis, then
neither Caridroit et al. nor Aucher o�er any form of topological analysis of the
metric, making comparison non-straightforward. However, as the fundamental
measuring component in Aucher's distance is based on degree of n-bisimilarity,
we conjecture that the topology on the spaces of Kripke models generated by
this distance is the n-bisimulation topology, de�ned in Section 5.4. The same
section o�ers a comparison between this topology and the Stone topology. The
n-bisimulation metric (see Example 8) inducing the n-bisimulation topology is
inspired by the metric introduced by Goranko in [37] on sets of theories of �rst-
order structures. Finally, Sokolsky et al. [58] introduce a quantitative bisimula-
tion distance for �nite, labeled transition systems and consider its computation.
Again, we conjecture the induced topology is the n-bisimulation topology.
As Sokolsky et al. remark, distances on rooted graphs (or pointed Kripke

models) may fall into one of two categories: Either extremal, where the �rst met
di�erence between graphs fully determines the distance, or aggregate, where all
di�erences are summarized. The distance of Sokolsky et al. is aggregate, as is
that of Aucher and some of the distances of Caridroit et al. The remaining are
extremal, together with the distance of Goranko and the n-bisimulation distance.
The syntactic approach we introduce allows for either option.

�2. Generalizing the Hamming Distance. The method we propose for
de�ning distances between pointed Kripke models is a particular instance of a
more general approach. This general approach concerns distances between �nite
or in�nite strings of letters from some given set, V . In a logical context, the set
V may be thought of as containing the possible truth values for some logic. For
classical logics such as normal modal logic, V would be binary, and the resulting
strings be made of, e.g., 0s and 1s. We think of pointed Kripke models as being
represented by such countably in�nite strings: Given some enumeration of the
corresponding modal language, a string will have a 1 on place k just in case the
model satis�es the kth formula, 0 else. See Section 4 for details.
A distance on sets of �nite strings of a �xed length has been known since

1950, when it was introduce by R.W. Hamming [40]. Informally, the Hamming
distance between two such strings is the number of places on which the two
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4 DOMINIK KLEIN AND RASMUS K. RENDSVIG

strings di�er. Clearly, this distance is, in general, not well-de�ned on sets of
in�nite strings.
However, for faithfully representing pointed Kripke models as strings of for-

mula truth values, we need to work with in�nite strings. This is the case as the
modal language is in�nite and, a fortiori, there are, in general, in�nitely many
modally expressible mutually non-equivalent properties of pointed Kripke mod-
els. We return to this below. To accommodate in�nite strings, we generalize the
Hamming distance:

Definition. Let S be a set of strings over a set V such that either S ⊆ V n

for some n ∈ N, or S ⊆ V ω. For any s, s′ ∈ S, any k ∈ N, let

dk(s, s′) =

{
0 if sk = s′k, or if s ∈ V n and k > n

1 else

Let w : N→ R>0 assign a strictly positive weight to each natural number such
that (w(k))k∈N forms a convergent series, i.e.,

∑∞
k=1 w(k) <∞.

The function dw : S × S → R is then de�ned by, for each s, s′ ∈ S

dw(s, s′) =
∞∑
k=1

w(k)dk(s, s′).

Proposition 1. Let S and dw be as above. Then dw is a metric on S.

Proof. Each dw is a metric on S as it satis�es for all s, s′, s′′ ∈ X
Positivity, dw(s, s′) ≥ 0: The sum de�ning dw contains only non-negative terms.
Identity of indiscernibles, dw(s, s′) = 0 i� s = s′: dw(s, s′) = 0 i� dk(s, s′) = 0
for all k i� sk = s′k for all k i� s = s′.
Symmetry, dw(s, s′) = dw(s′, s): As dk(s, s′) = dk(s′, s) for all k, we get dw(s, s′) =
dw(s′, s).
Triangular inequality, dw(s, s′′) ≤ dw(s, s′) + dw(s′, s′′): If s and s′′ agree on
any position k, we have dk(s, s′′) = 0 and hence w(k)dk(s, s′′) ≤ w(k)dk(s, s′) +
w(k)dk(s′, s′′). If s and s′′ di�er on k, then either s and s′ or s′ and s′′ have to
di�er on the same position. Hence w(k)dk(s, s′′) ≤ w(k)dk(s, s′)+w(k)dk(s′, s′′),
for each k. Together, this establishes the triangular equality:∑∞

k=1 w(k)dk(s, s′′) ≤
∑∞
k=1 w(k)dk(s, s′) +

∑∞
k=1 w(k)dk(s′, s′′). a

Remark. The Hamming distance is a special case of the family de�ned here.
For S ⊆ Rn, the Hamming distance dH is de�ned, cf. [28], by dH(s, s′) = |{i :
1 ≤ i ≤ n, si 6= s′i}|. This function is a member of the above family, namely dh
with strictly positive weights h(k) = 1 for 1 ≤ k ≤ n, h(k) = 2−k for k > n.

�3. Metrics for Formal Structures. The metrics de�ned above may be
indirectly applied to any set of structures that serves as semantics for a countable
language. In essence, what is required is simply an assignment of suitable weights
to formulas of the language. To illustrate the generality of the approach, we
initially take the following inclusive view on semantic valuation:

Definition. Let a valuation be any map ν : X ×D −→ V where X and V
are arbitrary sets, and D is countable. Refer to elements of X as structures,
to D as the descriptor, and to elements of V as values.
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A valuation ν assigns a value from V to every pair (x, ϕ) ∈ X ×D. Jointly, ν
and X thus constitute a V -valued semantics for the descriptor D.

Remark. The term descriptor is used here and below to emphasize the po-
tential lack of grammar in the set D. The descriptor may be a formal language,
but it is not required to be. In particular, the descriptor may be a strict subset
of a formal language, containing only some formulas that are judged to be of
special interest. This is exempli�ed in Section 4.5.

Two structures in X may be considered equivalent by ν, i.e., be assigned iden-
tical values for all ϕ ∈ D. To avoid that two non-identical, but semantically
equivalent, structures receive a distance of zero (and thus violate the identity of
indiscernibles requirement of a metric), metrics are de�ned over suitable quo-
tients:

Definition. Given a valuation ν : X×D −→ V and a subset D′ of D, denote
by XD′ the quotient of X under D′ equivalence, i.e., XD′ = {xD′ : x ∈ X}
with xD′ = {y ∈ X : ν(y, ϕ) = ν(x, ϕ) for all ϕ ∈ D′}.

When the descriptor D is clear from context, we write x for elements of XD.
We also write ν(x, ϕ) for ν(x, ϕ) when ϕ ∈ D.

Remark. Quotients are de�ned for subsets D′ of D in accordance with the
comment concerning the term descriptor above: For some structures, it may be
natural to de�ne a semantics for a complete formal language, L. However, if
only a subset D′ ⊆ L is deemed relevant in determining distance, it is natural to
focus on structures under D′ equivalence. The terminological usage is consistent
as the subset D′ is itself a descriptor for the restricted map ν|X×D′ .

Finally, we obtain a family of metrics on a quotient XD in the following
manner:

Definition. Let ν : X ×D −→ V be a valuation and ϕ1, ϕ2, ... an enumera-
tion of D. For all x,y ∈XD and all k ∈ N, let

dk(x,y) =

{
0 if ν(x, ϕk) = ν(y, ϕk), or if k > |D|
1 else

Call w : D −→ R>0 a weight function if it assigns a strictly positive weight
to each ϕ ∈ D such that

∑
ϕ∈D(w(ϕ)) <∞.

The function dw : XD ×XD −→ R is then de�ned by, for each x,y ∈XD

dw(x,y) =

|D|∑
k=1

w(ϕk)dk(x,y).

The set of such maps dw is denoted D(X,ν,D).

Proposition 2. Every dw ∈ D(X,ν,D) is a metric on XD.

Proof. That dw is a metric on XD is argued using Proposition 1: For each
x ∈ XD we de�ne a string sx of length |D| by sx,i = ν(x, ϕi). Let S = {sx :
x ∈ XD}. Then the map f : XD → S given by f(x) = sx is a bijection. Let
w′ : N → R>0 be given by w′(k) = w(ϕk) for all k ≤ |D| and w′(k) = 1

2k
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else, and let dw′ be the metric on S given by w′ cf. Proposition 1. Then
dw(x,y) = dw′(sx, sy) for all x, y ∈ X. Hence, dw is a metric on XD. a
Remark. The choice of descriptor a�ect both the coarseness of the spaceXD

as well as the metrics de�nable. We return to this point several times below.

�4. The Application to Pointed Kripke Models. To apply the metrics
to pointed Kripke models, we follow the above approach. The set X will be a
set of pointed Kripke models and D a set of modal logical formulas. Interpreting
the latter over the former using standard modal logical semantics gives rise to
a binary set of values, V , and a valuation function ν : X × D → V equal to
the classic interpretation of modal formulas on pointed Kripke models. In the
following, we consequently omit references to ν, writing D(X,D) for the family of
metrics D(X,ν,D).

4.1. Pointed Kripke Models, their Language and Logics. Let be given
a signature consisting of a countable, non-empty set of propositional atoms Φ
and a countable, non-empty set of operator indices, I. Call the signature
�nite when both Φ and I are �nite. The modal language L for Φ and I is
given by the BNF

ϕ := > | p | ¬ϕ | ϕ ∧ ϕ | �iϕ
with p ∈ Φ and i ∈ I. The language L is countable.
A Kripke model for Φ and I is a tuple M = (JMK , R, J·K) where
� JMK is a non-empty set of states;

� R : I → P(JMK2
) assigns to each i ∈ I an accessibility relation R(i);

� J·K : Φ→ P(JMK) is a valuation, assigning to each atom a set of states.

A pair (M, s) with s ∈ JMK is a pointed Kripke model. For the pointed
Kripke model (M, s), the shorter notation Ms is used. For R(i), we write Ri.
The modal language is evaluated over pointed Kripke models with standard

semantics:
Ms � p i� s ∈ JpK, for p ∈ Φ

Ms � ¬ϕ i� Ms 6� ϕ
Ms � ϕ ∧ ψ i� Ms � ϕ and Ms � ψ

Ms � �iϕ i� for all t, sRit implies Mt � ϕ

Throughout, when referring to a modal language L alongside a sets of pointed
Kripke models X, we tacitly assume that all models in X share the signature of
L. As usual, modal logics may be formulated over the language L. In this article,
we only make use of normal modal logics Λ over L,2 additionally assuming that
every Λ-consistent formula ϕ belongs to some maximally Λ-consistent set.

4.2. Descriptors for Pointed Kripke Models. As descriptors for pointed
Kripke models, we use sets of L-formulas. The contribution to the distance
between two models given by disagreeing on the truth value of some formula
ϕ ∈ L will simply be w(ϕ). To avoid unnecessary double counting, we will

2A modal logic is normal if it contains all propositional tautologies and the K axiom
�i(ϕ → ψ) → (�iϕ → �iψ), and is closed under modus ponens, uniform substitution, and
necessitation (generalization).
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usually pick our descriptors such that they do not contain logically equivalent
formulas.

Definition. Let L be a modal language. A descriptor is any set D ⊆ L.
The choice of descriptor determines which L-formulas are given non-zero weight

in the metric. Choosing, e.g,. the set of atomic propositions as descriptor will
result in a rather coarse perspective. In most of this paper, we will occupy our-
selves with descriptors that are not too coarse. We will be particularly interested
in descriptors that are rich enough to re�ect all L-expressible di�erences between
models from some set of interest:

Definition. Let X be a set of pointed Kripke models. The descriptor D ⊆ L
is L-representative over X if, for every ϕ ∈ L, there is a set {ψi}i∈I ⊆ D such
that any valuation of {ψi}i∈I will semantically entail either ϕ or ¬ϕ over X. I.e.:
For all ϕ ∈ L and all S ⊆ I, at most one of the sets {ψi : i ∈ I} ∪ {¬ψi : ψi ∈
I \ S} ∪ {ϕ} and {ψi : i ∈ I} ∪ {¬ψi : ψi ∈ I \ S} ∪ {¬ϕ} has a model in X.
If the set {ψi}i∈I can always be chosen �nite, we call D �nitely L-represen-

tative over X. Finally, for a logic Λ, call D Λ-representative if it is L-
representative over some spaceX of pointed Λ-models in which every Λ-consistent
set is satis�ed in some x ∈ X.

The main implication of a descriptor being representative is thatXD is identi-
cal toXL. This is stated formally in Lemma 3 below. WhenD is Λ-representative,
D thus o�ers the most �ne-grained perspective possible on any set of models X
for which Λ is sound. Both representative and non-representative descriptors are
exempli�ed in Section 4.5.

4.3. Modal Spaces. As stated in Section 3, we construct metrics on sets
of structures modulo some modal equivalence. The choice to use a syntactic
over a semantic quotient is motivated by general applicability: The notion of
language equivalence of structures is conceptually uniform across all possible
languages. Concepts of semantic equivalence, on the other hand, characterizing
structural identity relative to the language in question, may be highly variable
across frameworks.3 In our parlance, we follow [42] in referring to modal spaces:

Definition. With X a set of pointed Kripke models and D a descriptor, the
modal space XD is the set {xD : x ∈ X} with xD = {y ∈ X : ∀ϕ ∈ D, y �
ϕ i� x � ϕ}.
The subscript of xD is omitted when the descriptor is clear from context. In
this case boldface symbols x refer to members of XD while lightface x refers to
members of X.

The choice of descriptor in�uences the resulting modal space: XD may be a
more or less coarse partition of X, with two extremes: If the descriptor is L itself
(or, more economically, some L-representative set D, to avoid double counting)
the �nest partition is achieved: XL, the quotient of X under L-equivalence. For
the coarsest partition, choose {>} as descriptor: X{>} is simply {{X}}.

3Compare e.g. isomorphism as an identity concept for �rst-order languages with bisimu-
lation suited for standard modal languages and again with the many specialized versions of
bisimulation suited to non-standard modal languages. See also Example 8.
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8 DOMINIK KLEIN AND RASMUS K. RENDSVIG

We are mainly interested in modal spaces that retain the structure of X as
seen by a language L, i.e., XL. This does not entail that L is the only descriptor
of interest. Others are su�cient:

Lemma 3. If D ⊆ L is a L-representative descriptor for X, then XD is iden-
tical to XL, i.e., for all x, y ∈ X, y ∈ xD i� y ∈ xL.

Proof. We �rst show that y ∈ xD entails y ∈ xL. Assume y ∈ xD. To show
that y ∈ xL, we need to prove that for all ϕ ∈ L it holds that x � ϕ ⇔ y � ϕ.
We only show the left-to-right implication, the other direction being similar.
Assume x � ϕ. Let S = {ψ ∈ D : x � ψ}. By representativity, there is no
x′ ∈ X satisfying S ∪ {¬ψ : ψ ∈ D \ S} ∪ {¬ϕ}. Since y ∈ xD it satis�es
S ∪ {¬ψ : ψ ∈ D \ S} and hence also ϕ, i.e. y � ϕ.
Next we show that that y ∈ xL entails y ∈ xD . Assume y ∈ xL ∈ XL It

hence holds that x � ϕ⇔ y � ϕ for all ϕ ∈ L. In particular, x � ϕ⇔ y � ϕ for
all ϕ with ϕ ∈ D which implies that y ∈ xD. a

Remark. We do not generally assume a descriptor representative. When we
do, we state so. For several of our results, the assumption is not necessary.

Definition. Given the modal space XD, for a descriptor D ⊆ L, the truth
set of ϕ ∈ L in XD is [ϕ]D = {x ∈XD : ∀x ∈ x, x � ϕ}.

The subscript of [ϕ]D is again omitted when the descriptor is clear from context.

While the truth set is well-de�ned for any ϕ ∈ L and any XD and we always
have that [ϕ]D∩[¬ϕ]D = ∅, there are degenerate cases where [ϕ]D∪[¬ϕ]D 6= XD.
This can only occur if ϕ,¬ϕ 6∈ D and if there are x, y ∈ X with xD = yD but
x � ϕ, y � ¬ϕ. Note that when ϕ ∈ D it always holds that [ϕ]D ∪ [¬ϕ]D = XD.
Moreover, if D is L-representative over X, no degenerate cases occur: Then
[ϕ]D ∪ [¬ϕ]D = XD for all ϕ ∈ L. We write xD � ϕ when xD ∈ [ϕ]D.

4.4. Metrics on Modal Spaces. Finally, we obtain the family D(X,D) of
metrics on the D-modal space of a set of pointed Kripke models X:

Proposition 4. Let D be a descriptor and X a set of pointed Kripke models.
Let ν : XD ×D → {0, 1} be a valuation given by ν(x, ϕ) = 1 i� x ∈ [ϕ]D. Let
w : D → R>0 be a weight function. Then dw as de�ned on page 5 is a metric on
XD.

Proof. This follows immediately from Proposition 2 as ν is well-de�ned. a

Corollary 5. For any descriptor D, D(X,D) is a family of metrics on XD.

4.5. Examples. In constructing a metric dw ∈ D(X,D) for a modal space
XD, two parameters must be �xed: The descriptor and the weight function.
Jointly, these two parameters allow much freedom in picking a metric according
to desired properties. In this section, we provide three classes of examples: One
of non-representative descriptors, one of representative descriptors, and one of
representative descriptors on �nite sets. For the latter, we show Proposition 11
proving the metrics of Caridroit et al. on pointed Kripke models special cases of
our approach.
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4.5.1. Non-Representative Descriptors.

Example 6 (Hamming Distance on Partial Atom Valuation). Let L be a
modal language and X a set of pointed Kripke models for L. Let p1, p2, ...
be an enumeration of the atoms of L. Pick as descriptor D = {p1, ..., pn} ⊆ L
and weight function w satisfying w(pk) = 1 for all pk ∈ D. Then dw is a metric
on XD cf. Proposition 4. If X contains a model for each possible valuation
of p1, ..., pn, then the metric space (XD, dw) is isometric to the metric space of
strings of length n under the Hamming distance. For XD, pointed Kripke mod-
els are compared only by their valuation of the �rst n atoms. The space and the
underlying metric re�ects no modal structure.
If the set of atoms Φ of L is countably in�nite, then we cannot assign all atoms

equal weight: The sequence (w′(pn))n∈N would not give rise to a convergent
series, so w′ is not a weight function. Partitioning Φ into cells P1, P2, ... with
each Pk, k ∈ N, �nite but arbitrarily large, and assigning w′′(p) = ak

|Pk| for all

p ∈ Pk with ak the kth term of some convergent series does, however, give rise
to a weight function.

Example 7 (World Views and Situation Similarity). Consider an agent, a,
who only cares about her beliefs about some atom p and her beliefs about
the beliefs of another agent, b, about the same. Working in a doxastic logic
with operators Ba and Bb, agent a's set of interest may be described by D =
{Baϕ,Ba¬ϕ,¬Baϕ∧¬Ba¬ϕ} with ϕ ∈ {p,Bbp,Bb¬p}. Similarities in situations
(pointed Kripke models) from the viewpoint of a may then be represented by
using weight functions and their distances. E.g.: If a cares equally much about
nature and b's beliefs thereof, every element of D may be given equal weight;
If she cares less about b's beliefs, D may be split in two, with formulas that
contains Bb-operators given a strictly lower weight than those that do not.

4.5.2. Representative Descriptors.

Example 8 (Degrees of Bisimilarity). Contrary to our syntactic approach to
metric construction, a natural semantic approach rests on bisimulations. In par-
ticular, the notion of n-bisimularity may be used to de�ne a semantically based
metric on quotient spaces of pointed Kripke models where degrees of bisimilarity
translate to closeness in space�the more bisimilar, the closer:
Let X be a set of pointed Kripke models for which modal equivalence and

bisimilarity coincide4 and let -n relate x, y ∈ X i� x and y are n-bisimilar.
Then

dB(x,y) =

{
0 if x -n y for all n

1
n+1 if n is the least intenger such that x 6-n y

(1)

is a metric on XL.
5 We refer to dB as the n-bisimulation metric.

For X and L based on a �nite signature, the n-bisimulation metric is a special
case of the approach we suggest. I.e., for each set of pointed Kripke model X,

4That all models in X are image-�nite is a su�cient condition, cf. the Hennessy-Milner
Theorem. See e.g. [20] or [38].

5The metric is inspired by [37], de�ning a distance between theories of �rst-order logic using
quanti�er depth. We return to this in Section 5.4. A further bisimulation based metric is the
�n-Bisimulation-based Distance� of [23], which yields a pseudo-metric on sets of �nite, pointed
Kripke models, see also Example 10 below.
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there exists a descriptor D such that dB ∈ D(X,D). To see this, �rst recall
that each model in X has a characteristic formula up to n-bisimulation: For
each x ∈ X, there exists a ϕx,n ∈ L such that for all y ∈ X, y � ϕx,n i�
x -n y, cf. [38,48]. Given that both Φ and I are �nite, so is, for each n, the set
Dn = {ϕx,n : x ∈ X} ⊆ L. Pick the descriptor to be D =

⋃
n∈NDn. Then D is

L-representative for X, so XD is identical to XL, cf. Lemma 3.
Let the weight function b be given by

b(ϕ) = 1
2

(
1

n+1 −
1

n+2

)
for ϕ ∈ Dn.

Then db, de�ned by db(x,y) =
∑∞
k=0 b(ϕk)d(x,y), is a metric onXL, cf. Propo-

sition 4.
As models x and y will, for all n, either agree on all members of Dn or disagree

on exactly 2 (namely ϕn,x and ϕn,y) and as, for all k ≤ n, y � ϕn,x implies
y � ϕk,x, and for all k ≥ n, y 6� ϕn,x implies y 6� ϕk,x, we obtain that

db(x,y) =

{
0 if x -n y for all n∑∞
k=n0

2 · 1
2

(
1
k+1 −

1
k+2

)
= 1

n0+1 n0 = minn∈N{x 6-n y}

which is exactly dB .

Remark. We may pick the descriptor D to be K-representative, where K
is the minimal normal modal logic: Let X be some space of pointed K-models
models in which every K-consistent set is satis�ed in some x ∈ X and follow the
construction of D above. Then D is K-representative. Moreover, for every set
of models Y , the map f : YD → XD sending y ∈ YD to the unique x ∈ XD

with y � ϕ i� x � ϕ for all ϕ ∈ D is injective and distance preserving and thus
allows identifying YD with a subset of XD. Hence, the db constructed on X is
exactly dB on any set Y of L-models.

Remark. The construction given for encoding the n-bisimulation metric only
works when the set of atoms and number of modalities are both �nite: In case
either is in�nite, there is no metric in D(X,D) for a descriptor D ⊆ L that is
equivalent to the n-bisimulation metric, cf. Section 5.4.

Example 9 (Close to Home, Close to Heart). The distances dB and db from
the previous example do not re�ect all di�erences between models. For example,
if two models are not n-bisimilar due only to atomic disagreement n steps from
the designated state, then it does not matter on how many atoms or how many
worlds at distance n they disagree: Their distance will be 1

n+1 in all cases.
Likewise, no di�erences they exhibit beyond the nth step will in�uence their
distance: Only the �rst di�erence matters. I.e., the metric is extremal, in the
terminology of Sokolsky et al..

We may construct a metric which retains the feature of db that di�erences
further from the designated state weighs less than di�erences closer, but which,
in an aggregate manner, assigns a positive weight to every modally expressible
di�erence. In a slogan:

All and only modally expressible di�erence matters, but the further
you have to go to �nd it, the less it matters.
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We might further this requirement by demanding that the new metric be a
re�nement of the bisimulation metric. That is, disagreement at distance n from
the designated state should weigh heavier than all disagreements at distance n+1
or beyond combined. On a set of models X for language L with �nite signature,
a metric that lives up to the slogan may be de�ned as follows:
For descriptor, choose �rst for each equivalence class ϕX := {ψ ∈ L : X � ψ ↔

ϕ} a shallowest representative, i.e., a formula in ϕX which is of lowest modal
depth among the members of ϕX . Denote the chosen shallowest representative
of ϕX by ϕ and let D = {ϕ : ϕ ∈ L}.
Let {Dn}n∈N be a partition of D by modal depth: For n ∈ N, let Dn contain

the ϕ in D that are of modal depth n. Since there are only �nitely many
equivalence classes of formulas of modal depth n, each Dn is �nite. De�ne a
weight function c by

c(ϕ) = 1
|Dn|

1∏
k<n |Dk|

1
2n for ϕ ∈ Dn.

Then dc is a metric on XL.
The �rst term ensures that disagreement on any formula in Dn contributes

1∏
k<n |Dk|

1
2n to the distance between models. The second term ensures that the

summed weight of all formulas in Dj for j > n is less than or equal to the weight
of any Dn formula, even when |Dj | > |Dn|. The third term ensures that the
weights form a convergent series and that the inequality between disagreement
levels is strict: One disagreement on a single formula of modal depth n adds
more to the distance between two models than do disagreement on all formulas
of modal depth n+ 1 and above combined. Formally, for all n,

1

2n
1

|Dn|
1∏

k<n |Dk|
>

∞∑
m=n+1

1

2m
|Dm|
|Dm|

1∏
k<n |Dk|

.(2)

Given this features, the metric dc captures both aspects the slogan:

1. Given that every L-expressible property satis�able on X is given positive
weight, and that only disagreement on expressible properties contribute to
the distance between models, all and only modally expressible di�erences
matter.

2. That further distance from the designated world should imply less im-
portance of di�erence is captured as Equation (2) implies that for any
x, y, z ∈ X, if x and y are not n-modally equivalent but x and z are, then
dc(x,y) > dc(x, z).

4.5.3. Metrics on Finite Sets: Relations to Caridroit et al.

Example 10 (Metrics on Finite Sets). As a last example, consider the case
where X and L are such that XL is of �nite cardinality. This may happen when
X itself is �nite, as is explicitly assumed in [23] where Caridroit et al. de�ne their
six distances between �nite pointed KD45 Kripke models. It also happens in a
language with a single operator and a �nite set of atoms where the accessibility
relation in models is an equivalence relation. In these settings, for any metric
d on XL there is a metric dw ∈ D(X,D) equivalent with d up to linear shift.
Somewhat weaker than strict numerical equivalence, this entails that the spaces
(XL, d) and (XL, dw) are quasi-isometric to each other.
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Proposition 11. Let (XL, d) be a �nite metric modal space. Then there
exists a descriptor D ⊆ L �nitely representative over X , a metric dw ∈ D(X,D)

and some c ∈ R such that dw(xD,yD) = d(xL,yL) + c for all x 6= y ∈ XL. As
a consequence, (XD, dw) are (XL, d) quasi-isometric to each other.

Proof. Since XL is �nite, there is some ϕx ∈ L for each x ∈ XL such that
for all y ∈ X, if y � ϕx, then y ∈ x. Moreover, let ϕ{x,y} denote the formula
ϕx ∨ ϕy which holds true in z ∈ XL i� z = x or z = y. Let D = {ϕx : x ∈
XL} ∪ {ϕ{x,y} : x 6= y ∈ XL}. It follows that XD = XL, hence D is �nitely
representative over X.
Next, partition the �nite setXL×XL according to the metric d: Let S1, ..., Sk

be the unique partition of XL ×XL that satis�es, for all i, j ≤ k
1. If (x,x′) ∈ Si and (y,y′) ∈ Si, then d(x,x′) = d(y,y′), and
2. If (x,x′) ∈ Si and (y,y′) ∈ Sj for i < j, then d(x,x′) < d(y,y′).

For i ≤ k, let bi denote d(x,y) for any (x,y) ∈ Si. De�ne a weight function
w : D → R>0 by

w(ϕx) =
∑k
i=1

∑
(y,z)∈Si

x 66=y,z

1+bk−bi
4

w(ϕ{x,y}) = 2 · 1+bk−bi
4 for the i with (x,y) ∈ Si

Note that by symmetry, (x,y) ∈ Si implies (y,x) ∈ Si, thus w(ϕ{x,y}) is well-
de�ned. We get for each x that

w(ϕx) +
∑

y 6=x w(ϕ{x,y}) =
∑k
i=1

∑
(y,z)∈Si

x6∈{y,z}

1+bk−bi
4 +

∑k
i=1

∑
(y,z)∈Si

x∈{y,z}

1+bk−bi
4

=
∑k
i=1

∑
(y,z)∈Si

1+bk−bi
4

For simplicity, let a denote
∑k
i=1

∑
(y,z)∈Si

1+bk−bi
4 , the rightmost term of the

previous equation. Next, note that two models x and y di�er on exactly the
formulas ϕx, ϕy and all ϕ{x,z} and ϕ{y,z} for z 6= x,y. In particular,

dw(x,y) = w(ϕx) + w(ϕy) +
∑

z 6=x,y w(ϕ{x,z}) +
∑

z 6=x,y w(ϕ{y,z})

= w(ϕx) + w(ϕy) +
∑

z 6=x w(ϕ{x,z}) +
∑

z 6=y w(ϕ{y,z})− 2w(ϕ{x,y})

= 2a− 4 · 1+bk−bi
4

= 2a+ bi − 1− bk

where i is such that {x,y} ∈ Si. Denoting 2a − 1 − bk by c, we get that
dw(x,y) = d(x,y) + c whenever x 6= y. a

�5. Topological Properties. Given a set of pointed Kripke models X and
a descriptor D ⊆ L, Proposition 4 states that for any weight function w, dw is a
metric on the modal space XD, the quotient of X under D-equivalence. Hence
(XD, dw) is a metric space. Any such metric space induces a topological space
(XD, Tw) with a basis consisting of the open ε-balls of (XD, dw). That is, the
basis of the dw metric topology Tw on XD is {Bdw(x, ε) : x ∈ XD, ε > 0}
with Bdw(x, ε) = {y ∈ XD : dw(x,y) < ε}. In this section, we investigate the
topological properties of such spaces.
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Remark. Our main interest lies with modal logics, hence the focus. However,
many of the following results do not require speci�cs from modal logic or the
nature of pointed Kripke models, but may, mutatis mutandis, be applied more
generally. We do not elaborate on this point further.

5.1. Stone-like Topologies. In �xing a descriptor D for X, one also �xes
the family of metrics D(X,D). The members of D(X,D) vary in their numerical
metrical properties as is illustrated by the di�erent metrics given in Example 9.
Topologically, however, all members of D(X,D) are equivalent. To show this, we
will work with the following generalization of the Stone topology :

Definition. Let D be a descriptor for X. De�ne the Stone-like topology
on XD to be the topology TD given by the subbasis of all sets {x ∈XD : x � ϕ}
and {x ∈XD : x � ¬ϕ} for ϕ ∈ D.

Note that, as D need not be closed under conjunction, this subbasis is, in
general, not a basis of the topology. When D ⊆ L is L-representative over X,
XD is identical to XL, and the Stone-like topology TD on XD is a coarsening
of the Stone topology on XL given by the basis of sets {x ∈ XL : x � ϕ},
ϕ ∈ L. If D is �nitely L-representative over X then TD is identical to the Stone
topology on XL.
We can now state the promised proposition:

Proposition 12. The metric topology Tw of any metric dw ∈ D(X,D) on XD

is the Stone-like topology TD.

Proof. We recall that for topologies T and T ′ on some set X, if T ′ ⊇ T ,
then T ′ is said to be �ner than T and T to be coarser than T '. This is the
case i� for each x ∈ X and each basis element B ∈ T with x ∈ B, there exists a
B′ ∈ T ′ with x ∈ B′ ⊆ B, cf. [49, Lemma 13.3]. It hence su�ces to show that
for any dw ∈ D(X,D) the topology Tw is both coarser and �ner than TD.

We start by showing that Tw is �ner than TD: It su�ces to show the claim
for all elements of a subbasis of TD. Let x ∈ XD and let BD be a subbasis
element of TD which contains x. Then BD is of the form {y ∈ XD : y � ϕ}
or {y ∈ XD : y � ¬ϕ} for some ϕ ∈ D. Without loss of generality, we assume
the former. As x ∈ BD, x � ϕ. This formula ϕ is assigned a strictly positive
weight w(ϕ) in the metric dw. The open ball B(x, w(ϕ)) of radius w(ϕ) around
x is a basis element of Tw and contains x. Moreover, B(x, w(ϕ)) ⊆ BD. To see
this, assume y ∈ B(x, w(ϕ)), but y 6� ϕ. Then dw(x,y) ≥ w(ϕ), which implies
y 6∈ B(x,w(ϕ)), contrary to our assumption. Hence Tw is �ner than TD.

For the reverse direction, we show that TD is �ner than Tw: Let B be a basis
element of Tw which contains x. As B is a basis element, it is of the form
B(y, δ) for some δ > 0. Let ε = δ − dw(x,y). Note that ε > 0. Let ϕ1, ϕ2, ...

be an enumeration of D. Since
∑|D|
i=1 w(ϕi) < ∞, there is some n such that∑|D|

i=n w(ϕi) < ε. For j < n, let χj = ϕi if x � ϕj and ¬χj otherwise and let
χ =

∧
j<n χj . By construction, all z with z � χ agree with x on the truth values

of ϕ1, . . . , ϕn−1 and thus dw(x, z) < ε. By the triangular inequality, this implies
dw(y, z) < δ and hence {z : z � ϕ} ⊆ B. Furthermore, since TD is generated by
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14 DOMINIK KLEIN AND RASMUS K. RENDSVIG

a subbasis containing {x ∈ XD : x � ϕ} and {x ∈ XD : x � ¬ϕ} for ϕ ∈ D, we
have {z : z � ϕ} ∈ TD as desired. a
As for any set of models X and any descriptor D the set D(X,D) is non-empty,

we get:

Corollary 13. Any Stone-like topology TD on a space XD is metrizable.

5.2. Stone Spaces. The Stone topology is well-known, but typically de�ned
on the set of ultra�lters of a Boolean algebra, which it turns into a Stone

space: A totally disconnected, compact, Hausdor� topological space.6 The �rst
property goes hand-in-hand with an abundance of clopen sets, to which Section
5.3 is dedicated. Compactness has several implications used throughout: It
plays a key role in determining which sets are clopen, and in Section 6, it is
related to convergence. Finally, being Hausdor�, stating that any two points are
topologically distinguishable, entails that the limits of convergent sequences are
unique.
When equipping modal spaces with Stone-like topologies, Stone spaces often

result. That the resulting topological spaces are Hausdor� follows as each Stone-
like topology is metrizable, cf. the previous section. We show that the Stone-like
topology is also totally disconnected and identify su�cient conditions for its
compactness.

Proposition 14. For any descriptor D, the space (XD, TD) is totally discon-
nected.

Proof. Let x 6= y ∈XD. We must �nd open sets U, V with x ∈ U and y ∈ Y
such that U ∩ V = ∅ and U ∪ V = XD. Since x 6= y, there exists some ϕ ∈ D
such that x � ϕ while y 6� ϕ or vice versa. The sets A = {z ∈ XD : z � ϕ} and
A = {z′ ∈ XD : z � ¬ϕ} are both open in the Stone-like topology, A ∩ A = ∅,
and A ∪A = XD. As x ∈ A and y ∈ A or vice versa, this shows that the space
(XD, TD) is totally disconnected. a

The space (XD, TD), D ⊆ L, is moreover compact when two requirements
are satis�ed: First, there exists a logic Λ sound with respect to X which is
(logically) compact: An arbitrary set A ⊆ L of formulas is Λ-consistent i�
every �nite subset of A is. Many modal logics are compact, including every basic
modal logic, cf. e.g. [15], but not all are: Examples of non-compact modal logics
include logics with a common knowledge operator [30, 7.3] or with Kleene star as
a PDL constructor [20, 4.8]. As second requirement, we must assume the set X
su�ciently rich in model diversity. In short, we require that every Λ-consistent
subset of D has a model in X.

Definition. Let D ⊆ L be a descriptor and Λ be sound with respect to X.
Then X is Λ-saturated with respect to D if for all subsets A,A′ ⊆ D such
that the set B = A ∪ {¬ϕ : ϕ ∈ A′} is Λ-consistent, there exists a model x in X
such that x � ψ for all ψ ∈ B. If D is also L-representative over X, then X is
Λ-complete.

6A topological space is compact if every open cover has a �nite open subcover, Hausdor�

if any two distinct points have disjoint open neighborhoods, and totally disconnected if any
two distinct points have disjoint open neighborhoods that jointly cover the entire space.
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For logical compactness, Λ-saturation is a su�cient richness conditions, cf. the
proposition below. To ease notation, we will write D for D ∪ {¬ϕ : ϕ ∈ D} in
the remainder of this paper.

Proposition 15. If Λ is compact and X is Λ-saturated with respect to D ⊆ L,
then the space (XD, TD) is compact.

Proof. Note that a basis of the topology TD is given by the family of all
sets {x ∈ XD : x � χ} with χ of the form χ = ψ1 ∧ . . . ∧ ψn where ψi ∈ D
for all i ≤ n. To show that (XD, TD) is compact, it su�ces to show that every
open cover consisting of basic open sets has a �nite subcover. Suppose for a
contradiction that {{x ∈XD : x � χi} : i ∈ I} is a cover of XD that contains no
�nite subcover. This implies that every �nite subset of {¬χi : i ∈ I} is satis�ed
in some x ∈ XD and hence consistent, i.e., the set {¬χi : i ∈ I} is �nitely Λ-
consistent. By compactness of Λ, the set {¬χi : i ∈ I} is thus also Λ-consistent.
Hence, by saturation, there is an x ∈ XD such that x � ¬χi for all i ∈ I.
But then x cannot be in {x ∈ XD : x � χi} for any i ∈ I, contradicting the
assumption that {{x ∈XD : x � χi} : i ∈ I} is a cover of X. a
Propositions 14 and 15 jointly yield the following:

Corollary 16. Let Λ ⊆ L be a compact modal logic sound and complete with
respect to the class of pointed Kripke models C. Then (CL, TL) is a Stone space.

Proof. The statement follows immediately the propositions of this section
when CL is ensured to be a set using Scott's trick [57]. a

Remark. When D is L-representative for X and XD is Λ-saturated, one
obtains a very natural space. Such a space contains a (unique) point satisfying
each maximal Λ-consistent set of formulas. It is thus homeomorphic to the space
of all complete Λ-theories under the Stone topology of L. Such spaces have been
widely studied, see e.g. [37,59]. When we call such spaces Λ-complete, it re�ects
that the joint requirement ensures that the logic Λ is complete with respect to
the set X, but that the obligation of su�ciency lies on the set X to be inclusive
enough for Λ, not on Λ to be restrictive enough for X.

5.2.1. Compact Subspaces. As the intersection of an arbitrary family of closed
sets is itself a closed set and as every closed subspace of a compact space is
compact [49, Theorems 17.1 and 26.2], we obtain the following, making use of
the fact that {y ∈ XD : y � ϕ} = XD\{y ∈ XD : y � ¬ϕ} is closed for any
ϕ ∈ D.

Corollary 17. Let A ⊆ D and let Y = {y ∈ XD : y � ϕ for all ϕ ∈ A}. If
(XD, TD) is compact, then YD is compact under the subspace topology.

Moreover, the subspace topology on YD induced by the Stone-like topology on
XD is again the Stone-like topology T ′D on YD.

5.3. Open, Closed and Clopen Sets in Stone-like Topologies. In this
section, we characterize the open, closed and clopen sets of Stone-like topologies
relative to the set of formulas L. With this, we hope to paint a picture of the
structure of Stone-like topologies, helpful in understanding closed subspaces and
limit points.
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16 DOMINIK KLEIN AND RASMUS K. RENDSVIG

By de�nition, the Stone-like topology TD is generated by the subbasis SD =
{[ϕ]D, [¬ϕ]D : ϕ ∈ D}. All subbasis elements are clearly clopen: If U is of the
form [ϕ]D for some ϕ ∈ D, then the complement of U is the set [¬ϕ]D, which
again is a subbasis element. Hence both [ϕ]D and [¬ϕ]D are clopen. For the
converse, we introduce the following:

Definition. The Stone-like topology TD, D ⊆ L, on the modal space XD

re�ects the language L if for every set Y ⊆XD, Y is clopen in TD i� Y = [ϕ]D
for some ϕ ∈ L.

We obtain the following:

Proposition 18. Let Λ be a logic sound with respect to the set of pointed
Kripke models X. If Λ is compact and D is Λ-representative, then [ϕ]D is clopen
in TD for every ϕ ∈ L. If (XD, TD) is also topologically compact, then TD re�ects
L.

Proof. To show that under the assumptions, [ϕ]D is clopen in TD, for every
ϕ ∈ L, we �rst show the claim for the special case where X is such that every
Λ-consistent set Σ is satis�ed in some x ∈ X. By Proposition 12, it su�ces
to show that {x ∈ XD : x � ϕ} is open for ϕ ∈ L\D. Fix such ϕ. As D is Λ-
representative, XD is identical toXL, cf. Lemma 3. Hence [ϕ] := {x ∈ XD : x �
ϕ} is well-de�ned. To see that [ϕ] is open, pick x ∈ [ϕ] arbitrarily. We �nd an
open set U with x ∈ U ⊆ [ϕ]: Let Dx = {ψ ∈ D : x � ψ}. As witnessed by x,
the set Dx∪{ϕ} is Λ-consistent. As D is Λ-representative, Dx thus semantically
entails ϕ over X. Hence, no model y ∈ X satis�es Dx ∪ {¬ϕ}. By the choice of
X, XD is Λ-saturated with respect to D. This implies that the set Dx ∪ {¬ϕ}
is Λ-inconsistent. By the compactness of Λ, a �nite subset F of Dx ∪ {¬ϕ} is
inconsistent. W.l.o.g. we can assume that ¬ϕ ∈ F . Inconsistency of F implies
that ψ1 ∧ . . . ∧ ψn → ϕ is a theorem of Λ. On the semantic level, this translates
to
⋂
i≤n[ψi] ⊆ [ϕ]. As each [ψi] is open,

⋂
i≤n[ψi] is an open neighborhood of x

contained in [ϕ].
Next, we prove the general case. Let X be any set of Λ-models and let Y
be such that every Λ-consistent set Σ is satis�ed in some y ∈ Y . Then the
function f : XD → YD that sends x ∈ XD to the unique x ∈ YD with x �
ϕ ⇔ y � ϕ for all ϕ ∈ L is a continuous map from (XD, TD) to (YD, TD) with
f−1 ({y ∈ YD : y � ϕ}) = {x ∈ XD : x � ϕ}. By the �rst part, {y ∈ YD : y �
ϕ} is clopen in YD. As the continuous pre-image of clopen sets is clopen, this
shows that {x ∈XD : x � ϕ} is clopen.
We turn to the second claim, that if (XD, TD) is also topologically compact,

then TD re�ects L. It su�ces to show that if O ⊆XD is clopen, then O is of the
form [ϕ]D for some ϕ ∈ L. So assume O is clopen. As O and its complement
O are open, there are formulas ψi, χi ∈ D for i ∈ N such that O =

⋃
i∈N[ψi]D

and O =
⋃
i∈N[χi]D. Hence {[ϕi]D : i ∈ N} ∪ {[ψi]D : i ∈ N} is an open cover

of XD. By topological compactness, it contains a �nite subcover. I.e., there
are I1, I2 ⊂ N �nite such that XD =

⋃
i∈I1 [ψi]D ∪

⋃
i∈I2 [ψi]D. In particular,

O =
⋃
i∈I1 [ψi]D = [

∨
i∈I1 ψi]D which is what we had to show. a

By Proposition 15, two immediate consequences are:
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Corollary 19. Let Λ be sound with respect to the set of pointed Kripke mod-
els X. If Λ is compact, D is Λ-representative and X is Λ-saturated with respect
to D, then TD re�ects L.

Corollary 20. Let Λ ⊆ L be a compact modal logic sound and complete with
respect to some class of pointed Kripke models C. Then TL re�ects L.

Compactness is essential to Proposition 18's characterization of clopen sets.
Without the assumption of compactness, the clopen sets of Stone topologies do
not re�ect the underlying logic:

Proposition 21. Let XD be Λ-saturated with respect to D and D be Λ-
representative, but Λ not compact. Then there exists a set U clopen in TD that
is not of the form [ϕ]D for any ϕ ∈ L.

Proof. As Λ is not compact, there exists a Λ-inconsistent set of formulas
S = {χi : i ∈ N} for which every �nite subset is Λ-consistent. For simplicity of
notation, de�ne ϕi := ¬χi. As XD is Λ-saturated with respect to D, {[ϕi]}i∈N
is an open cover of XD that does not contain a �nite subcover. For i ∈ N let ρi
be the formula ϕi∧

∧
k<i ¬ϕk. In particular, we have that i) [ρi]∩ [ρj ] = ∅ for all

i 6= j and ii)
⋃
i∈N[ρi] =

⋃
i∈N[ϕi] = XD, i.e., {[ρi]}i∈N is a disjoint cover of XD.

We further have that [ρi] ⊆ [ϕi]; hence {[ρi]}i∈N cannot contain a �nite subcover
{[ρi]}i∈I of XD, as the corresponding {[ϕi]}i∈I would form a �nite cover. In
particular, in�nitely many [ρi] are non-empty. Without loss of generality, assume
that all [ρi] are non-empty. For all S ⊆ N, the set US =

⋃
i∈S [ρi] is open. As

all [ρi] are mutually disjoint, the complement of US is
⋃
i 6∈S [ρi] which is also

open; hence US is clopen. Using again that all [ρi] are mutually disjoint and
non-empty, we have that US 6= US′ whenever S 6= S′. Hence, {US : S ⊆ N} is
an uncountable family of clopen sets. As L is countable, there must be some
element of {US : S ⊆ N} which is not of the form [ϕ] for any ϕ ∈ L. a
Working with a logical language thus imposes a natural structure through

Stone-like topologies. This is especially so for suitable descriptors in the compact
setting. In that case, the clopen sets are the ones characterizable as truth sets
of a logical formula; the open, but not closed, sets are those characterizable
by only by in�nitary disjunction; and the closed, but not open, sets are those
characterizable only by in�nitary conjunction.

5.4. Relations to the n-Bisimulation Topology. In Example 8, we showed
that D(X,L) includes the semantically based n-bisimulation metric dB for modal
languages with �nite signature. The metric topology induced by the n-bisimulation
metric is referred to as the n-bisimulation topology, TB . A basis for this
topology is given by all subsets of XL of the form

Bxn = {y ∈XL : y -n x}

for x ∈XL and n ∈ N.
By Proposition 12, Example 8 and the fact that the set D constructed in the

latter is �nitely L-representative over X, we obtain the following:

Corollary 22. If L has �nite signature, then the n-bisimulation topology TB
is the Stone(-like) topology TL.
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This is not the case in general:

Proposition 23. If L is based on an in�nite set of atoms, then the n-bisimula-
tion topology TB is strictly �ner than the Stone(-like) topology TL on XL.

Proof. To see that the Stone(-like) topology is not as �ne as the n-bisimulation
topology, consider the basis element Bx0 of the latter, containing exactly those
elements y such that y and x are 0-bisimilar, i.e., share the same atomic valua-
tion. Clearly, x ∈ Bx0. There is no formula ϕ for which the Stone basis element
B = {z ∈ X : z � ϕ} contains x and is contained in Bx0: This would require
that ϕ implied every atom or its negation, requiring the strength of an in�nitary
conjunction.
For the inclusion of the Stone(-like) topology in the n-bisimulation topology,

consider any ϕ ∈ L and the corresponding Stone basis element
B = {y ∈ X : y � ϕ}. Assume x ∈ B. Let the modal depth of ϕ be n.
Then for every z ∈ Bxn, z � ϕ. Hence x ∈ Bxn ⊆ B. a
The discrepancy in induced topologies results as the n-bisimulation metric, in

the in�nite case, introduces distinctions that are not �nitely expressible in the
language: If there are in�nitely many atoms, there does not exist a characteristic
formula ϕx,n satis�ed only by models n-bisimilar with x.
Non-compactness. Even ifXL is compact in the Stone(-like) topology, it need
not be compact in the n-bisimulation topology: Let L be based on an in�nite
set of atoms Φ and X a set of pointed models Λ-saturated with respect to L for
some compact logic Λ. Then XL is compact in the Stone(-like) topology. It is
not compact in the n-bisimulation topology: {Bx0 : x ∈ X} is an open cover of
XL which contains no �nite subcover.
Relations to Goranko's metric. Corollary 22 and Proposition 23 jointly relate
our metrics to the metric introduced by Goranko in [37] on �rst-order theories.
The straight-forward alteration of that metric to suit a modal space XL is

dg(x,y) =

{
0 if x = y

1
n+1 if n is the least intenger such that n(x) 6= n(y)

where n(x) is the set of formulas of modal depth n satis�ed by x.
The induced topology of this metric is exactly the n-bisimulation topology.

Hence, for languages with �nite signature, every metric in the family D(X,L)

induces the same topology as dg, but the induced topologies di�er on languages
with in�nitely many atoms.
Goranko notes that his topological approach to prove relative completeness

may, with a bit of work, be applied in a modal logical setting.7 Replacing, in our
approach, the modal space XL with the quotient space of X under bisimulation
would, we venture to claim, supply the stepping stone. We omit a detour into
the details in favor of working with Stone-like topologies.

�6. Convergence and Limit Points. We next turn to dynamic aspects
of Stone(-like) topologies. In particular, we focus on the nature of convergent

7See �6, especially the �nal paragraph.
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sequences in Stone(-like) topologies and such topologies' isolated points, i.e.,
points no sequence can approach gradually.

6.1. Convergence. Recall that, with (X, T ) a topological space, a sequence
of points x1, x2, ... fromX is said to converge to the point x ∈ X in the topology
T i� for every open set U ∈ T containing x, there exists some N ∈ N such that
for all n ≥ N , xn ∈ U . We denote a sequence x1, x2, ... by (xn)n∈N, but often
omit the outer subscript.
For a Stone-like topology TD on a modal space XD, this standard notion of

convergence captures the geometrical intuition of a sequence gradually approach-
ing a unique �nal destination:

Proposition 24. Let (XD, TD) be a modal space with its Stone-like topology.
Then any sequence of points (xn) of XD converges to at most one point.

Proof. As every Stone-like topology is metrizable, cf. Proposition 12, it is
also Hausdor�. This implies the desired, cf. e.g. [49, Thm. 17.10]. a
If the sequence (xn) converges to x, we are thus justi�ed in writing (xn) → x
and referring to x as the limit of (xn). In general, it is not ensured that a
limit exists, a theme we return to in discussing compactness and the common
knowledge operator below.
Convergence in Stone-like topologies also satis�es a natural logical intuition,

namely that a sequence and its limit should eventually agree on every formula
of the language used to describe them. This intuition is captured by the notion
of logical convergence, introduced in [42]. For a modal space XD, it is de�ned
as follows: A sequence of points x1,x2, ... logically converges to x in XD i�
for every ψ ∈ {ϕ,¬ϕ : ϕ ∈ D} for which x � ψ, there exists some N ∈ N such
that xn � ψ, for all n ≥ N .
The following proposition identi�es a tight relationship between (topological)

convergence, Stone-like topologies and logical convergence:

Proposition 25. Let XD be a modal space and T a topology on XD. Then
the following are equivalent:

1. A sequence x1,x2, ... of points from XD converges to x in (XD, T ) if, and
only if, x1,x2, ... logically converges to x in XD.

2. T is the Stone-like topology TD on XD.

Proof. 2⇒ 1 : This is shown, mutatis mutandis, in [42, Prop. 2].
1⇒ 2 : We �rst show that under the assumption of 1., the topology T contains
TD, by showing that T contains the subbasis of TD: I.e., for all ϕ ∈ D, [ϕ], [¬ϕ] ∈
T . We only show the claim for [ϕ], the proof for[¬ϕ] being equivalent. We show
[ϕ] open in T by showing it compliment, [¬ϕ], closed in T , which is done by
showing that [¬ϕ] contains all its limit points: Assume the sequence (xi) ⊆ [¬ϕ]
converges to x in (XD, T ). For each i ∈ N, we have xi � ¬ϕ. As convergence
is assumed to imply logical convergence, then also x � ¬ϕ. Hence x ∈ [¬ϕ], so
[¬ϕ] is closed in T . Hence TD ⊆ T .
Secondly, we show the reverse inclusion: That TD contains T . This is done by

showing that for every element x of any open set U of T there is a basis element
B of TD such that x ∈ B ⊆ U . Let U ∈ T and let x ∈ U . Enumerate the set
{ψ ∈ D : x � ψ} as ψ1, ψ2, . . . , and consider all conjunctions of �nite pre�xes ψ1,
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ψ1 ∧ψ2, ψ1 ∧ψ2 ∧ψ3, . . . of this enumeration. If for some k, [ψ1 ∧ · · · ∧ψk] ⊆ U ,
then B = [ψ1∧· · ·∧ψk] is the desired TD basis element as x ∈ [ψ1∧· · ·∧ψk] ⊆ U .
If there exists no k ∈ N such that [ψ1 ∧ · · · ∧ ψk] ⊆ U , then for each m ∈ N, we
can pick an xm such that xm ∈ [ψ1 ∧ · · · ∧ψm] \U . The sequence (xm)m∈N then
logically converges to x. Hence, by assumption, it also converges topologically
to x in T . Now, for each m ∈ N, xm is in U c, the compliment of U . However,
x /∈ U c. Hence, U c is not closed in T , so U in not open in T . This contradicts our
assumption, rendering the case that there is no k ∈ N such that [ψ1∧· · ·∧ψk] ⊆ U
impossible. Hence TD ⊆ T . a
In [42], the satisfaction of point 1 was used as motivation for working with

Stone-like topologies. Proposition 25 shows that this choice of topology was
necessary, if one wants the logical intuition satis�ed. Moreover, it provides a
third way of inducing Stone-like topologies, di�erent from inducing them from a
metric or a basis, namely through sequential convergence.8

From the properties of Stone-like topologies, we immediately obtain general
results concerning convergence. Proposition 26 provides a selection of these.
As its proof shows, these properties are neither novel nor speci�c to Stone-like
topologies.
Recall that a for a topological space (X, T ), a point x in X is a limit point

of the set A ⊆ X i� for every open neighborhood U ∈ T containing x, there is
some point y ∈ U \ {x} contained in A. In contrast, a point x is an isolated

point of A if there exists an open neighborhood U of x that contains no (other)
points from A. Hence, x is isolated in X i� {x} is open in T . Lastly, we call x
in X a limit point of the sequence (xn)n∈N if for each open neighborhood U
the set {n ∈ N : xn ∈ U} is in�nite.

Proposition 26. Let (XD, TD) be a modal space with it's Stone-like topology.
Then:

1. A point in (XD, TD) is a limit point of A ⊆XD i� it is not isolated in A.
2. A sequence (xn) in A ⊆ XD converges to an isolated point x in A ⊆ XD

i� for some N , for all k > N , xk = x.
3. A point x is in the closure of A ⊆ XD i� there exists a sequence (xn) in
A which converges to x.

4. A point x ∈ XD is a limit point of the sequence (xn) i� there exists a
subsequence of (xn) converging to x.

5. Let f : XD → XD. Then f is continuous i� if xn → x, then f(xn) →
f(x).

6. TD is compact i� every sequence in XD has a convergent subsequence i�
every in�nite subset A ⊆XD has a limit point.

Proof. We omit the proof for the simple points 1, 2 and 4. For 3, see [49,
Lemma 21.2]; for 5, see [49, Theorem 21.3]; and for 6, see [49, Theorem 28.2]. a
It is beyond the scope of this paper to seek further conditions for convergence.

However, motivated by Proposition 26.2, we present results on the existence of
isolated points. In particular, Proposition 26.2 may be of interest in information
dynamics: If, e.g., the goal of a given protocol holds only at isolated points, then

8For more on this approach to topologies, see the historical overview in [35].
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the protocol will either be successful in �nite time or not at all. This is related
to common knowledge in Section 6.2.2 below.

6.2. Isolated Points. For Stone-like topologies, the existence of isolated
points is tightly connected with the expressive power of the underlying descrip-
tor. Say that a point x ∈XD is characterizable by D in XD if there exists a
�nite set of formulas A ⊆ D such that for all y ∈ XD, if y � ϕ for all ϕ ∈ A,
then y =x. We obtain the following:

Proposition 27. Let (XD, TD) be a modal space with it's Stone-like topology.
Then x ∈XD is an isolated point of XD i� x is characterizable by D in XD.

Proof. Left-to-right : Assume {x} is open in TD. Since {x} is a singleton,
it necessarily is contained in the basis of TD. Hence, it is a �nite intersection
of subbasic elements, i.e., {x} =

⋂
ϕ∈A[ϕ] for some �nite A ⊆ D. Then A

characterizes x. Right-to-left : Let A be the set characterizing x in XD. For
each ϕ ∈ A, [ϕ] is open in TD by de�nition. As A is �nite, also

⋂
ϕ∈A[ϕ] is open.

Hence {x} ∈ TD . a
6.2.1. Perfect Spaces. Recall that a topological space (X, T ) is called perfect

if it contains no isolated points. In perfect spaces, every point is the limit of
some sequence, and may hence be approximated arbitrarily well. The property
is enjoyed by several natural classes of modal spaces under their Stone(-like)
topologies, cf. Corollary 29. Proposition 27 implies that a space of models is
perfect i� no points x ∈XD is D-characterizable. If X is sound and Λ-saturated
with respect to some logic Λ and descriptor D, we get the following:

Proposition 28. Let D ⊆ L, let Λ be a logic and let X a set of Λ-models
Λ-saturated with respect to D. Then (XD, TD) is perfect i� for every �nite Λ-
consistent set A ⊆ D there is some ψ ∈ D such that both ψ ∧

∧
χ∈A χ and

¬ψ ∧
∧
χ∈A χ are Λ-consistent.

Proof. For the left to right direction, assume that (XD, TD) is perfect. Let
A ⊆ {ϕ,¬ϕ : ϕ ∈ D} be �nite and Λ-consistent. We have to show that there is
some ψ ∈ D such that ψ ∧

∧
χ∈A χ and ¬ψ ∧

∧
χ∈A χ are both Λ-consistent. As

XD is Λ-saturated with respect to D, there is some x ∈ XD with x �
∧
χ∈A χ.

As (XD, TD) is perfect, we have that
⋂
ϕ∈A[ϕ]D ) {x}, i.e. there is some

y 6= x ∈
⋂
ϕ∈A[ϕ]D. By construction, this implies that there is some ψ ∈ D

such that x � ψ and y 6� ψ or vice versa. Either way, x and y witness that
ψ∧
∧
χ∈A χ and ¬ψ∧

∧
χ∈A χ are both Λ-consistent. For the right to left direction

pick x ∈ XD. We show that x is not an isolated point. By Proposition 27, it
su�ces to show that x is not characterizable by D in XD. For a contradiction,
assume that there is some �nite set A ⊆ D characterizing x. Hence, there is some
ψ ∈ D such that both ψ ∧

∧
χ∈A χ and ¬ψ ∧

∧
χ∈A χ are Λ-consistent. As X is

Λ-saturated, there are some y, z ∈ X with y � ψ∧
∧
χ∈A χ and z � ¬ψ∧

∧
χ∈A χ.

As ψ ∈ D we have that y 6= z. In particular x 6= y or x 6= z, contradicting the
assumption that A characterizes x. a
Note that if D is closed under negations and disjunctions, we could relax the

assumption to stating that for any Λ-consistent ϕ ∈ D there is some ψ ∈ D such
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that ϕ∧ψ and ϕ∧¬ψ are both Λ-consistent. This property is enjoyed by many
classic modal logics. In particular, we have:

Corollary 29. For the following modal logics, (XL, TL) is perfect if X is
saturated with respect to L: i) the normal modal logic K with an in�nite set of
atoms, as well as ii) KD, iii) KD45n for n ≥ 2 and iv) S5n for n ≥ 2.

Apart from the relation to convergence, it may be noted that any perfect space
that is additionally compact is homeomorphic to the Cantor set (as every totally
disconnected compact metric space is; see e.g. [47, Ch. 12]).

6.2.2. Imperfect Spaces. It is not di�cult to �nd Λ-complete spaces (XL, TL)
that contain isolated points. We provide two examples. The �rst shows that,
when working in a language with �nite signature, then e.g. for the minimal
normal modal logic K, the K-complete space will have an abundance of isolated
points.

Proposition 30. Let L have �nite signature (Φ, I) and let Λ be such that∨
i∈I ♦i> is not a theorem. If (XL, TL) is Λ-complete, then it contains an iso-

lated point. If the logic is exactly K, then it contains in�nitely many isolated
points.

Proof. Since
∨
i∈I ♦i> is not a theorem, there is some an atomic valuation

ϕ such that the formula ϕ ∧
∧
i∈I �i⊥ is consistent. This formula completely

characterizes the point x in XL for which every pointed Kripke model x ∈ x
has the valuation encoded by ϕ at the designated state and all relations from
that state are empty. This point is clearly isolated. If Λ is exactly K, there
are for each n ∈ N only �nitely many modally di�erent models satisfying ψn =∧
i∈I
(∧

m<n ♦
m
i > ∧ ¬♦ni >

)
, hence [ψn] is �nite in XL. This, together with the

fact that (XL, TL) is Hausdor� implies that any x ∈ [ψn] is characterizable by
L making x isolated, cf. Proposition 27. a
For the second example, we turn to epistemic logic with common knowledge.

Let (Φ, I) be a �nite signature with I = {1, ..., n,G}. Let EQ be the class of
pointed Kripke models for (Φ, I) where for each i ∈ I\{G}, R(i) is an equiv-
alence relation and R(G) the transitive closure of

⋃
i≤nR(i). Let L be the

language based on (Φ, I) and S5C the appropriate multi-agent epistemic logic
with common knowledge axioms.9 Then:

Proposition 31. The set of isolated points in (EQL, TL) is in�nite.

Proof. This follows from Proposition 27 as every �nite model of EQ is char-
acterizable by a single formula cf. [12, Lemma 3.4].10 a
Proposition 31 may be of interest in relation to discussions concerning the

attainability of common knowledge, cf. [33, 34, 39]: If a set of agents is seeking
to attain common knowledge of the atomic valuation ϕ of the designated state,
then their target point x will be characterized by �Gϕ, and hence be isolated
by Proposition 27. Hence, by Proposition 26.2, common knowledge must be

9See e.g. [12,33]. The resulting logic is non-compact; see e.g. [30].
10See also [6, Prop. 2.4] for a similar result and [62] for a concise presentation of related

material.
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attained in �nite time if it is to be attained in the limit. In a nutshell, common
knowledge cannot be attained gradually.11 Taking L to be the set of all L
formulas not containing the common knowledge operator �G, then EQL will be
identical to EQL, but x will not be isolated in (EQL, TL). Hence, if the common
knowledge operator is not re�ected in the topology, the agents may converge to
their target in the limit without converging in �nite time. There is an interplay
here between expressibility, non-compactness, topology and formal epistemology
which we hope to address in later work.

6.2.3. Discrete Spaces. Finally, we note that the opposite extreme of perfect
spaces are also realizable: A topological space is called discrete when every
point is isolated.

Proposition 32. Let L be the mono-modal language over a �nite atom set Φ
and let X be S5-complete. Then (XL, TL) is discrete.

Proof. The set XL is �nite. As it is also metrizable, it is discrete. a

�7. Maps and Model Transformations. In dynamic epistemic logic, dy-
namics are introduced by transitioning between pointed Kripke models from
some set X using a possibly partial map f : X → X often referred to as a model
transformer. Many model transformers have been suggested in the literature,
the most well-known being truthful public announcement [50], !ϕ, which maps x
to x|ϕ, restricting JxK to the truth set of ϕ. Truthful public announcements are a
special case of a rich class of model transformers de�nable through a particular
graph operation, product update, of pointed Kripke models with action models.
Due to their generality, popularity and wide applicability, we focus on the general
class of maps on modal spaces induced by action models applied using product
update.
An especially general version of action models is multi-pointed action models

with postconditions. Postconditions allow action states in an action model to
change the valuation of atoms [16,29], thereby also allowing the representation of
information about ontic change. Permitting for multiple points allows the actual
action state to depend on the pointed Kripke model to be transformed, thus
generalizing single-pointed action models. Multi-pointed action models are also
referred to as epistemic programs in [6], and allow encodings akin to knowledge-
based programs [33] of interpreted systems, cf. [55]. Allowing for multiple points
renders the class of action models Turing complete [21], even when restricting to
postcondition free product models. [43].

7.1. Action Models and Product Update. A multi-pointed action

model is a tuple ΣΓ = (JΣK,R, pre, post,Γ) where JΣK is a non-empty set of ac-

tions. The map R : I → P(JΣK2
) assigns an accessibility relation Ri on JΣK to

each agent i ∈ I. The map pre : JΣK→ L assigns to each action a precondition,

11In fact, this hold true for any common knowledge the agents may hope to attain, not
only about the full valuation: Proposition 25 implies that common knowledge about some ψ,
if reached at the limit, will already be attained in �nite time whenever 2Gψ ∈ D or D is
S5C-representative.
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and the map post : JΣK→ L assigns to each action a postcondition,12 which
must be > or a conjunctive clause13 over Φ. Finally, Γ ⊆ JΣK is a non-empty set
of designated actions.
To obtain well-behaved total maps on modal spaces, we must invoke a set of

mild, but non-standard, requirements: Let X be a set of pointed Kripke models.
Call ΣΓ precondition �nite if the set {pre(σ) ∈ L : σ ∈ JΣK} is �nite (up
to logical equivalence). This is needed for our proof of continuity. Call ΣΓ

exhaustive over X if for all x ∈ X, there is a σ ∈ Γ such that x � pre(σ).
This conditions ensures that the action model ΣΓ is universally applicable on X.
Finally, call ΣΓ deterministic over X if X � pre(σ) ∧ pre(σ′) → ⊥ for any
two preconditions σ, σ′ ∈ Γ, σ 6= σ′. Together with exhaustivity, this condition
ensures that the product of ΣΓ and any Ms ∈ X is a (single-)pointed Kripke
model, i.e., that the actual state after the updates is well-de�ned and unique.
Let ΣΓ be exhaustive and deterministic over X and let Ms ∈ X. Then the

product update ofMs with ΣΓ, denotedMs⊗ΣΓ, is the pointed Kripke model
(JMΣK , R′, J·K′, s′) with

JMΣK = {(s, σ) ∈ JMK× JΣK : Ms � pre(σ)}
R′ = {((s, σ), (t, τ)) : (s, t) ∈ Ri and (σ, τ) ∈ Ri} , for all i ∈ I

JpK′ = {(s, σ) :s ∈ JpK, post(σ) 2 ¬p} ∪ {(s, σ) :post(σ) � p} , for all p ∈ Φ

s′ = (s, σ) : σ ∈ Γ and Ms � pre(σ)

Call ΣΓ closing over X if for all x ∈ X, x ⊗ ΣΓ ∈ X. With exhaustivity and
deterministicality, this ensures that · ⊗ ΣΓ induces a well-de�ned total map on
X.

7.2. Clean Maps on Modal Spaces. If two pointed Kripke models x and
y are L-modally equivalent, then so are x⊗ΣΓ and y⊗ΣΓ for any product model
ΣΓ, cf. [6].14 Hence, action models applied using product update yield natural
maps · ⊗ ΣΓ on modal spaces XL. The class of maps of interest in the present
is the following:

Definition. Let XL be a modal space. A map f : XL → XL is called
clean if there exists a precondition �nite, multi-pointed action model ΣΓ closing,
deterministic and exhaustive over X such that f(x) = y i� x ⊗ ΣΓ = y for all
x ∈XL.

Remark. Replacing XL with XD for an arbitrary descriptor D ⊆ L in the
de�nition of clean maps will not in general result in well-de�ned maps · ⊗ ΣΓ

on XD. E.g.: Let p and q be atoms of L and let D = {p,¬p}. Let ΣΓ have
JΣK = Γ = {σ, τ} with pre(σ) = q, pre(τ) = ¬q and post(σ) = >, post(τ) = p.
Then for x � p∧q and y � p∧¬q we have y ∈ x ∈XD, but y⊗ΣΓ /∈ x⊗ΣΓ. For
L-representative descriptors D over X, clean maps are, of course, well-de�ned.

12The precondition of σ specify the conditions under which σ is executable, while its post-
condition dictates the posterior values of a �nite, possibly empty, set of atoms.

13I.e. a conjunction of literals, where a literal is an atom or a negated atom.
14Baltag and Moss [6] show that multi-pointed action models applied using product update

preserve bisimulation, which in turn implies that they preserve modal equivalence.
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Below, we show that clean maps are continuous with respect to the Stone(-like)
topology on XL.

Remark. By Proposition 12 and Lemma 3, the following analysis equally
applies to the Stone(-like) topology on XD for any descriptor D that is L-
representative over X.

In general, the same clean map may be induced by several di�erent action
models. In showing clean maps continuous, we will make use of the following:

Lemma 33. Let f : XL →XL be a clean map based on ΣΓ. Then there exists
a precondition �nite, multi-pointed action model Σ′Γ′ deterministic over X that
also induces f such that for all σ, σ′ ∈ JΣ′K, either � pre(σ) ∧ pre(σ′) → ⊥ or
pre(σ) = pre(σ′).

Proof. Assume we are given any precondition �nite, multi-pointed action
model ΣΓ deterministic over X generating f . We construct an equivalent action
model, Σ′Γ′, with the desired property.
For the preconditions, note that for every �nite set of formulas S = {ϕ1 . . . ϕn}

there is some �nite set formulas S′ = {ψ1, . . . , ψm} with the properties that any
ψi 6= ψj ∈ S′ are mutually inconsistent and that for each ϕ ∈ S there is some
J(ϕ) ⊆ S′ such that `

∨
ψ∈J(ϕ) ψ ↔ ϕ. One suitable candidate for such a set S′

is {
∧
k≤n χk : χk ∈ {ϕk,¬ϕk}}: The disjunction of all conjunctions with χk = ϕk

is equivalent with ϕk.
By assumption, S = {pre(σ) : σ ∈ JΣK} is �nite. Let S′ and J(ϕ) be as above.

Construct Σ′Γ′ as follows: For every σ ∈ JΣK and every ψ ∈ J(pre(σ)), the set
JΣ′K contains a state eσ,ψ with pre(e{σ,ψ}) = ψ and post(e{σ,ψ}) = post(σ). Let

R′ be given by (eσ,ψ, eσ
′,ψ′) ∈ R′ i� (σ, σ′) ∈ R. Finally, let Γ′ = {e{σ,ψ} : σ ∈ Γ}.

The resulting multi-pointed action model Σ′Γ′ is again precondition �nite and
deterministic over X while satisfying that for all σ, σ′ ∈ JΣ′K, either � pre(σ) ∧
pre(σ′)→ ⊥ or � pre(σ)↔ pre(σ′). Moreover, for any x ∈ X, the models x⊗ΣΓ

and x⊗Σ′Γ′ are bisimilar witnessed by the relation connecting (s, σ) ∈ Jx⊗ ΣΓK
and (s′, eσ

′,ψ) ∈ Jx⊗ Σ′Γ′K i� s = s′ and σ = σ′. Hence, the maps f , f ′ : XL →
XL de�ned by x 7→ x⊗ ΣΓ and x 7→ x⊗ Σ′

Γ′ are identical. a
7.3. Continuity of Clean Maps. We show that the metrics introduced

earlier square well with respect to the analysis of dynamics induced by clean
maps by showing the latter continuous in the induced topology:

Proposition 34. Any clean map f : XL →XL is uniformly continuous with
respect to the metric topology generated by any dw ∈ D(X,D) where D is �nitely
L-representative with respect to X.

In the proof, we make use of the following lemma:

Lemma 35. Let (XL, dw) be a metric space, dw ∈ D(X,D) for D �nitely L-
representative with respect to X. Then

1. For every ε > 0, there are formulas χ1, . . . , χl ∈ L such that every x ∈XL
satis�es some χi, and whenever x � χi and z � χi for some i ≤ l, then
dw(y, z) < ε.
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2. For every ϕ ∈ L, there is a δ such that for all x ∈ XL, if x � ϕ and
dw(x,y) < δ, then y � ϕ.

Proof of Lemma 35. For 1., note that there is some n > 0 for which∑∞
k=n w(ϕk) < ε. Let J1, ..., J2n−1 be an enumeration of the subsets of {1, ..., n−

1}. For each i ∈ {1, ..., 2n−1} let the formula χi be
∧
j∈Ji ϕj ∧

∧
j 6∈Ji ¬ϕj . Then

each x ∈ XL must satisfy some χi with i ≤ 2n−1. Moreover, whenever y � χi
and z � χi, dw(y, z) =

∑∞
k=1 w(ϕk)dk(y, z) =

∑∞
k=n w(ϕk)dk(y, z) < ε. For

2., let ϕ ∈ L be given. Since D is �nitely L-representative with respect to X,
there is {ψi}i∈I ⊆ D �nite such that for all sets S = {ψi}i∈J ∪ {¬ψi}i∈I\J with
J ⊆ I either ϕ or ¬ϕ is entailed by S in X. Then δ := mini∈I w(ψi) yields the
desired. a
Proof of Proposition 34. We show that f is uniformly continuous, using

the ε-δ formulation of continuity.
Assume that ε > 0 is given. We have to �nd some δ > 0 such that for all

x,y ∈ XL dw(x,y) < δ implies dw(f(x),f(y)) < ε. By Lemma 35.1, there
exist χ1, . . . , χl such that f(x) � χi and f(y) � χi implies dw(f(x),f(y)) < ε
and for every x ∈ XL there is some i ≤ l with f(x) � χi. We use χ1, . . . , χl to
�nd a suitable δ:

Claim: There is a function δ : L → (0,∞) such that for any ϕ ∈ L, if f(x) � ϕ
and dw(x,y) < δ(ϕ), then f(y) � ϕ.

Clearly, setting δ = min{δ(χi) : i ≤ l} yields a δ with the desired property.
Hence the proof is completed by a proof of the claim. The claim is shown
by constructing the function δ : L → (0,∞). This construction will proceed
by induction over the complexity of ϕ. To begin with, �x a precondition �nite,
multi-pointed action model ΣΓ closing, deterministic and exhaustive over X such
that f(x) = y i� x ⊗ ΣΓ = y. To be explicit, the function δ : L → (0,∞) we
construct depends on this action model. More precisely, δ depends on the set
{pre(σ) : σ ∈ JΣK}. The below construction of δ is a simultaneous induction over
all multi-pointed action models that are closing, deterministic and exhaustive
over X with set of preconditions exactly {pre(σ) : σ ∈ JΣK}. By Lemma 33,
we can assume that for all σ, σ′ ∈ JΣK it holds that pre(σ) = pre(σ′) or `
pre(σ) ∧ pre(σ′) → ⊥. By working with an extended language that contains
¬,∧,∨,2i and ♦i as primitives, we can assume, without loss of generality that
all negations in ϕ immediately precede atoms.

If ϕ is an atom or negated atom: By Lemma 35.2, there exists for any σ ∈ JΣK
some δσ such that whenever x � pre(σ) and dw(x,y) < δσ we also have that
y � pre(σ). Likewise, there is some δ0 such that whenever x � ϕ and dw(x,y) <
δ0 we also have that y � ϕ. By assumption, the set {pre(σ) : σ ∈ JΣK} is �nite.
Let S = {δ0} ∪ {δσ : σ ∈ JΣK}. We can thus set δ(ϕ) = min(S). To see that
this δ is as desired, assume f(x) � ϕ. Let x = Ms ∈ x. There is a unique
σ ∈ Γ in the deterministic, multi-pointed action model (Σ,Γ) such that (s, σ) is
the designated state of x ⊗ ΣΓ. In particular, we have that x � pre(σ). By our
choice of δ(ϕ), we get that dw(x,y) < δ(ϕ) implies y � pre(σ). For y = Nt ∈ y,
we thus have that (t, σ) is the designated state of Nt ⊗ ΣΓ. Moreover, we have
x � ϕ⇔ y � ϕ. Together, these imply that f(Nt) � ϕ, i.e. f(y) � ϕ.
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If ϕ is ϕ1 ∧ ϕ2, set δ(ϕ) = min(δ(ϕ1), δ(ϕ2) ) To show that this is as desired,
assume f(x) � ϕ1 ∧ ϕ2. We thus have f(x) � ϕ1 and f(x) � ϕ2. By induction,
this implies that whenever dw(x,y) < δ(ϕ), we have f(y) � ϕ1 and f(y) � ϕ2

and hence f(y) � ϕ1 ∧ ϕ2.

If ϕ is ϕ1 ∨ ϕ2, set δ(ϕ) = min(δ(ϕ1), δ(ϕ2) ) To show that this is as desired,
assume f(x) � ϕ1 ∨ ϕ2. We thus have f(x) � ϕ1 or f(x) � ϕ2. By induction,
this implies that whenever dw(x,y) < δ(ϕ) we have f(y) � ϕ1 or f(y) � ϕ2 and
hence f(y) � ϕ1 ∨ ϕ2.

If ϕ is ♦rϕ1: By Lemma 35.1, there are χ1, . . . , χl such that every x ∈ XL
satis�es some χi and whenever z � χi and z′ � χi for some i ≤ l we have
dw(z, z′) < δ(ϕ1).
Now, let F = {♦r(pre(σ) ∧ χi) : σ ∈ JΣK , i ≤ l} ∪ {pre(σ) : σ ∈ JΣK}. By

assumption, F is �nite. By Lemma 35.2, for each ψ ∈ F there is some δψ such
that x � ψ and dw(x,y) < δψ implies y � ψ. Set δ(ϕ) = min{δψ : ψ ∈ F}.
To show that this is as desired, assume f(x) � ♦rϕ1 and let y be such that

dw(x,y) < δ(ϕ). We have to show that f(y) � ♦rϕ1. Let x = Ms ∈ x and
let the designated state of x ⊗ ΣΓ be (s, σ). Since x ⊗ ΣΓ � ♦rϕ1, there is
some (s′, σ′) in Jx⊗ ΣΓK with (s, σ)Rr(s

′, σ′). In particular x � ♦r(pre(σ′)∧χi)
for σ′ ∈ JΣK and some i ≤ l. Thus also y � ♦r(pre(σ′) ∧ χi). Hence, for
y = Nt ∈ y, there is some t′∈ JyK accessible from y's designated state t that
satis�es pre(σ′) ∧ χi. By determinacy and the fact that � pre(σ) ∧ pre(σ′)→ ⊥
whenever pre(σ) 6= pre(σ′), there is a unique σ̃ ∈ Γ with pre(σ̃) = pre(σ′). Let
Γ′ = Γ\{σ̃}∪{σ}. Then, ΣΓ′ is a precondition �nite, multi-pointed action model
deterministic over X. Let f ′ be the model transformer induced by ΣΓ′. As f ′

has the same set {pre(σ) : σ ∈ JΣK} as f , our induction hypothesis applies to
f ′. Consider the models Ms′ and Nt′. We have that Ms′ � χi and Nt

′ � χi
jointly imply dw(Ms′,Nt′) < δ(ϕ1) which, in turn, implies that f ′(Ms′) � ϕ1

i� f ′(Nt′) � ϕ1. In particular, we obtain that Jy ⊗ ΣΓK , (t′, σ′) � ϕ1. Since
(t, σ)Rr(t

′, σ′) this implies that f(y) � ♦rϕ1.

If ϕ is �rϕ1: The construction is similar to the previous case. We only elab-
orate on the relevant di�erences. Again, there are some χ1, . . . , χl such that
every x ∈ XL satis�es some χi and whenever z � χi and z′ � χi for some i ≤ l
we have dw(z, z′) < δ(ϕ1).
Now, let R = {pre(σ) ∧ χi : σ ∈ JΣK , i ≤ l} and let F = {�r(

∨
ψ∈J ψ) : J ⊆

R} ∪ {pre(σ) : σ ∈ JΣK}. Again, F is �nite and for each ψ ∈ F there is some δψ
such that x � ψ and dw(x,y) < δψ implies y � ψ. Set δ(ϕ) = min{δψ : ψ ∈ F}.
To show that this is as desired, assume f(x) � �rϕ1 and let y be such

that dw(x,y) < δ(ϕ). We have to show that f(y) � �rϕ1. Let Ms ∈ x
and Nt ∈ y, let (t, σ) be the designated state of Nt ⊗ ΣΓ and assume there
is some (t′, σ′) in JNt⊗ ΣΓK with (t, σ)Rr(t

′, σ′). We have to show that ϕ1

holds at JNt⊗ ΣΓK , (t′, σ′). To this end, note that by construction, t′ satis�es
pre(σ′) ∧ χi, for some i ≤ l. By the choice of δ(ϕ), there is some s′ ∈ JMK
with sRrs

′ that also satis�es pre(σ′) ∧ χi. Hence (s′, σ′) is in JMs⊗ ΣΓK and
(s, σ)Rr(s

′, σ′). By assumption we have JMs⊗ ΣΓK , (s′, σ′) � ϕ1 and by an ar-
gument similar to the last case we get JNt⊗ ΣΓK , (t′, σ′) � ϕ1, which is what we
had to show. Hence f(y) � �rϕ1. a
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Corollary 36. Any clean map f : XL → XL is continuous with respect to
the Stone(-like) topology TL.

With Proposition 34, we have provided the foundation for understanding
widely used dynamic epistemic logic operations on sets of pointed Kripke models
as dynamical systems. As mentioned in the introduction, we refer to [11�14,42,
55, 56] for broader motivations for this perspective and to [42] for initial results
applying the approach.
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CHARACTERIZATIONS OF REDUCTION LAW EXISTENCE

RASMUS K. RENDSVIG

Abstract. A core methodology in dynamic epistemic logic is to prove completeness of

a dynamic logic by reducing it to a static logic already known to be complete. The

reduction is obtained by adding reduction laws to the static logic as axioms. This paper

establishes two characterization theorems for reduction law existence of dynamic operators

in arbitrary logics with Boolean base. The cases covered are compact and non-compact

logics. The characterizing features of reducible maps are topological, presented relative to

the Stone topology. A short discussion of applications and relations to dynamic epistemic

logic follows the results.

�1. Preliminaries. Let L be a recursively de�ned, at most countable lan-
guage closed under negation (if ϕ ∈ L, then ¬ϕ ∈ L) and conjunction (if ϕ,ψ ∈ L,
then ϕ∧ψ ∈ L). If the grammar of L allows for quanti�ers, then identify L with
its set of sentences. Let Λ ⊆ L be a logic containing the axioms of classical
logic, closed under modus ponens. Let C(Λ) be the set of complete theories in L
extending Λ, and assume that for every Λ-consitent ϕ ∈ L, for some T ∈ C(Λ),
ϕ ∈ T . Then the Stone topology S(L) is de�ned on C(Λ) by the basis of clopen
sets B(L) = {[ϕ] : ϕ ∈ L} where [ϕ] = {T ∈ C(Λ): ϕ ∈ T}.
A logic Λ is compact if every Λ-inconsistent set of formulas has a �nite Λ-

inconsistent subset. The following lemma, central to the results, is shown in [7]:

Lemma 1. The logic Λ is compact if, and only if, for any A ⊆ C(Λ), A is

clopen in S(Λ) i� there exists a ϕ ∈ L with A = [ϕ].

Treat C(Λ) as a semantics for L for which the satisfaction relation � ful�lls that
T � ϕ i� ϕ ∈ T . It is assumed that � is de�nable by a set of recursive clauses.
The relation is extended to accommodate a dynamic operator: Let f be a map on
C(Λ). Let Lf be the language obtained when adding closure under the monadic
operator 〈f〉 to the generating grammar of L (i.e., if ϕ ∈ Lf , then 〈f〉ϕ ∈ Lf ).
Let �f be the satisfaction relation between C(Λ) and Lf obtained by applying
the clauses of � mutatis mutandis to Lf , together with the following: For all
ϕ ∈ Lf , T �f 〈f〉ϕ i� f(T ) �f ϕ. For all ϕ ∈ Lf , let JϕK = {T ∈ C(Λ): T �f ϕ}.
The dynamic language Lf is said to be reducible to L if for every ϕf ∈ Lf ,
there exists a ψ ∈ L such that for all T ∈ C(Λ), T �f ϕf ↔ ψ.

�2. Results. The following su�ciency condition for continuity is immediate:

Proposition 1. For any Λ and any map f on C(Λ), if Lf is reducible to L,
then f is continuous in S(L).
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Proof. Assume Lf is reducible to L and let [ϕ] ∈ B(L). Then f−1([ϕ]) is
open in S(Λ): By de�nition, f−1([ϕ]) = J〈f〉ϕK. By reducibility, there exists a
ψ ∈ L such that C(Λ) �f 〈f〉ϕ↔ ψ. Hence f−1([ϕ]) = {T ∈ C(Λ): T � ψ} = [ψ],
which is a basis element of S(L). a
For compact logics, reducibility is also a necessary condition for continuity:

Proposition 2. If Λ is compact, then for any map f on C(Λ), if f is contin-

uous in S(L), then Lf is reducible to L.

Proof. Assume Λ compact and f continuous. Then Lf may be shown re-
ducible to L by induction on the complexity of ϕf . Where the main logical
symbol of ϕf is not 〈f〉, the argument is straightforward. Where the main
symbol of ϕf is 〈f〉, let χ ∈ Lf and assume there exists a ψ ∈ L for which
C(Λ) �f χ ↔ ψ. Where χ ∈ L, this assumption is trivially satis�ed; where
χ ∈ Lf\L, the assumption serves as induction hypothesis. In either case, the
reduction argument is as follows: Let ϕf = 〈f〉χ. Then J〈f〉χK = f−1(JχK).
By assumption, JχK = [ψ] for some ψ ∈ L. As [ψ] is clopen, so is f−1(JχK) by
continuity. Hence, by Lemma 1, there exists a ψ′ ∈ L with [ψ′] = f−1(JχK),
yielding the desired C(Λ) �f 〈f〉χ↔ ψ′. a
Compactness, moreover, is a necessary condition for the characterization of

reducibility in terms of continuity:

Proposition 3. If Λ is non-compact, then there exists a map f on C(Λ) con-

tinuous in S(L) for which Lf is not reducible to L.

Proof. Assume Λ is non-compact. By Lemma 1, there exists a clopen set U
not identical to [ψ] for any ψ ∈ L. The set U is a countably in�nite union of
basis elements {[ϕi]}i∈N. Pick any [ϕn] ⊆ U . Then f surjectively mapping U to
[ϕn] and with f(x) = x for all x ∈ C(Λ)\U is well-de�ned and continuous. Then
U is J〈f〉ϕnK, di�erent from [ψ] for all ψ ∈ L. For every ψ ∈ L, there thus exists
a T ∈ C(Λ) such that T � ¬ψ ∧ 〈f〉ϕn. Hence, Lf cannot be reduced to L. a
As a corollary to these three propositions, it follows that compactness charac-

terizes when continuity characterizes reducibility:

Theorem 1. The following are equivalent:

1. The logic Λ is compact.

2. For any map f on C(Λ), f is continuous in S(L) i� Lf is reducible to L.

Open is what strengthening of continuity characterizes reducibility for non-
compact logics. One option is the following, requiring that the preimage of any
basis element is again a basis element: Call a map f on C(Λ) con�ned in L if
for every ϕ ∈ L, there exists a ψ ∈ L such that f−1([ϕ]) = [ψ].

Proposition 4. For any Λ and any map f on C(Λ), if f is con�ned in L,
then Lf is reducible to L.

Proof. The proof is similar to that of Proposition 2. Where the main symbol
of ϕf is 〈f〉, let χ ∈ Lf and assume there exists a ψ ∈ L for which C(Λ) �f

χ ↔ ψ. Where χ ∈ L, this assumption is trivially satis�ed; where χ ∈ Lf\L,
the assumption serves as induction hypothesis. In either case, the reduction
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argument is as follows: Let ϕf = 〈f〉χ. Then J〈f〉χK = f−1(JχK). By assumption,
JχK = [ϕ] for some ϕ ∈ L. From f−1(JχK) = f−1([ϕ]), conclude by con�nedness
the existence of a ψ ∈ L for which f−1([ϕ]) = [ψ]. This yields the desired
C(Λ) �f 〈f〉χ↔ ψ. a

Every con�ned map is clearly continuous, but the converse may fail in the
non-compact case: The map in the proof of Proposition 3 is exemplary. The
argument further shows every non-con�ned map irreducible: For ϕ ∈ L, any
continuous preimage of the clopen set [ϕ] is either a clopen set [ψ], ψ ∈ L, or a
clopen set U not identical to [ψ] for any ψ ∈ L. If the latter never obtains, the
map is con�ned. If it does, then it is irreducible. Hence the following:

Theorem 2. The following are equivalent:

1. The logic Λ is non-compact.

2. For any map f on C(Λ), f is con�ned in L i� Lf is reducible to L.

�3. Discussion. The results have, for a concise presentation, been stated
in terms of theories, following [5]. In simple steps, they are applicable to the
standard semantic setting of dynamic epistemic logic [2, 3, 4]: With S a set of
structures of interest for which some Λ ⊆ L is sound and complete, let SL be
the quotient space of S under L-equivalence. Each equivalence class in SL may
then be identi�ed with the unique theory in C(Λ) which its structures satisfy.
Hence, if a map on S preserves L-equivalence (as e.g. by product update does,
through bisimulation preservation [1]), it may be identi�ed with the map it
induces on SL and, by extension, with a map on C(Λ). This allows for the
results' application in the semantic realm.
A core approach in dynamic epistemic logic is to prove completeness through

reduction. In [8], Plaza introduced the method: Given a static logic Λ ⊆ L
sound and complete with respect to a class of models S, adding to Λ as axioms
a set of sound reduction laws {〈f〉ϕi ↔ ψi}i∈I allowing the elimination of the
dynamic operator 〈f〉 by iterated application establishes completeness of the
extended, dynamic logic Λf ⊆ Lf with respect to S. That Lf reduces to L
through reduction laws is typically shown using a translation and a complexity
measure, yielding a concrete axiom system (see e.g [2, 4]). The present results
implies the existence of suitable reduction laws from continuity (con�nedness).
Have reduction laws been elusive, their existence may instill hope; have reduction
laws been sought to draw conclusions concerning expressivity or decidability of
the dynamic case from the properties of the static, this may now be done on
a non-constructive basis. Conversely, discontinuity implies the impossibility of
reduction, which e.g. entails that transitive closure on Kripke models is non-
reducible: A simple argument using the e.g. the n-bisimulation metric of [7]
shows that operation discontinuous.
Finally, the existence of reduction laws for a map always implies its continu-

ity in the Stone topology. Hence, the abundance of reduction systems in the
literature may be taken to show continuity of the invoked operations. This, in
turn, entails that they may be analyzed as topological dynamical systems, cf. the
approach in [6, 7]. For motivations for such an endeavor, see [3, 6].
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