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Figure 1. Block diagram of L1-controller, piecewise constant type. 
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Abstract— In some situations the closed-loop system obtained 

by L1 adaptive control is equivalent to linear systems. The 

architectures of these systems are investigated and compared 

with internal model control and the input observer architecture. 

The analysis is focused on aerospace application. An effort has 

been made to understand and describe what fundamental 

control characteristic of flying applications that make L1 

adaptive controllers suitable for the task. 

I. INTRODUCTION 

L1 adaptive control [1] was developed with aerospace 
control in mind and has been found to be suitable for flying 
applications [2]. Traditional adaptive schemes such as 
MRAC [3] can give large transients and slow convergence 
[4]. In L1 adaptive control fast adaptation is achieved while 
robust stability to bounded plant parameter changes is 
claimed. Even though large adaptation gains create large and 
rapidly varying internal signals, the L1 adaptive controller 
output is limited in amplitude and frequency, since a low-
pass filter directly at the output, is used to make the 
controller act within the control channel bandwidth [5]. 

This work is part of a feasibility study of adaptive control 
for winged aircraft and missiles [6]. The ultimate goal is to 
address the question whether adaptive control can add value 
to products that SAAB develops today or in the future. 

The study has shown that flight control systems with 
good performance can indeed be obtained by L1 adaptive 
control, but also that some L1 adaptive controllers are linear 
systems with a special architecture. Comparisons with 
internal model control, input observer control and state 
feedback give useful insights. One criticism against L1 
adaptive control is that it uses high adaptive gains. The 
analysis gives insight into the choice and implication of 
gains. 

Analysis and evaluation of L1 controllers are performed 
in the area which the adaptive parameter projection bounds 
are not active, since then the linear mapping holds. This is 
the parameter area in which the controller normally operates. 
In [7], L1 output feedback alternatives are analyzed and 
mapped to linear time invariant controllers, in this paper 
similar analysis for piecewise constant types of L1 state 
feedback controllers is made. 

The main contribution of this work is the insight that the 
L1 adaptive controller of piecewise constant type generates a 
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control signal which can be seen as a modification to a 
multivariable controller using state feedback with integral 
action. Comparisons are also made to disturbance observers 
and it is seen that these types of controllers use the nominal 
dynamics inverse while L1 controllers use the inverse of the 
desired dynamics. Doing this analysis and finding a 
controller that is equivalent to an L1 adaptive controller has 
a value for industries such as SAAB when online 
implementation is designed. The vague “sample rate of the 
available CPU” mentioned in [1] would give problems when 
prioritizing update rates in real-time software. Knowledge 
that the resulting inverse is done up to a frequency that is 
proportional to the sample rate will be helpful when 
choosing a control algorithm update rate. Industry is also 
served by the insight that since L1 adaptive controllers of 
this type are linear time invariant, there are a lot of methods 
that could end up with the same controller. However, using 
designs from L1 adaptive methodology points out a suitable 
set of aerospace controllers with a straightforward and 
structured method. 

The paper is organized as follows. Initially the design of 
a piecewise constant L1 controller is given. This controller is 
analyzed and alternative views of the controller are given. 
Control signal generation is compared for state feedback 
control with integral action and an L1 controller of piecewise 
constant type. Transfer functions are analyzed as controllers 
designed and applied to a fighter jet. 

II. PIECEWISE CONSTANT L1 CONTROLLER 

A piecewise constant L1 controller (detailed in [1]) is 
defined as in Fig. 1. This controller uses a State predictor, an 
Adaptation law and a Control law according to: 

State predictor: 
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Figure 3. Disturbance observer acting on plant P(s). 
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Figure 2. L1 controller with replaced state predictor. 
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argument iTs effectuates zero order sample and hold at 
sampling time intervals Ts using index i. 

Control law: 
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System state x and state predictor x̂  are vectors of equal 

size (Fig. 1). Am sets the desired reference dynamics. It could 
be given by Am = A-BmL where A is the nominal linearized 
plant dynamics and L corresponds to a linear state feedback. 
C is a matrix that gives the output vector y, a linear 
combination of states that will be controlled to follow the 
equally sized, demand vector r. Bm is given by the nominal 
plant input, called the matched input matrix, from control 
signal u which has the same size as y and r. An unmatched 

input matrix Bum is created as the null-space of T

m
B  (solving 

the equation 0
um

T

m
BB ), while keeping the square matrix 

 
umm

BB  of full rank. 

For each element in the control input u there is a matched 

element in ̂ , called 1
̂ . Unmatched elements 2

̂  are 

created so that the size of ̂  matches the total number of 

states. Hm(s) is the reference transfer function from the 
matched input, that is simply how the outputs are affected by 
the inputs. Hum(s) is the reference transfer function from 
unmatched inputs, which is how the outputs are affected in 
input directions that are orthogonal to the directions defined 
by Bm. This design of creating one term in the control signal 
u by taking the estimated unmatched error and feed it 

through the inverse of the matched transfer function )(
1

sH
m

  

and then the unmatched transfer function )(sH
um

, creates a 

way to compensate for unmatched disturbances. This is not 
in any way unique for L1 control; the matched together with 
unmatched compensation could be used in other types of 
control designs. 

KD(s) is in its simplest form a diagonal matrix K times an 
integrator so D(s)=1/s. In the control law Kg can be chosen 

as the steady state gain 111
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mmmg
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will, in steady state, couple one reference signal to one 
output signal by a unity gain. 

III. COMPARISON TO DISTURBANCE OBSERVER 

In [7] and [8] it is shown that as L1 adaptive gain Γ go to 
infinity for continuous time controllers and as sampling times 
Ts go to zero for piecewise constant controllers, there is an 
equivalent linear time invariant controller. If the adaptive 
law only uses linear parameter estimates, one example being 

 )()(ˆ)(ˆ txtxPBt
T

  of [1], and no projector operators 

are active, this equivalent controller exists. Since the state 
predictor and adaptive law in this limit becomes the inverse 
of a dynamic system, another interpretation of how the 
controller works can be made. That is to estimate a 

disturbance at the plant input by inverting the reference 
dynamics and then compensate for this disturbance by 
subtracting it from the plant input. Alternative equivalent 
structures will also make it possible to compare the L1 
controller to other linear control design methods. 

An L1 equivalent controller in Fig. 2 could be compared 
to a disturbance observer in Fig 3 ([9], [10] and [11]). The 

two have many common features. An input disturbance ̂  is 

estimated and a filter C(s) attenuates the high frequency 
content to the control signal u. There are modifications to 
these types of controllers; for example the reference r does 
not have to pass through C(s). 

Even if Fig. 2 shows similarities between the L1 
controller and the input observer there are several issues that 
do not appear in Fig. 2 compared with the more detailed 
block diagram in Fig. 1 which also shows the state error 

xxx  ˆ~ . An important result for L1 adaptive control is that 
x
~  goes to zero with increasing adaptation gains. The block 

diagram in Fig. 1 is also useful because the reference model 
can be augmented with actuator saturation and other 
nonlinearities. These features are lost by reducing the block 
diagram to Fig. 2 based on the assumption of linearity. 

It is important to note that in the L1 equivalent controller 
the plant inversion is made based on the reference system. In 
a disturbance observer the nominal plant dynamics is 
inverted. 

The Youla parameter Q(s) [12] of a disturbance observer 

is: 
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where )(ˆ sP  is the nominal plant dynamics. 

For L1 adaptive control of piecewise constant type, the 

Youla parameter Q(s) is: 
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Figure 4. Low pass filter C(s) replaced by KD(s) and linear state feedback 

added to the plant. 

or expressed in KD(s): 
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where )(ˆ sP  is the plant nominal dynamics and )(
1

sH
m

  is the 

reference system inverse. 

The two methods become equal if the reference system 
inverse of the L1 equivalent controller is set to the nominal 
plant inverse. 

IV. COMPARISON OF FEEDBACK LAWS 

Feedback laws for three different system architectures 
will be discussed. 

The control law for state feedback with integral action is: 
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essentially a PID control in aerospace applications. The state 
x contains a proportional P-part and a derivative D-part. 
Proportional parts in aerospace are angle of attack and 
sideslip as being the control objective and approximate 
derivatives are pitch and yaw rates. The integral I-part is 
created as the control error [13] and can be transformed to 
corresponding input directions by the steady state gain Kg. 

As an alternative to (4) the reference signal can be 

filtered through a reference system  
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to reduce overshoot due to integral windup: 
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An L1 controller of piecewise constant type augmented 
to a state feedback (Fig. 4) corresponds to the control law: 
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Instead of integrating smoothed reference signals, the L1 
controller takes the raw reference signal and feeds the output 
of the plant through an inverse approximation of the 
reference system. The start of the high frequency roll of to 

the )(
1

sH
m

  approximation increases with increasing adaptive 

gains Γ and decreasing sampling periods Ts [1]. It should be 
noted that the reference signal is used both outside and inside 
the integral expression. The standard L1 controller procedure 
is to add it inside only, although the (6) alternative has been 
used as well in flying applications [2]. D0(s) = sD(s) in (6) is 
in its simplest form unity. It can be noted that (5) and (6) are 
identical if D0(s) = Hm(s). This could guide tuning of the 
low-pass filter C(s) which is an important controller design 
variable. 
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The gain K in (7), which sets bandwidth of the low-pass 
filter C(s), is usually a diagonal matrix. There will be three 
design parameters for a three channel aerospace roll-pitch-

yaw controller (if D0(s) is unity). Nominal settings for the 
diagonal elements in K are available bandwidth values in the 
control channels (roll, pitch, yaw, respectively). 

The L1 controller structure aids the design of a control 
law by pointing out gain directions. It focuses on the error at 
the input of the plant instead of the commonly used output 
error. The input error is integrated over time to generate the 
control signal. 

V. TRANSFER FUNCTION ANALYSIS 

Relevant transfer functions from reference, input 
disturbance and output measurement noise are generated 
from Fig. 4 assuming that the plant aided by the state 
feedback nominally has dynamics similar to the reference 
system. To get simple but yet indicative expressions in (8) 
and (9) it is also assumed that the gain K is a scalar k times 
the unity matrix, K=kI. This assumption is only made in (8) 
and (9) for illustration. 

The transfer functions to output y and to control signal ua 
with these assumptions are: 
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In (8) the transfer function from input disturbance σ to y 
will be reduced for high frequencies by Hm(s) and for low 
frequencies by I-C(s). The low-pass filter C(s) will have 
similar or slightly higher bandwidth than Hm(s), the 
recommendation is to design C(s) to the available bandwidth 
of the control channel, by doing so a small amount of the 
disturbance σ will be passed to y. Output disturbance 
attenuation will be I-C(s), low frequency disturbances in w 
will be compensated for up to a bandwidth corresponding to 
C(s). 

In (9) input disturbance σ is fed to the L1 control signal 
ua through C(s). The output disturbance w and equivalently 
measurement noise goes to ua through the reference system 
inverse which could be problematic so analysis of this case 
will be provided. 

To give examples of transfer function magnitudes a 
fighter jet realization is provided. Singular values for a roll-
pitch-yaw controller as in Fig. 4 are presented. Reference 
elements in r and corresponding control objective y is roll 



  

 

Figure 6. Disturbance and noise feedthrough from w to control signal u, for 

(5) dashed and (6) solid, as low pass filter bandwidth in (6) is K and 2K. 

 

Figure 7. Input loop-gain singular values for (5) dashed and (6) solid. Roll is 

of highest magnitude, followed by pitch and yaw in descending order. 

 

Figure 8. Output loop-gain singular values for (5) dashed and (6) solid. Roll 

is of highest magnitude, followed by pitch and yaw in descending order. 

 

Figure 5. Input disturbance attenuation from σ to control objective y, for (5) 

dashed and (6) solid, as low pass filter bandwidth in (6) is K and 2K. 

rate p, angle of attack α and angle of sideslip β (see 
appendix). The control signal u has roll-pitch-yaw control 
surface deflection elements δa, δe and δr. The state feedback 
gain L is such that the nominal linearized dynamics aided by 
the state feedback has dynamics similar to the reference 
system Hm(s), (Am = A-BmL). Dashed lines in Figs. 5-8 
correspond to a linear state feedback controller with integral 
action as in (5), solid lines correspond to an augmented L1 
controller with a high adaptive gain as in (6). 

Fig. 5 shows how input load disturbances σ are 
attenuated to the output y. In Fig. 5 one K value that results 
in a second order C(s) with a bandwidth corresponding to the 
control channel bandwidth and another K that corresponds to 
twice that value. Input load attenuation is significantly higher 
for the L1 controller than the state feedback and that load 
attenuation increases with K. 

Fig. 6 shows how output disturbance or measurement 
noise w propagates to the control signal u for the same 
variations as in Fig. 5. The L1 controller feeds more noise 
through C(s) to the control signal than the state feedback. 

The choice of bandwidth K of the low-pass filter is a 
tradeoff between load disturbance attenuation and injection 
of measurement noise. A low value gives less disturbance 
attenuation with low noise injection. Increasing the 
bandwidth improves load disturbance attenuation but more 
measurement noise is injected causing large actuator 
demands. This noise injection will be damped by actuator 
and plant dynamics but could cause actuator wear and 
undesired excitation of the plant dynamics. 

Open loop-gain singular values from Fig. 4 at the input u 
are presented in Fig. 7 and loop-gain singular values at the 
output y are presented in Fig. 8. Singular values of the loop-
gain (solid) are clustered at the input (Fig. 7) when designing 
an L1 controller (magnitude of singular values are made 
equal). The unity gain crossover frequency is higher than for 
the linear state feedback controller and is increased even 
further if K is increased beyond the control channel 
bandwidth. Fig. 8 shows an increase in crossover frequency 
for the L1 controller compared to the state feedback but 
there is no cluster of singular values. 



  

VI. CONCLUSION 

L1 adaptive control methodology can be used for flying 
vehicle controllers. The idea of having a reference system, 
creating plant deviations from this reference system and 
rejecting the difference is both intuitive and straightforward. 

Some L1 adaptive controllers are linear time invariant as 
long as projection operators are inactive. Comparisons of 
linear L1 adaptive controllers have been made to the type of 
internal model controller which is known as a disturbance 
observer. They share a lot of characteristics such that they 
can be seen as estimating and compensating for disturbances 
at the plant input by using inverse dynamics. L1 controllers 
focus on the desired reference dynamics while disturbance 
observers use the nominal plant dynamics. 

By using the desired dynamics reference system inverse, 
L1 controllers accomplish both reference following and 
disturbance attenuation, without caring about if deviation 
comes from model error or an external disturbance from 
outside the plant. However, if the L1 controller is augmented 
to a feedback controller that make the plant dynamics 
nominally behave like the reference system dynamics (such 
as a linear state feedback), better reference following is 
achieved since then only truly unknown factors will have to 
be compensated. The high gain in L1 controllers can be seen 
as a measure to approximate a reference system inverse up to 
a certain frequency. 

The augmentation of an L1 controller to the plant makes 
input disturbance attenuation significantly better than what a 
typical linear state feedback controller accomplishes in 
aerospace applications. The L1 controller input disturbance 
estimation and compensation in aerospace applications focus 
on keeping the angular velocity of the vehicle correct. Since 
angle of attack/sideslip over a short period of time is 
integrated angular velocity, the control objective will be 
close to demands. 

For real-time implementation it is important to have 
understanding of the fundamental parts that are needed for 
exploiting L1 adaptive control benefits. Analysis of 
alternative equivalent structures gives options in how to 
implement the controller in a real-time application where it 
has to fit into a larger software structure. 

Mapping of control methods to each other will also make 
it possible to use benefits from L1 adaptive control 
gradually. It will be possible to blend in design features such 
as a reference system inverse as a modification to standard 
aerospace feedback laws. It is also possible to gradually add 
non-linearities in the state predictor. Such options could be 
important when compromises are needed to get clearance in 
use of new control designs in live flying products. 

APPENDIX 

Linear vehicle dynamics used in Figs. 5-8: In pitch 
motion there is one input from elevator deflection δe that 
affects two states: angle of attack α and pitch nose up angular 
rate q. 
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  is dynamic air pressure, ρ air density, V 

airspeed, S vehicle aerodynamic reference area, c a reference 
length (wing cord), m mass and Iy mass inertia around y-axis. 
Aerodynamic coefficients ‘Cxx’ are non-dimensional linear 
approximations of how aerodynamic forces and moments 
depend on states and inputs [13]. 

In roll-yaw motion there are two inputs, aileron δa and 
rudder δr, that affect three states, roll rate p, angle of sideslip 
β and yaw rate r: 
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where Ay and By are matrices with elements similar to those 
of the pitch matrices, that is, elements dependent on vehicle 
mass and aerodynamic quantities together with dynamic air 
pressure and airspeed. 

There are no linear couplings between the pitch and roll-
yaw motion so the two are combined to a five state model. 
Second order actuator dynamics are added and model 
parameters are set to values of a fighter jet with airspeed 
corresponding to Mach 0.6 at an altitude of 1000m. 
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