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Abstract

The aim of this thesis is to solve an inverse source problem. The approach is based
on an integral representation together with the extinction theorem. Both a scalar
and a full-wave integral representation are implemented and solved by a Method of
Moment procedure. The body of revolution enables usage of a Fourier transform to
reduce the dimensions of the problem. A singular value decomposition is utilized to
suppress singular values in the inversion process. A nose-cone radome is diagnosed by
recreating the equivalent surface currents on its surface from measured near fields. It
is shown how the radome interacts with the field, creating beam deflection, pattern
distortion, etc.. The phase shift of the field due to the transmission through the
radome, i.e., the insertion phase delay, is visualized. Disturbances due to defects, not
detectable in the measured near field, are correctly localized by the equivalent surface
currents. The alteration of side and flash lobes, together with the introduction of
scattering due to the defects, are also visualized. Verification is made by comparison
between the calculated and measured far field.



Populirvetenskaplig sammanfattning (in Swedish)

Anvindningen av elektromagnetiska falt dr en naturlig del i det moderna samhéllet.
I var dagliga milj6 &r vi beroende av informationen och energin som de elektro-
magnetiska vagorna transporterar. Som exempel kan ndmnas mobiltelefonsamtal,
uppvirmning av mat i mikrovagsugnen, anvéndning av internet och radardver-
vakning pa flygplatser.

For att konstruera en antenn sa att korrekta falt sinds ut &r det viktigt att kunna
studera det elektromagnetiska filtets utseende pa antennytan. En sadan studie kan
peka pa var felaktigheter ar lokaliserade samt hjélpa till att optimera antennen.
Falten pa ytan kan inte direkt métas upp. Ett sadant forsok resulterar i métfel pga.
véxelverkan mellan antennen och méatproben. Istéllet méts faltet upp en bit bort
fran antennen och berdkningar gors for att bestdmma hur kédllorna, det vill sdga
falten pa antennytan, ser ut. Detta dr ett inverst kallproblem.

I denna avhandling 16ses det inversa kallproblemet med hjalp av en integralrep-
resentation tillsammans med utsléckningssatsen (eng. extinction theorem). Imple-
menteringen baseras pa en momentkod (eng. Method of Moments). I artikel I-IT
anvands en skaldr integralrepresentation. I artikel IIT implementeras en vektorvérd
integralrepresentation vilken tar hénsyn till viixelverkan mellan faltets komponen-
ter. Det inversa problemet ar fel stallt, vilket innebar att sma fel i matdata kan
forstarkas och ge upphov till stora felaktiga bidrag i kéllbeskrivningen. Har minskas
denna paverkan genom att anvinda en singuldrvirdesuppdelning (eng. Singular
Value Decomposition, SVD) i inverteringsprocessen.

Metoden har anvénts for att diagnostisera en radom (noskon som skyddar en
radarantenn). En reflektorantenn innanfor en konformad radom alstrar ett elektro-
magnetiskt falt. Det elektriska filtet méts upp pa en cylindrisk yta en bit utanfor
radomen i nérféltszonen, vid frekvenserna 8 — 12 GHz. Tre olika fall har studer-
ats; ingen radom som técker antennen, radomen pa plats, samt en defekt radom
placerad &ver antennen. Det uppmaétta elektriska faltet ”backas” med hjalp av
berdkningar tillbaka till radomytan. Genom att studera tredimensionella bilder av
faltkomponenternas amplitud och fas pa radomytan, visas hur féltet forandras da
radomen ar placerad 6ver antennen. Bland annat minskar huvudloben, och sidlober
uppkommer. Fasens fordndring (eng. Insertion phase delay, IPD) &r ett satt att
méta radomens prestanda vid tillverkning, och hér visas en metod som har poten-
tial att ersitta den idag vanliga manuella matningen.

Den defekta radomen har tva kopparbitar fastsatta pa ytan. Néar det upp-
matta faltet studeras kan man se att nagot ar fel, men inte orsaken till felet. Da
faltet ”backas” syns defekternas placering tydligt. Man ser &ven hur kopparbitarna
forandrar bakatloberna, samt att det uppkommer spridningseffekter. Metoden har
verifierats genom en jamforelse med uppmétt fjarrfalt.
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Summary of included papers

Paper I - Reconstruction of equivalent currents using a near-
field data transformation — with radome applications

This paper shows how the near-field amplitude of a scalar electric field can be
reconstructed on a radome surface close to the source of radiation. The method
is based on a scalar surface integral representation together with the extinction
theorem. The representation describes an inverse source problem with the scalar
electric field and its normal derivative on the radome surface as unknowns. The
experimental set-up is axially symmetric, such that the complexity of the problem
can be reduced by employing a Fourier transform. The linear system is regularized
by the singular value decomposition (SVD). The measurement set-up consists of
a reflector antenna and a radome. The height of the radome corresponds to 29
wavelength at 8 GHz. The electric near field is measured on a cylindrical surface.
Three different configurations are considered in the frequency range 8 — 12 GHz:
no radome, the radome, and the defect radome present. The defect radome has
two copper plates attached to its surface. The formulation is first validated for
synthetic data and an error estimation is performed. It is then showed that the
measured electric field can be reconstructed on the radome surface in an accurate
way, where e.g., the copper plates, not seen in the measured near field, are detected.
The used technique is also verified by comparing the far field, calculated from the
reconstructed fields, to measured far field.

The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations, and the writing of the paper.

Paper II - Reconstruction of equivalent currents using the
scalar surface integral representation

This paper is a continuation of Paper I in the sense that the numerical analysis
of the radome is investigated further. The phase of the electric field is taken into
account. The phase delay caused by the radome, referred to as insertion phase delay
(IPD), is studied. It is also shown that the manufacturing errors, not shown in the
measured near-field data, can be focused and detected by reconstructing the phase
shift due to the propagation though the radome. Different ways of visualizing the
results are also discussed and presented in order to show which knowledge that can
be extracted from the measured near field.

The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations, and the writing of the paper.



Paper III - Reconstruction and visualization of equivalent
currents on a radome surface using an integral representation
formulation

In this paper, the inverse source problem is solved by utilizing a vector-valued in-
tegral representation combined with a vector-valued integral equation originating
from the extinction theorem. The coupling between the components of the fields
increases the complexity of the problem. The problem is solved in a similar way as
the scalar case, i.e., the integral representation and equation are written as linear
systems and solved by a Method of Moment approach. An SVD is employed to in-
vert the matrices and the singular values are suppressed to regularize the problem.
The three radome configurations are investigated at 8 GHz, and all components of
the measured field are now analyzed, i.e., both co- and cross components of the
equivalent currents are reconstructed. It is shown in what way the radome changes
the radiation pattern and causes the main lobe to deflect. The copper plates at-
tached to the radome alter the measured electric field. However, the cause of the
distortion is not seen in the near field. Here, it is shown that both components of
the magnetic equivalent current can be used to localize these effects. The influence
of the radome on the phase of the field, i.e., the IPD, is also investigated. A calcula-
tion of the thickness of the radome wall from the calculated IPD verifies the results.
The results in this paper show that the method is promising and can eventually be
employed for industrial use.

The author of this dissertation has carried out most of the analysis, and she is
responsible for the numerical simulations in parts, and the writing of the paper.
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Figure 1: A direct source problem.

1 Introduction

Radiation means that energy is emitted by a radiating body, e.g., an antenna. The
energy then propagates out in the surrounding medium. The cause of the radiation
are currents on the radiator.

In a direct problem, see Figure 1, the sources are given and the currents are
known. The goal is to calculate the radiated field in the media surrounding the
radiator. This problem is well understood but often computationally challenging [8].
The result is uniquely determined [43], which means that if the currents are known,
the electromagnetic field can be expressed in one unique way.

The aim of this thesis is to solve the inverse source problem — to find the sources
of a given electromagnetic field. In the inverse problem, the electromagnetic field
is known on a surface some distance away from the radiating body, see Figure 2.
The cause of the radiation is unknown, i.e., the challenge is to reconstruct the
currents on the radiator or on a surface surrounding it. The inverse source problem
is not uniquely determined, since adding a non-radiating source/current does not
modify the electric and magnetic fields on the measurement surface [18, 38,42, 64,
69]. That is, one cannot claim that all sources/currents are found since there might
be components that do not contribute to the measured field. Another problem with
the inverse source problem is that a small perturbation in the measured field can
cause large inaccuracies in the reconstructed currents.

In order to give an understanding of the problem, how it is solved, the appli-
cation areas, and the interesting interpretations of the results, the sections below
are arranged as follows; Section 2 points out the reasons for the interest in the
inverse source problem by identifying different areas of applications. The work of
other researchers within the area and some of their applications are covered in Sec-
tion 3. Section 4 describes the method where an integral representation is combined
with the extinction theorem, which is the basis for this thesis. The details of this
derivation are found in Appendix A. Finally, future challenges and conclusions are
discussed in Section 5.
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Figure 2: An inverse source problem.

2 Applications

The currents, describing the source of the radiation, can serve as an instrument of
diagnostics. For example, antennas need to be diagnosed to find malfunctioning
parts. In wireless communication, it is important to have tools to specify the radi-
ation of mobile phones and the safety distance of base stations’ antennas. Another
example is electronic equipment interacting with other electronic devices — the elec-
tromagnetic compatibility problem (EMC). To minimize this interaction and to find
out shielding strategies, the sources must be known.

A radome is a structure designed to protect its enclosed antenna against environ-
mental effects, see Figure 3. A review of the radome concept can be found in [51].
For instance, the nose cone of an airplane covers its radar antenna. Other places
where radomes protect radiating equipment are on high towers, on board ships, in
surveillance bases etc.. The radome will inevitable interact and change the field
radiated by the antenna in unwanted ways, e.g., creation of high side lobes causes
increased clutter, false-alarm rate and susceptibility to jamming. Moreover, the
main lobe is deflected (boresight error) and attenuated, whereas reflections cause
interferometry phase errors. In order to analyze and minimize these disturbances,
i.e., to make the radome as transparent as possible at the operating frequencies, it
is of great importance to diagnose how the electromagnetic fields interact with the
radome.

It is also significant to have a powerful tool to determine the insertion phase
delay (IPD), also known as the electrical thickness of the radome. The IPD is one
of the specified qualities that characterize a radome. It is traditionally measured
by locating two horn antennas in such a way that the incident angle of the field
becomes the Brewster angle. This choice of incident angle minimizes the reflected
field, i.e., the disturbances due to back scattering into the radiating horn antenna
are reduced [17,52]. To calculate the IPD, the phase of the transmitted field is
subtracted by the phase of the measured field with no radome present between the
horn antennas. This process is very time consuming, since it has to be repeated
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(b) ()

Figure 3: Different radome applications: a) Aeroplane. Copyright Gripen Inter-
national. Photo: Katsuhiko Tokunaga. b) Station monitoring tectonic motions
of the volcano Popocatepetl in Mexico. Photo courtesy of Enrique Cabral-Cano.
¢) Aireraft surveillance, Bromma airport, Sweden. Photo courtesy of Maciej Swic.

several times to cover the whole radome surface.

Another crucial utilization is within the design process of a radome. This task
includes numerical calculations of the alteration of the electric field as it passes
through the radome wall [4,5,57]. To get reliable results it is crucial that the
representation of the field radiated from the antenna, i.e., the input data, is well
known. This field cannot be measured directly, since it is very difficult to measure
the electromagnetic fields close to a radiating body or scatterer. The reason is that
the measurement probe itself can interact with the measured field and contaminate
the measurement.

3 Solution methodologies

The inverse source problem attracts a lot of attention. The main difference between
the various techniques depends on the geometry of the surface where the field is
measured, and the geometry of the body where the fields are to be reconstructed.
The material of the body of the equivalent currents also differs. The most com-
mon ones are the perfect magnetic conductor (PMC), the perfect electric conductor
(PEC), or air. Some methods require a priori information of the object, and some
use iterative solvers. Also, the demand for computer capacity differs among the
techniques. The following paragraphs give a overview of different approaches and
their usage.

3.1 Plane wave spectrum

One of the first techniques developed and a numerically fast method is the use of
the plane wave spectrum (PWS) [10, 16,23, 25,44, 71]. This technique expands the
measured field in plane waves. The PWS is equal to the Fourier transformation of
the radiated far field. The near field on a plane, arbitrarily close to the antenna, can
then be obtained through an inverse Fourier transform. Both spherical and planar
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measurement surfaces can be used as well as measurements in the near field or in
the far field, since accurate transformations between the different geometries and
the fields are available [11].

The PWS has been used to determine the specific absorption rate (SAR) of
mobile phones [21]. Instead of scanning the electric field strength in the whole
volume of the phantom, it is enough to measure the amplitude of the electric field
on two planes. The phase of the electric field is retrieved by an iterative process [74]
and the expansion of the field in its plane wave spectrum is utilized to evaluate the
electric field and thereby the SAR on other planes in the phantom. The method has
also been utilized to localize defects, i.e., patches of Eccosorb attached to a planar
array [37]. Another application is the reconstruction of the near field on the surface
of a parabolic antenna where an iterative scheme and certain approximations make
it possible to find the fields on the non-planar surface [53-55].

3.2 Modal expansion

A modal expansion of the field can be utilized if the reconstruction surface is cylin-
drical or spherical [24,40]. The field is then described as a sum of cylindrical or
spherical vector waves. The radial part of the expansion is expressed in cylindrical
or spherical Bessel functions, respectively. The angular part contains trigonomet-
ric functions, and in the spherical case Associated Legendre functions [70]. The
resolution obtained with spherical wave expansion (SWE) can be higher than the
resolution achieved when using plane wave spectrum [22]. However, the method is
only valid outside the smallest sphere enclosing the radiating body, i.e., equivalent
currents on the radiating body cannot be obtained unless the body is a sphere.
This method has been used to calculate the insertion phase delay (IPD) and detect
defects, i.e., deviations in the dielectric constant and wall thickness on a spherical
radome [22].

The SWE has also been employed in antenna near-field imaging problems to
find the relation between accuracy and resolution [45,46]. The Cramér-Rao bound
gives a lower bound on the estimation error and a fundamental physical limit on
system accuracy. This bound is related, via the Fisher information matrix [28],
to the resolution as a function of the number of vector waves included [45]. The
mathematical frame-work is applied to an electric field, measured on a cylindrical
surface, and it is shown in which regions the result is trustworthy.

In [41] the authors have investigated how constraints, e.g., zero reactive power, in
a Lagrangian formulation, can optimize the spherical vector wave technique. More
general geometries, e.g., needle shaped objects and flat disks, can be handled by
expanding the field in spheroidal wave functions [61,62]. As with the spherical
vector waves, the solution is only valid outside the smallest spheroid enclosing the
radiating body. Also, the Lagrangian optimization approach with constraints are
developed for this expansion [63].

A combination of SWE and PWE (plane wave expansion) has been employed
by [13]. The electric field of a spherical near-field measurement is expanded in
spherical vector waves. Utilizing an extended transform of [19], the field is expressed
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in its plane wave spectrum, whereby the field on a plane close to the origin can be
retrieved through an inverse fast Fourier transform. The method combines the high
resolution of SWE with the ability to come very close to the antenna under test
provided by PWE. This diagnostic technique is demonstrated by introducing errors,
i.e., feed tilt, Gaussian shaped metallic bump, and dishes of aluminum, on an offset
reflector antenna. These deviations can then be found in the recreated field on a
plane surface just in front of the antenna [14].

Another combination of modal expansion and PWE is utilized by [76], where
the safety perimeter of base station antennas is investigated. The electric field is
measured on a cylindrical surface, it is expanded in cylindrical vector waves and
the far field is calculated. The far field is then expanded in PWS and the field on
different planes close to the antenna is retrieved. This approach does not take the
presence of the reactive near field into account, since this is negligible at the safety
distances of interest.

3.3 Integral representations

To be able to handle a wider class of geometries, diagnostic techniques based on
integral equations to describe the electromagnetic field can be utilized, i.e., a linear
inverse source problem is solved by a method of moment (MoM) approach. The
drawback is the computational complexity. The equivalent currents of the source
are recreated on a surface arbitrarily close to the source.

If the object on which the currents are to be reconstructed is metallic, i.e.,
a perfect electric conductor (PEC), either the electric or magnetic field integral
equation (EFIE or MFIE) can be employed. The methods differ by the field used
as the source term — the electric field in EFIE, and the magnetic field in MFIE,
respectively. MFIE only applies to closed surfaces whereas EFIE can be used for
both open and closed surfaces. The EFIE has been employed in [67] to calculate the
near field of a cylindrical PEC via the surface currents. The PEC also has aperture
holes of various sizes to show how to find and diagnose leakage points in metallic
objects, i.e., wires.

Both EFTE and MFIE have problems with spurious resonances. However, this
effect can be reduced by using a combination of the two, i.e., the combined field
integral equation (CFIE), since the resonances of EFIE differ from the ones of
MFIE [9,47]. A description of other used combinations are found in e.g., [30].
Yet another approach to avoid spurious resonances was proposed in [68,72]. Here
the MFIE is combined with an integral equation where the source term is located on
an imaginary dual surface inside the scatterer. One advantage of this method over
the CFIE is that the use of both the operators of the EFIE and MFIE is avoided.
The dual-surface EFTE and MFIE are employed to recreate surface currents on a
PEC of cubic or azimuthal geometry [58, 59, 73].

Even if the surface where the reconstructed currents are calculated is not a
PEC, the above methods, i.e., EFIE and MFIE, can be employed by using an
equivalence principle where the volume inside the surface containing the sources
is replaced by a PEC or a PMC (perfect magnetic conductor) [8]. This approach
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has been used by [33,35,48,49,56,66], where the equivalent currents, either the
magnetic or electric, are reconstructed on a plane in front of the antenna from
near-field measurements over arbitrary geometries. This technique is convenient
when diagnosing flat antenna structures, e.g., in [36], where an equivalent magnetic
current together with a priori knowledge of the antennas geometry is utilized to
diagnose a low-directivity printed antenna. In [26], the technique together with an
iterative solver based on the conjugate gradient method, is used to diagnose radiated
noise on a plane over a power electronic circuit. A development of this method is
given in [34] where the antenna is enclosed by two infinite planes, one in front of the
antenna and one on its back, on which the magnetic equivalent current is recreated.
This technique is used to find the safety perimeter of a base station antenna by
recreating the radiating field on planes at various distances in front of and behind
the antenna. In [75] the radiation pattern from superspheroidally shaped dielectric
radomes enclosing dipole arrays is calculated using the equivalence principle to get a
combined integral equation, which is solved by an adaptive integral solver. Further
references within the area are given in [39], where a volume integral equation is
utilized.

An integral representation, relating both the unknowns, i.e., the electric and
magnetic currents, to the measured electric field, is used together with the additional
condition that the normal component of the surface currents are zero in [1, 3]. The
linear equation system is solved by the conjugate gradient method. In [3], the
electric current on the walls of a PEC, pyramidal horn antenna, is visualized. Under
certain circumstances, such that reconstruction on planar surfaces or bodies of PEC,
only one of the currents needs to be taken into account. This simplification is used
in [32] where defect elements in antenna arrays and irregularities in the surface of a
reflector antenna are detected. Also, [20] solves an integral representation using fast
multipoles and an iterative solver based on generalized minimal residual (GMRES).
The electric equivalent current is reconstructed on PEC plane in front of a reflector
antenna and a monopole located on the chassis of a car. Even other optimization
techniques have been proposed to solve the problem. In [6,7] neural networks are
used, and in [2] a cost function is introduced to find the location of EM transmitters.
Further references in this subject can be found in [12].

4 Integral representation and extinction theorem

In this thesis a technique using the integral representations to relate the unknown
equivalent currents to a known measured near field is proposed. In addition to the
integral representation, an integral equation, originating from the extinction the-
orem, is used. The use of the the extinction theorem together with the integral
representation guaranties that the sources of the reconstructed currents only exist
inside the enclosing volume, see Paper I-I11. The equivalent currents can be recon-
structed on a surface arbitrarily close to the antenna. No a priori information of
the material just inside the surface is utilized.

The aim is to recreate the equivalent currents on a radome-shaped surface from
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Y
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Known electro-
magnetic field

" Unknown
currents

(b)

Figure 4: a) The set-up showing the reflector antenna, the radome, and the cylin-
drical surface. b) The radome used in the measurements. The missing pieces at the
bottom have been used for material characterization.

measured electric near field collected on a cylindrical surface. The equivalent cur-
rents are the tangential components of the electric and magnetic fields on the radome
surface (8], i.e.,

(4.1)

J=nxH
M=—-—nxFE

where J is the electric current, M is the magnetic current, F is the electric field, H
is the magnetic field, and n is the outward pointing unit vector. Figure 4a depicts
the set-up, and Figure 4b shows a photo of the radome used in the measurements.
The equivalent currents and the electric field are parametrized into one component
along the height (JY, MY, E?) and one azimuthal component (J¥, M?, E®). The
radiation from the antenna interacts with the radome. This interaction is visualized
by recreating the equivalent currents on the radome surface.

In Paper I, a scalar integral representation is derived. One integral representa-
tion relates the unknown currents to the measured near-field data. The extinction
theorem gives a second equation, stating that the integral is zero if the observation
point lies on a surface inside the radome. The scalar approach is relevant since
the co-component, i.e., £, dominates in the measured field. The system of equa-
tions are solved by a Method of Moments (MoM) procedure. The radome and the
measurement surface have azimuthal symmetry, i.e., a Fourier transform can be
employed to decouple the equations and to reduce the computational complexity.
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A singular value decomposition (SVD) is used to invert and regularize the matrix,
i.e., remove singular values below a cut off level. The code is verified by using syn-
thetic data, where the error is shown to be below —60 dB. Measured near-field data,
originating from a reflector antenna, and collected on a cylindrical surface is then
investigated. Three different configurations are studied, one with just the antenna,
one with a radome enclosing the antenna, and finally one where a defect radome is
placed over the antenna. The amplitude of the reconstructed currents are visualized
in the frequency range 8 — 12 GHz, revealing diffraction effects. Introduced defects
on the radome, i.e., copper plates, not visible in the near field data are localized in
the equivalent currents. The results are verified by calculating the far field from the
reconstructed currents. This far-field pattern agrees very well with measurements.

The aim in Paper II is to obtain the phase of the reconstructed currents, e.g.,
the insertion phase delay (IPD). The phase of the recreated currents is visualized
and analyzed in the frequency range 8 — 12 GHz. The thickness of the radome wall
is approximated in order to validate the calculated phase shift. Different ways of
visualizing the amplitude and phase of the equivalent currents are also discussed
and presented in order to show which knowledge that can be extracted from the
measured near field.

In Paper III the analysis is derived for the full-wave electric field, i.e., the cross
component are no longer assumed to be negligible. The integral representation is
evaluated at the radome surface instead of on a surface inside the radome which
gives a classical integral equation. That is, an integral equation that relates the
unknown equivalent currents to each other on the radome surface, i.e.,

) [ fiom o, n)3) <5 Vgletn)[V5 - 30

radome

— V'g(r/, T‘) X M(’I"l)} dSl = %M(’I‘) rec Sradome

where g(7/, ) is the free space Green’s function, 7 is the outward pointing normal
of the radome surface, and Vg is the surface divergence [15]. When necessary, the
integrals are interpreted as Cauchy’s principal value [15,50]. The integral repre-
sentation relates, as before, the equivalent currents to the measured near field, i.e.,

// {fjwuo g(r',r)J(r") +j%€0 V'g(r' r) [Vfg . J(r’)}

Sradome

+ V'g(r',r) x M(r')} dS" = E(r) r outside Sradome

The approach of solution is the same as in Paper I-1I. However, the expressions now
contain coupled vector-valued fields and singular integrals. A detailed derivation of
the representations is found in Appendix A.

The equivalent magnetic current is investigated at 8 GHz, see Figures 5 and 6.
In Paper IIT the diffraction and transmission losses caused by the radome and the
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Figure 5: The recreated |M¥|-component on the front side of the radome. All values
are normalized with the largest value of |M*?] when the defect radome is present and
shown in dB-scale. (a) No radome present. (b) Radome present. (c) Defect radome
present. The arrows point out the locations of the copper plates.

defect radome are depicted for both the co- and cross-polarized component. Also
flash lobes caused by the radome are visualized. The effects of the defects, i.e.,
copper plates, are localized in both the amplitude and phase components. However,
to get the exact positions a combination of all components need to be analyzed. The
results are verified by a comparison with the scalar code in Paper I. The results
agree very well considering the cross-component is assumed to be zero in the scalar
code. The phase shift due to the radome, i.e., the IPD, is visualized and the results
are promising which might lead to an alternative way of diagnosing radomes in the
future.

5 General conclusions and future challenges

This thesis shows the potentials of the integral representation and the extinction
theorem in solving the inverse source problem. In Paper I-II, the scalar represen-
tation is explored. In Paper III, the vector-valued representation is investigated
by visualizing the reconstructed equivalent magnetic current on a radome surface.
Future challenges are to analyze if also the electric equivalent current on the radome
surface can contribute to more knowledge. Moreover, investigation of the frequency
dependence of the radome, using the full-wave representation, is planned. A closely
related question is the resolution of the equivalent currents. An initial investigation
of this work is found in [45], where the problem is solved with spherical vector waves.
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(b)

Figure 6: The recreated |M"|-component on the front side of the radome. All values
are normalized with the largest value of |MY| when the defect radome is present and
shown in dB-scale. (a) No radome present. (b) Radome present. (c) Defect radome
present. The arrows point out the locations of the copper plates.

This paper gives a relation between the accuracy and resolution in the problem, and
calculates in which areas the solution is reliable.

The results reported in this thesis show great potential, and the method of cal-
culating the IPD can hopefully be implemented for industrial use. Another exciting
challenge is to combine the method with the transmission of the field through the
radome [4].



A Integral representations 13

3>

Figure 7: The domain V' of integration.

Appendix A Integral representations

There are several ways to derive the integral representations of the Maxwell equa-
tions [15,27,43,65]. In this appendix, one way is demonstrated [31].

The surface integral representation expresses the electromagnetic field in a ho-
mogeneous and isotropic region in terms of its values on the bounding surface. The
representation states that if the electromagnetic field on a surface of a volume is
known, the electromagnetic field in the volume can be determined. The represen-
tation is derived starting with two arbitrary scalar fields, ¢(r) and ¥ (r) and the
divergence relation

V- [o(r)Vi(r) — o(r)Vo(r)] = o(r)V(r) — () Vie(r) (A1)

The scalar fields are defined in a bounded domain V. The domain V' is bounded by
the surface S with outward pointing normal vector n(r), see Figure 7. The surface
does not have to be a surface that separates two different materials, but can be an
arbitrary surface in space.

Integration of (A.1) over the volume V' and the use of the divergence theorem
give the Green’s second formula, i.e.,

J[ 1609 0t) vt At ds - /ﬂ (1) V20(r) — () V26(r)] dv

(A.2)

Proceeding to the representation of vector fields, let the scalar field ¢(r) in (A.2)

be [a- F(r)], where a is an arbitrary constant vector and F(r) is a vector field. We
have

// a- F(r)Vo(r) = (r)Vla- F(r))} -a(r) ds

///{[“ F(r)][V*(r) =y (r)V?]a- F(r )}}dv
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Figure 8: The domain V of integration. The variable of integration is denoted 7’
and the observation point 7.

Tedious algebra using differentiation rules of the Nabla~operator and the divergence
theorem give

—(r) [V . F(r)}fz(r) — Vi(r) x [ﬁ(r) X F(r)}) ds

_ /// (F(r) V(1) + w(r){v X [V x F(r)] - V[V - F(r)]}) dv (A.3)

which is the Green’s vector formula. This equation is the foundation for finding
integral representations of vector fields.

A.1 Introduction of the scalar free space Green’s function

Let the scalar field ¥ in (A.3) be the scalar Green’s function,
e—jk|7’—7”\
N —
.(](7"77' ) - 47T|’l" o ’l"/‘

using the time conventions e*. The variable of integration is denoted ' and the
observation point r, see Figure 8. Assume r ¢ S. The Green’s function satisfies,

Vig(r,r') + k*g(r,v') =0 r#£r (A.4)
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Figure 9: The geometry for the evaluation of the limit process. The volume V is
punctuated by a ball of radius e centered at the observation point . The bounding
surface of this ball is S, and its volume is denoted V.. The variable of integration is
denoted 7’.

where k is the wave number of the material. Replacing ¢ in (A.3) with the scalar
Green’s function gives

// (g(nr’){ﬁ(r/) x [V x F(r’)]} +Vg(r, ) [a@) - F(r')]
S
—g(r,?)[V'-F(r')|n(r') — Vg(r, ') x [a(r') x F(r’)]) ds’

- /V//(g(r,r’){V’ x [V'x F(r')] =V'[V'- F(r')] - k2F(r/)}) dv' (A5)

where (A.4) is used. The Green’s function is singular at the point ' = r. That is,
the representation (A.5) is only valid when " # r. The singularity can be treated in
several ways. Here, the integrals are investigated in the limit of classical integrals.
That is, a small ball V., centered at the singularity 7, is excluded. The radius of
this ball is € and its spherical bounding surface is denoted S, see Figure 9. Letting
the radius of the sphere approach zero, in (A.5), gives

// dS’—Q—Tl/iglr//... /[/ dv/—gjinr///.,. dv’ (A.6)
S Se Ve

The surface S, is parameterized in spherical coordinates, i.e., € < 0, 0 < ¢ < 2,
and 0 < 0 < 7, with &, as the symmetry axis. The used notatlon is, cf., Flgure 10,
e=|r"—r| dS = *sinfdpdd

AT
n=-v dv = ?sinfdedpdd (A7)
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Figure 10: The geometry for the evaluation of integrals over the sphere S..

.or—r
v =

= cospsind e, + sinpsinf e, 4 cosf e,
(A.8)

r—p)eiklr—rl ke[
Vig(r,r') = W [1+jklr —7'|]] =n pv— L +ka|
where é denotes the Cartesian orthonormal basis vectors in the z-, y-, and z-
direction, respectively.

In the integrals over the small sphere S, the normal unit vector & varies rapidly
over the integral domain while the fields F, [V - F], [V x F], {V x [V x F|}, and
{V [V F]} are assumed to vary more slowly. Provided these fields are smooth (e.g.,
Holder continuous), the mean value theorem for integrals implies that in the limit
of € — 0 the fields can be evaluated at the singular point = [15]. Letting ¢ — 0, i.e.,
r’ — 7, results in the following limits for the different parts in (A.5).

lim // g(r,T/){'fL(r') x [V' x F(r')}} as’

- ke
= lim// : x [V x F(r')] } 2sin® dy’dd =0

0 47TE

1136/ Vg(r,v')[n(r') - F(r')] 4’

e—0

// ") F(r)]sin¢' dy' do’

—lim // _Jke[ + Jk:|[ (r') - F(')] &sin¢’ d 46/
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™ 21
1
= / / { [cos¢'sinf' e, + siny'sinf’ &, + cos ' &.]
7

/=0 =0
- [Fu(r) cos ¢’ sin@’ + F,(r) sin¢'sin 6’ + F.(r) cos#'] sin 9'} d¢'do’
1 4 1
= FEm e+ TR m e, + TRme] = 1 F()

hm// r.r)[V'-F(r')|n(r') dS

—jke
zlim// 64776 [V'-F(r')] n(r') €sing' dy’' d6’ = 0

e—0

PL%/ Vig(r,r') x [a(r') x F(r')] 45’

—Jke
:hm// { +jk] x [A(r) x F(r')] &sing dy' d6’

e—0 4me

// ) X F(r)]sing dy¢' d¢’

// V- F(r)] — F(r)[n(') a(r)] } sin @ dy’ dé¢’

1 [“F(T) - 47TF(T)} _ —§F(r)

:PB})/// ﬂks "X F(r')] = V'[V'-F(r')]

KRG )} sind dedy’ df = 0

The parts are inserted into (A.6) giving

// ds' + F(r /// dv' =0 reV
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Including the region without singularities, i.e., r ¢ V| from (A.5), gives

/// <g(r7r’){V’ x [V'x F(r')] = V' [V'- F(r')] — k‘zF(r’)}> Q'

_ //(Q(r,w){ﬁ(r’) x [V' x F(r’)]} + Vig(r,7)[a(r') - F(r')]

(A.9)
—g(r,?)[V' - F(r)]n@') = V'g(r, ') x [a(r') x F(r')]) ds’
_JF(r) reV
~]o r¢V

This is a general representation of a vector field F'. The field F' is represented as
a volume integral of its values in V' and as a surface integral of its values over the
bounding surface S of V. If these integrals are evaluated at a point r that lies
outside the volume V| these integrals cancel each other — the extinction theorem.
It is important to notice that this does not necessarily mean that the field F' is
identically zero outside the volume V' — only the values of the integrals cancel.

A.2 Introduction of the Maxwell equations

So far, the vector field F' has been an arbitrary vector field. This field can be chosen
as the electric or magnetic field that satisfies the source free Maxwell equations with
the time convention e, i.e.,

E- juB
{ v el (A.10)

V x H = jwD

The constitutive relations in a homogeneous, isotropic region are given by

{ D = cocls (A.11)

B = popH

Combination of (A.10) and (A.11) give

V x E = —jwpouH
{ * Llsle (A.12)

V x H = jwepeE

{ V x (V x E) = k*E (A1

V x(VxH)=kKFH

-E=0
v (A.14)
V-H=0
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where € is the permittivity of vacuum, e the relative permittivity, po the per-
meability of vacuum, p the relative permeability, w the angular frequency, and
k = w,/eooep the wave number.

Letting F' be the electric field E in (A.9) gives together with (A.12)-(A.14) a
surface integral representation for the electric field, i.e.,

] {enon atr.r ) x GO = Vot [ae) - Bl

£ V() % [a(r) x Br')]} 4’ = {f (r) rinside S ) 1)

r outside S

where the surface S is shown in Figure 8. Observe that the volume integral is
zero and only the surface integral remains. The relative permittivity e and the
relative permeability ;1 may depend on the angular frequency w, i.e., the material
can be dispersive, but constant as a function of space (homogeneous material). If
F' is interchanged by the magnetic field H, a surface integral representation for
the magnetic field is attained. The integral representation (A.15) contains both the
normal and the tangential components of the electromagnetic field. In practice, it
is more convenient to work only with the tangential fields. The normal component,
i.e., the second term in (A.15), can be written in terms of a tangential component
by an application of the Maxwell equations (A.10)-(A.11), i.e.,

« D o1 .
n(r)- E(r) = _JFOG n(r)- [V x H(r)] = ‘]Foe Vs - [a(r) x H(r)]
where the identity Vg-(n x a) = —n-(V x a) is used with @ denoting an arbitrary

vector and Vg- the surface divergence [15]. That gives a surface integral represen-
tation for the electric field consisting of only tangential components on the surface

S, i.e.,

//(quougrr)[ (r') x H(r )}—J7V9TT {V/ - [n(r (T’)}}

E(r) rinside S

€7 (A1)
0 r outside S

+ V'g(r,7') x [n(r') x E(r’)]) ds’ = {

A.3 Values of the integral equations on the surface S

The integral representation in (A.16) is defined for all 7 ¢ S. To include the surface
into the domain it must be studied what happens as r approaches S. At this stage
it is not even clear that these limit values exist at all. The integrands in (A.16)
become singular as r moves toward the surface. This singularity can be treated in
several ways. Here, a classic approach is used, where the limit is investigated by
adding a half sphere from the outside and the inside, respectively.
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Figure 11: (a) The geometry for the evaluation of the limit process. In the limit the
surface (8" = Spunc U Se) — S and Vyyne — V. (b) The parameterization of the half
sphere S.. Observe that n = —v.

Starting with the approach from the outside, the integral representation is,

see (A.16)
] (mare gty tr) s Fr(r)) =5 Wt {9 [lr) = E )}
S

+ V'g(r,7) x [n(r') x E(r’)]) ds'=0 r¢Vv

It is applied to a volume V,un. which is slightly deformed compared to the original
volume V, i.e., a small half ball of radius € is excluded. The bounding surface of the
volume Vpune is denoted S’ and consists of two parts: the punctuated surface Spunc,
and a half sphere S, of radius e, i.e., S" = Spunc U S, see Figure 11a. In the limit
¢ — 0 the surface S’ — S and Ve — V, ice.,

lim // dS’:#‘.. dS’ + lim // ds’ (A.17)
s 5.

S

where the integral f ... d.S denotes Cauchy’s principal value [50].

To investigate the limit of the integral over the surface S, this surface is param-
eterized by the spherical angles 0 < ¢ < 27 and 0 < 6 < 7/2 with the direction e,
as the symmetry axis, see Figure 11b and (A.7)-(A.8). The normal unit vector &
varies rapidly over the small half sphere S, while the electromagnetic fields E and
H are assumed to vary more slowly. Provided these fields are smooth (e.g., Hélder
continuous), the mean value theorem for integrals implies that in the limit of € — 0
the fields can be evaluated at the point = [15]. Letting ¢ — 0, in the integrals over
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S, give the following limits!

hm// ro)[A(r) x H(r')] dS’

e Jke
—hm// ) x H(r')| €sin¢’' d¢’ d¢’ = 0

e—0 471'6

gg%//—wr Vig(r. ) {5 [ar') x H(r)]} a5

5.
=lim [[ ©(r') B [—o(r) - E(r)] €sin¢’ dy' A6’
e—0 dme | € ) v
Se
1 . N
— E//V(’I"/) [D(r') - E(r)] sing’ d¢' d¢’
5.
) T/2 2m
= / / { [cos¢'sin® &, +sin ¢’ sin ' &, + cos ' ]
0'=0¢'=0
- [Eo(r) cos ¢ sin ' + E,(r)sin ¢’ sin¢’ + E.(r) cos '] sin 9'} d¢'do’
1 r2r ) 27 . 2m . 1
[ CE(r) e, + B, (1) &, + S Ex(r) ez} = —EB(r)

hm //V' r.7') x [n(r') x E(r')] 45’

—Jke
:hm// {1 +jk} x [—o(r') x E(r')] €sin¢’ dy' d¢’

e—0 47T€

// ) x E(r)]sin¢’ dy¢' d¢’
] 77/2 2
“In {#0) [0 - E@)] — B@)[p0) - ()] }sind dg' a0
_i[%ﬁE( )727rE(1°)} LEw

The limit values above are plugged into (A.17), i.e

In the second integral, the relative permittivity is temporarily denoted by ¢, to avoid mix up
with the radius e.
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Figure 12: (a) The geometry for the evaluation of the limit process. In the limit the
surface (8" = Spunc U Se) — S and Vyyne — V. (b) The parameterization of the half
sphere S.. Observe that now n = v.

1

WeEpe

# <jwuou glr,r") [A(r') x H(r')] = j—— V'g(r,r){ Vs [a(r) x H(')] |

S

+ V'g(r,r) x [A(r') x E(r’)]) ds’ = %E(r) reS (A.18)

which is the limit value of the surface integral representation for the electric field
when approaching from the outside.?

If the limit is taken from the inside instead, the integral representation, (A.16),
1.€.

! V’g(nr’){vg' [A(r') x H(r’)}}

WEp€Er

JJ (man st e = F16e7) =
s
+ V'g(r,r) x [n(r') x E(r')]) dS"=E(r) reV (A19)

is applied to a volume Vune shown in Figure 12a. The derivation is similar to the
analysis above. The difference is that now n = ©. This changes the sign in the
limit processes, which inserted in (A.19) give the same final integral equation, i.e.,
(A.18).

The representation (A.18) consists of three components, two describing the tan-
gential field and one describing the normal component of the field. Since the normal
component can be determined by the knowledge of the tangential parts the normal

2The first surface integral does not have to be written as Cauchy’s principle value since

Fods=f...ds.
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>

(b)
Figure 13: (a) The interior problem. (b) The exterior problem.

component can be eliminated [43], i.e.,
. : N 1 .
n(r) Xﬁ[ (quou g(r. ) [alr) < H(r)] =i V'g(r, ){ Vs [a(r) < H () }
s

+ V'g(r,7') x [n(r') x E(W)]) dS"=-n(r)x E(r) resS (A.20)

O | =

A.4 The equivalent surface currents
The electric and magnetic equivalent surface currents, J and M, are defined as [8]
J(r)=n(r) x H(r)
M(r)=—n(r) x E(r)

Introducing the equivalent currents in (A.16) and (A.20) yield a surface integral
representation and a surface integral equation for the electric field

[ oo v 360 <55 Vgtr ) [95- 30)]
S

Wepe

—V'g(r,r') x M(r’)} dS’'=E(r)  rinside S

Wepe

i) x f {iwnon e, ) 367) =i Ve[V - T
S

~Vglrr') x M()} ' = —% M) res

The regions are depicted in Figure 13a.
In this thesis, the integral representation and equation are applied to the exterior
problem, i.e., see Figure 13b. This volume is not bounded. However, employing the



24

General Introduction

Silver-Miiller radiation conditions, the solution of the Maxwell equations satisfies
the following integral representation [29, 43, 60, 65]

[ {enon e 360 =i Vatr ) [95- 30)]

WEQE

—V'g(r,r") x M(r’)} ds" = —E(r) r outside S

WEQE

() % ff {imon g(r. )T 0) =5 Vg(r.r) [V T

—Vg(r,r") x M(r')} ds’' = %M(r) res

where the change of signs is due to the choice of normal, i.e., ¥ = —n.
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