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Measurements of the anisotropy parameter v2 of identified hadrons (pions, kaons, and protons) as a function of
centrality, transverse momentum pT , and transverse kinetic energy KET at midrapidity (|η| < 0.35) in Au + Au
collisions at

√
sNN = 200 GeV are presented. Pions and protons are identified up to pT = 6 GeV/c, and kaons up

to pT = 4 GeV/c, by combining information from time-of-flight and aerogel Čerenkov detectors in the PHENIX
Experiment. The scaling of v2 with the number of valence quarks (nq ) has been studied in different centrality
bins as a function of transverse momentum and transverse kinetic energy. A deviation from previously observed
quark-number scaling is observed at large values of KET /nq in noncentral Au + Au collisions (20–60%), but
this scaling remains valid in central collisions (0–10%).

DOI: 10.1103/PhysRevC.85.064914 PACS number(s): 25.75.Dw, 25.75.Ld

I. INTRODUCTION

Measurements of the anisotropy parameter v2 (the second
coefficient in the Fourier expansion of the hadron yields with
respect to the reaction plane) have played a pivotal role in the
discovery of the strongly coupled quark-gluon plasma (sQGP)
at RHIC [1–4]. At low pT (�2 GeV/c) the agreement between
ideal hydrodynamics calculations and the data have led to the
conclusion that a near-perfect fluid is created in heavy-ion
collisions at RHIC [5,6]. Recent theoretical efforts aiming
to quantify the ratio of the shear viscosity to the entropy
density η/s (see, for example, reviews in Refs. [7–9]) have
confirmed that in the sQGP fluid this ratio is close to a
conjectured quantum limit [10]. The high pT (�6 GeV/c)
azimuthal anisotropies [11–13] have been attributed to the
path-length dependence of energy loss in the medium and
are used to constrain the theoretical descriptions of jet energy
loss [14,15]. At intermediate pT (2–6 GeV/c), which is the
focus of this paper, the identified hadron anisotropies have
shown strong evidence for quarklike degrees of freedom and
significant collectivity at the parton level. This is supported by
the observation of scaling with the number of valence quarks
in the hadron (nq scaling) [16–21].

The scaling with number of valence quarks (nq) was
seen as a confirmation of quark recombination as a particle-
production mechanism that competes with fragmentation in
the intermediate-pT range. Recombination models [22–26]
were developed to account for the unusually large baryon-
to-meson ratios (relative to p + p collisions) and nuclear-
modification factors [17,27,28], as well as the large elliptic
flow at intermediate pT , with pronounced differences between
baryons and mesons. In the models, the nq scaling, which is
manifested as vhadron

2 (pT ) ≈ nqv2(pT /nq), is an approximate
scaling that comes from the addition of the valence-quark
momenta at hadronization, with the assumption that the
collective flow develops at the partonic level.

*Deceased.
†PHENIX Spokesperson: jacak@skipper.physics.sunysb.edu

There are several theoretical considerations that suggest
that the nq scaling should be violated in certain conditions.
For example, the inclusion of higher Fock states describing
the contribution of sea quarks and gluons have been shown
to affect the nq scaling [29]. Similarly, models that con-
sider recombination between “thermal” partons (soft partons
thermalized in the medium) and “shower” partons (partons
fragmented from jets) predict centrality-dependent deviations
from nq scaling that are particle-species dependent [30].
Understanding the limits of the recombination domain is
important in relation to viscous hydrodynamics and the
extraction of the shear viscosity over entropy density (η/s)
from the data [31–33], as well as for developing a unified
approach in describing jet energy loss and high pT v2 [34–36].
Searches for deviations from nq scaling are also important
for the low-energy scan program at RHIC as they have been
considered as a signature of the transition between sQGP
formation and a hadronic system. Recent considerations of
baryon transport may complicate this picture [37], which
further reinforces the need for a detailed understanding of
this scaling at

√
sNN = 200 GeV.

The nq scaling has been tested in certain centralities and
pT regions with identified particles [16–21]. However, the
precision of experimental data on identified hadron v2 is
in many cases limited in statistics and pT reach, especially
for baryon measurements at KET /nq > 1 GeV (KET =√

p2
T + m2

0 − m0) where the nq scaling may start to break.
Therefore, the detailed pT limits and centrality dependence of
the nq scaling have not been tested.

This paper reports on high-statistics measurements of
the second-order Fourier coefficient v2 for identified pions
(π+ + π−), kaons (K+ + K−), and protons (p + p̄), which
extend to relatively high pT (up to 6 GeV/c for pions and
protons and 4 GeV/c for kaons). The data for different
centrality events (0–10%, 10–20%, 20–40%, 40–60%, and
combinations thereof) are analyzed separately and the nq

scaling is examined as a function of centrality. Comparisons
with published measurements of K0

S and � from STAR
Collaboration [21] are shown in the centralities 0–10%
and 10–40%. The experimental details are presented in
Sec. II, the analysis methods are in Sec. III, the results

064914-3
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and discussion are in Secs. IV and V summarizes our
findings.

II. EXPERIMENTAL SETUP

The PHENIX experiment is designed for the study of
nuclear matter in extreme conditions through a variety of
experimental observables. It comprises a tracking system opti-
mized for the high-multiplicity environment of ultrarelativistic
heavy-ion collisions, a set of particle identification (PID)
detectors, and a set of detectors aimed at determining the global
properties of the collisions.

Figure 1 shows a schematic diagram of the PHENIX
detector. The upper part is a beam-axis view of the two
central spectrometer arms (West and East), covering the
pseudorapidity region of |η| < 0.35. Below that is a side
view showing the two forward-rapidity muon arms (South and
North) and the global detectors. A detailed description of the
complete set of detectors can be found elsewhere [38].

The physics analysis presented here employed the tracking
system [drift chamber (DC) and three layers of multiwire
proportional chambers (PC1, PC2, and PC3)], the West arm
time-of-flight detector (TOFw), the aerogel Čerenkov counter
(ACC), the ring imaging Čerenkov counter (RICH), the beam-
beam counters (BBC), the reaction-plane detector (RxNP), and
the muon piston calorimeter (MPC). Below, we give a brief
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FIG. 1. (Color online) The PHENIX detector configuration for
RHIC 2007 data-taking period. The West arm time-of-flight detector
(TOFw) is labeled as TOF West.

description of each of these detector subsystems and their role
in the present analysis.

A. Global detectors

The BBCs are located at ±144 cm from the nominal
interaction point along the beam line in the pseudorapidity
region 3.0 < |η| < 3.9. Each BBC comprises 64 Čerenkov
telescopes, arranged radially around the beam line. The BBCs
provide the main collision trigger for the experiment and are
used in the determination of the collision vertex position
along the beam axis (z vertex) and the centrality of the
collisions. They also provide the start time for the time-of-
flight measurement with timing resolution of σBBC = 37 ps.

The RxNP [39] was installed in PHENIX before the 2007
data-taking period. It is located at ±38 cm from the nominal
interaction point and has full azimuthal coverage. Each RxNP
comprises two rings of plastic scintillator paddles, with each
paddle subtending �φ = π/6. The inner and outer segments
cover the pseudorapidity ranges 1.0 < |η| < 1.5 and 1.5 <

|η| < 2.8, respectively. The RxNP is the main detector used
in the event-plane determination for this analysis. The event-
plane resolution [Res(�)] [40], which is used as a correction
to the v2 measurement, is defined as

Res(�) = 〈cos[2(� − �RP)]〉. (1)

Here the bracket 〈〉 indicates an average over all events, �RP

is the true reaction plane (which is defined by the directions
of interaction parameter and beam), and � is the event plane
(which is measured by the detector event by event). A larger
value of Res(�) corresponds to a better measurement of
the event plane. In a given event, the event-plane resolution
depends on the charged-particle multiplicity and the size
of the azimuthal anisotropy signal; thus the resolution is
centrality dependent. A resolution of up to 73% is achieved
for midcentral events.

The MPCs are electromagnetic calorimeters situated at
±223 cm from the nominal interaction point inside the
cylindrical openings at the front of the muon magnet pistons
[41] and have 2π azimuthal acceptance. The pseudorapidity
coverage is about 3.0 < η < 3.8 for the north side and
−3.7 < η < −3.1 for the south side. The MPCs are comprised
of 220 modules in the north piston hole and 192 in the south
with PbWO4 crystals and Avalanche Photodiode readouts, and
can detect both charged and neutral particles. In this analysis,
the MPCs were used for event-plane determination. Although
the event-plane resolution (up to 50% in midcentral collisions)
is lower than that achieved with the RxNP, the MPCs provide
an important systematic check on the RxNP measurement
due to their larger pseudorapidity separation from the central
spectrometer and therefore smaller nonflow effects on the v2

measurement.

B. Tracking and particle identification detectors

The charged-particle momentum is reconstructed in the
tracking system comprised of the DC located outside of an
axially symmetric magnetic field at a radial distance between
2.0 m and 2.4 m followed by the PC1 with pixel-pad readout.
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The pattern recognition in the DC is based on a combinatorial
Hough transform in the track bend plane. A track model based
on a field-integral lookup table determines the charged-particle
momentum, the path length to the TOFw, and a projection of
the track to the outer detectors. The momentum resolution
in this data set was estimated to be δp/p ≈ 1.3% ⊕ 1.2% ×
p (GeV/c), where the first term represents multiple scattering
up to the DC and the second term is due to the DC spatial
resolution. The momentum resolution is worse than previous
data sets, because the bucked field of the PHENIX central
magnet provided less than half the magnetic field strength of
the standard configuration [42].

The tracks are matched to hits registered in the second and
third layers of the pad chambers, PC2 and PC3, which are
located at radial distances of 4.19 m and 4.98 m from the
interaction point. Thus, the contribution of tracks originating
from decays and γ conversions is reduced.

To improve the track purity further, we employ the RICH,
which is a threshold gas Čerenkov detector located in the radial
region 2.5 m < r < 4.1 m. The Čerenkov radiator gas (CO2) at
atmospheric pressure has an index of refraction n = 1.000410
(γth = 35), which corresponds to a momentum threshold of
20 MeV/c for an electron and 4.65 GeV/c for a pion. The
RICH provides a veto for the electrons and positrons, which are
predominantly pairs resulting from γ conversions and Dalitz
decays.

The primary PID used in this analysis is the TOFw, which is
located at a radial distance of 4.81 m from the interaction point
and covers the pseudorapidity range |η| < 0.35 and δφ = 22◦
in azimuth. The TOFw was built using multigap resistive plate
chamber technology (MRPC) [43] and installed in PHENIX
before the 2007 data-taking period. The MRPCs have six gas
gaps formed by layered glass plates with thickness of 550 μm,
separated by 230 μm-thick monofilament fishing line. The
MRPCs are positioned in a gas volume and operated with a
gas mixture of 95% R134a and 5% isobutane (C4H10), and bias
voltage of 14 kV. The TOFw system is composed of 128 MRPC
modules each of which has four signal strips of size 37 ×
2.8 cm2 and separation of 0.3 cm. The readout [44] is double
sided, which allows for hit positioning along the direction of
the strip to be determined using the timing difference between
the signals with resolution of the order 1 cm. The other two
hit coordinates are determined using the global position of the
strips within PHENIX. The average time measured on both
sides of the strips provides the stop time for the time-of-flight
measurement. The timing resolution of the BBC-TOFw system
was determined by selecting charged tracks (see Sec. III A)
with momentum in the range 1.1 GeV/c < p < 1.5 GeV/c

and examining the timing difference between the measured
flight time and the time that is expected under the assumption
that the particles are pions. The resulting time distribution is
shown in Fig. 2. Since the pions dominate the total yield in
this momentum region, a narrow peak centered around t −
texpected ≈ 0 is observed. The other two broad peaks in Fig. 2
correspond to kaons and protons. A Gaussian distribution is
fit to the pion peak and yields a resolution of σBBC-TOFw =
84 ± 1 ps for the BBC-TOFw system.

The excellent timing resolution allows for 4σ separation in
mass-squared reaching up to pT = 2.5 GeV/c for π/K , and
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FIG. 2. (Color online) Timing difference T − Tπ , the difference
between the measured time in the TOFw and the time calculated
assuming each candidate track is a pion.

up to pT = 4 GeV/c for K/p. The PID is further extended
in pT by use of asymmetric cuts around the centroids of the
mass-squared distributions.

The ACC is used in conjunction with the TOFw to aid the
PID at high pT . It is situated in the West spectrometer arm in
front of the TOFw detector. The ACC is a Čerenkov radiation
detector with a relatively high index of refraction (n = 1.0113,
γth = 8.5), which means that light is produced at relatively
low momenta. The threshold for radiation is 1.0 GeV/c for
pions, 3.0 GeV/c for kaons, and 6.0 GeV/c for protons. The
combined ACC-TOFw information allows for π/K separation
up to pT = 4 GeV/c, and K/p separation up to pT = 6 GeV/c.
The main characteristic parameters of TOFw and ACC can be
found in the Table I.

III. ANALYSIS METHOD

A. Event and track selection

The results reported here are obtained from an analysis
of 4.8 × 109 minimum bias events obtained during the 2007
running period. The minimum-bias trigger is defined by a
coincidence between North and South BBC signals and an
energy threshold of one neutron in both the North and South
zero-degree calorimeters [38]. The collision vertex z is con-
strained to |z| < 30 cm of the origin of the coordinate system.

Charged tracks are selected based on the track quality
information from the tracking system (DC-PC1). The tracks
are then projected to the outer detectors and confirmed by
requiring that the closest hit to the track projection is within
certain spatial windows in φ and z. The distributions for

TABLE I. The main characteristic parameters of TOFw and ACC.

TOFw ACC

�η (−0.35, 0.35) (−0.35, 0.35)
�φ (rad) (−0.061, 0.110) (−0.108, 0.156)

(0.503, 0.674)
Radial distance (cm) 481.36 449.4
Number of cells 512 160
Cell size (cm2) 37 × 2.8 11.95 × 23.10
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the distance between the closest hit and projection in the
azimuthal and z directions are fitted with a double-Gaussian
function, one Gaussian function is for the signal distribution
and the other for the background. For pT < 3 GeV/c, hits
are required to match the TOFw and the PC3 to within
2σ from the signal’s Gaussian distribution in φ and z. For
pT � 3 GeV/c, hits are required to match the PC2 and the
PC3 to within 3σ and the TOFw to within 2σ in φ and
z. Background from γ conversions is further reduced by
applying a RICH veto. For the pions, this veto only works for
pT < 5 GeV/c since pions with pT higher than that will fire
the RICH. To evaluate the residual background, remaining
after these selections, the background-to-signal (B/S) ratios
from the double-Gaussian function fitting within the samples
selected for the analysis are examined. For pT < 3 GeV/c the
background comprises less than 1% of the selected tracks. At
higher pT the background increases, reaching B/S ≈ 7% for
5.5 GeV/c < pT < 6.0 GeV/c in the 0–20% centrality bin.

B. Particle identification

The particles are identified by their mass, based on
measurements of the momentum, the time-of-flight to the
TOFw detector, and the path length along the trajectory. PID
selections are performed by applying momentum-dependent
cuts in mass-squared. The mass-squared distributions are fit
with a three-Gaussian function corresponding to pions, kaons,
and protons. The corresponding widths and centroids are
extracted from the data as a function of transverse momentum.
In the calibration process, we ensure that the centroids of
these distributions do not move as a function of pT and that
the widths vary as expected from the known momentum and
timing resolution of the detector. We then select a sample
from each particle species aiming for at least 90% purity
in PID. The high purity of the sample will allow us to
measure the v2 of selected particles accurately and minimize
the uncertainty resulting from PID contamination. At lower
transverse momenta (pT < 2.5 GeV/c), the 2σ bands centered
around each particle’s m2 do not overlap, thus symmetric cuts,
m2

0 − 2σ < m2 < m2
0 + 2σ , allow for PID with high purity. In

)4/c2 (GeV2m
-0.5 0 0.5 1 1.5

 < 3.0 GeV/c
T

2.9 GeV/c < p +Kπ
-π++π

-+K+K
pp+

0

2

4

6

8

10

12

14

3x10

C
o

u
n

t

FIG. 3. (Color online) The mass-squared distribution measured
by TOFw in the pT region 2.9 GeV/c < pT < 3.0 GeV/c. The
hatched areas show the pion, kaon, and proton selections, from left to
right. The dashed lines show Gaussian fits to the individual m2 peaks,
while the solid line represents a combined fit to the m2 distribution
including the pions and kaons.

the range 2.5 GeV/c < pT < 3 GeV/c, the π/K separation
is achieved by excluding the particles that lie within 2σ

of the centroid of the mass-squared distribution of another
particle. This procedure is demonstrated in Fig. 3, where the
PID selections for π , K , and p are shown with the hatched
areas in the plot. The Gaussian fits to the individual m2 peaks
(dashed-line curves) and the combined fit to the entire m2

distribution (solid line) are also shown.
At higher transverse momentum 3 GeV/c < pT <

6 GeV/c, the lower m2 range of the pion distribution remains
relatively unaffected by contamination from kaons and pro-
tons. Therefore, a pion sample with purity better than 90%
can be selected based on information from the TOFw alone,
by applying the m2 cuts indicated in Figs. 4(a) and 4(c) and
listed in Table II.

For kaon and proton identification at pT > 3 GeV/c, the
ACC is used in conjunction with the TOFw detector, as shown
in Figs. 4(b) and 4(d). The turn-on momenta of the ACC for

TABLE II. The particle identification cuts in TOFw and ACC with PID purity in Au + Au collisions for the centralities 0–20% and 20–60%.

Particle pT range TOFw Cut ACC Cut Purity

(GeV/c) (GeV/c2)2 0–20% 20–60%

pion <3 m2
π ± 2σm2

π
None 99% 99%

veto on m2
K ± 2σm2

K

[3.0, 5.0) [−1.0, 0.0] None 95% 96%
[5.0, 6.0) [−1.0, −0.1] None 91% 92%

kaon <3 m2
K ± 2σm2

K
None 98% 99%

veto on m2
π ± 2σm2

π

[3.0, 3.5) [0.1, 0.5] accph < 5.0 94% 95%
[3.5, 4.0) [0.1, 0.5] accph < 5.0 91% 92%

proton <3 m2
p ± 2σm2

p
None 99% 99%

[3.0, 4.0) [0.6, 1.3] accph < 5.0 97% 98%
[4.0, 5.0) [0.7, 1.3] accph < 5.0 95% 96%
[5.0, 6.0) [0.7, 1.7] accph < 5.0 91% 92%
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FIG. 4. (Color online) The mass-squared distribution in the TOFw without (left panels) and with (right panels) the ACC photon yield
(accph) cuts for different pT regions. The hatched areas show the m2 cuts used for pion, kaon, and proton selections. The distribution is fit with
a three-Gaussian function (solid line). The individual Gaussian distributions corresponding to π , K , and p and are as dashed lines.

pions, kaons, and protons are 1.0 GeV/c, 3.0 GeV/c, and
6.0 GeV/c, respectively. This turn-on is gradual, with the
number of photons registered per photomultiplier tube (PMT)
growing up to 15 for pions, and 10 (kaons and protons) as
the hadrons exceed their respective threshold momentum by
≈1 GeV/c. With this information, the photon yield from the
ACC can be used as a rejection veto based on whether it is “on”
(accph � 5) or “off” (accph < 5). Due to the occupancy effects
in the ACC as well as the spatial resolution of track projection
to the ACC, the pions cannot be rejected completely. The effect
of this veto cut is demonstrated in Figs. 4(b) and 4(d). The pion
rejection by the ACC in combination with asymmetric m2 cuts,
which are indicated here and listed in Table II, allow for kaon
and proton PID up to pT of 4 and 6 GeV/c, respectively.

We use the Gaussian fits to the mass-squared distributions
to estimate the PID purity in the selected m2 regions.
This is straightforward at pT < 3 GeV/c, where the peaks
associated with each particle are well defined. At higher pT

the uncertainties are larger, since the pion and kaon peaks
merge and the individual yields are not well constrained.
We have checked that for pT > 4 GeV/c, after efficiency
corrections, the K/π ratio obtained from our fits is consistent
with the measurements of the K/π (K0

S/π ) ratio by the STAR
experiment within the statistic and systematic uncertainties.
At pT = 5.22 GeV/c, the K/π ratio is reported as 0.326 ±
0.013(stat) ± 0.134(syst) and the K0

S/π ratio is reported as
0.435 ± 0.022(stat) ± 0.072(syst) in p + p collisions at√

sNN = 200 GeV; the ratios in p + p and Au + Au collisions
are similar [45–47]. In our study, the kaon contamination in

the pion sample is relatively insensitive to the kaon yield. For
example, if we artificially increase the kaon yield by 30%, the
contamination in the pion sample increases from 7% to 9%.

The m2 distributions are not strictly Gaussian shape, but
have tails extending to the higher mass region. This effect is
not noticeable at low pT but comes into prominence at inter-
mediate and high pT . Hadrons coming from resonance decays
may survive the tracking cuts but will have misreconstructed
momentum and contribute to this high mass tail. Detector
simulations demonstrated that the momentum distribution of
hadrons, which includes the primary hadrons and those from
resonance decays, is much closer to a Landau distribution
at high pT . To get a better estimate of the possible PID
contamination in this case, we have fit the m2 distribution
with an empirical function that was determined by sampling
a momentum distribution with a Landau shape instead of a
Gaussian. This empirical m2 distribution is found to give a
much better fit than a simple three-Gaussian function and it
gives a good description of the high mass tails. Finally, we
reevaluate the PID contamination with this empirical function.
An example of these fits is shown in Fig. 5. The tail of m2

distribution is well described by the empirical pion, kaon, and
proton m2 functions which are presented with different dashed
lines. In this case, at high pT the contamination from kaons
and pions in the proton sample increases to 9% from 1% in the
case of the Gaussian fits.

The PID purity for each particle species estimated in
different pT ranges is listed in Table II. These estimates reflect
the values obtained for the 0–20% central Au + Au collisions
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FIG. 5. (Color online) The mass-squared distribution in the TOFw without (left panels) and with (right panels) the ACC photon yield
(accph) cuts for different pT regions. The hatched areas show the m2 cuts used for pion, kaon, and proton selections. The distribution is fit with
the sum of three empirical m2 distribution functions that are propagated from sampling a Landau shape momentum distribution as described
in the text (solid line). The individual distributions corresponding to π , K , and p are shown with dashed lines.

and are meant to provide lower limits for the measurements
presented here. The purity in more peripheral collisions was
found to be slightly better.

C. Measurement of v2

The measurement of the anisotropy parameter v2 aims to
determine the event-by-event particle azimuthal correlation
with the reaction plane of the collision. The true reaction plane,
which is defined as the plane formed by the impact parameter
b and the beam direction, is not known experimentally. In
addition, there exist other sources of correlations in azimuth,
such as the correlations from resonance decays, jets, and
Bose-Einstein effects. These correlations, which are not related
to the reaction plane, are called nonflow correlations. The goal
is to determine the second coefficient in the Fourier expansion
v2 of the particle azimuthal distribution with respect to the
reaction plane with minimal effects from nonflow correlations.
To estimate the reaction plane angle �RP, we employ the event-
plane method [40], in which the second harmonic azimuthal
anisotropy signal determines the event-plane angle � based
on hits registered in one of the event-plane detectors: RxNP
or MPC. For an ideal detector, the measured distribution of
event-plane angles should be isotropic. However, the actual
measurement is usually affected by finite acceptance and
nonuniform efficiencies. We apply a standard event-plane
flattening technique [16,19,40,48] to remove the residual

nonuniformities in the distribution of event-plane angles. The
accuracy with which the event-plane angle can be determined
depends on the strength of the v2 signal and the multiplicity
of the events in each centrality class. It is maximal for
midcentral events, where both of these quantities are relatively
large. The v2(pT ) measurement is performed by correlating
the particle azimuthal angle ϕ with the second harmonic
event-plane angle �, and correcting the observed signal for
the event-plane resolution as follows:

v2 = 〈cos[2(ϕ − �)]〉
Res(�)

(2)

Here the brackets 〈〉 indicate an average over all particles in
all events.

Since the true reaction plane angle is not directly mea-
surable, the resolution correction is estimated using subevent
techniques [40]. There are several different options in using
the subevent techniques. The present analysis uses the two
subevent and the three subevent methods. These methods are
compared to evaluate the systematic uncertainties associated
with the event-plane resolution corrections.

The RxNP and the MPC detectors each have two subde-
tectors, North and South, which are positioned symmetrically
around the origin of the nominal collision point with equal
acceptance in pseudorapidity. Thus, they provide a natural two-
subevent division. The correlation between the event-plane
angles determined from the North and South subdetectors, �N
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and �S , allows for the estimate of the resolutions corrections
as follows:

Res(�N ) = Res(�S) =
√

〈cos 2(�S − �N )〉. (3)

The resolution correction can also be expressed analytically
[40] as

Res(�) = 〈cos 2(� − �RP)〉
=

√
π

2
χe− χ2

2

[
I0

(
χ2

2

)
+ I1

(
χ2

2

)]
, (4)

where I0 and I1 are modified Bessel functions. The parameter
χ = v2

√
2M , where M is the number of particles used to

determine the event plane, describes the dispersion of the
flow vector. With the use of Eqs. (3) and (4), we obtain the
subevent parameters χS and χN . Subsequently, to optimize
the event-plane resolution, the two subevents are combined,
and the full event parameter is taken as χ = √

2χS = √
2χN .

This procedure relies on the two subevents being equal in
multiplicity and registering the same size v2 signal, which
may not be the case experimentally. To avoid this uncertainty,
we also use a three-subevents technique to determine the
event-plane resolution with Eq. (5) [40]. To determine the
event-plane resolution of RxNP detector (subevent A), we
employ information from the North and South portions of
the MPC detector (subevents B and C). In turn, to estimate the
resolution of the MPC detector, the North and South portions
of the RxNP detector are used to provide subevents B and C,

Res(�A) = 〈cos 2(�A − �RP)〉

=
√

〈cos 2(�A − �B)〉〈cos 2(�A − �C)〉
〈cos 2(�B − �C)〉 . (5)

The event-plane resolution for the RxNP (circles) and the
MPC (triangles) detectors obtained with the above procedures
are shown as a function of the event centrality in Fig. 6(a). The
results show the expected trend, with maximal resolution for
the 20–30% centrality class where both the event multiplicity
and the v2 signal are large, and a decrease for the more central
events (due to lower v2 strength), and more peripheral events
(due to smaller multiplicity). Figure 6(b) shows the ratio of the
results obtained with the two-subevent and the three-subevent
techniques. The results for the RxNP detector (closed symbols)
agree to within 2%. A larger difference (up to 4%) is observed
for the MPC detector (open symbols), which is mainly due
to the asymmetric pseudorapidity coverage of the MPC. The
event-plane resolution from three-subevents method is used to
correct the v2 measurement.

From Fig. 6 it is evident that the RxNP detector has
better resolution for the event-plane angle, as well as smaller
systematic uncertainty in the event-plane determination than
the MPC detector. Therefore, it is desirable to use the RxNP for
the v2 measurement. One possible disadvantage of the RxNP
over the MPC detector is the smaller pseudorapidity separation
from the central spectrometer (|η| < 0.35), which makes the v2

measurement more susceptible to nonflow correlations caused
by jets. Since the results presented here aim to study the high
pT azimuthal anisotropies of identified charged hadrons and
the limits of nq scaling, it is particularly important to minimize
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FIG. 6. (Color online) Panel (a) shows the event-plane resolution
as a function of centrality for the RxNP and the MPC detectors. Panel
(b) shows the ratio of the event-plane resolution obtained from two
subevents and three subevents as a function of centrality.

such effects. To evaluate the nonflow contributions we examine
the v2(pT ) distributions for pions, kaons, and protons measured
using the MPC and the RxNP detectors independently. For
the pT < 6 GeV/c, a previous study indicated that nonflow
effects are small for the event plane measured by the BBC
detectors, which have a pseudorapidity coverage similar to
that of the MPC detectors [49]. Figure 7 shows the results in
the 0–60% centrality range for each particle species (upper
panels), and the ratio of the results obtained with the two
event-plane detectors (lower panels). Nonflow correlations are
expected to enhance the measured v2 signal for the detector
that is more affected, especially in the higher pT range. We
do not find any evidence for a significant increase in nonflow
contributions in the measurement based on the RxNP detector.

Based on these considerations, the results presented in
Sec. IV are based on the reaction plane measured solely by the
RxNP, taking advantage of its better event-plane resolution in
comparison to the MPC.

D. Systematic uncertainties in v2

The systematic uncertainties in the v2 measurement ob-
tained with the RxNP detector can be broadly characterized
according to the following categories: (i) event-plane reso-
lution corrections; (ii) event-plane measured from different
detectors; (iii) v2 from background tracks; (iv) PID purity; and
(v) acceptance and run-by-run dependencies.

The uncertainties stemming from the event-plane resolution
corrections are independent of particle species and pT . They
are found to be around 2% for all centralities by studying the
event-plane resolution difference for the RxNP with the two-
and three-subevent methods.
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FIG. 7. (Color online) The upper panels show the azimuthal anisotropy v2(pT ) of pions (a), kaons (b), and protons (c) in the 0–60%
centrality class measured with respect to event planes determined by the MPC (closed symbols) or the RxNP (open symbols) detectors. The
event-plane resolution is estimated by the three-subevents method. The ratio of v2(RxNP) to v2(MPC) is shown in the lower panels as a function
of pT for pions (d), kaons (e), and protons (f).

The uncertainties from event planes measured with different
detectors (RxNP, MPC) are found to be independent of the
particle species, by comparing the results from RxNP and
MPC. In the 0–20% centrality class, we assign a 3% systematic
uncertainty for pT < 3 GeV/c and a 5% systematic uncertainty
for pT > 3 GeV/c. In the 20–60% centrality class, we assign
a 3% systematic uncertainty for pT < 5 GeV/c and a 5%
systematic uncertainty for pT > 5 GeV/c.

Background tracks that are not removed by the tracking and
PID selections outlined in Secs. III A and III B may influence
the measured v2 if they carry a signal that is different from
the particle of interest. The background tracks may come
from decays, γ conversions, or false track reconstruction. The
backgrounds are centrality dependent, and may also have pT

and hadron species dependence. A sample of background-

dominated tracks was selected based on the normalized
distance between the hits registered in the TOFw detector
and the track projections. Specifically, a 4σ–10σ window in
the z direction was utilized. The azimuthal anisotropy of the
background was then measured following the procedure used
for the signal. For pT ≈ 3 GeV/c, the v2 of the background is
similar to that of the pion, but it decreases at higher pT down
to about 60% of the v2 of the pion (or 30% of the v2 of the
proton) for pT ≈ 6 GeV/c in the 0–20% centrality class. For
pions, the resulting systematic uncertainties in v2 are of the
order 1% for pT < 4 GeV/c and reach up to 4% (3%) for
pT ≈ 6 GeV/c for centrality 0–20% (20–60%). For protons,
the resulting systematic uncertainties in v2 are of the order 1%
for pT < 4 GeV/c and reach up to 5% (3%) for pT ≈ 6 GeV/c

for centrality 0–20% (20–60%).

TABLE III. Systematic uncertainties given in percent on the v2 measurements.

Error Sources Species 0–20% 20–60% Type

Event-plane resolution 2% 2% C
Event-plane detectors 3% in pT 1–3 GeV/c 3% in pT 1–5 GeV/c B

5% in pT 3–6 GeV/c 5% in pT 5–6 GeV/c

Background pion 1% in pT 1–4 GeV/c 1% in pT 1–4 GeV/c A
4% in pT 4–6 GeV/c 3% in pT 4–6 GeV/c

kaon 1% in pT 1–4 GeV/c 1% in pT 1–4 GeV/c A
proton 1% in pT 1–4 GeV/c 1% in pT 1–4 GeV/c A

5% in pT 4–6 GeV/c 3% in pT 4–6 GeV/c

PID pion negligible in pT 1–3 GeV/c A
2% in pT 3–6 GeV/c

kaon negligible in pT 1–3GeV/c A
2% in pT 3–4 GeV/c

proton negligible in pT 1–3 GeV/c A
3% in pT 3–4 GeV/c 2% in pT 3–4 GeV/c

5% in pT 4–6 GeV/c 3% in pT 4–6 GeV/c

Acceptance 8% 3% C
and run-by-run
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The systematic uncertainties in v2 resulting from hadron
misidentification are based on the PID purity estimates listed in
Table II and the size of v2 of each species. For example, at pT =
6.0 GeV/c for 0–20% centrality, the protons purity is around
91% and the v2 of pions and kaons are around 50% of that of
the proton. We assign a 5% systematic uncertainty attributable
to this effect. For pT < 3 GeV/c, the uncertainties in v2 due
to PID contamination are negligible for all particle species. At
higher pT the uncertainties in v2 remain below ≈ 2% for kaons
and pions; for protons with pT > 4 GeV/c these uncertainties
reach up to ≈5% (3%) for centrality 0–20% (20–60%).

Additional systematic checks were performed using differ-
ent subsets of the detector, and data obtained with different
magnetic field configurations. Differences of order 8% (3%)
were found for the 0–20% (20–60%) centrality, which have
weak pT and particle species dependence.

Table III lists the summary of all these systematic uncer-
tainties, which are categorized by the types:

(A) point-to-point error uncorrelated between pT bins,
(B) pT correlated, all points move in the same direction but

not by the same factor,
(C) an overall normalization error in which all points move

by the same factor independent of pT .

IV. RESULTS AND DISCUSSION

The results for v2 of identified pions, kaons, and protons are
presented in Fig. 8; the results in central collisions (0–20%)
are presented in Figs. 8(a), 8(c), and 8(e) and the results in
noncentral collisions (20–60%) are presented in Figs. 8(b),
8(d), and 8(f). The symbols representing the different particle
species are closed triangles for pions, open squares for kaons,
and closed circles for protons. In order to better compare
between two centralities, the v2 of all species in the 0–20%
centrality has been scaled up by a factor of 1.6. The error bars
(shaded boxes) represent the statistical (systematic) uncertain-
ties. The systematic uncertainties shown are type A and B only.
Not shown are the type C systematic uncertainties, which are
from the event-plane resolution, geometrical acceptance, and
run-by-run dependence are around 8.5% (3.5%) for 0–20%
(20–60%) centrality for all species at all values of pT .

Figures 8(a) and 8(b) show v2(pT ). For both centrality
selections, the v2 values of pions and kaons are very similar
in intermediate pT range (2–4 GeV/c), where the measured
v2 is maximal and is relatively independent of transverse
momentum. Above pT ≈ 4 GeV/c the pion v2 gradually
decreases to a value which is comparable to the signal
measured at pT ≈ 1 GeV/c. In contrast, the proton v2(pT )
has a shape that is centrality dependent. In central collisions
(0–20%) the proton v2 rises up to pT ≈ 3.5 GeV/c and then
saturates at a value higher than the v2 of pions. For noncentral
collisions, the behavior is different: a decrease is observed
in the proton v2 for pT > 4 GeV/c leading to near equal v2

signals for pions and protons at pT ≈ 6 GeV/c.
The use of the KET variable was introduced in Ref. [18],

which is found to better represent the number of quark scaling
behavior than pT at lower pT . In Figs. 8(c) and 8(d) the v2

signals have been scaled by the number of constituent quarks
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FIG. 8. (Color online) Identified hadron v2 in central (0–20% cen-
trality, left panels) and midcentral (20–60%, right panels) Au + Au
collisions at

√
sNN = 200 GeV. Panels (a) and (b) show v2 as a

function of transverse momentum pT . Panels (c) and (d) show the
quark-number-scaled v2 (v2/nq ) as a function of the kinetic energy
per quark, KET /nq . Panels (e) and (f) show v2/nq as a function
of transverse momentum per quark, pT /nq . The v2 of all species
for centrality 0–20% has been scaled up by a factor of 1.6 for
better comparison with results of 20–60% centrality. The error bars
(shaded boxes) represent the statistical (systematic) uncertainties. The
systematic uncertainties shown are type A and B only.

nq in the hadrons and are shown as a function of the transverse
kinetic energy per quark KET /nq . A very different behavior
is observed in central [Fig. 8(c)] and in noncentral [Fig. 8(d)]
collisions. In the measured pT range, a universal behavior
is seen in the central collisions within the statistical and
systematic uncertainties, but not in the noncentral collisions,
where the v2/nq of protons falls below that of the mesons for
KET /nq � 1 GeV. This is the range where the proton v2(pT )
begins falling in noncentral collisions but remains relatively
constant in central collisions.

On the other hand, it is widely accepted that the relevant
scaling variable for quark recombination is the transverse
momentum per quark, since it is the momentum and not
the energy that is additive in the recombination models.
Therefore, to examine the nq scaling in the recombination
regime we show the quark-number-scaled v2 as a function of
pT /nq in Figs. 8(e) and 8(f). For central collisions [Fig. 8(e)],
the universal behavior appears to remains valid within the
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statistical and systematic uncertainties. Since the changes in
v2 are relatively small at higher pT , shifting the x axis from
KET /nq to pT /nq does not change the shape of the curves
significantly. For noncentral collisions [Fig. 8(f)], the proton
data are systematically below the pion data at all pT /nq ,
although they are at the edge of the systematic uncertainties
for pT /nq � 1.3 GeV/c, which corresponds to KET /nq �
1 GeV/c. We note that despite this systematic offset, the
nq scaling makes the shape of the pion and proton curves
very similar below the breaking point. Above that point, quark
recombination is clearly violated.

Some model calculations [30] have shown that the breaking
of nq scaling occurs at the transition between purely thermal
and thermal+shower recombination. In the 50–60% centrality
class this can happen for values of KET as low as KET /nq ≈
0.5 GeV, while in the 0–5% centrality class this occurs at
values as high as KET /nq ≈ 1.5 GeV. Similar features have
been observed in the data presented in this paper. On the
other hand, for pions and protons, the nuclear modification
factors (RAA), which are used to quantify the amount of
partonic energy loss in the medium, have been found to be
consistent with each other for pT > 5 GeV/c [47,50–52].
This indicates that a simple interplay between recombination
and jet energy loss is not enough to explain the v2 and
RAA of pions and protons in Au + Au collisions in this
pT region. Additional considerations may include the non-
Abelian nature of jet energy loss [53], the quark versus gluon
fragmentation production of pions and protons [54–56], and
jet chemistry effects such as enhanced parton splitting [57]
and jet conversion [58]. Detailed model calculations that take
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FIG. 9. (Color online) The quark-number-scaled v2 (v2/nq ) of
identified hadrons are shown as a function of the kinetic energy per
quark, KET /nq in 0–10% centrality [panel (a)], 10–20% [panel (b)],
20–40% [panel (c)], and 40–60% centrality [panel (d)] in Au + Au
collisions at

√
sNN = 200 GeV. The error bars (shaded boxes)

represent the statistical (systematic) uncertainties. The systematic
uncertainties shown are type A and B only.
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FIG. 10. (Color online) The quark-number-scaled v2 (v2/nq ) of
identified hadrons are shown as a function of the kinetic energy per
quark, KET /nq in 0–10% centrality [panel (a)] and 10–40% centrality
[panel (b)] in Au + Au collisions at

√
sNN = 200 GeV. The v2 of �

and K0
S are measured by STAR collaboration [21]. The error bars

(open boxes) represent the statistical (systematic) uncertainties. The
systematic uncertainties shown on the results from this study are type
A and B only.

all of these effects into account are not yet available, and
it is an open question whether doing so is enough for an
adequate interpretation of the pT v2 and RAA of pions and
protons.

To further investigate the centrality dependence of the nq

scaling breaking, results with finer centrality bins are shown
in Fig. 9. The quark number scaled v2 (v2/nq) of pions, kaons,
and protons are shown as a function of the kinetic energy
per quark KET /nq in 0–10% [Fig. 9(a)], 10–20% [Fig. 9(b)],
20–40% [Fig. 9(c)], and 40–60% centrality [Fig. 9(d)]. The
error bars (shaded boxes) represent the statistical (systematic)
uncertainties. The systematic uncertainties shown are type A
and B only. Not shown are the type C systematic uncertainties,
which are from the event-plane resolution, geometrical ac-
ceptance, and run-by-run dependence, and are around 10.5%
(3.5%) for 0–10% (40–60%). These results with finer centrality
bins show that the breaking of nq scaling has a clear centrality
dependence.

We also compare our results with the existing v2 results for
K0

S and � as measured by the STAR collaboration using the
event-plane method [21] in the 0–10% and 10–40% centrality
classes, which are shown in Figs. 10(a) and 10(b), respectively.
Since the event plane and particles are measured in the same
rapidity gap by the STAR detector in their event-plane method,
the v2 values from STAR measurements are expected to be
systematically larger than those measured by PHENIX [21,48]
due to nonflow effects. In the 0–10% centrality class, the v2

of pions and protons in this study are systematically lower
than the v2 of K0

S and � by 17% independent of pT , but
they are within the systematic uncertainties. The nq scaling
appears to hold in this centrality class for each particle species.
In the 10–40% centrality class, the v2 of pions and protons
are consistent with that of K0

S and � in the overlapping
KET region. While the presence of the scaling breaking is
not clear in the K0

S and � results, the improved precision
and extended KET reach of the present study unambiguously
demonstrates the breaking of nq scaling in this centrality
class.
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V. SUMMARY AND CONCLUSION

We have presented a high-statistics study of baryon and
meson azimuthal anisotropy v2 measured up to pT of 6 GeV/c

as a function of centrality in
√

sNN = 200 GeV Au + Au
collisions. The nq scaling is found to exhibit strong dependence
on the collision centrality. Significant deviations from nq

scaling are found in noncentral collisions, starting from the
10–20% centrality class, as KET /nq > 0.7 GeV. These results
indicate that particle production above pT ≈ 2 GeV/c is not
dominated by recombination, but that other mechanisms—
such as parton-energy loss, jet chemistry, and different
fragmentation functions—may contribute to generating the
azimuthal anisotropy of particle emission. Conversely, in
central collisions, such as for 0–10% centrality, the universal
nq scaling appears to hold to KET /nq = 1.5 GeV. This obser-
vation supports parton recombination as the dominant mode
of particle production at intermediate transverse momentum
in central Au + Au collisions at top RHIC energy.
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