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SUMMARY

Inflammatory response induced by microglia plays
a critical role in the demise of neuronal populations
in neuroinflammatory diseases. Although the role of
toll-like receptor 4 (TLR4) in microglia’s inflammatory
response is fully acknowledged, little is known about
endogenous ligands that trigger TLR4 activation.
Here, we report that galectin-3 (Gal3) released by
microglia acts as an endogenous paracrine TLR4
ligand. Gal3-TLR4 interaction was further confirmed
in a murine neuroinflammatory model (intranigral
lipopolysaccharide [LPS] injection) and in human
stroke subjects. Depletion of Gal3 exerted neuro-
protective and anti-inflammatory effects following
global brain ischemia and in the neuroinflammatory
LPS model. These results suggest that Gal3-depen-
dent-TLR4 activation could contribute to sustained
microglia activation, prolonging the inflammatory
response in the brain.
INTRODUCTION

The inflammatory response driven by microglia is a key element

in brain ischemia (Lambertsen et al., 2012) and in neurodegener-

ative disorders (Burguillos et al., 2011; Saijo and Glass, 2011).

Toll-like receptors (TLRs), like other pattern recognition recep-
1626 Cell Reports 10, 1626–1638, March 10, 2015 ª2015 The Author
tors (PRRs), are critical for the response to inflammatory agents

(Hennessy et al., 2010). Since its discovery in 1996, the TLR fam-

ily member TLR4 has attracted particular attention in several in-

flammatory diseases, including CNS pathologies (Buchanan

et al., 2010; Lemaitre et al., 1996). Pharmacological inhibition

of TLR4 and transgenic mice lacking the TLR4 gene exhibit neu-

roprotection in conditions of experimental stroke (Caso et al.,

2007; Hyakkoku et al., 2010; Suzuki et al., 2012). Despite exten-

sive research, only very few endogenous ligands for TLR4 have

been described so far (Chen and Nuñez, 2010).

Galectins represent a protein family with at least 15 members

that have significant sequence similarity in their carbohydrate-

recognition domain (CRD) and bind to b-galactosides with vary-

ing affinities and specificities (Barondes et al., 1994; Leffler et al.,

2004). Galectins are classified into three subgroups (1) proto, (2)

chimera, and (3) tandem repeat based on their molecular archi-

tecture. The proto-type and tandem-repeat-type families

comprise proteins with one and two CRDs on a single polypep-

tide chain, respectively (Kasai and Hirabayashi, 1996).

Galectin-3 (Gal3) is the only known member of the chimera-

type family comprising a C-terminal CRD and N-terminal non-

CRD for carbohydrate binding and increased self-association,

respectively (Lepur et al., 2012). Gal3 is known to be involved

in the inflammatory response, and its expression is increased

in microglial cells upon various neuroinflammatory stimuli as,

for instance, the process of ischemic injury (Lalancette-Hébert

et al., 2012; Satoh et al., 2011a, b; Wesley et al., 2013). Gal3

can be found in the cytoplasm, nucleus, and membranes (Shi-

mura et al., 2004) and can be released into the extracellular
s
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space upon certain stimuli such as lipopolysaccharide (LPS) (Li

et al., 2008) and interferon g (IFN-g) (Jeon et al., 2010). The

different subcellular localizations of Gal3 together with its

possible posttranslational modifications are likely to affect the

function of Gal3 and explain why rather contradictory effects

have been reported, e.g., pro- versus anti-apoptotic (Nakahara

et al., 2005) and pro- versus anti-inflammatory (Jeon et al.,

2010; MacKinnon et al., 2008). As an example of this duality of

function, it has been reported that Gal3 deficiency aggravates

the neuronal damage in the adult mouse brain following transient

focal brain ischemia, due to a reduced signaling of insulin-like

growth factor receptor in microglia (Lalancette-Hébert et al.,

2012), whereas in a transgenic mouse model of amyotrophic

lateral sclerosis (ALS), the lack of Gal3 increases the inflamma-

tory response (Lerman et al., 2012). In contrast, in a model

of global brain ischemia, microglial Gal3 was suggested to

contribute to neuronal death in the CA1 subregion of the hippo-

campus (Satoh et al., 2011a, b) as well as contribute to the

inflammation and severity in experimental autoimmune enceph-

alitis (Jiang et al., 2009).

Previous studies have focused on the relationship between

Gal3 andmembers of the TLR family such as TLR2. For example,

in differentiated macrophages, Gal3 can form a complex with

TLR2 and thereby improves the inflammatory response against

C. Albicans (Jouault et al., 2006). In addition, it has been sug-

gested that Gal3 can act as co-receptor, presenting the Toxo-

plasma gondii glycosylphosphatidylinositols (GPIs) to TLR2

and TLR4 on macrophages (Debierre-Grockiego et al., 2010).

Furthermore, an interaction between Gal3 and LPS, a known

TLR4 ligand, has been reported as well (Li et al., 2008; Mey

et al., 1996). Gal3 and TLR4 are both considered to be indepen-

dent actors in the initiation and progression of the inflammatory

response after brain ischemia. In this study, we demonstrate

that Gal3 can act as an endogenous ligand for TLR4. We

show that Gal3 can induce, per se, a TLR4-dependent inflamma-

tory response as well as contribute to the full activation of this

receptor upon binding to other proinflammatory stimuli, such

as LPS.

RESULTS

Gal3 Affects Downstream TLR-Signaling Pathways in
Microglia
We first set out to determine the effect of Gal3 on the TLR-medi-

ated signaling pathways. To achieve this, we took advantage of

an array that monitors the expression of 84 genes involved in the

TLRs intracellular signaling pathways. BV2 microglia cells were

exposed to endotoxin-free (as confirmed by Limulus amebocyte

lysate assay) soluble Gal3 (referred henceforth as sGal3) for 6 hr.

In addition, because Gal3 can be rapidly internalized by cells and

thereby activate intracellular signaling pathways, we used a so-

called ‘‘immobilized form’’ of Gal3 (referred to as iGal3) that only

can interact with proteins on the cell surface (e.g., receptors).

Due to Gal3’s high hydrophobicity of its N terminus part, it can

bind to plastic, allowing the exposure of both domains: its CRD

and also its N-terminal site (Sörme et al., 2002). Cell culture wells

were coated overnight at 4�Cwith 100 mg/ml of Gal3 andwashed

three times with PBS to remove unbound Gal3. BV2 microglial
Cell
cells were then seeded in these Gal3-coated plastic wells for

6 hr before harvesting them. Cells seeded on non-coated wells

for 6 hr were used as a negative control. LPS (1 mg/ml) added

to the cell culture medium for 6 hr was used as a positive control

for TLR4 activation.

Thus, BV2 microglia cells were treated with sGal3, iGal3, or

LPS and gene expression of the TLRs-signaling pathway inves-

tigated. As shown in Figure 1, sGal3 or iGal3 treatment results in

statistically significant changes in gene expression as compared

to untreated cells. Both induction and repression in gene expres-

sion can be observed after either of these treatments. Remark-

ably, there was significant overlap in microglial gene expression

related to TLR4 signaling in responses to either Gal3 or LPS (Fig-

ures S1A and S1B).

Gal3 Binds to TLR4 through Its CRD
Next, we explored the possibility of a direct physical interaction

between Gal3 and TLR4. Using confocal microscopy, Gal3 and

TLR4 were found to be colocalized in BV2 cells 1 hr after adding

sGal3 (Figure 2A). Under these conditions, TLR4 was immuno-

precipitated and Gal3 was found to be part of the resulting im-

mune complexes (Figure 2B).

Gal3 interaction with glycoproteins is complex, and the initial

binding of the CRD often triggers a subsequent self-association

of Gal3, sometimes resulting in crosslinking and precipitation

(Lepur et al., 2012). This self-association also involves the canon-

ical carbohydrate recognition site in the CRD but also the N-ter-

minal non-CRD domain of Gal3, which makes it much more effi-

cient, and is also required for most biological effects of Gal3.

The apparent affinity of the interaction between TLR4 andGal3

was determined using microscale thermophoresis (MST). In

MST, the thermophoretic mobility of a fluorescently labeled

molecule in an infrared-laser-induced microscopic temperature

gradient is recorded, yielding a fluorescence time trace from

which a normalized fluorescence value (Fnorm) is derived.

Changes in the thermophoretic mobility of the molecule upon

ligand binding manifest as shifts in the Fnorm values and are

used to quantify the affinity of the interactions (Seidel et al.,

2013). Accordingly, binding of Gal3 to fluorophore-tagged

TLR4 (at a constant concentration of about 120 nM) produced

a clear shift in the recorded fluorescence time traces (Figure S2B)

with increased Fnorm values for theGal3-TLR4 complex. Themin-

imal and maximal Fnorm values for the unbound and fully bound

state of TLR4, respectively, were used to calculate the fraction

of TLR4 bound at each Gal3 concentration. The resulting satura-

tion binding curve (Figure 2C) shows that 50% of TLR4 is bound

at about 1.5 mM Gal3.

The presence of lactose, a competitive inhibitor of both Gal3

carbohydrate binding and self-association, completely abol-

ished the interaction (purple data points in Figure 2C). Further ev-

idence for the involvement of the Gal3 canonical carbohydrate-

binding site was the fact that a mutant, Gal3 R186S, showed

interaction with TLR4 at a much-higher concentration with

50% bound at about 45 mM. This mutant reduces affinity of

Gal3 for many glycoproteins and for the disaccharide LacNAc,

which is the most common minimal galectin-binding moiety in

glycoproteins (Lepur et al., 2012; Salomonsson et al., 2010a).

The Gal3 CRD, lacking the N-terminal domain, also bound
Reports 10, 1626–1638, March 10, 2015 ª2015 The Authors 1627



Figure 1. Expression Analysis of Genes

Related to the TLR Family after Treatment

with Gal3 and LPS

Gene expression array analysis of mRNA related

to TLR activation in BV2 microglial cells upon

sGal3 (1 mM), iGal3 (100 mg/ml coated well), and

LPS (1 mg/ml) treatment for 6 hr. Data are repre-

sentative of three independent experiments and

expressed asmean (n = 3). *p < 0.05; **p < 0.01. c2

analysis revealed similar up- or downregulation

of Gal3 compared to LPS (*p < 0.05). See also

Figure S1.
TLR4 at about equal concentrations as intact Gal3 (red curve in

Figure 2C).

To gain further evidence for Gal3-TLR4 interaction, we used

fluorescence anisotropy as a separate independent technique.

In this technique, the interaction of Gal3 with a fluorescein-

tagged saccharide probe is inhibited by increasing concentra-

tions of TLR4 and quantitatively analyzed, as has been done

for many other inhibitors before (Lepur et al., 2012; Salomonsson

et al., 2010b). The data are presented in the form of percent Gal3

bound to TLR4 tomake themmore easily comparable to the pre-

vious experiment (Figure 2D). This again demonstrated that

TLR4 binds both Gal3 and Gal3 CRD, with 50% of Gal3 bound

by about 1 mM TLR4, and also shows that TLR4 competes for

the canonical carbohydrate-binding site of Gal3.

The data also provided insight into TLR4-induced self-associ-

ation of Gal3. The slope of the binding curve in Figure 2C, where

fixed TLR4 is titrated with a range of Gal3 concentrations, was

consistent with a Hill coefficient of above 2 for intact Gal3 but

was about 1 for the CRD. In Figure 2D, where fixed Gal3 is
1628 Cell Reports 10, 1626–1638, March 10, 2015 ª2015 The Authors
titrated with a range of TLR4 concentra-

tions, the Hill coefficient for intact Gal3

was about 0.4, whereas for the CRD, it

was again about 1 (Table S1). This indi-

cates that intact Gal3 binds with apparent

positive cooperativity and/or in an event

with stoichiometry of greater than two

Gal3 per TLR4, whereas the CRD binds

in simple 1:1 interactions to one or more

independent sites on TLR4.

Addition of Gal3 concentration >�1 mM

to fluorescent TLR4 at 120 nM caused

precipitation, as measured by removal

of fluorescence by centrifugation of the

samples before loading into capillaries

that are used for the MST measurements

(Figure S2A). This observation probably

also explains the gradual fluorescence in-

crease in un-centrifuged samples (Fig-

ure S2A) and the wavy line shapes of

the fluorescence time traces recorded in

the MST experiment (Figure S2B). How-

ever, the aggregation did not prevent

obtaining highly reproducible binding

curves that could be used for quantitative

analysis of the interaction (Figure 2C).
The different methods, hence, demonstrate that Gal3 interacts

directly with TLR4 at physiologically relevant concentrations

and also at the Gal3 concentrations (1 mM) used in the cell exper-

iment here.

All galectin family members have in common a canonical CRD

with high-sequence homology. Galectin-1 and galectin-4 were

chosen as examples of the proto and tandem repeat families,

respectively, and they also bind to TLR4 in MST experiments

but with lower apparent affinities of about 8 and 14 mM, respec-

tively, and Hill coefficients of about 1, indicating a lower cooper-

ativity (Figure S2F).

TLR4 Contributes to Gal3 Proinflammatory Response
Contradictory reports suggest that Gal3 can play both proinflam-

matory and anti-inflammatory roles. Gal3 has been shown to

elicit a proinflammatory (M1) response per se (Jeon et al.,

2010) or amplify a pre-existent proinflammatory reaction (Devil-

lers et al., 2013) in macrophages. Similarly, we have recently

demonstrated that Gal3 is involved in the proinflammatory



Figure 2. Gal3 Acts as a Ligand to TLR4

(A) Colocalization of Gal3 and TLR4 in BV2 cells

after 1 hr exposure with sGal3 protein.

(B) Immunoblot showing the presence of Gal3 in

an immune complex formed after pull-down of

TLR4 in BV2 microglial cell line after being treated

with 1 mM of soluble Gal3 for 1 hr.

(C) Microscale thermophoresis was used to

analyze the direct binding of TLR4 to Gal3, the

Gal3 CRD, Gal3 R186S, and Gal3 in the presence

of inhibitory lactose (40 mM). Whereas the con-

centration of fluorescently labeled TLR4 was kept

constant, the non-labeled proteins were titrated

(x axis), and the minimal and maximal Fnorm values

of the unbound and bound state of TLR4, res-

pectively, were used to calculate percent TLR4

bound to Gal3 (y axis).

(D) Fluorescence anisotropy was used to analyze

the potency of TLR4 (x axis) to inhibit binding of

Gal3 (0.2 mM) proteins to a fluorescent saccharide

probe (0.02 mM).

The measured values were used to calculate the

percent of Gal3 bound to TLR4 (y axis). The scale

bar for (A) represents 15 mm. Data points in (C) and

(D) are averaged from two to six measurements for

each of the different conditions and binding curves

obtained by non-linear regression to the Hill

equation, with EC50 and Hill coefficient as vari-

ables and minimum (0%) and maximum (100%)

constrained; numerical results are given in Table

S1. Values are expressed as mean ± SE. See also

Figure S2 and Table S1.
response triggered by a-synuclein in microglial cells (Boza-

Serrano et al., 2014). Other studies have, however, suggested

that Gal3 is involved in the alternative activation of macrophages

and microglia (Hoyos et al., 2014; MacKinnon et al., 2008). In or-

der to clarify the effect of Gal3 per se on microglial cells, BV2

cells were treated with sGal3 and several phenotypical markers

were analyzed, including the expression of inducible nitric oxide

synthase (iNOS) (M1 phenotype), CD206, TGF-b, Ym 1/2, argi-

nase-1 activity (M2 phenotype), and CD45 (phosphatase that

can inhibit the proinflammatory response; Starossom et al.,

2012). We observed that sGal3 treatment induced iNOS expres-

sion (Figures 3B and 3C) and an overall trend to decrease

the different M2 markers, although only arginase activity and

CD206 expression reached statistical significance (Figures S3A

and S3B). These data support the view that Gal3 stimulates a

proinflammatory M1 phenotype in microglia.

The similarities between the changes in gene expression

induced by Gal3 and LPS, which acts as a TLR4 ligand (Fig-

ure 1), and the physical interaction between Gal3 and TLR4

made us think that Gal3 could be inducing a TLR4-dependent

inflammatory response. To explore this possibility, the expres-

sion of TLR4 was silenced in BV2 microglial cells using small

interfering RNA (siRNA) (Figure 3A). Interestingly, silencing of

TLR4 in BV2 cells leads to a reduction in the iNOS protein

expression upon LPS, sGal3, and iGal3 treatments (Figures

3B–3E), suggesting that these stimuli share a common TLR4-

dependent signaling pathway. The silencing of MyD88, a down-

stream protein triggered by activation of TLR4, shows as well a
Cell
decrease in iNOS expression upon sGal3 treatment in BV2 cells

(Figures S3C and S3D). To validate the TLR4 dependency of the

Gal3 response, the release of several cytokines (i.e., TNF-a and

interleukins [IL-1b, IL-4, IL-5, IL-10, and IL-12]) were investi-

gated in primary microglia cultures derived from wild-type and

TLR4 knockout mice upon sGal3 and iGal3 treatment. The

release of the above-mentioned cytokines was found to be

increased upon both types of Gal3 treatment in wild-type micro-

glia (Figures 3F–3K). In contrast, the increases in cytokines

released upon Gal3 treatments were abrogated in primary mi-

croglial cells originating from TLR4 knockout mice (Figures

3F–3K), demonstrating that TLR4 is essential for Gal3-induced

cytokine release. In the case of IL-10 and TNF-a, we observed

that their decrease is not complete in TLR4 knockout mice,

which suggests also that Gal3 may be interacting also with other

receptors other than TLR4 such as for example TLR2 (Jouault

et al., 2006).

Gal3 Promotes Caspase-3/7 and Caspase-8 Activities in
the Absence of Cell Death
We recently uncovered that the orderly activation of caspase-8

and caspase-3/7 contributes to the activation of microglia by

several proinflammatory stimuli including LPS (Burguillos et al.,

2011; Venero et al., 2011). Because both Gal3 and LPS can act

as TLR4 ligands, we next examined whether Gal3 induces the

activation of these caspases. Indeed, both sGal3 (Figure 4A)

and iGal3 treatments (Figure 4B) induced DEVDase activity (cas-

pase-3/7 activation) and IETDase activity (caspase-8 activation)
Reports 10, 1626–1638, March 10, 2015 ª2015 The Authors 1629



Figure 3. Gal3-Induced Inflammatory Response Is Dependent on TLR4

(A) TLR4 mRNA levels are downregulated after its knockdown.

(B–K) Knocking down TLR4 decreases iNOS expression after LPS, sGal3 (B and C), and iGal3 (D and E) treatment for 6 hr. Cytokine profile in wild-type (WT)

primary microglia versus TLR4 knockout (TLR4 KO) primary microglia cells after 24 hr treatment with sGal3 and iGal3 (F–K).

Data are expressed as mean ± SD (A–E; n = 4) and mean ± SEM (F–K; n = 4). *p < 0.05; **p < 0.01. See also Figure S3.

1630 Cell Reports 10, 1626–1638, March 10, 2015 ª2015 The Authors



Figure 4. Gal3 Treatment Induces Caspase-3/7 and Caspase-8 Ac-

tivities in a TLR4-Dependent Manner

(A and B) Analysis of caspase 3/7 (DEVDase) and caspase 8 (IETDase) activ-

ities at 1 hr and 6 hr treatment with 1 mM of sGal3, LPS (1 mg/ml; A), and iGal3

(B) in BV2 microglial cells. LPS treatment was used as a positive control for

caspase 3/7 and 8 activation under inflammatory conditions.

(C and D) The increase of DEVDase and IETDase activity after sGal3 and iGal3

treatment is abolished when TLR4 is knocked down.

Data are expressed as mean ± SEM (n = 3). *p < 0.05; **p < 0.01. See also

Figure S4.
as early as 6 hr after sGal3 and 1 hr after iGal3 treatment. In

accordance with the TLR4 dependency of Gal3 response,

silencing of TLR4 expression using siRNA abrogated the in-

crease of both caspase-3/7 and casapase-8 activities after

either sGal3 (Figure 4C) or iGal3 (Figure 4D) treatment.

We previously demonstrated that the TLR4-dependent activa-

tion of these caspases during microglia activation did not lead to

cell death (Burguillos et al., 2011). We confirm here the absence

of apoptotic cell death upon Gal3 treatment using a panel of

methods (Figures S4A–S4D). Some reports indicated that Gal3

can affect the cell cycle (Lin et al., 2002). However, we did not

find any alteration in the cell cycle after Gal3 treatment (Figures

S4E and S4F).
Cell
Released Gal3 Is Essential for Full Microglial Response
upon LPS Stimulation
Several proinflammatory stimuli, including LPS, have been

shown to induce the release of Gal3 in macrophages and glial

cells (Jeon et al., 2010; Li et al., 2008). This urged us to investi-

gate whether endogenous Gal3 could play a paracrine role in

the response triggered by an inflammatory stimulus. In culture,

we observed a time- and dose-dependent release of Gal3 pro-

tein from BV2 microglia cells in response to LPS exposure (Fig-

ure S5A). After LPS treatment, Gal3 and TLR4 were also found

to colocalize in BV2 cells (Figure S5B). Furthermore, the amount

of Gal3 found to co-immunoprecipitate with TLR4 was directly

proportional to the dose of LPS used (Figure 5A).

To study the contribution of Gal3 in the response of microglia

cells to a LPS stimulus, we decided to inhibit it through two

different approaches: (1) Gal3 expression was suppressed using

siRNAs in BV2 cells (Figure S5C) and (2) a Gal3 blocking antibody

was used to neutralize the effects of released Gal3. We observed

that both methods prevented LPS-induced iNOS expression at

6 hr and 24 hr (Figures 5B–5D). To validate Gal3 effect over the

inflammatory response upon LPS stimulus, the release of several

proinflammatory cytokines were checked in wild-type and Gal3

knockout primary microglial cell cultures, confirming the BV2

cell data, with reduced inflammatory response in Gal3 knockout

microglia (Figure 5E).

We also analyzed the effect of Gal3 inhibition in terms of IET-

Dase and DEVDase activities in response to LPS treatment; the

Gal3 siRNA knockdown has an inhibitory effect on both activ-

ities, especially at 24 hr (Figures S5D and S5E). Collectively,

these results demonstrate that Gal3 indeed contributes to the

response of microglia cells to LPS stimulus.

In Vivo Interaction between Gal3 and TLR4 and Its
Contribution to the Inflammatory Response Induced
by LPS
At this point, wewanted to validate our in vitro observation in vivo

and explore whether Gal3-TLR4 interactions could be observed

in the brains of mice 24 hr after LPS injection into the substantia

nigra, an established model of neuroinflammation (Castaño

et al., 2002; Herrera et al., 2000). First, we established an in vivo

rat brain microdialysis approach to detect released Gal3 in the

ventral mesencephalon in response to intranigral LPS injection.

We discovered that Gal3 is released in the substantia nigra

24 hr after LPS injection (Figure 6A). We further used TLR4,

Iba-1, and Gal3 immunohistochemistry and observed colocali-

zation of the three markers in several cells in the same region af-

ter LPS injection inmice (Figure 6B).We confirmed colocalization

of Gal3 and TLR4 in microglial cells by using double heterozy-

gous Cx3cr1GFP/+Ccr2RFP/+ mice, where GFP is expressed

only in microglial cells and RFP in monocytes (Figure S6F). We

performed fluorescence resonance energy transfer (FRET) anal-

ysis, using TLR4-FITC as a donor and Gal3 Texas Red as an

acceptor, and an interaction between TLR4 and Gal3 proteins

was demonstrated at 24 hr following injection of LPS in the sub-

stantia nigra (Figure 6C). Our in vitro investigations suggest that

the absence of Gal3 is associated with reduced inflammation

upon LPS stimulus. We decided to compare the neuroinflamma-

tory response after intranigral LPS injection in wild-type andGal3
Reports 10, 1626–1638, March 10, 2015 ª2015 The Authors 1631



Figure 5. Released Gal3 Enhances the Inflammatory Response after LPS Treatment in a Dose- and Time-Dependent Manner In Vitro

(A) Immunoblot showing the presence of Gal3 in immune complexes formed after pull-down of TLR4 in BV2 microglial cell line after being treated with LPS

(0.1 mg/ml and 1 mg/ml) for 24 hr.

(B–D) Reduced iNOS expression upon LPS treatment for 6 hr and 24 hr in BV2 cells transfected with siRNA-targeting Gal3 as compared to BV2 cells transfected

with siRNA control and after co-treatment of LPS with a neutralizing antibody against Gal3 as compared to the same amount of the same isotype of IgG as a

negative control.

(E) Cytokine profile in WT primary microglia versus Gal3 knockout (Gal3 KO) primary microglia cells after 12 hr treatment with LPS 0.1 mg/ml (E). a

Data are expressed as mean ± SEM (n = 4). *p < 0.05; **p < 0.01. See also Figure S5.
knockout mice. We found a significant decrease in the expres-

sion of proinflammatory markers IL-1b and IL-6, (Figure 6D)

which is consistent with the reduced numbers of reactive micro-

glia/macrophages (Figures 6E and 6F) and proliferatingmicroglia

(Iba1 and BrdU double-positive cells; Figures S6A and S6B) in
1632 Cell Reports 10, 1626–1638, March 10, 2015 ª2015 The Author
the Gal3 knockout mice as compared to wild-type mice after

LPS treatment. As a consequence of this ameliorated inflamma-

tory response in Gal3 knockout mice, there was a clear neuro-

protection of the dopaminergic system 7 days after LPS injection

(sham WT animals: 1,467 ± 304, LPS WT animals: 711 ± 128,
s



Figure 6. Gal3 Colocalizes with TLR4 and Contributes to the Inflammatory Response Induced by LPS Injection in the Substantia Nigra

(A) Measurement of Gal3 release 24 hr after LPS injection compared to saline injection in the substantia nigra.

(B) Increased expression and colocalization of Gal3 (purple), Iba1 (in red and also using range indicator filter in gray), and TLR4 (green) 24 hr upon LPS injection in

the substantia nigra.

(legend continued on next page)
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and LPS Gal3 KO: 1,213 ± 130; Figures 6G and 6H), with a clear

decrease in the number (Figure S6C) andM1 polarization pheno-

type (measured as CD16/32 expression; Figures S6D and S6E)

of the microglial population.

Gal3 Contribution to the Inflammatory Response
Induced in Global Brain Ischemia Model
Our next step was to assess the importance of Gal3 in a mouse

model of global cerebral ischemia that mimics the brain damage

caused by cardiac arrest. For this reason, wild-type and Gal3

knockout mice were used, and we found an increase of the sur-

vival of the hippocampal neurons in the mice lacking Gal3 (3,100

NeuN-positive neurons in sham; 1,415 ± 774 in wild-type and

1,868 ± 658 in ischemia-treated animals; Figures 7A and 7B).

The increase in the neuronal survival in the Gal3 knockout mice

was linked to a lower inflammatory response in terms of hippo-

campal Iba1 protein expression (Figures 7C and 7D). Mice lack-

ing Gal3 showed a lower body weight reduction (Figure 7E)

following ischemia. Also, mice lacking Gal3 show a tendency

(although not statistically significant) of amelioratedmemory def-

icits in the hippocampal-dependent Y-maze test 1 week after

ischemia (Figure 7F).

Gal3 Interacts with TLR4 in Human Brain Tissue
The expression of Gal3 and TLR4 was also investigated in

postmortem brain tissue from patients who had suffered and

died from cardiac arrest. High expression of both Gal3 and

TLR4 was observed in the ischemia-damaged brain tissue as

compared to age-matched controls (Figures S7A–S7D). Both

markers were found to be present, suggesting colocalization

(Figure S7D). Finally, FRET signal between Gal3 and TLR4 could

also be detected in cells in human stroke brain (Figures S7E–

S7G).

DISCUSSION

In this study, we show that, under conditions of acute brain

inflammation, there is release of endogenous Gal3, which subse-

quently binds to and stimulates microglial TLR4, thus eliciting

a proinflammatory M1 response in the brain. Furthermore,

released Gal3 appears necessary to elicit a full-blown activation

of microglia in response to proinflammatory stimuli such as LPS.

In ischemia/stroke, microglial cells are highly activated around

the site of a brain injury, where they typically express high levels

of Gal3 (Inácio et al., 2011; Lalancette-Hébert et al., 2012), a pro-

tein known to be a potent immunomodulator in neuroinflamma-

tory disorders. The inflammatory role of Gal3 in brain ischemia

appears to be diverse, conceivably depending on the specific

neuroinflammatory conditions. This is most likely due to several
(C) FRET of Gal3 and TLR4 after 24 hr treatment of LPS in substantia nigra.

(D) Comparison of IL-1b and IL-6 mRNA expression by qPCR between WT LPS-

(E and F) Comparison of the levels of macrophages (i.e., Iba-1+ cells with amoeb

directly in the vicinity of the injection site in WT mice and in Gal3 knockout mice.

(G and H) Quantification of TH+ dopaminergic neurons in the nigra 7 days after L

Data are expressed as mean ± SEM in (D; n = 4), mean ± SD in (F; n = 4), and mea

percent of FRET is represented as a color bar besides the FRET picture. The sca

colocalization of the three markers. See also Figure S6.
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factors such as the type of ischemic insult, its timing, and the

subcellular localization of Gal3, as well as the immunological

status of the individual. In neuroinflammatory models of ALS,

Gal3 can induce an anti-inflammatory response (Lerman et al.,

2012), whereas in experimental autoimmune encephalomyelitis,

Gal3 can exacerbate the disease by reinforcing the inflammatory

response (Jiang et al., 2009).

Other members of the galectin family of proteins, despite sig-

nificant sequence homologies and shared functional capabil-

ities, exert diverse and even sometimes opposite effects on

several biological processes. For instance, galectin-1 and galec-

tin-9 illustrate the variety of effects of the galectin family during

the inflammatory response. Indeed, galectin-1 can deactivate

‘‘classically activated microglia’’ through binding to the CD45

phosphatase, increasing the microglial surface’s retention time

of this glycoprotein and increasing its inhibitory function over

the inflammatory response (Starossom et al., 2012). In contrast,

galectin-9, acting as a ligand for Tim-3, can trigger a proinflam-

matory response in naive resting immune cells (such as dendritic

cells) and synergizes with the TLR-signaling pathway (Anderson

et al., 2007). Here, we show that Gal3 acts as a ligand for TLR4

under the described conditions and at a given time of cellular

activation/differentiation. This is driven by CRD-mediated en-

gagement of Gal3 to TLR4-attached carbohydrates (Figure 2).

Our data indicate that the CRDs of the other galectin subclasses

are capable of binding to TLR4, albeit with lower apparent affin-

ities (Figure S2F; Table S1). The fine specificity that varies be-

tween different galectins has been already thoroughly discussed

(Carlsson et al., 2007; Salomonsson et al., 2010a; Stowell et al.,

2008). This paper focuses on the role of Gal3 in the TLR4-medi-

ated microglial activation. The biological effect of other galectins

as TLR4 ligands should be addressed in future studies.

TLR4 is considered to be a key player in the innate inflamma-

tory response, but most of the studies performed in the field of

TLR4 are based on LPS administration. Although great advances

have been achieved using LPS as TLR4 ligand, its physiological

relevance is more related to sepsis than to sterile inflammation

(Chen and Nuñez, 2010). To support this, we observe a quantita-

tive difference betweenLPSandGal3 in the gene expression pro-

file, most likely because of the low LPS Kd value toward TLR4

(range of nM; Akashi et al., 2003) as compared with Gal3 (range

of mM). The results show not only a quantitative but also qualita-

tive difference in the gene expression response after LPS or Gal3

treatment (Figures 1 and S1), which suggests a different TLR4

downstream response depending on the stimulus. In the past

years, considerable efforts have been made to identify endoge-

nous ligands that can activate TLR4. As a result, some pro-

teins—i.e., heat shock protein (HSP)-70 and high mobility group

box 1 (HMGB1)—and glycosaminoglycans such as hyaluronan
injected mice versus LPS-injected Gal3 knockout mice.

oid morphology) and reactive microglia (i.e., Iba-1+ cells with thick processes)

PS injection in WT and Gal3 knockout mice.

n ± SD in (H; n = 4). White arrows show colocalization of the three markers. The

le bar for (B) and (E) represents 27 mm. *p < 0.05. White arrows in (B) represent

s



Figure 7. Gal3 Deficiency Ameliorates Mi-

croglial Activity, Neuronal Cell Death, and

Memory Impairment following Global Brain

Ischemia in Mice

(A and B) Representative picture (A) and quantifi-

cation (B) of viable NeuN+ pyramidal neurons in

hippocampal CA1 (A) subregion in sham, Gal3

knockout, and WT mice 8 days following global

brain ischemia (B).

(C and D) Reduced inflammatory response in hip-

pocampus measured by Iba1 immunoreactivity in

Gal3 knockout mice compared to WT mice.

(E and F) Body weight (E) and memory impairment

assessed by the Y-maze behavioral test (F) mea-

surements.

Values are expressed as mean ± SEM (n = 4) in (B),

(D), (E), and (F). The scale bar for (A) represents

50 mm and for (C) represents 372 mm. See also

Figure S7.
have been shown to be TLR4 ligands, as reviewed in Chen and

Nuñez (2010).

In summary, we demonstrate that (1) Gal3 can be actively

released into the extracellular compartment by activated micro-

glial cells, (2) Gal3 binds directly to TLR4 at physiological

concentrations, (3) Gal3 itself activates TLR4 and is capable of

activating surrounding microglia, (4) Gal3 amplifies the typical

TLR4-dependent proinflammatory response, including cas-

pase-mediated inflammation (Burguillos et al., 2011; Venero

et al., 2011), and (5) TLR4/Gal3 interaction occurs in the brain

of stroke patients as evidenced by FRET analysis. The discovery

that Gal3 can act as a TLR4 ligand brings further importance to
Cell Reports 10, 1626–1638
the elevated production and release of

Gal3 by microglia under ischemia/stroke

condition. These findings indicate that

Gal3 can play a decisive role in the expan-

sion and enforcement of the inflammatory

response and might potentially contribute

to the long-term inflammatory response.

New therapies specifically targeting Gal3

released from microglia could counteract

some of the deleterious effects resulting

from ischemia/stroke.

EXPERIMENTAL PROCEDURES

Cell Lines, Transfection, and Reagents

Murine microglial BV2 cell line was cultured

as described (Bocchini et al., 1992). Cells were

maintained in 10% FCS in DMEM and reduced to

2%–5% FCS while performing the experiments.

Transfection of BV2 cells was carried out using Lip-

ofectamine 2000 (Invitrogen) following the manu-

facturer’s recommendation. LPS (from Escherichia

coli, serotype 026:B6) and staurosporine were pur-

chased from Sigma-Aldrich. Recombinant Gal3

production and Gal3R186S mutant were prepared

as described (Salomonsson et al., 2010a). The pu-

rity of Gal3 and mutants proteins were determined

by the Limulus amebocyte lysate assay (Charles

River Laboratories), and only endotoxin-free pro-
teins were used. The recombinant proteins used for MST and fluorescence

anisotropy were obtained from R&D Systems, and the catalog numbers are

provided in the Supplemental Experimental Procedures. Non-targeting con-

trol, TLR4, and Gal3 siRNAs were obtained from Dharmacon. A complete list

of siRNA sequences, primers, and antibodies are provided in the Supple-

mental Experimental Procedures. In order to study the effect of the released

Gal3 over the sustained inflammatory response, cells were treated with

3 mg/ml of anti-Gal3 antibody or IgG as a negative control, together with

LPS for 24 hr, and the inflammatory response checked.

Animals and Surgery

Gal3-null mutant mice (Colnot et al., 1998; C57BL/6 background) were ob-

tained from Dr. K. Sävman/Gothenburg University and housed and bred at

Lund University and the Center of Production and Animal Experimentation.
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The Gal3 �/� and +/+ genotyping was performed as described in Doverhag

et al. (2010).

Double heterozygous Cx3cr1GFP/+Ccr2RFP/+ mice were generated as

previously described in (Mizutani et al., 2012) from CX3CR1-GFP knockin

and CCR2-red fluorescent protein (RFP) knockin reporter mice (Jung et al.,

2000; Saederup et al., 2010).

Male albino rats weighing 270–320 g were used for Gal3 microdialysis after

LPS injection.

Animals had free access to food and water. Experiments were performed in

accordance with the Guidelines of the European Union Council (86/609/EU),

following Spanish and Swedish regulations and approved by the Ethical Com-

mittee for Animal Research (ethical permit numbers M303-09 and N248/13).

In order to model the brain damage following cardiac arrest with successful

cardiopulmonary resuscitation, global ischemia was induced in mice (Olsson

et al., 2003; Deierborg et al., 2008). In brief, mice were first anesthetized

with 5% isoflurane in oxygen. Thereafter, the anesthesia was maintained at

2% isoflurane (IsobaVet; Schering-Plough Animal Health). A small cut parallel

to the trachea was made. The common carotid arteries were isolated and en-

circled with a thin silk thread to allow occlusion with a micro-aneurysm clip.

Ischemia was induced for 13 min. The wound was then sealed with a few

absorbable stitches before the anesthesia was discontinued. During the sur-

gery, the body temperature was monitored and controlled by a heating pad

and infrared lamp to keep the mice normothermic. The body temperature of

the mouse was maintained around 37.5�C during the whole procedure. Mice

were housed in an incubator at 34�C overnight in order to maintain normo-

thermia. Shammice were subjected to the same surgical protocol, except oc-

clusion to the common carotid arteries. The person performing the surgery

was blinded to the genotype of the animals.

Intranigral LPS injections (2 mg in 1 ml sterile saline) were made 1.2 mm pos-

terior, 1.2 mm lateral, and 5.0 mm ventral to the lambda.

Twenty-four hours later, mice were transcardially perfused under deep

anesthesia with 4% paraformaldehyde/PBS (pH 7.4). Brains were removed,

cryoprotected in sucrose, and frozen in isopentane at �15�C, and serial coro-

nal sections (25 mm sections) covering the substantia nigra were cut and

further processed for immunohistochemistry.

Statistical Analysis

The differences between control and experimental groups were evaluated with

one-way ANOVA with a Bonferroni’s post hoc analysis. c2 test was used to

analyze the up/downregulation of the genes presented in Figure 1.Mann-Whit-

ney test was used to analyze the NeuN-positive cells in Figure 7B. p < 0.05 was

considered as statistically significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2015.02.012.
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Sörme, P., Qian, Y., Nyholm, P.G., Leffler, H., and Nilsson, U.J. (2002). Low

micromolar inhibitors of galectin-3 based on 30-derivatization of N-acetyllac-

tosamine. ChemBioChem 3, 183–189.

Starossom, S.C., Mascanfroni, I.D., Imitola, J., Cao, L., Raddassi, K., Hernan-

dez, S.F., Bassil, R., Croci, D.O., Cerliani, J.P., Delacour, D., et al. (2012).

Galectin-1 deactivates classically activated microglia and protects from

inflammation-induced neurodegeneration. Immunity 37, 249–263.

Stowell, S.R., Arthur, C.M., Mehta, P., Slanina, K.A., Blixt, O., Leffler, H., Smith,

D.F., and Cummings, R.D. (2008). Galectin-1, -2, and -3 exhibit differential

recognition of sialylated glycans and blood group antigens. J. Biol. Chem.

283, 10109–10123.
1638 Cell Reports 10, 1626–1638, March 10, 2015 ª2015 The Author
Suzuki, Y., Hattori, K., Hamanaka, J., Murase, T., Egashira, Y., Mishiro, K., Ish-

iguro, M., Tsuruma, K., Hirose, Y., Tanaka, H., et al. (2012). Pharmacological

inhibition of TLR4-NOX4 signal protects against neuronal death in transient

focal ischemia. Sci Rep 2, 896.

Venero, J.L., Burguillos, M.A., Brundin, P., and Joseph, B. (2011). The execu-

tioners sing a new song: killer caspases activate microglia. Cell Death Differ.

18, 1679–1691.

Wesley, U.V., Vemuganti, R., Ayvaci, E.R., andDempsey, R.J. (2013). Galectin-

3 enhances angiogenic and migratory potential of microglial cells via modula-

tion of integrin linked kinase signaling. Brain Res. 1496, 1–9.
s


	Microglia-Secreted Galectin-3 Acts as a Toll-like Receptor 4 Ligand and Contributes to Microglial Activation
	Introduction
	Results
	Gal3 Affects Downstream TLR-Signaling Pathways in Microglia
	Gal3 Binds to TLR4 through Its CRD
	TLR4 Contributes to Gal3 Proinflammatory Response
	Gal3 Promotes Caspase-3/7 and Caspase-8 Activities in the Absence of Cell Death
	Released Gal3 Is Essential for Full Microglial Response upon LPS Stimulation
	In Vivo Interaction between Gal3 and TLR4 and Its Contribution to the Inflammatory Response Induced by LPS
	Gal3 Contribution to the Inflammatory Response Induced in Global Brain Ischemia Model
	Gal3 Interacts with TLR4 in Human Brain Tissue

	Discussion
	Experimental Procedures
	Cell Lines, Transfection, and Reagents
	Animals and Surgery
	Statistical Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


