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ABSTRACT

The observed lifetimes of gaseous protoplanetary discs place strong constraints on gas and ice giant formation in the core accretion
scenario. The approximately 10-Earth-mass solid core responsible for the attraction of the gaseous envelope has to form before gas
dissipation in the protoplanetary disc is completed within 1–10 million years. Building up the core by collisions between km-sized
planetesimals fails to meet this timescale constraint, especially at wide stellar separations. Nonetheless, gas-giant planets are detected
by direct imaging at wide orbital distances. In this paper, we numerically study the growth of cores by the accretion of cm-sized
pebbles loosely coupled to the gas. We measure the accretion rate onto seed masses ranging from a large planetesimal to a fully
grown 10-Earth-mass core and test different particle sizes. The numerical results are in good agreement with our analytic expressions,
indicating the existence of two accretion regimes, one set by the azimuthal and radial particle drift for the lower seed masses and the
other, for higher masses, by the velocity at the edge of the Hill sphere. In the former, the optimally accreted particle size increases with
core mass, while in the latter the optimal size is centimeters, independent of core mass. We discuss the implications for rapid core
growth of gas-giant and ice-giant cores. We conclude that pebble accretion can resolve the long-standing core accretion timescale
conflict. This requires a near-unity dust-to-gas ratio in the midplane, particle growth to mm and cm and the formation of massive
planetesimals or low radial pressure support. The core growth timescale is shortened by a factor 30–1000 at 5 AU and by a factor
100–10 000 at 50 AU, compared to the gravitationally focused accretion of, respectively, low-scale-height planetesimal fragments or
standard km-sized planetesimals.

Key words. accretion, accretion disks – hydrodynamics – methods: numerical – planets and satellites: formation –
protoplanetary disks

1. Introduction

The gas giants (Jupiter and Saturn) and ice giants (Uranus and
Neptune) in our solar system consist of a dense rocky and/or icy
core surrounded by a varying degree of hydrogen and helium
atmosphere (Guillot 2005). The strong positive correlation be-
tween stellar metallicity and exoplanet occurrence (Santos et al.
2004; Fischer & Valenti 2005) is also accompanied by a corre-
lation between stellar metallicity and the amount of heavy ele-
ments present in the exoplanetary interior (Guillot et al. 2006;
Miller & Fortney 2011), for objects in the gas giant mass range
between about 0.3 and 10 Jupiter masses (MJ). Additionally, a
careful statistical inspection of the planet candidates from the
Kepler transit survey reveals the evaporation and sublimation
of the smaller ice and gas giant planets to their naked cores as
they get close to their host star (Youdin 2011). After their forma-
tion, the migration of these massive planets in the later stages of
the protoplanetary disc shapes the final planetary system (Walsh
et al. 2011). However, reconstructing how ice and gas giants
form in the first place has proven to be challenging.

In the disc instability scenario, gravitational instabilities in
the protoplanetary disc excite dense spiral arms which frag-
ment directly into gas giant planets (Boss 1997). The core ac-
cretion (or nucleated instability) scenario requires the formation
of a 10-Earth-mass (M⊕) solid core, capable of holding on to a
gaseous atmosphere. When the envelope reaches a mass compa-
rable to the core mass, a run-away accretion of the surrounding
gas is triggered (Mizuno 1980; Pollack et al. 1996).

Using the solar system as a template for the end result of
planet formation is challenged by direct imaging of planetary

companions to A-stars at wide stellar separations. The system
HR 8799, for example, contains at least 4 planets separated from
their host star by 14.5, 24, 38 and 68 AU, confined by an in-
ner and outer debris disc (Marois et al. 2010). Best estimates of
the planetary masses place them all in the gas-giant range. The
presence of the debris discs reveals that growth to planetesimals
occurs at wide orbital distances as well. Another example of a
directly imaged gas-giant planet, β Pictoris b (Lagrange et al.
2010), orbits the host star at approximately 10 AU. Fomalhaut
b detected in reflected visble light (Kalas et al. 2008), with an
upper mass below 1 MJ (Janson et al. 2012), is located far from
the central start at approximately 120 AU. LkCa 15b is a newly
discovered gas-giant planet of about 6 MJ, likely caught in the
epoch of formation, orbiting at approximately 20 AU around a
young solar-like star, with an estimated age of only 2 Myr (Kraus
& Ireland 2012).

Formation of gas giants by direct gravitational collapse has
been shown to be problematic. At large distances from the host
star, Kratter et al. (2010) point out that it becomes increasingly
difficult to clump gas with masses below the deuterium burn-
ing limit. Additionally, at smaller stellar separations, gas cools
too slowly for the spiral arms to fragment into bound clumps
(Matzner & Levin 2005; Rafikov 2005).

On the other hand, gas-giant formation by core accretion suf-
fers from exceedingly long timescales at wide stellar separations
(Dodson-Robinson et al. 2009; Rafikov 2011). Observations
of dust infra-red emission (Haisch et al. 2001; Currie et al.
2009) and disc accretion (Jayawardhana et al. 2006) limit the
lifetime of the gaseous component of the protoplanetary disc

Article published by EDP Sciences A32, page 1 of 13

http://dx.doi.org/10.1051/0004-6361/201219127
http://www.aanda.org
http://www.edpsciences.org


A&A 544, A32 (2012)

to 106...7 yr. Classical core formation by runaway planetesimal
accretion is believed to take more than 107 yr beyond 5 AU,
where the planetesimal number densities are low (Goldreich
et al. 2004). Planetesimals (>km) get gravitationally focused on
to the core, but this effect can be significantly reduced when
scattering events drive up the random velocity component of the
planetesimals.

The formation of planetesimals, larger-than-km-sized solid
bodies bound by self-gravity, is problematic in its own way.
While classically considered to be the building blocks of both
rocky planets and gas-giant cores, the formation of solids this
size remains difficult to explain both theoretically and experi-
mentally. Particle growth beyond cm-sizes by coagulation is in-
efficient (Blum & Wurm 2008; Brauer et al. 2008; Windmark
et al. 2012) and radial drift timescales for m-sized boulders are
as short as a hundred orbital timescales (Adachi et al. 1976;
Weidenschilling 1977). On the other hand, one can circumvent
this so-called meter barrier with turbulence induced by the mag-
netorotational instability (MRI, Balbus & Hawley 1991), which
excites local pressure bumps, ideal regions for dust particle trap-
ping and growth (Whipple 1972; Johansen et al. 2009a). In
dead zones where the MRI does not operate, streaming insta-
bilities can destabilize the relative motion between gas and par-
ticles (Youdin & Goodman 2005; Johansen & Youdin 2007;
Bai & Stone 2010) and lead to the formation of dense fil-
aments. When the particle density becomes sufficiently high,
large Ceres-sized planetesimals are formed through gravitational
collapse (Johansen et al. 2007). The streaming instability bene-
fits strongly from increased disc metallicities (Johansen et al.
2009b; Bai & Stone 2010), explaining partly the higher occur-
rence rate of exoplanets around higher metallicity stars.

Instead of building up cores of ice and gas giants with
planetesimals, we investigate in this paper the accretion of
smaller particles, coupled to the gas on approximately orbital
timescales. Dust continuum observations of young circumstel-
lar discs around low-mass pre-main-sequence stars show growth
of the dominant particle size to mm and cm sizes within less
than 1 Myr (Testi et al. 2003; Wilner et al. 2005; Rodmann et al.
2006). The dynamics of these small particles is influenced by the
presence of the surrounding protoplanetary gas (Weidenschilling
1977), through Epstein drag (Epstein 1924).

While drag helps reducing the random velocities of large
planetesimals (≥1 km), Rafikov (2004) carefully investigated
analytically the effect of drag on smaller bodies (≤1 km) as
assumed products of a collisional cascade. However, he did
not consider particles coupled to the gas on shorter-than-orbital
timescales, excluding the pebble-sized objects seen in T Tauri
discs. He finds that nearly all fragments settle to the midplane
of the nebula and that gas drag is efficient enough to prevent
dynamical excitation, making core formation possible within
nearly 106 yr, as was later confirmed in coagulation models by
Kenyon & Bromley (2009). Accretion of smaller, pebble-sized
particles onto protoplanets was first investigated by Johansen
& Lacerda (2010), who numerically found that pebbles are ac-
creted from the entire Hill sphere, the region roughly corre-
sponding to the maximal gravitational reach of the core. They
identify a prograde particle disc, which could explain the spin
periods of asteroids and preferential prograde spin of large as-
teroids. The influence of gas drag on the interaction of single
small bodies and low-mass planets was explored by Ormel &
Klahr (2010). Analytically, they calculated that protoplanets
starting from ∼103 km can efficiently accrete ∼cm-sized par-
ticles with impact parameters comparable to the radius of the
Hill sphere. Ormel & Kobayashi (2012) further investigated the

protoplanet growth stage with a thorough toy model including
fragments, planetesimals and embryos and stressed the impor-
tance of the gas disc properties, such as a reduced local headwind
and turbulence for fast growth. Perets & Murray-Clay (2011) an-
alytically investigated the coalescence of binary planetesimals
due to drag forces and commented on the possibility of growth
through this mechanism. Lyra et al. (2008a) had already earlier
ran full disc models of pressure bumps formed near the edges
of the dead zone. After merely 200 orbits, they observed bound
embryos with masses similar to the planet Mars, consisting of
pebble-sized particles.

In this paper, we investigate core growth from a seed mass
by gas-drag-aided capture of cm-sized pebbles. In Sect. 2, we
describe the physics included in the shearing coordinate frame
used to numerically model the growth of the core. In Sect. 3 we
present the results from our simulations and analyse the accre-
tion rates for various core masses. We compare our results to
analytic expressions capturing the essential physics underlying
the phenomena at hand, namely the sub-Keplerian gas velocity,
the particle size, the Keplerian shear and the gravitational pull
from the seed core. The effect of local changes in the pressure
gradient are analysed and we present the effect of including the
backreaction of the particles on the gas flow. By extrapolating
the measured accretion rates, we discuss the formation of gas
and ice giant cores and derive a characteristic timescale for core
formation by pebble accretion in Sect. 4. We discuss the approx-
imations made in this paper and the limitations of our model in
Sect. 5. Finally, in Sect. 6, we conclude that pebble accretion
can explain rapid gas and ice giant formation in the core accre-
tion scenario, even at wide stellar separations.

2. Physical model

The growth of a gas giant’s core occurs in a protoplanetary disc,
a gaseous disc in the process of accreting onto the young star.
Based on the mass distribution in the solar system and assuming
a mean gas-to-dust ratio or metallicity of

Z =
Σp

Σ
= 0.01, (1)

with Σp and Σ denoting the solid (dust+ice) and gas column den-
sities, Hayashi (1981) constructed the minimum mass solar neb-
ula (MMSN). He found the radial dependence of the gas column
density to be

Σ = 1700
( r
AU

)−3/2
g cm−2, (2)

with the orbital radius r within 0.35–36 AU. The thin disc is
characterised by the ratio of the gas scale height H to the orbital
distance

H
r
=

cs

vK
≈ 0.033

( r
AU

)1/4
, (3)

with cs the sound speed of the gas and vK the Keplerian velocity,

vK = rΩK =

(GM
r

)1/2

· (4)

Here ΩK is the Keplerian frequency.
Solids with radii smaller than the local mean free path of

the gas, R ≤ (9/4)λ, are in the Epstein regime of gas-particle
coupling (Epstein 1924). They react on a friction timescale tf to
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Fig. 1. The physical response of a particle reacting to the gas flow is set
by the friction time tf . A particle of given size R has a dimensionless
friction time τf = ΩKtf that depends on the orbital distance r. The red
dash-dotted line marks the distance at which the particle size equals 9/4
of the mean free path λ of molecular hydrogen in the MMSN. Particles
with R > (9/4)λ are located in the dashed region, and experience Stokes
drag as opposed to Epstein drag. For the curves in the Stokes regime, we
have ignored the transition into the non-linear Stokes regime, applicable
for large particles close to the host star.

changes between the relative particle velocity u and the local gas
velocity u,

u̇drag = − 1
tf

(u − u) = − ρcs

ρ•R
(u − u) , (5)

where R and ρ• are the radius and material density of the particle,
while ρ is the local gas density. For particles in the vicinity of
the midplane, with z < H, one can assume ρH ≈ Σ/√2π, so
that the particle size R in the MMSN can be recovered from its
dimensionless friction time

τf = ΩKtf (6)

(also known as the Stokes number) as

R = 60 cm τf

(
ρ•

2 g cm−3

)−1 ( r
AU

)−3/2
· (7)

Figure 1 shows the relation between the orbital radius and the
particle radius for different dimensionless friction times. Around
10 AU, a dimensionless friction time of τf = 0.1 corresponds
to cm-sized particles, which we will refer to as pebbles. Close
to the star, the gas density increases sufficiently for the parti-
cles to enter the Stokes drag regime, where τ(S)

f = (4/9)(R/λ)τf

scales as ∝r5/4. For a more complete description of different drag
regimes, see e.g. Rafikov (2005) or Youdin (2010).

The gas component of the protoplanetary disc moves with a
sub-Keplerian mean velocity, since the force due to the the solar
gravity is reduced by the radially outwards pointing gas pressure
force. The azimuthal velocity difference Δ = Δuφ/cs between
the mean gas flow and a pure Keplerian orbit is given by

Δ = η
vK
cs
= −1

2
cs

vK

∂ ln(P)
∂ ln(r)

, (8)

where P = ρc2
s is the gas pressure and η is a measure of the

gas pressure support (Nakagawa et al. 1986). In the MMSN,

0.1 1.0 10.0 100.0
r/AU

0.05

0.10

0.15

Δ

MMSN
Chiang & Youdin, 2010

Fig. 2. Deviation Δ of the orbital velocity of a gas element with respect
to an object orbiting with the full Keplerian frequency, normalised by
the local sound speed, is plotted as function of orbital radius r in AU.
The bold black line represents the traditional MMSN scaling, while
the bold red line corresponds to the adapted MMSN as presented in
Chiang & Youdin (2010). The shaded area connecting to thin curves
indicates the effect of a strong pressure bump of strength δΔ = −0.04.
The adopted standard value of Δ = 0.05 in this paper, is accurate in a
region around 5 AU, even without a strong pressure bump.

Δ has a weak radial dependency, Δ ≈ 0.05 (r/AU)1/4, as can
be seen in Fig. 2. However, comparison of the MMSN model
with observed protostellar accretion discs, (e.g. Bell et al. 1997)
and studies of solar nebula metallicities (Lodders 2003) have
prompted updated MMSN models, with a less steep pressure
gradient, Δ = 0.036 (r/AU)2/7 (Chiang & Youdin 2010), as il-
lustrated in Fig. 2.

The turbulent nature of an accreting protoplanetary disc can
result in local pressure maxima (Johansen et al. 2009a; Fromang
& Stone 2009). As can be seen from Eq. (8) these pressure
bumps can locally reduce the headwind the pebbles experience.
Reductions by δΔ ≈ −0.02 are seen in shearing box simulations
of the MRI (Johansen et al. 2009a; Fromang & Stone 2009) and
global simulations (Lyra et al. 2008b). We have illustrated the
effect of a strong pressure bump, with δΔ ≈ −0.04, in Fig. 2.

Since particles face a headwind, they will drift radially and
azimuthally as

vr = −2
τf

τ2
f + 1

ηvK, (9)

vφ = − 1

τ2
f + 1

ηvK, (10)

as shown by Weidenschilling (1977) and Nakagawa et al. (1986).
The total relative velocity between the particle and the core in
pure Keplerian rotation is

Δv =

√
4τ2

f + 1

τ2
f + 1

ηvK, (11)

which is well approximated by Δv ≈ ηvk, since the parti-
cle sizes we consider, τf = (0.01, 0.1, 1), give us Δv/(ηvK) =
(1.0, 1.0, 1.1).

Particles settle in the vertical direction (perpendicular to the
orbital plane). The particle scale height Hp is a balance between
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Fig. 3. Contour lines mark the core mass Mc (in units of Earth
masses M⊕), as function of the dimensionless mass unit μc =
(GMc)/(Ω2

KH3) and orbital radius r in AU. The red contour line indi-
cates the assumed minimal mass of a gas-giant core. The horizontal
red dashed lines indicate the expected initial seed core mass from the
streaming instability after planetesimal formation by gravitational col-
lapse, μSI, and the transition mass μt (see Sect. 3.2).

midplane-directed gravity and turbulent diffusion parametrised
by the coefficient δt (Youdin & Lithwick 2007),

Hp

H
≈

√
δt

τf
≈ 0.01, (12)

where we will make the approximation that this holds for the
pebble size range we consider (τf = 0.01–1). The turbulence
generated by the streaming instability (Youdin & Goodman
2005) self-regulates the particle midplane density to equal the
gas density, independent of particle size. Since Z(Hp/H)−1 ≈
ρp/ρ ≈ 1, a near-unity midplane density in a protoplanetary
disc with metallicity Z = 0.01 sets the particle scale height to
be Hp/H = 0.01. For turbulence generated through the MRI, a
value of δt = 0.001 would give a ten times higher particle scale
height, Hp/H ≈ 0.1, for particles of friction time τf = 0.1.

The aim of this paper is to investigate accretion onto cores of
various masses, ranging from the expected initial masses of plan-
etesimals to estimated final core masses of gas-giant planets. The
core mass, or more precisely its gravitational parameter GMc, is
non-dimensionalised as

μc =
GMc

Ω2
KH3

=
Mc

M


(H
r

)−3

∝ r−3/4, (13)

with G the gravitational constant and M
 the stellar mass.
Figure 3 relates the dimensionless core mass μc to the orbital
radius in the MMSN. Given the core mass, we can assign it an
uncompressed radius of

Rc = 890

(
ρ

2 g/cm3

)−1/3 (
Mc

10−3 M⊕

)1/3

km. (14)

The critical core mass for runaway accretion of a gaseous en-
velope is approximately 10 M⊕ (Mizuno 1980), only weakly de-
pendent on the orbital radius outside the terrestrial planet region

(Rafikov 2006). At 5 AU this mass corresponds to μc ≈ 1, as can
be seen in Fig. 3. However, as Hori & Ikoma (2011) point out,
if the envelope can be significantly polluted by heavy elements
from the accretion of icy bodies, the critical core mass will be
reduced by up to two orders of magnitude.

Planetesimals are believed to have initial sizes in the
100−1000 km region (Johansen et al. 2007; Morbidelli et al.
2009). Johansen et al. (2012) find the characteristic clump mass
by streaming instabilities to be μSI ≈ 5 × 10−6 (see Fig. 3).

The dynamical equations of the particles,

du
dt
= −2ΩK × u + 3Ω2

Kxex + gc −
1
tf

(u − u), (15)

are solved with the Pencil Code1 in the shearing box approxima-
tion (Goldreich & Tremaine 1980; Brandenburg et al. 1995). A
Cartesian coordinate system is placed rotating at an arbitrary, but
fixed orbital distance, with Keplerian frequency ΩK. The x-axis
points radially outwards, the azimuthal direction corresponds
to the y-coordinate and the vertical z-direction is perpendicu-
lar to the midplane. The motion of the particles is described by
Eq. (15), which includes the acceleration due to the core placed
in the centre of the frame and the self-gravity of the particles
solved for through the Poisson equation,

∇ · gc = 4πGρp. (16)

Additionally, it includes the drag force term − 1
tf

(u − u), a term
balancing the linearised gravity and the centrifugal force 3Ω2

Kxex
and the Coriolis force −2ΩK × u.

We perform simulations both with and without the backre-
action term of the particles on the gas, with gas backreaction
time (ρp/ρ)−1tf . The momentum equation for the fluid elements,

∂u
∂t
+ u · ∇u = −2ΩK × u + 3Ω2

Kxex − Ω2
Kzez

−∇P
ρg
+
ρp

ρgtf
(u − u), (17)

includes the pressure gradient term, −(1/ρp)∇P, and vertical
gravity −Ω2

Kz. The continuity equation for the gaseous compo-
nent of the protoplanetary disc is given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (18)

and we use artificial hyperdiffusivity for the gas to dissipate en-
ergy on the smallest scales.

We solve these equations non-dimensionalised by the
Keplerian frequency ΩK, the scale height H of the gas disc
and ρ0, the gas midplane density. This has the benefit that, when
interpreting the normalised results, the orbital dependency is
nearly fully recovered from these parameter’s MMSN orbital
scalings (e.g. Figs. 1–3). The numerical results are however not
completely scale-free. When solving for self-gravity with the
Poisson equation, we must set

Γ =
4πGρ0

Ω2
K

, (19)

the non-dimensionalised form of the gravity constant G, as an
initial condition. It shows only a weak dependency on the orbital
radius,

Γ ≈ 0.04
( r
3 AU

)1/4
, (20)

1 The Pencil Code can be freely obtained at
http://code.google.com/p/pencil-code/
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Table 1. Characterising parameters of all simulations used in this paper.

name μc τf Δ L/H BR

1e-6_0.01 / 1e-6_0.1 10−6 0.01/0.1 0.05 0.01 No
1e-6_0.1_0.03 10−6 0.1 0.03 0.01 No
2.5e-6_0.1_0.03 / 2.5e-6_0.1 / 2.5e-6_0.1_0.07 2.5 × 10−6 0.1 0.03 / 0.05 / 0.07 0.02 No
1e-5_0.01 / 1e-5_0.1 / 1e-5_1.0 10−5 0.01/0.1/1 0.05 0.04 No
1e-5_0.1_0.03 / 1e-5_0.1_0.07 10−5 0.01/0.1/1 0.03/0.07 0.04/0.01 No
1e-4_0.01 / 1e-4_0.1 / 1e-4_1.0 10−4 0.01/0.1/1 0.05 0.128 No
1e-3_0.01 / 1e-3_0.1 / 1e-3_1.0 10−3 0.01/0.1/1 0.05 0.32 No
1e-3_0.1_b 10−3 0.1 0.05 0.2 Yes
1e-2_0.01 / 1e-2_0.1 / 1e-2_1.0 10−2 0.01/0.1/1 0.05 0.64 No
1e-1_0.01 / 1e-1_0.1 / 1e-1_1.0 10−1 0.01/0.1/1 0.05 1.28 No

Notes. All simulations are performed with 1283 grid cells resolution in stratified shearing boxes, with particle scale height Hp/H = 0.01 and
metallicity Z = 0.01. The first column gives the name of the simulation, followed by the characterising parameters: the core mass μc, particle
size τf , headwind parameter Δ and side length L of the cubic simulation domain. The last column indicates whether the simulation includes the
backreaction (BR) term of the particles on the gas, or not.

in the MMSN. We therefore fix Γ = 0.04 for the remainder of
this paper.

All simulations are performed in a three-dimensional shear-
ing box, with a fixed particle scale height of Hp/H = 0.01. Run
parameters for all simulations used in this paper can be inspected
in Table 1. The core is fixed in the origin of the coordinate sys-
tem, a valid approximation for the range of gas-decoupled seed
masses we cover. When the escape velocity vesc from the surface
of the core is small compared the sound speed, variations in the
gas density can be ignored, as can be seen from the hydrostatic
equilibrium of an isothermal gas,

v2esc

c2
s
≈ ∂ lnρ
∂ ln r

· (21)

We argue this approximation holds up to the largest cores
we consider in Sect. 5. All simulations, with the exception
of 1e-3_0.1_b (see Table 1), do include the gas drag on the
particles, but lack the backreaction from the particles of the core
on the gas. When omitting the backreaction term, the gas veloc-
ity equals to the sub-Keplerian velocity, uy = −ηvK. However,
simulation 1e-3_0.1_b includes the particle’s backreaction on
the gas and follows the numerical scheme discussed in Youdin
& Johansen (2007). When including the backreaction term, we
also turn on the vertical gravity force for the particles, −Ω2

Kzez.
All runs have sheared periodic boundary conditions in

the radial direction, but particles crossing azimuthal bound-
aries get removed from the simulation domain (with exception
of 1e-3_0.1_b), in order to avoid accretion of particles already
focused from their first passage past the core. We have also run
simulations including collisions, with the scheme discussed in
Johansen et al. (2012), and found no measurable difference in the
accretion rates on the seed core masses. We therefore omit col-
lisions from the simulations in this paper. Implications and limi-
tations of the simulation set up are further discussed in Sect. 5.

3. Results

Inspection of the particle’s momentum equation, Eq. (15), re-
veals an important length scale. The Hill radius,

rH =

(GMc

3Ω2

)1/3

, (22)

is set by the gravitational competition between the acceleration
towards the core and the stellar tidal field in the radial direc-
tion. At a separation rH from the core, the orbital time around

the core approximately equals the orbital time around the star,
2πΩ−1

K . The Hill sphere’s radius grows linearly with the orbital
radius rH ∝ r, placing more material in the gravitational region
of influence of the core.

3.1. Drift accretion

When ignoring the stellar tidal field and the Coriolis force, the
Bondi radius2

rB =
GMc

Δv2
, (23)

marks the outer point at which particles approaching the core
with relative velocity Δv get significantly gravitationally de-
flected (�1 rad, e.g. Binney & Tremaine 1987). Ignoring the stel-
lar tidal field is a valid approximation before the core mass grows
to the point where the Bondi radius becomes comparable to the
Hill radius (see Sect. 3.2), and we can associate a core mass,

Mt =

√
1
3
Δv3

GΩK
, (24)

with this transition. Masses with Mc < Mt are in the drift regime
and pebbles embedded in the gaseous disc approach the core
with a mean velocity comparable to the gaseous headwind the
core experiences, Δv ≈ ηvK.

Depending on the balance between the gravitational attrac-
tion of the core and the drag force the pebbles experience, a par-
ticle can be pulled from the mean gas flow and accreted if it dis-
sipates enough energy while being deflected. When the gas-free
core-crossing time associated with the Bondi radius,

tB =
rB

Δv
, (25)

is similar to the friction time tf , the drag force will cause all
pebbles within the Bondi radius to spiral inwards. However the
effective accretion radius, the drift radius rd, shrinks with respect
to the Bondi radius, when tB ≈ tf is not satisfied.

When tB > tf , the particle under consideration is strongly
coupled to the gas. In this limit, only grazing particles deflected
on timescales shorter than the friction time get pulled out of the

2 Note that we define the Bondi radius with the square of the relative
velocity between core and particle in the denominator, and not the sound
speed squared, which is also found in the literature.
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flow. If we let g denote the gravitational attraction due to the
core’s mass, the condition

tg =
Δv

g
< tf (26)

needs to be satisfied for accretion to occur. Since the deflection
time tg is given by Δvr2/(GMc) = (r/rB)2 tB, the effective drift
accretion radius is given by

rd =

(
tB
tf

)−1/2

rB, (27)

in the strong coupling limit. This radius corresponds to the set-
tling radius in Ormel & Klahr (2010) and is also equal to the
radius found by Perets & Murray-Clay (2011) where drag forces
shear apart bound binaries in the Epstein regime. We verified this
power law by numerically integrating orbits of test particles in
the 2-body problem including drag,

∂vx/Δv

∂t/tB
= −

( rB

r

)3 x
rB
− tB

tf

vx
Δv
, (28)

∂vy/Δv

∂t/tB
= −

( rB

r

)3 y

rB
− tB

tf

( vy
Δv
− 1

)
, (29)

where we non-dimensionalised the particle equation of motion,
ignoring disc dynamics. This is a valid approximation in the
drift regime, where tB � Ω−1

K . Sample orbits can be investi-
gated in the inset of Fig. 4, which shows the maximal particle-
core separation leading to capture. The drift radius for strongly
coupled particles falls of as ∝(tB/tf)−1/2 as predicted. Particles
with tf ≈ tB, get efficiently accreted within a Bondi radius from
the core.

Particles weakly coupled to the gas with respect to low-mass
cores (tB < tf ) are less aided by drag as they get deflected by
the core. As seen in Fig. 4, a rapid fall-off occurs for particles
with tf ≈ 102tB. The orbits in the inset show these particles to
be gravitationally scattered, similar to the case were no gas drag
is present. Here, the physical radius of the core becomes rele-
vant, since accretion now occurs through gravitational focusing
of particles on the core’s surface, which we have not taken into
account in Fig. 4.

The accretion rate in the drift accretion regime is given by

Ṁd = πρpr2
dΔv, (30)

when rd is smaller than the particle scale height Hp. A repre-
sentative simulation in this regime, performed with μc = 10−5,
is illustrated in Fig. 5. Pebbles drift with a sub-Keplerian ve-
locity past the core and those entering the Bondi radius, here
well inside the Hill radius, feed the growth of the embryo. Note
that when rd ≈ rb, the core growth scales faster than expo-
nential with mass, as Ṁd ∝ M2

c . Figure 6 shows the accre-
tion rates calculated from simulations 1e-6_0.1, 2.5e-6_0.1
and 1e-5_0.1. Particles with friction time τf = 0.1 closely fol-
low the maximal drift accretion efficiency,

μ̇d

μc
=

1
4

ρp

ρ

Γμc

Δ3
ΩK, (31)

with rd ≈ rB. However the low-mass core in run 1e-6-0.1
comes close to the weak coupling limit and sees its accretion
rate reduced.

We can envisage two effects reducing the accretion rate, if we
were to continue to ignore the stellar tidal field even for higher
mass cores. Firstly, when the core enters the strong coupling

10−3 10−2 10−1 100 101 102

tB/tf

10−3

10−2

10−1

100

r d
/r

B

StrongWeak

4
2

0

−2
−4

y/
r B

−4 −2 0 2 4
x/rB

Fig. 4. Accretion efficiency in the weak and strong coupling regime.
When the Bondi time tB = GM/Δv3 is equal to the particle’s friction
time tf , the drift accretion radius rd peaks and equals the Bondi ra-
dius rB. For a particle of fixed size, the ratio tB/tf on the horizontal axis
increases as the core mass grows in time. When particles are strongly
coupled to the gas (tB > tf ), with respect to the gravitational attraction of
the core, the drift radius decreases as rd ∼ (tB/ts)

−1/2 (the analytical scal-
ing of Eq. (27) is indicated with a full grey line). Near tB/tf ≈ 10−2 the
drift radius rapidly decreases. The inset shows particle trajectories (grey
curves) in this regime, which can be compared with those at tB/tf = 1
(black curves). Where the former are simply gravitationally deflected,
in the latter case we see that particles inside the Bondi radius (marked
by a red circle) are accreted by the central point source.

limit, growth slows down to exponential, Ṁd ∝ t−1
B r2

B ∝ Mc.
Secondly, when the accretion radius becomes comparable to the
particle scale height, the appropriate expression for the accretion
rate is given by

Ṁd = 2rdΣpΔv, (32)

where Σp is the particle column density. When rd ≈ rB, we get
exponential growth Ṁd/Mc = 2Σp/Δv.

3.2. Hill accretion

When the core mass grows to the point where the Bondi radius
rB ∝ M2

c is comparable to its Hill radius rH ∝ M1/3
c (or identi-

cally vH = Δv or tB/tf = τ−1
f ), it will cross the transition mass,

Mt =

√
1
3
Δv3

GΩK
≈ 3 × 10−3

(
Δ

0.05

)3 ( r
5 AU

)3/4
M⊕, (33)

defined earlier and see a change in pebble accretion mechanism.
The dimensionless form of the transition mass,

μt = 7 × 10−5

(
Δ

0.05

)3

, (34)

scales as the cube of the headwind parameter Δ (see Fig. 2). The
Hill radius now sets the maximal impact parameter from which
particles can be accreted. When Mc > Mt, pebbles at the edge of
the Hill sphere approach the core with relative velocity

vH ≡ ΩKrH. (35)
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Fig. 5. Accretion of pebbles with τf = 0.1 by the central core (μc = 10−5) in the drift regime. The colour coding shows the local particle surface
density Σp, normalised by the average particle density

〈
Σp

〉
, in the simulated shearing box with Z = Hp/H = 0.01. Marked as a white dot, the

central seed core can be seen in the first panel. Both the drift and Hill radii are plotted as white circles. The second panel illustrates the drift of the
particles (Δ = 0.05) and creation of an accreting particle wake. In the third panel, particles within the drift radius rd ≈ rB are accreted. Particles
further out may be carried out of the box by the sub-Keplerian gas or by the Keplerian shear. In the final panel the headwind has blown most
pebbles past the core, with only a minority accreted.

The Keplerian shear v = −(3/2)ΩKx dominates over the head-
wind in the Hill branch, since vH/Δv =

√
rB/rH. The inverse

Keplerian frequency,Ω−1
K , is the gravitational crossing timescale

at the Hill radius, independent of core mass. For particles with
friction times close to the orbital timescale (τf = 0.1–1), all par-
ticles entering the Hill sphere will be accrete, as illustrated in
Fig. 7. Here we present particle orbits obtained from the Hill
equations including drag

∂vx/vH

∂t/Ω−1
K

= +2
vy

vH
+ 3

x
rH
− 3

(
r

rH

)−3 x
rH
− 1
τf

vx
vH

(36)

∂vy/vH

∂t/Ω−1
K

= −2
vx
vH
− 3

(
r

rH

)−3
y

rH
− 1
τf

(
vy

vH
+

3
2

x
rH

)
(37)

where r =
√

x2 + y2 is the particle-core distance. Similar to the
drift case (Sect. 3.1), when the gravitational deflection time (here
independent of the core mass and ∼Ω−1) is similar to tf , enough
energy will be dissipated during the approach to mediate the ac-
cretion of the pebbles within the Hill sphere. The accretion rate
is then given by

ṀH = 2rHΣpvH ∝ M2/3
c , (38)

since for the core masses under consideration, Mc > Mt,
we accrete the total particle surface density, Σp (rH >
Hp). This growth mode is confirmed by our numerical sim-
ulations 1e-4_0.1, 1e-3_0.1, 1e-2_0.1, 1e-1_0.1 and
1e-3_1.0, 1e-2_1.0, 1e-1_1.0. They can be inspected in
Figs. 6 and 8. An example of a simulation with a seed mass ac-
creting at the Hill rate is illustrated in Fig. 9. Here, particles of
τf = 1 entering the Hill sphere drive the growth of the core of
mass μc = 10−2. Accretion occurs through a particle disc, as
was previously resolved in high-resolution 2D simulations by
Johansen & Lacerda (2010).

Note that in the classical scenario of planetesimal accretion,
one never captures objects from the full Hill sphere, but only by
a fraction α1/2rH, with α ≈ rc/rH set by the physical radius of
the core rc. In the terminology of Rafikov (2011), slow accretion
of planetesimals between the shear- and dispersion-dominated
dynamical regime, from a part of the particle scale height Hp =
v/ΩK (e.g. Dodson-Robinson et al. 2009), goes as approximately
Ṁ ≈ παr2

Hρpv ≈ αrHΣpvH ≈ αṀH. At 5 AU, this gives a
reduction in the accretion rate of α ≈ 10−3 (r/5 AU)−1, for
a standard solid density (Goldreich et al. 2004). Accretion of
planetesimal fragments from a thin midplane, as discussed in
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Δ=0.05, τf=0.1, Z=0.01
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μ/
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Hill accretion
Drift accretion

.

Fig. 6. Accretion rate μ̇/μ0 as function of the initial core mass μ0.
Theoretical curves for the branches corresponding to drift and Hill ac-
cretion are plotted as respectively dashed and full lines in grey. The grey
full circle marks the transition mass. Black crosses represent the sim-
ulated results in a stratified shearing sheet, with Δ = 0.05. Triangles
correspond to simulations with modified Δ, a grey upwards pointing
triangle corresponds to Δ = 0.07 and a downwards pointing triangle
corresponds to Δ = 0.03. In the Hill branch, the position of both trian-
gles lie on top of the black crosses and are omitted for clarity. The grey
square shows the result of simulation 1e-3_0.1_b, which includes the
particle backreaction.

Rafikov (2004) is more efficient, with the accretion rate be-
ing proportional to

√
αṀH. At 5 AU, this limits the growth by√

α ≈ 3 × 10−2 (r/5 AU)−1/2. Thus accretion of pebbles at a rate
ṀH from the entire Hill sphere is extremely efficient, compared
to the classical gas-free case.

Only the smallest particles we consider, with τf = 0.01, have
an accretion efficiency that is less than optimal in the Hill branch
(Fig. 8). Similar to the case of the strongly coupled particles in
the drift regime, accretion requires the gravitational deflection
time to be shorter than the friction time, as previously expressed
in Eq. (26). The relative velocity for particles approaching the
Hill sphere is set by the Keplerian speed Δv ≈ Ωr. This allows
us to rewrite the accretion criterion as

Ωr
r2

GM
< tf , (39)

which gives us an effective accretion radius

reff � τ
1/3
f rH. (40)

In this regime, ṀH,eff ∝ τ2/3
f , which compared to particles of

τf = 0.1 would give a reduction of the accretion rate by ≈0.2, as
can be seen from comparing Figs. 6 and 8.

3.3. Influence of headwind reduction and particle feedback

In the above discussion, we have kept the relative velocity be-
tween core and the gas disc constant at Δ = 0.05. As pre-
viously mentioned, we have ignored the presence of pressure
bumps, local extrema in the radial pressure force resulting in re-
gions of a reduced headwind, as well as extreme orbital distances

−2 −1 0 1 2
x/rH

−2

−1

0

1

2

y/
r H

τf=0.1
τf=0.01
τf=1

Fig. 7. Trajectories for particles with dimensionless friction time τf =
0.01, 0.1, 1 obtained from the 2D Hill equations including gas drag.
Pebbles with τf = 0.1 and impact parameters below a Hill radius ef-
ficiently get accreted. Larger particles of τf = 1 are pulled in from
wider separations, but cores lose particles on horseshoe orbits. Particles
strongly coupled to the gas, with τf = 0.01, need close encounters well
within the Hill sphere in order to fall onto the core.

Δ=0.05, τf=0.01,1, Z=0.01

10−6 10−5 10−4 10−3 10−2 10−1
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10−3

μ/
μ 0

τf=1
τf=0.01

.

Fig. 8. Normalised accretion rates, μ̇c/μ0, for different particle sizes
with friction time τf = 1 and τf = 0.01, as indicated by respectively
asterisks and diamonds. The grey curves correspond to those shown in
Fig. 6 and similarly the transition mass is indicated by a full grey circle.
In the Hill branch, larger particles, τf = 1, get accreted as efficiently as
particles with friction time τf = 0.1 (see Fig. 6), but in the drift branch
they never get accreted at the full drift rate. On the other hand, small
particles, τf = 0.01, get efficiently accreted in the drift branch, but less
so in the Hill regime.

where Δ can change significantly. While the accretion rate ṀH
in the Hill regime is insensitive to Δ, the Bondi branch up to
the transition mass Mt is not. Figure 6 illustrates the effect on
changes in Δ for various core masses (Δ = 0.05 ± 0.02). For a
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Fig. 9. When the core is massive enough, it can efficiently accrete particles with τf = 1 entering its Hill sphere (indicated by the white circle in the
first panel). On this scale, the Keplerian shear dominates over the relative velocity difference between the gas and Keplerian velocity (Δ = 0.05).
Accretion seems to occur through a particle disc, visible after a steady state has set in (panel 2 to 3). In the last panel, accretion and Keplerian
shear have removed most particles in the box. The colour coding is similar to Fig. 5. The simulation was performed in a stratified shearing sheet
box with Z = Hp/H = 0.01.

core mass accreting approximately from the full Bondi branch,
Eq. (31) indicates that the accretion rate will be modified by a
factor (0.05/0.03)3 ≈ 5 for Δ = 0.03 compared to accretion
with Δ = 0.05. This is in agreement with the measured accre-
tion rates for μ = 2.5 × 10−6 (2.5e-6_0.1_0.03). The increase
is reduced for 1e-5_0.1_0.03 where rB grows to RH, and in-
creased for 1e-6_0.1_0.03 where tB/tf grows sufficiently out
of the weak coupling limit. Overall we see that even weak pres-
sure bumps decreasing Δ by 0.02 lead to more rapid accretion.
Vice versa, for Δ = 0.07 we expect a reduction of the accretion
rate by a factor (0.05/0.07)3 ≈ 0.4 and we measure similar, but
lower accretion rates (1e-5_0.1_0.03, 2.5e-6_0.1_0.03).

In simulation 1e-3_0.1_b, we have departed from a smooth
gas velocity profile, by including friction on the gas and letting
turbulence develop by the streaming instability. After approxi-
mately 20 orbits, we place the seed core mass in the centre of
the simulated domain (Fig. 10). The measured accretion rate
does not deviate measurably from the case not including par-
ticle backreaction, as can be seen in Fig. 6. This indicates that
our results are robust for the Hill branch, even in a turbulent en-
vironment. More simulations should be carried out in the future

to verify the validity in the drift regime. However, this requires
very high resolution in order to resolve both the Bondi radius
and the streaming instability wavelength simultaneously.

4. Implications for gas giant growth

Having numerically confirmed the pebble accretion rates for low
to high core masses, we can extrapolate our results and find the
time necessary to grow a core to the critical mass needed to at-
tract its gaseous envelope.

In the drift regime, the accretion rate implies a growth
timescale of

Δtd =
∫ Mc

M0

Ṁ−1
d dm ≈ Δv3

πρpG2
M−1

0 (41)

to reach a core mass Mc from an initial seed mass M0 � Mt.
This lower limit, since we assume optimal accretion from the
full Bondi radius, sets the time until the accretion rate blows up
hyperbolically as Mc ∝ (Δtd − t)−1 and thus does not depend on
the final mass we wish to reach. However, from our numerical
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Fig. 10. Including the backreaction friction force on the gas, a core of μ = 10−3 accretes particles of τf = 0.1 (third and last panels), even in
presence of turbulence caused by the streaming instability. The turbulence has first been given 20 orbits (∼126Ω−1) to saturate (first and second
panels), before the core is inserted. From the full Hill sphere, rH/H ≈ 0.07, pebbles are attracted in a prograde motion to the core (third panel).
As before, the colour bar in the first panel gives the particle surface density. The insets show the azimuthally averaged particle density and vertical
extent of the particle layer. For clarity, in the insets the colour coding covers a twice as wide range in particle overdensity, compared to the surface
density plots.

results we know that this growth is not sustained and turns off
to the Hill branch. The characteristic time to reach the end point
for drift accretion, the transition mass Mt, is given by

Δtd ≈ 8 × 106

(
Δ

0.05

)3 (
ρp/ρ0

0.01

)−1 (
M0

10−5M⊕

)−1 ( r
5 AU

)2
yr, (42)

which at 5 AU is comparable to the gas disc lifetime. If parti-
cles sediment to the midplane, the ratio of the particle to the gas
density, ρp/ρ0, would be of order unity. However, past 0.5 AU, a
small seed core mass, M0 = 10−5 M⊕, accretes non-sedimented
particles of size τf < 0.01 most efficiently. For reasonable values
of the local headwind,Δ = 0.03–0.07, growth is too slow to form
cores large enough to enter the Hill accretion regime, and with-
out pressure bumps Δ is even larger at wide stellar separations.

Hill accretion on the other hand, has a growth timescale of

ΔtH =
∫ Mcrit

Mt

Ṁ−1
H dm ≈ 35/3Ω1/3

K

2G2/3Σp
M1/3

crit , (43)

which is only weakly dependent on the critical mass for gas en-
velope attraction Mcrit and independent of the transition mass,

when Mt � Mcrit. The core growth when accreting pebbles is
fast in this regime, at 5 AU the critical mass is reached after

ΔtH ≈ 4 × 104

(
Mcrit

10 M⊕

)1/3 ( r
5 AU

)
yr. (44)

Furthermore, the growth timescale ΔtH scales linearly with or-
bital distance r, as opposed to quadratic in the drift regime. This
makes core formation possible in distant regions of the proto-
planetary disc. Also, note that Hill accretion rate is maintained
for a single particle size with friction times τf ∼ 0.1–1, indepen-
dent of the core mass, as opposed to the Bondi regime where one
unrealistically needs to maintain tB ≈ tf to maintain the maximal
accretion rate.

Figure 11 shows the core growth in both regimes and the
dependency on the orbital distance. We conclude that fast core
growth is possible through pebble accretion, provided that the
initial seed mass for the core is above the local transition mass.
A sufficiently large embryo can only be grown by drift accretion
in pressure bumps with low headwind, Δ � 0.05, or be the result
of planetesimal formation by gravitational collapse after concen-
tration by e.g. streaming instabilities (see also Fig. 3). It is inter-
esting to note that both Ceres and Pluto have less than the critical
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Fig. 11. Core growth as function of time, plotted for various orbital dis-
tances (0.5, 5 and 50 AU). The drift branch, marked by grey solid lines,
assumes an initial core mass of M0 = 10−5 M⊕ and Δ = 0.05. The drift
growth continues until the transition mass Mt is reached (marked by
a full grey dot). Accretion continues through the more efficient Hill
branch, drawn in black. For clarity, we start the Hill growth from the
transition mass at time t = 0 yr, instead of continuing from the time
where drift accretion comes to a halt. The masses of Ceres and Pluto
(located at respectively 2.7 and 39 AU) are marked on the vertical axis
for reference. The grey dotted curves correspond to classical planetesi-
mal accretion (PA), where the faster growth corresponds to 2D accretion
of planetesimal fragments (Rafikov 2004) and the slower to 3D accre-
tion of planetesimals (e.g. Dodson-Robinson et al. 2009). Note that drift
accretion timescale at 50 AU takes more than 108 yr and its transition
mass point is not plotted.

mass needed for fast Hill accretion, which might explain why
they failed to grow to gas or ice giants. Indeed, one can make
the assumption that only those planetesimals that formed early
enough in the high-mass tail of the initial planetesimal mass dis-
tribution could serve as the seed for gas-giant cores.

As an illustration of the rapid core growth by pebble accre-
tion in the Hill regime, we compare it to the core growth time
for planetesimal accretion in Fig. 12. As discussed in Sect. 3.2,
the inability to accrete solids from the entire Hill sphere, as op-
posed to pebble accretion, leads to significant longer core for-
mation times, in conflict with the observed dissipation time of
protoplanetary discs.

5. Discussion

We discuss here the assumptions and limitations of our results.
Midplane layer thickness. One component of the pebble ac-

cretion scenario is the presence of a thin particle disc (Hp =
0.01H). This low particle scale height is expected from turbu-
lence driven by streaming instabilities, independent of particle
size, as discussed in Sect. 2. A moderately higher particle scale
height, as may be the case for turbulence caused by the magne-
torotational instability, can result in a situation where rH < Hp
past the transition core mass. This would result in a temporarily
reduced accretion rate, by a factor rH/Hp = (Hp/H)−1(rH/H) =
(1/3)1/3(Hp/H)−1μ1/3, until the Hill radius grows beyond the
particle scale height.

Core growth to 10 M⊕
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Fig. 12. Time needed for core growth up to 10 M⊕ at various loca-
tions in the disc. The solid black line gives the formation time of the
core for pebble accretion in the Hill regime, while grey lines give the
time needed to form the critical 10-Earth-mass core by planetesimal
accretion. The dashed grey line represents planetesimal fragment ac-
cretion from a thin midplane layer, as studied by Rafikov (2004). The
red shaded area shows the approximate time interval in which the pro-
toplanetary disc loses its gaseous component and encompasses for ex-
ample the estimated age of gas giant LkCa 15b (Kraus & Ireland 2012).
Core formation needs to occur before this time.

Particle size. The assumption of a single particle size in our
simulations can be criticised, but as discussed in the introduc-
tion, observations of protoplanetary discs allow a large fraction
of the solid mass to reside in the particle size range that we con-
sider, τf = 0.01–1 (Wilner et al. 2005). A large abundance of par-
ticles larger than pebbles is not expected from coagulation mod-
els (Blum & Wurm 2008; Brauer et al. 2008; Windmark et al.
2012). However, as particles approach the core their icy com-
ponent might sublimate; as friction would heat the particles, es-
pecially when a denser envelope starts forming around the core.
It would be interesting to take this size-diminishing effect into
account in a further investigation. On the other hand, particles
might grow larger. In higher metallicity environments streaming
instabilities become so effective in clumping solid material that
one can fear particles to grow past the pebble size. However, we
do not see this particle clumping in our simulations including the
gas drag backreaction at the metallicity we consider (Z = 0.01).
Strong clumping requires Z � 0.02 (Johansen et al. 2009b; Bai
& Stone 2010).

Gas structure. For the lower seed masses discussed in the pa-
per, we previously argued (Sect. 2) that the gas density changes
around the core are small. In the Hill regime, the ratio v2esc/c

2
s ≈

2.3 × 102μ2/3(r/AU) (in the MMSN for standard solid density)
can exceed unity for the highest core masses and the effects of
an envelope should be taken into account. But, as also argued
by Ormel & Klahr (2010), even if the direction of the flow
moderately changes on scales within the Bondi radius due to
stratification near the core, only particles with tf � tB could be
affected by it. Since these particles are too strongly coupled to
the gas for accretion to take place in the first place (strong cou-
pling limit), ignoring the core’s feedback on the gas is justified.

Keplerian orbits. In our analysis we assumed the core to
be on a circular Keplerian orbit. The relative velocity between
the core and the gas in Keplerian rotation could be signifi-
cantly modified if competing cores would get excited by re-
peated close passages. However, as opposed to classical plan-
etesimal growth, in our scenario gas damps the small particles
and dynamical friction prevents the excitation of larger bodies,
similar to the oligarchic growth regime. We do ignore gas-driven
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type-I migration of the core, important for core masses over
0.1 M⊕ (Tanaka et al. 2002).

Random particle speed. In our simulations, particles ap-
proach the core in equilibrium with the gas flow. Particle inter-
actions with the core last at most of the order Ω−1

K , as in the Hill
regime. Small particles (τf � 1) are coupled to the gas on similar
timescales. The passage of the core is quickly erased for the non-
accreted particles, even when ignoring radial drift and turbulent
diffusion. The core only catches up with the deflected particles
after approximately tpass = 2πrΔv−1 = (2π/ΩK)(r/H)Δ−1 ≈
104 (r/AU)−1/2Ω−1

K . However, in the Hill accretion regime all
particles that can be deflected are accreted, and it is the ra-
dial drift and diffusion of particles that fill up the feeding zone.
Diffusion can be rapid, since the diffusion time associated with
closing the Hill sphere tHΩ ∼ R2

H/(δtH2) ∼ (1/3)2/3δ−1
t μ

2/3, is of
order unity for a protoplanetary disc with δt = 0.01.

Particle drift. When the drag force responsible for radial drift
is too small, particles could get trapped in mean motion reso-
nances with the core. Weidenschilling & Davis (1985) studied
large, τf ≥ 1, particles in the Stokes drag regime, and argued
that particles smaller than these sizes feel large enough drag
forces to escape resonant trapping around a Jupiter-mass planet
at 5 AU. As shown by Tanaka & Ida (1997) inclusion of mu-
tual planetesimal interactions breaks down the resonances, but
dust gap formation still occurs for large planetesimals, where gas
drag changes the semi-major axis of the the planetesimals after
scattering with the protoplanet. The maximal particle size unaf-
fected by particle trapping seems approximately inversely pro-
portional to the planet’s mass, which is also seen in simulations
performed by Paardekooper (2007). In fact, Weidenschilling &
Davis (1985) argue that small pebbles are the only size that can
be accreted by the core, since trapped larger planetesimals get
dynamically excited and will be ground to fragments, which in
their turn are capable of escaping the resonance. This picture is
confirmed in simulations performed by Levison et al. (2010).

Dust gaps can open up before the core is massive enough
to create a gap in the gas disc itself (Paardekooper & Mellema
2006). Muto & Inutsuka (2009) analytically show that the core
has to be over a critical mass,

μc > Δ
(H

r

)−1

≈ 1, (45)

for particles of τf ≤ 1 in order for a dust gap to emerge. Past r ≈
1 AU, μ ≈ 1 is consistently above 10 M⊕, the critical core mass
for gas and ice giants (see Fig. 3). Particles thus always drift
radially fast enough to replenish the feeding zone of the core.
Indeed, if the drift rate is set by Rd = 2πrΔvΣp, the requirement
Rd ≥ ṀH recovers the above criterion, Eq. (45). At the same
time, as pointed out by Ormel & Kobayashi (2012), the particle
drift can also be responsible of clearing up the entire reservoir of
available pebbles in the disc.

Terrestrial planet formation. Growth at small orbital dis-
tances, r < 5 AU, is remarkably rapid in the pebble accretion
model. Formation of rocky planets and possibly in situ forma-
tion of gas-giant planets in the terrestrial planet region seems
problem-free from the perspective of the accretion rate. The
growth timescales for both the drift and Hill accretion branch
shrink to approximately 105 yr at Earth-like separations from
the host star. This could indicate that even terrestrial planet for-
mation occurs rapidly during the gaseous disc phase. However,
closer to the star the amount of material in an annulus of
Hill-radius-width is small and the isolation mass by gap forma-
tion is lower. Also the optimally accreted particle size is large,
around 10 cm, and ices are not available.

6. Conclusions

In this paper we have demonstrated that accretion of pebbles
makes rapid formation of gas-giant cores possible. The growth
timescale to reach the critical core mass for gas accretion is re-
duced by three orders of magnitude at 5 AU and four orders
of magnitude at 50 AU, compared to the planetesimal accretion
rate in between the shear- and dispersion-dominated dynamical
regime. Compared to accretion of planetesimal fragments from
a thin layer the formation time is shortened by approximately a
factor 30 at 5 AU and a factor 100 at 50 AU. This is further sup-
port for the core accretion scenario, because cores can form by
pebble accretion before gas dissipation after 1–10 million years,
even at large orbital radii.

We can summarise the main numerical results as follows.
Our simulations show gas drag to be a necessary ingredient for
fast pebble accretion by the growing core. Omnipresent pebbles,
particles with friction time around τf ≈ 0.1, are ideally suited for
core growth. They are weakly enough bound to the gas to feel the
gravitational pull from the core, but strongly enough to deposit
their kinetic energy through drag forces, when passing the core.
Low-mass cores, cores below the transition mass corresponding
to a body of radius larger than approximately 1000 km, can ac-
crete small particles drifting with the sub-Keplerian gas velocity
past the core, but this process is slow, even in pressure bumps
with reduced headwind and particle settling in a thin mid-plane
layer. However growth in this regime could be important for a
seed planetesimal formed just below the transition mass, where
the accretion rate is high. Higher-mass cores can efficiently at-
tract pebbles from the full Hill sphere, as was found by Johansen
& Lacerda (2010) and Ormel & Klahr (2010). In this regime,
the optimally accreted particle size is independent of the core
mass, in contrast to the drift regime, where the particle size with
the highest accretion rate increases linearly with radius of the
growing core.

For the pebble accretion mechanism to be rapid, a significant
fraction of the solid density needs to be in the form of pebbles
close to the midplane, and some planetesimals need to form with
sizes of 1000 km or larger. Theoretical models of planet forma-
tion show that these large seeds of approximately Ceres-size can
form by self-gravity after clumping by the streaming instability
(Johansen et al. 2007, 2012), so the pebble accretion scenario fits
well with the formation of planetesimals by self-gravity.

The conditions for fast core growth are supported by ob-
servations. A large reservoir of pebbles is inferred in observa-
tions of many young protoplanetary discs (Wilner et al. 2005;
Rodmann et al. 2006). Additionally, studies of the collisional
evolution of the asteroid belt show that large asteroids must have
formed early when gas was still present (Morbidelli et al. 2009).
The early disappearance of mm-dust in protoplanetary discs on
timescales shorter than 1 Myr (Lee et al. 2011) can be con-
tributed to fast particle growth and rapid core formation. In fact,
we see that gas giants form both rapidly (Kraus & Ireland 2012)
and at large orbital radii (Marois et al. 2010). Our results predict
that ice and gas giant planets, detectable with direct imaging sur-
veys, will be abundant around young (∼1 Myr) stars.

Further exploration of the pebble accretion mechanism by
simulations with particle backreaction, around higher or lower
metallicity discs in larger simulation domains, are needed to
show the robustness of rapid core growth. Preferably, global sim-
ulations should be developed, including gap formation, radial
drift, mean motion resonances and multiple cores, in order to get
a full overview on the implications on fast core growth. When
the core mass starts to approach the critical 10 Earth-masses
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for envelope attraction, we see a prograde particle disc emerge.
Studying these discs, possibly the birthplaces of the regular
satellites of gas giants, in conjunction with the emergence of a
dense envelope around the core, will teach us more about the
early growth and gas accretion thermodynamics of gas giants.

Pebble accretion provides us with a viable pathway to rapid
formation of gas-giant and ice-giant cores. The necessary first
step of the core accretion scenario can occur even at wide stellar
separations, well within the lifetime of gaseous protoplanetary
discs.
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