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Abstract

This thesis explores methods for estimating 3D models using depth sensors and
finding low-rank approximations of matrices. In the first part we focus on how to
estimate the movement of a depth camera and creating a 3D model of the scene.
Given an accurate estimation of the camera position, we can produce dense 3D
models using the images obtained from the camera. We present algorithms that
are both accurate, robust and in addition, fast enough for online 3D reconstruc-
tion in real-time. The frame rate varies between about 5-20 Hz. It is shown in
experiments that these algorithms are viable for several different applications such
as autonomous quadrocopter navigation and object reconstruction.

In the second part we study the problem of finding a low-rank approximation
of a given matrix. This has several applications in computer vision such as rigid
and non-rigid Structure from Motion, denoising, photometric stereo and so on.
Two convex relaxations which take both the rank function and a data term into
account are introduced and analyzed together with a non-convex relaxation. It is
shown that these methods often avoid shrinkage bias and give better results than
the common heuristic of replacing the rank function with the nuclear norm.
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Populärvetenskaplig
sammanfattning

Datorseende och bildanalys är forskningsområden inom den tillämpade matem-
atiken som de senaste åren blivit mer och mer vanligt förekommande i praktiska
tillämpningar. Forskning inom datorseende går ut på att utnyttja information i
bilder för olika tillämpningar. Detta gör man genom att utveckla för ändamålet
lämpliga matematiska modeller.

Det finns idag många praktiska exempel där datorseende används. Exem-
pelvis finns i varje smartphone en kamera med ansiktsigenkänning. En del tele-
foner klarar till och med av att göra 3D-modeller av människor. Ett område som
är väldigt uppmärksammat just nu är självkörande bilar. Här finns flera olika
metoder från datorseende såsom identifikation av människor och skyltar, beräkn-
ing av var bilen befinner sig och 3D-rekonstruktion av omgivningen.

Denna avhandling handlar om hur man utifrån bilder kan rekonstruera scener
i 3D. I synnerhet studeras hur man med hjälp av djupsensorer kan skatta både
kamerans rörelse och samtidigt skapa en rekonstruktion av vad kameran ser. En
djupsensor är en typ av sensor som inte bara tar vanliga bilder, utan den mäter
också avståndet mellan den observerade ytan och kameran, vilket kallas djupet.
Den mest kända djupsensorn är förmodligen Kinecten som finns till Microsofts
spelkonsol Xbox, men även Apple har precis släppt en djupsensor till sin nya
iPhone. Tillgången till djupdata förenklar 3D-rekonstruktion jämfört med när
man bara har tillgång till vanliga bilder.

Vill man göra en 3D-modell av ett objekt ska man ta bilder från olika vyer.
3D-rekonstruktion är ett typiskt "hönan eller ägget"-problem. Vet man kameror-
nas positioner kan man enkelt få fram en 3D-modell. Omvänt, om man vet
3D-modellen kan man enkelt bestämma kamerornas positioner.
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Figur 1. En 3D-modell av författaren.

Här fokuserar vi på det fullständiga problemet att samtidigt bestämma både
kamerornas positioner och 3D-modellen. Inom exempelvis robotik kan detta
användas för självständig navigering och kartläggning av robotens arbetsmiljö.
Man kan även generera 3D-modeller av till exempel människor, i Figur 1 syns en
3D-modell av författaren.

Rekonstruktion av objekt som är dynamiska och deformerbara är ett svårt
problem som också studeras. Om man observerar ett objekt som rör på sig kom-
mer punkterna på objektet röra på sig på olika sätt mellan varje bild. Tillåter
man godtyckliga punktrörelser mellan varje bild är problemet illa ställt. Därför
begränsar vi oss till rimliga/enkla rörelser. För sådana finns ofta mycket beroende
mellan de observerade punktrörelserna. Ett exempel är en människas arm. Om
man följer punkter på både överarmen och underarmen så kan dessa röra sig på
olika sätt. Däremot kan de inte röra på sig hur som helst i förhållande till varan-
dra, punkter som tillhör underarmen kommer röra sig väldigt likartat och likaså
punkter på överarmen. Det finns även en koppling mellan hur punkterna på un-
derarmen rör sig i förhållande till överarmen. Vi letar alltså efter lösningar med
starka beroenden mellan punktrörelser.

De observerade punkterna sparar vi i kolonner i en matris, där varje kolonn
beskriver en specifik punkts rörelse i alla bilder. Med matematiska termer beskrivs
styrkan i beroendet av den så kallade rang-funktionen. Ju högre rang, desto mer
komplex rörelse tillåts och beroendet mellan punktrörelserna blir svagare. För
att få en realistisk rekonstruktion söker vi därför hitta lösningar med låg rang
som stämmer väl med observationerna. På grund av att rang-funktionen inte är
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kontinuerlig är de optimeringsproblem som uppkommer svåra att lösa. I den här
avhandlingen presenterar vi ett antal approximationer och förenklingar som ger
bra resultat och samtidigt är lätta att hantera.
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Chapter 1

Introduction

Computer vision is a broad research area with several different subfields. Each
field has its own focus and applications, but all have in common that they are
working with images. This thesis studies mainly how 3D models can be created
using special cameras known as depth sensors and how a matrix with data can be
approximated by a matrix of low rank. The latter problem occurs in several ap-
plications of computer vision, for example, in Structure from Motion and image
denoising. The former topic is less abstract and there are several applications for
3D models. The models themselves have a value and can for example be used in
refurbishment. Also in for example robotics one can have the application that the
robot shall navigate on its own in a room. With an estimation of the scene and
the current position of the camera, this information can help the robot to perform
its task.

The problem of approximating an observed matrix with a matrix of low rank
has applications in computer vision as well. For example, image based 3D re-
construction can be done using this technique. Also photometric stereo and de-
noising are problems that can be solved by approximating a given measurement
matrix with one of low rank.

1.1 Organization of the Thesis

Chapter 2 In this chapter we give a brief introduction to rigid 3D reconstruc-
tion. This chapter contains basic information about the pinhole camera model,
depth images, surface representations and other basic concepts intended for the
reader who is not familiar with the topic.

Chapter 3 In this chapter the focus is on online camera pose estimation, which
means that the 3D model and the camera pose are estimated as images are cap-
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CHAPTER 1. INTRODUCTION

tured. We study how one can use the 3D model itself to estimate the pose of the
camera by using a signed distance function. Results suggest that using the model
directly to estimate the pose works better than Iterated Closest Points, ICP. This
chapter is based on the papers [13, 68, 67].

Chapter 4 In this chapter we improve the camera pose estimation to handle
more general environments. This is done by studying how color information
from the model can be invoked in the tracking as well as how feature points from
the images can be used. This chapter is based on the papers [14, 15].

Chapter 5 In this chapter we tackle the problem of approximating a measure-
ment matrix with one of low rank. We show how to derive a convex envelope of
our objective that consists of a penalizing rank term and a data term. In particular
we compute the bi-conjugate of our objective which can then be combined with
other convex constraints. This chapter is based on [45].

Chapter 6 Here we derive another method for low-rank approximation. We
focus on estimating several matrices at the same time and favor solutions where
all matrices have the same rank. This is a natural formulation in applications like
image denoising. This chapter is based on [16].

Chapter 7 In this chapter we are looking for a solution to a linear system with
the rank-function as regularization. We show that if the linear operator A fulfills
the Restricted Isometry Property, RIP, we can give optimality guarantees. This
chapter is based on [53].

2



Chapter 2

Rigid 3D Reconstruction

2.1 Introduction

The capability to reconstruct a scene from a set of images has been one of the ma-
jor research topics in computer vision. It is still an active research area and many
challenges remain. This research field is known as Structure from Motion (SfM)
and in robotics as Simultaneous Localization and Mapping (SLAM). Sometimes
a distinction is made between SLAM and SfM. Then SfM typically refers to be-
ing offline in the sense that all images are captured before the reconstruction and
pose estimation are taking place. SLAM would then correspond to estimating the
camera pose and 3D scene as the images are captured.

In SfM, the pipeline is typically to first find a set of key points in different
images and to match these. Then one computes the camera poses and 3D scene
geometry using bundle-adjustment [32] to get global consistency, meaning that
the 3D points computed from different views align in the resulting 3D model.
This results in a sparse 3D model, where only the detected key points can be
reconstructed.

It is also possible to create dense 3D models using monocular cameras. One
approach is to use stereo and try to estimate depth maps from image pairs. Each
depth image is created by optimizing an energy function for each image pair
where the goal is to find the disparity for each pixel, which is inversely related
to the depth. Often these energy functions require some form of regularization to
decrease noise and to get smooth surfaces.

Today there is a new type of cheap sensors available on the market which can
also measure distances. These are known as depth sensors and the first commer-
cial one was probably the Kinect camera for Xbox 360. The key feature with
these sensors is the capability to generate depth images which measures the met-
ric distance between the sensor and the object. Therefore, one gets information

3



CHAPTER 2. RIGID 3D RECONSTRUCTION

about both scale and the scene in 3D without any explicit computations. The
range for these sensors typically lies between 0.8 - 4.0 m. Most depth sensors rely
on structured light which might not work outdoor. However, for smaller indoor
scenes these sensors generate dense depth images which can be used to create 3D
models. The focus of the first part of the thesis is how to estimate the scene and
camera pose in a robust and accurate way.

The motivation behind this is that an accurate and simultaneous estimation
of the 3D model as well as the camera pose is needed in several applications. For
instance in robotics, the robot can use the current position and 3D model to
localize itself in the room. If the camera position is poorly estimated, then the
robot will make an incorrect estimation of where it is and might not be able to
perform its task. In other applications such as refurbishment, one might want to
measure the dimensions of a room. This could then for example be used to see
how a new sofa would fit into a living room. To get good measurements of the
dimensions of the sofa an accurate model is needed. Also the gaming industry can
make use of acquired 3D models and it can potentially also be used in augmented-
and virtual-reality.

The main contribution of the first part of the thesis is that we develop robust
and accurate methods for tracking the pose of the depth sensor in real-time. By
real-time we mean that the pose is estimated and the model is created as we acquire
new depth- and color-images, in contrast to offline methods which first capture
all frames before performing pose estimation and 3D reconstruction.

2.2 Basics

In this section concepts from computer vision are presented. We will describe the
pinhole camera model and illustrate the idea behind some different well-known
methods for computing the camera pose and representing the 3D model.

2.2.1 Pinhole Camera Model

The pinhole camera model is probably the most common model of a camera. Let
x be a point in the world, seen by the camera. Then under the pinhole camera
model the point is projected onto the image plane by following the ray between
the point x and the camera center c. The projected point is the intersection
between the image plane and the ray, as illustrated in Figure 2.1. The projec-
tion on the image plane for a 3D point x, represented by coordinates (x, y, z) is

4



2.2. BASICS

Figure 2.1: A 3D point x is projected onto the image plane by (fxz ,
fy
z ), where f

is the distance between the image plane and the camera center c.

Figure 2.2: If a 3D point has the x-coordinate x and z-coordinate z, then the
projection on the image plane is given by fx

z .

(fxz ,
fy
z , f) where the image plane is located in front of the camera at distance f ,

which is the focal length. This is visualized by similar triangles in Figure 2.2. We
assume that the image plane is parallel with the xy-plane and we are only inter-
ested in the coordinates (fxz ,

fy
z ) on the image plane, as illustrated in Figure 2.1.

To change origin in the image coordinates we simply translate the projected point
(fxz ,

fy
z ) by (cx, cy), where cx is half the width of the image plane in pixels and

cy half the height in pixels. To get the pixel coordinates of the 3D point x we
compute

(px, py) = (
fx

z
+ cx,

fy

z
+ cy). (2.1)

We now define a function that takes a 3D coordinate to pixel coordinates:

Definition 2.2.1. Let π : R3 → R2 be the function that takes a 3D point to
pixel coordinates:

π(x) = (
fx

z
+ cx,

fy

z
+ cy). (2.2)
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The parameters f , cx and cy are known as the intrinsic camera parameters
and if we know them we say that the camera is calibrated.

When we have the image projections of a 3D point, but not the 3D point
itself, we may want to do the reverse. 3D reconstruction can be thought of as
inverting the projection. Assume that we know the projections and the calibration
of the camera. How do we get back the original 3D point? We know that the
3D point must lie on the ray between the pixel and the camera center so we can
simply do the reverse calculations and get

x =
px − cx
f

t

y =
py − cy
f

t (2.3)

z = t,

where t ∈ R+ is an arbitrary scalar corresponding to the depth. However, we
have an ambiguity here because we can take any depth t and we will get a 3D
point that projects onto the same pixel coordinates (px, py).

This ambiguity is resolved if we are using depth sensors. That is because for
each pixel the sensor estimates the distance to the object, consequently we get a
measurement z at pixels (px, py). Therefore, we can replace the unknown t with
the known z in (2.3).

For each camera, a point cloud can be created by performing the calculations
in (2.3) for each pixel. However, point clouds observed from different views will
not align well unless we know where the camera was when the different images
were captured. What we need to know is how the camera was rotated and trans-
lated with respect some global frame of reference. The information we need is
thus the rotation R and translation t. By doing the computations in (2.3) we
get a local 3D point xL. To transform this to the global frame of reference we
compute

xG = RxL + t. (2.4)

2.2.2 Affine Camera Model

An affine camera model is an approximation of the projective camera. In Sec-
tione 2.2.1 we saw that the projection of a point x was the intersection of the
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Figure 2.3: An affine camera model, all 3D points are projected parallel to the
image plane. In other words, the camera center is at infinity where the parallel
rays meet.

ray between x and the camera center and the image plane. In the affine cam-
era model, the rays intersecting the image plane are assumed to be parallel. The
camera model looks like (

A t
0 1

)
(2.5)

where A ∈ R2×3, t ∈ R2 and A has rank 2. If we have a regular 3D point x and
project it onto the image plane using homogeneous coordinates we get(

A t
0 1

)(
x
1

)
=

(
Ax + t

1

)
. (2.6)

Since the last row will always be one when we use regular 3D points the projection
simplifies to

Ax + t =

(
px
py

)
. (2.7)

The consequence of this is that in the cameras local frame of reference the 3D
point x has the same x- and y-coordinates as the projection (px, py)

T . An illus-
tration of the projection is shown in Figure 2.3. In scenes where the 3D points
lie at different depths this model is a poor estimation of the image formation.
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However, if the 3D points lie far from the camera and all 3D points have roughly
the same depth the approximation can be good. More information about affine
cameras and other camera models can be found in [32, 29]

2.2.3 Depth Cameras

Depth cameras differ from regular cameras in the sense that they generate two
different images, one color image and one depth image. Each pixel in the depth
image contains distance information between the object and the camera. In Fig-
ures 2.4a and 2.4b a depth image with its corresponding color image are shown.

(a) An example of a depth image (b) Corresponding color image.

Figure 2.4: An example of an image pair that the depth sensor provides, a depth
image (left) and a color image (right).

Let us denote the depth image by Id, then we can for each pixel (px, py) read
the depth value

z = Id(px, py). (2.8)

Using this we resolve the ambiguity of the depth in equation (2.3). We define
the following function that maps a pixel (px, py) to its 3D coordinates:

Definition 2.2.2. Let ρ : R2 × R→ R3 be the function that transforms a pixel
(px, py) to its 3D coordinates by

ρ(px, py, z) = (
px − cx
f

z,
py − cy
f

z, z), (2.9)

where z = Id(px, py) and f, cx and cy are the intrinsic camera parameters.
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Figure 2.5: In the image to the left the depth sensor captures a depth image of the
vase. To the right we can see how the point cloud could look like by reconstructing
the 3D points.

An illustration of how this works is given in Figure 2.5, where the points to
the right are reconstructed 3D points of the vase.

2.2.4 Representation of 3D Models

Using the depth image alone, we get a point cloud. However, we would like to
estimate a surface, not just a set of points. There are different ways of representing
3D models. What one typically wants is a method to represent the 3D model
that it is memory efficient, fast and flexible. By flexibility we mean that there are
no constraints on what the model should look like, instead we want to be able to
reconstruct any object. Here we present two popular methods when working with
depth sensors. Both have advantages and disadvantages but they can represent any
topology of the surface which is a major advantage.

Octrees

One way of representing the surface is to use a probabilistic occupancy grid as
in [73], where the space is represented via an octree. An octree is a memory
efficient tree data structure where each parent has exactly eight children. In 3D
one parent would correspond to a cube in space, which can be partitioned into
eight new cubes, where each new cube corresponds to a child of the parent, as
depicted in Figure 2.6. This allows for having a high resolution close to the
surface and lower resolution where there is no surface.

The key idea is to divide the space into cells and label a cell occupied if it con-
tains a surface point. If there is no surface point the cell is labeled free. Since this
approach is very memory efficient, it is possible to do large scale representations.
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Figure 2.6: In an octree, each parent has eight children, which can be used to
subdivide space with higher resolution in certain parts.

The fact that both free- and occupied-space is represented can be used to avoid
obstacles in for example robotics.

Signed Distance Functions

An alternative representation, which is commonly used in conjunction with RGB-
D cameras, [71], [37], [50], [64], is to use a so called Truncated Signed Distance
Function, TSDF.

Let us start with a basic example of how signed distance functions (SDF)
works. Assume that we have the following function:

f(x, y, z) = 1−
√
x2 + y2 + z2. (2.10)

If we choose (x, y, z) such that f(x, y, z) > 0, the point lies inside the sphere,
or if we take (x, y, z) such that f(x, y, z) < 0, then we are outside the sphere.
Obviously, the surface of the sphere lies at the zero level of the function f . This
is thus an implicit representation of the surface. This is also illustrated in 2D in
Figure 2.7. The figure contains a red area, a blue area and a white circle between
the two areas. This is an implicit representation of a circle where points outside
the circle have a negative function value which is the distance and are colored
blue. The points inside the circle have a positive distance to the surface and are
colored red. The theory for level set methods and surface representations through
signed distance functions is thoroughly treated in [54].
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Figure 2.7: A circle (white) is represented implicitly through a signed distance
function. The points with red color are inside the circle, having a positive distance
and the blue points are points outside the circle and they have a negative distance

The obvious drawback of this representation is that one needs to estimate the
distance to the surface for each point in space. For a general 3D model, no known
closed form solution exists.

To achieve an approximation of the signed distance function, we use a uni-
form voxel grid. A voxel is like a pixel but in 3D which contains data and has a
fixed position in space. In this case, we want to estimate the distance between the
surface and the voxel and store it.

To estimate the distance to the surface for each voxel one often computes a
weighted average of the measurements from different views. This has the effect
that noise can be averaged out and one can often obtain smooth surfaces. Another
advantage is that there is no restriction on what the 3D model might look like and
it is easy to parallelize computations since many operations on the voxel nodes are
independent of its neighbors. A drawback with the uniform representation is that
it requires a lot of memory.

The challenge to estimate the distance between the voxels and the surface re-
mains. In Chapter 3 we present a method for how to estimate the signed distance
function.

In this work we will not be using signed distance functions directly, but in-
stead we will use a TSDF instead. This is an approximation of the SDF with the
restriction that the distance is only estimated in the vicinity of the surface up to a
threshold δ. Voxels that are far from the surface get the distance estimation trun-
cated to δ. In principle the idea is the same, the surface is represented implicitly
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Figure 2.8: In ICP we have two point clouds and the goal is to find a transfor-
mation that takes the red point cloud to the green point cloud in an optimal way.
One alternates between finding correspondences and minimizing the distance be-
tween these correspondences.

through the zero-level. More information about TSDF:s can be found in [22].

2.2.5 Camera Tracking

To align point clouds from different views, the global rotationR and translation t
have to be known. This is also known as the pose of the camera. The problem of
estimating the pose of the camera has been studied for a long time, [9, 34, 10, 21].
Here two methods are described in order to give a basic understanding of how they
work.

Iterated Closest Point

In the beginning of the 1990, [9] was published. The paper describes a method for
how to register two point clouds. The technique is known as Iterated Closest Point,
(ICP). The method has become a standard approach for 3D registration and there
are almost infinitely many versions of it, a survey can be found in [61]. Given
two point clouds, we want to align them and ICP aims to find a rotation and
translation which transforms a given point cloud into the other by minimizing
the sum of distances in some norm, often L2, as illustrated in Figure 2.8.

From Figure 2.8 we can extract some key components of ICP. Given two point
clouds with points (x1, . . . ,xn) (green points in Figure 2.8) and corresponding
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points (y1, . . . ,yn), (red), we aim to minimize

E(R, t) =

n∑
i=1

‖Rxi + t− yi‖p (2.11)

which means we are seeking the rotation and translation that minimizes the sum
of the residuals, often with p = 1 or p = 2.

With no noise and perfect correspondences this is easily solved [34] if p = 2.
However, given two point clouds, finding good correspondences is a problem in
its own. Typically we cannot expect to find correspondences for all points, but
just for a subset of points and not all of these might be correct. To handle this
we start with a set of initial correspondences, then solve (2.11). Then we can
apply the transformation on the point cloud and recompute the correspondences
and solve (2.11) again, until convergence. This is local optimization with no
guarantee of finding the global optimum. However, if the relative rotation and
translation between the two cameras are small, the chance for finding the correct
pose is higher.

There are several variants of this procedure, a common method is to estimate
a normal to each point and minimize the projection on the normal instead of the
difference between the point pairs, [21]. We would then minimize

n∑
i=1

|(Rxi + t− yi)
Tni|p. (2.12)

This metric is known as the point-to-plane metric and corresponds to minimizing
the distance between the point xi and the tangent plane at yi.

A general drawback of ICP is that most methods rely on the presence of varied
geometry. If all points lie on a plane, there is no unique minimizer of (2.11)
or (2.12).

Intensity Based Methods

Some other approaches which work well and have some nice properties have also
been developed. One approach is to instead of minimizing the sum of residuals
between two point clouds, the projected photo-consistency between two color
images should be maximized. This relies on having corresponding depth images.
That is, if a 3D point for a pixel in one image is projected onto another image,
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Figure 2.9: A pixel (i, j) with depth zij is reprojected to 3D as x =Rρ(i, j, zij)+
t and then projected on the image Inc and pixel coordinates π(x). One then
compares the intensity values at pixel (i, j) in In+1

c and π(x) in Inc . In this case
intensities will not match.

then the intensity in these two pixels should be similar. We call the difference in
intensity between these pixels the intensity error. In particular [63] introduced a
frame-to-frame tracking approach which uses both the depth image and the RGB
image. This was later extended in [64] to handle more general situations.

Intensity based methods such as this are suitable for RGB-D cameras where
you have a stream of images (Ind , I

n
c ). The idea is to create a point cloud from one

image. Then we project the points into the second image. The rotation R and
translation t is assumed to be correct if the intensity difference is 0. In practice
perfect color matching cannot be achieved. Therefore the intensity difference is
typically minimized instead.

This differs from ICP in that we are not aligning two point clouds, but instead
we are trying to maximize photo consistency. As illustrated in Figure 2.9, we
have a 3D point x obtained from the left image. Then we use the estimated
relative transformation between camera position Cn and camera position Cn+1

and transform x to the second camera frame. The point is then projected onto
pixel π(x) in Inc and the difference in intensity between pixel (i, j) in In+1

c and
π(x) in Inc is evaluated. This process can be formulated as the following energy
function:
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E(R, t) =

m∑
i=1

n∑
j=1

‖In+1
c (i, j)− Inc (π(Rρ(i, j, zij) + t))‖2,

where zij is the depth at pixel (i, j) in the depth image Ind (i, j) observed at time
step k, m is the number of rows and n is the number of columns in the image.
With this technique we find the relative transformation between two frames.

The advantage of this approach is that we can use all color information avail-
able and need not to find corresponding points as in ICP. The disadvantage is that
errors are quickly accumulated since the tracking is frame-to-frame. This can lead
to poor results if we do not find a way of reducing these errors.
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Chapter 3

Estimating the Camera Pose and
Creating a 3D Model

3.1 Introduction

The main contribution with this chapter is that we investigate how the 3D model
represented as a Truncated Signed Distance Function, TSDF, can be used to esti-
mate the camera pose. Evaluation on benchmarks demonstrates that when using
the 3D model in a different way than KinectFusion [50, 37] does, the estimated
pose is even more accurate. These conclusions are drawn by evaluating an open-
source implementation of KinectFusion, known as KinFu [1], together with our
method on publicly available datasets [66].

As described in Chapter 2.2, there are some different ways of creating 3D
models and estimating the camera pose. For applications like robotics, refur-
bishment, virtual reality and so forth, it is important to have a method that can
estimate both the pose and the 3D model accurately and robustly. Here we will
see that by using information in the TSDF, the pose of the camera can be robustly
estimated in an online manner, which means that the camera pose and the 3D
model are estimated as images are captured. With an accurate estimation of the
camera pose, the 3D model will also be of good quality, as will be seen in the
experiments.

3.1.1 Related Work

As mentioned earlier, 3D reconstruction is not a new topic and there are many
approaches to solve the problem of estimating the pose and the geometry. Both
in SfM and in SLAM a lot of research have been done. Lately, since the advent of
the Microsoft Kinect and the Asus Pro Live sensor, a very active research area has
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Figure 3.1: Given a new depth image, one takes the last known camera position
and perform ray tracing to find points on the actual surface. With this global
point cloud one performs ICP to find the correct transformation between the last
known camera position and the new unknown camera position.

been how to create 3D models using depth cameras.
The most famous work is probably KinectFusion [50], which was perhaps

the first system capable of creating 3D models in real-time using these sensors.
Their main contribution was that it was demonstrated how a TSDF can be used
to robustly track the camera movement for medium-sized reconstructions. To
track the camera ICP is used and to create the 3D models, the method from [22]
is used. What makes ICP more robust in KinectFusion is that the 3D model is
rendered directly. This results in two point clouds, one from the model and one
from the new depth image. These are then aligned to each other which gives an
estimation of the camera pose. An illustration of this is shown in Figure 3.1.

In [19] an algorithm similar to our is presented. The focus in [19] is however
more on object detection and recognition in a TSDF and no evaluation is pro-
vided. Also [5] develops a similar algorithm, but test it only on synthetic data and
no evaluation is provided. In [59] the same energy function as our is presented,
however, a pre-computed SDF is assumed and no real-time 3D reconstruction
is performed. Instead it is shown that the camera can be calibrated with known
SDF.

A different approach to estimate the camera pose compared to KinectFusion
is taken in [63]. Instead of minimizing the geometric error between point clouds,
one seeks to maximize photo-consistency between two consecutive images as de-
scribed in Section 2.2.5. Here the pose estimation is independent of the model.
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Actually no model is estimated in [63]. This idea was improved in [40] and [41]
where also consistency between the depth images is used. A drawback is that these
methods easily drift away. Drifting means that due to accumulated errors, the es-
timated camera pose deviates more and more from the true path. These intensity
based methods do not require a 3D model to work, which makes it possible to
use other methods to decrease drift such as loop-closure and bundle-adjustment.

Another way to estimate the camera pose is the one presented by [26], where
corresponding key points are found between pairs of images. Then RANSAC is
used to compute a relative transformation between the image pair. These trans-
formations are then added to a graph which optimizes the camera pose globally
to reduce drift. This method has the advantage compared to common ICP that
it requires only key points to be found, so it can handle scenes with little texture
as long as it can find key points. A drawback is that the 3D model cannot be cre-
ated until the entire scene is recorded. To represent the 3D model, a probabilistic
Octree, [73] is used, which is created after all images have been recorded and the
graph is globally optimized using g2o [43]. The advantage with such a represen-
tation is that it is very memory efficient. This is useful in robotic applications
since both occupied and free space is represented.

The approaches described above have been successfully used in other well-
known methods such as Kintinuous [71] and lately [72]. A combination of the
KinectFusion based ICP [50] and the intensity based methods by [63] is used
to estimate the camera trajectory. The aim of these works is to create large-scale
online reconstructions, that is, the model is created as the images are recorded.
For large-scale methods one faces other challenges. Firstly, one must reduce drift
and secondly the memory consumption must be limited so that the entire model
can be represented on a computer. To handle this [71] uses a rolling volume. This
means that one has a uniform grid as in KinectFusion and represents the surface
with a TSDF. However, when reaching the border of this grid the other half is
saved to the hard drive and a new empty grid is appended to the volume where
the camera is, as depicted in Figure 3.2.

In [72] a new interesting approach is taken. Instead of using a TSDF, the
surface is represented by using surfels [57]. Surfels are basically small surface
elements that contain information about position, size, orientation and possible
texture. This makes it easier to recompute the 3D model online if drift is detected
and adjusted for which is done in [72] with impressive results. To track the camera
the KinectFusion based ICP is used together with an error term that takes photo
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Figure 3.2: When the camera approaches the border of the volume, a new volume
is created and appended to the active part. The other half is saved to the hard
drive.

consistency into account. This makes it robust to scenes where there is either only
texture or structure.

Another work that has shown impressive results and manages to correct the
surface in an online manner is [24]. A TSDF is used to represent the model,
but a smart and efficient implementation with the use of key frames allows for
recomputing the surface in real-time. Bundle adjustment is continuously used to
reduce drift.

3.2 Updating a TSDF for a New Depth Image

As described in the Chapter 2.2, we can use a TSDF to represent the 3D model.
Here we go into detail of how the grid is updated as we get new measurements
for each new frame.

In a true signed distance function ψ, for each point x we shall get the closest
distance to the surface with sign if we evaluate ψ(x). Also from the definition,
see [54], we have the constraint ‖∇ψ‖ = 1 shall be fulfilled. Here we aim to do
real-time 3D reconstruction similar to KinectFusion, so both constraints above
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will be relaxed. Since the Kinect delivers images at a rate of 30 frames per second,
one has approximately 33 ms to find the position of the camera and update the
grid with new information. To our knowledge, there is no easy and efficient
method of estimating the SDF exactly. Instead we follow the heuristic by [22],
which is trivial to parallelize, allowing for a considerable speed-up using a modern
GPU.

To start with we have a voxel grid, which is a 3 dimensional discretization of
a volume in space. Each voxel has a unique index (i, j, k) ∈ N3 and we refer to
one voxel at index (i, j, k) as Vijk. Each voxel stores data used to represent the
distance function. The data in this work is:

• D - estimated signed distance to surface

• W - estimated weight of the measured distance

• R - estimated intensity in the red channel

• G - estimated intensity in the green channel

• B - estimated intensity in the blue channel.

• Wc - estimated weight for the color.

A data value for a voxel at (i, j, k) will be referred to with subscript ijk, for
example the distance at voxel Vijk will be denoted Dijk. We set the origin of the
global coordinate system to be in the center of the voxel grid. Since the distance
between the voxels is known and the voxels are fixed in space and the origin of the
global coordinate system is known, the coordinates for a voxel Vijk can easily be
computed.

With the above definitions we can now describe how we can estimate the
signed distance to the surface for each voxel. Assuming that we have the global
position of the camera Cn, i.e. we know the global rotation R and translation t
of the camera at time step n, we can express the coordinates of the voxel Vijk in
the cameras frame of reference by computing

xL = RTxG −RT t, (3.1)

where xG is the known 3D coordinates for the voxel Vijk in the global frame.
Then, provided that zL > 0 which means that the voxel is in front of the camera,
we can find which pixel the voxel is projected onto by computing
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Figure 3.3: Instead of measuring the distance between xL and xS , we measure
the distance along the principal axis.

px =
fxL
zL

+ cx (3.2)

py =
fyL
zL

+ cy. (3.3)

The surface point observed in this pixel lies on the ray between the camera center
and Vijk. We can read the depth for the surface point at pixel (px, py) by

z = Id(px, py). (3.4)

With known depth z, the 3D point for the surface point xS can be computed by

xS =


(px−cx)z

f
(py−cy)z

f

z

 . (3.5)

It is now easy to compute the distance between the voxel and the surface point
along the ray between the camera and the voxel via

d = ‖xS − xL‖. (3.6)

The sign of the distance is obtained by comparing zL and zS . In practice, it
is easier to approximate the distance by just taking the difference between the
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z-coordinates, i.e.

d = zL − zS .
With this approximation, a voxel will have a negative distance if the voxel is in
front of the surface (zL < zS) and a positive distance if it is behind. Note that
this distance is an approximation of the projective distance, but in practice it does
not matter. The idea is illustrated in Figure 3.3.

Since we are estimating the projected distance, it can happen at borders that a
surface point close to the voxel is missed if it is not on the ray between the camera
center and the voxel. Instead one might get a measurement for a surface point far
away from the voxel. To reduce the impact of such erroneous measurements, the
estimated distance is truncated at a positive threshold δ. We get the approximated
distance

dt =


−δ, d < −δ
d, |d| ≤ δ
δ, d > δ.

(3.7)

This makes the potential error in the measurement limited to the bandwidth
[−δ, δ]. There is also an uncertainty for the measurements when the voxel is
behind the observed surface. A voxel might be close to another surface which is
not observed in that frame. Therefore we also introduce a weight function for the
uncertainties in the measurements. Since we cannot see behind surfaces, a lower
weight is assigned to measurements behind a surface and the further behind the
surface is, the lower the weight is. The weight function is defined as follows

w(d) =


1, d ≤ ε
e−σ(d−ε)2

, ε < d ≤ δ
0, d > δ.

(3.8)

Here σ is a positive parameter and ε ≤ δ.
The distance measurements are made for all voxels in the grid and for every

frame with corresponding known global pose of the camera we get new measure-
ments. For a voxel Vijk we thus get a measurement Dn

ijk for each image Ind .
The question is, how do we obtain a TSDF which takes all measurements into
account? As proposed by [22], we can formulate the optimization problem

E(Dijk) =

N∑
n=1

wn(Dijk −Dn
ijk)

2, (3.9)

23



CHAPTER 3. ESTIMATING THE CAMERA POSE AND CREATING A
3D MODEL

where wn is the weight of the measurementDn
ijk andN is the number of images.

Taking the derivative of this function and setting it to zero one gets

N∑
n=1

wn(Dijk −Dn
ijk) = 0 (3.10)

⇔∑N
n=1 w

nDn
ijk∑N

n=1 w
n

= Dijk.

The optimal measurement for a voxel Vijk is therefore the weighted average
of all measurements. Since each voxel is independent of the others, one can easily
obtain an optimal TSDF by computing the weighted average for a voxel indepen-
dent of its neighbours. For a voxel, we do the following update

Dn+1 =
WnDn + w(dn+1)dn+1

t

Wn + w(dn+1)
(3.11)

Wn+1 = Wn + w(dn+1).

As we can see, for a new image we can simply update the entire grid by these
computations in order to get the current best approximation of the 3D model.
Furthermore, each computation only needs reading and writing from one voxel,
so this procedure is straightforward to implement in parallel.

Similarly, the color for voxel Vijk can be estimated by extracting the RGB-
vector (r, g, b) from the color image In+1

c . For each new image we obtain a
measurement which we can integrate into the voxel by computing

Rn+1 =
Wn
c R

n + wcr
n+1

Wn
c + wc

(3.12)

Gn+1 =
Wn
c G

n + wcg
n+1

Wn
c + wc

(3.13)

Bn+1 =
Wn
CB

n + wcb
n+1

Wn
c + wc

, (3.14)

where wc is the weight of the new measurement defined as

wc = cos(θ) · w(dn+1), (3.15)

24



3.3. ESTIMATING THE CAMERA POSE USING GEOMETRY
INFORMATION FROM THE 3D MODEL

(a) Assuming we know the rotation and
translation of the first N camera positions
a surface can be created, represented in a
voxel grid as a TSDF.

(b) Without correct rotation and translation, the
newly observed surface cannot be correctly aligned
to the estimated surface from the first N images.

Figure 3.4: Left: Illustration of how the surface might look like after N frames.
Right: With a guess of the rotation and translation, the newly observed 3D points
can be reconstructed in the grid.

where θ is the angle between the optical axis and the light ray, (rn+1, gn+1, bn+1)
are the measured intensities in the new color image In+1

c . These measurements
assigns an RGB-vector to every voxel. This color vector can be used to colorize
the model.

3.3 Estimating the Camera Pose Using Geometry Infor-
mation From the 3D Model

We now have a simple method of integrating a new depth frame into the 3D
model, given that we already know the pose of the camera with respect to the
global coordinate system. Simple as it may sound, it is not so easy to obtain the
rotation and translation of the camera. The main contribution of this part of the
thesis is how we tackle the problem of finding the camera pose using the model di-
rectly, rather than doing an ICP-like procedure or maximizing photo-consistency
in a frame-to-frame manner. The key idea is to use the distance information
embedded in the truncated signed distance function itself.
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(a) The point cloud can be reconstructed into
the voxel grid and for each point we can esti-
mate the distance between the surface and the
3D point.

(b) With the correct rotation and translation of
the camera, as many points as possible should
be reconstructed onto the surface.

Figure 3.5: Left: Computing the distance for each reconstructed 3D point gives
an error. Right: Minimizing the error gives a camera pose that align the point
cloud to the observed model.

Assume that we after N images have found a (correct) representation of the
3D model through the TSDF, as illustrated in Figure 3.4a.

Given a new image, IN+1
d , we get new measurements of the surface. Without

knowing the rotation and translation of the camera, a guess will most likely not
align the new surface onto the estimated (assumed true) surface, as depicted in
Figure 3.4b.

The key idea to find the correct configuration of the camera is to use the
distance information obtained for each 3D point from the new depth image. In
reality, what we get from each new depth image is a point cloud and by a guess of
the global pose of the position of the camera, one can reconstruct the point cloud
into the voxel grid. For each 3D point, we can find out where in the voxel grid
it is located. Using the distance information in the voxels, a distance between the
3D point and the actual surface can be computed, as shown in Figure 3.5a.

Assuming a small camera motion, most of the scene has already been observed
in the previous frames. Therefore, to find the correct pose of the camera, it is
reasonable to find the rotation and translation which minimizes the distances
between the point cloud and the surface, as illustrated in Figure 3.5b. We now
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define the function for obtaining the distance to the surface.

Definition 3.3.1. Let φ : R3 → R be the function which takes a 3D point x
and returns the value in the voxel grid at that position in the grid.

The challenge now is to find the pose. By observing that a 3D point which
only lies on the surface if it has a distance of zero, the following error function
can be defined

E(R, t) =

M∑
i=1

N∑
j=1

φ(Rxij + t)2. (3.16)

Here R and t denotes the global rotation and translation and xij is the local 3D
point from pixel (i, j) and φ is the TSDF. M and N are the number of rows and
columns in the image. If this error function is 0 for some R and t, all points are
reconstructed on the surface. Due to noise and earlier unobserved structure, the
error function will in practice never become zero, so we need to find the minimal
error. The task is now to solve

min
R,t

M∑
i=1

N∑
j=1

φ(Rxij + t)2. (3.17)

However, we have no analytic expression of the signed distance function which
makes it hard to minimize directly. To parametrizeR and t we use the Lie Algebra
representation [48]. With this representation, it is possible to represent the entire
rigid transformation via a 6-dimensional vector

(ω, t) = (rx, ry, rz, tx, ty, tz). (3.18)

Here rx, ry and rz represent the rotation around the three axes and tx, ty and tz
is the translation. To go from this vector representation to a rigid transformation
R ∈ SO(3), one computes the exponential matrix

R = eω̂, (3.19)

where

ω̂ =

 0 −rz ry
rz 0 −rx
−ry rx 0

 . (3.20)
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Data: Depth image: IN+1
d , SDF: φ, Previous camera position: (ωN , tN )

Result: Camera position (ωN+1, tN+1)
ωNew = ωN ;
tNew = tN ;
ωOld = ωN ;
tOld = tN ;
while not converged do

ωOld = ωNew ;
tOld = tNew ;
A =

∑
i,j(∇φ(g(ωNew, tNew,xij)))(∇φ(g(ωNew, tNew,xij)))

T ;
b =

∑
i,j φ(g(ωNew, tNew,xij))∇φ(g(ωNew, tNew,xij));(

ωNew
tNew

)
= −A−1b +

(
ωNew
tNew

)
;

if ‖(ωNew, tNew)− (ωOld, tOld)‖∞ < ε then
converged = true;

end
end
ωN+1 = ωNew;
tN+1 = tNew

Algorithm 1: The algorithm for computing the new camera pose
(ωN+1, tN+1).
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With this representation, we can rewrite the error function as

E(ω, t) =

M∑
i=1

N∑
j=1

φ(g(ω, t,xij))
2, (3.21)

where

g(ω, t,x) = eω̂x + t. (3.22)

In order to optimize the above energy, we use the Gauss-Newton method. The
Gauss-Newton method is suitable since the distance between two consecutive
camera positions will be small under normal circumstances due to the high frame-
rate. Hence by using the last known position, we will be quite close to the optimal
point already. Linearizing the error function around the current guess of the
camera position (ω0, t0), we get the following error function

E(ω, t) ≈
M∑
i=1

N∑
j=1

(φ(g(ω0, t0,xij)) + (∇φ(g(ω0, t0,xij)))
T

(
ω − ω0

t− t0

)
)2.

(3.23)

Now we can optimize the approximated error function by taking the gradient of
it with respect to (ω, t) and setting it equal to 0. We get∑

i,j

φ(g(ω0, t0,xij))∇φ(g(ω0, t0,xij))+

(∇φ(g(ω0, t0,xij)))(∇φ(g(ω0, t0,xij)))
T

(
ω − ω0

t− t0

)
= 0, (3.24)

which is easily solved if the resulting matrix

A =
∑
i,j

(∇φ(g(ω0, t0,xij)))(∇φ(g(ω0, t0,xij)))
T (3.25)

is invertible. This will be the case as long as there is enough different struc-
ture in the scene. Then there will be a unique point (ω∗, t∗) such that error is
minimized. In case of planar scenes, this will fail since we do not have enough
constraints to determine the rotation and translation uniquely. This is a general
shortcoming of purely geometry based tracking approaches, such as ICP.
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To find the camera position, we initialize with the estimated camera position
from the last frame. Then we start by solving the linearized error function and
take the newly found camera pose and re-linearize again until convergence. After
convergence we have the camera pose and can update the 3D model. The method
is summarized in Algorithm 1.

Note that we are computing the gradient for each 3D point obtained from
pixel (i, j) and the computations are independent of each other. Hence, these
computations can mostly be done in parallel, it takes some more refined tech-
niques to implement it compared to integrating the 3D models though. That is
because at the end all matrices Aij and bij computed for each pixel (i, j) need to
be summed up to one matrix A and one vector b. To do that on the GPU, we
have to use tree-reduction and use shared memory. Otherwise, it is quite straight-
forward.

The main difference between our approach and KinectFusion [50] is that we
make use of all 3D points and we make no explicit data association, which is done
in KinectFusion and their ICP-framework.

Data: Depth Image: Ind , SDF: φ
\\Start solution;
(ω0, t0) = (ωinit, tinit);
φ = updateSDF(φ,ω0, t0, I0

d);
k = 1;
while stop == false do

Ind = acquireDepthImage();
(ωn, tn) = getCameraPose(ωn−1, tn−1, Ind , φ);
φ = updateSDF(φ,ωn, tn, Ind );
n+ +;
if stopping criteria fulfilled then

stop = true;
end

end

Algorithm 2: Work flow for the system to create a complete 3D model. To
stop the procedure one can for instance pre-define how many images one
should use. Other stopping criteria are of course possible.

In summary, we now have a way of estimating the camera pose given a 3D
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Figure 3.6: 3D reconstruction of a room, top view.

model and a new image. Moreover, we also know how to integrate this image into
the model in order to update it. This can be used to create an algorithm capable
of creating a 3D model on the fly. The work flow for the method is presented in
Algorithm 2.

3.4 Results and Experiments

Here we evaluate our proposed method, both qualitatively and quantitatively.
Several 3D models are presented, obtained from real data. We also show that a
quadrocopter is capable of navigating on its own using our algorithm for local-
ization. To evaluate our method quantitatively, it is tested on the public bench-
mark [66].

3.4.1 Qualitative Results

The advantage of using a TSDF is that it requires no constraints on the topology
of the surface. This means that it should be possible to create arbitrary 3D models,
provided there is enough structure to get the tracking to work. To demonstrate
this, look at Figures 3.6 and 3.7. This is a smaller room which has been recon-
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Figure 3.7: Same model as in Figure 3.6, note that the black keys on the keyboard
are distinguishable from the white keys. That is an indication of a consistent
tracking.

structed using the proposed method. As can be seen, it looks quite decent. For
instance the black keys on the keyboard are distinguishable, which indicates a
correct estimation of the trajectory. Also the figures on the wall to the right in
Figure 3.7 have distinct edges and are correctly reconstructed, if the tracking had
failed, they would have been smeared out. However, looking at the wall in the
left corner at the window, there seems to be some artifacts and the motive on the
pictures are not distinguishable. Though the picture frames are sharp rectangles
and correctly reconstructed, there are still some challenges to be met.

A disadvantage with the uniform grid representation of the TSDF is that it
requires a lot of memory and to make detailed reconstructions, the object cannot
be too large. For instance, a grid of size 4 m3 would have a spatial resolution of
approximately 1.6 cm if 2563 voxels are used. To get detailed reconstructions one
has to use small objects which fits into a small voxel grid. That the reconstruction
can be made more detailed is clearly illustrated in Figure 3.8, here the emblem
on the book is clearly distinguishable for example. The high quality of the model
itself is of course proof of a good estimation of the camera trajectory. To verify
this we look at Figure 3.9 where we can see that there is very little drift in the
sequence due to the closed loop. Note that the reconstruction could not have
such high resolution if the scene were larger. Here the volume is approximately
1 m3.
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Figure 3.8: A reconstruction of a smaller object. Due to the small size of the grid,
the reconstruction gets significantly more detailed. Look at the emblem on the
book, it is clearly distinguishable.

Figure 3.9: Looking at the trajectory and the quality of the 3D model, it is appar-
ent that there is little drift in this sequence.
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Figure 3.10: In the first quadrocopter experiment the task of the quadrocopter
was to hover at the same point. As can be seen in the image, it is capable of
staying at the same position reasonably well.

One application of real-time 3D reconstruction mentioned in the introduc-
tion could for instance be autonomous flights of a quadrocopter. We investigate
this further by performing several experiments using a quadrocopter together with
an Asus sensor and base station with GPU capabilities. The first experiments were
made to see if a quadrocopter was capable of following a pre-defined orbit. The
model was initialized while the quadrocopter was staying on the ground, then
a signal was sent to start and lift to a certain altitude. Thereafter the mode was
switched to autonomous control and the quadrocopter should follow a predefined
orbit by computing its position using the depth sensor and our algorithm. The
first experiment was just to hover on the same position, which resulted in an aver-
age standard deviation of 2.1 cm. This is demonstrated in Figure 3.10. The error
was measured between the set goal position and the estimated position of our al-
gorithm. A more advanced trajectory was also tested. The task was to navigate in
a rectangle and follow the path for several rounds. As can be seen in Figure 3.11,
this was successfully accomplished. The blue line is the pose the quadrocopter
flew and the red line is the path it was supposed to take. In another experiment,
the quadrocopter was in assisted mode and a user should specify way points to
which the quadrocopter shoud navigate. The resulting 3D model is decent as can
be seen in Figure 3.12 and Figure 3.13.

The algorithm can also be used to create 3D models of persons. By sitting
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Figure 3.11: The path the quadrocopter should follow is in red and the estimated
trajectory in blue. As can be seen in the image, it manages to follow the same
trajectory for several rounds.

Figure 3.12: Side view of the resulting 3D reconstruction of a room using the
assisted mode on the quadrocopter.

35



CHAPTER 3. ESTIMATING THE CAMERA POSE AND CREATING A
3D MODEL

Figure 3.13: Top view of the 3D model obtained from assisted mode using the
quadrocopter.

Figure 3.14: A 3D scan of a man sitting on a swivel chair. The colored lines is the
estimated pose of the camera.

on a swivel chair and rotate 360◦ one gets a complete scan of the upper body. A
result can be seen in Figure 3.14. Looking at the pose in Figure 3.14 we see that
the loop closes nicely, which it is supposed to do.

3.4.2 Quantitative Results

Here we evaluate our proposed method quantitatively and compare to [1], which
is an open source implementation of KinectFusion [50]. We also provide results
from [26] for a comparison. However, it should be noted that [26] does not
solve the online-problem. That means all images are captured before the camera
pose is globally optimized and the surface created. In contrast we find the camera
pose as we acquire images and estimates the surface at the same time, just like
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Table 3.1: The root-mean square absolute trajectory error for KinFu and our
method for different resolutions, metrics and datasets. We also provide results
from [26], although they do not solve the online problem.

Method Res. Teddy F1 Desk F1 Desk2 F3 Household

KinFu [1] 256 0.156 m 0.057 m 0.420 m 0.064 m
KinFu [1] 512 0.337 m 0.068 m 0.635 m 0.061 m
Point-To-Point 256 0.075 m 0.037 m 0.064 m 0.037 m
Point-To-Point 512 0.072 m 0.035 m 0.055 m 0.035 m

RGB-D SLAM [26] 0.111 m 0.026 m 0.043 m 0.059 m

Method Res. F1 360 F1 Plant F1 RPY F1 XYZ

KinFu [1] 256 0.913 m 0.598 m 0.133 m 0.026 m
KinFu [1] 512 0.591 m 0.281 m 0.081 m 0.025 m
Point-To-Point 256 0.553 m 0.048 m 0.042 m 0.022 m
Point-To-Point 512 0.131 m 0.044 m 0.045 m 0.022 m

RGB-D SLAM [26] 0.071 m 0.061 m 0.029 m 0.013 m

KinectFusion. However, it can still be of interest to see how our method performs
compared to [26]. The results are provided in Table 3.1. For these experiments
we used an NVidia Geforce GTX 770, Intel i7 3.4 GHz processor and 16 GB
RAM. The frame rate with a voxel grid of 5123 voxels was about 15 − 16 Hz
with this hardware. Looking at Table 3.1, we see that our method clearly outper-
forms KinFu on almost all datasets and we are comparable to [26]. Either KinFu
works poorly, or not at all. There might be some difference between the KinFu
implementation and the original KinectFusion, we tried however to tweak the
parameters of [1] as good as possible. Inaccuracies in the estimation of the cam-
era positions lead to errors in the TSDF which ultimately destroys the implicit
surface, which is shown in Figure 3.15 and demonstrates that our method truly
works better for this dataset. The main reason to why our method is superior to
KinectFusion is probably that we make use of more information when we com-
pute the rotation and translation of the camera. In KinectFusion, a point cloud is
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(a) Reconstruction of Fr1 Teddy
using KinFu

(b) Reconstruction of Fr1 Teddy
using our method.

Figure 3.15: Comparison of the reconstruction of Fr1 Teddy using our method
and KinFu. Note that the Teddy Bear in the left figure is completely gone.

created by performing ray casting on the current 3D model. Then the 3D points
in this point cloud is associated to the points in the new point cloud obtained
from the new depth image, through the fast Data Association algorithm [10]. In
this process, potential matches are rejected, so at the end, KinectFusion uses less
3D points to compute the camera transformation. In contrast, our approach uses
all 3D points which are reconstructed in the grid where we have measurements
of the distance to the surface. This way we use more data, which probably makes
tracking more robust and accurate. It might also be that we get a better estima-
tion of the error between the surface and the reconstructed 3D point compared
to KinectFusion. In the data association there might be false matches which will
have a negative effect on the tracking.

To get these results, we used a threshold for the truncation of δ = 0.3 m.
This is a rather wide threshold, but it is empirically found that this gave the best
result. In contrast, KinectFusion uses a much smaller threshold which can resolve
finer details.

3.5 Conclusion

In this chapter we have seen that the distance information in the TSDF can be
used to estimate the camera pose. We have also seen how to update the surface on
the fly and that most of the algorithm can be parallelized which allows for a great
speed-up. Finally in the experiments it has been shown that our method works
well on real data and that we outperform KinFu [1] on benchmarks.
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Chapter 4

Robust Estimation of the Camera
Pose

4.1 Introduction

In Chapter 3 it was demonstrated how the camera pose could be estimated using
the TSDF and how the model could be updated simultaneously. For applications
like robotic navigation and virtual reality, it is important to be able to estimate the
pose of the camera in varying environments. A drawback with geometric based
tracking algorithms like ours in Chapter 3 is that the scene cannot be completely
planar. If it is, there are not enough constraints to determine the rotation and
translation of the camera. In this chapter, we will see that we can improve the
camera tracking in several ways. The main objective is to make the pose estima-
tion more robust to handle different environments. We will see how we can use
the color information of the surface to improve the robustness and accuracy of the
camera pose. It will also be shown that by combining information in the captured
color images, the pose estimation can be made less sensitive to the assumption
of a small camera motion. A method to reduce the memory consumption is also
presented.

4.2 Invoking Color in the Camera Pose Estimation

We saw in Section 3.2 how the color of the 3D model can be estimated by com-
puting a weighted average of color measurements for each voxel. Now when we
have a textured 3D model represented in a voxel grid, we want to use this infor-
mation to improve the camera tracking. The idea is based on photo consistency
between the current estimation of the 3D model and the newly obtained color
image Ic. By using a guess of the transformation [R, t], we can from pixel (i, j)
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Figure 4.1: By reconstructing the 3D points with a guess of R and t, it is possible
to compare the color of the model where the point is reconstructed and the color
in the color image Ic. Ideally, it should match.

reconstruct a 3D point into the voxel grid by

xG = RxL + t, (4.1)

where

xL =


(i−cx)z

f
(j−cy)z

f

z

 . (4.2)

From xG, we can easily find out where in the voxel grid the point is located and
we can then compute the color (R,G,B) of the surface there. By obtaining
the RGB-vector of the model (R,G,B), we can compare this with the color
intensities in the pixel (i, j) in the RGB image Ic. Ideally, these should match for
each pixel, as illustrated in Figure 4.1.

By computing the difference between the intensities in the image and the
color on the surface, we get the error

Ecolor(R, t) =
∑
ij

‖C(Rxij + t)− Ic(i, j)‖2, (4.3)
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where C(Rxij+t) is the RGB-vector in the voxel grid atRxij+t and Ic(i, j) is
the RGB-vector in the color image at pixel (i, j). Thus, we have an error metric
which takes color information into account. This allows us to integrate color
information into our original method where we only use geometric information.
Let us first define the color error as

ψ(Rxij + t) = ‖C(Rxij + t)− Ic(i, j)‖. (4.4)

Adding this to the geometric error we get

Etot(R, t) = φ(Rxij + t)2 + αψ(Rxij + t)2, (4.5)

where α is the weight of the color error. This term takes into account both
the geometric error and error in each color channel. The error is zero when the
rotation and translation is such that the point is reconstructed onto the zero level
set and the color on the surface matches the color in the pixel.

With this, the new error function we want to minimize is

E(R, t) =
∑
i,j

φ(Rxij + t)2 + αψ(Rxij + t)2, (4.6)

where we sum over all pixels (i, j). Again, we change representation of the rigid
body motion by using the Lie-algebra representation

(ω, t) = (ωx, ωy, ωz, tx, ty, tz). (4.7)

With this and a local 3D coordinate xij for pixel (i, j) we write the residual vector
as

rij(ω, t,xij) = (φ(g(ω, t,xij)),
√
αψ(g(ω, t,xij)))

T , (4.8)

and the error function becomes

E(ω, t) =
∑
i,j

rij(ω, t,xij)
T rij(ω, t,xij), (4.9)

which we minimize using the Gauss-Newton method. Thus we now have a
method for estimating the camera position by using both geometry and texture
information.
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Figure 4.2: Close to the surface we allocate a dense voxel grid, but further away
from the surface there are no voxels allocated.

4.2.1 Efficient Use of Memory

Another problem we address is the waste of memory by using a uniform grid.
Remember that the memory consumption of a uniform grid grows cubically with
the voxel resolution. More detailed reconstructions thus requires small objects,
otherwise the memory consumption would explode. To address this we simply
notice that we are only interested in the distance function in the vicinity of the
surface and therefore there is no need to allocate a lot of voxels in empty space.
The simplest approach would be to implement an octree representation. How-
ever, then the resolution quickly decreases as we get far away from the surface.
To compute the derivatives, we want to have a high resolution around the surface
as well. Therefore, we implement a representation where we have a very coarse
voxel grid, with no voxels allocated, then if we detect a surface in any of these
voxels, we allocate densely with voxels there, this is illustrated in Figure 4.2. This
allows a higher spatial resolution for larger reconstructions without running out
of memory.
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Figure 4.3: The reconstructed scene when the sensor is only facing the floor.

4.3 Experiments and Results

The purpose of invoking color information in the tracking procedure was to ad-
dress that our original method would not work when there is only planar surfaces.
To test our hypothesis, we made a simple experiment by recording data with the
depth camera facing the floor only. As can be seen in Figure 4.3, everything
looks smeared out and the estimated pose is approximately a non-moving one,
whereas invoking color information yields a completely different result, as seen in
Figure 4.4.

When we use the color information to estimate the camera pose, then the
floor with its texture is clearly visible. Moreover, the edges on the blue squares
are clearly distinguishable. The sharp edges indicate that the pose of the camera
is correctly estimated. In another experiment, we tested how the method works
for larger reconstructions, since we now have a more efficient way of representing
the distance function. We tried to reconstruct a part of a corridor, which is quite
a challenging task, since there are many scenes with little structure. The result is
shown in Figure 4.5. The movement in these scenes is quite simple. Nonetheless,
it shows that our tracking is also rather robust over larger scenes. The corridor is
approximately 40 m long and even if there is visible drift, it is not that bad. It is
inherently prone to drift since an error in the model gives an error in the tracking
and then it is impossible to recover without any external technique. Nonetheless,
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Figure 4.4: The reconstructed scene when the sensor is only facing the floor and
color information is invoked in the tracking.

Figure 4.5: The reconstructed corridor, using both color and geometric informa-
tion in the camera pose estimation.
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this experiments suggests that the drift is small.

4.3.1 Quantitative Results

To evaluate our method we test it on the benchmarks [66] again. We test it on
several different datasets and we also provide results from [64] for the datasets
where their results are available. Just like we do, [64] includes both color- and
depth-information into their tracking framework. In contrast to our work, the
pose is estimated after all images are captured and the pose is globally optimized
using loop closure and graph optimization [43]. It can therefore be expected that
their result should be better, but it is still interesting to see the difference between
online- and offline pose estimation. Several of the datasets can also be compared
to KinFu [1] in Chapter 3.

It is clear that invoking color information increases the performance on most
datasets. In particular, Fr3 No_Structure_Texture_Far shows the strength of in-
voking color information. With no color the RMSE is 1.36 m, but invoking color
information decreases the error to 0.03 m. However, Fr1 Desk2 shows the op-
posite behvaiour, the more color that is used, the more inaccurate is the tracking.
Fr1 Desk2 is considered to be a quite challenging dataset with a fast movement
of the camera. It is also clear from the results that different datasets give best re-
sult for different values of the weight α. At the moment the weight has to be set
manually. It would be interesting to look further into how the weight can be set
automatically. The frame rate with a voxel grid of 5123 voxels was about 11− 12
Hz, using an NVidia Geforce GTX 770, Intel i7 3.4 GHz processor and 16 GB
RAM.

4.4 Combining Sparse and Dense Tracking

Invoking color information from the global model clearly improves the tracking
as seen in Section 4.3.1. Yet, there are still situations where texture information
in the model is not enough. Imagine we have a planar surface with texture, but
the texture is not so distinct. The estimated model is then likely to be smeared
out and it will be difficult to estimate the pose.

An idea to attack this problem is to use sparse feature points and invoke these
into our error function. The approach is to find corresponding points between
the new image and a sequence of images already obtained. With corresponding
pixel pairs [(pn+1

x , pn+1
y ), (pnx, p

n
y )], where (pn+1

x , pn+1
y ) corresponds to a pixel
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Table 4.1: The root-mean square absolute trajectory error (m) for different values
of the weight α. Note that α = 0 corresponds to the pure geometric tracking
approach in Section 3.3

.
Dataset Weight α

α 0 0.1 0.2 0.3 0.4 0.5

fr1 teddy 0.072 0.067 0.064 0.061 0.059 0.058
fr3 str_no_tx_far 0.034 0.034 0.035 0.036 0.036 0.037
fr3 no_str_tx_far 1.36 0.042 0.041 0.031 0.031 0.030
fr1 desk 0.035 0.036 0.036 0.037 0.037 0.038
fr1 desk2 0.055 0.064 0.079 0.105 0.117 0.130
fr1 360 0.131 0.131 0.129 0.147 0.138 0.200
fr3 office_hhould 0.035 0.032 0.027 0.025 0.024 0.024
fr1 plant 0.044 0.042 0.044 0.047 0.048 0.050
fr1 rpy 0.045 0.041 0.039 0.038 0.037 0.037

α 0.6 0.7 0.8 0.9 1.0 [64]

fr1 teddy 0.066 0.072 0.080 0.248 0.223 0.036
fr3 str_no_text_far 0.037 0.038 0.038 0.039 0.040
fr3 no_str_text_far 0.030 0.030 0.030 0.029 0.029
fr1 desk 0.038 0.038 0.038 0.039 0.039 0.021
fr1 desk2 0.132 0.135 0.138 0.140 0.140 0.027
fr1 360 0.196 0.199 0.205 0.737 0.759 0.073
fr3 office_household 0.024 0.024 0.025 0.025 0.026 0.030
fr1 plant 0.051 0.051 0.051 0.051 0.052
fr1 rpy 0.037 0.037 0.037 0.037 0.037
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Figure 4.6: By finding feature point correspondences between the new image and
an older images, one want to align these matches as good as possible.

in image In+1
c and (pnx, p

n
y ) to a pixel in image Inc , we can compute the global

position yG of the point corresponding to (pnx, p
n
y ) since the camera position for

that frame is known. With these global 3D coordinates of yG, we want to find R
and t such that

Rx + t = yG. (4.10)

where x is the corresponding local point in the new camera’s frame of reference.
The idea is depicted in Figure 4.6. By matching feature points between a sequence
of the K + 1 latest image pairs

(In+1
c , Inc ), (In+1

c , In−1
c ), ..., (In+1

c , In−Kc ) (4.11)

we get a set

(Y1, Y2, ..., YK) (4.12)

of global 3D points and a corresponding set of local 3D points

(X1, X2, ..., XK). (4.13)

Each Yi and corresponding Xi consists of Mi number of corresponding 3D
points

Xi = {x1,x2, . . . ,xMi} (4.14)

Yi = {y1,y2, . . . ,yMi}. (4.15)
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We can use this to define the error function

E(R, t) =

K∑
i=1

∑
x∈Xi
y∈Yi

‖Rx + t− y‖2 (4.16)

where the sum is over all found corresponding 3D points.
This error function is not dependent on what the model looks like so the

idea is that this term shall help finding the correct pose even if the model does
not provide enough information. Furthermore, the feature based error does not
require the cameras to be close to each other. Therefore, one could expect that
adding this error term would make the algorithm more robust to larger camera
movements. By adding (4.16) to (4.6) we get

E(R, t) =
∑
i,j

φ(Rxij + t)2 + αψ(Rxij + t)2 + µ
L∑
l=1

‖Rxl + t− yl‖2,

(4.17)

where we sum over all pixels (i, j) and all found corresponding feature points, α
and µ are the weights and L is the total number of found correspondences.

Linearizing each sum separately and then adding the resulting matrices for
the optimization, we can use the Gauss-Newton method as earlier to minimize
the error function.

4.4.1 Qualitative Results

This new approach was tested qualitatively on several challenging recordings. In
the first sequence images from a floor with hardly any texture was recorded. This
is very challenging due to the fact that it is completely planar and has little tex-
ture, so there is very little information to work with. Therefore, a purely geometric
based tracker would never work and even photo consistency is hard since there is
little texture and that is likely to be smeared out in the model. By also invoking
sparse feature points into our tracker, the hypothesis is that this shall give more
information. Looking on Figures 4.7a and 4.7b, it is clear that the extra informa-
tion we get from the feature points are very helpful in these extreme situations.
In the scene the recording starts in the lower left corner and ends after the chess
board pattern in Figure 4.7a. When only using the model in the TSDF for track-
ing, the result is as in Figure 4.7b. The trajectory cannot be correctly estimated
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(a) Reconstructed floor using
both the model and sparse fea-
ture points

(b) Reconstructed floor using
the model only.

(c) Reconstructed poster with plenty of texture
using both feature points and the model.

(d) Reconstructed poster using only feature
points.

Figure 4.7: Top: Comparison between using only information in the model and
also invoking feature points. Bottom: Comparison between using only feature
points and information from both the model and feature points.
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(a) Without using feature
points there is not enough
texture to recover the tra-
jectory, one sees clearly
that drift is present.

(b) Including feature
points as well gives more
accurate result for this
sequence.

Figure 4.8: In this sequence one can see drift in the left figure, for example the yel-
low box in the lower left corner is duplicated. In contrast the right reconstruction
is sharper, indicating that the pose is better estimated.

between the starting point and the blue pattern, whereas invoking the sparse fea-
ture points in the tracking gives satisfying results. We use in this and the following
experiments SURF [7] to find the feature points.

One can ask oneself, do we really need the texture information in the model
now? The feature points give constraints when we have planar structures. By
recording a poster on a wall with plenty of texture, we used our proposed method
with both geometry, texture and feature points found using SURF [7] and com-
pared it to the obtained reconstruction where we only used sparse feature points.
In Figure 4.7d, only SURF points were used and the reconstruction looks rather
smeared out due to drift in the tracking. In contrast, the reconstruction using
the information from the model in the TSDF as well, clearly gives a better re-
construction, as can be seen in Figure 4.7c. This can be seen by looking at the
poster, the distinct details indicate that the trajectory is better estimated. Clearly,
the information in the model in the TSDF reduces drift which shows that we
cannot exclude texture information from the model in the tracking. Instead one
should take all information into account to obtain a tracking algorithm which
can work under as many circumstances as possible. For these two experiments we
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used α = 0.4 and µ = 0.75.

In a third experiment a recording of a blackboard was made, where there
is little and not so distinct texture. The scene is also almost completely planar
which makes it quite challenging. The result is shown in Figure 4.8. As can be
seen, there is visual drift in Figure 4.8a where only surface- and color information
in the model has been used for pose estimation. For example, the drawn graph
is duplicated and the yellow box in the left corner is also duplicated. In contrast,
invoking feature points in the pose estimation gives more satisfying results as seen
in Figure 4.8b. The reconstruction is more distinct and the yellow box is for
example better in the right image compared to the left. This is an example of
where just using information form the estimated surface is not enough to give
an accurate estimation of the pose. To get the results for the blackboard we used
α = 0.4 and µ = 3.0.

4.4.2 Quantitative Evaluation

To measure the effect of this new approach with sparse feature points, we bench-
marked it on [66]. The results are shown in Table 4.2. The parameter α in (4.17)
was set to α = 0.4. Then we let µ vary 0 and 1. As can be seen in the evalu-
ation, adding the feature points to the camera pose estimation does not improve
the accuracy for most datasets. The only noticeable difference was in datasets
Desk2 and 360. Both these datasets are quite challenging and the camera move-
ment faster than in other sequences. However, for most sequences it gives little
improvement on the benchmark. The advantage of invoking the feature points in
the camera tracking lies in the improved robustness as seen in Section 4.4.1. The
frame rate with a uniform voxel grid of 5123 voxels was about 4-5 Hz, using an
NVidia Geforce GTX 770, Intel i7 3.4 GHz processor and 16 GB RAM.

In Table 4.3 we try to simulate a faster camera movement by using every
k-th frame in order to test the robustness when the distance between the cam-
eras increases. Many algorithms like [50], [64] and [13] rely on a small camera
movement between two consecutive frames. In Table 4.3 it can be seen that our
proposed method clearly gets a lower RMSE compared to our previous methods
when the simulated speed of the camera is increased.
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Table 4.2: The root-mean square absolute trajectory error (m) for different values
of the weight µ, α was set to 0.4.

Dataset Weight µ

0 0.1 0.2 0.3 0.4

fr1 teddy 0.059 0.059 0.060 0.060 0.060
fr3 str_no_txt_far 0.036 0.036 0.036 0.036 0.036
fr3 no_str_txt_far 0.031 0.030 0.030 0.030 0.030
fr1 desk 0.037 0.037 0.037 0.037 0.037
fr1 desk2 0.117 0.107 0.087 0.077 0.075
fr1 360 0.138 0.130 0.128 0.129 0.128
fr3 office_house 0.024 0.024 0.024 0.024 0.023
fr1 plant 0.048 0.048 0.047 0.047 0.047
fr1 rpy 0.037 0.037 0.036 0.035 0.035

Dataset Weight µ

0.5 0.6 0.7 0.8 0.9 1.0

fr1 teddy 0.061 0.061 0.061 0.060 0.060 0.060
fr3 str_no_txt_far 0.036 0.037 0.037 0.037 0.037 0.037
fr3 no_str_txt_far 0.030 0.030 0.030 0.030 0.030 0.030
fr1 desk 0.037 0.037 0.037 0.037 0.037 0.037
fr1 desk2 0.071 0.069 0.066 0.065 0.066 0.065
fr1 360 0.121 0.118 0.117 0.115 0.112 0.110
fr3 office_house 0.023 0.023 0.023 0.023 0.023 0.023
fr1 plant 0.046 0.046 0.046 0.045 0.045 0.044
fr1 rpy 0.035 0.034 0.034 0.034 0.033 0.033
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aaaaaaaaaa
Dataset

Step Size k
1 2 3 4 5 6

Teddy [14] 0.059 0.473 0.656 1.142 1.098 0.990
Teddy Our 0.060 0.059 0.067 0.065 0.274 0.268
Desk2 [14] 0.117 0.302 0.442 0.820 0.715 0.991
Desk2 Our 0.058 0.083 0.526 0.317 0.289 0.507
360 [14] 0.131 0.288 0.773 1.419 1.774 1.939
360 Our 0.102 0.010 0.206 0.581 1.493 1.254
Plant [14] 0.045 0.069 0.290 0.351 0.448 0.531
Plant Our 0.047 0.046 0.215 0.348 0.111 0.548
Desk [14] 0.032 0.051 0.094 0.244 0.422 0.603
Desk Our 0.032 0.033 0.037 0.045 0.100 0.320

Table 4.3: Results on the benchmarks from [66]. We use every k-th image and
compute the RMSE (m) to test the robustness for bigger distances between two
consecutive frames.

4.5 Conclusion

In this part of the thesis we have seen how a 3D model represented as a TSDF can
be used for estimation of the camera pose. Evaluations on benchmark show that
our method gives good results on many different datasets with a reasonable speed.
The more information we use, the slower the tracking is, but the more robust it
becomes. Several challenges remain, for example for larger reconstructions, one
must find a way of reducing errors in the model and the tracking. Now a badly
estimated camera pose gets integrated into the model and that way errors are
accumulated. For online reconstructions, this must be done in real-time, so that
the model is correctly updated as new images are obtained. Another interesting
problem is how to set the weights α and µ optimally.
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Chapter 5

Low-Rank Approximation of
Matrices

5.1 Introduction

Another problem studied in this thesis is how to obtain a low-rank approximation
of a measurement matrix. For the reader who is not familiar with this subject we
start by giving some examples of problems that eventually lead to a low-rank
approximation problem.

5.1.1 Structure from Motion

One of the more familiar applications of low-rank approximation, or more specif-
ically in this case, matrix factorization, is the work by [70]. Assume we have a set
of 3D points Q = {y1, ...,yN} where each yi ∈ R3 and K affine cameras

P k =

(
Ak tk

0 1

)
, (5.1)

Ak ∈ R2×3 and tk ∈ R2×1. A 3D point y is projected onto the image plane
with pixel coordinates pkxpky

1

 = P k
(
y
1

)
. (5.2)

Because of the special shape of the affine camera matrix the third coordinate
of the projection will be one as long as the point that we are projecting is not at
infinity. Therefore we can ignore this coordinate if we assume that we are only
dealing with regular points.
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Assume now that we have taken a sequence of K images of the same object
and have tracked the image coordinates (pkxi , p

k
yi)

T for each 3D point yi and each
image Ik. We can stack all pixel coordinates in the matrix M . The rows 2k − 1
and 2k in M contain the coordinates for all pixels in frame Ik and M is of size
2K ×N ,

M =


p1
x1

. . . p1
xN

p1
y1

. . . p1
yN

...
...

...
pKx1

. . . pKxN
pKy1

. . . pKyN

 . (5.3)

Now we want to find the positions of the cameras and the 3D coordinates of
the tracked points. Starting by finding the translation for each camera, it can be
shown that

tk =

(
p̄kx
p̄ky

)
−Akȳ, (5.4)

where (p̄kx, p̄
k
y)
T is the mean of the observed pixels in frame k and ȳ is the mean

of the 3D points. By subtracting the corresponding mean from each pixel, we can
assume that the translation is zero. Thus each projection (pkxi , p

k
yi) in frame k can

be written as (
pkxi
pkyi

)
= Akyi. (5.5)

We want to factorize M ∈ R2K×N into two matrices A and Y such that

M =


p1
x1

. . . p1
xN

p1
y1

. . . p1
yN

...
...

...
pKx1

. . . pKxN
pKy1

. . . pKyN

 =

A1

...
AK

(y1 . . . yN
)

= AY. (5.6)

Hence given a set of measurements in a matrix M the goal is to find a decompo-
sition of M where one part corresponds to the cameras and the other corresponds
to the 3D points. We can immediately conclude that the rank of the measurement
matrix M is at most 3, since A ∈ R2K×3 and Y ∈ R3×N .
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Now this is an ideal case, in practice we never have perfect measurements,
instead there will be noise as well. The best we can do then is to find an approxi-
mation of the original data which is close to the measurements we have obtained
in some norm and also fulfills certain constraints. In this case we want to optimize

minimize
X

‖X −M‖2
F

subject to rank(X) = 3.
(5.7)

In other words we have a problem where the goal is to find a low-rank approxi-
mation of a matrix. To solve this particular problem we use von Neumanns trace
theorem

|tr(XTM)| ≤
n∑
i=1

σi(X)σi(M), (5.8)

with equality when X = UΣXV
T and M = UΣMV

T , where U and V are
unitary and ΣX and ΣY are diagonal matrices with the singular values of X and
M respectively. It is also assumed that the singular values are assumed to be in a
decreasing order. That equality holds is seen by using the properties of the scalar
product for matrices

〈X,M〉 =tr(XTM) = tr(V ΣT
XU

TUΣMV
T ) = (5.9)

tr(V TV ΣT
XΣM ) = 〈ΣX ,ΣM 〉. (5.10)

Now back to (5.7),

‖X −M‖2
F = ‖M‖2

F − 2〈X,M〉+ ‖M‖2
F = (5.11)

n∑
i=1

σi(M)2 − 2〈X,M〉+
n∑
i=1

σi(X)2 ≥ (5.12)

n∑
i=1

(σi(M)2 − 2σi(M)σi(X) + σi(X)2) = (5.13)

n∑
i=1

(σi(X)− σi(M))2, (5.14)

where σi(X) and σi(M) are the singular values ofX and Y respectively. To make
‖X−M‖2

F as small as possible we see that we can chooseX = UMΣXV
T
M where
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UM and VM are unitary and obtained from SVD ofM . From (5.14) we conclude
that we must choose the three largest singular values of M and put them into ΣX

and set the rest of the diagonal to zero. This is because of the constraint that we
want a solution of rank 3. The decomposition A and Y we are seeking can be
obtained by extracting the 3 largest singular values from ΣM and corresponding
right and left singular vectors from UM and VM and putting them into U ′, Σ′

and V ′, where U ′ ∈ R2K×3, Σ′ ∈ R3×3 and V ′ ∈ R3×N . Then we can define

A = U ′(Σ′)1/2 (5.15)

Y = (Σ′)1/2V ′ (5.16)

to be the camera matrices and 3D points. This is a well-known result from [70]
and is an example of how low-rank approximations can be of use in computer
vision. This approach was extended in [12] to the non-rigid setting, again using
an affine camera.

There are several other applications of low-rank factorizations as well. For
example it can also be used in Optical Flow [30], Photometric Stereo [39, 62, 6]
and Non-rigid Shape Recovery [74].

5.1.2 Related Work

Typically, measurements are noisy and good optimization criterion consists of a
trade-off between the rank and the residual errors, leading to a formulation of the
type

min
X

µ rank(X) + ‖X −M‖2
F , (5.17)

where M is a matrix of measurements.
This can be solved using SVD but it will only work if there is no missing data

and it is sensitive to outliers. To handle outliers the more robust l1 norm has been
studied in [27, 65, 75].

Now assume that we have a set of images and through these images we have
tracked a number of feature points. Most likely, we will not see all the points in
all images throughout the whole sequence. If we put all coordinates in two rows
and then stack them on top of each other for each image, we will get a matrix
looking like the one in Figure 5.1.

To reconstruct the scene, we want to estimate the positions of the points in
the images where they are not seen. A way of solving this problem would be to
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Figure 5.1: When tracking data points for example, the points will not be seen
in all images. The green pattern is observed data and the red area is where the
points have not been seen. In this illustration the points to the left are seen in the
beginning of the sequence and the points to the right are seen in the end of the
sequence.

minimize an objective of the form

min
X

µ rank(X) + ‖W � (X −M)‖2
F , (5.18)

where Wij = 0 if Mij is missing and 1 otherwise and � denotes element wise
multiplication. Typically, W �M has a high rank. The first term in (5.18) favors
solutions with low rank.

Objectives of the form in (5.18) have been studied by [28, 58, 18, 51, 4]
where the rank function is replaced with the nuclear norm, which is the convex
envelope of the rank function on the set {X ∈ Rm×n|σmax(X) ≤ 1}. This
results in the formulation

min
X

µ‖X‖∗ + ‖W � (X −M)‖2
F , (5.19)

where ‖X‖∗ is the nuclear norm. In [58, 18] it is shown that this will yield an op-
timal solution if the location of the missing entries are random. In Structure from
Motion though, the data is often highly correlated and patterns as in Figure 5.1
are common. For example in SfM it appears because tracked points typically oc-
cur in a consecutive sequence of images and then the points go out of view of
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the camera. Therefore, the nuclear norm might not be the best solution for some
problems in computer vision. Moreover, we do not want to restrict ourselves to
the set {X|σmax(X) ≤ 1}, but instead solving the problem over all matrices.

We seek to derive the convex envelope of (5.17). The advantage with working
with this objective is that we translate the feasible region to lie around the mea-
surement M . Compared to the nuclear norm which is centered around 0. The
work most similar to ours is perhaps [38] which derives the convex envelope of a
vector version, centered at 0.

5.2 Developing the Convex Envelope

To find a solution of (5.18), we derive the convex envelope of

f(X) = µ rank(X) + ‖X −M‖2
F . (5.20)

The tactic to find a solution of (5.18) is to divide the measurement matrix M
into sub-blocks with no missing data. On these sub-blocks we will be able to use
our convex envelope of (5.20).

In this part we show how we can find the envelope of (5.20). We start by
computing the Fenchel conjugate. Thereafter we compute the conjugate of the
conjugate, which gives us the bi-conjugate which is the convex envelope of f .

The Fenchel conjugate is defined as

f∗(Y ) = max
X
〈X,Y 〉 − f(X). (5.21)

Writing this as

f∗(Y ) = max
X
〈X,Y 〉 − (µ rank(X) + ‖X −M‖2

F ), (5.22)

we can complete squares to obtain

〈X,Y 〉 − ‖X‖2
F + 2〈X,M〉 − ‖M‖2

F = (5.23)

〈X,Y + 2M〉 − ‖X‖2
F − ‖M‖2

F = (5.24)

−(‖X‖2
F − 〈X,Y + 2M〉)− ‖M‖2

F = (5.25)

−‖X − (
1
2
Y +M)‖2

F + ‖1
2
Y +M‖2

F − ‖M‖2
F . (5.26)
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The matrix X is of the same size as M, m × n, so the rank cannot be higher
than min(m,n), so by maximizing for each rank k and over all k, the Fenchel
conjugate can be written as

max
k

max
X

rank(X)=k

− µk − ‖X − (
1
2
Y +M)‖2

F + ‖1
2
Y +M‖2

F − ‖M‖2
F .

(5.27)

Here two terms are independent of X and in the inner maximization the rank k
is fixed. For fixed k we can maximize with respect to X by computing the SVD
of 1

2Y +M = UΣV T and setting X = UΣkV
T , where Σk only contains the k

largest singular values. Inserting this into (5.27) gives

f∗(Y ) = max
k

‖1
2
Y +M‖2

F − ‖M‖2
F −

n∑
i=k+1

σ2
i (

1
2
Y +M)− µk

(5.28)

= max
k

‖1
2
Y +M‖2

F − ‖M‖2
F −

n∑
i=k+1

σ2
i (

1
2
Y +M)−

k∑
i=1

µ.

(5.29)

Looking at equation (5.29), we can deduce that the optimal k must be chosen
such that

σ2
k(

1
2
Y +M) ≥ µ ≥ σ2

k+1(
1
2
Y +M). (5.30)

Using this we can write the conjugate function as

f∗(Y ) = ‖1
2
Y +M‖2

F − ‖M‖2
F −

n∑
i=1

min(µ, σ2
i (

1
2
Y +M)). (5.31)

The next step to find the convex envelope of the original function (5.20) is to
compute the bi-conjugate. The bi-conjugate is defined as

f∗∗X = max
Y
〈X,Y 〉 − f∗(Y )

= max
Y
〈X,Y 〉 − (‖1

2
Y +M‖2

F − ‖M‖2
F −

n∑
i=1

min(µ, σ2
i (

1
2
Y +M))).

(5.32)
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With the change of variables

Z =
1
2
Y +M, (5.33)

this becomes

f∗∗(X) = max
Z

2〈X,Z −M〉 − ‖Z‖2
F + ‖M‖2

F +
n∑
i=1

min(µ, σ2
i (Z)).

(5.34)

By completing squares, this can be written as

f∗∗(X) = max
Z
‖X −M‖2

F − ‖Z −X‖2
F +

n∑
i=1

min(µ, σ2
i (Z)). (5.35)

The term ‖X −M‖2
F is independent of Z, so we can write it outside the maxi-

mization

f∗∗(X) = ‖X −M‖2
F + max

Z
(
n∑
i=1

min(µ, σ2
i (Z))− ‖Z −X‖2

F ). (5.36)

We also have that −‖Z − X‖2
F = −‖Z‖2

F + 2〈X,Z〉 − ‖X‖2
F and by von

Neumann’s trace theorem 〈X,Z〉 ≤∑n
i=1 σi(X)σi(Z) we get that

−‖Z −X‖2
F = −‖Z‖2

F + 2〈Z,X〉 − ‖X‖2
F (5.37)

= −
n∑
i=1

(σ2
i (Z) + σ2

i (X)) + 2〈Z,X〉 (5.38)

≤
n∑
i=1

−σ2
i (Z)− σ2

i (X) + 2σi(Z)σi(X). (5.39)

To maximize (5.39), Z should have the same unitary matrices U and V as X
have. The problem is now reduced to

max
Z

n∑
i=1

min(µ, σ2
i (Z))− (σi(Z)− σi(X))2. (5.40)
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To find the optimal singular values, we can maximize each term individually.
Therefore,

max
σi(Z)

min(µ, σ2
i (Z))− (σi(Z)− σi(X))2 (5.41)

should be solved. There are two cases:

(i) σ2
i (Z) ≤ µ which gives

max
σi(Z)

2σi(X)σi(Z)− σi(X)2, (5.42)

and since σi(X) ≥ 0 we have σi(Z) =
√
µ.

(ii) µ ≤ σ2
i (Z), which gives the optimization problem

max
σi(Z)

µ− (σi(Z)− σi(X))2, (5.43)

which we can trivially solve by setting σi(Z) = σi(X).

Together we get the optimal solution

σi(Z) = max(
√
µ, σi(X))∀i. (5.44)

We now want to use this to derive the bi-conjugate by using that

min(µ, σ2
i (Z)) = min(µ,max(µ, σ2

i (X))) = µ (5.45)

and that

‖Z −X‖2
F =

n∑
i=1

(σi(Z)− σi(X))2 =

n∑
i=1

(max(
√
µ, σi(X))− σi(X))2 =

n∑
i=1

[
√
µ− σi(X)]2+. (5.46)

where

[x]+ = max(0, x). (5.47)
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Figure 5.2: To handle missing data we divide the measurement matrix into sub-
blocks. To recover the blocks with no data we must have an overlap between the
blocks.

We can now finally derive the convex envelope of the original optimization prob-
lem (5.20). The convex envelope, or bi-conjugate is

f∗∗(X) = ‖X −M‖2
F +

n∑
i=1

(µ− [
√
µ− σi(X)]2+). (5.48)

Note that we also assume that the singular values are sorted in a decreasing order.
To simplify notation later, we define

Rµ(X) =
n∑
i=1

(µ− [
√
µ− σi(X)]2+). (5.49)

5.2.1 Missing Data

Even though we have now found a convex envelope of (5.20), it assumes that the
measurement matrix is full, i.e. we have no missing data. For many computer
vision problems this assumption is unrealistic and we need to tackle this problem.
The key idea behind our approach is to divide the measurement matrix M into
sub-blocks, where each sub-block is full. See Figure 5.2 for an illustration. Then
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we solve the optimization problem for each sub-block and when all approxima-
tions are found, we use these blocks to build the entire matrix X . Later we will
see that the rank of the entire matrix is connected to the rank of the blocks we use
to create X from.

Let Ri and Ci, i = 1, . . . ,K be a subset of row and column indices for each
block i. We define the linear operator Pi : Rm×n → R|Ri|×|Ci|, which extracts
the elements at indices Ri × Ci and creates a sub-matrix of size |Ri| × |Ci| with
no missing data.

Instead of trying to solve the original problem (5.18), we aim to solve

min
X

K∑
i=1

µi rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F , (5.50)

by replacing it with its convex envelope

min
X

K∑
i=1

Rµi(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F . (5.51)

By solving the optimization problem we end up with a bunch of sub-blocks.
However, we have still not found the entire matrix X , but only a part of it. To
recover the whole matrix we use the following lemma:

Lemma 5.2.1. Let X1 and X2 be two given matrices with overlap matrix X22

as shown in Figure 5.3 and let r1 = rank(X1) and r2 = rank(X2). Suppose
that rank(X22) = min(r1, r2), then there exists a matrix X with rank(X) =
max(r1, r2). Additionally if rank(X22) = r1 = r2 then X is unique.

Proof. We will assume (w.l.o.g.) that r2 ≤ r1 and look at the blockX2. The over-
lap X22 is of rank r2 so there are r2 linearly independent columns in [XT

22 X
T
32]T

and rows in [X22 X23]. Now the rank of X2 is r2 and we can find coefficient
matrices C1 and C2 such that[

X23

X33

]
=

[
X22

X32

]
C1 and

[
X32 X33

]
= C2

[
X22 X23

]
. (5.52)

We therefore set X13 := X12C1 and X31 := C2X21. To determine the rank of
the resulting X we first look at the number of linearly independent columns. By
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Figure 5.3: Two sub-blocks of a matrix with overlap X22.

construction, the columns [XT
13 X

T
23 X

T
33]T are linear combinations of the other

columns and similarly, the rows [X31 X32 X33] are linear combinations of the
other rows. Hence, the number of linearly independent columns (or rows) have
not increased. Therefore X has the same rank as X1.

If rank(X22) = rank(X1) = rank(X2) = r, then C is unique. To prove this,
assume that it is not unique, then

X13 = X12C1 and X̂13 = X12Ĉ1. (5.53)

Since both C1 and Ĉ1 solves [
X23

X33

]
=

[
X22

X32

]
C (5.54)

it follows that C1 − Ĉ1 lies in the nullspace of[
X22

X32.

]
(5.55)

By assumption rank([XT
12 X

T
22 X

T
32]T ) = rank([XT

22 X
T
32]T ). This implies that

they share the same nullspace, so C1 − Ĉ1 must lie in the nullspace of X12. This
gives X13 = X12C1 = X12Ĉ1 = X̂13, a contradiction.
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X11 X12 ?

X21 X22 X23

? X32 X33

X =

X2 = U2 V T
2

Q Q−1

X1 = U1 V T
1

Figure 5.4: Left: The matrix X contains two overlapping blocks X1 and X2. The
goal is to fill in the missing entries X13 and X31 such that rank(X) is kept to a
minimum. Right: The low-rank factorizations of the two blocks X1 and X2. The
overlap is marked in both the blocks and the factorizations.

The next step is now to extend the solution on the blocks to the entire ma-
trix.We start by finding the maximal rank rmax among the blocks. Then we
factorize X1 and X2 using SVD,

X1 = U1V
T

1 and X2 = U2V
T

2 where Uk ∈ Rmk×rmax , Vk ∈ Rnk×rmax .
(5.56)

However, we have an ambiguity here, because for any non-singular matrix Q, we
have

U1V
T

1 = (U1Q)(Q−1V T
1 ). (5.57)

To resolve this, we consider the singular value decompositions of X1 and X2.
Looking at Figure 5.4, we can see that we can create X22 from the sub-matrices
by

X22 = Û1V̂
T

1 (5.58)

X22 = Û2V̂
T

2 , (5.59)

where ÛiV̂ T
i is the restriction of the UiV T

i to X22.
Due to ambiguity, Û1 will in general not equal Û2 and V̂1 will be different

from V̂2. Instead we try to find an invertible transformation Q which transforms
Û1 into Û2, i.e. we seek to solve

Û1 = Û2Q (5.60)

V̂1 = Q−1V̂2. (5.61)
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In this case we solve the optimization problem

min
Q

‖Û1 + Û2Q‖2
F + ‖QV̂1 − V̂2‖2

F (5.62)

in a least square sense. With this Q, we can concatenate U1 and U2 to U =
[U1Q

−1, Ũ2]T where Ũ2 contains the elements which are not common toU1Q
−1.

The same way we construct V and obtain a complete matrix X by

X = UV T . (5.63)

This way we can iteratively combine the sub-blocks and create a single matrix X
and thanks to Lemma 5.2.1, we know that our matrix X does not have higher
rank then the rank among the sub-matrices.

5.3 Optimization

To actually find a low rank approximation of each sub-block, we must do some
optimization. If we would optimize each sub-block independently, we would have
no guarantee that they would agree on the overlap. Thus, we must enforce con-
sistency on the overlap as a constraint. This results in the (convex) optimization
problem

K∑
i=1

Rµi(Xi) + ‖Xi − Pi(M)‖2
F (5.64)

subject to

Pi(X) = Xi ∀i = 1...K.

An ADMM [11] formulation results in the augmented Lagrangian

K∑
i=1

Rµi(Xi) + ‖Xi − Pi(M)‖2
F + ρ‖Xi − Pi(X) + Λi‖2

F − ρ‖Λi‖2
F .

(5.65)

At each iteration we solve and update the variables by

Xt+1
i = arg min

Xi

Rµi(Xi) + ‖Xi − Pi(M)‖2
F + ρ‖Xi − Pi(Xt) + Λti‖2

F ,

(5.66)
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for i = 1...K and

Xt+1 = arg min
X

K∑
i=1

ρ‖Xt+1
i − Pi(X) + Λti‖2

F (5.67)

Λt+1
i = Λti +Xt+1

i − Pi(Xt+1). (5.68)

5.3.1 Proximal Operator

Finding Xt+1 is a simple least squares problem, whereas finding the optimal sub-
block Xt+1

i is more complicated. We need to solve

min
Xi

F (Xi) (5.69)

where

F (Xi) = Rµi(Xi) + ‖Xi − Pi(M)‖2
F + ρ‖Xi − Pi(X) + Λi‖2

F . (5.70)

This objective can be rewritten as

N∑
j=1

(µ− [
√
µ− σj(Xi)]

2
+) + (1 + ρ)‖X‖2

F

− 2〈Pi(M) + ρ(Pi(X)− Λi), Xi〉+ ρ‖P(X)− Λi‖2
F (5.71)

and simplified to

F (Xi) = G(Xi)− 2〈Y,Xi〉. (5.72)

where

G(Xi) =
n∑
j=1

(−[
√
µ− σj(Xi)]

2
+) + (1 + ρ)‖Xi‖2

F (5.73)

and

Y = Pi(M) + ρ(Pi(Xt)− Λti). (5.74)

Since F is convex, it is sufficient to find where 0 ∈ ∂F .
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For this we need some theory about unitary invariant matrix functions, but
we start by defining the function

gi(σ) = −[
√
µ− |σ|]2+ + (1 + ρ)σ2. (5.75)

To see that gi(σ) is convex, one sees that gi is a special case of f∗∗(X), where
X ∈ R. Since the bi-conjugate f∗∗(X) is convex, gi must be convex. With our
definition of gi, we can now define

g(σ) =
n∑
i=1

gi(σi), (5.76)

which is absolutely symmetric and convex, since gi is convex for all i = 1...n.
Now G(X) = g ◦ σ(X), where

σ(X) = (σ1(X), σ2(X), ..., σn(X))T . (5.77)

To derive the subgradients we make use of the following lemma in [46]:

Lemma 5.3.1. (Characterization of Subgradients) Let us suppose that the func-
tion f : Rq → (−∞,∞] is absolutely symmetric and that the m × n matrix X
has σ(X) in dom f . Then the m × n matrix Y lies in ∂(f ◦ σ)(X) if and
only if σ(Y ) lies in ∂f ◦ σ(X) and there exists a simultaneous singular value
decomposition of the form

X = V (Diag(σ(X)))U, (5.78)

Y = V (Diag(σ(Y )))U (5.79)

where U and V are unitary matrices. In fact

∂(f ◦ σ)(X) = {V (Diag(µ))U |µ ∈ ∂f(σ(X)), X = V (Diag(σ(X)))U}.
(5.80)

To compute the subdifferential of G(X), we compute the subdifferential of
g(σ(X)) instead. Since g(σ(X)) is a sum of one-dimensional functions we can
compute the subgradient by treating each term individually. For each gi we have

∂gi(σ) =

{
2sgn(σ)[

√
µ− |σ|]+ + 2(1 + ρ)σ σ 6= 0

[−2
√
µ, 2
√
σ] σ = 0.

(5.81)
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Now, the aim is to solve 0 ∈ ∂F (X), which is equivalent of solving 2Y ∈
∂G(X). Recall that F (X) = G(X)− 2〈X,Y 〉.

If Y = UDiag(σ(Y ))V T then we can verify that X = UDiag(σ(X))V T

where

σi(X) =


σ(Y )
1+ρ if σi(Y ) ≥ (1 + ρ)

√
µ

σi(Y )−√µ
ρ if

√
µ ≤ σi(Y ) ≤ (1 + ρ)

√
µ

0 if σi(Y ) ≤ √µ
, (5.82)

is such that 2Y ∈ ∂G(X). Since

∂G(X) = Udiag(∂g ◦ σ(X))V T (5.83)

we have to check that

2σi(Y ) ∈ ∂gi(σi(X)) (5.84)

for all i. Now there are three cases to check:
Case 1:

σi(Y ) ≥ (1 + ρ)
√
µ : (5.85)

σi(X) =
σi(Y )

1 + ρ
(5.86)

gives

∂gi
∂σ

(
σi(Y )

1 + ρ

)
= 2

[√
µ− σi(Y )

1 + ρ

]
+

+ 2(1 + ρ)
σi(Y )

1 + ρ
= 2σi(Y ). (5.87)

Case 2:
√
µ ≤ σi(Y ) ≤ (1 + ρ)µ : (5.88)

σi(X) =
(σi(Y )−√µ)

ρ
(5.89)

gives

∂gi
∂σ

(
(σi(Y )−√µ)

ρ

)
= (5.90)

2

(√
µ− (σi(Y )−√µ)

ρ

)
+ 2(1 + ρ)

(σi(Y )−√µ)

ρ
= 2σi(Y ) (5.91)
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If (σi(Y )−√µ)
ρ = 0, then

∂gi
∂σ

(0) = 2
√
µ = 2σi(Y ), (5.92)

and it is in (5.81).
Case 3:

σi(Y ) ≤ √µ (5.93)

Here σi(X) = 0 and therefore 2σi(Y ) ≤ 2
√
µ is contained in the subdifferen-

tial (5.81).

5.4 Experiments

To evaluate this method we start by using synthetic data and compare the re-
sults with other methods, such as the nuclear norm and other local optimization
methods. First the convex relaxation is evaluated using synthetic data. We define

f(X) =

K∑
i=1

µi rank(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F (5.94)

and our derived convex relaxation

fR(X) =

K∑
i=1

Rµi(Pi(X)) + ‖Pi(X)− Pi(M)‖2
F . (5.95)

Then random rank 3 matrices were generated of dimension 100 × 100 by
sampling U, V ∈ R100×3 from a Gaussian distribution with zero mean and unit
variance. Then M was formed by M = UV T . The observation matrix W was
chosen to be a band-diagonal matrix with bandwidth 40 similar to Figure 5.5.
The blocks were laid out such that the overlap was 6×6 and contained no missing
data. Then the solution

X∗R = arg min
X

fR(X), (5.96)

where µi was set to 1 for every i was found. To M , we added different levels
of Gaussian noise and the test was repeated 1000 times for each noise level. In
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Figure 5.5: The pattern in the synthetic experiments and the overlap.

Figure 5.6 we plot the average error for each noise level of f(X∗R) and fR(X∗R),
note that if f(X∗R) = fR(X∗R), then the global minimizer is found.

To compare with other methods we substitute the rank function with the
nuclear norm. The nuclear norm is also convex, so it can also be used in our
block decomposition framework. Hence, the same experiment was made with
the objective

fN (X) =
K∑
i=1

µi‖Pi(X)‖∗ + ‖Pi(X)− Pi(M)‖2
F . (5.97)

The results are shown in the top graph of Figure 5.6. Note that the constraint
σmax(Pi(X)) ≤ 1 can be violated, so fN is not necessarily a lower bound on f .

However, there also exist other methods for obtaining low-rank approxima-
tions. We compare to two non-convex methods, namely OptSpace [42] and Trun-
cated Nuclear Norm Regularization (TNNR), [35]. Both OptSpace and TNNR
are local methods, that is, they are not convex. OptSpace is based on local op-
timization on Grassmanian manifolds and in TNNR an energy which penalizes
the last (n − r) singular values is minimized. The experiments were made the
same way as above with randomly chosen matrices U, V ∈ R3×100. Both these
approaches try to estimate a fixed rank approximation, that is the rank is set before
hand. In contrast our method is a trade-off between the rank and the data-term
‖X −M‖2

F . We therefore iterate our method over µi to get the same rank. The
average values of ‖W�(X−M)‖2

F are shown in 5.6. Even though the plots sug-
gests that our method is better, often both OptSpace and TNNR gives similar or
better results than our method. However, local minima result in a higher average
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than our method, but on the other hand, since OptSpace and TNNR minimizes
the original function directly, their solution will be at least as good as ours when
it does not get stuck in a local minimum.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
20

40

60

80

σ

f(X∗N )

f(X∗R)

fR(X∗R)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4

6

8

σ

Our
OptSpace
TNNR

Figure 5.6: Evaluation of the proposed formulation on synthetic data with varying
noise levels. Top: Comparison of our convex relaxation solution X∗R with the
nuclear norm X∗N . Bottom: The error ‖W � (X − M)‖F for varying noise
levels.

5.4.1 Real Data

As described earlier in this chapter, one application for low-rank approximation
is rigid structure from motion. We test our method on the well-known Oxford
dinosaur sequence. The measurement matrix M will contain the tracked 2D co-
ordinates of the tracked 3D points, as described in the beginning of this chapter.
Since we cannot handle outliers, we choose an outlier free subset of this dataset
consisting of 321 3D points where each point is seen in at least six images. The
observation matrix W is shown in the left of Figure 5.8 and clearly demonstrates
the band diagonal pattern for these structure from motion problems. For com-
parison we also solve the problem using the nuclear norm and bundle adjustment.
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(a) Original data (b) Our solution

(c) Nuclear norm (d) Perspective projection

Figure 5.7: Top Left: Observed image point trajectories. Top Right: Result ob-
tained with our method. Bottom Left: Result obtained with the nuclear norm.
Bottom Right: Perspective reconstruction followed by projecting onto rank 4 us-
ing SVD.
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Figure 5.8: Structured data patterns of observations (matrix W ) and sub-blocks
for the dino, book, hand and banner sequences.

The nuclear norm formulation is

min
X

µ‖X‖∗ + ‖W � (X −M)‖2
F (5.98)

which we optimize with the shrinkage operator and ADMM. The results are show
in Figure 5.7.

As seen in the figure, the nuclear norm performs much worse than our method.
This clearly shows the effect of penalizing all singular values rather than just the
singular values smaller than

√
µ. The perspective projection gives a more visually

appealing result. The errors ||W � (X−M)||F for the three solutions were 73.2
(our), 1902.5 (nuclear) and 116.2 (perspective), so even if the perspective projec-
tion looks better, our solution is a better low-rank approximation of the original
data.

5.4.2 Linear Shape Models

Another application is linear shape models, which are common in non-rigid struc-
ture from motion. Let Mf be the 2D- or 3D-coordinates of N tracked points
in frame f . The model we have assumes that in each frame the coordinates are a
linear combination of some unknown shape basis vectors, i.e.

Mf =

K∑
k=1

cfksk, f = 1 . . . F, (5.99)

where sk ∈ R2×N is the shape basis and cfk is the coefficient. We do not want
more basis elements than necessary to describe the movement. Consequently, we
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(a) Frame 1 (b) Frame 210

(c) Frame 340 (d) Frame 371

Figure 5.9: Frames 1, 210, 340 and 371 of the hand sequence. The solution has
rank 5.

(a) Frame 1 (b) Frame 121

(c) 380 (d) 668

Figure 5.10: Frames 1, 121, 380 and 668 of the book sequence. The solution has
rank 3.
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(a) Frame 70 (b) Frame 155 (c) Frame 357 (d) Frame 650

Figure 5.11: Frames 70, 155, 357 and 650 of the banner sequence. The solution
has rank 9.

(a) Frame 329 our solution. (b) Frame 329 nuclear norm.

(c) Frame 650 our solution. (d) Frame 650 nuclear norm.

Figure 5.12: From top left to bottom right: Our solution (frame 329), nuclear norm
solution (frame 329), our solution (frame 650), nuclear norm solution (frame
650).
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seek a low-rank approximation of the measurement matrix M . The measurement
matrix M is obtained by stacking all tracked points for each frame on top of
each other. In other words, the first two rows in M are the tracked points for
frame 1 and so on. The elements of the observation matrix W indicates if the
point was successfully tracked in that frame or not. In the first two datasets, Book
and Hand, we track points through a video sequence using the standard KLT-
tracker [47]. Due to tracking failure and occlusion, we get missing data which
forms the patterns shown in Figure 5.8 where the selected blocks are shown as
well. Using (5.51), we find a low rank approximation for each dataset. The results
can be seen in Figure 5.9 and Figure 5.10. The blue points are the reconstructed
points that were successfully tracked through the entire sequence. The red dots
are the reconstructed missing data and the green crosses are the original measured
data. As can be seen in both sequences, the derived solution gives reasonable
results.

In the third experiment, we used a Kinect camera to record a video of a mov-
ing piece of fabric. This gives a 3D grid of points and missing data comes from a
limited field of view and missing depth values in the depth image. To register all
points in a common coordinate system, we track the cameras using the patterns
on the wall (Figure 5.11). The obtained solution can be seen in Figure 5.11 and
Figure 5.12. For comparison, the results for the nuclear norm is also provided. It
is clear that our solution yields a more realistic reconstruction of the movement,
in contrast to the nuclear norm which has a bias toward small singular values.

5.5 Conclusion

In this chapter we derived a convex envelope of the rank-function plus a data-
term. This could then be combined with other convex constraints and optimized
in a ADMM-framework. Results suggest that our method works better in com-
parison to the nuclear norm which is another popular convex relaxation.
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Chapter 6

Minimizing the Maximal Rank

6.1 Introduction

In this chapter we will see that we can formulate an energy function where we
optimize over several matrices simultaneously and favor solutions where all matri-
ces have the same rank. In Section 5.2 we saw that the convex envelope could be
derived for the function

f(X) = µ rank(X) + ‖X −M‖2
F . (6.1)

By dividing the measurement matrix M into sub-blocks with no missing data it
was possible to derive a convex optimization problem with the linear constraint
that the overlap of the sub-matrices should coincide.

In this part we consider the case where we seek to find a low rank estimation
of several matrices simultaneously, where all matrices should have the same rank.

This is a natural formulation if one wants to approximate a manifold by tan-
gent spaces. Consider a d-dimensional connected manifold in RN . Locally, this
manifold can be approximated with a d-dimensional tangent space. Therefore,
approximating the data with a manifold can be thought of as locally approximat-
ing data with a low-rank matrix, all of rank d. An example of the idea is illustrated
in Figure 6.1. A practical application of this can be denoising where several im-
ages are used simultaneously. For example [33] consider each vectorized image
as a point in RN . The idea is that all images that are similar to each other will
be close in RN and lie in the same tangent space. Due to noise that assumption
will not be fulfilled, but hopefully one can find the d-dimensional tangent space
which contains the pure images and extract them to get the denoised images.
By using several images, the goal is to extract information from all those images
simultaneously to get a better denoising.
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Figure 6.1: A set of data points that lies on a d-dimensional manifold can be
locally approximated by tangent spaces.

This idea could also be extended to single image denoising. Instead of having
several similar images that should span a tangent space, one can divide the image
into several overlapping patches. Then patches similar to each other should lie
close in space and span a lower-dimensional tangent space where there is less
noise.

By assumption, all tangent spaces should have the same dimension d. This
leads naturally to a set of matrices X̂ = {X1, . . . , Xb}, where all have rank d.

The optimization problem that will be derived will only have one parameter
to control the rank of the matrices. This can be a practical advantage also in
applications which are not directly related to approximation of manifolds. For
example in structure from motion or linear shape basis estimation where we might
know the rank of the matrices we want to find, each sub-block has a parameter µi
that has to be tuned in Section 5.2. That might be a practical obstacle and then
it might be favorable to use the procedure which will be derived in this chapter.

6.2 Theory

We will now derive the new objective function and its convex envelope. Let
X̂ = (X1, . . . , Xb) be a collection of matrices. The scalar product is denoted as

〈X̂, Ŷ 〉 =

b∑
i=1

〈Xi, Yi〉 =

b∑
i=1

tr(XT
i Yi) (6.2)
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and the function r(X̂) is defined as

r(X̂) = max(rank(X1), . . . , rank(Xb)). (6.3)

The objective function will be on the form

minµ r(X̂) + ‖X̂ − M̂‖2 (6.4)

where

‖X̂ − M̂‖2 =
b∑
i=1

‖Xi −Mi‖2
F . (6.5)

The objective (6.4) is a formulation that favors solutions X̂ such that all sub-
matrices have the same rank. To see this, assume that X̂ ′ is a possible solution
to (6.4), where we have rank(X ′i) < r(X̂ ′) for some X ′i among (X ′1, . . . , X

′
b) in

the possible solution X̂ ′. Then the rank of X ′i can be increased to equal r(X̂ ′)
without increasing the term r(X̂ ′) in (6.4). On the other hand, by increasing the
rank of X ′i the data term ‖X̂ ′ − M̂‖2 will decrease. Consequently, we can get a
better fit to the data without increasing the rank-penalty.

6.2.1 Convex Envelope

Just like in Section 5.2, the convex envelope of our objective is derived by working
with Fenchel Conjugates. In this case the Fenchel Conjugate is

f∗(Ŷ ) = max
X̂
〈X̂, Ŷ 〉 − µ r(X̂)− ‖X̂ − M̂‖2. (6.6)

By completing squares we obtain

f∗(Ŷ ) = max
X̂
−µr(X̂)− ‖X̂ − M̂ − Ŷ

2
‖2 + ‖M̂ +

Ŷ

2
‖2 − ‖M̂‖2. (6.7)

By setting Ẑ = M̂ + Ŷ
2 the maximization in (6.4) can be written as

max
X̂
−µr(X̂)− ‖X̂ − Ẑ‖2 + ‖Ẑ‖2 − ‖M̂‖2. (6.8)
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and by rewriting the maximization we obtain

max
k

max
X̂

r(X̂)=k

−µk − ‖X̂ − Ẑ‖2 + ‖Ẑ‖2 − ‖M̂‖2. (6.9)

For a fixed maximal rank k, the optimal solution for each matrix Xj is given by

Xj =
k∑
i=1

σi(Zj)uiv
T
i . (6.10)

Here σi(Zj) is the i-th singular value of Zj and ui and vi are the singular vectors
of Zj and we assume σi(Zj) ≥ σi+1(Zj). Plugging this into (6.9) gives

max
k
−µk −

n∑
i=k+1

‖σi(Ẑ)‖2
2 + ‖Ẑ‖2 − ‖M̂‖2. (6.11)

Where σi(Ẑ) is the vector (σi(Z1), . . . , σi(Zb)) and ‖σi(Ẑ)‖2 is the standard
euclidean vector norm. By observing that

−µk −
n∑

i=k+1

‖σi(Ẑ)‖2
2 = −

k∑
i=1

µ−
n∑

i=k+1

‖σi(Ẑ)‖2
2 (6.12)

we conclude that the maximizing k should be chosen such that

‖σk+1(Ẑ)‖2
2 ≤ µ ≤ ‖σk(Ẑ)‖2

2. (6.13)

The conjugate function is thus

f∗(Ŷ ) = −
n∑
i=1

min(µ, ‖σi(Ẑ)‖2
2) + ‖Ẑ‖2 − ‖M̂‖2. (6.14)

Recall that Ẑ depends on Ŷ through Ẑ = M̂ + Ŷ
2 . The next step is now to

consider the biconjugate

f∗∗(X̂) = max
Ŷ
〈X̂, Ŷ 〉 − f∗(Ŷ ) (6.15)

= max
Ẑ

2〈X̂, Ẑ − M̂〉 − f∗(2Ẑ − 2M̂). (6.16)
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Using our derived expression in (6.14) and plugging it into (6.16) the biconjugate
can be written as

f∗∗(X̂) = max
Ẑ

2〈X̂, Ẑ − M̂〉 − (−
n∑
i=1

min(µ, ‖σi(Ẑ)‖2
2) + ‖Ẑ‖2 − ‖M̂‖2)

(6.17)

= max
Ẑ

2〈X̂, Ẑ − M̂〉+

n∑
i=1

min(µ, ‖σi(Ẑ)‖2
2)− ‖Ẑ‖2 + ‖M̂‖2.

(6.18)

By completing squares (6.18) becomes

f∗∗(X̂) = max
Ẑ

n∑
i=1

min(µ, ‖σ(Ẑ)‖2
2)− ‖X̂ − Ẑ‖2 + ‖X̂ − M̂‖2. (6.19)

Using von Neumann’s trace theorem the maximizing Zj must have an SVD with
the same U and V as Xj . Therefore, the convex envelope is a maximization over
the singular values of Zj , j = 1, . . . , b:

f∗∗(X̂) = max
Ẑ

n∑
i=1

min(µ, ‖σi(Ẑ)‖2
2)− ‖σi(Ẑ)− σi(X̂)‖2

2 + ‖X̂ − M̂‖2.

(6.20)

The function f∗∗(X̂) thus involves a maximization over Ẑ for which we have
not found a closed form solution. Luckily, the proximal operator can be computed
using a single cone program. The proximal operator is defined as

proxf∗∗(Ŷ ) = arg min
X̂

f∗∗(X̂) + ρ‖X̂ − Ŷ ‖2 (6.21)

which is the basis for ADMM. The trick is to switch the order of minimization
and maximization and thereby obtain a closed form solution for X̂ . If ρ >
0 the objective function is closed, proper convex-convcave and continuous and
optimization can be restricted to a compact set. Switching optimization order is
therefore justified by the existence of a saddle point, see [60].

To minimize (6.21) with respect to X̂ we only consider the terms containing
X̂

−‖X̂ − Ẑ‖2 + ‖X̂ − M̂‖2 + ρ‖X̂ − Ŷ ‖2. (6.22)
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Differentiating with respect to X̂ gives

−(X̂ − Ẑ) + (X̂ − M̂) + ρ(X̂ − Ŷ ) = 0 (6.23)

X̂ =
M̂ − Ẑ
ρ

+ Ŷ . (6.24)

Inserting this into (6.22) gives

−‖Ẑ − (
M̂ − Ẑ
ρ

+ Ŷ )‖2 + ‖M̂ − Ẑ
ρ

+ Ŷ − M̂‖+ ρ‖M̂ − Ẑ
ρ

+ Ŷ − Ŷ ‖2

(6.25)

which after completing squares turns out to be

−ρ+ 1
ρ
‖Ẑ − Ŵ‖2 + C, (6.26)

where

Ŵ =
ρŶ + M̂

ρ+ 1
(6.27)

and C contains all terms not depending on Ẑ. Since we are only interested in the
optimizers Ẑ and X̂ , we can ignore C.

The objective function thus becomes

max
Ẑ

n∑
i=1

min(µ, ‖σi(Ẑ)‖2)− ρ+ 1
ρ
‖Ẑ − Ŵ‖2. (6.28)

The terms in the sum only depends on the singular values of Zj . The second
term can be written

‖Ẑ − Ŵ‖2 = ‖Ẑ‖2 −
b∑
j=1

〈Zj ,Wj〉+ ‖Ŵ‖2. (6.29)

We see that by von Neumann’s trace theorem the Singular Value Decompo-
sition, SVD, of Zj shall have the same U and V as the SVD of Wj in order to
minimize the second term. This leads to the maximization problem

max
Ẑ

n∑
i=1

min(µ, ‖σi(Ẑ)‖2)− ρ+ 1
ρ
‖σi(Ẑ)− σi(Ŵ )‖2. (6.30)
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To find the optimal singular values of Ẑ we will show that this can be solved
using a cone program. By introducing the auxiliary variables si, i = 1, . . . , n
and writing

max

n∑
i=1

si (6.31)

s.t. si ≤ µ−
ρ+ 1
ρ
‖σi(Ẑ)− σi(Ŵ )‖2

2 (6.32)

si ≤ ‖σi(Ẑ)‖2
2 −

ρ+ 1
ρ
‖σi(Ẑ)− σi(Ŵ )‖2

2 (6.33)

we get a convex cone problem.
As we are maximizing the sum si, (6.32) or (6.33) will obtain equality. An-

other constraint we have is that the singular values shall be decreasing for each
block. Hence, we add a linear constraint on the singular values which results in
the formulation

max

n∑
i=1

si (6.34)

s.t. ‖σi(Ẑ)− σi(Ŵ )‖2
2 ≤

ρ

ρ+ 1
(µ− si) (6.35)

‖σi(Ẑ)− (ρ+ 1)σi(Ŵ )‖2
2 ≤ ρ(‖(ρ+ 1)σi(Ŵ )‖2 − si) (6.36)

σ1(Ẑ) � σ2(Ẑ) � . . . σn(Ẑ) � 0. (6.37)

The inequalities (6.35) and (6.36) can be realized using the convex cone

{(x1, x2, x3);x1x2 ≥ x2
3, x1 + x2 ≥ 0}. (6.38)

To solve (6.37) we use standard solvers like [69] and [2].

6.3 Experiments

6.3.1 Manifold Denoising

The first application is Manifold denoising. In Manifold denoising one assumes
that all images represented as column vectors lie on a manifold. If the images
are corrupted by noise, they will deviate from the manifold. By estimating the
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Figure 6.2: Example of how a measurement matrix can be divided into blocks.
Left: Example of blocks for tangent spaces. Right: Block division with missing
data.

underlying manifold from the noisy data, one should get a less noisy set of images.
In this section, the goal is to estimate the underlying manifold by approximating
it with tangent spaces at each image point.

To do this, we first attach a set of neighbors to each image point. The neigh-
borhood for an image m are theK closest images in euclidean distance, including
m itself. By using the associated neighborhood, we can approximate the tangent
space at m. By stacking all the neighbors of m in a measurement matrix M and
computing the SVD of M we can write M as

M =

n∑
i=1

uiv
T
i σi(M). (6.39)

The idea is that singular vectors that corresponds to high singular values con-
tain more signal and that singular vectors corresponding to small singular values
contain more noise.

Since we assume that M is noisy, we use less than n singular vectors to ap-
proximate M :

X =

k<n∑
i=1

uiv
T
i σi(M). (6.40)
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X should then be less noisy compared to M . The k singular vectors ui spans the
approximated tangent space of the manifold around m.

Generalizing this we see that each image mi gives a neighborhood Mi so we
get a collection of measurement matrices M̂ . By assumption all tangent spaces
should have the same dimension and we want to approximate M̂ with a set of
matrices X̂ where each Xi has a low rank. This can be formulated as

min
X̂

µr(X̂) + ‖X̂ − M̂‖2. (6.41)

The task is thus to find a low-rank approximation Xi of each Mi. Further,
since we are interested in the affine tangent spaces, which do not necessarily go
through the origin, the row-wise mean vector x̄i is added to each Xi. Together
with the assumption that Xi1 = 0, the fitting terms in the objective can be
written

b∑
i=1

‖Xi + x̄1T −Mi‖2
F = (6.42)

b∑
i=1

‖Xi − (Mi − m̄i1
T )‖2

F + ki‖x̄i − m̄i‖2
2, (6.43)

where m̄i is the row-mean of Mi and ki is the number of columns in Mi. To
ensure consistency between shared variables, the difference is penalized by adding
the term

α

b∑
i=1

‖Pi(X)− (Xi + x̄i1
T )‖2, (6.44)

where α is a weighting factor, X is the approximation of the measurement matrix
M and Pi(X) is a linear operator that retrieves block i in X . This results in the
objective

min
X̂,X,ˆ̄x

r(X̂) +
b∑
i=1

(‖Xi − (Mi − m̄1
T )‖2

F+

ki‖x̄i − m̄i‖2
2 + α‖Pi(X)− (Xi + x̄i1

T )‖2
F ) (6.45)

s.t.Xi1
T = 0, i = 1, . . . , b. (6.46)
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For the terms in the first row in (6.45) the convex envelope has already been de-
rived. In the second row the terms are already convex. Also the constraint (6.46) is
linear. To minimize this we use the convex envelope and add the auxiliary variable
Zi. This gives

min
X̂,X,ˆ̄x,Ẑ

f∗∗(X̂) +
b∑
i=1

(ki‖x̄i − m̄i‖2
2 + α‖Pi(X)− Zi − x̄i1

T ‖2
F ) (6.47)

s.t. Xi = Zi, (6.48)

Zi1
T = 0, i = 1, . . . , b, (6.49)

which in turn, leads to the ADDM formulation [11]

min
X̂,X,ˆ̄x,Ẑ

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖2 − ρ‖Λ̂‖2+

b∑
i=1

(ki‖x̄i − m̄i‖2
2 + α‖Pi(X)− Zi − x̄i1

T ‖2
F ) (6.50)

s.t.Zi1
T = 0, i = 1, . . . , b. (6.51)

Here one part depends on X̂ ,

min
X̂

f∗∗(X̂) + ρ‖X̂ − Ẑ + Λ̂‖2
F (6.52)

which is precisely the proximal operator in (6.21) which we know how to mini-
mize. Minimizing the other variables X , Ẑ and ˆ̄x is now straightforward. Keep-
ing all other variables fixed and solving for one we get the updates:

Xt+1 = arg min
Xt

α

b∑
i=1

‖Pi(Xt)− Zti − x̄ti1
T ‖2

F , (6.53)

which is a separable least square problem.

Zt+1
i = arg min

Zti

α‖Pi(Xt+1)− Zti − x̄ti1
T ‖2+ (6.54)

ρ‖Xt
i − Zti + Λti‖2

F , i = 1, . . . , b. (6.55)

since all blocks are independent in the minimization,

x̄t+1
i = arg min

x̄ti

ki‖x̄ti − m̄i‖2
2 + α‖Pi(Xt+1)− Zt+1

i − x̄t1t‖2
F , (6.56)
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Input PSNR Output PSNR
Our method 10.46 17.52
Manifold Denoising 10.46 15.67

Table 6.1: The PSNR using different methods for denoising on the USPS Digits.

since we can minimize each x̄i separately. Finally, X̂t+1 is found by using the
proximal operator

X̂t+1 = proxf∗∗(Ẑ
t+1 − Λ̂t). (6.57)

Λ̂ is updated by taking a step in the ascent direction

Λt+1
i = ΛTi +Xt+1

i − Zt+1
i , (6.58)

since again, the blocks are independent.

Manifold Denoising - Experimental Results

Our method is tested on the USPS dataset [36] of handwritten digits. 100 images
of each digit are selected and the intensity is rescaled to lie between [0, 1]. The
images are then perturbed with Gaussian noise with standard deviation σ = 0.3.
Thereafter all images are stacked into one measurement matrix M and for each
column (image) the K closest neighbors are found. In this experiment K = 30.
Our method is then applied to this data to obtain an approximation X of M .
For comparison, the work [33] is applied to the data as well. This paper takes a
different approach by creating a graph of the data and solving partial differential
equations on this graph. The result of our experiment is shown in Table 6.1. The
parameters used in [33] was λ = 1, number of neighbors was 6 and a symmetric
graph was used since that gave the best results on this data. Some of the data and
denoised images are shown in Figure 6.3.

Manifold Denosing - Single Image Denoising

In the single image case, there is only one image of the object. However, if the
image is subdivided into patches, then several of these patches should be similar
and the same idea can be applied. The denoised patches are then used to recreate
the image. As in the USPS dataset, all patches are vectorized and put into a
measurement matrix M and we find the optimal X by applying our method.
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Figure 6.3: The result from the USPS dataset. Left: Corrupted images with
Gaussian noise of standard deviation σ = 0.3. Middle: Our Results. Right:
Results from Manifold Denoising [33].

(a) Input image (b) Denoised image our
method

(c) Denoised with BM3D

Figure 6.4: From left to right: Noisy input image, denoised image with our method
and denoised image with BM3D [23].
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(a) Noisy input image (b) Denoised with our method (c) Denoised with BM3D.

Figure 6.5: Result from experiment on the cameraman images.

Input Our method BM3D
Lena 19.99 28.61 29.16
Cameraman 19.99 26.07 24.73

Table 6.2: Denoising results from the Cameraman and Lena. BM3D gives a
higher PSNR for Lena, but we do better on the Cameraman.

This idea was tested on two images, Lena of size 512× 512 and the Camera-
man of size 256× 256. Gaussian noise with a standard deviation of σ = 0.1. As
can be seen in Figure 6.4 the noise is reduced. We also provide results from the
state-of-the-art method BM3D [23]. If one looks at the close-up in Figure 6.6 the
details are more distinguishable in our result. For example the eye is more detailed.
These results were obtained by using a patch size of 12 × 12 pixels and with an
overlap of 2/3 between two consecutive patches, resulting in 15876 patches. The
parameter α was set to 1.5, µ = 75000 and the number of neighbors K = 20.
The optimal blocks Xi had rank 2.

The same approach was also tested on the Cameraman and as can be seen
in Figure 6.5, our method performs well compared to BM3D which smooths
out some details. For example the face and the camera is more detailed in our
denoised image. In this experiment the same parameters as above was used, except
for µ = 22000 and the number of patches was 3844. The rank of the optimal
blocks Xi was 3. In Table 6.2 we show quantitative results from the experiments.
It can be seen that our method is comparable to BM3D on this data.
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Figure 6.6: Zooming in, one can see more details in our result (left) compared
to BM3D’s result (right). Note that one can see the pupil in the eye of the left
image, but not in the right image.

Dataset Loc. Rank Func. [45] Our method
Hand 0.474 0.474
Banner 6.54 · 107 4.73 · 107

Book 0.121 0.121

Table 6.3: The error
∑b

i=1 ‖Xi −Mi‖2
F for the method in Section 5.2 and our

method. Note that the method in Section 5.2 outperforms the nuclear norm
relaxation for the same error metric.

6.3.2 Linear Shape Basis Estimation

Another application we test our method on is estimation of linear shape models.
A common assumption is that a set of tracked image points moving non-rigidly
can be described with a small number of basis elements in each frame. In this
experiment we let Mf denote the N tracked 2D points in frame f , we want to
find a shape basis model (s1, . . . , sK), each of size 2 ×N and scalar coefficients
(cf1 , . . . , c

f
K) so that the points Mf can be written

Mf =
K∑
k=1

cfksk. (6.59)

Stacking N points in F frames yields a 2F × N measurement matrix M . The
fewer basis elements we have, the simpler our model is, so we want M to have
low rank.

In contrast to the image denoising experiments, there will be missing data
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here due to occlusion and tracking failures. As in Section 5.2, this is handled
by dividing M into sub-blocks Mi with no missing data, see right of 6.2. The
problem is now to find low-rank approximations of the sub-blocks Xi such that
they coincide on the overlap. The objective function to be minimized is then

min
X̂,X)

f∗∗(X̂) (6.60)

s.t. Pi(X) = Xi, i = 1, . . . , b. (6.61)

Again X̂ is the collection of blocks (X1, . . . , Xb) and Pi(X) retrieves block i
from X . The constraint (6.61) ensures that the overlap between the blocks co-
incide. As optimization method ADMM is used and our augmented Lagrangian
becomes

f∗∗(X̂) + ρ‖X̂ − P̂(X) + Λ̂‖2 − ρ‖Λ̂‖2, (6.62)

where P̂(X) = (P1(X), . . . ,Pb(X)). The updates performed in each iteration
are

X̂t+1 = arg min
X̂t

f∗∗(X̂t) + ρ‖X̂t − P̂(Xt) + Λ̂t‖2 (6.63)

Xt+1 = arg min
Xt

ρ‖X̂t+1 − P̂ + Λ̂t‖2 (6.64)

Λt+1
i = Λti +Xt+1

i − Pi(Xt+1). (6.65)

After optimization, we complete the missing parts in X using the same pro-
cedure as in Section 5.2.

Linear Shape Basis - Experimental results

Our method is applied to the same image sequences as before, namely Hand,
Book and Banner. The results from the experiment are shown in Figures 6.7, 6.8
and 6.9. In all sequences the red and blue points that are reconstructed obey a
reasonable motion compared to input data, green points. The blue points are
reconstructed positions that could be tracked and red points are reconstructed
positions where we had no measurements. The obtained rank for the solution in
the Hand sequence is 5, in the book sequence we get 3 and the banner sequence
we get rank 9. The number of blocks in Hand, Book and Banner were 5, 3 and
19.
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Figure 6.7: Frames 280 and 371 from the hand experiment. The solution has
rank 5.

Figure 6.8: Frames 297 and 337 in the Book sequence. The solution has rank 3.

To compare to the method in Section 5.2, we test the method on the same
datasets and measure the error

∑b
i=1 ‖Mi − Xi‖2

F and the results are shown in
Table 6.3. We choose to measure the error on the blocks since that will show if
our new method differs from the old one.

As the results implies, our method performs equally well as our method in
Section 5.2 on these datasets. The Banner-sequence differs to our advantage.
Looking closer on the resulting sub-blocks from our other method shows that
some blocks have rank 8 and some rank 10. This suggests that it is easier to get a
uniform rank with our new method.
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Figure 6.9: Frames 160 and 250 of the Banner sequence. The solution has rank
9.

6.4 Conclusion

In this chapter we saw that we could derive an objective function that simulta-
neously penalizes the rank of all matrices in the objective function. A convex
envelope was derived which could be combined with other constraints for dif-
ferent applications. This is a natural formulation in applications like denoising
where one want all matrices to have the same rank. It was shown in experiments
that our method performed well compared to specialized denoising methods like
BM3D [23].
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Chapter 7

Under Determined Linear
Systems and Rank Regularization

7.1 Introduction

In the two previous chapters, we saw two different convex envelopes of the prob-
lem

min
X

µgr(X) + ‖X −M‖2
F , (7.1)

where gr(X) is a function that penalizes the rank of the solution. The derived
convex envelopes have the advantage compared to the nuclear norm [58] that they
do not penalize large singular values. Here we study the problem

min
X

I(rank(X) ≤ r) + ‖AX − b‖2, (7.2)

where I(rank(X) ≤ r) is 0 if rank(X) ≤ r and ∞ else. The linear operator
A : Rm×n → Rp is assumed to fulfill a restricted isometry property (RIP) [58]

(1− δq)‖X‖2
F ≤ ‖AX‖2 ≤ (1 + δq)‖X‖2

F , (7.3)

for all matrices with rank(X) ≤ q.
This type of objective has applications in for example non-rigid structure from

motion, see [25], where the linear operator is the matrix of all rotations. There
are also applications in control theory that are for example studied in [58], for
instance, estimating a Hankel matrix can be cast into solving

min
h

rank(hankel(h))) + ‖Ah− b‖2. (7.4)
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The common approach to tackle this type of problem is to again replace the
rank function with the nuclear norm [58, 55]. Performance guarantees for re-
placing the rank-function with the nuclear norm appear in [18, 58, 55, 17]. Still
the approach suffers from the shrinking bias induced by the nuclear norm. Some
other approaches [49, 56] propose non-convex alternatives which have shown im-
proved performance.

Here we consider the relaxation

min
X
Rr(X) + ‖AX − b‖2, (7.5)

where

Rr(X) = max
Z

N∑
i=r+1

z2
i − ‖X − Z‖2

F , (7.6)

and zi, i = 1, . . . , N are the singular values of Z. It was shown in [44] that

Rr(X) + ‖X −X0‖2
F (7.7)

is the convex envelope of

I(rank(x) ≤ r) + ‖X −X0‖2
F . (7.8)

By itself the regularization term Rr(X) is not convex, but when adding a
quadratic term ‖X‖2

F the result is convex. If the singular values ofX0 are distinct,
it was shown in [3] that the minimizers to (7.7) and (7.8) are the same.

If we assume that (7.3) holds, then ‖AX‖2 behaves roughly like ‖X‖2
F if the

matrix has rank less than q. Therefore the idea is that the problem (7.5) should
have some convexity properties. Here we will study the stationary points of (7.5)
and we will see that if the RIP-property holds, then it is possible in many cases to
guarantee that any stationary point of rank r is unique.

7.2 Main Results and Contributions

Our main contribution is that we show that if Xs is a stationary point of (7.5)
and the singular values of the matrix

Z = (I −A∗A)Xs +A∗b (7.9)
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fulfill zr+1 < (1 − 2δ2r)zr then there cannot be any other stationary point
with rank less than or equal to r. For example, if there is a rank r matrix X0

such that AX0 = b then it is easy to show that X0 is a stationary point and
the corresponding Z is identical to X0. This means that if zr+1 = 0 our results
certify that this is the only rank r stationary point to the problem ifA fulfills (7.3)
with δ2r <

1
2 .

To see the connection between the stationary point Xs and Z we have the
following lemma:

Lemma 7.2.1. The point Xs is stationary in F (X) = Rr(X) + ‖AX −b‖2 if
and only if 2Z ∈ ∂G(Xs), where G(X) = Rr(X) + ‖X‖2

F and if and only if

Xs ∈ arg min
X
Rr(X) + ‖X − Z‖2

F . (7.10)

Proof. We can write F (X) = G(X) − δq‖X‖2
F + H(X) + ‖b‖2 with

H(X) = δq‖X‖2
F +(‖AX‖2−‖X‖2

F )−2〈AX,b〉. Taking the sub-differential
of G and the derivative of the remaining terms yields

2δqXs −∇H(Xs) ∈ ∂G(Xs). (7.11)

We have∇H = 2δqX+ 2(A∗A− I)X− 2A∗b and inserting this above we get

2(I −A∗A)Xs + 2A∗b = 2Z ∈ ∂G(Xs). (7.12)

Hence, Xs is stationary if and only if 2Z ∈ ∂G(Xs). If we put A = I :
Rm×n → Rmn and b = Ẑ which is Z vectorized, then we have (7.10) and we
get that Xs is stationary in (7.10) if and only if 2Z ∈ ∂G(Xs). Since (7.10) is
convex, getting the stationary point is equivalent to finding the minimizer.

�

In [3] it is shown that as long as zr 6= zr+1 the unique solution of (7.10) is
the best rank r approximation of Z. When there are several singular values that
are equal to zr, (7.10) will have multiple solutions where some are of rank 6= r.

This work builds on that of [52] where a similar result is derived for the
non-convex regularizer Rµ(X) =

∑
i µ − max(

√
µ − xi, 0)2. In this case the

trade-off between rank and residual error is optimized using the formulation

min
X
Rµ(X) + ‖AX − b‖2. (7.13)
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Since it is possible to select µ such that (7.13) gives the desired rank, it is possible
to argue that (7.13) is practically equivalent to (7.1). However, it is shown in [20]
that if ‖A‖ ≤ 1, then a local minimizer of (7.5) is a local minimizer of (7.1) and
their global minimizers coincide. In particular, if ‖A‖ ≤ 1, with our result, a
local minimizer Xs of (7.5) will have rank lower than or equal to r and will be
unique. In contrast, [52] does not rule out the existence of multiple high rank
solutions.

7.2.1 Subgradients of G

We now need to determine the subdifferential ∂G(X) of the functionG(X). Let
x be the vector of singular values of X and X = UDxV

T be the SVD. From
von Neumann’s trace theorem it is easy to see that the Z that maximizes (7.6) has
the same U and V as X and is on the form Z = UDzV

T , where z is the vector
of singular values for Z.

If we let

L(X,Z) = −
r∑
i=1

z2
i + 2〈Z,X〉, (7.14)

then we get that G(X) = maxZ L(X,Z). The function L is concave in Z and
linear in X . Due to the dominating quadratic term, the domain can be restricted
to a compact set. From Danskin’s theorem, see [8], we get that the subgradients
of G are then given by

∂G(X) = convhull{∇XL(X,Z), Z ∈ Z(X)}, (7.15)

where Z(X) = arg maxZ L(X,Z). Further, by concavity, the set Z is convex.
Since∇XL(X,Z) = 2Z we get

∂G(X) = 2 arg max
Z

L(X,Z). (7.16)

In order to find the set of subgradients we have to determine all maximizers
of L. Since the maximizing Z has the same U and V as X , it remains to find the
singular values of Z. It can be shown, see [44], that these have the form

zi ∈


max(xi, s) if i ≤ r
s if i ≥ r, xi 6= 0,

[0, s] if i > r, xi = 0

(7.17)
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for some number s ≥ xr. If rank(X) ≤ r the optimal choice is s = xr. This is
seen by observing that since the optimal Z is of the form UDzV

T we have

L(X,Z) = −
r∑
i=1

(zi − xi)2 +
r∑
i=1

x2
i , (7.18)

since rank(X) ≤ r. Selecting s = xr and inserting this into (7.17) gives
L(X,Z) =

∑r
i=1 x

2
i which is clearly the optimum. If rank(X) > r, then a

one dimensional concave and differentiable function needs to be maximized nu-
merically [44].

7.3 Growth Estimates for the ∂G(X)

The next step is to estimate the growth of the subgradients that is needed when
the uniqueness of low rank stationary points is considered. Let x and x′ be two
vectors with at most r non-zero positive elements and I and I ′ be the indexes of
the r largest elements of x and x′ respectively. It is assumed that both I and I ′

contain r elements. If in particular x′ has fewer than r non-zero elements, some
zero elements are included in I ′. We define the corresponding sequences z and z′

by

zi ∈
{
xi i ∈ I
[0, s̄] i /∈ I,

(7.19)

z′i ∈
{
x′i i ∈ I ′
[0, s̄′] i /∈ I ′,

(7.20)

where s̄ = mini∈I xi and s̄′ = mini∈I′ x
′
i. If x′ has fewer than r non-zero

elements then s̄′ = 0. Note that we do not require that the elements in x,
x′, z and z′ are ordered in decreasing order. For the following lemma denote
s
¯

= maxi/∈I zi.

Lemma 7.3.1. If s
¯
< cs̄, where 0 < c < 1 then

〈z′ − z,x′ − x〉 > 1− c
2
‖x′ − x‖2. (7.21)
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Proof. Since zi = xi when i ∈ I and xi = 0 otherwise, we can write the
inner product 〈z′ − z,x′ − x〉 as∑

i∈I
i∈I′

(xi − x′i)2 +
∑
i∈I
i/∈I′

xi(xi − z′i) +
∑
i/∈I
i∈I′

x′i(x
′
i − zi). (7.22)

We also have

‖x′ − x‖2 =
∑
i∈I
i∈I′

(xi − x′i)2 +
∑
i∈I
i/∈I′

x2
i +

∑
i/∈I
i∈I′

x′2i . (7.23)

Due to our initial assumption that I and I ′ have the same number of elements, the
second and third term in (7.23) will have the same number of terms. Therefore if
we can show that

xi(xi − z′i) + x′j(x
′
j − zj) ≥

1− c
2

(x2
i + x′2j ) (7.24)

when i ∈ I , i /∈ I ′ and j /∈ I , j /∈ I ′, we have showed the wanted inequality. By
the assumption s

¯
< cs̄ we know that zj < cxi. We further know that

z′i ≤ s̄′ ≤ x′j . (7.25)

This gives

xiz
′
i ≤ xix′j ≤

x2
i + x′2j

2
(7.26)

x′jzj < cx′jxi ≤ c
x2
i + x′2j

2
(7.27)

Inserting these inequalities into the left hand side of (7.24) gives the desired
bound. The following two results are from [52] and are needed to prove the
main theorem. The proofs are included for completeness.

Lemma 7.3.2. Let x, x′, z and z′ be fixed vectors with non-increasing and
non-negative elements such that x 6= x′ and z, z′ fulfill (7.17). Define X ′ =
U ′Dx′V

′T , X = UDxV
T , Z ′ = U ′Dz′V

′T and Z = UDzV
T as functions of

unknown orthogonal matrices U , V , U ′ and V ′. If

a∗ = min
U,V,U ′,V ′

〈Z ′ − Z,X ′ −X〉
‖X −X ′‖2

F

≤ 1 (7.28)
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then

a∗ = min
Mπ

〈Mπz
′ − z,Mπx

′ − x〉
‖Mπx′ − x‖2 , (7.29)

where Mπ is a permutation matrix.

Proof. We may assume that U = Im×m and V = In×n. We first note that
(U ′, V ′) is a minimizer of (7.28) if and only if

〈Z ′ − Z,X ′ −X〉 ≤ a∗‖X ′ −X‖2
F . (7.30)

This constraint can equivalently be written

C − 〈Z ′ − a∗X ′, X〉 − 〈Z − a∗X,X ′〉 ≤ 0, (7.31)

where C = 〈Z ′, X ′〉+ 〈Z,X〉− a∗(‖X ′‖2
F + ‖X‖2

F ) is independent of U ′ and
V ′. Thus any minimizer of (7.28) must also maximize

〈U ′Dz′−a∗x′V
′T , Dx〉+ 〈Dz−a∗x, U

′Dx′V
′T 〉. (7.32)

For ease of notation we now assume that m ≤ n, that is, the number of rows are
less than the columns (the opposite case will be handled by transposing). Equa-
tion (7.32) can now be written

xTM(z′ − a∗x′) + (z− a∗x)TMx′, (7.33)

whereM = U ′�V ′1,1, V ′1,1 is the upper leftm×m block of V ′ and� denotes el-
ement wise multiplication. Since both U ′ and V ′ are orthogonal it is easily shown
by using the Cauchy-Schwartz inequality that M is DSS, a doubly substochastic
matrix.

Note that objective (7.32) is linear in M and therefore optimization over
the set of DSS matrices is guaranteed to have an extreme point Mπ,v that is
optimal. Furthermore, since a∗ ≤ 1 the vectors x, x′, z − a∗x and z′ − a∗x′
all have positive entries and therefore the maximizing matrix has to be Mπ,1 for
some permutation π. Since Mπ,1 is orthogonal and Mπ,1 = Mπ,1 � Mπ,1,
U ′ = Mπ,1 and V ′1,1 = Mπ,1 will be optimal when maximizing (7.33) over U ′

and V ′1,1. An optimal V ′ in (7.32) can now be chosen to be V ′ =

[
Mπ,1 0

0 I

]
.

Note this choice is somewhat arbitrary since only the upper left block of V ′ affects
the value of (7.32). The matrices U ′Z ′V ′T and U ′X ′V ′T are now diagonal, with
diagonal elements Mπ,1z

′ and Mπ,1x
′, which concludes the proof.
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�

Corollary 7.3.3. AssumeX is of rank r and 2Z ∈ ∂G(X). If the singular values
of the matrixZ fulfill zr+1 < czr, where 0 < c < 1, then for any 2Z ′ ∈ ∂G(X ′)
with rank(X ′) ≤ r we have

〈Z ′ − Z,X ′ −X〉 > 1− c
2
‖X ′ −X‖2

F . (7.34)

as long as ‖X ′ −X‖2
F 6= 0.

Proof. We let x, x′, z and z′ be the singular values of the matrices X , X ′, Z
and Z ′ respectively. Our proof essentially follows that of Corollary 4.2 in [52],
where a similar result is proven under the assumption that x 6= x′ and then
generalized to the general case using a continuity argument. To use the continuity
argument, the infeasible region must be extended somewhat. Since 0 < c < 1
and zr+1 < czr are open there is an ε > 0 such that zr+1 < (c − ε)zr and
0 < c− ε < 1. Now assume a∗ > 1 in (7.28), then clearly

〈Z ′ − Z,X ′ −X〉 > 1− (c− ε)
2

‖X ′ −X‖2
F . (7.35)

Otherwise a∗ ≤ 1 and we have

〈Z ′ − Z,X ′ −X〉
‖X ′ −X‖2

F

≥ 〈Mπz
′ − z,Mπx

′ − x〉
‖Mπx′ − x‖2 . (7.36)

According to Lemma 7.3.1 the right hand side is strictly larger than 1−(c−ε)
2 which

proves that (7.35) for all X ′ with x′ 6= x.
It remains to show that

〈Z ′ − Z,X ′ −X〉 ≥ 1− (c− ε)
2

‖X ′ −X‖2
F , (7.37)

in the case x′ = x and ‖X ′ −X‖2
F 6= 0. For that define the sequence

σ1(t) = σ1(X) + t (7.38)

σi(t) = σi(X), ∀i 6= 1 (7.39)

X(t) = UDσ(t)V
T . (7.40)

For all t > 0, the vectors x′ 6= x(t) and then (7.35) holds. By continuity of the
Frobenius norm and the scalar product, (7.37) is true if we let t→ 0.

�
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7.3.1 Uniqueness of Low Rank Stationary Points

We can now show that if a RIP-inequality (7.3) holds and the singular values are
well separated there can only be one stationary point of F that has rank r. For
that we first derive a bound on the gradients of H . We have

∇H(X) = 2δqX + 2(A∗A− I)X − 2A∗b. (7.41)

This gives

〈∇H(X ′)−∇H(X), X ′ −X〉 =

2δq‖X ′ −X‖2
F + 2(‖A(X ′ −X)‖2 − ‖X ′ −X‖2

F ). (7.42)

From the RIP-property we also have if rank(X −X ′) ≤ q
|‖X −X ′‖2

F − ‖A(X −X ′)‖2| ≤ δq‖X −X ′‖2
F (7.43)

which gives

〈∇H(X ′)−∇H(X), X ′ −X〉 ≥ 0. (7.44)

With these observations we can now state the main result:

Theorem 7.3.4. Assume thatXs is a stationary point ofF , that is (I−A∗A)Xs+
A∗b = Z, where 2Z ∈ ∂G(Xs), rank(Xs) = r and the singular values of Z
fulfill zr+1 < (1−2δ2r)zr. IfX ′s is another stationary point then rank(X ′s) > r.

Proof. Assume that rank(X ′s) ≤ r. Since both Xs and X ′s are stationary we
have

2δ2rX
′
s −∇H(X ′s) = 2Z ′, (7.45)

2δ2rXs −∇H(Xs) = 2Z, (7.46)

where 2Z ∈ ∂G(Xs) and 2Z ′ ∈ ∂G(X ′s). Taking the difference between the
two equations yields

2δ2r(X
′
s −Xs)−∇H(Xs) +∇H(Xs) = 2Z ′ − 2Z, (7.47)

which implies

2δ2r‖V ‖2
F − 〈∇H(X ′s) +∇H(Xs), V 〉 = 2〈Z ′ − Z, V 〉 (7.48)

where V = X ′s −Xs has rank(V ) ≤ 2r. By (7.44) the left hand side is less than
δ2r‖V ‖2

F . On the other hand, Corollary 7.3.3 gives with c = 1 − δ2r that the
right hand side is larger than 2∂2r‖V ‖2

F which contradicts rank(X ′s) ≤ r.
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7.3.2 Implementation and Experiments

In this section the proposed method is tested on some simple real and synthetic
applications, where some fulfill (7.3) and some do not. To optimize the objective
the GIST approach is used from [31]. Given a current iterate Xk this method
solves

Xk+1 = arg min
X
Rr(X) + τk‖X −Mk‖2

F , (7.49)

where Mk = Xk − 1
τk

(A∗AXk − A∗b) From Lemma 7.2.1 we see that for
τk = 1, any fixed point of (7.49) is a stationary point. To solve (7.49) we use the
proximal operator computed in [44].

We optimize (7.49) for a sequence of {τk}. As initialization τ0 = 5 and
then τk is reduced toward 1. If the objective value is successfully decreased in the
previous step, we update τk by τk+1 = τk−1

1.1 + 1, if the objective is not decreased
then we update τk+1 by τk+1 = 1.5(τk − 1) + 1.

7.3.3 Synthetic Data

We first evaluate the quality of the relaxation on a number of synthetic experi-
ments. We compare the two formulas (7.5) and

min
X

µ‖X‖∗ + ‖AX − b‖2. (7.50)

In Figure 7.1 we tested these two relaxations on a number of synthetic prob-
lems with varying noise level. The data was created so that the operator A ful-
fills (7.3) with δ = 0.2. By column stacking the m × n matrix X the linear
mapping A can be represented with a matrix A of size p ×mn. For the data in
Figure 7.1 we selected 400 × 400 matrices A with random N (0, 1) entries and
modified their singular values. Then 20 × 5 matrices U and V with N (0, 1)
entries were sampled and from these 20×20 matrices were created by computing
UV T . The measurement vector b was created by computing b = AX+ε, where
ε ∈ N (0, σ2) for varying noise level σ between 0 and 1.

In Figure 7.1 (a) we plotted the measurement fit ‖AX − b‖ versus the noise
level σ for the solutions obtained with (7.5) and (7.50). Note that (7.50) does
not specify the sought rank, therefore we search iteratively for the smallest value
of µ that gives the correct rank.
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(a) (b) (c)
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Figure 7.1: (a) - Noise level (x-axis) vs. data fit ‖AX−b‖ (y-axis) for the solutions
obtained with (7.5) and (7.50). (b) - Fraction of instances where the solution of
(7.5) could be verified to be globally optimal. (c) - Same as (a). (a) and (b) uses
400× 400 A with δ = 0.2 while (c) uses 300× 400 A.

In Figure 7.1 we computed the Z matrix and plotted the fraction of problem
instances where its singular values fulfilled zr+1 < (1− 2δ)zr, with δ = 0.2. For
these instances the obtained stationary points are also globally optimal according
to our main result.

Figure 7.1(c) is the same experiment as in (a), but instead an under deter-
mined matrix A of size 300 × 400. From [58] it is known that if A is p ×mn
and the elements of A are drawn from N (0, 1

p), then A fulfills (7.3) with high
probability. The exact value of δq is however difficult to determine and therefore
we are not able to verify optimality in this case.

7.3.4 Non-Rigid Structure from Motion

In this section we consider the problem of Non-Rigid Structure from Motion.
We follow the approach of [25] and let

X =



X1

Y1

Z1
...
XF

YF
ZF


and X# =

 X1 Y1 Z1
...

...
...

XF YF ZF

 , (7.51)
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where Xi, Yi and Zi are 1×m matrices containing the x-, y- and z-coordinates.
of the tracked points in image i. Under the assumption of an orthographic camera
the projection of the 3D points can be modeled using M = RX , where R
is a 2F × 3F block diagonal matrix with 2 × 3 blocks Ri, consisting of two
orthogonal rows that encode the camera orientation in image i. The resulting
2F × m measurement matrix M consists of the x− and y−image coordinates
of the tracked points. Under the assumption of a linear shape basis model [12]
with r deformation modes, the matrix X# can be factorized into X# = CB,
where the r × 3m matrix B contain the basis elements. It is clear that such a
factorization is possible when X# is of rank r. We therefore search for the matrix
X# of rank r that minimizes the residual error ‖PX−M‖2

F . The linear operator
defined by A(X#) = RX does by itself not obey (7.3) since there are typically
low-rank matrices in its null space. This can be seen by noting that if Ni is the
3× 1 vector perpendicular to the two rows of Ri then Xi

Yi
Zi

 = NiCi, (7.52)

where Ci is any 1×m matrix, is in the null space of Ri. Therefore any matrix of
the form

N#(C) =


n11C1 n21C1 n31C1

n12C2 n22C2 n32C2
...

...
...

n1FCF n2FCF n3FCF

 , (7.53)

where nij are the elements of Ni, vanishes under A. Setting everything but the
first row of N#(C) to zero shows that there is a rank 1 matrix in the null space
of A. Moreover, if the rows of the optimal X# spans such a matrix it will not be
unique since we may add N#(C) without affecting the projections or the rank.

In Figure 7.3 we compare the two relaxations

Rr(X#) + ‖RX −M‖2
F (7.54)

and

µ‖X#‖∗ + ‖RX −M‖2
F . (7.55)
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on the four MOCAP sequences displayed in Figure 7.2, obtained from [25].
These consists of real motion capture data and therefore the ground truth so-
lution is only approximately of low rank.

In Figure 7.3 we plot the rank of the obtained solution versus the data fit
‖RX − M‖2

F . Since (7.55) does not allow us to directly specify the rank of
the sought matrix, we solved the problem for 50 values of µ between 1 and 100
(orange curve) and computed the resulting rank and data fit. Note that due to the
shrinking effect, the solution of (7.55) is affected by a change of µ even if the rank
is not changed. Consequently, to achieve data fit, we should as in the synthetic
experiment choose the smallest µ that gives the desired rank.

Even though (7.3) does not hold, (7.54) consistently gives better data fit
with lower rank than 7.55. Figure 7.4 shows the rank versus the distance to
the ground truth solution. For high rank the distance (7.54) is typically higher
than for (7.55). A feasible explanation is that when the rank is high it is more
likely that the row space of X# contains a matrix of the type N(C). Loosely
speaking, when we allow to much complex deformation it becomes more difficult
to uniquely recover the shape. The nuclear norm’s built in bias to small solutions
helps to regularize the the problem when the rank constraint is not discriminative
enough.

One way of handling the null space of A is to add additional regularizes that
penalize low rank matrices of the type N(C). Dai et al. [25] suggested to use the
derivative prior ‖DX#‖2

F , where the matrix D : RF → RF−1 is a first order
difference operator. The null space of D contains matrices that are constant in
each column. Since this implies that the scene is rigid it is clear that N(C) is not
in the null space of D. We add this term and compare

Rr(X#) + ‖RX −M‖2
F + ‖DX#‖2

F (7.56)

and

µ‖X#‖∗ + ‖RX −M‖2
F + ‖DX#‖2

F . (7.57)

Figures 7.5 and 7.6 show the result. In this case both the data fit and the distance
to ground truth is consistently better with (7.56) than (7.57). When the rank
increases most of the regularization comes from the derivative prior leading to
both methods providing similar results.

111



CHAPTER 7. UNDER DETERMINED LINEAR SYSTEMS AND RANK
REGULARIZATION

Figure 7.2: Four images from each of the MOCAP data sets.
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Figure 7.3: Results obtained with (7.54) (blue dots) and (7.55) (orange curve) for
the four sequences. Data fit ‖RX −M‖F (y-axis) versus rank(X#) (x-axis).

Figure 7.4: Results obtained with (7.54) (blue dots) and (7.55) (orange curve)
for the four sequences. Distance to ground truth ‖X − Xgt‖F (y-axis) versus
rank(X#) (x-axis).

Figure 7.5: Results obtained with (7.56) (blue dots) and (7.57) (orange curve) for
the four sequences. Data fit ‖RX −M‖F (y-axis) versus rank(X#) (x-axis).

Figure 7.6: Results obtained with (7.56) (blue dots) and (7.57) (orange curve)
for the four sequences. Distance to ground truth ‖X − Xgt‖F (y-axis) versus
rank(X#) (x-axis) is plotted for various regularization strengths.
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7.4 Conclusion

In the last chapter we have studied the local minimum of a non-convex rank regu-
larization approach. The main result is that if the RIP inequality (7.3) holds then
there is often a unique local minimum. Our experimental evaluation shows that
the proposed approach often gives better results than the nuclear norm relaxation,
even when the RIP constraint does not hold.

114



Bibliography

[1] KinectFusion Implementation in the Point Cloud Library (PCL). URL
http://svn.pointclouds.org/pcl/trunk/. 17, 36, 37, 38, 45

[2] The MOSEK optimization toolbox for MATLAB manual. URL www.mosek.

com. 87

[3] F. Andersson, M. Carlsson, and C. Olsson. Convex envelopes for fixed rank
approximation. Optimization Letters, 11(8):1783–1795, Dec 2017. 100,
101

[4] R. Angst, C. Zach, and M. Pollefeys. The generalized trace-norm and its
application to structure-from-motion problems. In International Conference
on Computer Vision, pages 2502–2509, Barcelona, Spain, 2011. IEEE. 59

[5] D. B. Kubacki, Q. H. Bui, S Derin B., and M. Do. Registration and in-
tegration of multiple depth images using signed distance function. In The
International Society for Optical Engineering, pages 22–, Burlingame, USA,
2012. 18

[6] R. Basri, D. Jacobs, and I. Kemelmacher. Photometric stereo with general,
unknown lighting. International Journal of Computer Vision, 72(3):239–
257, May 2007. 58

[7] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust
features. Computer vision and Image Understanding, 110(3):346–359, june
2008. 50

[8] Dimitri P. Bertsekas. Nonlinear programming. Athena Scientific, 2nd edi-
tion, September 2008. 102

115

http://svn.pointclouds.org/pcl/trunk/
www.mosek.com
www.mosek.com


BIBLIOGRAPHY

[9] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. Trans-
actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.
12

[10] G. Blais and M.D. Levine. Registering multiview range data to create 3D
computer objects. Transactions on Pattern Analysis and Machine Intelligence,
17:820–824, 1993. 12, 38

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed op-
timization and statistical learning via the alternating direction method of
multipliers. Foundations and Trends in Machine Learning, 3(1):1–122, 2011.
68, 90

[12] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D
shape from image streams. In Conference on Computer Vision and Pattern
Recognition, pages 690–696, Hilton Head, USA, 2000. 58, 110

[13] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers. Real-time camera
tracking and 3d reconstruction using signed distance functions. In Robotic
Science and System, volume 9, Berlin, Germany, 2013. 2, 51

[14] E. Bylow, C. Olsson, and F. Kahl. Robust camera tracking by combining
color and depth measurements. In International Conference on Pattern Recog-
nition, pages 4038–4043, Stockholm, Sweden, 2014. 2, 53

[15] E. Bylow, C. Olsson, and F. Kahl. Robust online 3d reconstruction com-
bining a depth sensor and sparse feature points. In International Conference
on Pattern Recognition, (ICPR), pages 3709–3714, Dec 2016. 2

[16] E. Bylow, C. Olsson, F. Kahl, and M. Nilsson. Minimizing the maximal
rank. In Conference on Computer Vision and Pattern Recognition, Las Vegas,
USA, 2016. 2

[17] E. J. Candès and B. Recht. Exact matrix completion via convex optimiza-
tion. Foundations of Computational Mathematics, 9(6):717 – 772, Apr 2009.
100

[18] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis? Journal of the ACM, 58(3):11:1–11:37, 2011. 59, 100

116



BIBLIOGRAPHY

[19] D. Canelhas. Scene representation, registration and object detection in a
truncated signed distance function representation of 3d space. Master’s the-
sis, Örebro University, School of Science and Technology, 2012. 18

[20] M. Carlsson. On convexification/optimization of functionals including an
l2-misfit term. arXiv preprint arXiv:1609.09378, 2016. 102

[21] Y. Chen and G. Medioni. Object modelling by registration of multiple
range images. Image and Vision Computing, 10(3):145 – 155, 1992. 12, 13

[22] B. Curless and M. Levoy. A volumetric method for building complex mod-
els from range images. In Conference on Computer Graphics and Interactive
Techniques, pages 303–312, New York, USA, 1996. 12, 18, 21, 23

[23] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. BM3D image denois-
ing with shape-adaptive principal component analysis. In Workshop on Sig-
nal Processing with Adaptive Sparse Structured Representations, Saint-Malo,
France, 2009. 92, 93, 97

[24] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt. Bundlefu-
sion: Real-time globally consistent 3d reconstruction using on-the-fly sur-
face reintegration. ACM Transactions on Graphics, 36(3):24:1–24:18, 2017.
20

[25] Y. Dai, H. Li, and M. He. A simple prior-free method for non-rigid
structure-from-motion factorization. International Journal of Computer Vi-
sion, 107(2):101–122, 2014. 99, 109, 111

[26] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Burgard. An
evaluation of the rgb-d slam system. In International Conference on Robotics
and Automation, pages 1691–1696, St Paul, USA, 2012. 19, 36, 37

[27] A. Eriksson and A. Hengel. Efficient computation of robust weighted low-
rank matrix approximations using the L1 norm. Transactions on Pattern
Analysis and Machine Intelligence, 34(9):1681–1690, 2012. 58

[28] Maryam Fazel, Haitham Hindi, and Stephen P Boyd. A rank minimization
heuristic with application to minimum order system approximation. In
American Control Conference, 2001., pages 4734–4739, 2001. 59

117



BIBLIOGRAPHY

[29] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Prentice
Hall, 2003. 8

[30] R. Garg, A. Roussos, and L. Agapito. A variational approach to video regis-
tration with subspace constraints. International Journal of Computer Vision,
104(3):286–314, Sep 2013. 58

[31] P. Gong, C. Zhang, Z. Lu, J. Z. Huang, and J. Ye. A general iterative
shrinkage and thresholding algorithm for non-convex regularized optimiza-
tion problems. In International Conference on Machine Learning, pages II–
37–II–45, 2013. 108

[32] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, 2004. Second Edition. 3, 8

[33] M. Hein and M. Maier. Manifold denoising. In Advances in Neural Infor-
mation Processing Systems, pages 561–568, Cambridge, USA, 2007. 81, 91,
92

[34] Berthold K. P. Horn. Closed-form solution of absolute orientation using
unit quaternions. Journal of the Optical Society of America, 4(4):629–642,
1987. 12, 13

[35] Yao Hu, Debing Zhang, Jieping Ye, Xuelong Li, and Xiaofei He. Fast and ac-
curate matrix completion via truncated nuclear norm regularization. Transa-
cions on Pattern Analysis and Machine Intelligence, 35(9):2117–2130, 2013.
73

[36] J. J. Hull. A database for handwritten text recognition research. Transactions
on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994. 91

[37] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinect-
fusion: real-time 3d reconstruction and interaction using a moving depth
camera. In ACM symposium on User interface software and technology, pages
559–568, New York, USA, 2011. 10, 17

[38] V. Jojic, S. Saria, and D. Koller. Convex envelopes of complexity controlling
penalties: the case against premature envelopment. In International Confer-
ence on Artificial Intelligence and Statistics, pages 399–406, Fort Lauderdale,
USA, 2011. 60

118



BIBLIOGRAPHY

[39] C. Julià, F. Lumbreras, and A. Sappa. A factorization-based approach to
photometric stereo. International Journal of Imaging Systems and Technology,
21:115 – 119, 03 2011. 58

[40] C. Kerl, J. Sturm, and D. Cremers. Robust odometry estimation for rgb-
d cameras. In International Conference on Robotics and Automation, pages
3748–3754, Karlsruhe, Germany, 2013. 19

[41] C. Kerl, J. Sturm, and D. Cremers. Dense visual slam for rgb-d cameras. In
International Conference on Intelligent Robots and Systems, pages 2100–2106,
Tokyo, Japan, 2013. 19

[42] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion from a few
entries. IEEE Transactions on Information Theory, 56(6):2980–2998, 2010.
73

[43] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o:
A general framework for graph optimization. In International Conference on
Robotics and Automation, pages 3607–3613, Shanghai, China, 2011. 19, 45

[44] V. Larsson and C. Olsson. Convex low rank approximation. International
Journal of Computer Vision, 120(2):194–214, Nov 2016. 100, 102, 103,
108

[45] V. Larsson, C. Olsson, E. Bylow, and F. Kahl. Rank minimization with
structured data patterns. In European Conference on Computer Vision, pages
250–265. Zürich, Switzerland, 2014. 2, 94

[46] A. S. Lewis. The convex analysis of unitarily invariant matrix functions.
Journal of Convex Analysis, 2(1/2):173–183, 1995. 70

[47] B. D. Lucas and T. Kanade. An iterative image registration technique with
an application to stereo vision. In International Joint Conference on Artificial
Intelligence, pages 674–679, San Francisco, CA, USA, 1981. 79

[48] Y. Ma, S. Soatto, J. Kosecka, and S. Sastry. An Invitation to 3D Vision: From
Images to Geometric Models. Springer Verlag, 2003. 27

[49] K. Mohan and M. Fazel. Iterative reweighted least squares for matrix rank
minimization. In Allerton Conference on Communication, Control, and Com-
puting, pages 653–661, Monticello, USA, 2010. 100

119



BIBLIOGRAPHY

[50] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A.J. Davi-
son, P. Kohli, J. Shotton, S. Hodges, and A.W. Fitzgibbon. Kinectfusion:
Real-time dense surface mapping and tracking. In IEEE International Sym-
posium on Mixed and Augmented Reality, pages 127–136, Washington DC,
USA, 2011. 10, 17, 18, 19, 30, 36, 51

[51] C. Olsson and M. Oskarsson. A convex approach to low rank matrix ap-
proximation with missing data. In Scandinavian Conference on Image Anal-
ysis, pages 301–309, Oslo, Norway, 2009. 59

[52] C. Olsson, M. Carlsson, F. Andersson, and V. Larsson. Non-convex
rank/sparsity regularization and local minima. In International Conference
on Computer Vision, 2017. 101, 102, 104, 106

[53] Carl Olsson, Marcus Carlsson, and Erik Bylow. A non-convex relaxation for
fixed-rank approximation. In International Conference on Computer Vision
Workshop, pages 1809–1817, Venice, Italy, 2017. 2

[54] S. Osher and R. P. Fedkiw. Level set methods and dynamic implicit surfaces.
Applied mathematical science. Springer, New York, USA, 2003. 10, 20

[55] S. Oymak, K. Mohan, M. Fazel, and B. Hassibi. A simplified approach
to recovery conditions for low rank matrices. In International Symposium
on Information Theory Proceedings, pages 2318–2322, St. Petersburg, Russia,
2011. 100

[56] S. Oymak, A. Jalali, M. Fazel, Y. C. Eldar, and B. Hassibi. Simultaneously
structured models with application to sparse and low-rank matrices. IEEE
Transactions on Information Theory, 61(5):2886–2908, 2015. 100

[57] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements
as rendering primitives. In Conference on Computer Graphics and Interactive
Techniques, pages 335–342, New York, USA, 2000. 19

[58] B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed minimum-rank solutions
of linear matrix equations via nuclear norm minimization. SIAM Review,
52:471–501, August 2010. 59, 99, 100, 109

[59] C. Y. Ren and I. Reid. A unified energy minimization framework for model
fitting in depth. In European Conference on Computer Vision, pages 72–82,
Florence, Italy, 2012. 18

120



BIBLIOGRAPHY

[60] R.T. Rockafellar. Convex analysis. Princeton Mathematical Series. Princeton
University Press, Princeton, N. J., 1970. 85

[61] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In
International Conference on 3D Digital Imaging and Modeling, pages 145–
152, Quebec City, Canada, 2001. 12

[62] S. Sengupta, H. Zhou, W. Forkel, R. Basri, T. Goldstein, and D. Jacobs.
Solving uncalibrated photometric stereo using fewer images by jointly opti-
mizing low-rank matrix completion and integrability. Journal of Mathemat-
ical Imaging and Vision, 2017. 58

[63] F. Steinbruecker, J. Sturm, and D. Cremers. Real-time visual odometry from
dense rgb-d images. In Workshop on Live Dense Reconstruction with Moving
Cameras at International Conference on Computer Vision, Barcelona, Spain,
2011. 14, 18, 19

[64] F. Steinbruecker, C. Kerl, J. Sturm, and D. Cremers. Large-scale multi-
resolution surface reconstruction from rgb-d sequences. In International
Conference on Computer Vision, Sydney, Australia, 2013. 10, 14, 45, 46, 51

[65] D. Strelow. General and nested Wiberg minimization. In Conference on
Computer Vision and Pattern Recognition, pages 1584–1591, Providence,
USA, 2012. 58

[66] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A bench-
mark for the evaluation of RGB-D SLAM systems. In International Con-
ference on Intelligent Robots and Systems, pages 573–580, Algarve, Portugal,
2012. 17, 31, 45, 51, 53

[67] J. Sturm, E. Bylow, F. Kahl, and D. Cremers. Copyme3d: Scanning and
printing persons in 3d. In German Conference on Pattern Recognition, pages
405–414. Saarbrücken, Germany, 2013. 2

[68] J. Sturm, E. Bylow, F. Kahl, and D. Cremers. Dense tracking and mapping
with a quadrocopter. In Unmanned Aerial Vehicle in Geomatics, pages 371–
376, Rostock, Germany, 2013. 2

[69] J. F. Sturm. Using SeDuMi 1.02, a Matlab toolbox for optimization over
symmetric cones. Optimization Methods and Software, 11-12:625–653,
1999. 87

121



BIBLIOGRAPHY

[70] C. Tomasi and T. Kanade. Shape and motion from image streams under
orthography: A factorization method. International Journal of Computer
Vision, 9(2):137–154, 1992. 55, 58

[71] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard, and J. McDonald. Ro-
bust real-time visual odometry for dense RGB-D mapping. In International
Conference on Robotics and Automation, pages 5724–5731, Karlsruhe, Ger-
many, 2013. 10, 19

[72] T. Whelan, S. Leutenegger, R. F Salas-Moreno, B. Glocker, and A. J. Davi-
son. Elasticfusion: Dense slam without a pose graph. In Robotics: Science
and Systems, page 1697–1716, Rome, Italy, 2015. 19

[73] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Burgard.
Octomap: A probabilistic, flexible, and compact 3d map representation for
robotic systems. Autonomous Robots, 34(3):189–206, 2013. 9, 19

[74] J. Yan and M. Pollefeys. A factorization-based approach for articulated non-
rigid shape, motion and kinematic chain recovery from video. Transactions
on Pattern Analysis and Machine Intelligence, 30(5):865–877, 2008. 58

[75] Y. Zheng, G. Liu, S. Sugimoto, S. Yan, and M. Okutomi. Practical low-rank
matrix approximation under robust L1-norm. In Conference on Computer
Vision and Pattern Recognition, pages 1410–1417, Providence, USA, 2012.
58

122





Er
ik

 b
y

lo
w

 
 

O
ptim

ization M
ethods for 3D

 R
econstruction                                                                                                                 2018

Doctoral Theses in Mathematical Sciences 2018:2
ISBN 978-91-7753-622-2 (print)

LUTFMA-1066-2018
ISSN 1404-0034

Optimization Methods for 3D 
Reconstruction
Depth Sensors, Discance Functions and Low-Rank Models

Erik bylow

Lund University
Faculty of Engineering
Centre for Mathematical Sciences
Mathematics

 –  Ce n t r u m  S C i e n t i a r u m  m at h e m at i C a r u m  –

Pr
in

te
d 

by
 M

ed
ia

-T
ry

ck
, L

un
d 

20
18

   
   

   
  N

O
RD

IC
 S

W
A

N
  E

C
O

LA
BE

L 
 3

04
1 

09
03

 


	Introduction
	Organization of the Thesis

	Rigid 3D Reconstruction
	Introduction
	Basics
	Pinhole Camera Model
	Affine Camera Model
	Depth Cameras
	Representation of 3D Models
	Camera Tracking


	Estimating the Camera Pose and Creating a 3D Model 
	Introduction
	Related Work

	Updating a TSDF for a New Depth Image
	Estimating the Camera Pose Using Geometry Information From the 3D Model
	Results and Experiments
	Qualitative Results
	Quantitative Results

	Conclusion

	Robust Estimation of the Camera Pose
	Introduction
	Invoking Color in the Camera Pose Estimation
	Efficient Use of Memory

	Experiments and Results
	Quantitative Results

	Combining Sparse and Dense Tracking
	Qualitative Results
	Quantitative Evaluation

	Conclusion

	Low-Rank Approximation of Matrices
	Introduction
	Structure from Motion
	Related Work

	Developing the Convex Envelope
	Missing Data

	Optimization
	Proximal Operator

	Experiments
	Real Data
	Linear Shape Models

	Conclusion

	Minimizing the Maximal Rank
	Introduction
	Theory
	Convex Envelope

	Experiments
	Manifold Denoising
	Linear Shape Basis Estimation

	Conclusion

	Under Determined Linear Systems and Rank Regularization
	Introduction
	Main Results and Contributions
	Subgradients of G

	Growth Estimates for the G(X)
	Uniqueness of Low Rank Stationary Points
	Implementation and Experiments
	Synthetic Data
	Non-Rigid Structure from Motion

	Conclusion



 
 
    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as current
      

        
     Blanks
     1
     Always
     1
     1
     /130.235.28.149/media/Filsystem via ordersystem/2017/158119/Certificate_2017/Certificate_2017/Poster_award_certificate-1line.pdf
     1
     1
     773
     354
    
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsCur
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0c
     Quite Imposing Plus 3
     1
      

   1
  

 HistoryList_V1
 qi2base



