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Abstract

The current control design development process in automotive industry
and elsewhere involves many expensive experiments and hand-tuning of
control parameters. Model based control design is a promising approach to
reduce costs and development time. In this process low complexity models
are essential and model reduction methods are very useful tools.
This thesis combines the areas of modeling and model reduction with

applications in automotive systems. A model reduction case study is per-
formed on an engine air path. The heuristic method commonly used when
modeling engine dynamics is compared with a more systematic approach
based on the balanced truncation method.
The main contribution of this thesis is a method for model reduction

of nonlinear systems. The procedure is focused on reducing the number
of states using information obtained by linearization around trajectories.
The methodology is closely tied to existing theory on error bounds and
good results are shown in form of examples such as a controller used in
real-world cars.
Also, a model of the exhaust gas oxygen sensor, used for air-fuel ratio

control in automotive spark-ignition engines, is developed and successfully
validated.
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Preface

Motivation

Automotive industry development

The current control design development process in automotive industry in-
volves many expensive experiments and hand-tuning by experienced per-
sonnel. This process is time-consuming and even if only small changes
have been done between two models, many tuning tasks have to be made
over and over again.
Model-based development is a promising approach to reduce costs,

development time and dependency of the undocumented knowledge pos-
sessed by experienced personnel. The idea is to replace expensive experi-
ments with simulation of mathematical models.

Complexity versus fidelity

The modeling process is highly dependent of the model purpose. Depend-
ing on the model usage different effects in the physical plant should either
be taken into consideration or be neglected. However, what effects to be
included can be very hard to know and requires experience and under-
standing of the real process.
A model is always approximate and the level of accuracy is typically

a function of its complexity. A very detailed model is more likely to cover
the most important dynamics but large complexity has many downsides.
In general, simulation time and memory requirements scale badly with
complexity, also model analysis is made harder. Yet another inconvenience
is that larger models generally contain more model parameters. In control
design, this could yield that the hand-tuning saved by model-based control
design is replaced by time consuming calibration of model parameters.
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Figure 0.1 Example of alternative controller development process

Why model reduction?

A systematic method to reduce model complexity would be very useful in
many situations. If a detailed component model has been developed, the
modeling effort could later be reused for other purposes. For example, com-
ponent models could be combined to model a more overall behaviour. The
model complexity could then be reduced with a model reduction method
to match the required level of detail for the actual purpose.
In model-based control design, simple models are highly preferred.

Some methods, e.g. Linear Quadratic Gaussian control or Model Predictive
Control, yield controllers with complexity comparable to the model.
A control design approach where model reduction plays a central role

is illustrated in Figure 0.1. A complex physical model with a large number
of uncertain parameters could be reduced by a model reduction method.
Ideally, the resulting model should not only be of low complexity but should
also contain few parameters, facilitating calibration. The small model is
then calibrated with experiment data and used for model-based control
design.
In some cases fast simulation models for real-time purposes are es-

sential, e.g. in on-board fault diagnostics where computing power is not
abundant.

Outline and contributions

The thesis combines the areas of modeling and model reduction of auto-
motive systems. Here is an outline together with related publications.

Chapter 1: Background

The first chapter gives an introduction to model reduction methods of
linear and nonlinear systems.

Chapter 2: A model reduction case study

Two model reduction methodologies are applied on a detailed engine air
path model. One of the methodologies is systematic and mathematically
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Outline and contributions

motivated, while the other is heuristic and based on intuition and expe-
rience.

Related publications

Nilsson, O., A. Rantzer, and J. Chauvin (2006): “A model reduction
case study: Automotive engine air path.” In Proceedings of the IEEE
International Conference on Control Applications. Munich, Germany.

Nilsson, O. (2006): “Modeling and model reduction in automotive sys-
tems.” Licentiate Thesis ISRN LUTFD2/TFRT--3242--SE. Depart-
ment of Automatic Control, Lund University, Sweden.

Chapter 3: The average Gramian approach to model reduction

This chapter presents a general model reduction method for nonlinear
systems. The method is numerically attractive and is developed both for
the continuous and discrete-time case. Its applicability is demonstrated
through numerical examples such as a controller used in real-world cars.

Related publications

Nilsson, O. and A. Rantzer (2009a): “The average Gramian approach to
nonlinear model reduction.” IEEE Transactions on Control Systems
Technology. Preprint, submitted.

Nilsson, O. (2006): “Modeling and model reduction in automotive sys-
tems.” Licentiate Thesis ISRN LUTFD2/TFRT--3242--SE. Depart-
ment of Automatic Control, Lund University, Sweden.

Nilsson, O. and A. Rantzer (2009a): “A novel approach to balanced
truncation of nonlinear systems.” In European Control Conference.
Preprint, submitted.

Nilsson, O. and A. Rantzer (2009b): “A novel nonlinear model reduction
method applied to automotive controller software.” In American Con-
trol Conference. Preprint, accepted.

Chapter 4: Modeling the exhaust gas oxygen sensor

A model of an exhaust gas oxygen sensor, also called Lambda sensor,
is derived. This sensor is a core component in the emission control in
modern spark ignition combustion engines. The model is calibrated using
measurement data.

Related publications

Nilsson, O. (2006): “Modeling and model reduction in automotive sys-
tems.” Licentiate Thesis ISRN LUTFD2/TFRT--3242--SE. Depart-
ment of Automatic Control, Lund University, Sweden.
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Chapter 5: Conclusions

Finally, this chapter contains concluding remarks together with possible
directions of further research.
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1

Background

This chapter presents an overview of model reduction methods relevant
for this thesis. For further reading, a broad overview of model reduction
methods is presented in [Antoulas and Sorensen, 2001] and [Obinata and
Anderson, 2001].

1.1 Model reduction of linear systems

A linear time-invariant system can be represented in many different
ways. A common description is the state-space form

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1.1)

where x(t) ∈ Rn, u(t) ∈ Rl and y(t) ∈ Rm. If the model order n is much
larger than the number of inputs and outputs(n ≫ l, n ≫ m) it can be
suspected that the model contains redundant states. The model reduction
problem is how to find and remove such redundancy.

Gramians

The notion of Gramians is a central concept in many model reduction
methods. They give a measure of how strongly states are connected to the
input and output signals.
The controllability function, as defined in [Scherpen, 1993], is the min-

imum amount of input energy required to drive the system from the zero
state to x0.

Lc(x0) = min
u∈L2(−∞,0)
x(−∞)=0
x(0)=x0

1
2

∫ 0

−∞

ppu(t)pp2dt (1.2)
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Chapter 1. Background

Further, the observability function is the amount of energy the initial
state x0 generates in the output signal while the input signal is zero.

Lo(x0) =
1
2

∫ ∞

0
ppy(t)pp2dt, x(0) = x0, u " 0 (1.3)

The usefulness of these functions for model reduction is clear. If a large
amount of energy is required to reach a certain state and if the same
state yields a small output energy, this state is unimportant for the input-
output behaviour of the system. For linear systems, as defined in (1.1),
these functions become the quadratic expressions

Lc(x0) =
1
2
xT0 P

−1x0 Lo(x0) =
1
2
xT0 Qx0

where P and Q are called the controllability Gramian resp. the observ-
ability Gramian. It can be shown, see [Moore, 1981], that these Gramians
are

P =

∫ ∞

0
eAtBBT eA

T tdt Q =

∫ ∞

0
eA
T tCTCeAtdt

Usually stability is assumed and these integrals are well-defined. A more
numerically feasible way to compute the Gramians is to determine the
unique solutions to the Lyapunov equations

AP+ PAT + BBT = 0

ATQ + QA+ CTC = 0
(1.4)

Moreover, the column vectors of P span the controllable subspace in Rn

and correspondingly the null space of Q is the unobservable subspace.
These Gramians P and Q, and their analogues for other system classes,
are central to many model reduction methods. They show how strongly
states are connected to the inputs and outputs and thereby supply essen-
tial information of which state subspace is of most significance.

Balanced truncation

Balanced truncation is a popular model reduction technique introduced
in [Moore, 1981]. The method guarantees preserved stability and comes
with an a priori error bound.
The idea of the method is to apply a coordinate change so that each

state is equally controllable and observable. The model is then reduced by
truncating states with relatively weak input-output dependency. Applying
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1.1 Model reduction of linear systems

a linear coordinate change, T x̃ = x, to the state-space form given in (1.1)
yields the system

˙̃x(t) = TAT−1 x̃(t) + TBu(t)

y(t) = CT−1 x̃(t) + Du(t)

The previously mentioned Gramians determine how controllable and ob-
servable these new states are. From (1.4) it can be derived that the new
Gramians become P̃ = TPTT and Q̃ = T−TQT−1. A balanced realization
is achieved if the coordinate change makes the Gramians diagonal and
equal.

P̃ = Q̃ = Σ̃ =







σ 1
. . .

σ n






(1.5)

Methods for computing this coordinate change T can be found in [Zhou
and Doyle, 1998; Li, 2000]. The diagonal elements σ 1 ≥ σ 2 ≥ ⋅ ⋅ ⋅ ≥ σ n
are the Hankel singular values that indicate how important a state is for
the input-output relationship. Consequently, the reduced model is derived
by truncating states in the balanced realization corresponding to small
singular values. Now, letting σ ∗

1 > σ ∗
2 > . . . > σ ∗

r denote the distinct
singular values of the truncated dimensions, it can be shown that the
approximation error is bounded as

max
u

qỹ(t) − y(t)q2
qu(t)q2

≤ 2
r
∑

k=1

σ ∗
k (1.6)

Balanced truncation of linear discrete-time systems

In the discrete-time case a common description is the state-space form

xk+1 = Axk + Buk

yk = Cxk + Duk

where xk is the state vector, uk the input signal and yk the output signal at
time k. Further, A, B, C and D are matrices of appropriate dimensions.
Here the sub-index denotes time. The Gramians for this model class are
given by the Lyapunov equations

APAT − P + BBT = 0

ATQA− Q + CTC = 0
(1.7)

These Gramians can be balanced in the same way as in the continuous
case. The error bound in 1.6 is also valid for this model class, as proven
in [Al-Saggaf and Franklin, 1987].
This model reduction method is applied on a combustion engine model

in Chapter 2.
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Chapter 1. Background

Balanced truncation of linear time-varying systems

Balanced truncation has been extended to also cover the linear time-
varying case, see [Verriest and Kailath, 1983; Shokoohi et al., 1983]. For
this class of linear systems, the matrices A, B, C and D are time varying.

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(1.8)

The method follows the ideas of balanced truncation of time-invariant
systems. For time-varying systems one can use the notion of controllability
or observability over a time interval, say t ∈ [0,T ]. The energy functions
in (1.2) and (1.3) are then slightly modified. The controllability function
is here the minimum required input energy to reach x0 at time t starting
from the zero state at t = 0.

Lc(x0, t) = min
u∈L2(0,t)
x(0)=0
x(t)=x0

1
2

∫ t

0
ppu(τ )pp2dτ

The observability function is the energy induced by the initial state x(t) =
x0 in the output signal over the time interval [t,T ], while the input signal
is zero.

Lo(x0, t) =
1
2

∫ T

t

ppy(τ )pp2dτ , x(t) = x0, u " 0

As in the time-invariant case, these functions are quadratic but the Grami-
ans P(t) and Q(t) are now time dependant.

Lc(x0, t) =
1
2
xT0 P(t)

−1x0 Lo(x0, t) =
1
2
xT0 Q(t)x0

Furthermore, the time-varying generalization of the Lyapunov equations
in (1.4) becomes

dP

dt
(t) = A(t)P(t) + P(t)A(t)T + B(t)B(t)T P(0) = 0

dQ

dt
(t) = −Q(t)A(t) − A(t)TQ(t) − C(t)TC(t) Q(T) = 0

Once more, a balanced realization is achieved if a time-varying coordinate
change yields diagonal and equal Gramians

P̃(t) = Q̃(t) = Σ̃(t) =







σ 1(t)

. . .

σ n(t)






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1.1 Model reduction of linear systems

The low order model is derived by truncating states corresponding to
small singular values σ i(t). It is reasonable to let the reduced model order
vary with time when σ i(t) is time varying. A priori error bounds, simi-
lar to (1.6), are available for the time-varying case, see [Lall and Beck,
2003; Sandberg and Rantzer, 2004].
This theory will be revisited in Chapter 3 , where the time-varying

Gramians are used as tools to reduce nonlinear systems.

Balanced truncation of linear discrete-time time-varying systems

The counterpart to (1.8) is the linear discrete-time time-varying system

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
k ∈ [1,N],

where xk is the state vector, uk the input signal and yk the output sig-
nal at time k. Further, Ak, Bk, Ck and Dk are time-varying matrices of
appropriate dimensions. Here the sub-index denotes time.
Here the controllability energy function becomes the optimal control

problem

Lc(x
∗, t) = min

u∈L2(0,t)
x1=0
xt=x∗

1
2

t
∑

k=1

ppukpp
2. (1.9)

That is, Lc(x∗, t) is the minimal amount of energy in u required to reach
a certain state x∗ at time t, starting from the zero initial state.
Similarly, the observability energy function can in this case be stated

as

Lo(x∗, t) =
1
2

N
∑

k=t

ppykpp
2, xt = x∗, u " 0. (1.10)

That is, the amount of energy an initial state x∗ at time t induces in the
output signal over the time interval [t,N].
Similar to the continuous case, the energy functions can be determined

through the quadratic forms

Lc(x∗, t) =
1
2
x∗TP−1t x

∗ Lo(x∗, t) =
1
2
x∗TQtx

∗.

where the controllability Gramian Pk and observability Gramian Qk are
given by the Lyapunov equations

Pk+1 = AkPkA
T
k + BkB

T
k , k ∈ [1,N]

Qk = A
T
kQk+1Ak + C

T
k Ck, k ∈ [1,N]
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Chapter 1. Background

with the boundary conditions P1 = 0 and QN+1 = 0. Also here a time-
varying balancing coordinate change can be found and error bounds are
available, see [Shokoohi and Silverman, 1987; Farhood and Dullerud, 2006].
This time-varying case will also be revisited in Chapter 3.

Descriptor form

Another linear state-space representation is the descriptor form

Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(1.11)

This representation can be transformed to the standard state-space form
in (1.1) if E is invertible. However, if E and A are sparse E−1A can be
dense and it might therefore be beneficial to keep the form in (1.11).
If E is singular, the system is a set of algebraic-differential equations

and the problem becomes more involved. A generalization of the Gramians
defined for the standard state-space form is presented in [Stykel, 2004].
Theory together with numerical methods are defined and also in this case
an a priori error bound is available.

1.2 Model reduction of nonlinear systems

Model reduction of nonlinear systems is a research area under heavy de-
velopment. To the authors best knowledge there is currently no method
that generally provides guaranteed preserved stability or error bounds.
Common to most methods is that they have their roots in methods devel-
oped for linear systems.

Heuristic methods

Probably the most common way to simplify nonlinear models is through
heuristic methods. For example, indirect model reduction is performed in
all modeling-work when complexity is chosen to match the intended model
purpose. There are three common ways to reduce complexity:

• To discard effects that by intuition or experience have a relatively
weak impression on the dynamics.

• Separation of time scales and replacing relatively fast dynamics with
static gains.

• Averaging several effects into one pseudo-effect.

20



1.2 Model reduction of nonlinear systems

All three approaches require great knowledge and intuition of the modeled
object. However, ways to perform these simplification steps in a systematic
automatized manner have been investigated, see for example [Broz et al.,
2006]. The second mentioned method is more formally called the singular
perturbation method. The differential equations of ẋ = f (x,u) are divided
into two parts, one relatively faster than the other

ẋ1 = f1(x1, x2,u)

ẋ2 = f2(x1, x2,u)

If x2 corresponds to the fast dynamics, one introduces a factor ǫ according
to

ẋ1 = f1(x1, x2,u)

ǫẋ2 = f2(x1, x2,u)

and then set ǫ = 0. The original system is now replaced with a set of differ-
ential algebraic equations with fewer states, for more details see [Khalil,
2002].

Linearization around equilibrium point or trajectory

In some applications the intended model usage is in the neighborhood of a
certain operating point in state space. Then the detailed nonlinear model
could be linearized at this point, giving rise to a linear model. This model
can then be reduced with a linear reduction method.
Sometimes a nominal input signal is available and one is interested

in the effect of deviations from this signal. A linearization around a tra-
jectory in state space is then a valid approximation. This yields a time-
varying system as in (1.8) and the theory of balanced truncation of linear
time-varying systems can be applied. This procedure has been done suc-
cessfully, see [Sandberg, 2006].
In both the time-invariant and time-varying case the reduced model

will be linear and it will only be a valid approximation in a region close
to the operating point. Further, the size of this region depends on how
nonlinear the original system is.

Balancing nonlinear systems

Balancing using energy functions An extension to nonlinear sys-
tems of the mentioned balanced truncation method is proposed in [Scher-
pen, 1993]. Here nonlinear systems of the form

ẋ = f (x) + �(x)u

y = h(x)
(1.12)

21



Chapter 1. Background

are considered. Again, the controllability and observability functions in
(1.2) and (1.3) are used. For the given nonlinear system it can be shown
that, under some conditions, Lc(x) and Lo(x) are the unique smooth so-
lutions of

�Lc
�x
(x) f (x) +

1
2
�Lc
�x
(x)�(x)�T (x)

�T Lc
�x

(x) = 0, Lc(0) = 0

and
�Lo
�x
(x) f (x) +

1
2
hT (x)h(x) = 0, Lo(0) = 0

After a coordinate transformation, x =ψ (z), the functions can be written

L̃c(z) =
1
2
zT z L̃o(z) =

1
2
zT







τ1(z)

. . .

τn(z)






z

This form is not balanced, in the linear case it is sometimes called “input
normalized”. However, an additional coordinate change can balance Lc and
Lo. For more details see [Scherpen, 1993] and [Scherpen and Fujimoto,
2003]. In analogy with the linear case, the functions τ1(z) ≥ ⋅ ⋅ ⋅ ≥ τn(z)
are called the singular value functions of the system. Model reduction
is performed by truncating states in the balanced form corresponding to
small singular functions.
A linearized version of the method applied to a linear system yields the

same result as the standard balanced truncation method would. Further,
the singular value functions become constant and τ i(z) = σ i as given
in (1.5).
Extensions have been made to the discrete-time counterpart in [Scher-

pen and Fujimoto, 2004] and nonlinear differential-algebraic systems
in [Sjöberg et al., 2007]. A recent contribution to this problem setting
is, among others, [Fujimoto and Tsubakino, 2006]. Another contribution,
featuring error bounds for certain input signals, is found in [Krener, 2008].
The method has strong mathematical support but due to the required

numerical effort only models with very moderate size have so far been
considered, see e.g. [Newman and Krishnaprasad, 1998].

Balancing using empirical Gramians A model reduction method
for nonlinear systems of the form

ẋ = f (x,u)

y= h(x)
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1.2 Model reduction of nonlinear systems

is treated in [Lall et al., 2002; Hahn and Edgar, 2002]. The approach
applies ideas concerning linear systems, introduced in [Moore, 1981], to
nonlinear systems.
Here state data are collected while impulse input signals in different

directions are injected. The data are then used to estimate a constant con-
trollability Gramian matrix. Similarly, a constant observability Gramian
matrix is constructed from simulation data generated by different initial
values distributed on the unit sphere.
When the Gramians have been computed they are balanced using lin-

ear theory, see Section 1.1. The reduced nonlinear model is then derived
by applying the corresponding linear coordinate change Tz = x

ż = T−1 f (Tz,u)

y = h(Tz)

followed by truncation of states, as in the linear case. This method also
yields the same reduced system as standard linear balanced truncation
if applied to a linear system. In [Liu and Wagner, 2002] the method is
applied on an automotive model. In [Hahn et al., 2003] the method is
extended so that the input signals do not have to be impulses.
The method is much less computationally intensive than the method

using nonlinear balancing. However, the heuristic use of simulations does
not leave much room for proofs and analysis.

Proper orthogonal decomposition

Karhunen-Loève expansion [Karhunen, 1946; Loève, 1945], or proper or-
thogonal decomposition (POD), is a model reduction method for state-
space models based on principal component analysis. The method was pi-
oneered for applications in turbulence models in [Lumley, 1967] and is one
of the most commonly used tools for model reduction of nonlinear systems.
It uses simulation data to find a low-dimensional subspace that captures
most of the state dynamics. Figure 1.1 illustrates a possible truncation of
state space, (x1, x2) to x̂2 = 0.
The method can briefly be described in three steps.

1. Simulate the nonlinear system

ẋ = f (x,u)

and collect snapshots of the state vector in a matrix X .

X = [ x(t0) x(t1) . . . x(tN) ] , x(t) ∈ Rn
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Chapter 1. Background

2. Factorize X with the singular value decomposition

UΣVT = X

3. Choose truncation level after size of singular values in Σ. Truncate
U ∈ Rnxn to Û ∈ Rnxn̂ so that x ( Û x̂ where x̂ ∈ Rn̂. Then the
reduced model becomes

˙̂x = ÛT f (Û x̂,u) (1.13)

This method lacks general error bounds, which can easily be demon-
strated. Put short, a state can be important even though it is small. For
example, scaling of states by a diagonal coordinate change

x∗ = diag(c1, c2, ..., cn)x ci > 0

does not change the dynamic behaviour of the system but can make the
method choose an arbitrary subspace. Further, all states are usually not
interesting for control purposes and this method does not take any output
signal into consideration, so one is forced to use a larger subspace than
might be necessary.
A common source of large models is discretization of Partial Differen-

tial Equations (PDE’s), where the states share the same physical units. In
this case size comparison might be feasible. More details and numerous
examples can be found in [Astrid, 2004].

x2

x1

x̂2

x̂1

Figure 1.1 x̂2 = 0 is a dominant state subspace in (x1, x2)
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(xi0,u
i
0)

Figure 1.2 Linearizations distributed over a training trajectory

Trajectory piecewise-linear model reduction

A novel approach to nonlinear model reduction is presented in
[Rewieński, 2003]. The method is based on linearizations distributed over
one or many training trajectories.
First one simulates the nonlinear system

ẋ = f (x,u)

y= �(x,u)

with a training input signal u0(t). Then a set of linearization points (xi0,u
i
0)

is chosen along the training trajectory, see Figure 1.2. How to pick the
location of the points will soon be discussed. Observe that the points are
in general not equilibrium points for the system.
Close to the point i, the linearization

ẋ ≃ f (xi0,u
i
0) + Ai(x − x

i
0) + Bi(u− u

i
0)

y≃ �(xi0,u
i
0) + Ci(x − x

i
0) + Di(u− u

i
0)

(1.14)

approximates the nonlinear system, where the matrices Ai, Bi, Ci and Di
are the partial derivatives

Ai =
� f

�x
(xi0,u

i
0) Bi =

� f

�u
(xi0,u

i
0)

Ci =
��

�x
(xi0,u

i
0) Di =

��

�u
(xi0,u

i
0)

The local linear approximation (1.14) can be rewritten as

ẋ ≃ fi(x,u)

y ≃ �i(x,u)
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Now let the original nonlinear system be approximated in a less local way
by a weighted sum of the local linearizations.

ẋ ≃
∑

i

wi(x,u) fi(x,u) = f̂ (x,u)

y≃
∑

i

wi(x,u)�i(x,u) = �̂(x,u)
(1.15)

The weighting function wi(x,u) is close to one in the neighborhood of lin-
earization i and zero otherwise. Additionally, wi(x,u) ≥ 0 and

∑

iwi(x,u) =
1 for all x and u.
There are several ways to decide the location of the linearization points,

one approach is Algorithm 1.1, which will be later used in Chapter 3.
Observe that (1.16) is not necessarily fulfilled for the whole trajectory
even though the relative approximation error is held below the threshold
ǫ at all linearization points.

Algorithm 1.1: Choice of linearization point locations
1. Generate linearized model at the initial state

2. Traverse the training trajectory while

p f (x,u) − f̂ (x,u)p

p f̂ (x,u)p
< ǫ (1.16)

3. If (1.16) is not fulfilled, aggregate point to linearization
collection

4. If x is not the final state return to step 2

So far the original nonlinear system has been approximated but no
gain in terms of state dimension or simulation time has been achieved. In
this step linear model reduction theory is used to reduce the local linear
models.
In [Rewieński, 2003] the Krylov subspace method was used. This method

uses the Arnoldi algorithm, which is numerically effective even for very
large systems. However, it has the drawback of not generally provide guar-
anteed preserved stability or error bounds, see [Grimme, 1997]. The use
of balanced truncation has also been investigated, see [Vasilyev et al.,
2006]. The Krylov subspace method generates an orthonormal projection
z = Wx,W ∈ Rn̂xn, which is used globally to reduce all the local models.
For further details see [Rewieński, 2003].
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Introducing the new coordinates in (1.15) yields

ż =
∑

i

wi(W
T z,u)W fi(WT z,u)

y ≃
∑

i

wi(W
T z,u)�i(WT z,u)

This reduced model has fewer states, n̂ < n. The simulation time is also
improved because fi and �i are linear. Additionally, most of the weight-
ing functions are zero and there is no need to evaluate the rest of those
expressions.

Model reduction through system identification

One alternative way of performing model reduction is to use system iden-
tification. System identification is the process of estimating a dynamic
model from input and output data. That is, instead of using the internal
description of the original model one could estimate its dynamics only
using simulation data of input and output signals. This is, in particular,
beneficiary when the model description is in a format that is hard to han-
dle, e.g. software code. Model reduction is performed through restricting
the complexity of the estimated model to one smaller than the original
model. Most system identification methods are defined for discrete-time
systems, since simulation and measurement data typically are discrete.
The methodology is applicable to both linear and nonlinear systems.

The main difficulty in nonlinear system identification is the fact that a
system can be nonlinear in many different ways. It is difficult to find a
simple yet general model class. When system identification is used as a
tool for model reduction one could try to use internal information of the
model to choose how to parametrize the nonlinearities.
Recent contributions in [Zhang et al., 2006; Sou et al., 2008] proposes

methods for identification of a block structure with linear and nonlinear
parts where no a priori parametrization of the nonlinearity is necessary.

1.3 Summary

In this chapter, a brief background of some methods for linear and nonlin-
ear model reduction has been presented. Model reduction of linear systems
is a well developed research area. Methods as balanced truncation provide
error bounds and guaranteed preserved stability. Others, e.g. Krylov sub-
space method [Grimme, 1997], do not but are numerically more adapted
to large systems.
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Chapter 1. Background

All the mentioned methods have the property that internal physical
interpretation of the model is lost in the reduction process. Methods that
also preserve internal properties include e.g. [Moin and Uddin, 2004] and
structure preserving methods such as in [Vandendorpe and Van Dooren,
2004; Li and Paganini, 2005; Sandberg and Murray, 2008].
How to reduce nonlinear systems is however still a quite open problem

and there is a large room for improvement of existing methods. Theorems
concerning preserved stability or error bounds are sparse. As a general
rule nonlinear methods tend to rely on linear ones.
Common for all mentioned nonlinear methods in this chapter, except

the piece-wise linear approach, is that even though the order is reduced,
simulation time is not necessarily shorter. Commonly, the original set of
equations is sparse, i.e. all state equations do not involve all states. The
sparsity is lost with a dense coordinate change and truncation of states.
Therefore, the total computation time is not necessarily reduced for the
right-hand-side functions, which can e.g. be seen in [Liu and Wagner,
2002].
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2

A model reduction

case study

The contents of this chapter is based on the article [Nilsson et al., 2006].
Low complexity plant models are essential for model-based control de-

sign. Often a detailed high order model is available and simplification to
a low order approximate model is needed. This chapter presents a case
study of two model reduction methodologies applied on the automotive
engine air path. The first methodology is based on balanced truncation of
models obtained by linearization around equilibria and trajectories. Un-
der appropriate assumptions, this technique yields strict bounds on the
approximation error. The second is a heuristic methodology, based on in-
tuition commonly used in modeling of engine dynamics. Although it is
successfully used in practice, the approximation error is seldom known.
The two methodologies are used to derive simple models for the required
fuel charge in a spark ignition engine, given throttle and swirl flap posi-
tions and engine speed. Performance, complexity and similarities of the
two resulting low order models are compared.

2.1 Introduction

The air path dynamics is a major challenge in automotive engine con-
trol. The main problem for spark ignition (SI) engines is to regulate the
Air/Fuel Ratio. The electronic fuel control system of a modern SI automo-
bile engine employs individual fuel injectors located in the inlet manifold
runners close to the intake valves to deliver precisely timed and accurately
metered fuel to all cylinders. This fuel management system acts in concert
with the three-way catalytic converter (TWC) to control HC, CO, and NOx
emissions. Figure 2.1 illustrates the conversion efficiencies provided by a
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Figure 2.1 Typical conversion efficiency of a three-way catalyst

typical TWC as a function of exhaust air-fuel ratio (A/F) for the three
constituents. It can be seen that there is only a very narrow range of A/F
near the stoichiometric value (14.64) over which high simultaneous con-
version efficiencies may be attained, see [Heywood, 1988]. Feedback from
an exhaust gas oxygen (EGO) sensor, treated in Chapter 4, is used to uti-
lize the TWC effectively, see Figure 2.2. If the operating point is changed
by, for example, an increased torque demand, the injected fuel amount
has to increase. The EGO sensor will not instantly detect the unbalance
in the A/F ratio and a good feed-forward control is needed to adapt the
injected fuel amount before the deviation is detected by the sensor. To
this purpose, a good low complexity model of the air entering the cylinder
is essential. Given throttle position, swirl flap position and engine speed
the required fuel charge (Fc) has to be estimated to achieve stoichiometric
conditions.

2.2 Model properties

The article is focused on the setup shown in Figure 2.3, which shows an
illustration of the air path. The throttle is used to get the desired airflow
and the swirl flap is used for inducing turbulence and thereby achieving
better mixing in the cylinder. Volume 1 and 2 in the figure represent the
connecting pipes between the elements.

30



2.2 Model properties

Torque

demand
Feed

forward

PI

control

Injected

fuel
Engine

Exhaust

Oxygen

sensor

Catalyst

Air-fuel

ratio

Figure 2.2 A standard air-fuel ratio control scheme
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Figure 2.3 Schematic of the engine air path

The base for the model reduction is a detailed one-cylinder model pro-
vided by Toyota Motor Corporation. It is written in the Modelica language,
see [Fritzson, 2004], and managed with the software tool Dymola, a multi-
domain modeling and simulation tool, see [Dynasim AB, 2006]. The model
is based on conservation laws such as mass balances. The top view of the
Dymola model can be seen in Figure 2.4, which shows the same physical
layout as Figure 2.3.
Translating the model, Dymola induces a nonlinear differential alge-

braic equation (DAE) with 37 continuous-time states, distributed as

• 11 states in volume 1

• 11 states in volume 2

• 15 states in the cylinder

The states in the three objects are among other things mass, energy, mo-
mentum and concentrations of the seven species gas mixture. The model
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Figure 2.4 Top view of the one cylinder Dymola model

is ideal for simulation but is too complex for model-based control design.
By applying model reduction techniques a low-order approximate model
can be derived.

2.3 Model reduction by balanced truncation

In this section the balanced truncation method is applied to obtain a low
order approximate model. The theory of balanced truncation, as described
in section 1.1, is clearly not directly applicable on the Dymola model as
it is non-linear, hybrid and is defined both by equations and algorithms.
However, with the below described methodology an approximate low order
model is obtained. The methodology can be separated into three steps.

Obtain a linear time-varying system by repeated linearization The
Dymola model was simulated with constant input signals, i.e. throttle po-
sition, swirl flap position and engine speed. The simulation gave rise to
a state trajectory around which the non-linear model can be linearized.
Due to the cyclic behaviour of the cylinder, the linearized model is time-
varying, i.e., the A, B, C and D matrices are time dependent.

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
(2.1)

The state vector x is the deviation from the nominal state trajectories
and all 37 states have known physical interpretations. The fuel charge is
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2.3 Model reduction by balanced truncation

defined once per engine cycle (when the inlet valve closes) and is propor-
tional to the amount of oxygen in the cylinder. To linearize the system at
any time point a continuous-time version of the signal was defined that
coincides with the discrete when the inlet valve closes.
Dymola has the functionality of derivation of linearizations of the non-

linear DAE. By using Dymola’s scripting capabilities this can be done re-
peatedly at times tk and snapshots, with 50µs intervals, of the continuous
linear time-varying system in (2.1) is obtained. With the assumption that
the A(t),B(t),C(t) and D(t) matrices are constant between the times tk
a discrete linear time-varying (LTV) system can be derived by zero or-
der hold sampling. The discrete-time system (2.2) only captures the state
vector at the snapshot times, x(tk) = xk.

xk+1 = Φkxk + Γkuk

yk = Ckxk + Dkuk
(2.2)

Resample the discrete-time LTV system once per engine cycle The
required fuel charge is defined once per engine cycle and the system is
therefore sampled. Resampling, with the sampling periods defined by the
closing of the inlet valve, gives rise to a cycle-to-cycle model for the fuel
charge. Here the input signals are assumed to be constant during the
cycle and n denotes the number of sampling intervals per cycle.

xk+n = Φ̃xk + Γ̃uk

Letting k = 0 represent the first sample time in the cycle the matrices Φ̃

and Γ̃ can be computed according to

Φ̃ =
n
∏

i=1

Φn−i

Γ̃ =

n−2
∑

i=0





n−i−1
∏

j=1

Φn− j



 Γi + Γn−1

Linearization around trajectories captures hybrid phenomena such as
dynamics changing depending of time and position in state space, but not
instantaneous changes such as reset maps. The Dymola model contains
reset maps, for example the cylinder mass is instantaneously increased
by the amount of fuel injected, similarly the oxygen amount is reset after
combustion. These two and others all occur when the inlet valve closes
and can all be represented as an instantaneous linear transformation of
the state vector

x∗
k = Hxk
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Figure 2.5 The five largest singular values of the balanced realization

This can be included in the LTV system by introducing the transformation
in the beginning of the cycle, i.e., when the inlet valve closes.

x1 = Φ0Hx0 + Γ0u0

Γ̃ is not affected and the only alteration is in the calculation of Φ̃, which
becomes

Φ̃ =

(

n
∏

i=1

Φk+n−i

)

H

Only slight cycle-to-cycle variations can be seen in Φ̃ and Γ̃ but to improve
numerical precision the matrices are calculated by averaging over several
cycles.
It should be mentioned that an alternative way to obtain the linear

time-invariant model would be to integrate the continuous-time model
instead of through sampling and iteration.

Apply balanced truncation to obtain low-order model By lin-
earization and resampling a linear time-invariant model for the required
fuel charge has been derived. And now the balanced truncation method,
as described in Section 1.1, can be applied.
The model has 37 states, a number that can significantly be reduced

without much loss of accuracy. The five largest Hankel singular values de-
scribed by (1.5) are shown in Figure 2.5. The plot indicates how well the
model can be represented with a lower-order approximation. How many
states the low-order model should have is a trade off between approxi-
mation error and model complexity. In this case simulation shows that
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Table 2.1 The most important physical states

State number Physical interpretation

11 Amount of oxygen in cylinder

15 Mass in volume 1

21 Amount of oxygen in volume 1

32 Amount of oxygen in volume 2
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Figure 2.6 Relative importance of physical states in the reduced model

it is reasonable to truncate all but two states. The new low-order state
vector will be a linear combination of the physical states and reducing to
a second order system yields the coordinate change

x̄ = Tx =

[

T1

T2

]

x

where T ∈ R2x37.
The absolute value of the elements in T1 and T2 can be seen in Fig-

ure 2.6, which indicates the relative importance of the physical states in
the reduced model1. The most important states are listed in Table 2.1.

Results

The nonlinear Dymola model with 37 states has been approximated with a
two-state linear time-invariant system. Figure 2.7 shows the required fuel
charge computed by the original Dymola model, the linearized model and
the reduced model as a response to the illustrated change of input signals.

1For numerical reasons the states share approximately the same magnitude.
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Figure 2.7 Simulation results for the linearized and truncated model

As can be seen, both the linearized and reduced model approximates well
the Dymola model result. For this trajectory the approximation error is
dominated by the linearization and not the truncation.
Equation (1.6) gives a bound on the approximation error between the

two linear models and keeping two states yields

max
u

qỹ(t) − y(t)q2
qu(t)q2

≤ 2
37
∑

k=3

σ k (2.3)

where ỹ is the reduced model output. In this case, the input signal u(t)
consists of three scalar signals, throttle position, swirl flap position and
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engine speed. The norm is calculated according to

qu(t)q2=

√

∫ ∞

0
uT (t)u(t)dt

The throttle and swirl flap positions are given in effective area [m2] ∼
10−5 and engine speed in [rpm]∼ 103, as can be seen the engine speed
will greatly dominate the input signal norm. To achieve more reasonable
results the inputs are balanced by including a 10−8 gain before the throttle
and swirl flap positions in the model, which could correspond to a unit
change. Now the input signals all have the approximate magnitude of 103

and if all but two states are truncated, according to (2.3), the following
holds

qỹ(t) − y(t)q2≤ 2.6784 ⋅ 10−10qu(t)q2

y(t) and ỹ(t) denotes the outputs of the 37- and 2-state linear models. For
the trajectory in Figure 2.7 this implies that the output error is bounded
as

qỹ(t) − y(t)q2≤ 5.0 ⋅ 10−6

while the actual approximation error is 6.9 ⋅ 10−7. This is not uncommon
when applying balanced truncation, the result is often much better than
the error bound indicates. There are two reasons for the difference, that
the norm is worst-case and that the bound is often conservative.

2.4 Heuristic model reduction

A common way to accomplish model reduction is to use experience and
insight into the physics to omit dynamics with little importance. In this
case the problem is split into two parts

1. The cylinder dynamics

2. The air path including the two volumes

where the first part has much faster dynamics than the second. Therefore
the common technique of time scale dynamics reduction can be performed
on the first part. The result is a static mapping from pressure in volume 2
and engine speed to required fuel charge. Simplification of more detailed
physical modeling yields that the dynamics of the second part can be
modeled as two first order dynamics. The states represent the pressure in
each volume and the throttle and swirl flap positions act as input signals
in a similar configuration as in Figure 2.3. The effect of varying engine
speed is introduced in the model by letting the gains and time constants of
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Figure 2.8 Structure of the heuristically derived model

the first order dynamics be dependent of engine speed, Ne. The complete
model is the combination of the two parts and is illustrated in Figure 2.8.
A more detailed description of how the model structure was obtained

for the two parts is presented below. For further details and background
see [Chevalier et al., 2000; Hendricks et al., 1996] and [Føns et al., 1999].

Time scale dynamics reduction

One simple model of the air flow in an intake manifold is the filling and
emptying model. The air flow enters the manifold through the throttle
and is pumped out of the manifold into the cylinder. Assuming no leaks,
the intake mass air flow Dair, into the manifold and the flow entering in
the cylinder, Masp are identical only in steady state.

Pumping fluctuations Pumping fluctuations are caused by any dis-
turbance initiated at the boundary of inlet manifold such as moving piston,
moving valve and moving throttle plate. These disturbances travel along
the pipe experiencing many reflections. When the engine is operated in
the steady state, they finally settle down into a standing wave. The source
of pumping noise is periodic, so the pumping fluctuations are frequency
locked to the engine event frequency. Looking at top-dead-center (TDC)
gas dynamics leads not to consider these fluctuations.

Mean model of the aspirated flow In spite of the complexity of the
fluid dynamic phenomena occurring during a transient (due to fast open-
ing or closing of the throttle), the conventional volumetric efficiency η
(function of the engine working point), identified during steady-state con-
ditions, is used to describe the inlet air mass flow rate. So the speed-
density gives an accurate description of the air mass flow rate through
the inlet valve

Dasp,map = ηmap(P̄2,Ne)
Vcyl P̄2

RT̄2

Ne

120
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Figure 2.9 The volumetric efficiency map

where:

• P̄2 is the mean pressure over a TDC in volume 2

• ηmap is the volumetric efficiency

• T̄2 is the mean temperature over a TDC in volume 2

• Ne is the engine speed

• Vcyl is the cylinder volume

• R is the universal gas constant

The volumetric efficiency ηmap is highly nonlinear function of the engine
speed (Ne) and manifold pressure (P̄2). It can only be estimated via ex-
perimentation. Figure 2.9 shows the volumetric efficiency of a commercial
gasoline engine. The used volumetric efficiency should preferably been
generated from the Dymola model. The map derived by experiment data
is considered to be accurate enough for the purposes of this article.

Air path dynamics reduction

During throttle transients, the difference between these two flows equal
the rate of change of the air mass in the manifold plenum. Assuming that
the manifold pressure is uniform and the intake manifold temperature is
constant, the continuity equation and ideal gas law can be applied to the
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Figure 2.10 Air path dynamics approximation of the two volumes

manifold plenum. Usually, the flow is defined as a function of the total
mass MT and can be factorized as

d(MT ,Ovalve) = p(MT )MT

where Ovalve is the effective area of the valve and p is a positive increasing
(concave) function with respect to the total mass MT as proposed in [Hey-
wood, 1988],

p(z,Ovalve) = p0(Ovalve)
√

2
γ

γ − 1
((
z

z0
)−

2
γ − (

z

z0
)−

γ +1
γ )

Here z0 is the mass in atmospheric conditions, γ is the heat ratio and p0
is a function transforming the valve opening into the effective area of the
valve. By linearization of the flow equation, the model of the two volumes
writes as two first order dynamics with the states p1 and p2 (the pressure
in the volume 1 and 2 respectively) as described in Figure 2.10. Although
the parameters depend on engine speed, the calibration task is easier than
for the original nonlinear model. Moreover, first-order dynamics (with
the parameters varying with respect to the operating conditions) is well
representative of the filling-emptying dynamics.
The combination of the time-scale reduction and the volume dynamics

yields the total model showed in Figure 2.8.

Results

The nonlinear Dymola model with 37 states has been approximated with
a second-order linear parameter varying system combined with a look-up
table. Figure 2.11 shows the required fuel charge computed by this model
as a response to the illustrated change of input signals. The model is
able to approximately describe the variation of the requested fuel charge.
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Figure 2.11 Simulation results for the heuristically derived model

Nevertheless, the qualitative response is not so good. Indeed, without ob-
servers and correction mapping, a precise estimation of the aspirated flow
is not available. It means that the air-fuel ratio controller action will be
necessary and predominant as the requested fuel charge is not well pre-
dicted.
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Chapter 2. A model reduction case study

2.5 Methodology comparison and conclusions

Two low-order models have been derived, one using balanced truncation
and one using heuristic methods. The complexity of the two resulting
models is almost the same but the methodology is quite different.

Methodology comparison

In the case of the heuristic procedure the methodology is based on model-
ing and simplifications are made based on intuition and experience. When
an appropriate model complexity is chosen, parameters are determined by
physical properties or, as in this case, by tuning to fit simulation data.
The tuning could also been done to fit experimental data, that is not the
case for balanced truncation which needs a detailed model.
The resulting model from the balanced truncation based technique is

always a linear time-invariant system, the heuristic procedure does not
have this restriction and has therefore greater potential. On the other
hand, it can be very hard to tune the parameters, especially for larger
nonlinear systems. This time-consuming tuning can be compared to the
rather heavy computations needed to derive the linearizations required
for balanced truncation, which can be carried out by a computer without
human supervision.
The balanced truncation methodology is relatively systematic and does

not need physical knowledge of the model, neither is any parameter fitting
necessary. It also delivers a bound on the approximation error compared
to the linearized model.
In this example better performance was achieved with balanced trun-

cation, this is however more a question of how well you can fit the param-
eters in the heuristics based model. In cases when nonlinear dynamics
are essential the balanced truncation technique used here will not be suf-
ficient.
Similarities in choice of states can be seen in the two methods. For ex-

ample, both methods neglect the fast dynamics occurring in the cylinder
and other gas species than oxygen are ignored. The heuristic method chose
the volume pressures as states, which are (at constant temperature) pro-
portional to the amount of oxygen. For the model generated by balanced
truncation, the oxygen concentrations are present as components in the
two states.

Conclusions

Both methodologies have their advantages and disadvantages. If a de-
tailed model is available and linear behaviour is expected then the bal-
anced truncation technique could be preferred. This technique can require
a large computation time but needs very little manual attention. Using
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the heuristic method requires more experience and knowledge, it may
also involve extensive parameter fitting, but renders more insight to the
simplifications made.
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3

The average Gramian

approach to nonlinear

model reduction

In Chapter 2, model reduction of an automotive model was performed. De-
spite promising results, the final model is linear and can only be assumed
to be accurate within a certain operating range. This chapter is based
on [Nilsson and Rantzer, 2009a] and addresses the problem of state re-
duction of nonlinear continuous-time and discrete-time systems. A novel
method that relates to balanced truncation is presented and applied to
examples. The method is computationally efficient and is applicable to
relatively large systems.

3.1 Introduction

As mentioned in Chapter 2, model reduction is an attractive tool in many
contexts. Despite the increase in computing power a large model complex-
ity still is a potential problem. In particular, costs of embedded systems
hardware imply strong restrictions on memory and performance. A low
complexity is very beneficial when analysis is performed on the model,
such as reachability analysis or optimization.
Model reduction of linear systems is a mature research topic and well-

known methods featuring error bounds and preserved stability are avail-
able. However, in practice, one is often confronted with nonlinear systems
and model reduction for this model class is so far a relatively open research
problem. Here, a new method for simplification of nonlinear input-output
models is outlined. The method relates to balanced truncation and uses
a state transformation followed by truncation of some states. First the
continuous-time case is treated, then the discrete-time counterpart.
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3.2 The continuous-time case

3.2 The continuous-time case

Preliminaries

The method presented here is based on theory concerning linear time-
varying systems and the theory presented in Section 1.1 will be used as
a base. Consider the linear continuous-time time-varying system

ẋ(t) = A(t)x(t) + B(t)u(t)

y(t) = C(t)x(t) + D(t)u(t)
t ∈ [0, t f ], (3.1)

where x is the state vector, u the input signal and y the output signal.
Further, A, B, C and D are time-varying matrices of appropriate dimen-
sions. As in [Scherpen and Fujimoto, 2003] the notion of so called energy
functions is used. The controllability energy function is the amount of en-
ergy required in the input-signal to reach a specific state. In the linear
time-varying case this can be stated as the optimal control problem

Lc(x0, t) = min
u∈L2(0,t)
x(0)=0
x(t)=x0

1
2

∫ t

0
ppu(τ )pp2dτ . (3.2)

That is, Lc(x0, t) is the minimal amount of energy in u required to reach
a certain state x0 at time t, starting from the zero initial state.
Further, the observability energy function determines the energy in-

duced in the output, given a certain initial state and a zero input signal.
In this case it can be stated as

Lo(x0, t) =
1
2

∫ t f

t

ppy(τ )pp2dτ , x(t) = x0, u " 0 (3.3)

This measures the amount of energy an initial state x0 at time t induces
in the output signal over the time interval [t, t f ]. The concept of these
energy functions is illustrated in Figure 3.1. The usefulness of these func-
tions for model reduction is clear. If a large amount of input energy is
required to reach a certain state and if the same state yields a small out-
put energy, then this state is unimportant for the input-output behaviour
of the system.
The energy functions can be determined through the following Lya-

punov equations

Ṗ(t) = A(t)P(t) + P(t)AT(t) + B(t)BT (t)

Q̇(t) = −Q(t)A(t) − AT(t)Q(t) − CT (t)C(t)
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x

x0

t t f

u y

x(t) = x0

0
0

Figure 3.1 Visualization of the energy functions. The left part illustrates the
minimal input energy required to reach x0 at time t. In the right part the initial
state x0 yields the mentioned output energy while the control signal is zero.

with t ∈ [0, t f ] and the boundary conditions P(0) = 0 and Q(t f ) = 0.
The matrices P and Q are commonly called the controllability Gramian
and observability Gramian, respectively. Further, the solutions to (3.2)
and (3.3) can be written as the quadratic forms

Lc(x0, t) =
1
2
xT0 P

−1(t)x0, Lo(x0, t) =
1
2
xT0 Q(t)x0

The Gramians P and Q and their analogues for other system classes, are
central to many model reduction methods. They show how strongly states
are connected to the input and output and thereby supplies essential in-
formation of which state subspace is of most significance.

Method description

Let the system to be reduced have the form

ẋ = f (x,u)

y= �(x,u)
(3.4)
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3.2 The continuous-time case

where u ∈ Rl , x ∈ Rn and y ∈ Rm. Linearizations of the system dy-
namics will be used to find states that are redundant or that have small
importance for the input-output relationship. Local importance of states
would be revealed if one linearizes the system around a stationary point.
A combination of several linearization points could then indicate which
the important states are in the nonlinear system. However, some states
may only have an active role during transient behaviour, which will later
be commented in Example 3.4. Instead, linearization around a trajectory
will be used as a tool to find an approximate low-order model.
Recall the theory concerning linear time-varying systems presented

in the prior section. The time-varying Gramians give information about
state importance even in transient regions of state space. These Grami-
ans can be computed in the neighborhood of simulated trajectories using
linearization of the system dynamics. When there exists a linear coordi-
nate transformation that disconnects some states from the input-output
relationship, this will be revealed in those localized Gramians.
The choice of training trajectory, around which linearization is made, is

an important aspect of the reduction procedure. The corresponding train-
ing input should be chosen as a typical input signal, which is rich enough
to excite all dynamics important to the intended model use.
A possible scenario is that a state is nearly constant but non-zero. It

could then potentially be replaced by a constant value without loosing
much accuracy. However, the method yields a linear coordinate change
(not an affine one), which is followed by truncation of states. Therefore,
a preconditioning coordinate change should be applied to (3.4) that shifts
the states so that their mean value over the training trajectory is zero.
Also, if the model is equipped with multiple input and output signals they
should be scaled so that they posses the same amplitude. This scaling
also leaves room for the user to specify how important he/she finds the
accuracy of the different input and output signals.
Another property that should be considered is the fact that an ob-

servable but not controllable state can not be removed in general, which
is demonstrated in Example 3.3. When this is suspected a possible rem-
edy is to make these states controllable by introducing additional input
signals. The method would then become aware of the state component’s
importance even though these extra signals would never be used.
The following sections explain the main steps involved in the method.

Linearization along trajectory The first step is to choose the so
called training input signal. This is an important step of the method on
which the performance is highly dependent. As a general rule the input
should be chosen to obey physical restrictions on the signal and to ex-
cite all relevant dynamics. To find such a signal might be a challenging
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Chapter 3. The average Gramian approach to nonlinear model reduction

task. However, one could also see this as an advantage of the method. If
the reduced model is only going to be used for some restricted purposes,
the model could probably be reduced to a greater extent. Through the
choice of training input the user can show which behaviour is relevant
for the reduced system to reproduce. Hence, the signal should be chosen
corresponding to realistic usage of the model.
With the training input signal chosen, the system is simulated over

the time interval t = [0, t f ] . The system is then linearized along the state
trajectory the training input gave rise to. The result is a time-varying
linear system

∆ ẋ(t) = A(t)∆x(t) + B(t)∆u(t)

∆y(t) = C(t)∆x(t) + D(t)∆u(t)
t ∈ [0, t f ]

where ∆u, ∆x and ∆y denote deviations from the nominal trajectories.
Further, A, B, C and D are time-varying matrices defined by

A(t) =
� f

�x
(x(t),u(t)) B(t) =

� f

�u
(x(t),u(t))

C(t) =
��

�x
(x(t),u(t)) D(t) =

��

�u
(x(t),u(t))

Compute the time-varying Gramians Similar to balanced trunca-
tion, the method uses the notion of Gramians. As mentioned, for the time-
varying systems the controllability Gramian can be computed through
simulation of the differential equation

Ṗ(t) = A(t)P(t) + P(t)AT(t) + B(t)BT (t) (3.5)

with P(0) = 0. Similarly, the observability Gramian is determined by

Q̇(t) = −Q(t)A(t) − AT(t)Q(t) − CT(t)C(t) (3.6)

with the boundary condition Q(t f ) = 0. The controllability Gramian P(t)
reveals how large deviation in input signal is needed to perturb x(t). If
a certain state component is hard to perturb for all times, one can sus-
pect that this state is in general hard to affect in the nonlinear system.
Similarly, Q(t) shows how much the output signal is affected if x(t) is
perturbed. If the output signal is weakly influenced by a certain state
perturbation, independently of when the perturbation is made, it can be
suspected that this state-output connection is weak also for the nonlinear
system.
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3.2 The continuous-time case

Determine the average Gramians As mentioned, the Gramians P(t)
and Q(t) contain local information along the trajectory of how strongly
states are connected to the input and output. In order to remove the time
dependency and isolate the overall important states with a constant state
transformation, one could use the average Gramians

P̄ =
1
t f

∫ t f

0
P(τ )dτ Q̄ =

1
t f

∫ t f

0
Q(τ )dτ (3.7)

There are several alternative ways of going from the time-varying
Gramians P(t) and Q(t) to time-invariant representative matrices. This
particular choice is motivated by its simplicity and properties such as if a
state is connected to the input or output somewhere along the trajectory
it will be shown in the average Gramians. These time-invariant matrices
contain information of how strongly the states are connected to the input
and output on average over the training trajectory. For example, if a cer-
tain linear state combination is unobservable from the output in all points
of the trajectory, it will be revealed in Q̄. Further, a rank deficiency of the
matrix P̄Q̄ indicates that some states are obsolete and can be truncated
from the model without changing the input-output relationship.

Find balancing coordinate change This step is performed to extract
the relevant state subspace using the information gathered in the average
Gramians. The chosen approach treats P̄ and Q̄ as if they belonged to a
linear time-invariant system. By following the standard balanced trun-
cation procedure for linear time-invariant systems, a coordinate change
z = Tx can be found, see [Zhou and Doyle, 1998], such that the average
Gramians become equal and diagonal with decreasing diagonal elements.

T P̄TT = T−T Q̄T−1 = Σ̄ =







σ 1
. . .

σ n







The diagonal elements σ 1 ≥ σ 2 ≥ ... ≥ σ n correspond to the Hankel
singular values in balanced truncation of linear systems, where they show
how important states are for the input-output relationship. In contrast to
the linear case, no error bound is available but these values will be used
as an indication to which model order to choose for the reduced system.

Truncate states Truncating states corresponding to relatively small
singular values and keeping n̂ states is equivalent to removing rows and
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columns in T and T−1, respectively. Tl is the top n̂ rows of T and Tr is
the n̂ leftmost columns of T−1.

T ∈ Rn$n [ Tl ∈ R
n̂$n

T−1 ∈ Rn$n [ Tr ∈ R
n$n̂

(3.8)

Applying the truncated coordinate change to the original system formu-
lation in (3.4) gives rise to the reduced order system

˙̂z = Tl f (Tr ẑ,u)

ŷ= �(Tr ẑ,u)
(3.9)

where ẑ ∈ Rn̂. The method is summarized in Algorithm 3.1.

Method properties

Intuitively, the proposed method should perform well when the time-
varying Gramians do not change too much over the trajectory. The average
Gramians are then better representatives for the local properties.
In this thesis a single training input signal is used but one could con-

sider basing the reduction on several trajectories. Distinct average Grami-
ans P̄i and Q̄i could be determined for each input independently. A pair of
total average Gramians could then be obtained through a weighted sum
where the weights depend on how important each input scenario is.

P̄ =
∑

i

wi P̄i Q̄ =
∑

i

wiQ̄i

The balancing coordinate change is then determined based on these total
average Gramians.
Depending on the model, deriving the reduced system through sym-

bolic substitution in (3.9) may be an unattractive option. Commonly, the
original set of equations is sparse, i.e. all state equations do not involve
all states. The sparsity is lost with a dense coordinate change and trun-
cation of states. Therefore, the total computation time is not necessarily
reduced for the right-hand-side functions, which can be seen e.g. in [Liu
and Wagner, 2002]. One possibility to redeem this is to extend the pre-
sented method with a piece-wise approximation of f and �, as in [Vasilyev
et al., 2006]. Additionally, for continuous-time systems not only evaluation
time of the right-hand-side functions are of importance. Integration time
does also depend on the choice of solver, numerical stiffness etc. These
properties have not been considered in this work.
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3.2 The continuous-time case

Algorithm 3.1: The average Gramian method, continuous time
1. Choose training input and simulate the system

ẋ = f (x,u)

y= �(x,u)

over [0, t f ].

2. Linearize around the training trajectory to obtain A(t), B(t), C(t).

A(t) =
� f

�x
(x(t),u(t)), B(t) =

� f

�u
(x(t),u(t)), C(t) =

��

�x
(x(t),u(t))

3. Calculate time-varying Gramians

Ṗ(t) = A(t)P(t) + P(t)AT(t) + B(t)BT (t) P(0) = 0

Q̇(t) = −Q(t)A(t) − AT(t)Q(t) − CT(t)C(t) Q(t f ) = 0

4. Determine the average Gramians

P̄ =
1
t f

∫ t f

0
P(τ )dτ Q̄ =

1
t f

∫ t f

0
Q(τ )dτ

5. Apply the standard balanced truncation method on P̄ and Q̄, which
yields a balancing coordinate change z = Tx and the singular
values σ 1 ≥ σ 2 ≥ ... ≥ σ n. See [Zhou and Doyle, 1998].

6. Determine the reduced model order n̂ from the relative size of the
singular values and truncate the coordinate change. Tl is the top n̂
rows of T and Tr is the n̂ leftmost columns of T−1.

T ∈ Rn$n [ Tl ∈ R
n̂$n

T−1 ∈ Rn$n [ Tr ∈ R
n$n̂

7. Apply the truncated coordinate change to the original system

˙̂z = Tl f (Tr ẑ,u)

ŷ= �(Tr ẑ,u)
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Comparison with other methods The proposed method, the empiri-
cal Gramian approach [Lall et al., 2002] , the proper orthogonal decom-
position method [Lumley, 1967] and the trajectory piece-wise linear ap-
proach [Vasilyev et al., 2006] all use a linear coordinate change combined
with truncation of states. The difference is in how the coordinate change
is found. What makes this method different from others is mainly the use
of linearization along trajectories and the average Gramians.
In the trajectory piece-wise linear approach, the linear coordinate

change is typically determined from one linearization around the initial
state. A more elaborate procedure is suggested in [Vasilyev et al., 2003]
and [Rewieński, 2003], where several local coordinate changes are inde-
pendently determined from linearizations distributed over a trajectory. A
single global coordinate change is then obtained through an aggregation
and biorthonormalization procedure. However, using this method, a state
that is locally controllable in some regions and observable in others but
never both simultaneously will be neglected. In the proposed method, the
time-varying Gramians and their averaged value will show the importance
of such states. On the other hand, this property comes with the numerical
expense of solving (3.5) and (3.6).
The empirical Gramian approach and the proper orthogonal decom-

position mehthod use simulation data to produce the analogues of the
average Gramians. This is in contrast to the proposed method, which uses
linearizations.
Parallels can also be seen with the nonlinear balancing performed

in [Scherpen and Fujimoto, 2003], such as the use of energy functions.
The restriction to a linear coordinate change is of course a coarse approx-
imation, which, on the other hand, greatly facilitates computation.
For further illustration, the method is demonstrated in the following

examples.

Examples

EXAMPLE 3.1—EXACT REDUCTION
Just as a demonstration, the method will here be applied to the following
toy example. The nonlinear system

ẋ1 = −3x31 + x
2
1x2 + 2x1x

2
2 − x

3
2

ẋ2 = 2x31 − 10x
2
1x2 + 10x1x

2
2 − 3x

3
2 − u

y = 2x1 − x2

(3.10)

has exactly the same input-output relationship as the system

ẏ = −y3 + u. (3.11)
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It is a challenge for any model-reduction procedure to detect that a re-
duction like this is possible. A general methodology for such problems
has been presented, but first a simple proof of the equivalence in this
particular case is given.
Note that the system can be rewritten as

ẋ1 = −(2x1 − x2)2x1 + (x1 − x2)3

ẋ2 = −(2x1 − x2)2x2 + 2(x1 − x2)3 − u

y= 2x1 − x2

With the new variables z1 = 2x1 − x2, z2 = x2 − x1, this means that

ż1 = −z
3
1 + u

ż2 = −z
2
1z2 − z

3
2 − u

y = z1

In particular, the state z2 does not appear in the output and does not
affect z1. Hence, it can be truncated and (3.11) holds.
In the example, a linear coordinate transformation followed by state

truncation gave a simplified model without approximation error. The goal
of the described method is to provide a systematic way to find such trans-
formations whenever they exist and otherwise to find good approxima-
tions.
Now the method will be applied to the system description in (3.10).

Simulating the system along various trajectories and computing the ob-
servability Gramian according to the differential equation

Q̇(t) = −Q(t)A(t) − AT(t)Q(t) − CT (t)C(t)

with Q(t f ) = 0 one observes that the rank of Q(t) never exceeds one for
any trajectory. In this case, Q̄ and P̄Q̄ are singular and one state can
be truncated without affecting the input-output relationship. For demon-
stration, the nonlinear system was simulated with a certain input signal.
Following the method the average Gramians were determined to

P̄ =

[

0.0018 −0.0145

−0.0145 0.2936

]

Q̄ =

[

1.3058 −0.6529

−0.6529 0.3264

]

and the matrix Q̄ is, as expected, singular1 . The corresponding coordinate
change z = Tx is then determined according to the standard balanced

1using a larger numerical precision of P̄ and Q̄ than printed here
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truncation method. Further, the Hankel singular values become in this
case σ 1 = 0.3422 and σ 2 is very close to zero (not exactly, due to nu-
merical reasons). In accordance with the size of σ 2, z2 is truncated and
substitution according to (3.9) yields the nonlinear system

ż1 = −1.23z31 − 0.901u

y = −1.11z1

which is equivalent to ẏ = −y3 + u.

EXAMPLE 3.2—A SEVEN-STATE SYSTEM
The procedure can be applied to larger examples and also when loss-less
truncation is not possible. Consider the seven-state system

ẋ1 = −x
3
1 + u

ẋ2 = −x
3
2 − x

2
1x2 + 3x1x

2
2 − u

ẋ3 = −x
3
3 + x5 + u

ẋ4 = −x
3
4 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x
3
5 + u

ẋ6 = x5 − x
3
6 − x

3
5 + 2u

ẋ7 = −2x36 + 2x5 − x7 − x
3
5 + 4u

y= x1 − x
2
2 + x3 + x4x3 + x5 − 2x6 + 2x7

Following the described procedure, the system is linearized along a simu-
lated training trajectory. As mentioned, the training input signal should
be chosen to reflect intended model use. However, this system lacks phys-
ical interpretation and just as an example the input signal is chosen as a
10Hz square-wave signal with amplitude one. Again, following the proce-
dure, the Gramians are calculated according to (3.5) and (3.6). Further,
the balancing coordinate change T is computed and the Hankel singular
values are shown in Figure 3.2. The relative size of these values indicates
the importance of the new states for the input-output relationship.
If, for example, the nonlinear system is truncated to one state the

reduced system becomes

ż1 = −0.492z1 − 0.0879z31 + 5.08u

ỹ = 1.34z1 + 0.0792z21

A comparison achieved by simulating the original and reduced system
with the same input signal u(t) can be seen in Figure 3.3. The input
signal is different from the one used for model reduction and has been
chosen to be the sum of a sinusoidal and a square-wave signal.
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Figure 3.2 Hankel singular values for the system in Example 3.2
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Figure 3.3 Validation results for the system in Example 3.2
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EXAMPLE 3.3—TIME DEPENDENCY
Consider the time-varying nonlinear system

ẋ = f (x,u, t)

y = �(x,u)

In order to make the system class match the one of (3.4) one can extend
the state vector. Introducing xe = [xT t]T and ṫ = 1, the system can be
written in the form

ẋe = fe(xe,u)

y= �e(xe,u)

Applying the average Gramian method on this system will show that time
is not controllable and can therefore be removed. However, the time de-
pendency could be strong and removing this state component might not
be advisable.
This example demonstrates a case when the method produces unde-

sirable results. As mentioned, if uncontrollable states are suspected to be
important, additional input signals can be introduced, making them con-
trollable. In this case one could introduce ṫ = 1 + βut and letting ut = 0
both in the training input and in the reduced model. The gain β is chosen
large enough to ensure that the additional input signal is not negligible
compared to the others, from a controllability point of view.

EXAMPLE 3.4—A MASS-SPRING-DAMPER SYSTEM
In this example, the method is applied to a two-dimensional multiple-input
multiple-output mass-spring-damper system. Figure 3.4 shows six masses
connected with springs and dampers. The input signal is external force,
in horizontal and vertical directions, on the leftmost mass. The output
signal is the position coordinates of the top middle mass.
A thin line in the figure represents a linear spring-damper with an un-

forced length l0 according to the figure. The masses, except the two right-
most ones, are also connected to the ground with linear spring-dampers.
The motion equations for each mass consist of four differential equa-

tions

ṗx = vx ṗy = vy

v̇x =
1
M

∑

i

Fx,i v̇y =
1
M

∑

i

Fy,i

where px and py are the position coordinates with the corresponding ve-
locities vx and vy. The mass is denoted M and the forces Fx,i and Fy,i are

56



3.2 The continuous-time case

Fx

Fy

yy

yx

Figure 3.4 Mass-spring-damper system in Example 3.4. Forces on the left mass
as input signals and position of the marked mass as output.

the forces in horizontal and vertical directions inflicted by spring-damper
i

Fx,i =

(

K (li − l0i) + D
d

dt
(li)

)

cosθ i

Fy,i =

(

K (li − l0i) + D
d

dt
(li)

)

sinθ i

Here li is the length of spring-damper i, D the damping coefficient and K
the spring coefficient. In this example all coefficients have been set to one,
M = K = D = 1. Further, the angle θ i is the angle of the spring-damper.
Here, only small angle perturbations are considered and θ i is therefore
assumed to be constant.
The thick line is a nonlinear damper that gives a force proportional to

the deformation rate to the power of three,

Fx,i = D

(

d

dt
(li)

)3

cosθ i Fy,i = D

(

d

dt
(li)

)3

sinθ i

Linearization of the model around any stationary point would neglect
this nonlinear damper, it only affects the linearization during transient
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Figure 3.5 The 10 largest Hankel singular values for the mechanical system in
Example 3.4.

behaviour. In the case of the left-most mass, the external forces also con-
tribute to the equations.
The model has four states per mass, yielding a total of 24 states, and

can be written on the form

ẋ = f (x,u)

y= h(x,u)

In this example the described method is compared to the Proper Orthog-
onal Decomposition method as described in Section 1.2.
Reduction to 8 states is performed with both methods using the same

training trajectory. The resulting singular values, corresponding to the
average Gramians, are shown in Figure 3.5. A simulation result can be
seen in Figure 3.6 where the input is different from the training input. A
qualitatively better result is obtained with the described method, which
partly is due to the fact that the Proper Orthogonal Decomposition method
does not take the output function �(x,u) into consideration. It should also
be mentioned that the POD method performed the reduction with much
less numerical effort.
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Figure 3.6 Simulation results for Example 3.4. Method comparison for model
reduction from 24 to 8 states.

EXAMPLE 3.5—HEAT EXCHANGE REACTOR
Here a model of a novel heat exchange reactor is considered, see Fig-
ure 3.7. It is a tubular reactor and a simplified description is that flows
of reactants A and B are injected in one end, inside the reactor they form
the product C and heat.
Modeling heat, flow and chemical reactions of the reactor gives rise

to nonlinear partial differential equations. Spatial discretization of these
equations yields a set of ordinary differential equations, as in (3.4), where
states correspond to temperatures and concentrations at different loca-
tions in the reactor. The model to be treated here is such a discretization
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Figure 3.7 A lab-scale version of the open plate reactor treated in Example 3.5.
Courtesy of Alfa Laval AB.

yielding a total of 52 states with flow rate of Reactant B as input sig-
nal and the outlet temperature as output signal. Other variables, such as
reactant A or cooling, are held constant. The model is defined in the Mod-
elica language, see [Fritzson, 2004], and managed with the modeling and
simulation tool Dymola, see [Dynasim AB, 2006]. For more information
about the reactor and the model see [Haugwitz et al., 2007] and [Haug-
witz, 2007].
It would be possible to do symbolic substitution when introducing the

coordinate change in the Modelica based model. However, in this case the
piece-wise linear approximation proposed in [Vasilyev et al., 2006] will be
used to approximate the right-hand-side functions. The idea is to approx-
imate the functions with a weighted sum of linearizations. The algorithm
starts with using a linearization at the start time as an approximant of
the functions f and �. Following the training trajectory the algorithm then
adds a linearization to the collection when the approximation error su-
persedes a certain threshold. For more information about this algorithm
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Figure 3.8 Reactor start-up scenario used as training trajectory in Example 3.5.

see Algorithm 1.1 in Section 1.2 or [Rewieński, 2003].
The top plot in Figure 3.8 shows the training input signal. It is a reactor

start-up scenario where the flow of reactant B is increased from zero.
Further, the second plot shows the implied increase in outlet temperature.
The bottom plot shows how the linearizations are aggregated along the
trajectory. In total the approximant consists of 15 linearizations.
Figure 3.9 shows the largest 30 of the 52 singular values. As can be

seen, it is not clear what an appropriate reduced order could be. Through
trial and error a reduced order of 8 states is found sufficient.
The reactant input shown in the top plot in Figure 3.10 is used as a

validation test. The bottom plot shows the outlet temperature provided by
the original and reduced model.
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Figure 3.9 The largest 30 of the 52 singular values in Example 3.5.
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Figure 3.10 Validation results for Example 3.5. The model is reduced from 52 to
8 states.
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3.2 The continuous-time case

Figure 3.11 Visualization of a turning maneuver with the VehicleDynamics Li-
brary [Modelon, 2007] used in Example 3.6.

EXAMPLE 3.6—A VEHICLE DYNAMICS MODEL
In this example a model from the VehicleDynamics Library [Modelon,
2007] will be treated. Also in this case the model is described in the
Modelica language. The model is fairly detailed and contains 41 states
distributed over the car body, the suspension and the wheels. Figure 3.11
shows a 3D visualisation of the car together with the tire contact forced
during cornering. The chosen input-output pair is the steer wheel angle
as input signal and the car yaw rate as output signal.
As a training trajectory a double lane change maneuver shown in Fig-

ure 3.12 is used. As in the previous example, the right-hand-side functions
are difficult to access and therefore the piece-wise linear approximation
is applied. The total number of linearizations for this training trajectory
is 33.
Following the procedure the singular values were calculated and are

shown in Figure 3.13. Here the reduced model order is chosen to 8, i.e., a
reduction from 41 to 8 states.
The validation scenario is shown in Figure 3.14 where the reduced

model shows good performance except for the unmatched initial condition.
A zoom-in of the same validation test can be seen in Figure 3.15.
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Figure 3.12 Cornering maneuver used as training trajectory in Example 3.6. In
total the piece-wise linear approximation consists of 33 linearizations.
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Figure 3.13 The 15 largest singular values for Example 3.6.
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Figure 3.14 Validation results for Example 3.6. The model is reduced from 41 to
8 states.
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Figure 3.15 Zoom-in on the validation results in Figure 3.14
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3.3 The discrete-time case

The discrete-time version of the method has many things in common with
continuous-time case. The largest difference is that simulation time is di-
rectly proportional to the evaluation time of the right-hand-side functions,
in contrast to the continuous-time case where numerical stiffness and in-
tegration step size also are important. Additionally, method steps such
as linearization and computation of Gramians are numerically easier to
handle.

Preliminaries

Also in the discrete-time case the method is based on theory concerning
linear time-varying systems and the theory in Section 1.1 is revisited. The
counterpart to (3.1) is the linear discrete-time time-varying system

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk
k ∈ [1,N],

where xk is the state vector, uk the input signal and yk the output sig-
nal at time k. Further, Ak, Bk, Ck and Dk are time varying matrices of
appropriate dimensions. Here the sub-index denotes time.
Again the notion of energy functions will be used. Here the controlla-

bility energy function becomes the optimal control problem

Lc(x∗, t) = min
u∈L2(0,t)
x1=0
xt=x∗

1
2

t
∑

k=1

ppukpp
2. (3.12)

That is, Lc(x∗, t) is the minimal amount of energy in u required to reach
a certain state x∗ at time t, starting from the zero initial state.
Similarly, the observability energy function can in this case be stated

as

Lo(x
∗, t) =

1
2

N
∑

k=t

ppykpp
2, xt = x

∗, u " 0. (3.13)

That is, the amount of energy an initial state x∗ at time t induces in the
output signal over the time interval [t,N]. The concept of these energy
functions is illustrated in Figure 3.16.
Similar to the continuous case, the energy functions can be determined

through the quadratic forms

Lc(x∗, t) =
1
2
x∗TP−1t x

∗ Lo(x∗, t) =
1
2
x∗TQtx

∗.
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u y

xt = x∗
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0

Figure 3.16 Visualization of the energy functions. The left part illustrates the
minimal input energy required to reach x∗ at time t. In the right part the control
signal is zero and the initial state x∗ yields the mentioned output energy.

where the controllability Gramian Pk and observability Gramian Qk are
given by the Lyapunov equations

Pk+1 = AkPkA
T
k + BkB

T
k , k ∈ [1,N]

Qk = A
T
kQk+1Ak + C

T
k Ck, k ∈ [1,N]

with the boundary conditions P1 = 0 and QN+1 = 0.

Method description

The discrete-time analogue of the continuous-time system class is the
general nonlinear system

xk+1 = f (xk,uk)

yk = �(xk,uk)
(3.14)

where uk ∈ Rl , xk ∈ Rn and yk ∈ Rm.
The following sections briefly explain the main steps involved in the

method. Due to the strong similarity to the continuous case, the consid-
erations in Section 3.2 also apply here.
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Linearization along trajectory After choosing a training input sig-
nal, the system is linearized along the state trajectory the training input
gave rise to. The result is the time-varying linear system

∆xk+1 = Ak∆xk + Bk∆uk

∆yk = Ck∆xk + Dk∆uk
k ∈ [1,N]

where ∆u, ∆x and ∆y denote deviations from the nominal trajectories.
Further, Ak, Bk, Ck and Dk are time-varying matrices of appropriate size
that vary with k.

Compute the time-varying Gramians Similar to balanced truncation
the method uses the notion of Gramians. As mentioned, for time-varying
systems the controllability Gramian can be computed according to the
difference equation

Pk+1 = AkPkA
T
k + BkB

T
k , k ∈ [1,N] (3.15)

with P1 = 0. Similarly, the observability Gramian is determined by

Qk = A
T
kQk+1Ak + C

T
k Ck, k ∈ [1,N] (3.16)

with the boundary condition QN+1 = 0.

Determine the average Gramians The average Gramians are as in
the continuous case defined as the average value over the time interval

P̄ =
1
N

N
∑

k=1

Pk Q̄ =
1
N

N
∑

k=1

Qk. (3.17)

Find balancing coordinate change Again the average Gramians P̄
and Q̄ are treated as if they belonged to a linear time-invariant system. By
following the standard balanced truncation procedure for linear systems, a
coordinate change is found such that the average Gramians become equal
and diagonal with decreasing diagonal elements.

T P̄TT = T−T Q̄T−1 = Σ̄ =







σ 1
. . .

σ n






(3.18)

The diagonal elements σ 1 ≥ σ 2 ≥ ... ≥ σ n corresponds to the Hankel
singular values in balanced truncation of linear systems, where they show
how important states are for the input-output relationship. Also in this
case no error bound is available but these values will be used to determine
which model order to choose for the reduced system.
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3.3 The discrete-time case

Truncate states Truncation of states is performed in the same way
as for the continuous case. Keeping n̂ states corresponding to relatively
large singular values is equivalent to removing rows and columns in T
and T−1, respectively.

T ∈ Rn$n [ Tl ∈ R
n̂$n

T−1 ∈ Rn$n [ Tr ∈ R
n$n̂

(3.19)

Applying the truncated coordinate change to the original system formu-
lation in (3.14) gives rise to the reduced order system

ẑk+1 = Tl f (Tr ẑk,uk)

yk = �(Tr ẑk,uk)
(3.20)

where ẑ ∈ Rn̂. How to derive analytical expressions for the reduced sys-
tem in (3.20) is highly dependent on the format the original model is
implemented in. This matter will be further discussed in Example 3.7.
The method is summarized in Algorithm 3.2.

Examples

The method will here be used on a real-world automotive application to
demonstrate its applicability. The automotive industry is experiencing
tightening emission legislations together with high demands on perfor-
mance and driveability. As a counteraction, controller software tends to
become more and more complex. However, intricate controller software has
several downsides. The large number of controller parameters yields an
exhaustive calibration task, often performed through costly experiments.
In addition, to guarantee reliability, validation and verification analysis
is performed on the controller in combination with the engine. This task
would also greatly benefit from a less complex controller structure.

EXAMPLE 3.7—AUTOMOTIVE CONTROLLER SOFTWARE
Here the method is applied to an engine controller used in current produc-
tion cars. The result is a nonlinear piece-wise affine system with improved
simulation speed.

Model description The model in this example is closely related to
the simulation model treated in Chapter 2. It consists of software used
for online air-path dynamics estimation in current production cars. In
particular, the model estimates the air charge in a spark ignition engine,
i.e., the amount of air the cylinder is loaded with when the inlet valve
closes. The amount of fuel to inject is then determined from this value
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Algorithm 3.2: The average Gramian method, discrete time
1. Choose training input and simulate the system

xk+1 = f (xk,uk)

yk = �(xk,uk)

over k ∈ [1,N].

2. Linearize around the training trajectory to obtain Ak, Bk, Ck.

Ak =
� f

�x
(xk,uk), Bk =

� f

�u
(xk,uk), Ck =

��

�x
(xk,uk)

3. Calculate time-varying Gramians

Pk+1 = AkPkA
T
k + BkB

T
k , P1 = 0

Qk = A
T
kQk+1Ak + C

T
k Ck, QN+1 = 0

4. Determine the average Gramians

P̄ =
1
N

N
∑

k=1

Pk Q̄ =
1
N

N
∑

k=1

Qk

5. Apply the standard balanced truncation method on P̄ and Q̄, which
yields a balancing coordinate change z = Tx and the singular
values σ 1 ≥ σ 2 ≥ ... ≥ σ n. See [Zhou and Doyle, 1998].

6. Determine the reduced model order n̂ from the relative size of the
singular values and truncate the coordinate change. Tl is the top n̂
rows of T and Tr is the n̂ leftmost columns of T−1.

T ∈ Rn$n [ Tl ∈ R
n̂$n

T−1 ∈ Rn$n [ Tr ∈ R
n$n̂

7. Apply the truncated coordinate change to the original system

ẑk+1 = Tl f (Tr ẑk,uk)

yk = �(Tr ẑk,uk)
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3.3 The discrete-time case

Figure 3.17 Engine Control Unit with the embedded controller software.

in order to achieve a certain air-fuel ratio. The exhaust treatment system
requires a precise air-fuel ratio, therefore high fidelity of the estimation is
crucial since a mismatch would yield suboptimal performance. For further
information see [Heywood, 1988].
The model is implemented in MATLAB RF/Simulink RF and can be com-

piled through Real-Time Workshop RF . The resulting binary runs in real-
time in the Engine Control Unit(ECU), shown in Figure 3.17.
The model is devised for real-time purposes with limited hardware

resources. For example, only discrete-time components are present and
fixed-point arithmetic is used. The most common arrangement, used in
automotive industry, to achieve high performance for a wide area of op-
erating conditions is to divide the problem into regions and perform local
tuning of variables. The model therefore contains a large amount of logical
branches and look-up tables.
The model is a so called mean-value model, see [Hendricks et al., 1996],

but details concerning model implementation are proprietary information
and are therefore not disclosed.
The model estimates several variables using various measurements. As

a proof of concept, only one input-output pair is treated here. The chosen
input signal is the throttle angle measured in degrees and the output
signal is the air charge given in percentage, as illustrated in Figure 3.18.
Model reduction of the Simulink control algorithm implementation

would ideally yield a binary file that runs faster and uses less memory.
Hence, smaller hardware resources would be required yielding a lower con-
troller hardware cost. In addition, formal validation and verification of the
controller in combination with the engine would be facilitated. Moreover,
the original model structure is hard to overview and it might be easier to
understand the reduced model behaviour and visualize its components.
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Throttle angle(deg)
Model

Air charge(%)

Figure 3.18 Input-output pair chosen for model reduction.

Model reduction applied to the controller model With some slight
modification the controller software fits within the model class of (3.14).
The state vector x represents the ECU memory used to store data between
samples. The controller turned out to contain six states. The input signal u
is the throttle angle and the output y is the air charge. Simulink provides
tools for extraction of simulation data and linearizations. With this data
available the model can be reduced following the procedure described in
Section 3.3.
As stated, the first step is to choose a training trajectory. Here, a

simple ramp-like throttle opening profile was chosen, see Figure 3.19,
starting from closed throttle and then linearly increasing until fully open.
Of course, different choices are possible depending of the purpose of the
reduced model. Notice the nonlinear effect in Figure 3.19, the output has
almost settled after half a second while the input continue to increase
half a second more. This is because the flow over the throttle is much
more sensitive to an increase in throttle angle when it is almost closed,
see e.g. [Heywood, 1988].
With the training input signal chosen, the model can be linearized

around the corresponding state-space trajectory. Doing so gives rise to
the linearizations (Ak,Bk,Ck,Dk), for this model the Dk matrix is zero
for all k. Following the procedure, the time-varying Gramians Pk and Qk
are computed through (3.15) and (3.16). The average Gramians P̄ and
Q̄ are then obtained by (3.17). The singular values in (3.18) are shown
in Figure 3.20, three of the six values turned out to be exactly zero and
are not plotted. The relative size of these values indicates the importance
of the states. Here, there is a factor 104 difference between the largest
and second largest value. In model reduction of linear systems, one could
easily reduce to one state. Despite the absence of a formal error bound this
will be done for the nonlinear system as well. Calculating the balancing
coordinate change and truncating to one state according to (3.19) yield
the two matrices Tl and Tr .
The next and final step of the method consists of applying the coordi-

nate change to the original nonlinear system. In this case, the functions
f and � are not explicitly available but embedded in the Simulink pro-
gram. Hence, symbolic manipulation of the functions is not a straight
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Figure 3.19 The ramp-like training input signal (throttle angle) and the corre-
sponding output signal (air charge).
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Figure 3.20 The three largest Hankel singular values, notice the 104 drop between
the first and second value.
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forward process. One could consider using the piece-wise affine approach
as in Example 3.5. However, using linearizations as basis functions is not
tractable in this case. Due to the logical branches and non-smooth look-
up tables the function f becomes “noisy”. Therefore, a local linearization
provides inadequate information about the neighbouring state space and
an unreasonably large number of linearizations would be required.
By reducing to one state, the right-hand-side function in (3.20)

ẑk+1 = f̂ (ẑk,uk) = Tl f (Tr ẑk,uk)

becomes a two-dimensional map f̂ : R2 → R. An alternative approach,
used below, is to let the map f̂ be generated from simulation data. State-
trajectories induced by some input-signal could be projected with Tr and
provide values for ẑk. Value triplets of ẑk+1, ẑk and uk supply point-wise
information of the map. A drawback is that the input-signal must be rich
enough to make sufficient state-space coverage in (ẑk,uk) and the choice
can be nontrivial. The difficulties relate to the choice of training input
in the first step of the model reduction procedure and although the pur-
pose is different, the same input-signal could be used. A chirp signal with
maximal amplitude, shown in Figure 3.21, is chosen as the exciting input-
signal.
For simulation of the reduced model, point-wise information of the map

is not sufficient, an analytical expression of f̂ is needed. Through local
averaging followed by linear interpolation and extrapolation, a piece-wise
affine surface is generated to approximate the data cloud, see Figure 3.22.
To clarify the structure of the map the incremental form f̂ (ẑ,u)− ẑ instead
of f̂ (ẑ,u) is used. As the map is piece-wise affine, so is the reduced system.
One can notice the rough areas in the upper part of the map, their origin
is most probably the non-smooth look-up tables present in the model.
In general the same procedure would be applied to the output function

�. Here, the output function �(Tr ẑk,uk) = �̂(ẑ) turned out to be nearly
affine and a least-squares fit showed to be an adequate approximation.
With analytical expressions for f̂ and �̂ at hand, simulation of the

reduced system is possible. Figure 3.23 shows a validation result where
the original and reduced model are simulated with a ramp-like opening
and closing of the throttle. The initial value of ẑ is arbitrarily set, hence
the initial mismatch between the two output signals. In contrast, after 0.5
seconds the worst case error is less than 1.2% air charge.
In Figure 3.24 the validation trajectory together with the data points

used for map generation are shown. The smaller dots are from the chirp-
signal simulation in Figure 3.21 and the connected dots from the valida-
tion simulation in Figure 3.23. As can be seen, the validation trajectory is
covered by the look-up table. For a different validation scenario this might
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Figure 3.21 The chirp input signal used for map generation and the corresponding
output signal.
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side function f̂ (ẑ,u), here visualized in incremental form.
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Figure 3.23 Validation result of the reduced model. The lower plot shows the
output signal of the original model together with the reduced one. The initial output
error is due to an unmatched initial condition.

not necessarily be the case. However, if necessary, a richer input signal
could be designed to cover a larger area and a more general map could be
generated. Due to the low dimensionality of this case, the coverage could
be graphically examined. However, in a more general setting with higher
dimensionality an automatized verification method would be required.
A compact Simulink RF implementation of the reduced model is depicted

in Figure 3.25. The model runs more than 100 times faster than the full
original model. However, to carry out a fair comparison, the reduced model
should also be equipped with the same amount of input and output signals.

3.4 Summary

A method for simplification of nonlinear input-output models has been
outlined. The given procedure is focused on reducing the number of states
using information obtained by linearization around trajectories. The use of
trajectories seems to be an attractive approach. A model reduction method
would greatly benefit of information about intended model usage. Imply-
ing that the reduced model should perform well for all possible input sig-
nals does not leave much room reduction. Furthermore, the assumptions
made when constructing a physical model are probably only valid within
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Figure 3.24 The validation trajectory(the connected dots) is covered by the span
of data points(the smaller dots) used for the look-up table f̂ (ẑk,uk).
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Figure 3.25 Simulink implementation of the reduced model.

certain intervals in state space and signals. Training trajectories is one
way of introducing this information to the reduction method.
The number of states is only one factor contributing to simulation time

and even though the method not necessarily provides a speed-up in the
general case, simulation time has been reduced in the presented examples.
No proofs concerning preserved stability or error bounds are given.

However, the methodology is closely tied to existing theory on error bounds
and promising results are shown in form of examples and simulation data.
The method only requires linearizations, which makes systems that

are hybrid or that are not given on a closed form approachable, see Ex-
ample 3.7.
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In the discrete-time example the software of an engine controller used
in current production cars was reduced. The number of states were re-
duced from six to one and the resulting nonlinear piece-wise affine sys-
tem showed a 100-fold improved simulation speed, with little loss of accu-
racy. Despite the model complexity in terms of look-up tables and logical
switches the method demonstrated its applicability. The method also pro-
vided information for analysis of overall controller behaviour, such as the
software visualisation in Figure 3.22.
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4

Modeling the exhaust gas

oxygen sensor

In this chapter an exhaust gas oxygen sensor model is developed, the
chapter is based on [Nilsson, 2006].

4.1 Introduction

Lambda sensors, or exhaust gas oxygen (EGO) sensors, are core compo-
nents in the emission control in modern spark ignition combustion en-
gines. The sensor, shown in Figure 4.1, is typically placed in the exhaust
gas manifold between the engine and the catalyst. The performance of
catalysts is highly dependent on exhaust gas composition and, e.g., the
air-fuel ratio needs to be precisely controlled, as mentioned in Chapter 2.
A common air-fuel ratio control setup is illustrated in Figure 4.2.
There exists many different kinds of oxygen sensors but the most com-

monly used is the zirconia switch-type sensor, this chapter is focused on
this type. The sensor generates a voltage of roughly one Volt if the air-fuel
ratio is rich and zero Volt otherwise, see Figure 4.3. The lambda value is
another name for air-fuel ratio and in this chapter, a normalized lambda

Figure 4.1 An exhaust gas oxygen sensor
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value is considered, where the value one implies stoichiometric conditions.
To meet future emission legislations, it is required to refine and ex-

tend current lambda control strategies. Good understanding of catalyst
operation is essential to improve emission performance. It is necessary
to understand the interaction of the catalyst and the lambda control sys-
tem, including the lambda sensors, to optimize the exhaust gas treatment.
Physically based simulation models are then vital tools to analyze and
evaluate new control strategies. An important part in this task is the sen-
sor models, and their ability to correctly reproduce effects of significance
to catalyst operation. Of particular interest is the shift in voltage charac-
teristics with respect to lambda value that is observed when the exhaust
gas is diluted with hydrogen or carbon monoxide.
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4.2 Modeling the exhaust gas oxygen sensor

A model with moderate complexity, which captures the lambda charac-
teristics and its dependency of hydrogen and carbon monoxide is sought
for. A model of reasonable complexity level is developed in [Fleming, 1977]
but with the drawback of not being able to model hydrogen dependency.
The model presented in [Auckenthaler et al., 2002] is a very detailed and
complex model based on state-of-the-art methods in literature. It models
the hydrogen dependency along with many other effects. Unfortunately it
suffers from numerical ill-conditioning. Due to the great time-scale differ-
ence between the electrode dynamics and the diffusion, the model becomes
very stiff and is therefore difficult to use, e.g. in simulation. Possible model
extensions could be

• Extend Fleming’s model with hydrogen dependency.

• Derive an equilibrium approximation to Auckenthaler’s model in or-
der to avoid the numerical stiffness problem.

Both alternatives have been investigated, but more progress was obtained
by following a model description found in [Barrick et al., 1996]. This model
is compact, considers hydrogen dependency and is static, so no numerical
stiffness problem arises. Whether or not the dynamics of the sensor can
be neglected depends on the control scheme and sensor placement. Here
it is assumed that the dynamics can be disregarded.

The physics of the sensor

The sensor mainly consists of four manifold layers between the exhaust
and reference gas (outside air), as can be seen in the cross section in
Figure 4.4.
A close-up of the four layers is shown in Figure 4.5. As the figure

indicates, the model by Barrick takes into account the species H2, CO,
O2, CO2 and H2O, other species are assumed not to affect the sensor
voltage.
Firstly, the exhaust gases have to diffuse through the porous spinel

layer to affect the sensor voltage. Different species have different mass,
and therefore different diffusion velocities, so the concentrations at the
platinum surface are different compared to the ones in the exhaust gas
close to the sensor. Secondly, at the cathode surface the platinum acts as
a catalyst for the chemical reactions bringing the modified gas mixture to
chemical equilibrium. And finally, the difference in gas concentrations at
the electrodes yields the sensor voltage.
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4.2 Modeling the exhaust gas oxygen sensor

The sensor model can thus be divided into three parts

• Diffusion through the porous spinel layer

• Platinum surface reactions

• The resulting sensor voltage

Here these three parts will be studied in more detail.

Diffusion N2 is assumed to be abundant in the exhaust gas and is
viewed as a media for the other species. Binary diffusion (also called Fick’s
law diffusion) is then a valid approximation. In [Barrick et al., 1996] a
more detailed transport model with Stefan-Maxwell diffusion was inves-
tigated without gaining much accuracy. Thus, in principle the species dif-
fuse through the porous layer without interacting with each other. When
the platinum surface is reached they will combine according to the reac-
tions in Equation 4.2 until chemical equilibrium is reached and diffuse
out of the sensor again. Balancing the steady-state flux of the three kinds
of atoms gives rise to three linear equations

DCO2(XCO2 − X
exh
CO2
) = −DCO(XCO − X

exh
CO )

DH2O(XH2O − X
exh
H2O
) = −DH2(XH2 − X

exh
H2
)

DO2(XO2 − X
exh
O2
) =
1
2
DCO(XCO − X

exh
CO ) +

1
2
DH2(XH2 − X

exh
H2
)

(4.1)

where

• X i, X exhi are the molar fractions of gas i at the platinum surface
resp. in the exhaust.

• Di is the diffusion coefficient of gas i in N2, which is dependent of
temperature, pressure and tortuosity of the material.

Platinum surface reactions The model contains five active species
interacting through two simplified reactions

CO +
1
2
O2 TS CO2

H2 +
1
2
O2 TS H2O

(4.2)

A key simplification is to assume chemical equilibrium at the platinum
surface, which induces two nonlinear algebraic equations

XCO
√

XO2 = kCXCO2

XH2
√

XO2 = kHXH2O
(4.3)

where kC and kH are temperature dependent constants arising from re-
action velocities.
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Sensor voltage In order to keep down model complexity, the three-
phase boundary cites (where species can be adsorbed) are assumed to be
abundant. There is no competition for vacant sites, so the voltage model
only depends on O2 concentration, see [Barrick et al., 1996]. The sensor
voltage is then obtained by

V = −
RT

4F
ln
XO2
0.21

(4.4)

where R is the universal gas constant, T temperature in Kelvin, F Fara-
day’s constant and 0.21 is the molar fraction of oxygen in the reference
air.
An extension to this voltage model was described in [Fleming, 1977]

where the carbon monoxide chemical effect on the voltage was included.
It is however equivalent to (4.4) when assuming chemical equilibrium at
the platinum surface so the simpler version was chosen in favour of low
complexity.

Parameter estimation

For this model no calibration experiments are needed since all parameters
are physical constants. Some are very well known, e.g., Faraday’s constant,
and others can be estimated using semi-empirical formulas.

Diffusion velocities The diffusion velocities have been estimated using
the method by Chapman and Enskog, see [Reid et al., 1977]. This method
has an accuracy of about 6% error margin. As mentioned, the velocity is
temperature and pressure dependant. However, all velocities have approx-
imately the same dependencies, so by dividing with a nominal velocity in
equation 4.1, the temperature and pressure dependencies can be omitted.
The method by Chapman and Enskog estimates the diffusion velocity

in an open geometry. In the sensor however, gases diffuse through a porous
media and this has to be taken into account. The standard way to deal
with this, see [Smith, 1981], is to multiply the nominal velocity with a
material dependent factor

D∗
i =

ǫ

τ
Di

The tortuosity, τ , and the porosity, ǫ, are material specific and the same
for all species i. Inserted in (4.1), the factor does not have an impact and
can therefore also be disregarded.

Chemical equilibrium constants The program HSC ChemistryTM

was used to estimate the chemical equilibrium constants kC and kH .

84



4.2 Modeling the exhaust gas oxygen sensor

Figure 4.6 Lambda characteristics for non-equilibrium gas concentrations from
[Saji et al., 1988]. Reproduced by permission of ECS - The Electrochemical Society

Lambda characteristics perturbation

This effect is analyzed in [Saji et al., 1988], where a lambda sensor was
exposed to different test gas mixtures. Some results presented in the ar-
ticle are illustrated in Figure 4.6, where it can be seen that deuterium
has a different impact than H2 although they have the same chemical
properties. This displays that the perturbation effect is not due to chem-
ical reactions but to physical properties, i.e. diffusion. The article also
claims that this effect depends on non-equilibrium gas concentrations in
combination with diffusion.
For example, for lambda equal to 1.1 a gas mixture in chemical equi-

librium would contain O2 and almost no H2. The O2 would be able to
undisturbed diffuse to the cathode and as the sensor mainly produces
voltage in function of difference in O2 concentration, no(or low) voltage
would be obtained. However, if the gas is not in chemical equilibrium there
is O2 and H2 present in the exhaust. H2 diffuses faster than oxygen and
the cathode would be exposed to a disproportionally large amount of H2.
The cathode acts as a catalyst for the reaction

H2 +
1
2
O2 TS H2O
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Figure 4.7 Switch point sensibility to temperature from [Saji et al., 1988]. Repro-
duced by permission of ECS - The Electrochemical Society

and the oxygen is depleted inducing a high sensor voltage. Similar rea-
soning can be applied to other disturbing gases, the deviation depends
on the degree of non-equilibrium and the mass difference between the
species. This explains the perturbations in Figure 4.6, taken from [Saji
et al., 1988].
If the exhaust gas is heated to a higher temperature the gas would

have a higher probability to reach equilibrium before exposing the sensor
as can be seen in Figure 4.7, also taken from [Saji et al., 1988].

Possible model extensions

• Sensor dynamics can probably be neglected, but should preferably
be modeled in case it has importance.

One heuristic way to introduce dynamics could be by adding, to the
current static model, a linear first order filter with a time constant
corresponding to the diffusion time of oxygen.

• Consider, and if necessary include in model, effects of NOx and
methane in the exhaust gas.

A first attempt could be to model the effect NOx and methane has
on gas outside the sensor and in that way perturb the voltage. This
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can be motivated since NOx and methane are both heavy species,
and therefore diffuse slowly. For this reason they probably do not
have an active role at the cathode layer.

4.3 Implementation

The implementation has been done in the Modelica language, see [Fritz-
son, 2004]. The model sums up into a set of nonlinear algebraic equations

DCO2(XCO2 − X
exh
CO2
) = −DCO(XCO − X

exh
CO )

DH2O(XH2O − X
exh
H2O
) = −DH2(XH2 − X

exh
H2
)

DO2(XO2 − X
exh
O2
) =
1
2
DCO(XCO − X

exh
CO ) +

1
2
DH2(XH2 − X

exh
H2
)

XCO
√

XO2 = kCXCO2

XH2
√

XO2 = kHXH2O

V = −
RT

4F
ln
XO2
0.21

where the exhaust molar fractions, X exhi , are considered as model inputs
and the sensor voltage, V , as model output. The sole alteration that has
to be done to get a working Modelica code is the coordinate change

Yi = log(X i)

for molar fractions inside the sensor. The new coordinates give far better
numerical results for calculating small concentrations. The Modelica code
has been simulated with the software tool Dymola, see [Dynasim AB,
2006]. The top view diagram is shown in Figure 4.8.

4.4 Simulations

The top plot in Figure 4.9 shows a 6 species (N2 is omitted) varying gas
configuration, this gas is at all lambda values in chemical equilibrium.
The lower plot of the same figure show the same gas mixtures but the
species were manually modified to deviate from chemical equilibrium, by
pushing the reactions in (4.2) from the equilibrium points.
Exposing the model to these gas mixtures yields the voltage in Fig-

ure 4.10. As can be seen, the model shows promising and reasonable re-
sults, the voltage shift due to non-equilibrium H2 is clearly visible.
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Figure 4.8 Layout of Dymola model
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4.5 Model validation

Data from test-gas experiments has been used in validation purposes. In-
house experiments were conducted but the equipment for oxygen concen-
tration measurement turned out to have inadequate resolution. Instead,
other data was used that, unfortunately, are proprietary information and
not publishable.
Two types of experiments were used for validation, a constant flow

of hydrogen or carbon monoxide were mixed with oxygen and nitrogen.
The gas mixture was then heated to 500○C and exposed to the sensor, see
Figure 4.11. During the tests the sensor voltage together with the lambda
value were measured while the gas composition was changed according to
Figure 4.12.
The lambda value for the hydrogen experiment is defined by the com-

bustion reaction

2H2 + λO2 → np(XH2H2 + XO2O2 + XH2OH2O)

where np is the total mole amount of the gas. An expression for the lambda
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value is achieved by balancing the amount of hydrogen and oxygen atoms.

λH =
XH2O + 2XO2
XH2 + XH2O

(4.5)

The same procedure for carbon monoxide yields

λC =
XCO2 + 2XO2
XCO + XCO2

(4.6)
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As can be seen, the gas configuration is not uniquely defined even though
the hydrogen (resp. carbon monoxide) concentration is known. To anal-
yse the completeness of combustion reactions at the sensor position in
Figure 4.11, the software Cantera [Cantera, 2006] was used to simulate
the reaction dynamics. It turned out that a temperature above 700○C is
needed to activate the reactions in the mixed gas. The reaction speeds can
be seen in Figure 4.13 and 4.14. For lower temperatures it’s a good ap-
proximation to assume that the gases do not react and the concentrations
remain unchanged until they reach the sensor.
The absence of H2O and CO2 in the mixed gas change (4.5) and (4.6)

into

λH =
2XO2
XH2

λC =
2XO2
XCO

Now the gas composition is uniquely defined by the lambda value and
the corresponding experiment can be simulated with the model derived
in Section 4.2.

Validation results The simulated model has been compared with the
experiment data, with 100ppm of H2 resp. CO at a temperature of 500○C.
As mentioned, the experiment data are proprietary information and is
not publishable. However, the model output, shown in Figure 4.15, cap-
tures the sensor behaviour well. The curves have approximately the same
switching point as the measured data and the voltage, at the rich and
lean sides, does not deviate much. The mean absolute error compared to
experiment data is 0.14V for CO and 0.057V for H2.

Calibration Most of the model parameters described in Section 4.2 are
estimated with a level of uncertainty. If they are treated more as non-fixed
parameters than natural constants, then higher accuracy to the experi-
ment data can be achieved. In Figure 4.16 the calibrated model’s output
is shown. Now the mean absolute error is reduced to 0.033V for CO and
0.0261V for H2. Here the diffusion velocities are modified but kept inside
the Chapman and Enskog method’s error margin. The reaction constant
was modified corresponding to a 100○C change to match the voltage level
for rich mixtures of carbon monoxide.
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4.6 Conclusions

A simple and static model with H2 dependency was developed and imple-
mented in the Modelica language. Simulations show reasonable results
where the effects of H2 in a non-equilibrium gas can be observed.
The model has successfully been validated with test gas experiment

data. By adapting parameters within reasonable physical limits, higher
fidelity to experiment measurements was achieved. The mean error in
sensor output voltage did not exceed 3% of the maximum output, when
the model was compared to experiment data.
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5

Conclusions

The current control design development process in automotive industry
involves many expensive experiments and hand-tuning of control param-
eters. Model based control design is a promising approach to reduce costs
and development time. In this process low complexity models are essen-
tial. This thesis combines the areas of modeling and model reduction of
automotive systems.
In Chapter 2 a model reduction method comparison is conducted on

an engine air path model. The heuristic method commonly used when
modeling engine dynamics is compared with a more systematic method
based on balanced truncation. Both methodologies have their advantages
and disadvantages. If a detailed model is available and linear behaviour
is expected then the balanced truncation methodology could be preferred.
This technique may require a large computation time but needs very little
manual attention. Using the heuristic method requires more experience
and knowledge, it may also involve extensive parameter fitting, but ren-
ders more insight to the simplifications made.
In Chapter 3 a method for model reduction of nonlinear input-output

models is presented. The given procedure is focused on reducing the num-
ber of states using information obtained by linearization around trajec-
tories. No proofs concerning preserved stability or error bounds are pre-
sented. However, the methodology is closely tied to existing theory on error
bounds and good results are shown in form of examples and simulation
data.
Finally, in Chapter 4 a model of the exhaust gas oxygen sensor is de-

veloped. The end result is a simple and static model that is sensitive to
non-equilibrium concentrations of H2. The model is implemented in the
Modelica language and was successfully validated with test gas experi-
ment data. The mean error in sensor output voltage did not exceed 3% of
the maximum output, when the model was compared to experiment data.
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