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Abstract 

Antimicrobial peptides represent a heterogeneous group that displays multiple 
modes of action such as bacteriostatic, microbicidal and cytolytic properties 
that are sequence and concentration dependent. Life threatening infectious 
disease is now a worldwide crisis and treating them effectively is becoming 
difficult day by day, due to the emergence of antibiotic resistant strains at 
alarming rates. Hence, there is an urgent need for new class of antibiotics and, 
antimicrobial peptides (AMPs) are an ideal candidate for this job. AMPs are 
gene encoded short (<100 amino acids), amphipathic molecules with 
hydrophobic and cationic amino acids arranged spatially which exhibit broad-
spectrum antimicrobial activity. AMPs form an ancient non-specific type of 
innate immunity found universally in all living organisms and used as the 
principal first line of defense against the invading pathogen. AMPs have been 
in the process of evolution, as have the microbes, for hundreds of years. 
Despite the long history of co-evolution, AMPs have not lost their ability to kill 
the microbes totally nor have the microbes learnt to avoid the lethal punch of 
AMPs.  Based upon accumulating positive data, we are encouraged to believe 
that antimicrobial peptides have a great potential to be the next breakthrough 
and first novel, truly biological in nature, class of antibiotics.  

The purpose of this study was twofold; primarily to elucidate the factors 
involved in governing the peptide activity and toxicity against membranes, and 
secondly to design a simple approach where we can boost and spread the 
spectrum of antimicrobial activity against pathogens such as S. aureus and  P. 
aeruginosa for a peptide that is otherwise non-lethal to the bacteria. Results 
presented in this thesis show that antimicrobial domains of the anaphylatoxin 
C3a are structurally and evolutionary conserved. Moreover antimicrobial 
activity is not governed by a single factor, but instead by a combination of net 
charge, amphipathicity and helicity. By utilizing a low number of amino acid 
substitutions at strategic positions in an antimicrobial peptide derived from 
C3a, CNY20, we were able to develop peptides, which exert a significant 
activity on both S. aureus and C. albicans in contrast to the parent peptide. 
Although, antimicrobial activity is not governed by single parameter, the 
activity can still be boosted by end-tagging of a peptide with hydrophobic 
oligopeptide stretches. This modification promotes peptide binding to bacteria 
and subsequent cell wall rupture, but does not increase the toxicity or the 
protease susceptibility of the peptide. It is noteworthy that end tagging of ultra 
short peptides spanning 5-7 amino acids with hydrophobic amino acids 



 

enhances bactericidal activity, while preserving low toxicity and protease 
resistance. 
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The Immune system  
The immune system is as old as life on earth itself; all along the evolution 
paradise certainly did not last, as one organism was potential rich source of 
food for other.  In order to defend and eliminate the intrusion of another 
organism there was a need for a system, which could help the host in defense. 
Even today, the ability to protect oneself is key factor for survival, and all 
living forms, from bacteria to humans, resist the invasion of their body by 
another organism through either a simple or complex defense mechanism called  
the immune system. The immune system is a remarkably versatile defense 
system evolved to protect the individual from pathogenic organism and to clear 
damaged host self-components. In higher animals, the immune system consists 
of specialized cells capable of killing pathogens, this is, in contrast to 
unicellular organisms, which utilize simple mechanisms such as restriction 
enzymes, phagocytosis, antimicrobial peptides, and RNA interference[1]. 
 
Nowadays for more didactical reasons, the immune system in higher animals is 
divided into two types, “innate and adaptive system” based upon whether 
receptors of the system are encoded in the germ line or generated by 
recombination/diversification of the gene segments[2]. Both the innate and 
adaptive systems differ from each other with regard to many aspects such as the 
recognition system, the mechanism and kinetics of action, the recruitment to 
the site, and the type of cells involved in controlling the response etc.  This 
classification is mostly found in immunology text books only and doesn’t exist 
in nature, as both systems orchestrate together by cross communication. For 
unknown reasons, the older immune system was not replaced in higher 
verterberates and was instead supplemented to, thus creating an extra layered 
structure of immune system with cross talk[3]. Thus, during evolution, immune 
system complexity increased with addition of new and diverse components that 
have acquired the ability to co-operate inorder to provide an efficient and 
promount response. 
 
Adaptive immunity 
 Adaptive immunity is a highly complex form of immunity, which exist in 
higher vertebrates[2]. It can discriminate host components from pathogens and 
differentiate among pathogen types e.g. virus, bacteria in order to mount a 
required defense by using both non-specific and highly specific cell mediated 
responses. By using a wide variety of cells and control mechanisms, the 
adaptive immune system responds to the challenge of pathogenic organisms 
with a high degree of specificity and “memory”. It can recognize two antigens 
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differing by just a single amino acid. Once the adaptive immune system has 
recognized and responded to an antigen, it exhibits immunological memory, 
thus a higher immune response in a shorter time is mounted when exposed to 
the same antigen again. 
 
Table 1: Overview of immune system found in living organisms  

  Adaptive 
immunity 

Innate 
immunity

Antimicrobial 
peptides 

Bacteria - - + Prokaryotes Fungi - - + 
 

Plants - * + 
Protozoa - * ? 
Porifera - * ? 
Annelida - * + 
Arthropods - + + 
Mollusca - + + In

ve
rte

br
at

e 
an

im
al

s 

Echinodermata - + + 
Jawless fishes - + ? 
Jawed fishes + + + 
Amphibians + + + 
Reptiles + + + 
Birds + + + 

Eu
ka

ry
ot

es
 

V
er

te
br

at
e 

an
im

al
s 

Mammals + + + 
      

 
- = Failure to demonstrate its presence          + = Definitive demonstration 
 
* = Partial components are present                ? = Presence or absence to be 
demonstrated  

 
Typically, adaptive immunity comes into action with a delay of 4-5 days after 
the host is antigenically challenged by the pathogen, and this delay is 
compensated by antigen specificity and memory that makes it unique and 
special. Even though it is highly advanced and equipped, adaptive immunity is 
not independent of innate immunity. Both systems operate in a highly 
interactive and cooperative way, producing a combined response, which is 
more effective than each system could produce by itself. Therefore, adaptive 
immunity is just one half of the arsenal of the immune system that an 
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individual has.  
 
About 500 million years ago, the adaptive immune system first appeared in 
jawed vertebrates[2],  when a transposon carrying the early form of recombinase 
activating gene was introduced into the germline[4, 5]. The ability to generate 
unlimited variability of immune receptors in each individual by random 
recombination and diversification of gene segments and, clonal expansion of 
cells bearing a specific receptor in response to an antigen, might have given jaw 
fishes temporary advantages that lead to their large spread in the animal 
kingdom. Probably during that time, the adaptive immune system might have 
provided better protection than innate immunity at the individual level, due to 
multicellular complexity in architecture, diversity of pathogen/microbes 
encountered and high age of individual survival in higher vertebrates[2]. As a 
result of this, it become an virtual universal characteristic of all vertebrates[4]. 
Primitive forms of lymphoid tissues are present in invertebrates, however to 
date no antibody or cell mediated long lasting immunity has been discovered in 
lower invertebrates[6]. 
 
Table 2: Comparison between adaptive and innate immunity 

 Adaptive Innate 
Presence In higher vertebrates 

only* 
All living forms  

Response time needed 
after infection 

Days Hours 

Specificity Highly diverse  Limited and Fixed  
Response to repeated 
infection 

Faster than primary 
response 

Identical to primary 
response 

Memory of pathogen / 
infectious agent 

Yes No 

Germline encoded No Yes  
Components Antibodies, Antigens, 

leukocytes  
AMPs, cytokines, 
complement 
components, 
phagocytes 

*: As on date   
 
Innate immunity 
In comparison to adaptive immunity, innate immunity is a universal and 
ancient form of host defense against pathogens. Unlike adaptive immunity, 
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innate immunity is less specific without any memory or clonal expansion, but it 
is a fast and effective means of defense against the pathogen[7]. Previously it 
was thought that the major role of innate immunity is to prevent and hold the 
microbial growth shortly after the infection, until a sufficient amount of 
adaptive immunity is mobilized to the site of infection[8]. Very recently the 
significance of the innate immune system is being understood, particularly 
when it becomes clear that it is the first defense mechanism that is activated 
against the pathogen and has a remarkably broad spectrum of effectiveness[9, 10]. 
Moreover successful evolution and extraordinary survival of plants and 
invertebrates in harsh conditions for more than 400 million years without a 
counterpart and/or adaptive immunity, emphasizes the extreme effectiveness 
and significance of innate immunity[7, 11, 12]. In addition, the similarity in mode 
of action and molecules used for defense in plants and animals indicates that 
the innate immune system evolved long before the split of the evolutionary tree 
into plant and animal kingdoms [13, 14]. Although rare, defects in innate 
immunity are always lethal to an individual, suggesting the presence of 
redundancy.   Interestingly, the side effects of the adaptive immune system, 
such as autoimmune disease, allergy and allograft rejection has never been seen 
in the lower invertebrates and plants despite numerous efforts to show this by 
various researchers[13]. 
 
Components of innate immunity 
In order to control both endogenous and exogenous bacteria, innate immunity 
has developed numerous ways. In a broad sense, the innate immune system is 
composed of physical barriers (e.g. skin, mucosal lining), effectors molecules 
(e.g. AMPs, cytokines), and cells (neutrophils, macrophages). Most 
components of innate immunity are present before the onset of an attack by 
pathogens and are not directed against a particular pathogen, but against 
various Pathogen–Associated Molecular Patterns (PAMPs) such as LPS of 
Gram-negative bacteria, bacterial flagellin, glycolipids of mycobacteria, 
lipoteichoic acids of Gram-positive bacteria, mannans of yeast, double stranded 
RNA of viruses[13] etc. Interestingly, pathogen and normal microbial flora have 
fairly similar structural features and how innate immunity discriminates 
between them is not clear. 
 
In humans, innate immunity consists of proteins such as antimicrobial peptides, 
complement, cytokines, toll-like receptors (TLRs) etc.  
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Toll-like receptors 
 TLRs are the “eyes” of the innate immune system because they sense the 
infection by a pathogen and initiate the host defense mechanism[15]. TLRs were 
first identified in Drosophila as transmembrane receptor molecules involved in 
dorso-ventral polarity establishment during embryo development and later their 
role in innate immunity was described [15]. Evolutionary and functional analysis 
revealed rudimentary type of Toll/TLR systems in cnidarians, thereby pushing 
the evolution of this system back to 550 million years or perhaps beyond [5, 16]. 
Strangely to date, no developmental role has been ascribed to mammalian 
TLRs, apart from their direct role in immunity [13].  
 
Innate immunity limits the infectious challenge rapidly using a wide 
armamentarium of pattern recognition receptors (PRR) such as Toll-like 
receptors (TLRs), C-type lectin (CLRs) etc. TLRs are a unique and essential 
type of PRR in animals and humans, which recognise PAMP molecules shared 
by most pathogenic microbes. They are usually expressed by cells of the 
immune system, but in case of injury to host, cells at the site of damage can 
respond by expressing TLRs[17, 18]. TLRs are transmembrane receptors with an 
extracellular leucine rich repeat domain and an intracellular Toll/IL-1 receptor 
domain[15]. TLRs (animals) bind to bacterial elicitors through leucine-rich 
repeats and signal through adaptor/effectors proteins containing TIR domains. 
This, initiates transcriptional programs including inflammatory cytokines, 
chemokines, AMPs, co-stimulatory molecules etc[13, 16, 19].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: TLRs location in the cell and their ligands 
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To date 12 TLRs have been described in humans and mice. They are divided 
into 5 groups based upon amino acid sequence similarity. Each TLR has a 
different PAMP or ligand specificity and activates a different target gene. 
Interestingly, not all TLRs are expressed at a single location in the cell. They 
are expressed at various locations including the surface of the cell, endosome 
and intracellular regions in order to cover various routes of pathogen entry into 
the cell. The advantage of TLRs is that, a limited number of receptors are able 
to recognise a large variety of molecular structures. It is widely accepted that 
innate immunity recognise self and non-self by using TLRs since they are 
equipped to recognize PAMPs shared by different microorganisms[16]. 
 
Complement system 
The complement system is an evolutionary old, powerful, integral and vital part 
of the innate immune system, as it senses danger and disturbed homeostasis of 
the body. The complement system is one of the major effectors of the humoral 
branch of the immune system. Thus, it plays an important role not only in 
defense but also as an essential instrument of self-surveillance. Research on the 
complement system in mammals has lead to the discovery of more than 35 
different soluble and cell bound proteins which function in an orchestrated 
pattern to eliminate the pathogen or maintain homeostasis. Complement has 
three physiological functions (a) defense against invading pathogen (b) 
clearance of debris and immune complexes (c) integration and enhancement of 
the adaptive response [20, 21]. Complement consists of a complex machinery with 
an arsenal of both positive and negative regulatory factors, activating proteins 
and receptors. The complement system is initiated by three different 
mechanisms known as, the classical pathway, the alternate pathway or the 
lectin pathway. All pathways merge near the enzymatic activation of C3. the 
acknowledged molecular pillar of the complement system, followed by the 
common termination pathway which leads to the formation of a membrane 
attack complex[22]. The alternate pathway is initiated by binding of the 
complement protein C3 to the surface of the pathogen[23]. On the other hand, 
the lectin pathway is activated by the binding of lectin proteins to the mannose 
residues in the glycoprotein or carbohydrate present on the surface of the 
bacteria or fungi[24]. The classical pathway is initiated by an antigen-antibody 
complex, and is dependent on adaptive immunity whereas the alternate or lectin 
pathways are independent of this[23].  
 
Structure based evolutionary comparison studies of the proteins involved in the 
complement pathways have shown that this system originated in primitive 
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organisms containing the most rudimentary innate immune system[10, 25]. It is 
perceived that complement proteins and non-specific protease inhibitor α-2-
microglobulins, found in invertebrates such as arthropods and mollusks, have 
originated from a common progenitor gene which was lost during evolution[2, 

26] or exists in other forms in lower animals and has yet to be discovered [5]. 
Complement genes then expanded by gene duplication and various pathways 
including activation/inactivation components have been incorporated in the 
system. Human complement factor C3 is a large protein with characteristic 
canonical thioester domain structure, which is similar to those found in lower 
cnidarians[10]. Notably,  in comparison to humans, not all domains are present 
in lower vertebrates, thus confusing whether the evolution of C3 molecules 
occurred earlier or later[5]. Regardless, a true functional homologue of C3 was 
found in the horse shoe crab, (living fossil), thereby revealing the presence of 
the opsonic complement defense system in higher invertebrates[27, 28].  
Agnathas, the most ancient living fish verterberates appers to have only 
alternate and lectin pathways. However cartilgious fishes, the most primitive 
species to posses immunoglobilins, have all the three-complement components. 
Thus, complement system rose to a higher level with the incorporation of 
antibodies during the evolution of Jaw vertebrates[2]. Of course, this is mere 
speculation at this time, and more studies on the immunological response and 
discrimination power of self and non-self in primitive lower invertebrates will 
undoubtedly reveal a greater understanding of this system.  
 
During complement activation, proteolytic cleavage of the precursor molecules 
generates 3 types of anaphylatoxins e.g. C3a, C4a, and C5a. Anaphylatoxins 
are able to trigger degranulation of endothelial cells, mast cells, or phagocytes 
producing a local inflammatory response, which could lead to lethality 
depending upon the concentration. An important finding presented in this 
thesis, is that the antimicrobial activity of the C-terminal region of C3a and C4a 
but not C5a from various animals is conserved all along evolution from 
invertebrates to vertebrates and that this activity is more connected to structure 
rather than sequence[28]. Notably, even though anaphylatoxins share a partial 

structural identity, these factors are immunologically distinct molecules having 
no antigenic determinants in common[29]. 
 
Cytokines  
Cytokines are low molecular weight regulatory or glycoproteins secreted by 
blood cells and various other cell types in response to a number of stimuli. 
Cytokines bind to specific receptors on the target membrane and alter the gene 
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expression by triggering signal transduction. Due to the often-high affinity 
exhibited by various cytokine receptors, cytokines can mediate their biological 
effects at picomolar concentrations. To date, more than 200 different cytokines 
have been discovered, which are grouped into four classes; hematopoietins, 
interferon’s, chemokines, and tumor necrosis factor[30]. Interferons (IFNs) and 
chemokines are highly investigated due to their wide availability and 
immediate role in infections. Interferons are produced by the cells of the 
immune system of most vertebrates in response to challenge by foreign agents 
such as parasites, tumor cells and double-stranded RNA, a key indicator of viral 
infection. Interferons assist the immune response by inhibiting viral replication 
within host cells, activating natural killer cells and macrophages, increasing 
antigen presentation to lymphocytes, and inducing the resistance of host cells to 
viral infection. They are part of the non-specific immune system and are 
induced at an early stage in viral infection – before the specific immune system 
has time to respond. 
 
Therapies based on cytokines and their receptors have entered into clinical 
practice. Interestingly, many chemokines have moderate antimicrobial activity 
and many AMPs have chemotactic activity. Albeit controversial, some 
researchers argue that chemokines and antimicrobial peptide defensins have 
originated from a single gene or by a gene duplication whereby one lead to the 
development of other [31, 32]. Although there is a quite similarity in activity and 
overall tertiary structure, an evolutionary relationship between defensins and 
chemokines remains to be determined[31]. 
 
Traditionally it is thought that innate immunity consists of phagocytic cells e.g. 
neutrophils and serum proteins e.g. complement, cytokines and interferon’s. 
Nevertheless, during the last 4 decades it was found that, all sorts of living 
organism produce a large repertoire of antimicrobial peptides that are actively 
involved in clearance or inactivation of the microbes and/or play other 
significant roles in innate immunity. 
 
Antimicrobial peptides 
 
Antimicrobial peptides (AMPs) are gene encoded short (<100 amino acids), 
amphipathic molecules with broad-spectrum antimicrobial activity. 
Antimicrobial peptides represent a heterogeneous group that displays multiple 
modes of action including bacteriostatic, microbicidal and cytolytic properties 
that are sequence and concentration dependent. This ancient, non specific type 
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of innate immunity is the principal first line of defense used by many 
organisms against the invading pathogen[33].  Even though antimicrobial 
peptides are the first line of defense against the invading microbes, ironically 
they are a highly neglected aspect of immunology and are never addressed in 
typical immunology textbooks.  The first AMPs to be isolated and 
characterized were those produced by bacteria. Logically, they don’t protect the 
individual from infection since they kill other microbes, which might compete 
for space, food and other nutrients[34]. The wide recognition of AMPs started in 
the 1960s, when Spitznagel and Zeya discovered that basic proteins and 
peptides in polymorphnuclear leukocytes have antimicrobial properties[35, 36], 
which were later named as defensins[37, 38].  Seminal studies by Boman and 
colleagues in the 1980s demonstrated AMPs in invertebrates[39]. Since then 
more than more than 1400 AMPs have been isolated from bacteria, insects, and 
other invertebrates, amphibians, birds, fishes, and mammals including plants[33, 

40]. 
 
Table 3:  A list of AMPs produced by various organisms 
 
Tree Phylla/class Species AMP produced 
Bacteria  Gram negative 

bacteria 
 Bacteriocins[33] 

Lantibiotics[34]  
    
Fungi Ascomycota Penicillium sp AF[41] 
 saprophytic 

ascomycete  
Pseudoplectania 
nigrella 

Plectasin[42] 

    
Plants  Castanopsis chinensis TLPs[43, 44] 
    
Animal 
kingdom 

Porifera Stylissa caribica Stylisin[45] 

  Discodermia kiiensis Discodermin A[46] 
    
 Cnidaria Hydra sp Hydramacin-1[47] 
  Aurelia aurita Aurelin[48] 
  Sarcophyton glaucum Sarcophytolide[49] 
    
 Mollusk Mytilus 

galloprovincialis 
Myticin C[50] 

  Conus mustelinus Conolysin-Mt[51] 
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 Annelida Nereis diversicolor Hedistin[52] 
  Eisenia foetida OEP3121[53] 
  Perinereis 

aibuhitensis  
Perinerin[54] 

  Lumbricus rubellus  Lumbricin[55] 
    
 Arthopoda Carcinoscorpius 

rotundicauda 
Tachyplesins, 
Polyphemusin, and 
big defensin [56] 

  Drosophila 
melanogaster,  

Drosomycin, 
Cecropins, 
Diptericin, 
Drosocin, Attacin 
and Metchnikowin 
[4] 

  Pachycondyla goeldii Ponericidins[57] 
  Acalolepta luxuriosa 

  
Acaloleptin A1, A2 
and A3 [58], 

  Cupiennius salei Lycotoxins and 
Cupiennin-1[59], 

  Apis mellifera Melittin[60], 
  Androctonus australis Androctonin[61], 
  Litopenaeus 

vannamei, 
Penaeidins[62] 

  Mytilus 
galloprovincialis  

Mytilin, 
Mytimycin[63] 

  Insects belonging to 
lepidoptera and 
diptera, Marine 
protochordate and 
porcine intestine  

Cecropins[64] 

    
 Echinodermata Strongylocentrotus 

droebachiensis 
Strongylocins[65] 

 Fishes Gadus morhua L Hepcidin[66] 
  Ictalurus punctatus 

Rafinesque. 
HbbetaP-1[67] 

  Morone chrysops Piscidins[68] 
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  Oncorhynchus mykiss Histone H2A[69] 
  Pleuronectes 

americanus 
Pleurocidin[70] 

    
 Reptiles  Bungarus fasciatus Cathelicidin-BF[71] 
  Oxyuranus 

microlepidotus 
Omwaprin[72] 

    
 Amphibian  Xenopus Sp Magainin[73] 
    
 Birds Gallus gallus Gallinacins[74] 
  Gallus gallus Fowlicidin[75] 
  Struthio camelus Ostricacins[76] 
    
 Mammals Bos taurus LfcinB[77] 
  Homo sapiens Kinocidines[78] 

Defensins[79] 
Cathelidicins[79] 

 
As shown in Table 3, AMPs represent a universal feature of defence systems 
existing in all living forms and wide existence on a long evolutionary scale 
proves their extreme effectiveness and significance to combating invading 
pathogens. Antimicrobial peptides are promptly synthesized and readily 
available shortly after an infection to rapidly neutralize a broad range of 
microbes. The ability to produce antimicrobial peptides is well preserved in 
almost all living organism and cell types. They can be synthesized at a low 
metabolic cost, easily stored in large amounts and they recognise common 
characteristics, instead of unique and specific tags particular to a pathogen, 
which is safe and efficient [2].  Even though AMPs have a certain degree of 
similarity in their biophysical properties, their sequence is never identical 
nor/or the same peptide sequences found in two different species of animals, 
even among those that are closely related. Total similarity is never found, and 
the only identity found is often in the pro region or a conserved region or 
conservation pattern of amino acids only. This phenomenon could probably 
reflect the species adaptation to the unique microbial environments that 
characterize the niche occupied by the species[11].   
 
It is predicted that each species could have more than two dozen AMPs [80], and 
describing all them is beyond the scope of this thesis. Therefore, I would like to 
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give an introduction about AMPs found in humans and a small discussion 
about the unique, widely abundant AMPs in other animals. In humans, 
defensins and cathelicidins represent two large groups of AMPs in addition to 
other groups of molecules, which are synthesized at specific sites or formed on 
proteolytic degradation of proteins involved in immune functions by enzymes 
derived from the host or pathogens.  
 
Defensins  
Defensins are 28-44 amino acid long peptides with six conserved cysteines and 
3 disulfide bonds without glycosyl- or acyl- side-chain modifications. 
Defensins were first discovered in rabbit and guinea pig granulocytes as small 
cationic molecules[81]. Until now defensins have been discovered in mammals 
only and distantly related forms appear in insects[82] and plants[83]. To date, in 
humans, defensins have been identified in the granules of neutrophils, paneth 
cells, monocytes, macrophages, keratinocytes or mucosal epithelial cells of the 
respiratory, digestive, urinary and reproductive systems[40, 84]. Defensins are 
synthesized as 93-96 amino acids pro-peptides consisting of a signal region, an 
anionic pre-segment and C-terminal cationic region. Release of the C-terminal 
region from the pro-segment by elastase, metallo proteinase, or other 
proteolytic cleavage activates the antimicrobial activity. The occurrence of 
disulphide-bridged defensins in a wide variety of organisms underscores that 
stabilized structure is of utmost importance for activity. Zhoa H reported that 
replacement of cysteine residues by certain amino acids like alanine, aspartic 
acids and leucine leads to a loss of activity whereas replacement with 
hydrophobic or aromatic amino acids retains the activity[85]. However, 
disulphide bonds in defensins are not necessary for the activity, but are of 
utmost importance for protease resistance[86] and chemotactic activity[87]. 
Defensins have been shown to have a broad-spectrum antimicrobial activity 
against bacteria, fungi and enveloped viruses. The mode of action of these 
peptides is quite simple, peptides oligomers assemble and form channels in the 
microbial membranes leading to ion gradient loss and death of the microbe[88]. 
Defensins link the innate and adaptive immunity by chemotactic mobilization 
of immunocompetent leukocytes[89], and induction of cytokine production[90] 
etc. 
 
Based on the site of expression, size, structure and pattern of disulphide 
bridges, defensins are classified into 3 types 
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α-Defensins 
α-defensins are 29-35 residues long with a disulfide alignment pattern of 1-6, 
2-4, and 3-5. α- Defensins are either stored as propeptides (in Paneth cells) or 
as active processed matured peptides (in neutrophils). To date, in humans, more 
than 30 α-defensin genes have been predicted using bioinformatic approach[91], 
however at the protein level only 6 defensins have been discovered. Of these, 4 
are expressed in neutrophils and called as human neutrophil peptides (HNPs) 
and 2 (HD5 and HD6) are expressed in path cells[92] and epithelial cells[93]. 
Interestingly, HNP-1, -2, -3 constitutes half of the total protein found in 
neutrophils[94].  
 

 
 

Figure 2: Schematic disulfide bond pattern of α-defensins 
 
β-Defensins 
β-defensins are 36-42 amino acids long with 1-5, 2-4, 3-6 disulfide alignment 
pattern and a longer N-terminal region, in comparison to α-defensins. More 
than 90 types of β-defensins have been isolated from various birds, reptiles and 
mammals.  In humans only 4 different types of β- defensins (HBD) have been 
discovered in plasma, testis, gastric antrum[95], epithelial cells and 
neutrophils[96] and excluding HBD1, all are expressed only on inflammatory or 
infectious stimuli[79, 97]. At a concentration above 2 µM they can kill a vast 
spectrum of microorganisms under low salt concentration and serum free 
conditions. It has also been demonstrated that defensins of this class can 
stimulate host adaptive immunity[98].   
 

 
 
Figure 3: Schematic disulfide bond pattern of β-defensins 
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θ-Defensins 
θ-Defensins are formed by post translation ligation of two 9-residue sequences 
derived by heterodimeric splicing of α-defensin-related precursors. The mature 
θ-defensin peptide is a circular two-stranded beta-sheet that is stabilized by 
three disulfides. However, the parallel orientation of the θ-defensin disulfide 
arrangement allows substantial flexibility around its short axis. θ - Defensins 
have been isolated from rhesus monkey, (Rhesus macaque) neutrophils[99] and 
the olive baboon, (Papio Anubis)  leukocytes only[100]. Humans don’t produce θ 
- defensins due to a premature termination codon in the signal peptide[101] and 
no data exists about the presence of these molecules in other animals. This 
molecule is of interest due to the lack of amphipathic nature and salt 
independent function. More interestingly θ - defensins have been shown to 
possess more antiviral properties, especially against HIV and HSV, than 
antibacterial and antifungal effects[102] 
 
Cathelicidins   
Cathelicidins are the second largest group of antimicrobial peptides produced 
by mammals and are characterized by far N-terminal end, a very unique 
conserved pre-proregion in the middle and a variable C-terminal region[103, 104]. 
The central conserved proregion is known as cathelin like region due to high 
sequence similarity with pig cathelin-like region. Like defensins, cathelicidins 
are also synthesized as propeptides, which are cleaved in two-step process to 
release the active peptide. The cathelin domain is highly conserved among 
different varieties of the peptides in both inter and intraspecies, indicating a 
common origin for this group[40].  To date cathelicidins have been found only in 
fish[105], birds[106], snakes[71, 107] and mammals[104]. There is only one type of 
cathelicidin in humans (hCAP18) and mice (CRAMP), whereas in pigs (PGs), 
cattle and sheep there are different types of cathelicidins with varied C-terminal 
and conserved N-terminal.  
 
In humans, the hCAP18 propeptide is processed by a serine proteinase 3 in 
neutrophils to release the active fragment LL-37[108]. LL-37 
(LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES) is a 37 amino acid 
long peptide with a highly hydrophobic N-terminal region and C-terminal 
region that adapt α-helical conformation in the presence of negatively charged 
lipids. Among all cathelicidins, LL-37, is highly investigated due to its unique 
structure, function, and composition[109].   It has been shown that LL-37, due to 
the amphipathic helical nature, is antimicrobial and binds to LPS [110, 111]. LL-37 
has been shown to be toxic to normal eukaryotic cells at higher concentrations 
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[112, 113].  It is highly degradable by various enzymes[110, 113-115] and possess broad 
spectrum antimicrobial activity and synergistic action with other host derived 

 
Figure 4: Schematic drawing of human cathelicidin hCAP18 
 
peptides[109]. It can coordinate with other components of the innate immunity, 
such as recruiting neutrophils to the site of infections[116-118]. In humans, 
cathelicidins are expressed in macrophages[119], monocytes, B-cells, T-cells[120] 
and in most types of epithelial cells such as lung[121], skin[121], seminal 
plasma[122], epididymis[91] etc, whereas in other mammals, it is exclusively 
found only in the peroxidase negative granules[91].  
 
Histatins   
Histatins are a group of histidine rich cationic peptides found in humans and 
higher primates with broad spectrum antimicrobial activity[79]. Oppenheim first 
identified histatins in 1988, as antimicrobial peptides in human parotid and 
submandibular-sublingual gland secretions[123].  Basically there are 3 types of 
gene-encoded histatins, which undergo cleavage by proteases to generate 12 
different types of histatins[123-126].  Of them all, histatins 5 is widely studied due 
to its α-helical structure stabilized by Zn+2 ions. Histatins mode of action is not 
by membrane permeabilization; instead it targets the mitochondria causing 
efflux of ATP, resulting in depletion of intracellular ATP contents and 
ultimately death [124, 127, 128]. Like most AMPs, histatins are not only 
antimicrobial, but also have other function such as inhibiting hemagglutination, 
co-aggregation and neutralisation of lipopolysaccharides by binding to lipid 
A[128-130], and acting as binding proteins for tannins[131, 132] . 
 
Proline-arginine rich antimicrobial peptides  
Mammalians, in addition to cathelicidins and defensins, produce a family of 
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antibacterial peptides known as proline-arginine rich peptides, which are rich 
(~ 60%) in proline and arginine amino acids.  
To date three peptides belonging to this class have been isolated from bovine 
(BAC-5, Bac-7)[133] and porcine (PR39)[134]. In addition to a structurally 
identical N-terminal region, all the peptides have a highly repetitive sequence 
of Arg-Pro-Pro or Pro-Arg-Pro. All this similarity suggests that, proline–
arginine rich peptides might have originated from the common origin or 
cathelicidins[6].    
 
Bactenecins   
Bactenecins are 5 - 7 kDa cationic bactericidal polypeptides with a high proline 
and arginine content in addition to 4 - 6 hydrophobic resides with disulfide 
bonds between cysteines. They are found in PMN cells and have only been 
isolated from cows to date. Bactenecins work in the range of 10-5- 10-6 M and 
have been shown to be antimicrobial and antiviral [135]. 
 
Antimicrobial proteins and polypeptides  
In order to defend the host from infection, innate immunity is not only 
equipped with short cationic peptides that are synthesized prior to or after 
infection, but also with a large number of proteins which are on constant 
surveillance in the system.  The most important are indicated below 
 
Bactericidal permeability increasing protein (BPI)  
BPI is a 55 kDa protein with 2 distinct functional domains; the N-terminal 25 
kDa fragment is antimicrobial where as the C-terminal fragment is LPS binding 
and antiangiogenic [136]. To date, BPI has been isolated only from human and 
rabbit PMN cells, which are very similar in structure and function. BPI inhibits 
only Gram-negative bacteria and is not active against Gram-positive bacteria or 
eukaryotic cells due to its high binding affinity for the outer membrane [137]. 
BPI in a sense is a unique molecule, as it acts in synergy with defensins, 
membrane attack complex of the complement system, and acts at sites of 
inflammation. 
 
Heparin –binding protein (HBP) 
Human heparin-binding protein (HBP) or CAP37 or azurocidin is 37 kDa 
basic, proteolytically inactive neutrophil elastase homologue, with heparin 
binding and antimicrobial activity [138]. HBP activity is mostly active against 
Gram-negative bacteria and the activity increases at low pH conditions. The 
basic amino acids in the HBP are responsible for the activity[139].  
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Histidine-rich glycoprotein (HRG) 
HRG is a 67 kDa heparin-binding histidine-rich plasma protein, which was first 
isolated in 1972 by Heimburger et al.[140, 141].  This protein is synthesized in 
liver and is present in human plasma at high concentration (1.5–2 µM)[142, 143]. 
HRG contains two cystatin-like domains, a  variable C-terminal region and a 
central histidine-rich region (HRR) with highly conserved GHHPH tandem 
repeats flanked by proline-rich regions [142, 143]. HRG can acquire positive net 
charge either by incorporation of Zn2+, or by protonation of histidine residues 
(~13%) in the  HRR domain at acidic conditions[142-144] as a result of which it 
acts as an antimicrobial[144-146]. Recently, various novel roles have been 
discovered  for HRG derived peptides, involving  antiangiogenesis[147], 
antitumor activity[148], as well as multiple interactions involving ligands such as 
heparin, plasminogen, fibrinogen, thrombospondin, heme, IgG, FcγR, and 
C1q[146]. 
  
Lactoferrin 
Lactoferrin (80 kDa), is a major epdidymal globular multifunctional secretory 
protein found abundantly mainly at mucosa, secreted fluids, like semen, tears 
and breast milk with a potent activity against bacteria, fungi and viruses. Like 
cathelicidins and defensins, proteolysis of lactoferricin generates two different 
antimicrobial peptides, the N-terminal derived lactoferricins[149] and the 
kaliocins derived from an interior sequence[150]. Lactoferrin can permeablise 
membranes and disperse lipopolysaccharides through cation-mediated process 
especially chelating Fe3+ (ferric state) ions [151] .   
 
Lysozyme 
Lysozyme is a 14 kDa cell wall degrading enzyme that is widely disturbed in 
biological fluids and tissues. Lysozyme damages bacterial cell walls by 
catalysing hydrolysis of 1,4-beta-linkages between N-acetylmuramic acid and 
N-acetyl-D-glucosamine residues in a peptidoglycan. The absence of lysozyme 
in some animal species is not associated with decreased resistance against 
infection and suggests that it is not a major protein playing a role in 
defence[137]. It usually functions in synergy with other AMPs such as 
lactoferrin, as it can’t pass through the cytoplasm. It probably weakens the 
membranes so that AMPs can deliver their deadly punch more effectively [152]. 
 
Major basic protein (MBP) 
MBP is 13 kD small basic protein, which is rich in arginine and cystine-rich 
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amino acids and comprises almost half of the protein content in the large 
specific granules of mammalian eosinophils.   Even though this protein is toxic 
to human cell, host tissue damage is negligible due to the delivery of the 
protein locally at the target site. At high concentrations, MBP has been shown 
to be antibacterial, antihelminthic, cytotoxic and involved in immune 
hypersensitivity reactions, but the exact mode of antihelminthic action of this 
protein is unkown[153].  
 
AMPs generated by proteolysis  
Innate immunity, in addition to classical AMPs, contains a large number of 
antimicrobial proteins and/or polypeptides that are generated by proteolysis of 
different proteins[139, 154, 155]. Our group has been a pioneer in showing that 
AMPs are not only synthesized or stored as inactive forms, but can also be 
generated by enzymatic cleavage of proteins such as such as complement[155], 
and kininogen[156], or found as epitopes in growth factors[157] and matrix 
proteins[158]. AMPs generated by this method are usually larger in size then 
classical AMPs, but the active domain of the peptide is cationic and in many 
cases has an amphipathic structure. Most of the peptides used for the study in 
this thesis are derived by modifications of parent peptides that are generated by 
proteolysis of host proteins involved in the innate immune system. 
 
Anaphylatoxin  
Anaphylatoxins are small molecules (9 kDa) that are generated as a result of 
the activation of the complement proteins[159]. These molecules play an 
important role in inflammation and are responsible for the activation of various 
components of the innate and adaptive immune system[160]. The anaphylatoxin 
C3a, generated by activation of complement factor C3 is 77 amino acids long 
(molecular weight of 9 kDa), contains α-helical cationic regions stabilized by 3 
disufide bonds and has a net charge of +2 (pI 11.3). The C4a anaphylatoxin is 
derived from  complement factor C4 by action of protease C1s, and is a 
cationic polypeptide with 77 residues and devoid of histidine, tryptophan, and 
carbohydrate[29]. C5a anaphylatoxin is 74 amino acids long with four helices 
connected by loops and is released from C5 by the action of C5 convertase. 
Furthermore, C3a, C4a, but not C5a, have been shown to be antimicrobial and 
antifungal [28, 155]. It was concluded from the sequence comparison that C3a, 
C4a, and C5a are a family of bioactive factors derived from precursor 
molecules that share a common genetic origin. However, alignment and 
homology (dN/dS) studies between C3a, C4a, and C5a indicate only a 30% 

homology between C3a and C5a; 36% homology between C5a and C4a [28, 29, 
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160]. It is a noteworthy point that, even though the primary sequences of C3a, 
C4a and C5a from various animals differ significantly, the crucial elements 
required for the stability and integrity of molecules are conserved, especially 
the cysteines for disulfide bonds, and arginines.  

 
 
Figure 5: Molecular models of human anaphylatoxins 
 
Kininogen 
Kininogen is a 120 kDa, multifunctional glycoprotein found in plasma and in 
mast cell α-granules. It consists of 5 different domains, each with different 
biological functions. It is a parent protein for bradykinin and serves as a 
cofactor for coagulation factor XI and prekallikrein assembly on biologic 
membranes. Unlike, the complement system, controlled cleavage of kininogen 
releases different peptides with potent vasoactive, proinflammatory, heparin-
binding, cell-binding and antiangiogenic properties[161]. It has been shown that 
kininogen when cleaved by mast cell tryptase and neutrophil elastase enzymes 
releases a domain 5 fragment, which is antimicrobial in nature[139]. 
Furthermore, cleavage by plasma kallikreins during contact system activation 
releases antimicrobial domain 4 peptides[156] as well as the bradykinin 
sequence. 

 
AMP classification 
All AMPs share roughly similar basic characters like positive net charge, 
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amphipathicity and hydrophobicity, thus it not possible to classify them based 
on it.  In addition, AMPs are present in all living forms and sequence diversity 
among them is so large, that it is difficult to classify them broadly except on the 
basis of their secondary structure[162, 163].  Strictly speaking, peptides dissolved 
in water assume a random coil conformation whereby the hydrophobic 
motifs/amino acids are buried inside, but on contact with lipid membranes or a 
different solvent interface e.g TCA, acetonitrile, they assume either an α or β-
sheet configuration.  Therefore, taking antimicrobial function into account, the 
shape taken by a peptide when it interacts with bacterial membranes is 
considered during classification.  
 
Group I (Helical peptides)  
e. g: Magainins, LL-37 
Helical peptides are the most abundantly distributed and widely studied groups 
of antimicrobial peptides[8, 28, 112, 164]. Among all AMPs with known secondary 
structures, 27% of them belong to this group. These peptides are totally 
unstructured in an aqueous environment, but adopt a helical conformation upon 
encountering hydrophobic solvents or lipid surfaces with a slight bend in the 
center[165]. Helix induction capability and flexibility is an important parameter 
for selective discrimination between the microbial and eukaryotic 
membranes[112]. From various structure-function studies, it has been confirmed 
that the first 3 amino acids in the helix at the N-terminal region are not 
important for activity, whereas truncation of the first 4 amino acids reduces the 
activity and further deletion abolishes activity and toxicity[110, 112, 166]. Capping 
at the N- and C-terminus stabilizes the helix further and results in salt 
insensitive antimicrobial peptides[167]. Peptides belonging to this group usually 
kill the microbes by creating channels in the membranes, leading to a loss of 
ion gradient. One of the best-studied antimicrobial, amphipathic peptide of this 
class is LL-37, as previously mentioned the first amphipathic α-helical peptide 
to be isolated from humans.  Furthermore, not only cationic peptides, but even 
hydrophobic and anionic peptides and α-helical peptides exist in this class. 
However the later class exhibit a lower selectivity towards microbes compared 
to that towards mammalian cells.  
 
Group II (Beta sheet containing peptides)  
e. g: Defensins 
In contrast to the helical peptides, β-sheet peptides are semi or cyclic molecules 
constrained by an intramolecular disulfide bridges. The best-studied peptides in 
this group are defensins and very little is known regarding how these peptides, 
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which have a constrained β-sheet structure, can permeablise  membranes. 
Based upon the results obtained with model membranes, some researchers 
believe that most β-sheet peptides act on intracellular targets, as they are very 
effective in inducing lipid flip-flop movement and undergoing membrane 
translocation[168]. It is widely accepted that for antimicrobial activity, 
cyclization, a low degree of amphipathic nature, and maintenance of certain 
degree of a hydrophobic and hydrophilic balance is important for this group of 
peptides [169-171].   
 
Group III (Over representation of one or more amino acids) 
e. g Tritrpticin, Indolicidin, Histatin 
Not all AMPs belong to the above-mentioned classes, some AMPs lack general 
classical secondary structure due to their unusual amino acid composition. 
Usually peptides grouped in this class are rich in proline and/or glycine or 
tryptophan or histidine amino acids. Interestingly, proline rich peptides can’t 
form amphipathic structures but adapt a polyproline helical structure[172] and 
form hydrogen bonds and Vander-waals interactions with membrane lipids 
instead of intermolecular bonds[169]. Indolicidin is the best-studied AMP in this 
class due to its high tryptophan and proline content. Indolicidin is found in 
bovine neutrophils[173] and is 13 amino acids long, comprising 5 tryptophans,  
with a C-terminal amidation.  The exact mode of action of Indolicidin is still 
controversial. Falla et. al have shown that it creates a voltage induced channel 
[174] in the membranes, whereas Subbalaxmi et. al reported that it prevents DNA 
replication[175]. Based upon the contradictory results obtained with either live 
bacteria or model membranes, although controversial, it is widely agreed that 
indolicidin first forms informal aggregate channels in the membranes that are 
short lived and on collapse, the peptides are translocated into cytoplasm where 
they execute their final functions[174-178]. At present various studies are now 
been directed to delineate the role of multiple tryptophan residues in its 
biological activity as well as interactions with model membranes. 
 
Group IV (Looped peptides with single bond) 
e. g:Thanatin, Lantibiotics 
These groups of peptides are characterized by their looped structure imparted 
by the presence of a single bond (disulfide or amide or isopeptide bond). This 
group differs from the group II peptides in having only single disulphide bond 
and anti parallel β-sheet orientation. Lantibiotics belonging to this class are 
widely studied due to their unique biochemistry, genetic regulation, and a range 
of biological functions. Lantibiotics are small (19–38 amino acids) peptides 
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that undergo extensive posttranslational modification, especially dehydration of 
Ser and Thr residues in the propeptide to yield 2,3-didehydroalanine (Dha) and 
(Z)-2,3-didehydrobutyrine (Dhb), respectively. Later a lanthionine (Lan) or 
methyllanthionine (MeLan) bridge is created by addition of a stereospecific 
intramolecular Cys residue onto Dha or Dhb. This class of peptides, holds 
considerable potential in fighting existing and emerging infectious diseases 
because they are short in size, easy to synthesize and proteolytically stable. 
 
Biophysical parameters influence the antimicrobial activity of AMPs 
Selective toxicity is crucial for any antimicrobial peptides and to achieve this, 
molecules must have a set of biophysical themes or constrains.  Until now, 
various biophysical properties such as amphipathicity, hydrophobicity, charge, 
polar angles etc, are found to influence the interaction and insertion of AMPs 
into the membranes. It is most important to note that these constrains are 
interdependent and changing one will lead to changes in the other. It is 
noteworthy that many AMPs have two striking and unique biophysical features, 
i.e hydrophobicity and amphipathic nature, which is conserved in all the phyla 
and is roughly similiar in almost all the AMPs isolated from various sources.   
 
Sequence 
The most characteristic feature found in AMPs is conservation in function and 
no conservation in sequence and length. Interestingly, for many helical AMPs 
whatever might be the sequence, ~50% of amino acids are hydrophobic[179], and 
arranged in the pattern of i+3 or i+4[112]. The reason being, when the peptide 
assumes helical structures all the hydrophobic and hydrophilic amino acids are 
on two different planes forming a perfect amiphatic structure.  Even though 
there is no sequence homology among the AMPs belonging to similar families 
or isolated from the same animals, there is some degree of conservation of 
specific amino acids at significant positions. In most of the AMPs, aspartic acid 
and glutamic acid are rarely seen; whereas cationic amino acids like lysine or 
arganine are highly represented. In addition, cysteines and tryptophan residues 
are involved in disulfide bonds and hydrophobic interactions, respectively. It 
has been concluded that the binding of peptides to the interface was mediated 
by lysine residues which formed H-bonds with either the phosphate oxygen 
atoms or the glycerol oxygen atoms on the lipid head groups[180]. In addition to 
strong electrostatic interactions, arginine and lysine have been shown to 
contribute more towards peptide-membrane interactions, due to their long side 
chains which penetrate deep in the membrane core[181].  It is quite usual to find 
glycine at the C- or N-terminal position as it is a good capping agent, helix 
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stabilizer and provides protection from amino or carboxypeptidases[112, 164]. The 
fundamental reason for the different sequence, but common antimicrobial 
function, is due to the immuno relativity problem i.e, necessity of the host 
immune system to adapt successfully to different environments by retaining its 
efficiency against specific microbial pathogens[164]. In addition, AMPs have 
evolved to act against distinct microbial targets that differ in their membrane 
characteristics, and in different physiological conditions 
 
Net charge (Q) 
Many AMPs characterized so far have been shown to have a net charge of +2 - 
+9 due to the presence of lysine and/or arginine in highly defined cationic 
domains[182]  and the absence of aspartic or glutamic acid[183]in such regions. It 
is widely accepted that cationicity is primarily responsible for the initial 
electrostatic interaction of the antimicrobial peptide with the negatively 
charged membrane surface of the bacteria[183, 184].  Bacterial membranes have 
~50 % higher membrane potential (∆Ψ) than mammalian cells due to the 
presence of LPS and teichoic or teichuronic acid, which impart the additional 
negative charge on the surface[182]. Recent studies with magainin[185] and other 
helical peptides[112, 179] have shown that a direct correlation exists between 
charge and potency[112], and increasing the charge enhances the activity and 
specificity, up to a limit. However, increasing the charge beyond +7 doesn’t 
increase the activity due to strong interactions between the peptide and the 
phospholipid head groups, which prevents structuring[186] and translocation into 
the deeper layers of membranes [112, 182, 186-188].  
 
Conformation or shape (χ)  
Even though more than 1400 AMPs have been isolated from diverse 
phylogenetic sources and having different sequences, they can be grouped into 
three classes based upon the conserved structure and charge; like α-helical, β-
sheet or extended helices and loops. The α-helical antimicrobial peptides are 
the most abundant form isolated from both lower and higher animals such as 
arthropods, amphibians and mammals[183]. Most AMPs are random coils in 
solution and their insertion into membrane drives transition of random coil to 
helical structure.  This transition is a must for the interaction of hydrophobic 
amino acids with the non-polar residues in the lipid bilayer core.  For an 
efficient antimicrobial action and low toxicity, α-helical peptides should be 
flexible, because rigid structures are found to increase the toxicity without 
increasing the antimicrobial activity [33, 112]. β-sheet classes of AMPs are a quite 
diverse group of molecules with several anti-parallel β strands stabilized by a 
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series of disulfide bonds. Less is known about the structures of extended 
helices and loops[183, 189]. Despite these structural differences, all AMPs share a 
unique topology such as positive net charge and amphipathicity with a distinct 
hydrophobic and hydrophilic surface.  
 
 
Amphipathicity (A)  
Amphipathicity is traditionally defined as a relative abundance and distribution 
of hydrophobic and hydrophilic residues or domains within a peptide[183, 184]. 
Peptides with a perfect amphipathic nature when plotted on a Schiffer – 
Edmundson helical wheel show that basic and polar residues are aligned on a 
portion of the helical cylinder whereas the lipophilic side chains occupy the 
remaining surface. The proportions of each surface varies from one peptide to 
another[190].  

 
 
Figure 6:  Schiffer – Edmundson helical wheel projections 
 
Most α-helical peptides have a periodicity of 3-4 residues per turn, optimal for 
interaction with the amphipathic bilayered membranes[112]. All AMPs form an 
amphipathic structure upon interaction with the membranes in order to 
accommodate the inherently amphiphilic nature of the membrane lipid matrix. 
It is noteworthy that in most AMPs, the amino acids leucine, alanine lysine 
and/or cysteines are well represented. These amino acids have a strong 
propensity to stabilize helix or form a disulphide bond[28, 189].  The propensity of 
peptides to form helical structures is known to be influenced by N- capping 
agents such as glycine and helix stabilising amino acids like leucine, alanine 
and lysine, which are commonly found in most of the AMPs[112, 164]. Various 
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studies have shown that increasing helicity moderately influences the activity 
of peptides against negatively charged surfaces, but has a significant effect on 
cytotoxicity[112, 191-193]. Interestingly, α-helical peptides were found to be toxic 
towards eukaryotic cells when compared to β-sheet peptides with an identical 
composition, charge and hydrophobicity[194].  In helical peptides, amphiphilicity 
and hydrophobicity are closely linearly related because hydrophobic residues 
occur periodically in doublets or triplets alternating with similar patterns of 
polar amino acids[189]. The linear relationship between amphipathicity and 
hydrophobicity in AMPs indicate that there is a requirement for a characteristic 
balance between them. 
 
One quantitative measure of amphipathicity, as introduced by Eisenberg[195], is 
hydrophobic moment (MH). Hydrophobic moment is the hydrophobicity of a 
peptide measured for different angles of rotation per residue. The hydrophobic 
moment is calculated as the vectorial sum of individual amino acids 
hydrophobicities, normalized to an ideal helix[196]. In other words, it is a 
measure of the probability that the peptide at any particular position is located 
at the interface between the interior of the protein and the surface, or more 
exactly, that the peptide separate hydrophobic and hydrophilic regions[189, 197]. 
Moment helps one to recognise amphiphilic structures by identifying where the 
residues on one side of the structures are more hydrophobic than on the other. 
Studies with magainin as a model peptide have shown that increasing MH 
doesn’t increase the antimicrobial activity but in turn increases the toxicity[187, 

198]. It is now widely accepted that amphipathicity, although not exclusively, is 
an important parameter involved in antimicrobial activity and toxicity[112, 180, 182, 

183, 192, 194, 199, 200]. 
 

Hydrophobicity (H)  
Hydrophobicity of a peptide is defined as the proportion of hydrophobic 
residues within a peptide and is typically around 50% for most antimicrobial 
peptides. Hydrophobicity is an important physico-chemical characteristic of 
AMPs, which is considered to be independent of other structural 
parameters[183]. Biophysical studies have shown that hydrophobicity can 
modulate the antimicrobial efficiency and specificity of individual α- helical 
AMPs, as they govern the extent to which a peptide can partition into the lipid 
bilayers[179, 201]. It is noteworthy that different strains and types of microbes 
respond differently to increasing hydrophobicity[202].  
 
Although hydrophobicity is required for membrane permeabilization, above 
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optimum levels leads to a loss of antimicrobial activity[183] and an increase in 
mammalian toxicity because of peptide association [112, 180, 203, 204]. Eventhough 
peptide self association is an important parameter for antimicrobial activity, a 
strong association will decrease activity, because the peptides fail to pass 
through the capsule and cell wall to reach the inner membrane. The reason for 
increased toxicity in eukaryotic cells is that most anionic lipids are localized at 
the intracytoplasmic leaflet and peptides with higher hydrophobicity can enter 
easily and damage the eukaryotic membranes[189]. Interestingly, a strong 
correlation has been observed between cytotoxicity and hydrophobicity[112, 205-

208]. There is no doubt in saying that cationicity is a primary determination 
factor, whereas amphiphilicity and hydrophobicity contribute to the structural 
features that govern the antimicrobial activity. It appears that there is a delicate 
and appropriate balance between them for selective toxicity against pathogens 
[112, 189].  
 
Polar angle (θ) 
Polar angle is a measurement of the relative proportion of polar versus non-
polar facets of a peptide conformed to an amphipathic helix[183]. For 
hypothetical helical peptides, composed solely of hydrophobic residues on one 
face and hydrophilic residues on the other side, the polar angle will be 180°. 
Most naturally occurring helical AMPs have a polar angle[164] of 140° - 180°. 
Unlike other biophysical characters, polar angle has been shown to influence 
the overall stability and half life of the peptide-induced membrane pores[209].  In 
numerous studies of, both natural and synthetic AMPs, peptides with a smaller 
polar angle i.,e  greater hydrophobic surface, have been shown to induce more 
extensive membrane permeabilization, translocation and pore formation rates 
than peptides with higher polar angle[187, 192]. Interestingly, peptides with higher 
θ formed stable pores due to their large surface of charged and /or more peptide 
molecules per channel[210]. Strangely, increasing the polar angle decreases the 
antimicrobial activity whereas no or little effect was found on cytotoxicity[191]. 
Studies show that a direct proportionality exists between θ and pore stability, 
whereas pore formation is inversely proportional to it[183]. To put it in a 
nutshell, polar angle has no significant role in antimicrobial activity, but plays 
significant role in pore stability.  
 
In conclusion, the activity of AMPs is not determined by a single factor but by 
a subtle combination of factors such as sequence, hydrophobicity and position 
of cationic residues. Beyond any doubt, amphipathicity, hydrophobicity, θ and 
conformation of a peptide play a role in the antimicrobial activity, however 
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there is no strict rule regarding the optimal number of charged and hydrophobic 
residues for maximum antimicrobial activity and minimum cytotoxicity as it 
varies widely among different peptides and within a given structural group[180].  
At this moment, it is widely accepted that important factors for the 
antimicrobial activities are; (i) for linear helical peptides a lack of secondary 
structure with an inducible secondary structure in hydrophobic environment; 
(ii) presence of amphipathic surface with charged residues in the center; (iii) 
minor peptide self-association in an aqueous environment[203, 211-214].  
 
Mode of action  
Despite the great success in identifying novel AMPs from various sources, 
there are still some areas where there is a great dearth of information, especially 
with regard to the mode of action. Enhanced understanding of this will be of 
great use in peptide-based drug designing [215-217]. Even though AMPs belong to 
innate immunity, the mechanism by which they kill the microbes is quite 
different from that of cytokines and phagocytes.  
 
Before we look at the mode of action, we have to understand the membrane 
biology of bacteria, fungi and eukaryotic membranes, which are the primary 
target for most AMPs. Universally, all cell membranes are fluid mosaics of 
proteins and phospholipids, which are arranged as bilayers with hydrophobic 
and hydrophilic domains.  However, there exists a significant lipid 
compositional difference between the prokaryotic and eukaryotic membranes as 
well as among cell types. Bacterial membranes are made up of negatively 
charged phospholipids such as phosphatidylglycerol (PG), cardiolipin (CL), or 
phosphatidylserine (PS)[218], which are stabilized by the divalent cations such as 
Mg+2 or/and Ca+2. Even though there is not much difference in lipid 
composition, Gram-negative bacteria differ from Gram-positive bacteria. They 
have a smaller peptidoglycan layer and an outer membrane, in addition to a 
cytoplasmic membrane containing lipopolysaccharides (LPS), which acts as 
permeability barrier[219]. In contrast to bacteria, fungal membranes are rich in 
phosphomannans and other related constituents such as negatively charged 
phosphatidylinositol (PI), phosphatidylserine (PS), and diphosphatidylglycerol 
(DPG), which give a higher negative charge surface for the membranes [184, 202, 

220].   
 
On the other hand, mammalian membranes are rich in sterols and zwitterionic 
phospholipids with neutral net charge including phosphatidylethanolamine 
(PE), phosphatidylcholine (PC), or sphingomyelin (SM). Moreover, cholesterol 
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is present in significant amounts in mammalian membranes and can reduce the 
activity of AMPs by affecting the fluidity and dipole potential of 
phospholipids, in addition to stabilizing the lipid bilayers and delaying the 
binding of peptides to the membranes [221, 222].  Therefore, sterols in the 
mammalian membranes are thought to be involved in differentiating 
mammalian and fungal cells from prokaryotes[222]. However, cholesterol in the 
membrane is not the sole molecule that influences the specificity because 
Fusiarum moliniforme, fungi contain cholesterol and yet are sensitive to 
cecropin as the ergosterol containing Fusiarum oxysporium and Aspergillus sp 
[163, 223, 224]. These studies point out that in addition to cholesterol, membrane 
potential and asymmetric distribution of phospholipids in eukaryotic 
membranes contributes to prevention AMPs binding [40, 221]. Thus, a higher 
proportion of negatively charged lipids on the surface monolayer of the 
microbial cytoplasmic membrane plays an important role in the selectivity and 
binding of antimicrobial peptides for bacterial cells over eukaryotic cells. In 
other words, composition difference likely provides an important determinant 
by which AMPs selectively targets microbial versus host membranes. 
  
A widely accepted notion is that, electrostatic interaction between the 
positively charged amino acids and negatively charged lipopolysacharides 
/phospholipid head group of the target cell is involved in the binding and 
accumulation of the peptides on the surface of the membrane. Thereafter bound 
peptide lies on the membrane with its long helix axis parallel to the membrane 
surface until a threshold concentration is reached. Threshold concentration is 
defined as the concentration at which peptides assembled on the surface of the 
membrane undergo a second round of reorganization[183].  Parameters that are 
likely to influence the threshold concentrations are the propensity of self-
assembly or oligomerization, fluidity, biochemical properties of peptides 
(amphipathicity, hydrophobicity, hydrophobic moment, and polar angle), 
phospholipids composition etc[184, 225]. Once the threshold concentration of 
peptides are accumulated on the surface of the membrane, peptide-peptide and 
peptide–lipid interactions will create a complex structure, which is associated 
with the specific antimicrobial action. 
 
Virtually peptides are inactive at lower concentrations or until the threshold 
concentration is reached on the surface of membrane. Once it is reached, most 
peptides undergo a final conformational transition leading to formation of 
patches of hydrophobic and charged residues that permit the peptides to interact 
strongly with the membrane. These interactions can be relatively selective for 
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bacterial membranes due to their high concentration of anionic lipids at the 
surface. After the final change, peptides enter into the interfacial (hydrophobic 
and hydrophilic) region of the bacterial membrane surface by electrostatic and 
hydrophobic interactions. However, peptide association with membranes is 
quite strong and devoid of any covalent association; therefore killing curves 
may reflect the time required for microbiocidal activity, as indicated by loss of 
colony forming units in viable count assays[219].  
 
Unfortunately, there is no clear-cut evidence or proof to distinguish the 
peptides as either membrane disrupters or non membrane disrupters, due to the 
fact that a peptide may act as membrane disruptive against one strain and 
metabolic inhibitor for another[215]. Moreover, the result depends upon the 
membrane characteristics and metabolic state of the target cell, and this will 
determine the mechanism of action, concentration used and potency of the 
peptide[33, 226]. However, the exact mode of action of AMPs is considerably 
debated. Based upon the evidence available three models have been proposed, 
and its generally agreed that peptides either follow one or both of the methods 
to kill the microbe [33, 183]. 
 
Barrel stave model 
Barrel-stave model, also known as helical bundle model, was first proposed by 
Ehrenstein and Lecar in 1977[227]. According to the barrel stave model, a 
variable number of individual peptide molecules, known as “stave” are 
arranged in ring like structure to form a barrel like pore or channel, thus the 
name describe the overall topology of the channel. In this mechanism, peptide 
hydrophobic surfaces interact with the acyl chains of lipid in the membrane and 
their hydrophilic surfaces point inward producing an aqueous pore consisting 
of more than four peptides [227, 228].  A crucial step in this model is that peptides 
have to recognise each other in the membrane bound state.  It is highly 
energetically unfavorable for a single peptide to traverse the membrane, hence 
the peptides aggregate on the surface until the threshold concentration is 
reached and then insert into the hydrophobic core of the membrane by 
undergoing a conformational phase transition, forcing polar–phospholipids 
head groups aside to induce localized membrane thinning[182]. This event is 
followed, by additional recruitment of peptides around/in the channel, leading 
to an increase in pore size and stabilization, thus killing the microbe by leakage 
of intracellular components. Interestingly, a large number of membrane 
conductance studies with Alamethcin[229], Pardaxin[230] and α-5 segment of the 
Cry delta-endotoxin family[231] have shown that transmembrane pore formation 
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is not a single step process but involves multiple steps, and this needs to be 
further investigated [182, 229].   
 
However, it is very clear that not all peptides follow this mechanism. 
Theoretically, it is not possible for peptides with high charge and 
hydrophobicity to use this mechanism. Peptides that follow use method should 
adopt amphipathic structures, with their net charge localized along the 
backbone should be near neutral, inorder to avoid intramolecular repulsion of 
positively charged side chains in the peptides and collapse of the pore [221, 232]. 
Therefore, peptides with large numbers of lysines or arginines spread across the 
peptide chain cannot permeate the bacteria or eukaryotic membrane using the 
barrel stove model.  
 

  
 
Figure 7: Mode of action of membrane active AMPs 
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Toroidal pore model   
The toroidal pore model, also known as as wormhole mechanism, is one of the 
well-characterized peptide membrane interactions[182] Many peptides use this 
mechanism e.g dermaseptin[233], magainin[210, 225, 234], protegrin[235] and 
melittin[236]. Even though it appears that the barrel stave (Figure 7a) and the 
toroidal pore (Figure 7b) model are the same, there is primary difference in the 
architecture and composition of the pore formed. In later model, peptides are 
always associated with the lipid head group even when they are inserted 
perpendicular into the lipid bilayers (Figure 7b).  
 
In this mechanism, peptides bind to the surface of the membrane and then 
undergo a conformational change. The hydrophobic residues of the bound 
peptides displace the polar head groups creating a breach in the hydrophobic 
region and inducing positive curvature strain in the membrane [237, 238]. At the 
threshold concentration, peptides aggregate to form complexes, reorient and 
transverse across the membrane, such that the polar residues are no longer 
exposed to the hydrocarbon chains of the membrane. The positively charged 
amino acid spread along the peptide chain are in contact with the phospholipids 
head group during the process of peptide transverse along the membrane thus 
leading to formation of composite dynamic peptide-lipid supra molecular 
pore[225].  
 
Carpet model 
The carpet model, is the first and best described model to explain the mode of 
action of dermaseptin. [239]. As per the model (Fig 7c), peptide monomers at 
high concentration are spread over the membrane as a carpet with the 
hydrophilic surface of peptides facing the phospholipids head groups. This 
binding displaces the phospholipids, leading to changes in the membrane 
fluidity, bilayer curvature and integrity. Once the peptide threshold 
concentration is reached, the membrane is subjected to unfavorable energetics 
leading to disruption and collapse [60, 232].  According to Shai and Oren, peptides 
with a large positive charge spread across the peptide chain and a moderate 
hydrophobicity will kill the microbes using the mode of action described by the 
carpet model [232].  The presence of negatively charged lipids is important for 
this model because, in their absence the peptides repel each other, due to 
electrostatic forces, and are not able to assemble on the surface of the 
membrane. Furthermore, peptides that permeablise the membrane by this 
model can adapt different structures such as cyclic or linear on binding to the 
membrane. Recently a number of peptides, including deremaseptin natural 
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analogues[240], cecropins[241], LL-37[242], caerin[243], trichogin GA[244], 
melittin[245], ovispirin[246]  etc have been shown to use this mechanism. 

 
Metabolic inhibitors 
Historically, it is presumed that the primary targets for AMPs are lipid 
membranes and doesn’t involve any stereoselective interaction with an enzyme 
or lipid or protein receptor because of any significant difference in the 
antimicrobial activity between D and L- forms of peptides [247, 248]. However, 
recent studies of the D- and L enantiomer variant of various peptides have 
shown differences in the spectrum and antimicrobial activity, thus suggesting 
existence of alternate methods/targets[249, 250]. Single monomers can be 
transferred across the membrane without being entrapped in the hydrophobic 
core due to their low dielectric constant and inability to establish hydrogen 
bonds. Strangely, some few studies carried out with intact bacteria showed that 
peptides can be translocated across the membrane, block the essential cellular 
processes and kill the bacteria without damaging the membrane extensively[251, 

252]. Very recently, multiple cell targets or alternative mode of action have been 
demonstrated for AMPs. These include, inhibition of nucleic acid synthesis 
(Pleurocidin, Buforin–II)[175, 251], RNA synthesis (Bac5,Bac 7)[253], Protein 
synthesis (Indolicidin , PR-39, Attacins)[172, 175, 254] enzymatic activity 
(Pyrrhocidin, Apidaecin and Drosocin)[255, 256],  ATP efflux (histatins)[79, 124, 127, 

128] and cell wall synthesis (Nisin)[257].  
 
Interestingly, whatever might be the target site or mode of action, every peptide 
has to primarly interact with the membrane [258]. It is likely that the mode of 
action of individual peptides may vary in accordance with the bacteria targeted, 
concentrations at which they are assayed and the physical properties of the 
interacting membranes[33]. Due to technical difficulties, mode of action studies 
have been carried out with artificial model membrane systems or with 
membrane potential sensitive dyes and fluorescent labeled peptides[103] 
consisting of one or two components of microbial origin e.g LPS, LTA[28, 112, 114, 

157, 204, 259-261]. But in the true sense, model membranes don’t resemble biological 
membranes, since they lack the lipid heterogeneity, membrane proteins and 
efflux pumps controlling the flow of ions and other molecules (polyanionic 
molecules such as DNA, RNA etc)[219]. Due to this inherent problem, it is 
difficult to establish a perfect correlation between the minimum concentrations 
needed to obtain activity against model membranes and microbes. 
Nevertheless, model membranes have been useful in defining the factors 
involved in peptide membrane interactions.   
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Various attempts to crystallise peptide in the lipid membranes have met with 
failure. Moreover each experimental method provides a slightly different view 
of the peptide activity and no single technique is capable of adequately 
determining the mechanism of action of the peptides. Hence a combinatorial 
approach is best, where a variety of methods are employed and the combined 
results are considered[182, 183]. Monitoring voltage dependent channels provides 
information about the stability and formation of peptide induced pores whereas 
secondary structure orientation of the bound peptide is given by CD 
spectroscopy[262-264]. Studying the interaction between AMPs and phospholipids 
in model membranes and electron microscopy, in addition to advanced 
techniques such as Fourier Transform Infrared (FTIR) Spectroscopy, Raman 
spectroscopy and fluorescence spectroscopy, CD optical spectroscopy, NMR, 
and X-ray crystallography provides more insight than using a single 
method[262]. 
 
Most cationic peptides that have been characterized as membrane 
permeablizers could probably have other modes of action on living cells, as 
these studies were carried out on model membranes in the presence of artificial 
medium, which do not reflect the true physiological environment and high 
concentration of peptides[33, 262]. Unfortunately, inclusion of a particular peptide 
into a structural group doesn’t give any indication about its mode of action nor 
its spectrum of activity, as the molecular mechanism of AMPs depends upon a 
number of parameters such as amino acid sequence and arrangement, peptide 
concentration and degree of hydrophobicity. As per Zhang et. al, peptides with 
similar structures and/or with minor difference in sequence show a significant 
difference in mode of action[33, 265].  Therefore, every peptide has to be 
investigated thoroughly before confirming its mode of action.  
 
Basis for antimicrobial activity vs toxicity 
The important property of AMPs is their target specificity by which they kill 
microbes but not mammalian cells. Although a lot of information has been 
described about the peptides structure and activity, very little is known about 
the molecular basis of marked differences in peptide activity and structure in 
detail. Notably, basic rules governing the differences in selectivity and toxicity 
among peptides remains to be fully understood[266]. Although, this thesis tries to 
explain these factors, studies with other classes of peptides and using different 
methodologies will likely further add to our understanding. According to Yount 
and Yeaman[183], the major themes which are responsible for selective toxicity 
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are (i) difference in membrane composition (ii) conformational dynamic 
flexibility and peptide association, which allows peptides to reconfigure on the 
bacterial membrane, but not elsewhere (iii) target cell energetics, which retards 
or enhances the peptide attachment to the surface (iv) restricted access of the 
peptide to highly vulnerable areas or tissue such as blood, internal organs, etc. 
 
It has been proposed that the negatively charged outer surface of bacteria and 
the higher negative transmembrane potential (∆Ψ) accounts for the preferential 
binding of AMPs, which have a net positive charge[221]. For example, normal 
pathogenic bacteria in the mid logphase have a ∆Ψ ranging from -130 to -150 
mV. On the contrary eukaryotic cells have a ∆Ψ ranging from -90 to -110 mV. 
In addition, fluidity of bilayers, dipole moment, curvature and content of acidic 
phospholipids such as PG or PS in bilayers also plays a minor role in the 
activity. The significance of these factors is more prominently seen for the 
activity difference among the sub strains of the bacteria.[267-269]. Even though, 
no correlation has been found between LPS/LTA binding and antimicrobial 
activity, a clear and direct correlation has been found between the order of 
efficiency to permeate model membranes and potency of peptides[112, 261]. 
Therefore, a relative difference in the membrane architecture has been 
attributed to selectivity of AMPs action [191, 221, 270].  
 
Under normal circumstances, human cells are resistant to AMPs, but some 
AMPs such as, LL-37 and DP1, show cytotoxicity at high concentrations. 
Therefore, cytotoxicity of the AMPs should be assessed carefully with an 
understanding of the limitation of the experiment. The hemolytic assay, is 
routinely used to assess cytotoxicity of peptides. Human erythrocytes are used 
as a safe, simple way to demonstrate toxic ability of peptide against human 
cells, with good noise to signal ratio.  However, data derived from in vitro and 
ex vivo erythrocyte assays or hemolysis have limited utility of such assays, 
which are carried out in austere buffer rather than in complex biomatrices and 
physiological settings in vivo[271]. Most AMPs are devoid of any antimicrobial 
activity and or cytotoxicity in the presence of metals, pH and serum[112, 114, 204, 

271, 272]. Thus the degree to which antimicrobial peptides permeabilise or lyse 
human erythrocytes may not reflect their relevant potential cytotoxicy in vivo.  
 
The fundamental reason for a requirement of higher concentrations of AMPs 
for toxicity is due to the lower negative charge and membrane potential, in 
addition to the presence of cholesterol [222, 273]. Cholesterol has a condensing 
effect on the membrane by increasing lipid order while only marginally 
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reducing fluidity of the alkyl chains. Then condensing effect will increase the 
bilayer thickness and reduce the lateral density fluctuations, thus preventing or 
delaying the peptide from binding and reaching the threshold concentration. 
Even though normal eukaryotic cells can resist AMPs action, tumor cells can’t. 
This is due to the partial loss of lipid symmetry and architecture which leads to 
an increase of negative membrane potential, thus facilitating helping in 
efficient binding of AMPs to membranes[274].  It is note worthy that the 
maximum activity of AMPs typically occurs in the low micromolar range, 
although there is significant variability in the ability of AMPs to kill specific 
bacteria. In vitro antimicrobial activity is rapid and occurs at low ionic strength, 
and low concentration of divalent cations and plasma proteins.  
 
Optimization strategies to enhance the activity 
Many of the naturally occurring AMPs are not optimised for efficient activity 
and need to be improved, before they could be used as therapeutics. Due to 
their ease, modifications in charge and hydrophobicity have been a favorite 
method for increasing the activity, however over increasing often leads to the 
development of toxic peptides in addition to loss of activity and/or spectrum[112, 

114]. Recently various other methods were tested using native templates to 
generate more efficient AMPs, such as QSAR[112, 275, 276], altering structure by 
cyclisation[277, 278], introducing fluorine atoms or trifluromethyl groups[279], 
increasing positive charge or hydrophobicity by tagging [204, 270] etc.   
 
Random mutagenesis 
Random mutagenesis includes methods that modify natural peptide by 
addition/deletion/replacment of single or more residues or truncations at the N- 
or C- terminal or generation of chimeric peptides using a combination of both 
methods. Unfortunately, random mutagenesis is informative only in a few 
circumstances, and often raises more questions than the answers it provides[164]. 
Therefore this method is rarely used unless to answer a specific question or for 
generation of ultra short peptides[114].  
 
Quantitative structure-activity relationships (QSAR) 
QSAR is a mathematical relationship between biological activity of a molecular 
system and its geometric and chemical characteristics. Most structure-function 
studies provide a working conceptual model of bioactive models. In summary, 
QSAR studies attempt to find a consistent relationship between biological 
activity and molecular properties, so that these “rules” can be used to evaluate 
the activity of new compounds. Much like other chemical molecules, AMPs 
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can also be easily improved with appropriate amino acid substitutions, provided 
the structure-function relationship (SAR) and factors that govern the specificity 
and toxicity are known. AMP based QSAR studies involve limited sets of 
systemic modifications of residues in naturally occurring molecules to form 
optimum or amphipathic structures, which are then subjected to determination 
of biological activity range via a number of methods. In these studies, instead 
of using a pool of amino acids for analysis, only a few amino acids with 
specific characteristics, such as e.g basic (lysine or argnine) or hydrophobic 
amino acids (alanine, leucine, phenylalanine or tryptophan), are used in order to 
obtain a peptide with maximum activity and minimum toxicity towards the 
host. The major advantage of QSAR studies is that it reduces the number of 
peptides to be analysed and the experiments to be done in order to obtain 
meaningful data and a peptide with desired characteristics [164, 275]. Furthermore, 
in QSAR studies, due to the technical difficulties and experimentation 
limitations, mostly in vitro studies are carried out, such as RDA, MIC assay, 
bacterial membrane/ model membrane lysis, kinetics studies, time killing 
experiments etc, whereas extensive in vivo studies are very seldom performed 
[164, 280]. 
 
Various SAR studies indicate atleast seven parameters (size, sequence, charge, 
amphipathicity, hydrophobicity, helical content, distance between the 
hydrophobic and hydrophilic faces of the helix) that can influence the spectrum 
and activity range of helical peptides. However, preferentially it is wise to 
study the role of characteristics, such as charge, hydrophobicity, 
amphipathicity, aromatic amino acids rather than other factors, due to the 
specific conditions needed for the membrane binding. From the structure-
function based studies with various AMPs, it has been learned that 
antimicrobial activity is essentially dependent upon hydrophobicity, charge and 
amphipathicity, and the extent of role played by these factors depends upon the 
bacteria. On the other hand, selective toxicity depends more upon the 
amphipathicity and environmental conditions [112, 275, 276].  Therefore, results of 
the SAR studies should be assessed with great care. Nevertheless, QSAR 
studies help in a greater understanding of the biophysical properties and in 
generating molecules with required activity in robust manner, which is required 
in an industrial setting. 
 
Increasing the proteolysis resistance 
The other widely used method is to reduce the protease sensitivity and increase 
the half-life of the peptide under in vivo conditions. In order to increase the 
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protease resistance, various strategies have been proposed such as cyclisation, 
use of non natural amino acids[103, 281, 282], amidation at the N-terminus[113], 
introduction of disulphide bonds[86], preventing the protease binding site by 
replacing amino acid[283], modifying the peptide bonds by alkylation of the 
nitrogen bonds[284] and mixing with a gel matrix such as PEG[83] to form 
complexes. The half-life of a peptide is highly enhanced by conjugation of the 
free amino groups of the peptides with PEG as this prevents the attack of 
proteases by steric hinderence[83]. Interestingly, reduced protease susceptibility 
and enhanced activities was obtained by introducing disulphide bonds or 
lactum bonds in indolicidin and cecropin-melittin hybrid peptide, 
respectively[33, 285, 286].  It is noteworthy, that in addition to increased 
antibacterial activity, introduction of disulphide bonds in the sakacin peptide 
leads to broadened spectrum of the peptides[287]. Indeed, these studies show the 
effectiveness of this method; strangely many people have not used these 
methods in their studies to enhance the antimicrobial activity of their native 
peptide, probably due to the difficulty of introducing the bond after peptide 
synthesis.   
 
Significance and other functions of AMPs 
The name “antimicrobial peptides or natural antibiotic” has strongly biased 
interpretation of the function of AMPs and delayed the discovery of other 
functions[40]. Increasing new evidence is indicating that the role of AMPs in 
host defence mechanism goes beyond the direct killing of microorganisms. 
AMPs, in addition to their bactericidal and fungicidal activities in host tissues, 
exhibit a plethora of activities such as stimulating cell proliferation, activating 
the immune system, and exhibiting cytotoxic effect on tumor cells[288]. 
Furthermore, most AMPs possess antiviral, antitumor[289], angiogenesis, and 
vasculogenesis[290, 291] properties and immuno-modulatory activity such as 
promotion of wound healing[219, 292-294], inhibition of LPS induced pro-
inflammatory responses[295-297], recruiting leukocyte cells[298], chemokine 
production[89, 299-302], and anti inflammatory properties[303-305]. The primary 
reason for multiple functions of AMPs is their amphipathic and cationic charge, 
which gives them an ability to interact with a wide variety of receptors instead 
of a specific target. Based on these multiple roles of AMPs, many researchers 
are strongly arguing that there exists a certain degree of coupling between the 
innate and adaptive immunity, which influences the quantity of the immune 
response and damage/pathogen clearance effect [294, 306-308].  
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Problems and bottlenecks in use of AMPS as therapeutics 
From the time of AMPs discovery, microbiologists have been tempted by the 
idea to develop them into 21th century novel antibiotics. The recent rise in 
antibiotic resistance has drawn the attention of researchers and companies 
towards these molecules. Most companies are trying to develop peptides as 
promising therapeutics due to their small size, wide-spread occurance in all 
living organisms, long evolutionary history, potential ability to overcome 
bacterial resistance and the added benefit of delivery routes other than 
intravenous injection [309]. However, the biggest hurdle is to develop these 
evolutionary conserved and interesting molecules into peptide therapeutics by 
overcoming the limitations imposed by nature from time immemorial. 
 
 In all living forms, the various biological processes are controlled by 
regulatory processes comprising of initiation or inhibition via specific protein-
protein interactions. Thus, peptides and proteins are well suited to control 
complicated processes occurring in biological systems. This unique feature 
should put peptides on the top of a “probable future therapeutic molecule” list. 
But a look at the FDA approved list of peptide and protein based drugs shows 
that they form a very small group. Like in all drug developments, despite the 
promising results in animal disease models and pharmaceutical companies 
appreciation of the worth fullness of peptides, there are obstacles that remain to 
be solved before the wide-spread development of peptides as therapeutics 
kicks-off is achieved. The major issues that needs attention are susceptibility of 
peptides to proteolytic enzymes, lack of information regarding antigenicity, 
immunogenicity, potential toxicities of relatively large and highly charged 
peptides, ability to achieve high microbicidal activity under physiological 
conditions and comparatively high costs associated with peptide synthesis[33, 

310].   
 
Synthesis 
Even though a huge source of literature has been generated to date, not a single 
molecule has been introduced into clinical use, due to the difficulty in 
synthesizing these molecules. Currently, there are three methods for the 
production of antimicrobial peptides: isolation from natural sources, chemical 
synthesis and expression using biological systems. Isolation from natural 
sources is important for novel peptide discovery, but may not always be 
practical to obtain a sufficient amount of materials required for detailed 
biophysical and biochemical characterization. For clinical trials and use, you 
should have a method whereby large quantities of the molecules can be 
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produced in a relatively simple and less expensive way. It is beyond doubt to 
say that that the use of a synthetic peptide approach, in comparison to the 
molecular cloning technique, has rapidly expanded this field. The typical 
standard peptide synthesis approach, Fmoc method, can allow the synthesis of 
peptides of maximum 40-50 amino acids due to the inefficiency of coupling of 
longer chains.  
 
The other most commonly used protein expression systems include bacteria, 
yeast, insects, plants or cell-free systems, but in comparison to bacterial 
expression system, the cost involved in other systems may pose a problem. In 
spite of technical difficulties, very recently plectasin was isolated from the 
fungus Pseudoplectania nigrella and expressed in Aspergillus sp by using 
recombinant technology[42]. However, expression of AMPs using genetic 
engineering methods in bacteria is the best-advocated method, due to the 
practical importance of large-scale peptide production by fermentation 
technology. However, direct expression of antimicrobial peptides is usually 
difficult, since these peptides are toxic to the expression host. Therefore, these 
peptides are usually expressed as fusion proteins in protease-deficient bacterial 
strains such as E. coli BL21 in order to improve solubility and avoid 
degradation or toxicity to expressing cells[311, 312]. But the problem with 
expression of fusion proteins is the waste of energy/protein synthesis 
machinery, in addition to problems with cleavage and purification of the AMPs 
from the fusion molecules. If expressed individually, conditional toxicity is the 
major problem when synthesizing these molecules in bacteria, i.e, AMPs 
should not be toxic to the bacteria during the formation time, but should be 
active when used against the infectious bacteria. As a solution to this problem, 
Qing et.al developed pCold vectors which allow a high expression of the target 
gene by cold shock i.e, bacterial growth at 37°C and protein expression at 
15°C[313]. But the wide utitlity of this method in large-scale production is quite 
controversial.  
 
Unfortunately, most researchers and companies have experience in 
synthesizing large size proteins >50 kD, but very few people have experience 
of synthesizing molecules below 50 kD[314]. AMPs are less than 5 kD and they 
need to be active in specific conditions only. A literature review shows that not 
more than 8 papers have been generated which address this problem[314-318]. 
Production of novel AMPs in bacterial systems posess problems, which require 
new technological innovations to solve them. Solutions provided by this type of 
research have a wide applicability because nowdays the pharmaceutical 



__________________________________________________________ 

___________________________________________________________ 
-40-

industries are looking for small molecules with therapeutic potentials[319], in 
addition to patents and publications.  
 
Purification 
Despite low yields, maximum ∼500-1000 mg, the only current method of 
synthesizing the molecules is through chemical synthesis, which is quite 
expensive. The huge cost in peptide synthesis is due to the use of quite long, 
cumbersome and expensive synthesis procedures and the requirment of a 
purification step after each cycle. The other bottleneck is the purification step 
which follows the synthesis of each of the products used in the peptide 
synthesis [319].  Quite a lot of researchers are focusing in this area, but not much 
has been done particularly in the purification steps [320]. Most widely used step 
in purification is the use of HPLC alone or in combination with other methods. 
The main drawback of any single HPLC method is that it only provides 
negative identification i.e., it shows impurities that resolve from the main peak 
and not the impurities that co-elute.  Thus a single product has to pass through 
round of separate purification systems, which adds to the cost of the final 
product[320] and a loss of peptides in significant amounts.  
 
Cost aspects 
The principal reason, in addition to technical hurdles, why most researchers and 
companies are reluctant to promote the use of AMPs as standard antibacterial 
therapeutics is the cost involved in the production of AMPs. For treating a 
single patient with an infection, one may need up to mg amounts per kg body 
weight per day, and producing such a quantity through chemical synthesis will 
cost around 400-3000 SEK, which is far more expensive than current costs for 
antibiotics [321]. The cost of AMPs should be near or below the cost of 
conventional antibiotics, in order to be a real alternative or to be used in the 
clinic as therapeutics. However, identifying the exact sequences with 
antimicrobial and/or immune modulator-functions will help in generating 
peptides with shorter length, thus reducing the cost and toxicity 
 
Lack of specificity 
The most important and essential property of any therapeutic drug is its target 
specificity and non-toxicity to other components of the host. An ideal drug is 
one, which is small, stable, easy and cheap to synthesize, has low or no toxicity 
towards the host, high activity at physiological conditions and synergy with 
other drugs. Despite the extensive research work carried out during past two 
decades, unfortunately no ideal AMPs have been made. The major problem 
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with AMPs is their lack of unique specific target site and loss of activity in 
physiological conditions. Out of hundreds of AMPs discovered at crucial sites 
of infection in various cell types and in concentrations well above the MIC 
values, only very few were found to be functional in physiologicallly relevant 
conditions[258, 322-324].   However, infection model studies in animals have 
convincingly shown that cationic peptides are able to limit or clear the 
infection, despite the loss of direct antimicrobial activity under physiological 
conditions[324].   
 
By logic, peptides derived from human sources should not be toxic to humans, 
unfortunately this is not the case. Since AMPs share features with eukaryotic 
nuclear localization signal peptides, they are able to translocate into cells and 
cause apoptosis, mast cell degranulation; thus leading to cytotoxicity. However, 
the specific tissue distribution of an AMP indicated that AMPs toxicity depends 
more upon their environment. In my opinion, the loss of function in 
physiological conditions is probably a control mechanism to prevent the side 
effects of AMPs at unwanted sites. Furthermore, due to the rigid regulatory 
rules of various countries most of the pharmaceutical companies have devoted 
their attention to the development of AMPs more as topically applied agents 
than as internal drug agents[103].  
 
Protease susceptibility 
Sensitivity to proteases, unfavorable pharmokinetics and rapid clearance of the 
AMPs severely restricts their application as therapeutics. Interestingly, most 
pathogenic bacteria express specific and non-specific virulence factors such as 
endotoxins, proteases and peptidases in order to evade the host immune 
response. To circumvent these problems, various researchers have used the 
highly investigated method of introducing amidation at the N-terminus[113] and 
/or introducing D-amino acids in the place of the L-form at cleavage sites[113]. 
This approach works very well on a lab scale, but the synthesis of entirely D-
from peptide or in combination with L-form adds extra cost as well as technical 
troubles. Also peptides consisting entirely L-form are potential immunogens 
and could lead to side effects, including hypersensitivity reactions. In addition, 
there is little information about the general immunogenicity of a peptide with a 
combination of D and L amino acids.   
 
Half -life of AMPs 
Notably, a direct relationship is observed between the half-life and prolonged 
effect of peptide[325, 326]. Some researchers have used a novel approach, where 
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they fuse the peptides to albumin[327] or anti tissue factor Fab[309] by using a 
linker[327] or  peptide addition[328]. The intention is to increase the half-life of the 
peptides.  For unknown reasons, the half-life of albumin–peptide conjugates 
didn’t increase significantly in comparison to albumin, which has a half life of 
19 days[329]. In my personal opinion, it is quite dangerous to increase the 
stability of a peptide for a quite long time as it might lead to a host immune 
response against the peptide. Unfortunately, we have no complete information 
regarding the pharmacology and pharmacokinetics of AMPs, as very few 
studies have been done. Even with the minor information available there is 
urgent need to carry out additional studies on this issue, as it is needed to 
convince the investors/FDA authorities about its feasibility as therapeutics[33, 

163]. 
   
Probability of development of resistance by microbes to AMPs 
Cohabitation, in symbiosis or open warfare, over million of years resulted in 
host pathogen interactions and the key issues in pathogen survival are its host 
immune attack evasion. Successful pathogens have developed an array of 
inducible or constitutive counter measures to avoid multiple host defence 
mechanisms[183]. It has been proposed that microbes can’t develop resistance to 
AMPs based on two points. Firstly, the membrane has to be modified and this 
is so finely tuned that modifications extensively in it are difficult and have 
more adverse reactions more than advantageous.  Secondly, due to the presence 
of large numbers of AMPs in the host, it looks like microbes can’t be resistant 
to all AMPs at the same time. However, we should not underestimate the power 
and magnitude of the microbial evolution. Individual cellular resistance 
mechanisms may drive the emergence and propagation of the antimicrobial 
resistance, as occurred with antibiotics[86].  Recently, reports have emerged 
showing that indeed S. aureus can resist various AMPs just by reducing the net 
charge of the membrane by introduction of cationic residues[330]. Interestingly, 
not all microbes are following the same strategy, e.g Serratia sp and 
Morganella sp express an outer membrane that lacks the acidic lipids for 
appropriate peptide binding[103], Shigella sp release plasmid DNA which 
inactivates AMPs by binding to them and S. pyogenes[331],  Pseudomonas 
sp[332]add Schmidtchen et al., Mol Microbiol 2004, S. aureus[115], S. 
epidermidis[333] & Porphyromonas gingivalis[217]  produces proteases which 
cleave AMPs. Interestingly, some bacteria such as Pseudomonas sp and S. 
epidermidis, in addition to protease production use other methods such as 
forming biofilms, changing hydrophobicity and permeability of outer 
membranes[334-338] to protect themselves from the AMPs. It is noteworthy, that 
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not all bacteria use a simple mechanism, S. enterica[339] , S. aureus[330, 340, 341] 
and S. epidermidis[341]  use  PhoP/PhoQ and/or analogous antimicrobial peptide 
sensing system consisting of complex two or three components to sense and 
block the activity of AMPs. Not all factors produced by microbes attack the 
host derived AMPs, but attack the control mechanism encrypted in the host to 
control a pathway. For example, S. aureus produces clumping factor A, which 
binds to C3a and enhances its degradation by factor I, which regulates the 
complement factor[342, 343]. In addition to this, some pathogens such as 
Pseudomonas sp, E. faecalis, S. pyogenes degrade host macromolecules e.g 
GAG, collagen, such that they interfere with AMP function[344-346]. A critical 
look at all the resistance mechanisms reveals that whatever might be the 
molecular strategy employed, one primary goal is to reduce the negative charge 
on the membrane surface[330, 337, 347]. 
 
In spite of conclusive evidence regarding resistance mechanisms shown by 
various pathogens in vitro, it is hard to believe that they similarly resist the 
AMPs under in vivo conditions, as strategies employed depend upon the 
physiological conditions[183]. It is noteworthy that, microbes which showed 
resistance to naturally derived AMPs such as defenisns, were found to be 
susceptible to synthetic AMPs[112, 337]. Nonetheless, advanced understanding of 
the mechanism of antimicrobial peptides action and resistance will reveal novel 
potentially vunerable targets for novel anti-infective agents. However, until the 
complete dynamics of the interaction of AMPs is clearly understood in 
physiological environments, it is most likely that AMPs may be initially used in 
therapeutics in synergy with antibiotics. 
 
Why we need research on AMPs? 
Without any doubt antibiotics are the most successful anti-infective agents used 
to control infectious diseases on the planet and the pharamaceutical industry 
has upgraded/modified the existing antibiotics and developed newer antibiotics 
in a timely fashion[12, 348]. Despite the unquestionable success of antibiotics, the 
major concern in the health care sector is increasing problem of antibiotic 
resistance, which rendered most current antibiotics useless against the 
pathogenic bacteria. If preventive measures such as antibiotic cycling are 
enforced antibiotic resistance might fall back[349], but will never reach zero. 
More over it leaves a mark in the microbe with every probability to rebound 
rapidly to become dominant on using the antibiotic. Resistance is a natural 
consequence of adaptation, an inherent factor in the evolution of organisms, 
hence it is impossible to stop antibiotic resistance altogether [350]. Bacteria’s fast 
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growth facilitates rapid genetic changes and adaptation of traits to a constantly 
changing ecosystem for better survival. Therefore newer types of molecules are 
needed, which can replace the antibiotics in the long run. 
 
Due to their broad-spectrum antimicrobial activity and multiple functions, 
AMPs are promising therapeutic agents and have every qualification required 
to be in the armamentarium of health care professionals in their fight against 
infectious disease. AMPs are versatile molecules with multiple functions in 
bridging the innate immunity response and adaptive immune response. Even 
though a substantial amount of work has been done, there are some areas, 
where concerted research efforts are needed, such as the role of AMPs in 
chronic diseases. The major drawback in identification of the true biological 
functions of AMPs is the lack of true representative models. Mice and humans 
have a different set up of AMPs, and thus don’t serve adequately to represent 
the human condition. Furthermore, the condition is not so different with 
knockout mice due to the inherent problem of synergistic activity of AMPs, 
complicating interpretation of in vivo studies.  
  
AMPs are present in almost all organisms across the phylogeny spectrum and 
are playing an active role in host defence from millions of years. It is somewhat 
enigmatic that microbes have failed to develop a complete defence mechanism 
against host defence peptides even after a constant exposure to them from 
millions of years[86]. Even though there are reports of AMPs resistance by 
certain microorganisms under in vitro test conditions, the likelihood of the 
emergence of resistance across the bacterial kingdom is considerably low, due 
to the fact that AMPs target unique and multiple target sites simultaneously, 
which are quite difficult to alter. Moreover, those strains that resist AMPs 
utilise complex machinery/pathways involving multiple genes and gene 
products and it is difficult to transfer the whole set of systems across the 
bacterial types in comparison to individual genes which cause antibiotics 
resistance[183]. The high degree of complexity of the mechanism is almost 
certainly the cause of the observation that it is extremely difficult to select 
cationic peptide-resistant mutants in nature. It is hard to believe literature 
referring to AMP resistance by a pathogen to a peptide under in vitro 
conditions, non-physiological environment, immune mechanism and 
synergistic molecules such as complement and other protein. Unlike antibiotics, 
which attack more specific molecular targets, AMP’s act on general but 
fundamental structural characteristics such as the bacterial cell membrane. 
AMPs destabilize and/or destroy the membranes either as a final target or in a 
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process to reach their target site, and changing the membrane architecture 
altogether is an impossible task for microbes. There is a minimum chance that a 
microbe develops resistance against a given AMPs as they act in synergy with 
other AMPs[80] and host defence molecules, thus heterologous peptide 
interactions will lead to overall net antimicrobial efficacy, even if  one peptide 
fails. Moreover it looks like antimicrobial peptide resistance is largely intrinsic, 
rather than acquired[183].  
 
According to some researchers, innovative strategies and drugs to combat 
bacterial infection will emerge from the research in innate immunity, especially 
AMPs[351, 352], as they represent natural mechanisms of combating pathogenic 
challenge by rapid microbicidal activity and there is no little doubt about the 
efficiency of AMPs as novel therapeutics[103, 183, 309, 353-355]. It is noteworthy that 
conventional antibiotics and analogues forms have failed dramatically to 
reverse the disastrous trend of antibiotic resistance in human pathogens, which 
is rising at an alarming rate. Thus AMPs offer several potential advantages over 
currently available and widely used antibiotics. 
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Conclusion 
Antimicrobial host defence peptides are widely distributed in animals and 
plants, as part of a strategy by innate immunity to control bacteria and prevent 
diseases. Even though AMPs were primarily discovered and thought to be 
natural antibiotics, the interest in AMPs has risen to a higher level, both in 
academic and industrial sector, with the discovery of immuno-modulatory 
function carried out by AMPs[356]. Even though there exists ambiguity 
regarding the primary role of AMPs in humans, to date, their primary role is to 
control the microbial infection, in addition to immunostimulatory and 
immunomodulatory functions related to both innate and adaptive immunity [118, 

294]. Whatever the case, AMPs offer some hope in the search for novel 
therapeutic approaches due to their dual function as antimicrobial agents and 
immune modulators.  
 
Antimicrobial peptides, described to date, are small and have marked cationic 
character as well as the propensity to form an amphipathic structure on 
encountering the lipid bilayers. Cationicity helps in initial binding of the 
peptides preferably to the bacterial surface and the amphipatic nature in 
combination with hydrophobicity helps in damaging the membranes. Unlike 
antibiotics, which kill every microbe, natural AMPs must spare the normal 
flora and kill only the pathogenic bacteria with some specificity. Futhermore 
they are optimised to function only in a given fluid composition and 
environment, thus avoiding cross-reactions. The primary task of AMPs is to 
prevent the colonisation and invasion of the host epithelia by potential 
pathogens.  
 
Despite technical hurdles, several peptides have advanced to clinical trials 
showing wide spread interest and commitment to see peptides in daily clinical 
use. There is no doubt in saying that in an age where most pathogens have 
developed resistance to commonly used antibiotics, AMPs are attractive 
worthwhile candidates to pursue as therapeutic molecules owing to their small 
size, wide spread occurance among animals and plants, potent microbial and 
immune modulation functions. In addition, they target the membranes of 
microbes, which are difficult to change, thus microbes have limited resources 
to fight back.  
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Present investigation 
 
Paper I:  Preservation of antimicrobial properties of complement peptide C3a, 
from invertebrates to humans 
 
Previously it has been demonstrated by our group that the human anaphylatoxin 
peptide C3a, generated during complement activation, exerts antimicrobial 
effects. In this work we used phylogenetic analysis, sequence analyses and 
structural modelling studies, paired with antimicrobial assays of peptides 
derived from various known C3a sequences to show that structural 
prerequisites governing antimicrobial activity can be traced from the human 
C3a molecule back to C3a molecules of invertebrates, such as those found in C. 
rotundicauda (the horse shoe crab; which is widely accepted as a “living 
fossil”). 
 
For the analysis, we selected all known animal C3a, C4a and C5a sequences 
and constructed a phylogenetic tree. We subsequently tested antimicrobial 
activity of these peptides in radial diffusion assays (RDA, measuring inhibition 
of growth) against P. aeruginosa. The results showed that crucial structural 
determinants governing antimicrobial activity have been conserved during 
evolution of C3a. Furthermore, C-terminal regions of the ancient C3a from 
Carcinoscorpius rotundicauda, as well as corresponding parts of human C3a, 
exhibited helical structures upon binding to bacterial lipopolysaccharide, 
permeabilised liposomes, and were antimicrobial against Gram-negative and 
Gram-positive bacteria. 
 
During our phylogenetic analysis, we observed that both C4a and C5a formed 
separate clades from C3a. Given this, we proceeded to examine if this also 
reflected a functional difference.  The results of the RDA experiments with 
human C3a, C4a, and C5a (the latter only available in des-Arg form) showed 
that C3a and C4a both exerted antibacterial effects, whereas the C5a-peptide 
was inactive against the panel of microbes tested. Molecular modelling of 
human anaphlatoxins showed that C5a lacked the typical C-terminal and 
antimicrobial protruding peptide. Thus, C5a displayed a significantly different 
structure when compared with both C4a and C3a,  
 
Paper II: Rational design of antimicrobial C3a analogues with enhanced 
effects against Staphylococci using an integrated structure and function-based 
approach 
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The starting point for this work was our previous finding that C3a molecules 
are subjected to strong and precise selection forces aimed at maintaining the 
structure and antimicrobial function.  Furthermore, the human natural C3a 
peptide, being active against several Gram-negative bacteria in vitro, displayed 
limited activity against the Gram-positive Staphylococcus aureus and Candida 
albicans. Therefore, in this work, we decided to design peptides that are active 
against S. aureus and  the fungus C. albicans by a strategy based on mimicking 
the evolutionary changes and using sequence dependent QSAR modelling on 
the original human C3a peptide CNYITELRRQHARASHLGLA. The results 
showed that peptides with a relatively high net charge (+ 6-7) and a propensity 
to adopt an α-helical conformation with an amphipathic character were active 
against Gram-positive Staphylococcus aureus. Another novel observation was 
that peptides with perfect helices were found to be highly hemolytic and 
displayed no added increase in antimicrobial activity in comparison with 
peptides having imperfect or flexible helices. Viable count analysis (bacterial 
killing) in physiological concentrations showed that selected peptides lost their 
toxicity but retained antimicrobial activity. Membrane permeabilization 
experiments with FITC and liposome leakage revealed that, most likely, these 
peptides kill the microbes by acting on and destabilising their membranes.  
 
In summary, we showed that antimicrobial activity is not governed by a single 
factor, but instead a combination of net charge, moderate amphipathicity and 
helicity are important for antimicrobial activity. By utilizing a low number of 
amino acid substitutions at strategical positions in the CNY20 peptide, we were 
able to develop peptides, which exert a significant activity on both S. aureus as 
well as C. albicans in contrast to the parent peptide. 
 
Paper III: Boosting antimicrobial peptides by hydrophobic amino acid end-
tags 
 
Here we demonstrate a novel approach for boosting activity of antimicrobial 
peptides through end-tagging with hydrophobic oligopeptide stretches. S. 
aureus and some other common pathogens have relatively low electrostatic 
surface potential, which can be further reduced by modifications in the cell 
membrane. Additionally, electrostatic driven peptide binding is salt sensitive, 
and bactericidal potency of such peptides at physiological ionic strength is 
limited. Therefore we proceed to investigate whether we can increase the 
antimicrobial activity at physiological conditions by adding a hydrophobic tag 
to AMPs. 
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In the present study we focused on two peptides derived from kininogen, 
GKHKNKGKKNGKHNGWK (GKH17) and HKHGHGHGKHKNKGKKN 
(HKH17), tagged them with different hydrophobic amino acids at both N or C-
terminals and tested them against S. aureus  in the presence/absence of salt. We 
observed that microbicidal potency increased with tag length, also in serum, 
and was larger for W and F stretches than for aliphatic ones. Of all, those tested 
peptides with longer hydrophobic tags, such as those containing 4 or 5 Ws,  
showed an appreciable activity in physiological conditions.   
 
Electron microscopy and FITC based membrane permeabilization studies 
showed that local perturbations and breaks were introduced in S.aureus after 
treatment with peptides. By using model phospholipid membranes, we could 
demonstrate that enhanced microbicidal effects correlated to a higher degree of 
bacterial wall rupture and the tagged peptide can very well differentiate 
between the bacterial (anionic and cholesterol-void) and eurakoytic 
membranes. In summary tagged peptides displayed low toxicity, particularly in 
the presence of serum, and resisted degradation by human leukocyte elastase, 
and staphylococcal aureolysin and V8 proteinase. 
 
 
Paper IV: End-tagging of ultra-short antimicrobial peptides by W/F stretches 
to facilitate bacterial killing 
 
This work is a continuation of paper III, where we investigated whether tagging 
by hydrophobic amino acid stretches can be employed to enhance bactericidal 
potency of ultrashort AMPs and still maintain limited toxicity.  Considering 
this, peptides derived by hydrophobic tagging at the C-terminal region of 
kininogen-derived peptide KNK10 and truncations thereof were analysed in 
RDA assay against S. aureus and E. coli in the presence of salt.  Results 
showed that through end-tagging, potency and salt resistance could be 
maintained down to 4–7 amino acids in the hydrophilic template peptide. Slot 
binding studies have shown that tagged peptides could still bind to the LPS and 
the binding is inhibited by heparin. Notably, experiments with tagged peptides 
in the presence of low ionic strengths showed increased eukaryotic cell 
permeabilization. However the toxic effects were lost at physiological ionic 
strength and in the presence of serum. Importantly, W-tagging resulted in 
peptides with maintained stability against proteolytic degradation by human 
leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. 
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Finally the biological relevance of these findings was demonstrated ex vivo for 
pig skin infected by S. aureus and E. coli. 
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Main conclusions 
 

• Antimicrobial domains of C3a are structurally and evolutionary 
conserved. C5a has evolved separately in higher organisms into a 
purely chemotactic molecule. 

• Antimicrobial activity is not governed by a single factor. Indeed a 
combination of net charge, amphipathicity and helicity control the 
activity as well as spectrum. By utilizing a low number of amino acid 
substitutions at strategical positions in the C3a-derived CNY20 
peptide, we were able to develop peptides, which exert a significant 
activity against  both S. aureus as well as C. albicans in contrast to the 
parent peptide even in the presence of plasma. 

• The antimicrobial activity of peptides can be boosted through end-
tagging with hydrophobic oligopeptide stretches The tagging, which 
does not detrimentally affect the proteolytic stability of the peptides, 
promotes peptide binding to bacteria and subsequent wall rupture. 

• Bactericidal potency of ultra-short AMPs can be enhanced by using 
end-tagging with hydrophobic amino acids while maintaining low 
toxicity. 
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