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“I encourage all of us, whatever our beliefs, to
question the basic narratives of our world, to connect
past developments with present concerns, and not to
be afraid of controversial issues.”

Yuval Noah Harari
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Popular science summary

You have most likely seen the tiny pesky flies sitting on your fruit basket or flying
around in your kitchen, especially during late summer. Have you ever wondered
from where these flies come from and how they find their way to your fruits?
These insects, known as vinegar flies or fruit flies, use all kinds of overripe and
fermenting fruit — rich in yeast and sugar — for feeding and breeding. Vinegar flies,
similar to other insects, rely on their strong sense of smell (olfaction) to find their
way to fruits, to find suitable partners for mating and good breeding spots. Vinegar
flies sense odor molecules in the environment by their organs of smell, the antenna
and maxillary palps, which have a similar function to the human nose. The fly
“nose”, like the human nose, is equipped with dedicated receptors that capture
odor molecules. These receptors do not detect odor molecule randomly, but
capture odors associated with needs and dangers. For example, the fly has several
smell receptors dedicated to odors coming from alcoholic fermentation and
activation of these receptors guides the fly to suitable food sources rich in sugar
and yeast (Paper I). Flies are also able to avoid toxic molecules and harmful
matters by their sensitive “nose”. Vinegar flies avoid carnivore feces as a breeding
site because of the smell of phenol, which is produced by pathogenic bacteria
presence in carnivore feces. Phenol accordingly alarms vinegar flies about the
looming danger of pathogenic bacteria (Paper II).

The fly “nose” has, however, more tricks up its sleeve. Flies, like other insects, are
in high risk of dehydration due to their small body size and small capacity to store
water, therefore, flies have an innate ability to find suitable humidity levels. Flies
can sense humidity changes in their environment trough humidity receptors,
located in a invagination of the antenna. Humidity information is then processed
together with thermal information in a dedicated region in the fly brain (Paper
I1I).

The vinegar fly is today a cosmopolitan species, which means you can find them
on all continents. However, the fly originated within southern central Africa
(including Zambia and Zimbabwe). Although flies are known as generalists, wild
populations of flies from Zimbabwe have a strong breeding preference towards
marula fruit. This fruit is seasonally abundant, native to Southern Africa, and is
presumably the ancestral host of the fruit fly (Paper IV).
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This pesky fly has been a superhero in biological science for decades and has
contributed to an astonishing amount of knowledge in genetics, neuroscience,
embryology and modern biomedical research. The findings of my thesis further
enhances the basic science behind olfaction and its mechanisms, the wild behavior
of flies, and introduces the genetic and neural basis underlying humidity sensation
in insects for the first time. These basic understandings may lead us to better
strategies for controlling insect pests, as well as human disease vectors such as
mosquitoes.
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Popularvetenskaplig sammanfattning

Du har sékert sett de sma irriterande flugorna sitta i din fruktskal och flyga runt i
koket, sdrskilt pd sensommaren. Har du nagonsin undrat varifran dessa flugor
kommer och hur de hittar till din frukt? Dessa insekter, vanligen kallade
bananflugor eller vindgerflugor, anvinder all slags 6vermogen eller ruttnande frukt
— ik pa jast och socker — till foda och for att foda upp larver.

Bananflugor ér, liksom andra insekter, beroende av sitt kédnsliga luktsinne for att
hitta foda, lampliga parningspartners och bra stillen att ldgga dgg pa sa larverna
far tillgang till mat. Bananflugor kénner doftmolekyler i omgivningen med hjélp
av sina luktorgan, ndmligen antennerna och maxillarpalperna, som har samma
funktion som véra nésor.

Flugans luktorgan &r liksom ménniskans néisa utrustad med dedikerade receptorer
som fangar upp doftmolekylerna. Dessa receptorer detekterar inte doftmolekylerna
slumpmassigt, utan fangar upp dofter associerade med behov och med faror.
Exempelvis har flugan flera luktreceptorer dedikerade till dofter fran
alkoholjdsning och aktivering av dessa receptorer leder flugan till lampliga
fodokallor rika pa socker och jast (Artikel I).

Bananflugorna kan ocksd undvika giftiga molekyler och skadliga &mnen genom
sina kénsliga luktreceptorer. De undviker koéttdtande rovdjurs exkrement som
dgglageningsstillen eftersom det luktar fenol, som produceras av patogena
bakterier i exkrementerna. Tack vare fenolen varnas flugorna for den hotande
faran med patogena bakterier (Artikel IT).

Bananflugan har fler ess i rockdrmen. Liksom andra insekter 16per den stor risk for
uttorkning beroende pé liten kroppsstorlek och lag kapacitet att lagra vatten.
Dérfor har flugorna en medfodd formaga att hitta lamplig nivd pa den relativa
luftfuktigheten. Detta ar ytterligare en orsak till att kdok dr en favoritplats for
flugorna. De foredrar en relativ luftfuktighet pa omkring 70%, vilket ar precis vad
kok ofta haller. Bananflugorna kan registrera fordndringar i den relativa
luftfuktigheten med hjilp av fuktreceptorer, vilka &dr beldgna i en réfflad del av
antennen. Den registrerade informationen bearbetas sedan tillsammans med
temperaturinformation i en dedikerad del av hjdrnan (Artikel I1I).

Bananflugan ér idag en kosmopolitisk art, vilket betyder att den aterfinns pé alla
kontinenter. Ursprungligen kommer den emellertid fran de sddra delarna av
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centrala Afrika (exempelvis Zambia och Zimbabwe). Aven om bananflugan ir
kind som en generalist globalt har vilda populationer av arten i Zimbabwe en stark
forkdrlek for marulafrukter nér det géller att foda upp sina larver. Marula &r ett
vanligt inhemskt trdd i hela s6dra Afrika och dess frukter finns i dverflod nir det
ar sdsong. Formodligen &r marula den ursprungliga vérdvéxten for bananflugan
(Artikel IV).

Den lilla irriterande bananflugan har visat sig vara en superhjilte inom biologi
under flera decennier och har bidragit till en forbluffande méngd ny kunskap inom
genetik, neurovetenskaplig embryologi och modern biomedicinsk forskning.

Resultaten i min avhandling 6kar ockséd de grundlidggande kunskaperna bakom
luktsinnet och dess mekanismer, beteendet hos vilda populationer av bananflugan
och pavisar for forsta gdngen den genetiska och neurala bakomliggande basen for
fuktsinnet hos insekter. Dessa grundliggande kunskaper kan komma att leda till
battre bekdmpningsstrategier mot skadeinsekter och mot smittbdrande insekter
som t.ex. myggor.

14
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The Scope of this Thesis

Animals, like humans, need to perceive their surroundings via their senses in order
to make sensible behavioral decisions, reproduce successfully, and survive. Most
animals do not only have more sensitive senses in comparison with humans but
have also evolved more sensory systems enabling them to cope with special
conditions in their natural habitat. Animals are equipped with audition, vision,
thermosensation, humidity sensation (hygrosensation), mechanosensation,
magnetoception, gustation, and olfaction which detects physical and chemical
changes in their habitats. Among these senses, olfaction is likely the most ancient
sensory modality. Insects, the most abundant and successful group of the animal
kingdom, predominantly use olfaction to find food, mates, breeding sites, and to
avoid dangers. Moreover, hygrosensation is vital for insects to find a suitable
habitat and to avoid risks of dehydration.

Our understanding of the molecular, neuronal, and morphological organization of
the insect olfactory system is today substantial, in large parts thanks to Drosophila
melanogaster and the wealth of sophisticated genetic tools available in this classic
model system. Our knowledge regarding the functional and molecular basis of
insect hygrosensation, is, however, limited.

The aim of this thesis is to investigate how the olfactory system of Drosophila
translates sensory inputs into behavioral responses (Paper I and II). Moreover, I
have also studied the organization of the hygrosensory system and how Drosophila
senses changes in humidity levels (Paper III).

Every biologist wonders about the origin of the creatures of earth and origin of
life. This central question stimulated another aim in this thesis, the search of wild
Drosophila melanogaster and its ancestral habitat (Paper IV).

This thesis begins with an overview of the fly and its astonishing contribution to
the field of genetics and biology. Then the organization and function of the
olfactory and hygrosensory systems are described. The thesis continues with the
results and discussions from the four papers dealing with aforementioned aims.
Finally, a conclusion and contributions to the field along with some ideas for
future studies are described.
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Background of the study

Drosophila melanogaster — Lord of the flies

Drosophila melanogaster or the vinegar fly (Figure 1A) has been one of the
primary laboratory model organisms for over a century. The use of the fly as a
genetic model organism goes back to the beginning of the 1900s with the work of
Thomas Hunt Morgan (Figure 1B) at Columbia University, where he and his
students were searching for a suitable animal model to study the laws of heredity.
Morgan settled on the fly, and soon isolated a white-eyed mutant (wild-type flies
have red eyes), and with the help of this sex-linked mutant he could show that the
chromosomes carries the hereditary material (Morgan, 1910). Morgan was
awarded the Nobel Prize in physiology or medicine for this discovery in 1933.
Apart from this important discovery, Morgan together with Calvin Bridges, Alfred
H Sturtevant, and Herman J Muller established most of the major principle of
classic genetics such as the nature of genetic linkage and genetic maps, the genetic
behavior of chromosome aberrations, the induction of gene and chromosome
mutations by radiation, and the discovery of mitotic recombination (Bridges, 1921;
Sturtevant, 1965). Calvin Bridges experimental evidence of genes and
chromosomes linkage and the term “nondisjunction” was published as the first
paper of the first issue of the journal Genetics (Bridges, 1916). Herman J Muller
won the Nobel Prize in 1946 for using X-ray radiation to induce mutations in the
fly (Muller, 1927). Since then, research using D. melanogaster has yielded
astounding insights into processes of cell and molecular biology, neurobiology,
embryonic development, learning and memory, behavior, and physiology. Fly
research has received six Nobel Prizes to date, with the most recent one in 2017
for the discoveries concerning the molecular mechanism underlying circadian
rhythms (Bargiello and Young, 1984; Bargiello et al., 1984; Zehring et al., 1984;
Siwicki et al., 1988; Hardin et al., 1990).

19



Figure 1. Drosophila melanogaster, Lord of the flies.
A) A female Drosophila melanogaster perched on one of its favorite fruits, orange. Photo: Marcus Stensmyr B) Thomas Hunt
Morgan (Columbia University, New York, USA), who introduced the fly as a genetic model organism. Photo: Wikimedia.

Today, the whole genome of D. melanogaster together with numerous tools to
manipulate the genome is available, which allow for e.g. functional dissections of
specific genes, as well as neuronal circuits (Adams et al., 2000). Therefore, mutant
flies can be engineered through selective removal or replacement of gene
sequences (Rong et al., 2002), the expression level of any gene can be reduced
using RNA interference (Dietzl et al., 2007; Ni et al., 2009), any gene can be
expressed in almost any tissue or cell using the yeast Gal4-UAS system (Brand
and Perrimon, 1993; Pfeiffer et al., 2008). It is also possible to visualize the
expression of genes of interest and monitor neural activity by introducing reporter
genes, such as calcium indicators and green fluorescent proteins via the UAS
system (Nakai et al., 2001; Marella et al., 2006). Moreover, with the UAS system
one can also introduce genes that can modify neuronal activity, such as the
tetanus-toxin light chain protein (TNT), which blocks synaptic transmission
(Sweeney et al., 1995), or shibire that leads to depletion of vesicles in the synaptic
termini (Kitamoto, 2001), or even light sensitive proteins, such as CsChrimson,
which is a red-shifted channelrhodopsin enabling light activation of neurons
(Klapoetke et al., 2014). With the aid of these tools, scientists have even
succeeded in studying genes that are involved in neurodegenerative human
diseases and their underlying mechanism such as Alzheimer and Parkinson (Lu
and Vogel, 2009) in the fly.

D. melanogaster is an opportunistic human commensal species with a
cosmopolitan distribution. This cosmopolitan species has originated within sub-
Saharan Africa as evident from biogeography and genetic variation studies
(Lachaise et al., 1988; Pool and Aquadro, 2006). A recent genomic study revealed
that southern central African populations (e.g. Zambia and Zimbabwe) have the
highest genetic diversity, suggesting that the ancestral range of D. melanogaster
may be located within this area (Figure 2A) (Pool et al., 2006 and 2012). Most of
Zambia and Zimbabwe are covered by seasonally dry miombo and mopane
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woodlands, which have subtropical climate with a hot dry season from August
through October and a hot wet season from November to March. Interestingly,
African D. melanogaster in comparison with its close relatives has higher
tolerance to dehydration and severe high temperatures (Stanley et al., 1980) that
would fit its ancestral subtropical climate conditions.

D. melanogaster is considered a generalist, and can utilize a wide range of
decaying vegetables, fruits and other plant matter as feeding and breeding
substrate. Knowledge about the breeding substrates in the wild natural habitat of
the fly is scant, at best, since essentially all reported populations even within
Africa have been caught from sites within or near human settlements (Lachaise
and Silvain, 2004). D. melanogaster, however, could maintain permanent
populations in wild habitats after human activity has diminished and produce wild
non-commensal generations. Lachaise (1988) reported 25 host plant species used
as larval breeding resource by D. melanogaster in the Afrotropical region, e.g.
Lobelia inflorescences in montane forests or Pistia stratiotes (water salad) from
Kivu in Congo (Lachaise et al., 1988). 16 out of 25 identified host plants were
native, which is high ratio for a domestic species like D. melanogaster.

Although vinegar flies are known as a generalist, they show strong egg-laying
preference towards Citrus spp. — especially orange — over other type of fruits
(Dweck et al, 2013). Citrus spp. originated in South-east Asia, hence, this fruit
cannot be the hosts with which the fly has evolved. The ancestral host fruit of D.
melanogaster, along with the history of this species evolution to a human
commensal species is accordingly unknown.

The lord’s close relatives

D. melanogaster belongs to the melanogaster species group of the Sophophora
subgenus (or genus pending whom you ask). The melanogaster group is
geographically widespread and contains over 170 species (Schawaroch, 2002).
The melanogaster species subgroup compromises nine closely related species,
occupying different ecological habitats and has probably evolved 13-15 million
years ago (Figure 2B). Species within this subgroup are ranging from single host
specialists to generalists (Lachaise et al., 2000). Drosophila sechellia is the most
highly specialized member of this subgroup, and preferentially lay eggs on noni
fruit (Morinda citrifolia), a fruit native to the Seychelles islands (Figure 2C).
Morinda fruit, which ripens throughout the year, is toxic, or at least not palatable,
to other members of the melanogaster subgroup because of its high continent of
octanoic and hexanoic acid (Lachaise et al., 1988; Dekker et al., 2006).
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Figure 2. Drosophila melanogaster and its close relatives.

A) Putative ancestral range of D. melanogaster showed in the dashed circle. B) Phylogeny of the nine related species in the
melanogaster species subgroup. C) Noni fruit (Morinda citrifolia), host of D. sechellia Photo: E. Guinther. D) Pandanus cone,
seasonal host of D. erecta. Photo: B. Navez.

Drosophila erecta and Drosophila orena are the two known seasonal specialist of
this subgroup. D. erecta, which is endemic to gallery forests of West-central
Africa, is a seasonal specialist on ripe fruits of Pandanus spp. (Figure 2D).
Pandanus cones ripen once a year for two months, during which time D. erecta is
exclusively found on this fruit. While D. orena for a long time was only known
from a single location on a sole mountain in Cameroon (Tsacas and David, 1978),
a recent discovery of another population on the West African island of Bioko
revealed that the species has a close, but seasonal association with waterberrys
Syzygium staudtii (Comeault et al., 2017).

On the other hand, Drosophila simulans and D. melanogaster are the only two
cosmopolitan species of this species subgroup. As opportunistic human
commensals, these two species have effectively spread out in the world by human
transportation (David and Capy, 1988). D. simulans, however, is less associated
with human activities and does not readily enter buildings, therefore, it is not
found in all places in the world (Rouault and David, 1982). D. melanogaster is
more tolerant to broader temperature variation and is accordingly more abundant
in temperate regions than D. simulans. These two species are so similar
morphologically that D. simulans was initially described as D. melanogaster in the
beginning of the 20" century (Capy and Gibert, 2004).
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Olfaction — Lord of the senses

Animals in their natural habitat are surrounded by volatile chemicals, some of
these chemicals will convey important information to the perceiving animal
regarding e.g. presence of food, sexual partners, and potential dangers. Most if not
all animals are also equipped with peripheral detection systems for volatile
chemicals, and dedicated brain centers, which translate the detected volatiles, or
odors, into appropriate behaviors. The whole procedure of these transformations is
called olfaction. Olfaction is probably the most ancient sensory modality in the
animal kingdom (Strausfeld and Hildebrand, 1999). Over 2000 years ago,
Aristotle noticed that animals rely more on their sense of smell for their survival
than humans do, however, the principle and function of the olfactory system in
general, is quite similar in all organisms ranging from a little fly to a large
mammal.

The peripheral olfactory system of the fly

Flies are able to detect an array of volatile chemicals via two pairs of olfactory
appendages on the head, the antennae and maxillary palps (Figure 3A). These
organs are covered by sensory hairs, porous cuticular structures called sensilla
(Figure 3B). Each sensillum houses dendrites of olfactory sensory neurons
(OSNs), which express a distinct olfactory chemoreceptor (Figure 3C). These
chemoreceptors come in three flavors, odorant receptors (OR), ionotropic
receptors (IR) and gustatory receptors (GR), with each capturing specific
environmental volatiles.
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Figure 3. The peripheral olfactory system of the adult fly.
A) Head of the fly. B) Different types of sensilla (sensory hairs) are covering the two olfactory organs. C) Each sensilla house
dendrites of 1-4 OSNs and axon of these OSNs projects to the antenna lobe.
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The antennal olfactory sensilla of the fly are divided into four different
morphological and functional types: basiconic, trichoid, intermediate, and
coeloconic sensilla (Figure 3B). Each of these sensilla houses one to four OSNs.
The maxillary palp has one type of basiconic sensilla (Figure 3B), each housing
two OSNs (Vosshall and Stocker, 2007). Antennal sensilla of different
morphological types have special functions to some degree; OSNs housed in
basiconic sensilla are tuned to fermentation, microbial, and plant volatiles,
whereas coeloconic OSNs primarily detect amines and acids (Benton et al., 2009;
Yao et al., 2005). Trichoid OSNs are mainly responding to pheromones, such as
(Z)-11-cis-vaccenylacetate (cVA), which mediates courtship behaviors via
activation of specific trichoid neurons (Clyne et al., 1997; Ha and Smith, 2006;
Kurtovic et al., 2007). The function of intermediate sensilla remains somewhat
unclear, but at least one type of OSN housed in this type of sensilla is involved in
oviposition site selection (Dweck et al., 2013). Most of the maxillary palps’ OSNs
detect only one single chemical and mediate short and long range attraction to
specific chemicals such as 4-ethylguaiacol, furaneol and methylether (Dweck et
al., 2016). In total there are 1100-1250 OSNs on the antennae (Stocker, 2001) and
120 on the maxillary palps, which in total are expressing 62 ORs, 16 IRs and 12-
14 GRs (Fishilevitch et al., 2005; Couto et al., 2005; Hallem et al., 2004; Benton
et al., 2009; Menuz et al, 2014).

The larval chemosensory system

The structure of the adult and larval olfactory pathways is quite similar even
though the number of OSNs is less in larvae in comparison with adults (21 OSNs
in larvae (Cobb, 1999). The main larval chemosensory organs are located in the
cephalic lobe, and include the dorsal organ, ventral organ and terminal organ
(Singh and Singh, 1984). There are three other organs located on the thoracic and
abdominal segments, which are probably involved in contact chemoreception
(Scott et al., 2001). The dorsal organ expresses ORs and GRs and acts as both an
olfactory and gustatory organ, while the ventral and terminal organs only have a
taste function (Singh and Singh, 1984; Singh, 1997). OSNs on the dorsal organ
respond to a wide variety of chemicals, such as alcohols, acetates, aldehydes,
esters, and ketones (Cobb et al., 1992; Cobb, 1999; Heimbeck et al., 1999; Cobb
and Domain, 2000; Boyle and Cobb, 2005). The olfactory response of larvae is
age dependent; with stronger responses to chemical stimuli observed by increased
age from first instar larvae to third instar, however, late third instar larvae shows
very weak olfactory responses (Kaiser and Cobb, 2008). The olfactory information
detected at the peripheral level, converge into the larval antennal lobe (LAL)
(Tissot et al., 1997).
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Odorant receptors

Odorant receptors (ORs) are the most prominent component of the olfactory
pathway. Genes encoding olfactory receptors were first discovered in the rat by
Buck and Axel in a 1991 milestone study (Buck and Axel, 1991), which led to the
2004 Nobel Prize in medicine or physiology. The olfactory receptor genes in
vertebrates (and nematodes) belong to the family of seven transmembrane G-
protein-coupled receptors (GPCRs). In 1999, with the identification of OR genes
in D. melanogaster (Clyne et al., 1999; Gao and Chess, 1999; Vosshall et al.,
1999), brought up an important distinction between the mammalian and insect
olfactory systems, namely that the Drosophila OR genes showed no sequence
similarity to the GPCRs of vertebrates and nematodes, but form a unique family.
The insect ORs has moreover, a reversed transmembrane topology to that of
GPCRs (Benton, 2006). The number of ORs varies between species, e.g. from 47
in the cotton leafworm (Spodoptera littoralis) (Poivet et al., 2013) to around 400
in the Indian jumping ants (Harpegnathos saltator) (Zhou et al., 2012), whereas
mammalian genomes contain around 250 ORs in platypus to over 2000 in the
African elephant (Niimura and Nei, 2007; Niimura et al., 2014).

The odorant receptor co-receptor, Orco, is highly conserved among insects,
showing over 90% sequence homology between closely related species (Vosshall
et al., 1999). Orco is co-expressed with the conventional receptor in both adults
and larvae (Fig. 3b). Orco is involved in dendritic localization and critical for the
function of the tuning ORs, but does itself not directly respond to odorants
(Larsson et al., 2004). Orthologs of Orco from other animals than insects has not
been reported yet.

Individual ORs has been examined using loss-of-function studies. Flies lacking
specific ORs show a reduction in both behavioral and electrophysiological
responses to distinct odors (Stortkuhl and Kettler, 2001; Dobritsa et al., 2003;
Jones et al., 2007; Kreher et al., 2008; Kurtovic et al., 2007; Semmelhack and
Wang, 2009). For example, mutant flies lacking a functional Or67d receptor
revealed that the neurons in which this receptor is expressed regulate mating
behavior. Both female and male Or67d mutant flies show defective mating
behavior, including male-male courting (Kurtovic et al., 2007).

In Drosophila, like mammals, each OSN typically expresses a single OR gene
apart from Orco, although, there are six classes of OSNs that express more than
one OR. In four of these classes, the co-expressed ORs are closely linked and are
probably the result of a recent gene duplication. An example of this case is found
in the so-called ab3A OSNs, which co-express Or22a and Or22b (Hallem et al.,
2004; Couto et al., 2005), but where only Or22a appears to confer odor sensitivity
(Dobritsa and et al., 2003).
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Ionotropic receptors

Another family of insect olfactory receptors are the IRs, which belongs to the
highly divergent family of Ionotropic Glutamate Receptors (iGluR) (Benton et al.,
2009). IRs do not only have a role in olfaction but also act as sensory receptors for
humidity, temperature, and taste. Drosophila adults express at least 57 IR genes.
At least 16 of these are expressed in the antenna (Benton et al., 2009; Croset et al.,
2010). IRs expressed in antennal neurons are found in the arista (a feather-like
protrusion from the third antennal segment), the sacculus (a three-chambered pit
on the third segment), and in neurons housed in coeloconic sensilla. Up to three
IRs are usually co-expressed in one sensory neuron together with Ir8a, Ir25a, or
Ir76b, which are broadly co-expressed and likely act as co-receptors, required for
proper IR function (Benton et al., 2009; Abuin et al., 2011; Hussain et al., 2016).
The ligands of antennal IRs differ from ORs. For instance, [r8a positive neurons in
coeloconic sensilla respond mainly to carboxylic acids and aldehydes, while Ir25a
or Ir76b expressing neurons predominantly detects amines (Silbering et al., 2011).
For example, Ir41a is co-expressed with Ir76b. Activation of these two IRs enables
the fly to detect polyamine volatiles from a long range, and induces egg-laying
(Hussain et al., 2016).

In the first two chambers of the sacculus, combinations of Ir25a, Ir40a, Ir68a, and
Ir93a are expressed, which are all required for humidity sensing in the fly (Enjin et
al., 2016; Frank et al., 2017; Knecht et al., 2016 and 2017). In the third chamber of
the sacculus, Ir64a is expressed with Ir8a as a co-receptor and mediate acid
sensing (Ai et al., 2010). In the arista, Ir21a is expressed with Ir25a where they
mediate cool sensing (Ni et al., 2016). Ir21a and [r25a have a similar function in
larvae (Ni et al., 2016). Ir25a and 1r93a are also expressed in the thermosensory
cells of the arista (Benton et al., 2009).

IRs are also expressed on the proboscis, pharynx and legs of adults and on the
taste organ of the larvae. Ir76b is not only expressed in OSNs but also in gustatory
receptor neurons (GRNs). Activation of Ir76b together with Gr66a in the taste
neurons, helps the fly to evaluate polyamine presence in decaying fruits (Hussain
et al., 2016). IRs expressed in the male foreleg (Ir52c and Ir52d) become activated
in contact with the female and mediate courtship in male flies (Koh et al., 2014).
In summary, IRs perform a number of different functions, most of which likely
unrelated to olfaction.

Gustatory receptors

GRs are expressed in sensory neurons on the mouthparts, maxillary palps, legs,
wings, as well as the ovipositor (Stocker 1994; Vosshall and Stocker 2007; Ling et
al., 2014; Depetris-Chauvin et al., 2015). A few are also expressed in OSNs on the
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antennae (Jones et al., 2007; Kwon et al., 2007). The GR genes in insects have no
sequence similarity to mammalian taste receptors, but are closely related to the
insect ORs. Around 12-14 GRs are expressed in OSNs on the antenna (Menuz et
al, 2014), including Gr21a and Gr63a, which together function as CO, detectors
(Jones et al., 2007; Kwon et al., 2007). Another GR with high expression on the
antenna is Grl0a, which is expressed in neurons in a large basiconic sensillum, but
has unknown function (Hallem et al., 2004). The remaining GRs expressed on the
antenna are presumably sugar detectors (Dahanukar et al., 2007).

GRs expressed on the labellum are mainly sweet and bitter detectors e.g. Gr5a,
which together with a subset of related receptors detect sugar and trigger feeding,
whereas, Gr66a and related genes, confer responses to bitter compounds and
causes aversive behavior (Dahanukar et al., 2001; Chyb et al., 2003; Weiss et al.,
2011). For example, flies detect and avoid caffeine via a combination of the bitter
receptors Gr33a, Gr66a, and Gr93a (Moon et al., 2006; Moon et al., 2009; Lee et
al., 2009). Male flies avoid courting other males by tasting (Z)-7-tricosene, a male
sex pheromone and bitter stimuli via activation of Gr66a on the labellum (Lacaille
etal., 2007).

Around 39 GRs are expressed in the larval taste organs, and most of them are
supposed to be bitter receptors (Colomb et al., 2007; Kwon et al., 2011). Gr21 and
Gro63 are also expressed in larvae and activation of these receptors cause aversive
behavior in larvae as well (Jones et al., 2007; Kwon et al., 2007).

Gustatory sensory neurons (GSNs) from proboscis, mouth parts, and legs transmit
gustatory information to the subesophageal ganglion (SOG), a dedicated taste
center in the brain (Wang et al., 2004).

The central olfactory system of the fly

The OSNS, after detecting and discriminating odor molecules, send their axons to
the brain. In the antennal lobes (AL), these axons coalesce and form glomeruli,
which are spheroidal structures (Figure 4). The AL is the insect counterpart to the
mammalian olfactory bulb. Like olfactory bulbs, ALs pre-process and integrate
olfactory information (Strausfeld and Hildebrand, 1999; Ache and Young, 2005).
Each AL of the fly consists of 49 glomeruli. Each single class of OSNs expressing
the same OR genes projects to a distinct glomerulus in the ALs, where axonal
branches synapse with dendrites of the corresponding class of projection neurons
(PNs) (Vosshall et al., 2000; Goa et al., 2000; Bhalerao et al., 2003). PNs can be
uniglomerular (branch in one glomerulus) or multiglomerular (branch in many
glomeruli) (Galizia, 2014). The glomeruli of the AL are also innervated by local
interneurons (LNs), which regulate the activities of PNs and assist communication
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Figure 4. The Drosophila brain.

Axons of OSN projects to the antennal lobe (AL), which is the primary olfactory center in the fly brain (dashed yellow circles).
Projection neurons transfer the integrated olfactory information from the ALs to the mushroom body (MB) and terminate in the
lateral horn (LH).

within and between glomeruli (Stocker et al., 1990; Wilson and Laurent, 2005;
Seki et al., 2010; Wilson, 2013).

The axons from uniglomerular excitatory PNs relay olfactory information to the
mushroom body (MB) (Figure 4), a center for olfactory learning and memory
(Davis, 2005; Heisenberg, 2003), and to the lateral horn (LH), a less-understood
higher-order center presumed to direct olfaction-mediated innate behaviors
(Heimbeck et al., 2001). MBs are also involved in locomotor activity (Martin et al.
1998), male courtship behavior (Sakai and Kitamoto, 2006), and sleep regulation
(Joiner et al., 2006; Pitman et al. 2006).

Antenna - a multifunctional sensory appendage

The insect antenna is a multifunctional sensory appendage that does not only
detect volatile chemicals, but it is also involved in a number of other tasks, such
as gustation, tactile sensation, thermosensation and hygrosensation (Schneider,
1964 ; Schafer and Sanchez, 1973; Norris and Chu 1974 ; Toh, 1977 ; Schaller,
1978; Altner and Prillinger, 1980 ; Chapman, 1982; Keil and Steinbrecht, 1984 ;
Steinbrecht 1984; Lee and Strausfeld 1990). For instance, the nocturnal cockroach
determines objects in the dark by the tactile sense on the antenna (Okada and Toh,
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2000 and 2006; Okada et al., 2002). Cockroaches can also detect changes in the
temperature by cold and hot receptor neurons on the antenna inhibited by heat and
excited by cold (Yokohari, 1999; Mizunami et al., 2016). Moreover, some of the
antennal sensilla of cockroaches carry moist and dry detecting neurons that
respond to the changes in humidity as well as changes in air pressure (Tichy and
Kallina, 2010). However, the molecular basis and the neural mechanism
underlying hygrosensation is not well understood.

Hygrosensation - The sixth sense

Humidity is a major environmental factor affecting animal health, their
reproductive success, and their geographic distribution (Shelford, 1918). Small-
bodied insects have a small storage capacity for water and a large surface area for
losing it (Kuhsel et al., 2016), they are therefore more sensitive to humidity
variation in comparison with mammals and birds (Ludwig, 1945). To avoid rapid
dehydration, the insects body is covered by a layer of wax and long-chain cuticular
hydrocarbons (CHs). A recent study on Drosophila showed that the proportion of
certain cuticular hydrocarbons (CHs) enables Drosophila to resist dehydration
(Ferveur et al., 2018) and a gene named dsat/, which regulate CHs production in
the fly, is involved in dehydration resistance (Ferveur et al., 2018).

More notably, unlike mammals and worms, insects have dedicated hygrosensory
receptor neurons (HRNs). Insects use humidity cues to locate oviposition sites,
identify hosts and nectar-bearing flowers, and to find a suitable habitat based on
humidity range. For example the female mosquito Anopheles gambiae — the vector
of malaria — use humidity cues to find stagnant water to lay her eggs (Okal et al,
2013). Moreover, the humid and warm breath of animals along with olfactory and
vision cues guides A. gambiae and other heamatophagous species to favorable
hosts for biting and feeding (van Breugel et al., 2015). The hummingbird moth
Hyles lineata likely identifies flowers abundant in nectar based on humidity cues
(von Arx et al., 2012).

Functional anatomy of hygrosensation in insects

Studies of honeybees, locusts, cockroaches and stick insects revealed that their
antennae are equipped with a small number of hygrosensory sensilla (Altner and
Loftus, 1985). Unlike olfactory sensilla, the hygrosensory sensilla are poreless, but
some carry a plug on the apical surface, called a molten pore, the function of
which is unknown. Hygrosensory sensilla are in most insects located in an
invagination of the antenna where they are protected from wind, unlike the
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olfactory sensilla, which are in a position with highest exposure to the surrounding
air (Tichy and Loftus, 1996; Enjin, 2017). The hygrosensory sensilla house the
HRNS, reported for the first time from the honeybee Apis mellifera (Lacher, 1964).
The layout of hygrosensory sensilla is similar between most insect species; one
moist neuron together with one dry neuron and one hygrocool neuron are located
in a single hygro-sensillum forming a triad (Altner and Loftus, 1985).
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Outcome and discussion of the
studies

I. The chemical ecology of the fly

Chemical compounds are involved in most interactions between animals and their
environment. Chemical ecology is the study of these interactions from a chemical,
genetic, neural, behavioral, and ecological perspective. This fascinating field was
commenced when the sex pheromone of the silk moth Bombyx mori was discovered
(Karlson and Butenandt, 1959). Since then, we have gained a fairly detailed
understanding about the ecological relevance of insect’s chemical interactions with
their natural habitat. In Paper I of this thesis, I review the chemical ecology of D.
melanogaster and discuss the ecologically relevant functions of many of the fly’s
ORs, IRs, and GRs (Mansourian and Stensmyr, 2015). I argue that the vinegar fly’s
receptors do not sample volatile chemicals randomly but are tuned to subsets of
volatiles associated with its ecological needs by bringing up several examples in
host seeking, oviposition, and avoiding toxic matters.

Host seeking

Fermented fruit - rich in yeast and sugar — is the favorite food of D. melanogaster
(Carson, 1971). In the process of fruit fermentation, yeast convert sugars into ethanol
and CO». This process also generates a large number of other volatiles, which are
irresistible to D. melanogaster. These volatiles activates several receptors e.g. Ir31a
that detects 2-oxopropionic acid and pyruvic acid generated from sucrose (Silbering et
al., 2011), Gr21a/Gr63a detect CO; released from the decarboxylation of pyruvate into
acetaldehyde (Jones et al., 2007), Or92a detects diacetyl formed from acetaldehyde,
and Or42b detects acetal generated from the reaction of acetaldehyde with ethanol
(Mathew et al., 2013). Activation of these receptors guide flies towards suitable food
sources. Yeast is the major source of nutrition for adults and larvae of most
Drosophila (Begon, 1982), and affects larval growth and survival (Starmer and
Aberdeen, 1990). Yeast itself primarily releases two groups of volatiles, acetate esters
and phenolics, which activate several olfactory receptors in the fly (Hallem and
Carlson, 2004 and 2006; Stdkl et al., 2010) (Figure 5A, B).
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7 2,3-butanediol
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Figure 5. Alcoholic fermentation and orang smells
A) Volatiles emitted through the activity of yeast and fruit fermentation (e.g fermented apple) and B) the fly’s receptors that
detect fermented volatiles (from A) and volatiles from orange ( limonene and Valencene).

Fruit volatiles are also important for flies for host seeking and oviposition site
selection. Even though D. melanogaster shows a preference towards Citrus spp.
(Dweck et al., 2013), D. melanogaster is an opportunist and is able to utilize a
wide range of fruit. Accordingly, their peripheral olfactory detectors are also
equipped with receptors that are broadly tuned to common fruit volatiles such as
Or43b, Or47a and Or85a, which detect fruity acetate esters, e.g. ethyl acetate,
isoamyl acetate, and amyl acetate (Hallem and Carlson 2004, 2006). Or22a is
another important broadly tuned receptor detecting fruit esters, primarily ethyl
hexanoate (de Bruyne et al., 2001; Stensmyr et al., 2006).
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Volatile chemicals effecting oviposition

The fly larvae’s mobility is limited, hence the selection of a suitable oviposition
sites is a critical decision the female fly has to make. Olfaction guides the female
in making the right decision in this matter. Examples of chemical compounds that
trigger egg laying in the female are flavedo terpenes, such as valencene and
limonene released by Citrus spp and other fruit with a thick epicarp, which
activates Or19a (Dweck et al., 2013). The thick epicarp protects the fly’s larvae
from endoparasitoid wasps (Dweck et al., 2013) (Figure 5B).

The microbial composition of the substrates is of critical importance in the
oviposition site selection process. The smell of acetic acid, produced by
acetobacteria during the fermentation process, activates Ir75a and induces egg-
laying behavior (Joseph et al., 2009). Brettanomyces yeast on the surface of ripe
fruit produces volatiles that stimulate oviposition, as well as feeding via activation
of Or7la (Dweck et al., 2015), while the presence of harmful microbes on
fermented fruit abolishes oviposition (Stensmyr et al., 2012). These harmful
microbes release, among other compounds, a volatile called geosmin. Geosmin is
detected by a single receptor, Or56a, and activation of this pathway alerts flies to
the presence of e.g. Penicillium molds and triggers aversive behavior (Stensmyr et
al., 2012).

I1. Foul feces fool flies

Feces is an abundant source of energy in nature, used by many organisms, not
least by members of the order Diptera. Adult Mediterranean fruit flies (Ceratitis
capitata) need to feed on animal fecal matter in order to develop their eggs
(Hendrichs et al., 1993; Lauzon, 2003). Houseflies and blowflies feed and breed
on animal feces (Amendt et al., 2004). In Paper II of this thesis, I study how D.
melanogaster reacts to fecal matter.

I show that D. melanogaster displays aversive oviposition towards carnivore feces,
while indifference or even attraction towards herbivore dung (Figure 6A). This
aversive behavior is due to the presence of high amounts of a toxic volatile
compound — phenol — specifically enriched in carnivore feces, and is detected by
Or46a-expressing OSNs located on the maxillary palps (Figure 6B). Silencing this
single neuronal population, through directed expression of TNT (Sweeney et al.,
1995), abolishes aversion to phenol as well as carnivore feces (Figure 6C, D). |
further demonstrate that phenol suppresses egg-laying in flies, even in an attractive
odor background. This observation suggests that phenol itself affects both
oviposition site selection and the oviposition rate in flies.
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Figure 6. Flies avoid carnivore feces and the bacterial volatile phenol

A) Oviposition index (OI) of wild-type flies from a binary-choice test between standard cornmeal fly food and fly food mixed
with mammalian feces. Error bars represent the SEM. Deviation of the response indices against zero was analyzed for
significance with Student’s t test (p < 0.05). B) Expression pattern of Or46a in the maxillary palp. C) and D) OI of flies
expressing TNT from the putative promoter of Or46a in a binary-choice assay between standard cornmeal fly food and fly
foodmixed with (C) phenol (10_2 dilution) or (D) lion feces.

Phenol signals pathogenic bacteria to the fly

Detecting and avoiding pathogens before infection is naturally beneficial, because
once an animal is infected, it has to pay a high metabolic price to mount immune
responses and to recover (McKean and Lazzaro, 2011; Kominsky et al., 2010). D.
melanogaster can detect bacterial molecules called lipopolysaccharides (LPS),
which alerts the fly’s immune system to the presence of dangerous bacteria (Abbas
et al., 2014). Gr66a detects these bacterial molecules, which mediates aversive
feeding and oviposition responses (Soldano et al., 2016). In Paper II of this thesis,
I show that carnivore feces, unlike herbivore feces is enriched by a family of
bacteria — Enterobacteriaceae — that contains a wide range of pathogenic taxa
causing severe diseases in humans (Figure 7A) (Rossetto et al., 2014). Some of
these bacteria are able to produce phenol under special circumstances; when these
bacteria grow in substrates containing L-tyrosine, an enzyme called tyrosine
phenol-lyase convert L-tyrosine to phenol, pyruvate, and ammonia (Kumagi and
Yamada, 1970). Accordingly, bacteria in carnivore feces are able to produce
phenol from L-tyrosine, whereas bacteria in herbivore feces, scarce in L-tyrosine,
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do not (Figure 7B). I further demonstrate that a dung beetle, Scarabaeus (Kheper)
lamarcki, avoids carnivore feces and phenol presumably for a similar reason
(Figure 7C).

Why would a fruit-dwelling fly then have a receptor for a fecal chemical? Fecal
matter generates a wide range of volatiles, several of which are released by fruits
as well. For example, limonene is emitted from thick epicarp fruit and also from
many fecal samples. Flies in the native Southeast African habitat face feces more
frequently than fruit, especially during the dry season when fruit is scarce. In this
situation, distinguishing feces that contains harmful bacteria from fruit is
necessary and beneficial for flies.
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Figure 7. Dangerous dung

A) Multidimensional scaling plot from a Random Forest analysis of bacterial content in herbivore and carnivore feces B)
Schematic model of phenol production by bacteria presence in the carnivore feces, presenting (1) L-tyrosine, (2) bacteria, and (3)
L-tyrosine-phenol lyase enzyme. C) Dung beetles avoid carnivore feces. From left to right, tracks from beetles provided with a
choice between lion and giraffe feces, confronted with lion feces and sand in an open olfactory binary-choice arena.
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[II. Humidity sensation in the fly

Insects must find a proper level of humidity for their survival, as they are in high
risk of dehydration due to their low capacity to store water. Insects have evolved a
sensory system to detect humidity changes in their environment, however, the
molecular basis of humidity sensation has remained unknown. In Paper III of this
thesis, [ study humidity preference in the fly. In this paper, 1 present that
drosophilid flies have an innate and species-specific preference towards various
humidity levels in harmony with the climate of their native habitat. For instance,
the cosmopolitan D. melanogaster prefers an intermediate humidity of 70%
relative humidity (RH) at 25°C, whereas Drosophila mojavensis, a native to the
dry Sonoran desert in southwestern United States and northern Mexico, prefers a
20% RH. Drosophila teissieri, native to warm and humid tropical rainforest in
western Africa, prefers 85% RH (Figure 8A-C).

I have also searched for the hygrosensory sensilla and the molecular components
of this sense on the antenna (Altner and Loftus, 1985). The hygrosensilla in D.
melanogaster are located in the sacculus (Figure 9A), composed of three
chambers (Figure 9B), each housing sensilla with distinct morphology. Those
housed in chambers 1 and II are poreless, and show similar morphology to
hygrosensilla of other insects. I show that Ir40a, and [r93a along with the co-
receptor Ir25a are expressed in neurons found in sensilla housed in chamber I and
II (Figure 9C). Flies lacking any of these genes display deficient humidity guided
behavior. Previous studies have proposed the requirement of thermosensory
pathways for hygrosensation (Altner and Loftus, 1985), therefore, I testif these
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Figure 8. Innate and species-specific humidity preference

A) D. teissieri and D. mojavensis. B) Humidity-preference indices after 4 hr of D. melanogaster( white), D. teissieri (green), and
D. mojavensis (yellow) tested in a binary humidity-preference arena with 20% RH versus 70% RH and, C) 70% RH versus 85%
RH.
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Sacculus

Figure 9 The humidity sensing apparatus

A) The antenna of the fly with the sacculus highlighted. B) Maximum-intensity projection of cuticular autofluorescence showing
the outline of the sacculus. C) Maximum-intensity projection of antennae from a /rr40a-Gal4>UAS-GFP shows Ir40a is expressed
in neurons targeting chamber I and II .

IRs are also involved in thermosensation. Genetic inactivation of Ir40a (through
RNAI) caused a loss of the physiological and behavioral response only to the
humidity stimulus, but not to temperature, whereas, both Ir25a or Ir93a mutant
flies showed abnormal thermosensory along with hygrosensory responses. Ir25a
and Ir93a are also expressed in the thermosensory cells of arista (Benton et al.,
2009) and in the larval dorsal organ cool cells (DOCCs) (Knecht et al., 2016).

Early processing of hygrosensory information in the fly brain

In Paper III, I show that humidity information is processed in a region called the
posterior antennal lobe (PAL) in the brain. The axon terminals of dry sensing
neurons, expressing Ir40a, project to a glomerulus called “arm” while cool sensing
neurons expressing the same receptor — Ir40a — project to “column” (Figure 10A).
As Ir25a is required for both humidity and temperature sensing, neurons
expressing this co-receptor projects to both “arm” and “column”, as well as “hot”
and “cold” glomeruli in the PAL. Moreover, since Ir25a is also co-expressed with
a subset of other odor sensing IRs, Ir25a positive neurons also project to olfactory
glomeruli of the AL. Ir93a, necessary for humidity preference, projects to arm and
column, as well as thermosensory glomeruli.

I also examine the response of “arm” and “column” to humidity and temperature
changes by calcium sensors (Figure 10B). In imaging experiments the “arm”
glomerulus showed increased calcium signal in response to stimulation with dry
air, and a reduction in response to humid air, consistent with a function as the dry
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Figure 10. The arm glomerulus in the brain respose to humidty stimuli
A) Maximum-intensity projection from the PAL of a [r40a-Gal4>UAS-GFP fly. B) The antennal lobe of a Ir25a-Gal4>UAS-
CaMPARI fly following photoconversion during dry air stimulation.

neuron. In response to temperature stimulation, the “arm” glomerulus only
responded to strong cold stimulation. The “column” on the other hand did not
respond to humidity changes, but to changes in temperature, both hot and cold.

I did not succeed in identifying the moist neurons in this study, and accordingly I
did not identify the corresponding glomerulus either. Subsequent studies have,
however, found that these neurons express Ir68a, project to a glomerulus called
“bean”, which is adjacent to the “arm” and “column” (Frank et al., 2017; Knecht et
al., 2017). The “hot” and “cold” glomeruli processing temperature information are
found adjacent to these humidity-sensing glomeruli (Gallio et al., 2011; Knecht et
al., 2017, Frank et al., 2017), and together form a hygro and thermo topographic
map in the fly brain.

IV. Marula — The ancestral host of the lord of flies

As stated, D. melanogaster displays strong egg-laying preference towards Citrus
spp. over other type of fruits (Dweck et al., 2013). This distinct host preference
implies that D. melanogaster might form a close association with a specific fruit,
or group of fruits, that probably share some characteristics with citrus in the native
habitat. In preparation for Paper IV of this thesis, I searched for wild non-
commensal populations of D. melanogaster within its native range, along with a
search for its ancestral host. I searched mopane woodlands of the Matobos national
park in Southwestern Zimbabwe (Figure 11A). This park is within the predicted
ancestral range of D. melanogaster (Pool et al 2012), and covers 424 km?, have no
human habitation and is covered in mopane and kopje woodlands (Figure 11B). In
the park I found a population of D. melanogaster, which turned out to be closely
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associated with marula fruit (Sclerocarya birrea), a seasonally abundant resource
during March to May. Marula, like citrus, has a thick rind, which covers a sweet-
sour juicy pulp (Figure 11C). Marula is well-known for its high ethanol content
(Morris et al., 2006), which would allow D. melanogaster to exploit its greater
ethanol tolerance (David et al., 1986; Montooth et al., 2006).

We demonstrate that flies have a strong oviposition preference towards marula
over orange both in the lab and in field traps (Figure. ). We furthermore localized
drosophilid larvae in all marula examined in the field traps, from which D.
melanogaster adults emerged. Interestingly, we only found the wild population of
D. melanogaster where the marula trees were present, but not in any other location
of the Matobos with similar vegetation (Figure 11D), unlike D. simulans, which
was present in high number at all trap locations (Figure 11E). This distribution
pattern suggests that D. melanogaster has a specialized lifestyle, and is in fact a
seasonal specialist, like its siblings D. erecta and D. orena in the melanogaster
subgroup.
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Figure 11 Picturetext headline

A) Location of the Matobos National Park, Zimbabwe. B) View of the park. Photo: M. Stensmyr. C) Marula fruit has a thick rind
(in my right hand) and a soft flesh (in my left hand). Photo: E. Jirle. D) Number of D. melanogaster (red fly) traped at sites with
and without marula. E) Number of Drosophila simulans (yellow fly) caught at the same sites as in D).
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Or22a detects the marula volatile ethyl isovalerate

The two main chemicals of marula, ethyl isovalerate (an ester) and beta-
caryophyllene (a sesquiterpene), together make up ~55% of the marula headspace
and both trigger oviposition in flies. Similar to citrus, marula emits large amounts
of terpenes. Citrus headspace is typically dominated by limonene, whereas, marula
primarily emits beta-caryophyllene, which also activates the same olfactory
pathway as limonene, Or19a (Dweck et al., 2013). Unlike citrus though, marula
emits high amounts of esters, primarily ethyl isovalerate, which activates Or22a,
as I show via calcium imaging (Figure 12A). Silencing the Or22a pathway via
Or22a-Gal4>UAS-TNT, however, did not fully abolish the marula oviposition
preference, suggesting that additional pathways are involved in this behavioral
preference. The primary function of this pathway might be to locate the host over
distance rather than mediating egg-laying preference. Or22a in general is broadly
tuned to detect fruity esters in D. melanogaster and its eight close relatives
(Stensmyr et al., 2003). On the other hand, Or22a has a selective and species
specific receptive range based on the species preferred breeding substrates (Pelz et
al., 2006; Linz et al., 2013). For example in D. erecta and D. sechellia, Or22a is
most sensitive to the key ligands of their respective host fruits. In D. erecta, Or22a
is most selective towards the Pandanus volatile, 3-methyl-2-butenyl acetate (Linz
et al.,, 2013), while in D. sechellia this receptor detects the morinda volatile,
methyl hexanoate (Dekker et al., 2006). Moreover, this selectivity and higher
sensitivity is accomplished by a numerical increase in neurons expressing Or22a in
both species in comparison to the other melanogaster species subgroup members
(Dekker et al., 2006, Linz et al., 2013).
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Figure 12. Picturetext headline

A) Pseudocolored image showing ethyl isovalerate-induced fluorescence changes in the antennal lobe (AL) of a Or22a-
Gal4>UAS-GCaMP6f fly. B) Dose-response curve of ab3A neurons from the Rwanda (RGI8N) and a lab strain of North
American origin (Canton-S) toward ethyl isovalerate and ethyl hexanoate. Shaded area shows standard deviation.é}}} C) Genetic
differentiation among populations at Or22a and Or22b is depicted via Circos plots [Krzywinski et al., 2009] based on Fsr
quantiles. Only connections between populations with unusually high Fisr values (elevated genetic differentiation) is shown. The
red color, for example, indicates that between this pair of populations, less than 0.1% of windows on the same chromosome arm
have an Fsr value this high. Abbreviations display geographic origin of examined D. melanogaster populations e.g. RG stands for
Rwanda, FR for France.
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Interestingly, electrophysiological examination of OSNs expressing Or22a/Or22b
from Sub-Saharan African flies (collected in Rwanda), revealed stronger responses
to ethyl isovalerate than to ethyl hexanoate — the primary ligand of Or22a (Munch
and Galizia, 2016). In contrast, the corresponding OSNs from a lab strain of North
American origin, displayed stronger response to ethyl hexanoate than ethyl
isovalerate (Figure 12B).

As a consequence of the functional difference of these Or22a/Or22b expressing
OSNs between the two examined populations, I looked for signs of local genetic
adaptation of Or22a/Or22b between D. melanogaster populations utilizing other
hosts than marula. The results of comparing the local genetic differentiation within
the Or family between genomes of ten African populations, plus one European
revealed a strong genetic differentiation at the Or22a/Or22b locus between almost
all population pairs (Figure 12C), whereas, most of the other ORs exhibited little
or no sign of local adaptation. Taken together, unlike most members of the OR
family in D. melanogaster that are conserved, Or22a/Or22b displays strong signs
of local adaptation, in line with a function associated with host specific chemistry.
Curiously, we found that the Sub-Saharan flies predominantly carries a specific
allele at this locus, with a chimeric receptor formed from Or22a and Or22b.
Whether or not this “Or22ab” gene indeed is responsible for the shifted ligand
tuning of these neurons remains to be investigated. In brief, Southern African
population of D. melanogaster not only detects ethyl isovalerate, they are even
more sensitive to this marula ester than flies from outside Africa.
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Concluding remarks

In this thesis, I have showed that the fly olfactory system does not detect odor
molecules randomly, but capture and process specific odors associated with needs
and dangers. For example, the fly has several olfactory pathways dedicated to
odors coming from alcoholic fementation and activation of these receptors and the
related pathways guides the fly to suitable food sources rich in sugar and yeast
(Paper I). Although, we outline a range of behavioral and dedicated ecological
functions for a number of olfactory pathways, a number of unknowns remain to be
studied, such as identifying ligands for the few orphan receptors left e.g. Or2a and
Or23a whose functions are likely important given their evident extreme
specificity. In addition, the ecological significance of a number of receptors with
known key ligands, like Gr21a/Gr63a that detect CO, remain puzzling. I have also
investigated how the olfactory system cope with toxic and harmful matters in the
natural habitat and I could identify an olfactory circuit that mediates repellency
towards phenol, which is produced by pathogenic bacteria, predominantly present
in carnivore feces (Paper II). Determining ligands for the few remaining orphan
ORs should be a priority.

Furthermore, | reveal that flies have an innate and species-specific ability to find
suitable humidity levels, related to their native habitat. Flies can sense humidity
changes in their environment through a trio of IRs expressed in the sacculus of the
antenna, which projects to the “arm” glomerulus in the brain (Paper III). But we
still do not know what the real stimulus is that activates these hygroreceptive
neurons. Moreover, the hygro-sensilla expressing IRs are poreless, which brings
up the question “how these receptors detect changes in water vapor in the air”.

Although vinegar flies are known as generalists, wild populations of D.
melanogaster from a mopane forest within the potential ancestral habitat have a
strong breeding preference towards marula fruit. This fruit is seasonally abundant,
native to Southern Africa, and is presumably the ancestral host of the fly. I also
speculate that marula was a vehicle for D. melanogaster to become a human
commensal. Archaeological excavations from one of the caves in the Matobos
uncovered 24 million marula stones (Walker, 1995). These fruit were collected by
a San tribe settling in this region during the Late Pleistocene to the Early Holocene
and stored for later consumption. The smell of stored marula from these caves
would have invited flies to a massive source of food, making the favored host
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available long after fruiting season. (Paper IV). The finding of a wild population
of D. melanogaster, and the ancestral habitat, opens up for a range of interesting
questions to be addressed. For example, how do these wild flies differ from their
commensal relatives, i.e. which genetic factors underlie this shift in lifestyle? The
finding that D. melanogaster has a close association with a single host fruit, will
greatly facilitate studies in host specific chemosensory adaptations, which so far
have had to be conducted in other insects in which the wealth of tools available in
D. melanogaster are unavailable.

In summary, the research presented in my thesis enhances the basic science behind
how the olfactory system operates and its mechanisms, the wild behavior of flies,
and introduces the genetic and neural basis underlying humidity sensation in
insects These basic understandings may lead us to better strategies for controlling
insect pests, as well as human disease vectors such as mosquitoes.
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