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 

Abstract—Correlation coefficient of received signals across a 

pair of antennas is a key performance indicator for multiple-input 

multiple-output (MIMO) systems. For multipath environments 

with uniform 3D angular power spectrum, the signal correlation 

between two antennas can be exactly calculated from their 3D 

radiation patterns. When radiation patterns are unavailable, a 

simplified approach that only requires the antennas’ scattering 

parameters can be used instead. However, the simpler method 

assumes lossless antennas and thus only works well for antennas 

with high radiation efficiencies. To take into account the antenna 

loss, the idea of equivalent circuit approximation is used in this 

paper to analytically separate the lossy components (resistance or 

conductance) from the lossy antenna arrays, using known 

scattering parameters and radiation efficiencies. The simplified 

method using S parameters can then be applied to obtain the 

correlation coefficient of the equivalent lossless antennas. The 

effectiveness of the method has been verified on antennas 

operating at a single mode, such as dipole or patch at its lowest 

resonant frequency. Good results were also obtained for the 

measured case of a dual-antenna mobile terminal, consisting of a 

monopole and a PIFA.  

 
Index Terms— MIMO systems, antenna array, antenna 

correlation, antenna measurements, mutual coupling, scattering 

parameters  

 

I. INTRODUCTION 

ignal correlation is a critical metric in evaluating the 

performance of multiple antenna systems, where multiple 

antennas are employed  at both base stations and terminals to 

improve the performance of wireless communications [1]. 

Conventionally, for the reference multipath environment of 

uniform 3D angular power spectrum (APS), signal correlation 

between two antennas can be calculated from the full spherical 

radiation patterns of the antennas, which are obtained with both 

phase and polarization information [2]. Unfortunately, it is both 
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time-consuming and expensive to measure antenna patterns, 

due to the use of specialized equipment and facilities. 

Consequently, it is of significant interest to the antenna 

community to avoid using antenna patterns in calculating 

correlation. The relationship between antenna patterns and 

scattering (or S) parameters has been demonstrated in closed 

form in [3]. However, calculating correlation from S parameters 

only began to attract significant attention following the work of 

[4], which deals with the dual-antenna case. This method has 

been widely used in terminal antenna design (see e.g., [5]-[7]), 

since it is convenient to measure S parameters with a two-port 

vector network analyzer (VNA). However, the significant 

drawback of the method is that it does not take into account 

antenna losses, including conduction loss and dielectric loss. As 

a result, its accuracy becomes poor when it is applied to 

antennas with high losses. In [8], the author investigated an 

improved method to calculate correlation for the dual-antenna 

case and proposed an upper bound of correlation coefficient, 

which describes the worst possible correlation performance. 

The upper bound is calculated using S parameters as well as 

radiation efficiencies. However, the bound can be too 

conservative in estimating correlation coefficient in some cases. 

For example, when the radiation efficiency of the antenna is 

lower than 50%, which is possible for mobile terminal antennas, 

the calculated upper bound is larger than unity regardless of the 

antenna setup. Therefore, this approach is not intended to 

provide an accurate estimate of the correlation performance in 

general. Another upper bound of correlation was derived by 

treating antenna losses as fictitious additional ports that are 

never excited [9]. The bound is expressed in terms of the lowest 

antenna efficiency of the multi-antenna system. This upper 

bound is even more conservative than that in [8]. In addition, an 

antenna loss matrix was used in the modeling of lossy 

dual-antenna systems in [10]. The loss matrix was employed to 

investigate the relationship between the correlation and the 

increasing of the loss, but it is not intended to determine or 

estimate the correlation coefficient.  

In this paper, we propose a method based on equivalent 

circuit to more accurately estimate correlation coefficients in 

lossy antenna arrays. Similar to the method of [8], the proposed 

method requires only the S parameters and the antenna 

efficiencies, with the latter being easier to acquire than radiation 

patterns. Series or parallel circuit model is employed depending 

on the type of the antenna. With the measured S parameters and 
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antenna efficiencies, loss components are separated from the 

original lossy antenna array and subsequently appended to the 

lossless antenna ports as equivalent lumped resistors. In order to 

accurately model the actual losses using the simple lumped 

resistors, the losses should be concentrated in the vicinity of the 

antenna ports. This implies that strong currents occur mainly 

near the antenna ports, such as the case of printed monopole or 

dipole antennas on lossy substrates operating in the 

fundamental mode. After extracting the loss components, the 

correlation coefficients for the equivalent lossless antenna array 

are then obtained using the simplified method in [4]. It is worth 

noting that although the paper only considers the case of two 

antennas, the proposed method can be generalized to an array 

with an arbitrary number of antennas. As an example, the case 

of four dipole antennas is derived in [11].  

This paper is organized as follows. In Section II, the 

framework of the proposed method to calculate correlation 

coefficients is introduced. The calculation based on series 

circuit model is described in Section III, where lossy dipole 

arrays are taken as examples. In a similar way, Section IV 

illustrates the parallel circuit based calculation and uses patch 

antennas as examples. In Section V, practical mobile terminal 

antennas are fabricated and measured. The correlation 

coefficients calculated with different methods are compared. 

Section VI gives the conclusions of the paper. 

II. FRAMEWORK OF THE METHOD 

In lossless antenna arrays, all the power that is accepted by 

the transmit antennas Pin is released into free space as radiated 

power Prad, i.e., Pin = Prad. Assuming uniform 3D APS, the 

complex correlation coefficient in lossless dual-antenna arrays 

was derived in [4] as 

          
  

* *

11 12 21 22
c

2 2 2 2

11 21 22 12

( )

1 1

S S S S

S S S S


 



   
 ,           (1) 

where Sij’s are the S parameters of the dual-antenna system, * 

denotes the complex conjugate operator, | • | is the magnitude 

operator, and c is the complex correlation coefficient.  

In practical lossy antenna arrays, the non-ideal materials 

consume parts of the accepted power in the antenna system 

(Ploss) so that the radiated power is lower than the accepted 

power, i.e., radiation efficiency ηrad < 100%. The accepted 

power then becomes 

                                
in rad lossP P P  .                                 (2) 

Due to the power loss Ploss, the calculation from (1), which 

assumes radiation efficiencies of 100%, loses its accuracy in a 

lossy antenna system, especially for antennas with low radiation 

efficiencies.  

    The effect of radiation efficiency has been taken into account 

to give an upper bound (or “guaranteed value”) of the 

correlation coefficient with the method in [8] 

  

 

*
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1,
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 (3) 

where the two antennas are assumed to be identical. Re(•) 

denotes the real part of (•). The upper bound of [8] gives useful 

insights into the impact of antenna losses on correlation, but it 

can give a high degree of uncertainty unless the radiation 

efficiencies are high. The requirement for high efficiencies 

hence limits its application in lossy antennas, such as small 

multi-antenna terminals. In particular, the upper bound of (3) 

largely depends on the radiation efficiencies of the antennas 

when the efficiencies are low; however, the true correlation 

coefficient does not in general vary significantly with antenna 

efficiencies. For example, when an antenna system is loaded 

with a lumped resistor at each port, the radiation efficiencies 

will decrease. However, the correlation coefficient is 

unchanged, since differences in radiation efficiencies are 

normalized out in the exact correlation calculation based on 

antenna patterns [12].   

Loss 
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Fig. 1. Network approximation of a lossy dual-antenna array, where the antenna 

losses mainly occur in the vicinity of the ports. S represents the original 

antenna array, S’ is the lossless array after extracting loss components, L1 and 

L2 are resistors in series or in parallel with S’. 

Equivalent circuit is an effective way to describe a lossy 

antenna system, where the inductance, capacitance, radiation 

resistance and loss resistance are distributed along the antenna 

structure. Due to the limited measurable parameters (scattering 

matrix and antenna efficiencies), it is not easy to design an 

accurate equivalent circuit for the antennas and calculate the 

value of each distributed element. As an approximation, we use 

a lumped resistor (connected in series or parallel) at each 

antenna port to represent the antenna loss in the original antenna 

array. In order for this approximation to hold, it is assumed that 

strong currents predominately exist in the vicinity of the antenna 

ports. This assumption also implies that the antennas should 

operate in only one mode, or that all the other modes have 

negligible losses. Fortunately, most of the frequently used 

antennas are designed for the fundamental mode, corresponding 

to a relatively simple circuit model. After extracting the loss 

component from each antenna, the original lossy antenna array 

can be separated into lossy and lossless parts. For the 

dual-antenna case, these resulting parts are described by the 

cascade network in Fig. 1, where ai and bi represents an incident 

and a reflected wave, respectively. In this network, the loss 
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component is either resistance in series or conductance in 

parallel with the lossless array S’, depending on the antenna 

type. S parameters of the original lossy dual-antenna array can 

be measured with a two-port VNA, and the transmission (or 

ABCD) matrix of the loss component is obtained from the 

equivalent circuit. Thus, the S parameters of the lossless array 

can be calculated, from which correlation coefficient is obtained 

using (1). Assuming the separability of the lossy part from the 

original array, the correlation coefficient of the embedded 

lossless array is then equivalent to that of the original lossy 

antenna array. This is because as discussed earlier, introducing 

lumped resistors at the antenna ports will lower the radiation 

efficiencies without much effect on the correlation coefficient.  

In summary, the proposed method of calculating correlation 

coefficient is described by the following procedure: 

 With the measured S parameters and antenna efficiencies, 

the value of the loss components (resistance or 

conductance) is calculated based on the equivalent circuit; 

 The ABCD matrix of each loss component is obtained; 

 From the measured S parameters and the ABCD matrices 

of the loss components, the S parameters of the lossless 

array are extracted; 

 The correlation coefficient of the lossless array as obtained 

from (1) is equal to that of the original lossy array.  

     In this procedure, the most critical step is to get the value of 

the loss components from the equivalent circuit. Depending on 

the impedance behavior of the antennas, series or parallel circuit 

is utilized to model the antennas, in order to achieve a better 

circuit model. The calculation of correlation coefficients based 

on series and parallel models are presented in Sections III and 

IV, respectively.  

III. SERIES CIRCUIT BASED MODEL 

A. Calculation Based on Series Circuit Model 

The impedance behavior of some omnidirectional antennas, 

such as dipoles, can be approximately represented by a series 

R-L-C circuit [13]. The series circuit model for a dual-antenna 

array is shown in Fig. 2, where the real part of the 

self-impedances (Z11 and Z22) is divided into two parts: the loss 

resistances (r1,loss, r2,loss) and the radiation resistances (r1,rad, 

r2,rad). r1,rad  and  r2,rad are the real parts of Z11,rad and Z22,rad, 

respectively. Z12 and Z21 are the mutual impedances between the 

antennas, whose absolute values increase when the antenna 

spacing is reduced, indicating an increase of mutual coupling 

[14], [15]. 

Our purpose of using the equivalent circuit is to determine 

the value of the loss resistances. For simplicity and with no loss 

in generality, the two antennas and their loads are assumed to be 

identical, e.g., r1,loss = r2,loss = rloss, r1,rad = r2,rad = rrad, and ZL1 = 

ZL2 = ZL.  

V1

ZL1

I1

Z12I2

r1,loss

Z11, rad

I2

Z21I1

r2,loss

Z22, rad ZL2

V2

Z11
Z22

 

Fig. 2. Series equivalent circuit model of a lossy dual antenna array. 

In measuring the efficiency of Antenna 1, Antenna 2 is not 

excited (V2 = 0) and loaded with ZL. Thus, the right part of the 

equivalent circuit model in Fig. 2 gives 

                                  
21 1

2

22 L

Z I
I

Z Z



 .    

                            (4) 

For convenience of calculation, we define a new parameter k as 

                            1 22 L

2 21

I Z Z
k

I Z


  ,                             (5)

 

which can be calculated from load impedance ZL and antenna 

impedances derived from the measured S parameters [16]. 

The dual-antenna system can be described in two different 

ways. On one hand, it is a two-port network, with Port 2 loaded 

with ZL and not excited. On the other hand, it can be considered 

as a one-port network, where ZL at Port 2 is a loss resistance 

which consumes the accepted power. 

When the dual-antenna system is considered as a two-port 

network, the total efficiency of Antenna 1 is expressed as 

                     2 2

1,tot 1,rad 11 211 S S    ,                      (6)  
               

where the radiation efficiency ( 1,rad ) is calculated by: 
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            (7)
 

When the dual-antenna system is described as a one-port 

network, the total efficiency is  

                                 2'

1,tot 1,rad 111 S   ,                             (8) 

where the radiation efficiency (
'

1,rad ) is different from (7) and 

presented as 
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Apply (5) into (9), we get 

        

2

' rad
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With (7) and (10), the loss resistance is calculated as 

                  
   

 

'
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,
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Z
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k
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in which 1,rad and 
'

1,rad are calculated with the measured 

efficiencies and S parameters using equations (6) and (8).  

For lossy antenna arrays with two different antennas, the loss 

resistances are obtained following a similar procedure as 

' '

1,rad 1,rad L 2,rad 2,rad L2

1,loss 2 2 ' '

1,rad 1,rad 2,rad 2,rad
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(13) 

where 

                   
22 L 11 L

21 12
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   ,                    (14) 
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To make the procedure clear, the flow chart to calculate the 

loss resistances in the dual antenna array is presented in Fig. 3, 

where the available parameters are highlighted in red. 

Eqs. (15) and (16)

Measured S parameters

(S11, S12, S21, S22) 

Impedance matrix

(Z11, Z12, Z21, Z22) 

p, q

r1,loss, r2,loss

Measured total 

efficiencies

(η1,tot , η2,tot)

Eq. (14)
Radiation efficiencies

(η1,rad, η1,rad, η2,rad, η2, rad)

Eqs. (12) and (13)

                             

’ ’

 

Fig. 3. Procedure for calculating loss resistances in dual-antenna array.  

After obtaining the loss resistances, the cascade network in 

Fig. 1, with each loss component modeled by a resistor in series, 

can be used to obtain the scattering matrix of the embedded 

lossless array. For the convenience of cascade network 

calculation, the ABCD matrices [16] are employed  

             ABCD 1 ABCD ABCD 2 ABCD
'[ ] [ ] [ ] [ ]  S L S L ,             (17)   

    

where [S]ABCD is the ABCD matrix of the original lossy antenna 

array, and the ABCD matrices of loss resistors in series are 

defined by [16] 

  
1,loss 2,loss

1 ABCD 2 ABCD

1 1
[ ] ,[ ] .

0 1 0 1

r r   
    
      

L L        (18)
 

Thus, the scattering matrix 'S  of the embedded lossless array is 

obtained from the ABCD matrix-to-scattering matrix 

conversion [16]. Finally, correlation coefficient of the 

embedded lossless array, which is equivalent to that of the 

original lossy array, can be directly calculated with scattering 

matrix 'S  using (1).  

B. Dipole Antenna Array 

To better illustrate the proposed method of calculating 

correlation, it is applied to printed dipole antenna arrays with 

closely spaced elements in the following example. The 

geometries of the dual-dipole antenna system in the simulation 

are shown in Fig. 4. The element separation is λ/20 (7 mm) at the 

center frequency of 2.15 GHz. The array is implemented on a 

substrate with a permittivity of 4.2 and a loss tangent (tan δ) of 

0.01. The dipoles are made of copper, with an electric 

conductivity of 5.8×107 S/m. The dipole array is simulated with 

the frequency domain solver of CST Microwave Studio, and the 

magnitudes of S parameters are plotted in Fig. 5(a). An isolation 

of 4 dB is observed at the center frequency, indicating severe 

mutual coupling.  
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Fig. 4. Geometries of the dual-dipole array, with the dimensions: W = 40 mm, L 

= 100 mm, h = 2 mm, Ld = 44 mm. 

The measured S parameters and efficiencies of the dipoles 

are: S11 = S22 = − 0.28 + j0.11, S21 = S12 = 0.53 − j0.34 and η1,tot = 

η2,tot = 46.1%, respectively. The efficiencies are measured in the 

presence of both antennas, with one antenna excited and the 

other antenna loaded with ZL = 50Ω, which is the characteristic 

impedance of the feed cable. In this way, the coupling effect of 

each antenna on the other is taken into account. Following the 

procedure in Fig. 3, the loss resistance of r1,loss = r2,loss = 1.23 Ω 

is obtained. Then the ABCD matrix of the original lossy dipole 

antenna system and the loss matrices are calculated as: 

ABCD

1 ABCD 2 ABCD

0.86 0.27 0.29 24.6
[ ] ,

0.019 0.014 0.86 0.27

1 1.23
[ ] [ ] ,

0 1

j j

j j

  
  

   

 
   

  

S

R R

 

respectively. Using (17) and matrix conversion, the scattering 

matrix of the embedded lossless array is obtained 

'
0.25 0.077 0.65 0.1

.
0.65 0.1 0.25 0.077

j j

j j

   
  

    

S  

Finally, the correlation coefficient ρc at the center frequency is 

calculated using (1) as of 0.88. As explained in Section II, since 

only lumped resistors are added to the ports of the derived 

lossless array, the correlation coefficient of the original lossy 

antenna system is the same as that of the lossless array. 

With the same procedure, the correlation coefficient over the 

whole operating band is calculated. In order to verify the 

accuracy of the method, we also change the loss tangent of the 

substrate to obtain different antenna radiation efficiencies. For 

different radiation efficiencies, the reflection coefficients of the 

dipole arrays are almost unchanged, and the isolation becomes 

higher due to higher loss. The magnitudes of the complex 

correlation coefficients ρc with different antenna efficiencies are 

presented in Fig. 5. For comparison, the correlation coefficients 

calculated from (i) the far-field antenna patterns (“exact 

method"), (ii) the S-parameter method of [4] and (iii) the upper 

bound of [8], are also shown in Fig. 5. From Fig. 5(b), we can 

see that the results from both the proposed method and the 

upper bound are close to the exact values of correlation 

coefficients when the radiation efficiency is very high, whereas 

the S-parameter method of [4] underestimates the results. When 

the radiation efficiency decreases, the results from the upper 

bound deviate from the exact correlation coefficients and 

become conservative in estimation, especially for the radiation 

efficiency of 60%. The estimation using only S parameters in 

the method of [4] also becomes worse as the efficiency drops. 

The proposed method always gives the best estimate of the 

exact value as obtained from the patterns.  

Fig. 5. S parameters and magnitude of correlation coefficients for different 

antenna radiation efficiencies.  

 

The ultimate goal of estimating correlation coefficient is often 

to determine the MIMO performance of multiple antenna 

systems. In our work, we employ the multiplexing efficiency 

metric proposed in [17] to describe antenna’s MIMO 

performance. Multiplexing efficiency is the power penalty of a 

non-ideal antenna system in achieving a given capacity, relative 

to an ideal antenna system with 100% total antenna efficiencies 

and zero correlation. For a dual-antenna system, it is given by 

2

mux 1 2 1

g r

c

 

    ,                          (19) 

where ηi is the total antenna efficiency of antenna i. The term ηg 

is the geometric mean (or arithmetic mean in decibel) of the 

antenna efficiencies, whereas ηr reveals the equivalent power 

loss due to correlation [18]. The geometric mean of the antenna 

efficiencies can be measured directly, and the power loss due to 

correlation is estimated through calculating correlation 

coefficients. Thus, the estimation accuracy of multiplexing 

efficiency (in decibel) only depends on the estimation of ηr. In 

Fig. 6, the estimation of ηr is presented for the dual-dipole array 

with antenna radiation efficiencies of 85%. It is observed that 

the exact correlation between the dipoles incurs around 3.5 dB 

of power loss (see the black dashed line) of the antenna array, 

which is well estimated with the proposed method. The S 

parameter method is too optimistic about the influence of 

antenna correlation (with only 1 dB power loss), whereas the 

upper bound is too conservative (around 6 dB power loss). 

It is worth noting that the proposed method with the series 

circuit based model not only works well for the dipole antennas, 

it is also efficient for monopole and slot antennas.  
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Fig. 6. Power penalty due to correlation (ηr) for the dipole antenna array with 

the radiation efficiencies of 85%. 

We also studied the next (higher) operating mode of the same 

dipole antenna array at 6.2 GHz. In this case, the dipole 

antennas operate at one wavelength, and their currents are not 

strong near the ports [19], which violates our assumption. The 

estimated correlation coefficients are shown in Fig. 7(b). It is 

observed that the accuracy of the proposed method decreases, 

but it still has better performance than the other methods.  

Fig. 7. (a) Magnitude of S parameters; (b) Magnitude of complex correlation 

coefficients for dipole arrays at a higher mode. 

IV. PARALLEL CIRCUIT BASED MODEL 

A. Calculation Based on Parallel Circuit Model 

For some planar antenna types, such as patch antennas and 

PIFA antennas, the impedance behavior can be expressed in the 

form of a parallel R-L-C network, where R represents the 

radiation, conductor and dielectric losses [20]. Thus, a parallel 

circuit model fits the antenna impedance performance better 

than the series circuit model. In this section, the estimation of 

correlation coefficient based on the parallel circuit model is 

briefly described. Similar as the series circuit model, the parallel 

circuit model for a lossy dual-antenna array is shown in Fig. 8, 

where each self-admittance is divided into a loss conductance 

(g1,loss or g2,loss) and a radiation part (Y11,rad or Y22,rad). 

I 2

Y21V1 ZL2

Y22

V
1

ZL1

I1

Y12V2
g1, loss Y11 , rad

Y11

V1
’

g2, lossY22 , rad

V
2

V2
’

’

’

 

Fig. 8. Parallel equivalent circuit model of a lossy dual antenna array. 

Following a similar procedure as in Section III-A and 

assuming that the two antennas are identical, the loss 

conductances of the dual antenna array are calculated as 

    

  

'

1,rad 1,rad L

1,loss 2,loss 2' 2

1,rad 1,rad L

1 Re Z
g g

m Z

 

 


 

 
.            (20) 

where 1,rad  and 
'

1,rad  are the same as those in (15), and 

1 22 L

2 21

1V Y Z
m

I Y


  .                             (21) 

For the parallel circuit, each loss component in Fig. 1 is 

represented by a shunt resistor, and the ABCD matrices of the 

loss components become 

1 ABCD 2 ABCD

1,loss 2,loss

1 0 1 0
[ ] , [ ] .

1 1g g

   
    
      

L L       (22) 

With the same method as in Section III-A, the correlation 

coefficients can be estimated with the S parameters of the 

extracted lossless array. 

B. Patch Antenna Array 

In this subsection, closely-spaced patch antenna arrays 

implemented on substrates with different loss tangents are 

studied. The patch array is simulated with the frequency domain 

solver of CST Microwave Studio, and waveguide ports are 

employed to excite the antenna. The geometries of the patch 

antennas are shown in Fig. 9(a). The edge-to-edge distance 

between the two patches is 10 mm, equivalent to λ/12 at the 

center frequency. The magnitudes of S parameters of the patch 

antenna array on a substrate with a loss tangent of 0.001 are 

shown in Fig. 9(b). When the loss tangent of the substrate 

increases, the reflection coefficients of the array are almost 

unchanged, and the isolation becomes higher due to higher loss.  

The correlation coefficients of the patch antenna arrays on the 

substrates with different loss tangents are calculated using the 

proposed method with parallel network model and presented in 

Fig. 10(a)-(d). If the material loss is very low (loss tangent tan δ 

= 0.001) and the radiation efficiency is high, all the methods can 

give a good estimate of the exact correlation coefficient. In this 

case, the S-parameter method of [4] is the most convenient to 

use since it does not require the knowledge of radiation 

efficiency. For the patch antenna array with a moderate loss 

(tanδ = 0.005), the results from the proposed method give the 

best estimation of correlation coefficients, whereas the other 

two methods start to deviate from the exact values. As the loss 

of the substrate increases, e.g., for FR4 substrates with tan δ = 

0.01 and tan δ = 0.02, the advantage of the proposed method 

becomes apparent. 
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Fig. 9. (a) Geometries of the dual patch antenna system on the substrate with a 

permittivity of 2.3, with the dimensions: W = 20 mm, L = 41.6 mm, h = 3 mm, 

Lg = Wg = 200 mm, d = 10 mm. (b) Magnitude of S parameters of the patch 

antenna array with a loss tangent of 0.001.  

 
Fig. 10. Magnitude of complex correlation coefficients for patch antenna arrays 

on substrates with different loss tangents.  

For the patch antenna array with tan δ = 0.01 (Fig. 10(c)), the 

power loss due to the correlation (ηr) is calculated and presented 

in Fig. 11. It is observed that the maximum error of the proposed 

method in estimating multiplexing efficiency is only 0.16 dB. 

The parallel circuit based model can also be applied to other 

planar antennas, such as planar inverted-F antennas (PIFAs) and 

printed UWB antennas. It is also worth noting that the 

correlation coefficient of the aforementioned planar antenna 

types can also be estimated with the proposed method based on 

the series network model in Section III; however, the estimation 

accuracy is found through simulation studies to be generally 

worse, which is expected due to different impedance behaviors. 

 

Fig. 11. Power penalty due to correlation (ηr) for the patch antenna array on the 

substrate with tan δ = 0.01.                                      

V. ANTENNA MEASUREMENTS 

The proposed method is well suited for measuring the 

correlation coefficient of terminal antenna arrays (e.g. mobile 

handset antennas), where the antennas are closely-spaced and 

radiation efficiencies are relatively low. In this section, we 

verify the proposed method of calculating correlation using 

measurement results of a mobile handset antenna array. The 

dual-antenna array comprises a slot monopole and a PIFA 

placed at the two short edges of the chassis [21]. The prototype 

of the dual-antenna system is shown in Fig. 12. The size of the 

chassis is 100 mm × 40 mm, which is similar to those of typical 

candy-bar type mobile handsets. The detailed geometries of the 

PIFA and the slot monopole are given in [21].  

The S parameters of the two antennas were measured with 

two-port VNA, with the magnitudes presented in Fig. 13. Since 

the phases of the S parameters are important for the calculation 

of the correlation coefficient, the reference planes of the VNA 

ports are calibrated to the feed points of the antennas prior to the 

measurement. This removes the phase shifts in the S parameters 

that are introduced by the feed cables.  

In order to make the comparison of different methods, the 

exact correlation coefficients were obtained using far-field 

patterns (with phase and polarization information) measured in 

a Satimo Stargate-64 antenna measurement facility. The total 

efficiencies of the antennas were also measured. With the 

measured S parameters and efficiencies, the correlation 

coefficients were estimated using the proposed method based 

on the series circuit model, and the results are shown in Fig.14. 

It is noted that the series circuit model is also used for the PIFA 

in this example, despite it being a planar antenna. This is 

because when the PIFA at the chassis edge is excited, the 

mobile chassis is also excited and radiates like a flat dipole [21].  

 Due to the low efficiencies of the mobile handset antennas 

(i.e., 44% and 35% for the slot-monopole and PIFA at the center 

frequency), the estimated correlation coefficient with the upper 

bound of [8] is larger than unity (see Fig. 14), so that it cannot be 

used to determine the MIMO performance. In comparison to the 

upper bound and the S-parameter method of [4], significantly 

better accuracy is obtained using the proposed method. As can 

be seen, the correlation coefficient obtained from the proposed 

method closely follows that of the exact method, with slightly 

higher deviations between 0.91 GHz and 0.93 GHz. For the 

multiplexing efficiency, a maximum error of 0.26 dB is obtained 

within the bandwidth using the proposed method. The 

inaccuracy of the proposed method mainly occurs when the true 

equivalent circuit model (involving distributed circuit elements) 

cannot be well approximated by a simple circuit model with 

losses solely represented by series resistors at the ports. The 

measurement procedure and equipment tolerance also lead to 

some inaccuracies.  



 

 

8 

    

Fig. 12. Prototype of the dual-antenna array on a mobile handset chassis. 

 
Fig. 13.  Magnitude of S parameters of the dual-antenna array on the mobile 

handset. 

 
Fig. 14. Magnitude of the complex correlation coefficients of the mobile 

handset antennas. 

VI. CONCLUSION 

In this work, a method for calculating antenna correlation 

coefficients in lossy dual-antenna arrays is presented. The 

purpose of the method is to simplify measurement and reduce 

the measurement cost, especially for mobile handset MIMO 

antennas. The method is introduced based on the equivalent 

circuits of antenna arrays. Depending on the antenna behavior, 

series or parallel circuit is employed. With the information of 

measured efficiencies and scattering matrix, the equivalent loss 

resistance (or conductance) is calculated and extracted from an 

original lossy antenna array. Then, the correlation coefficient of 

the original lossy antenna array is calculated through matrix 

operation in the cascade connection network. The method has 

been applied to dipole antenna arrays and patch antenna arrays 

in the simulations, and significantly better accuracy has been 

achieved relative to conventional methods. As a practical 

example, a mobile handset antenna array working at the 

GSM900 frequency band was fabricated and measured. It is 

confirmed that good accuracy is achieved using the proposed 

method over the entire band of interest.  
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