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Abstract

The topic of this thesis is estimation of nonlinear dynamical systems, focus-
ing on the use of methods such as particle �ltering and smoothing. There
are three areas of contributions: software implementation, applications of
nonlinear estimation and some theoretical extensions to existing algorithms.

The common theme for all the work presented is the pyParticleEst soft-
ware framework, which has been developed by the author. It is a generic
software framework to assist in the application of particle methods to new
problems, and to make it easy to implement and test new methods on existing
problems.

The theoretical contributions are extensions to existing methods, specif-
ically the Auxiliary Particle Filter and the Metropolis Hastings Improved
Particle Smoother, to handle mixed linear/nonlinear models using Rao-
Blackwellized methods. This work was motivated by the desire to have a
coherent set of methods and model-classes in the software framework so that
all algorithms can be applied to all applicable types of models.

There are three applications of these methods discussed in the thesis.
The �rst is the modeling of periodic autonomous signals by describing them
as the output of a second order system. The second is nonlinear grey-box
system identi�cation of a quadruple-tank laboratory process. The third is
simultaneous localization and mapping for indoor navigation using ultrasonic
range-�nders.

3





Acknowledgments

First I thank the department of Automatic Control for essentially allow-
ing me to work on whatever I found interesting, and for my supervisor Bo
Bernhardsson's belief that it would eventually lead to something worthwhile,
a belief I think at many times were stronger with him than with me. The
feedback Thomas Sch•on, Uppsala University, generously took his time to pro-
vide over the years has also served a vital role in determining the direction
of my work.

Additionally I wish to recognize Anders Mannesson, Jacob Antonsson
and Karl Berntorp which are those at the department with whom I had the
closest cooperation with for my research, not all of which is readily apparent
in the form of publications.

I also thank my colleagues with whom I shared our o�ce during my time
at the department, Bj•orn Olofsson, Jonas D•urango and Ola Johnsson, for
always taking the time to discuss any problems and ideas I had, research
related and otherwise, which has undoubtedly saved me countless hours of
work and frustration over the years.

My thanks go out to Leif Andersson's, his assistance and knowledge of
LATEX has been invaluable during the preparation of this thesis.

Perhaps most importantly I thank Karl-Erik �Arz�en for not holding a
grudge when I applied for the position as PhD student, after four years
earlier turning down his suggestion to stay at the department as a graduate
student. The years outside the academic world has made me appreciate the
freedom it provides so much more.

Finally I thank all my colleagues at the department for all the interest-
ing and fun discussions, be it during the mandatory co�ee breaks or while
drinking wine on a ship in the Mediterranean.

5





Contents

Preface 11

Glossary 15

1. Introduction 17
1.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . 17
1.2 Particle �ltering . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Particle smoothing . . . . . . . . . . . . . . . . . . . . . . . 23
1.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . 27

2. Implementation 31
2.1 Related software . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 pyParticleEst . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3. Application areas 35
3.1 System identi�cation and modeling of periodic signals . . . . 35
3.2 Indoor navigation . . . . . . . . . . . . . . . . . . . . . . . . 36

4. Discussion 41

Bibliography 43

Paper I. pyParticleEst: A Python Framework for Particle
Based Estimation Methods 47
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2 Related software . . . . . . . . . . . . . . . . . . . . . . . . . 49
3 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Example models . . . . . . . . . . . . . . . . . . . . . . . . . 65
7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7



Contents

Paper II. A Quantitative Evaluation of Monte Carlo
Smoothers 77
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2 Theoretical Preliminaries . . . . . . . . . . . . . . . . . . . . 79
3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Paper III. Nonlinear MPC and Grey-Box Identi�cation
using PSAEM of a Quadruple-Tank Laboratory Process 99
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2 Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3 Grey-box system identi�cation . . . . . . . . . . . . . . . . . 102
4 MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5 Improved MPC for non-minimum phase systems . . . . . . . 114
6 Experiment on the real process . . . . . . . . . . . . . . . . 117
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Paper IV. Particle Filtering Based Identi�cation for
Autonomous Nonlinear ODE Models 123
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2 Formulating the model and the problem . . . . . . . . . . . 125
3 Particle �ltering for autonomous system identi�cation . . . . 126
4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . 130
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Paper V. Metropolis-Hastings Improved Particle Smoother
and Marginalized Models 139
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8



Contents

Paper VI. Rao-Blackwellized Auxiliary Particle Filters for
Mixed Linear/Nonlinear Gaussian models 153
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Paper VII. Extending the Occupancy Grid Concept for
Low-Cost Sensor-Based SLAM 167
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 169
3 Article Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5 Implementation Details . . . . . . . . . . . . . . . . . . . . . 175
6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7 Conclusions and Future Work . . . . . . . . . . . . . . . . . 178
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Paper VIII. Rao-Blackwellized Particle Smoothing for
Occupancy-Grid Based SLAM Using Low-Cost Sensors 181
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
4 Forward Filtering . . . . . . . . . . . . . . . . . . . . . . . . 187
5 Rao-Blackwellized Particle Smoothing . . . . . . . . . . . . . 188
6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 193
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

9





Preface

Outline and Contributions of the Thesis

This thesis consists of three introductory chapters and eight papers. This
section describes the contents of each chapter and details the contributions
for each paper.

Chaper 1 - Introduction

This chapter gives a brief introduction to the concept of state estimation,
and gives a theoretical background for the work in this thesis, detailing the
di�erent methods that are the foundation for the work performed.

Chaper 2 - Implementation

This chapter introduces the pyParticleEst software that has been the com-
mon theme for all the work performed in this thesis. It also gives a quick
overview of other existing software that aim to solve similar problems.

Chaper 3 - Applications

This chapter provides some background for the application areas related to
the work in this thesis. These areas are system identi�cation, autonomous
systems for modeling of periodic signals and simultaneous localization and
mapping in indoor environments.
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Preface

Paper I

Nordh, J. (2015). \pyParticleEst: a Python framework for particle based esti-
mation methods". Journal of Statistical Software. Conditionally accepted,
minor revision.

This paper describes the software frameworkpyParticleEst that the au-
thor has developed. The software is an attempt to simplify the application
of particle methods, such as particle �lters and smoothers, to new problems.
The article describes the structure of the software and breaks down a num-
ber of popular algorithms to a set of common operations that are performed
on the mathematical model describing a speci�c problem. It also identi�es
some popular types of models and presents building blocks in the framework
to further assist the user when operating on mathematical models of those
types.

Paper II

Nordh, J. and J. Antonsson (2015, Submitted). \Quantitative evaluation of
sampling based smoothers for state space models".EURASIP Journal on
Advances in Signal Processing. Submitted.

The paper compares three di�erent methods for computing smoothed
state estimates with regards to the root mean square error of the estimate in
relation to the number of operations that have to be performed. The author's
contributions to this paper is the idea for how to measure the computational
e�ort in an implementation independent way and the software implementa-
tion of the algorithms and examples.

Paper III

Ackzell, E., N. Duarte, and J. Nordh (2015, Submitted). \Nonlinear MPC
and grey-box identi�cation using PSAEM of a quadruple-tank laboratory
process". Submitted.

The paper describes the application of Particle Stochastic Approximation
Expectation Maximization (PSAEM) to perform greybox identi�cation of a
quadruple-tank laboratory setup. The identi�ed model is used to perform
nonlinear Model Predictive Control (MPC) by linearizing the system around
the previously predicted trajectory. The work was partly performed by two
students in an applied automatic control course where the author acted as
supervisor. The author's contributions to the project was the initial project
idea and the implementation of the system identi�cation parts.
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Preface

Paper IV

Nordh, J., T. Wigren, T. B. Sch•on, and B. Bernhardsson (2015, Submitted).
\Particle �ltering based identi�cation for autonomous nonlinear ODE
models". In: 17th IFAC Symposium on System Identi�cation. Beijing,
China. Submitted.

The paper presents an algorithm based on PSAEM to identify a model
that describes an autonomous periodic signal. It improves on previously pub-
lished results that relied on linear approximations. The author's contributions
to the paper are the formulation using a marginalized model, which allowed
the e�ective sampling of the particles in the Particle Gibbs Ancestral Sampler
(PGAS) kernel, and the software implementation and experimental results.

Paper V

Nordh, J. (2015, Submitted). \Metropolis-Hastings improved particle
smoother and marginalized models". In:European Conference on Signal
Processing 2015. Nice, France. Submitted.

The paper describes how to combine the Metropolis-Hastings Improved
Particle Smoother (MHIPS) with marginalized models. It also demonstrates
the importance of marginalization for an e�ective MHIPS algorithm. This
work was motivated by the need to provide a cohesive set of methods in the
pyParticleEst framework for all the supported model classes.

Paper VI

Nordh, J. (2014). \Rao-Blackwellized auxiliary particle �lters for mixed lin-
ear/nonlinear Gaussian models". In: 12th International Conference on
Signal Processing. Hangzhou, China.

The paper extends a previously published method for using Auxiliary
Particle Filters on mixed linear/nonlinear Gaussian models. It proposes two
new approximations for the required density p(yt +1 jx t ). The �rst approx-
imation uses a local linearization and the second relies on the Unscented
Transform. The three methods are compared for two examples to highlight
the di�erences in behavior of the approximations.
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Preface

Paper VII

Nordh, J. and K. Berntorp (2012). \Extending the occupancy grid concept for
low-cost sensor based SLAM". In:10th International IFAC Symposium
on Robot Control. Dubrovnik, Croatia.

The paper presents an extension to the occupancy grid concept in order
to handle the problems associated with using ultrasound based range sen-
sors. The motivation for the work was to be able to perform Simultaneous
Localization and Mapping (SLAM) using inexpensive sensors, demonstrated
by the use of a simple di�erential drive robot built of LEGO. The author's
contributions were the idea how to extend the map to compensate for the
sensor characteristics and the software implementation.

Paper VIII

Berntorp, K. and J. Nordh (2014). \Rao-Blackwellized particle smoothing
for occupancy-grid based SLAM using low-cost sensors". In:19th IFAC
World Congress. Cape Town, South Africa.

The paper continues the work of Paper VII by not only considering the
�ltering problem but also the smoothing problem. It also demonstrates the
validity of the approach by collecting a real world dataset with ground truth
for the motion obtained through the use of a VICON tracking system and
shows that the proposed method gives better position estimates than relying
on dead-reckoning. The author's contributions were the model formulation
for the di�erential drive robot to avoid the degeneracy problem, the analytic
solution for evaluation of the required smoothing density and the software
implementation.

In addition to the work detailed above the author performed substantial parts
of the writing and editing of all the articles with multiple authors.
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Glossary

APF Auxiliary Particle Filter

BSD Berkeley Software Distribution

CPF Conditional Particle Filter

CPFAS Conditional Particle Filter Ancestral Sampler

EKF Extended Kalman Filter

EM Expectation Maximization

FFBP Forward Filter Backward Proposer

FFBSi Forward Filter Backward Simulator

GPL GNU General Public License

KF Kalman Filter

LGPL GNU Lesser General Public License

LTV Linear Time-Varying

MCMC Markov Chain Monte Carlo

MHIPS Metropolis-Hastings Improved Particle Smoother

ML Maximum Likelihood

MLNLG Mixed Linear/Nonlinear Gaussain

MPC Model Predictive Control

PF Particle Filter

PG Particle Gibbs

PGAS Particle Gibbs Ancestral Sampler

PIMH Particle Independent Metropolis-Hastings
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Glossary

PMCMC Particle Markov Chain Monte Carlo

PMMH Particle Marginal Metropolis-Hastings

PS Particle Smoother

PSAEM Particle SAEM

RB Rao-Blackwellized

RBPF Rao-Blackwellized Particle Filter

RBPS Rao-Blackwellized Particle Smoother

RTS Rauch-Tung-Striebel

SAEM Stochastic Approximation EM

SIR Sequential Importance Resampler

SIS Sequential Importance Sampler

SLAM Simultaneous Localization and Mapping

SMC Sequential Monte Carlo

UKF Unscented Kalman Filter

UT Unscented Transform
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1
Introduction

This thesis deals with the concept of nonlinear estimation. Estimation in
general is the process of inferring information about some unknown quantity
through some form of direct or indirect measurements. It is an important
topic in itself, but also serves as a central part of other topics such as control,
where knowledge of the current state of a process is crucial for determining
the correct control actions. This thesis will mainly deal with the estimation
of discrete time dynamical systems. The rest of this chapter will introduce
some basic concepts and common algorithms used within this �eld, for a more
thorough introduction see [S•arkk•a, 2013] and [Lindsten and Sch•on, 2013].

1.1 Theoretical background

In the context of estimation, the concept of �ltering refers to making esti-
mates of a quantity at time t using information up to, and including, time t.
Smoothing on the other hand refers to estimates using future information as
well. The following notation is used in this thesis; x t jT where x denotes an
estimate of the unknown quantity at time t and T is the time up to which
information is used to form the estimate. So for a �ltering problem T = t
and for a smoothing problemT > t .

An important class of problems that has been extensively studied are
linear time-varying Gaussian (LTV) models. Such a system can be described
as

x t +1 = A t x t + f t + vt (1.1a)

yt = Ct x t + gt + et (1.1b)
�

vt

et

�
� N

�
0;

�
Rxx;t Rxy;t

RT
xy;t Ryy;t

��
: (1.1c)

Here the statesx t occur linearly and f t and gt are known o�sets. All the
uncertainty in the system is described by the additive Gaussian noisesvt and

17



Chapter 1. Introduction

et . This class of problems is important because there exist analytical solutions
to both the �ltering and smoothing problem for this model, most famously
the Kalman �lter (KF) [Kalman, 1960]. The KF provides an algorithm for
recursively computing the �ltered estimate, and is summarized in Algorithm
1 where the recursive structure is evident in that the estimate is successively
updated with new data from each measurement. At each time the posterior
distribution of x can be completely captured by a normal distribution, that
is x t j t � N (�x t j t ; Pt j t ). The smoothing problem can also be solved analytically
by for example a Rauch-Tung-Striebel (RTS) smoother [Rauch et al., 1965].
The RTS smoother is summarized in Algorithm 2.

Algorithm 1 Kalman �lter (for the case where Rxy = 0)
Initialize x̂0j0; P0j0 from prior knowledge
for t  0 to T � 1 do

Predict step
Compute �x t +1 j t = A t �x t j t + f t

Compute Pt +1 j t = A t Pt j t AT
t + Rxx;t

Update step
Let S = Ct +1 Pt +1 j t CT

t +1 + Ryy;t +1

Compute �x t +1 j t +1 = �x t +1 j t + Pt +1 j t CT
t +1 S� 1(yt � Ct +1 �x t +1 j t )

Compute Pt +1 j t +1 = Pt +1 j t � Pt +1 j t CT
t +1 S� 1Ct +1 Pt +1 j t

Algorithm 2 Rauch-Tung-Striebel smoother.
Initialize xT jT ; PT jT with estimates from Kalman �lter
for t  T � 1 to 0 do

Compute �x t jT = �x t j t + Pt j t AT
t P � 1

t +1 j t (�x t +1 jT � �x t +1 j t )

Compute Pt jT = Pt j t + Pt j t AT
t P � 1

t +1 j t (Pt +1 jT � Pt +1 j t )P
� 1
t +1 j t A t Pt j t

Unfortunately many interesting real world problems do not fall into the
LTV class. A more general model formulation is

x t +1 = f (x t ; vt ; t) (1.2a)

yt = g(x t ; et ; t); (1.2b)

where f; g are arbitrary nonlinear functions and the noisevt ; et can be from
arbitrary distributions. To be able to reuse the theory and methods from the
LTV case a number of approximations have been proposed.

The Extended Kalman Filter (EKF), see for example [Julier and
Uhlmann, 2004], provides an approximate solution by linearizing the func-
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1.1 Theoretical background

tions f; g around the current state estimate x t and assumes that the noise
is additive and Gaussian, which allows the application of the recursion from
the normal Kalman Filter.

Another approach is the Unscented Kalman Filter (UKF) [Wan and Van
Der Merwe, 2000] which assumes that the resulting estimates will be from
a Gaussian distribution where the mean and covariance are computed using
the Unscented Transform (UT) [Julier and Uhlmann, 2004]. The UT works
by deterministically sampling points from the distribution before the nonlin-
earity, the so called Sigma points. These are then propagated through the
nonlinear functions, after which the mean and covariance of the resulting
distribution are recovered.

Both of these approaches are fundamentally limited by the fact that the
resulting posterior distributions are assumed to be Gaussian. A major limi-
tation of modeling the posterior distribution as a Gaussian is that it assumes
the posterior to be unimodal, whereas many problem have multimodal distri-
butions. Consider for example a scenario where it is possible to measure only
the absolute value of an unknown variable; even if the prior belief of that vari-
able is Gaussian the resulting posterior-probability function is multimodal as
shown in Figure 1.1.

Figure 1.1 Prior probability density for an unknown variable x � N (0; 1)
and posterior after measuring 1 = jxj + e; e � N (0; 0:5). The prior is the
dashed red line and the posterior the solid blue line.
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Chapter 1. Introduction

1.2 Particle �ltering

Particle Filters (PF) [Gordon et al., 1993], or Sequential Monte Carlo meth-
ods (SMC) [Liu and Chen, 1998], use a fundamentally di�erent approach
to the estimation problem; instead of assuming a pre-speci�ed form of the
posterior distribution a weighted point mass distribution is used,

p(x) �
NX

i =1

w( i ) � (x � x ( i ) ): (1.3)

The samples x ( i ) are typically referred to as particles which explains the
name of the method, each particle is associated with a corresponding weight
w( i ) , where

P N
i =1 w( i ) = 1. The estimated mean ofx could then be computed

as �x =
P N

i =1 w( i ) x ( i ) .
The Particle Filter propagates this estimate forward in time by sam-

pling new particles f x ( i )
t +1 gi =1 ::N based on the values off x ( i )

t gi =1 ::N . The
PF accomplishes this by sampling the particles from a proposal distribution
q(x t +1 jx ( i )

t ; yt +1 ). The estimates are then reweighted to represent the desired
probability density p(x t +1 jy1:t +1 ), because of this it is also often referred to
as a Sequential Importance Sampler (SIS).

The proposal density q is a design choice,q = p(x t +1 jx t ) is commonly
used and the resulting �lter is referred to as a bootstrap Particle Filter. This
simpli�es the computations because when calculating the new weights for this
choice the expression simpli�es tow( i )

t p(yt +1 jx ( i )
t +1 ). It is, however, important

for the performance of the �lter that the new particles are concentrated
to areas of high probability, so depending on the nature of the particular
problem to be solved and the constraints imposed by the mathematical model
other choices such asq = p(x t +1 jyt +1 ) can provide better performance.

Crucial for the PF to work in practice is that the particles are resampled,
which is a method for discarding samples in regions of low probability. The
algorithm is then referred to as a Sequential Importance Resampler (SIR)
algorithm instead of SIS. The resampling step is important since without it
the weights for all particles except one will eventually tend towards zero, a
phenomenon referred to as particle depletion or degeneracy. The resampling
step, however, increases the variance of the estimates and it is thus desirable
to only perform it when necessary. An often used criterion for determining
this is the so-called number ofe�ective particles, which is computed as

Ne� =
1

P N
i =1 (w( i ) )2

: (1.4)

The Particle Filter with resampling triggered by the number of e�ective par-
ticles is summarized in Algorithm 3.
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1.2 Particle �ltering

Algorithm 3 Particle Filter algorithm using the e�ective number of particles
as resampling criteria. 
 res is a design variable that speci�es the threshold
for the ratio of e�ective particles and the total number of particles that will
trigger the resampling.

Draw x ( i )
0 from p(x0); i 2 1::N

Set w( i )
0 = 1

N ; i 2 1::N
for t  0 to T � 1 do

Calculate Ne� = (
P N

i =1 w( i )2

t ) � 1

if (Ne� < 
 resN ) then
Draw new ancestor indices ai from the categorical distribution
de�ned by f w( i )

t gi =1 ::N

Set w( i )
t = 1

N ; i 2 1::N

else
Set ai = i; i 2 1::N .

for i  1 to N do
Samplex ( i )

t +1 from q(x t +1 jx (a i )
t ; yt +1 )

Set ŵ( i ) = w(a i )
t p(yt +1 jx ( i )

t +1 )p(x ( i )
t +1 jx (a i )

t )=q(x ( i )
t +1 jx (a i )

t ; yt +1 )

Normalize weights, w( i )
t +1 = ŵ( i ) =

P N
j =1 ŵ( j )

The number of particles needed when using a PF typically grows expo-
nentially with the dimension of the state-space as discussed in [Beskos et al.,
2014] and [Rebeschini and Handel, 2013]. This scaling property makes it in-
teresting to try to reduce the dimension of the problem. A common approach
for this is to use so-called Rao-Blackwellized Particle Filters (RBPF) [Sch•on
et al., 2005]. These split the state-space into two parts,xT =

�
� T zT

�
. The

�rst part, � , is the nonlinear estimation problem and the second part,z, be-
comes a LTV-system when conditioned on� . In general such a model can be
written as

� t +1 =
�

f n
� (� t ; vn

� )
f l

� (� t )

�
+

�
0

A � (� t )

�
zt +

�
0
vl

�

�
(1.5a)

zt +1 = f z (� t ) + Az (� t )zt + vz (1.5b)

yt =
�

h� (� t ; en )
hz (� t )

�
+

�
0

C(� t )

�
zt +

�
0
el

�
(1.5c)

vl
� � N (0; Q� (� t )) ; vz � N (0; Qz (� t )) ; el � N (0; R(� t )) ; (1.5d)

where the key importance is that the parts of the model where thez-states
appear are all a�ne in z and with additive Gaussian noise. For the remain-
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ing part of the model the noise can be from any distribution and is not re-
stricted to occur only additively. The Particle Filter is then only used to �nd
the solution to � 1:T and the estimate of z1:T is computed using a Kalman
Filter. Interesting to note is that this becomes a non-Markovian problem
when marginalizing over the z-states, i.e the values of� t +1 depend not only
on (� t ; yt +1 ) but on the whole history ( � 1:t ; y1:t ). Fortunately from an im-
plementation point of view it is su�cient to store the �ltered statistics of
the z-state to capture the in
uence of the past states, i.e we can write the
transition density as p(� t +1 j� 1:t ; y1:t ) = p(� t +1 j� t ; �zt ; Pt ).

Importance of Proposal Distribution
The choice of proposal distribution, q(x t +1 jx t ; yt +1 ), can have a large in-

uence of the performance of the �lter. The bootstrap Particle Filter uses
q = p(x t +1 jx t ), but if the state dynamics are uncertain, as is the case in for
example system identi�cation applications, this can result in a poor approx-
imation.

If the model allows it the optimal choice is q = p(x t +1 jx t ; yt +1 ), the cor-
responding particle weights are then computed asw( i )

t +1 = w( i )
t p(yt +1 jx ( i )

t ). In
the case were the measurements are more informative than the state dynam-
ics, the choiceq = p(x t +1 jyt +1 ) can provide good performance. However, in
many cases it is not possible to directly sample from this distribution.

The Auxiliary Particle Filter (APF) [Pitt and Shephard, 1999] is a variant
of the regular PF where the particles are resampled by �rst reweighting them
according to w( i )

t p(yt +1 jx ( i )
t ) to attempt to ensure that all particles end up in

regions of high probability. Sincep(yt +1 jx ( i )
t ) typically is not readily available

it is often replaced by an approximation, such as using the predicted mean,
e.g p(yt +1 j �x ( i )

t +1 ).
To illustrate these di�erent approaches they are compared on a single

realization of the trivial example of an integrator with additive Gaussian
noise,

x t +1 = x t + vt ; vt � N (0; 1) (1.6a)

yt = x t + et ; et � N (0; 1) (1.6b)

x0 � N (0; 1): (1.6c)

The resulting particle estimates are shown in Figure 1.2 for the bootstrap
Particle Filter ( q = p(x t +1 jx t )), Figure 1.3 for the case using the optimal pro-
posal distribution ( q = p(x t +1 jx t ; yt +1 )), Figure 1.4 using q = p(x t +1 jyt +1 )
and Figure 1.5 with an APF using p(yt +1 j �x t ). In the end the choice of pro-
posal distribution is often dictated by the model, but when possible it is
desirable to use a proposal as close to the optimal proposal as possible.
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1.3 Particle smoothing

1.3 Particle smoothing

Since each particle in a Particle Filter is in
uenced by its past trajectory,
both in the value x ( i ) and its weight w( i ) , it actually provides a collection
of weighted trajectories. Each trajectory is the ancestral path of one of the
particles at time t. The ancestral path is the trajectory we obtain by taking
the ancestor of each particle and iterating this procedure backwards in time.
The Particle Filter thus actually targets p(x1:t ) �

P N
i =0 w( i )

t � (x1:t � x ( i )
1:t )

wherex ( i )
1:t is the ancestral path of particle i at time t. Discarding x1:t � 1 as is

typically done corresponds to a marginalization over those states. In theory
the Particle Filter is therefore actually a smoothing algorithm. However, due
to the (necessary) resampling step, it provides a very poor approximation
of the true probability density function since in practice for t � T all the
particles share a common ancestor, thus reducing the PF estimate to a single
point estimate. This is commonly referred to as path degeneracy. An example
of this is shown in Fig. 1.2 where it can be seen that the ancestral paths are
severely degenerate fort � T .

To provide better smoothing performance than that of the Particle Fil-
ter a number of di�erent methods have been proposed, they are all com-
monly referred to as particle smoothers. A very common approach is the
so-called Forward Filter Backward Simulator (FFBSi) [S. J. Godsill et al.,
2004]. It is a method which reuses the particles from the �lter but creates new
smoothed trajectories. It iterates through the forward estimates backward in
time, drawing new ancestors for each particle while taking the likelihood of
the future trajectory into consideration. FFBSi is summarized in Algorithm
4. Figure 1.6 revisits the example from the previous section this time showing
the smoothed trajectories that were obtained using FFBSi.

Algorithm 4 Forward Filter Backwards Simulator, draws M trajectories
from the smoothing distribution p(x1:T jy1:T ).

Run particle �lter forward in time generating f x ( i )
t j t ; w( i )

t j t gi =1 ::N ; t 2 0::T

Samplef x ( j )
T jT gj =1 ::M using the categorical distribution f w( i )

T jT gi =1 ::N

for t  T � 1 to 0 do
for j  1 to M do

Compute ŵ( i )
t jT = w( i )

t j t p(x ( j )
t +1 jT jx ( i )

t j t ); i 2 1::N

Normalize w( i )
t jT = ŵ( i )

t jT =(
P N

k=1 ŵ(k )
t jT )

Sampleaj from the categorical distribution de�ned by f wt jT gi =1 ::N

Set x ( j )
t jT = x (a j )

t j t
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Figure 1.2 Example realization of model (1.6) estimated with a boot-
strap Particle Filter. The solid red line is the true trajectory and the blue
crosses are the measurements. The black points are the �ltered particle es-
timates forward in time and the blue dashed lines are the ancestral paths of
the particles at time T . The degeneracy of the ancestral paths can be seen
clearly.

Figure 1.3 Example realization of model (1.6) estimated with a Particle
Filter using the optimal proposal distribution. The notation is the same as
in Figure 1.2. The problem of path degeneracy is not as big as in Figure 1.2
but still clearly present, for a longer dataset it would eventually collapse to
a point estimate.
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1.3 Particle smoothing

Figure 1.4 Example realization of model (1.6) estimated with a Particle
Filter using p(x t +1 jyt +1 ) as proposal distribution. The notation is the same
as in Figure 1.2. Notice that all the particles occur symmetrically around
the measurements, in comparison the particles in Figure 1.2 are centered
around the predicted next state.

Figure 1.5 Example realization of model (1.6) estimated with an Aux-
iliary Particle Filter using p(yt +1 j �x t +1 ). The notation is the same as in
Figure 1.2. By attempting to predict which particles will be likely after
the next measurement the APF improves the performance of the �lter and
slightly reduces the degenaracy compared to Figure 1.2.
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Figure 1.6 Example realization of model (1.6) estimated using a boot-
strap Particle Filter combined with a FFBSi smoother using 10 backward
trajectories. The notation is the same as in Figure 1.2 except for the ances-
tral paths which are replaced by the smoothed trajectories. The estimates
using FFBSi are closer to the true trajectory when compared with the �lters
presented in Figure 1.2{1.5, also it can be seen that it does not su�er from
path degeneracy for this example.

Looking at Algorithm 4 it is clear that the computational complexity of
FFBSi scales asO(NM ), where N is the number of particles used in the PF
and M is the number of backward trajectories to be sampled. A number of
di�erent approaches have been proposed to improve this by avoiding the need
to evaluate all the smoothing weights, f ŵ( i )

t jT gi =1 ::N . They include the use
of rejection sampling [Doucet and Johansen, 2009] and using a Metropolis-
Hastings sampler [Bunch and S. Godsill, 2013]. Further methods exist which
not only reuse the forward particles but also sample new values ofx ( i )

t jT during
the smoothing, one is the so called Metropolis-Hastings Improved Particle
Smoother (MHIPS) [Dubarry and Douc, 2011], another the Forward Filter
Backward Proposer (FFBP) [Bunch and S. Godsill, 2013].

In the same manner as for the Particle Filter it is of interest to reduce
the dimension of the estimation problem by �nding any states that repre-
sent a LTV-system when conditioned on the rest of the states. However, the
resulting smoothing problem becomes more di�cult to solve than the corre-
sponding �ltering problem since it becomes a non-Markovian problem. For an
introduction to non-Markovian particle smoothing see [Lindsten and Sch•on,
2013]. There is no general solution to the marginalized smoothing problem
where the computational e�ort required for each step does not grow with the
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size of the full dataset. However, for mixed linear/nonlinear models with ad-
ditive Gaussian noise (MLNLG) a method has been presented in [Lindsten
et al., 2013] that propagates variables backwards during the smoothing in
the same way that �zt and Pt are propagated forward in the RBPF. Another
approach is that used in [Lindsten and Sch•on, 2011] where the solution to the
smoothing problem is approximated by marginalizing overz for the �ltering,
but sampling the z-states during the smoothing step and later recovering the
full distribution by running a constrained smoother for z1:T after obtaining
the estimated trajectories for � 1:T

1.4 Parameter estimation

Another important estimation problem is that of �nding the values of un-
known parameters in a model. A key di�erence between parameters and
states is that the former are constant over time whereas the latter typically
are not. This property makes the problem of parameter estimation funda-
mentally di�erent from that of state estimation, and much less suitable to
be solved by particle �ltering/smoothing. However, particle methods play an
important role in several approaches for estimation of parameters in non-
linear models. By extending model (1.2) with a set of unknown parameters,
� , it now becomes

x t +1 = f (x t ; vt ; t; � ) (1.7a)

yt = g(xy ; et ; t; � ): (1.7b)

One approach that is sometimes used is to just include the unknown
parameters as states in the model, but it leads to problems such as the
parameters varying over time if they are modeled as for example a slowly
drifting random walk process. If the parameters are assumed to be �xed the
issues with particle depletion and path degeneracy lead to poor performance.

Often the quantity of interest is the maximum likelihood (ML) estimate
of � , that is

�̂ = argmax
�

p(y1:T j� ); (1.8)

but it can also be of interest to �nd the full posterior distribution of the
parameters, i.ep(� jy1:T ).

To compute the ML-estimate the Expectation Maximization (EM) algo-
rithm [Dempster et al., 1977] is commonly used. It introduces theQ-function
(1.9a) and alternates between computing the expected value (the E-step) and
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�nding a new estimate of � using (1.9b) (the M-step).

Q(�; � k ) = E X j � k [L � (X; Y jY )] (1.9a)

� k+1 = argmax
�

Q(�; � k ) (1.9b)

The EM-algorithm is a well studied approach for linear systems [Shumway
and Sto�er, 1982][Gibson and Ninness, 2005] which �nds the (local) ML-
estimate. For nonlinear systems there is typically no analytic solution to the
E-step, but it can be approximated using a particle smoother [Sch•on et al.,
2011]. A drawback with this approach is that it requires a growing number
of particles for the E-step for each new iteration of the algorithm [Lindsten
and Sch•on, 2013].

When the estimation problem is computationally expensive an improve-
ment to this approach is to use the Stochastic Approximation Expectation
Maximization algorithm (SAEM) [Delyon et al., 1999] instead. It replaces
(1.9a) with (1.10)

bQk (� ) = (1 � 
 k ) bQk � 1(� ) + 
 k logp� (x0:T [k]; y1:T ); (1.10)

where x0:T [k] is the estimated trajectory of the system using� k . 
 k denotes
the step size, which is a design parameter that must ful�ll

P 1
k=1 
 k = 1 andP 1

k=1 
 2
k < 1 . By combining this with a Conditional Particle Filter (CPF)

[Lindsten et al., 2014] the Particle SAEM (PSAEM) [Lindsten, 2013] method
is created, which avoids the need of increasing the number of particles for
each iteration. Intuitively the conditioning on a previous trajectory retains
information between the iterations allowing the gradual improvement of the
quality of the estimate for a �xed number of particles. The use of a regu-
lar CPF, however, leads to slow mixing and therefore the use ofancestral
sampling (CPFAS) was introduced in [Lindsten et al., 2014]. The CPFAS is
summarized in Algorithm 5.

Another approach is that of the Particle Markov-Chain Monte Carlo
(PMCMC) methods which, instead of computing the ML-estimate, sample
from the posterior distribution p(� jy1:T ). This is accomplished by targeting
the joint distribution p(�; x 1:T jy1:T ). Examples of such methods are Parti-
cle Marginal Metropolis-Hastings (PMMH) [Andrieu et al., 2010], Particle
Gibbs (PG) [Andrieu et al., 2010] and the Particle Gibbs Ancestral Sampler
(PGAS) [Lindsten et al., 2014]. The PMMH method is also known as Par-
ticle Independent Metropolis-Hastings (PIMH) when there is no unknown
parameters and it thus solves a pure state-estimation problem.
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Algorithm 5 Conditional Particle Filter with Ancestral Sampling (CPFAS).
The conditional trajectory xcond

0:T is preserved throughout the sampling, but
due to the ancestral sampling it is broken into smaller segments, thus reducing
the degeneracy which otherwise leads to poor mixing when used as part of
e.g. a Particle Gibbs algorithm.

Draw x ( i )
0 from p(x0); i 2 1::N � 1

Set x (N )
0 = xcond

0 Set w( i )
0 = 1

N ; i 2 1::N
for t  0 to T � 1 do

for i  1 to N � 1 do
Draw ai with P(ai = j ) / w( j )

t

Samplex ( i )
t +1 from q(x t +1 jx (a i )

t ; yt +1 )

Draw aN with P(aN = i ) / w( i )
t p(xcond

t +1 jx ( i )
t )

Set x (N )
t +1 = xcond

t +1
for i  1 to N do

Set ŵ( i ) = w(a i )
t p(yt +1 jx ( i )

t +1 )p(x ( i )
t +1 jx (a i )

t )=q(x ( i )
t +1 jx (a i )

t ; yt +1 )

Normalize weights, w( i )
t +1 = ŵ( i ) =

P
j ŵ( j )
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2
Implementation

The types of estimation methods presented in Chapter 1 can be implemented
in a large number of ways, ranging from software implementations in a proto-
typing environment such as Matlab to dedicated hardware implementations
and as a middle ground implementations running on Graphics Processing
Units (GPUs). The speci�c target platform depends on both the application
of the estimator and its performance requirements. For all cases it is of inter-
est to be able to reuse generic parts of the implementation to reduce the time
and e�ort needed for the development and to reduce the risk of introducing
errors by relying on parts previously veri�ed to work.

The remainder of this chapter gives a quick overview of existing software
to assist in the application of these methods followed by a slightly more in-
depth explanation of the pyParticleEst software that has been the foundation
for the work performed in this thesis.

2.1 Related software

LibBI
LibBI [Murray, In review] is described as generating highly e�cient code
for performing Bayesian inference using either GPUs or multi-core CPUs.
It uses a custom high level language to describe the problem and can then
generate code for a number of di�erent algorithms for solving that particular
problem. It is distributed under the CSIRO Open Source Software License,
which appears to be a derivative of the GNU General Public License version
2 (GPL v2) license.

Biips
Biips [Todeschini et al., 2014] uses the BUGS language to de�ne a model and
then solves the estimation problem using either particle �ltering, PIMH or
PMMH. It is licensed under GNU General Public License version 3 (GPL
v3).
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SMCTC
SMCTC: Sequential Monte Carlo Template Class [Johansen, 2009] is a C++
template library license under GNU General Public License v3 (GPL v3).
It provides a set of low-level templates that can used for Sequential Monte
Carlo methods.

Venture
Venture [Mansinghka et al., 2014] de�nes itself as ahigher-order probabilistic
programming platform. It de�nes a custom language with is used for describ-
ing the probabilistic models. It can perform inference using a number of
methods including SMC. The authors currently describe it as "alpha quality
research software". It is distributed under the GNU General Public License
version 3 (GPL v3).

Anglican
Anglican [Wood et al., 2014] also de�nes a custom language for describ-
ing probabilistic models and it performs inference using PMCMC. It is dis-
tributed under the BSD license.

2.2 pyParticleEst

The work presented in this thesis has mainly revolved around a software
developed by the author called pyParticleEst [Nordh, 2013]. It tries to provide
a foundation for experimenting with di�erent models and algorithms to allow
the user to determine the most suitable setup for their problem.

The goal is not necessarily to provide the fastest possible implementation,
but to have a very generic framework that is easy to extend and apply to
new problems. To achieve this the code is split into parts that describe the
algorithms and parts that describe the model for an estimation problem.
The algorithmic parts operate on generic functions corresponding to di�erent
probabilistic operations on the mathematical models, such as sampling from
distributions and evaluating probability densities. The model parts are then
responsible for performing these operations in the correct way for that speci�c
problem, thus achieving a separation between the generic algorithm parts
and the problem speci�c parts. The interfaces in the library are structured to
allow for estimation of non-Markovian problems, and the framework as such is
not limited to state-space models. This is used for example when performing
estimation using Rao-Blackwellized Particle Smoothers, but could also be
used for other types of models such as Gaussian Processes as in for example
[Lindsten and Sch•on, 2013, Chapter 4.1.3].

pyParticleEst is implemented in Python, hence the name. Python is a high
level object oriented language, this is leveraged by representing the models as
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Python classes. Each model class is then responsible for how the data for that
particular problem is stored, and how to perform the necessary computations
on that data. This requires a bit more programming knowledge from the end
user compared to the approach taken by some of the softwares listed in
Section 2.1, which instead take the approach of specifying the problems in
a high-level language. On the other hand this allows the programmer more

exibility to perform optimizations and for example identify operations that
could be performed in parallel. To reduce the e�ort needed by the user, a set of
prede�ned classes that describe some common types of models are provided.
These classes are then extended and specialized by the user through the
inheritance mechanism in Python. This is also used to hide the additional
details needed for non-Markovian smoothing when operating on standard
state-space models.

The choice of Python as language combined with licensing the library
as LGPL[FSF, 1999] allows pyParticleEst to be used on a wide-variety of
systems without the need to pay any licensing fees for either the library itself
or any of its dependencies. This also allows it to be integrated into proprietary
solutions. The intended main use-case for pyParticleEst is as a prototyping
tool for testing new algorithms and models, to allow quick comparison of
di�erent approaches and to serve as a reference to compare against when
developing an optimized problem-speci�c implementation, whether that is
supposed to run on a regular PC, GPU or dedicated hardware.

2.3 Discussion

As is evident from the previous sections there is a lot of recent activity
in the research community when it comes to the development of generic
frameworks for working within this relatively new �eld of estimation methods.
This supports the importance of this work, but it also illustrates the variety
of approaches that can be taken, depending on which level of insight of the
internal workings of the algorithms the user wants and is expected to have.

The classic area of linear time-invariant systems allows a very easy repre-
sentation where the user can just de�ne the matrices that describe the model,
for the more general type of models that are the target for these softwares the
choice is not as trivial. Both SMCTC and pyParticleEst take the approach
of letting the user de�ne the model programmatically, which allows, and re-
quires, more insight into the actual implementation of the algorithms. The
other softwares use a high-level language closer to mathematical notation
which could make them easier to use for users with little previous program-
ming experience. The approaches could of course be combined by having a
parser which takes a model speci�cation in some high-level language and
generates code for one of the lower level softwares.
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Application areas

This section gives a brief introduction to a few areas where nonlinear
estimation plays an important role and in which the author has performed
research.

3.1 System identi�cation and modeling of periodic signals

System identi�cation is the process of obtaining a mathematical model de-
scribing an, in some sense, unknown system. The goal is to produce a model
suitable for some particular purpose, since it in general is impossible to �nd
a model that completely describes the true system [Ljung, 1999, Chapter 1]

One area where models play an important role is in control system design.
Models are used both indirectly as part of the design phase and directly as
is the case for Model Predictive Control (MPC). In MPC the controller has
an internal model of the system and the control actions are determined by
the solution of an optimization problem based on the internal model [Clarke,
1987]. Naturally it is important that the internal model provides a good
approximation of the true system.

System identi�cation methods can be categorized into two classes, black-
box and grey-box. Black-box models require no prior knowledge of the struc-
ture of the model, whereas grey-box methods identify parameters in a pre-
viously de�ned structure. The model structure can for example be obtained
through the use of physical principles such as Newton's laws of motion.

For a linear system a black-box model could for example be a canonical
state-space representation [Ljung, 1999, Chaper 4], whereas a grey-box model
would have a structure where the states represent well known physical quan-
tities such as acceleration and velocity. The knowledge that the acceleration
is the derivative of the velocity is then readily apparent from the structure
of the model. For nonlinear systems black-box modeling could be accom-
plished with for example arti�cial neural networks [Bishop, 2006, Chapter 5]
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or Gaussian processes [Rasmussen and Williams, 2005] [Lindsten and Sch•on,
2013, Chapter 4.1.3].

For linear models grey-box identi�cation can be performed by using the
Expectation Maximization (EM) algorithm [Dempster et al., 1977][Gibson
and Ninness, 2005] to calculate the maximum likelihood estimate of the un-
known parameters given the observed data. For nonlinear models the EM-
algorithm can also be used with some modi�cations as described in Section
1.4.

Models used for control describe how an input will a�ect the future output
of a system, it is, however, also of interest to describe autonomous systems.
These are systems that are not a�ected by any (known) inputs. One example
of their use is in the modeling of periodic signals. In [Wigren and S•oderstr•om,
2005] it is shown that any periodic signal where the phase-plane, that is the
plot of ( y; _y), does not intersect itself can be modeled as the output of a
(nonlinear) second order system. If the phase-plane intersects itself it implies
that •y can not be expressed as a function of (y; _y), thus intuitively showing
the necessity of the condition, for the su�ciency part the reader is referred
to the original paper.

Obtaining such a model can provide insight into the behavior that might
not be immediately obvious from studying the signal directly, it could also
provide a method for compressing the amount of data needed to describe a
periodic signal.

3.2 Indoor navigation

The topic of navigation is commonly broken into three areas: Localization,
Mapping and the combination of the former which is commonly referred to
as Simultaneous Localization, and Mapping (SLAM).

Localization deals with determining the position of an agent inside a
previously charted environment, it could for example be pedestrians that
with the help of a phone and the strength of the WiFi-signals determine
their positions inside a shopping center, or it could be a robot working on a
factory 
oor using laser range �nders to measure the distance to known walls
and other obstacles.

Mapping is the process of creating a map for an unknown environment
based on observations from known positions. For the shopping center ex-
ample above it could correspond to measuring the WiFi-signal strengths at
regular positions inside the center where the position of each measurement
is determined by e.g. physically measuring distances to the wall.

SLAM combines the two previous categories and deals with creating a
map of an unknown environment while at the same time relying on that map
for determining the position of the mapping agent. As can be intuitively
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expected this a much more challenging problem than performing either of
the tasks in isolation.

Maps
A map could be any collection of information that assists in the positioning
problem and is very application speci�c, there are, however, some common
types, two of which we will discuss in more detail. For an overview of di�erent
modeling approaches see [Burgard and Hebert, 2008]

Landmark maps are collections of so called features, or landmarks, parts
of the environment that are easily identi�able. A landmark map stores the
location of each such feature along with the information to recognize it when
observed. Whenever such a landmark is later observed it can be used to
infer information about the current position of the agent. This approach
could be used for the shopping center example above, each landmark would
then be a WiFi access point, and the observations would be the received
signal strength in the mobile phone for the signals from each access point.
This utilizes the fact the signal strength among other things depend on the
distance to the signal source. For an example of landmark maps see [Nordh,
2007] and [Alriksson et al., 2007]. A famous algorithm that uses landmark
maps is the FastSLAM algorithm [Montemerlo et al., 2002].

A di�erent type of map is the so called Occupancy Grid, it models the
world as a regularly spaced array, and each cell stores its probability of
being occupied. The observations are then made by observing if a cell is
occupied or empty. A drawback with this type of map is that for a two-
dimensional map the number of cells required increases quadratically with
the desired resolution and quickly becomes very large if there is a need to
map a larger area. Figure 3.1 shows an example of an occupancy grid. The
occupancy probability, p, is typically encoded using the log-odds ratio which
maps [0; 1] ! [�1 ; 1 ] using the following relation

plogodds = log
p

1 � p
(3.1)

For a detailed introduction to occupancy grid mapping see [Thrun et al.,
2005, Chapter 9].

Range �nder sensors
Any number of sensors could be used for localization, for example the
strength of received radio signals discussed before. This section will, how-
ever, focus on so called range �nder sensors, which are typically based on
either light or sound. For indoor navigation laser-based range �nders are
very popular since they provide very high accuracy, with the drawback that
they are fairly expensive. They emit short pulses of light along a narrow
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Figure 3.1 Example of an occupancy grid, the probability of being oc-
cupied is here encoded as the intensity, where black corresponds to 1 and
white to 0. With some imagination this map could represent a room with
an opening out to a corridor in the wall in the bottom of the map. They
grey parts would correspond to areas that have not been observed and are
therefore equally likely to be occupied or unoccupied.

beam and measures the time until the re
ection is received, corresponding
to the distance to the nearest object hit by the laser beam. This typically
provides both a very accurate range measurement and a small angular un-
certainty. The angular uncertainty is the accuracy with which the direction
of the re
ected light can be determined. Ultrasonic range �nders have almost
the opposite characteristics compared to a laser range �nder; they are cheap
but also su�er from high angular uncertainty, not as good range accuracy
and they are less reliable due to the sound pulses being re
ected away in-
stead of back towards the sender when the angle of incidence increases. The
same phenomenon occurs for laser range �nders and mirrors, but for ultra
sound this occur for almost all surfaces in a normal room. This issue is il-
lustrated in Figure 3.2. These characteristics make ultrasonic range sensors
more challenging to use for localization and/or mapping compared to laser
range �nders, but the lower costs makes them attractive for applications were
their performance is su�cient.
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3.2 Indoor navigation

Figure 3.2 Properties of ultrasonic sensors. The sensor has an opening
angle, � , which determines the size of the area that is observed. The emitted
sound only re
ects back to the sensor if the angle of incidence is less than
� , otherwise it re
ects away from the object e�ectively making it invisible
to the sensor. The �gure illustrates a straight wall, the sections marked C
are outside the �eld of view, the section marked B is inside the �eld of view
but the angle of incidence is so large that it is not visible to the sensor. The
section marked A is inside the �eld of view. Also, the angle of incidence is
steep enough for it to be detected by the sensor. The range returned by the
sensor will be the distance to the closest point within section A, marked
with an X . For this example it coincides with the actual closest point, but
for more complex geometries this is not always the case. If section A of
the wall was removed the sensor would not detect anything, even though
sections B and C are still present.
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4
Discussion

The thesis presents a collection of work that has grown from the desire to
write a somewhat generic software implementation when working on the in-
door navigation problem discussed in Paper VII and Paper VIII. From the
start the special case of mixed linear/nonlinear Gaussian models has been
an important part of the software. When expanding the framework with
additional methods some minor gaps in the published methods had to be
�lled in order for all the algorithms to work with the MLNLG models, these
extensions are presented in Paper V and Paper VI.

Having an existing software that could easily solve the same problem using
multiple di�erent methods provided an interesting opportunity to compare
the performance of the di�erent algorithms, this is the topic of Paper II.
This also provided a good foundation for attempting to solve new problems,
which was exploited in Paper III and Paper IV. Finally Paper I describes
the actual software framework implementation, which is the foundation on
which everything else in this thesis builds.
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Paper I

pyParticleEst: A Python Framework
for Particle Based Estimation Methods

Jerker Nordh

Abstract

Particle methods such as the Particle Filter and Particle Smoothers
have proven very useful for solving challenging nonlinear estimation
problems in a wide variety of �elds during the last decade. However,
there is still very few existing tools to support and assist researchers
and engineers in applying the vast number of methods in this �eld to
their own problems. This paper identi�es the common operations be-
tween the methods and describes a software framework utilizing this
information to provide a 
exible and extensible foundation which can
be used to solve a large variety of problems in this domain, thereby
allowing code reuse to reduce the implementation burden and lower-
ing the barrier of entry for applying this exciting �eld of methods. The
software implementation presented in this paper is freely available and
permissively licensed under the GNU Lesser General Public License,
and runs on a large number of hardware and software platforms, mak-
ing it usable for a large variety of scenarios.

Conditionally accepted (minor revision) for publication in the Journal of
Statistical Software
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1. Introduction

During the last few years, particle based estimation methods such as par-
ticle �ltering [Doucet et al., 2000] and particle smoothing [Briers et al.,
2010] have become increasingly popular and provide a powerful alternative
for nonlinear/non-Gaussian and multi-modal estimation problems. Notewor-
thy applications of particle methods include multi-target tracking [Okuma
et al., 2004], Simultanous Localization and Mapping (SLAM) [Montemerlo
et al., 2002] and Radio Channel Estimation [Mannesson, 2013]. Popular al-
ternatives to the particle �lter are the Extended Kalman Filter [Julier and
Uhlmann, 2004] and Unscented Kalman Filter [Julier and Uhlmann, 2004],
but they can not always provide the performance needed, and neither han-
dles multimodal distributions well. The principles of the Particle Filter and
Smoother are fairly straight forward, but there are still a few caveats when
implementing them. There is a large part of the implementation e�ort that
is not problem speci�c and thus could be reused, thereby reducing both the
overall implementation e�ort and the risk of introducing errors. Currently
there is very little existing software support for using these methods, and for
most applications the code is simply written from scratch each time. This
makes it harder for people new to the �eld to apply methods such as par-
ticle smoothing. It also increases the time needed for testing new methods
and models for a given problem. This paper breaks a number of common
algorithms down to a set of operations that need to be performed on the
model for a speci�c problem and presents a software implementation using
this structure. The implementation aims to exploit the code reuse opportu-
nities by providing a 
exible and extensible foundation to build upon where
all the basic parts are already present. The model description is clearly sepa-
rated from the algorithm implementations. This allows the end user to focus
on the parts unique for their particular problem and to easily compare the
performance of di�erent algorithms. The goal of this article is not to be a
manual for this framework, but to highlight the common parts of a num-
ber of commonly used algorithms from a software perspective. The software
presented serves both as a proof of concept and as an invitation to those
interested to study further, use and to improve upon.

The presented implementation currently supports a number of �ltering
and smoothing algorithms and has support code for the most common classes
of models, including the special case of Mixed Linear/Nonlinear Gaussian
State Space (MLNLG) models using Rao-Blackwellized algorithms described
in Section 3, leaving only a minimum of implementation work for the end
user to de�ne the speci�c problem to be solved.

In addition to the �ltering and smoothing algorithms the framework also
contains a module that uses them for parameter estimation (grey-box iden-
ti�cation) of nonlinear models. This is accomplished using an Expectation
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Maximization (EM)[Dempster et al., 1977] algorithm combined with a Rao-
Blackwellized Particle Smoother (RBPS) [Lindsten and Sch•on, 2010].

The framework is implemented in Python and following the naming con-
ventions typically used within the Python community it has been named
pyParticleEst. For an introduction to Python and scienti�c computation see
[T. E. Oliphant, 2007]. All the computations are handled by the Numpy/S-
cipy [Jones et al., 2001{] libraries. The choice of Python is motivated by that
it can run on a wide variety of hardware and software platforms, moreover
since pyParticleEst is licensed under the LGPL [FSF, 1999] it is freely usable
for anyone without any licensing fees for either the software itself or any of
its dependencies. The LGPL license allows it to be integrated into propri-
etary code only requiring any modi�cations to the actual library itself to be
published as open source. All the code including the examples presented in
this article can be downloaded from [Nordh, 2013].

The remaining of this paper is organized as follows. Section 2 gives a short
overview of other existing software within this �eld. Section 3 gives an intro-
duction to the types of models used and a quick summary of notation, Section
4 presents the di�erent estimation algorithms and isolates which operations
each method requires from the model. Section 5 provides an overview of how
the software implementation is structured and details of how the algorithms
are implemented. Section 6 shows how to implement a number of di�erent
types of models in the framework. Section 7 presents some results that are
compared with previously published data to show that the implementation is
correct. Section 8 concludes the paper with a short discussion of the bene�ts
and drawbacks with the approach presented.

2. Related software

The only other software package within this domain to the authors knowledge
is LibBi [Murray, In review]. LibBi takes a di�erent approach and provides
a domain-speci�c language for de�ning the model for the problem. It then
generates high performance code for a Particle Filter for that speci�c model.
In contrast, pyParticleEst is more focused on providing an easily extensible
foundation where it is easy to introduce new algorithms and model types,
a generality which comes at some expense of run-time performance making
the two softwares suitable for di�erent use cases. It also has more focus on
di�erent smoothing algorithms and �lter variants.

There is also a lot of example code that can be found on the Internet, but
nothing in the form of a complete library with a clear separation between
model details and algorithm implementation. This separation is what gives
the software presented in this article its usability as a general tool, not only
as a simple template for writing a problem speci�c implementation. This also
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allows for easy comparison of di�erent algorithms for the same problem.

3. Modelling

While the software framework supports more general models, this paper fo-
cuses on discrete time stace-space models of the form

x t +1 = f (x t ; vt ) (1a)

yt = h(x t ; et ) (1b)

where x t are the state variables,vt is the process noise andyt is a mea-
surement of the state a�ected by the measurement noiseet . The subscript
t is the time index. Both v and e are random variables according to some
known distributions, f and h are both arbitrary functions.

If f; h are a�ne and v; eare Gaussian random variables the system is what
is commonly referred to as a Linear Gaussian State Space system (LGSS) and
the Kalman �lter is both the best linear unbiased estimator [Arulampalam
et al., 2002] and the Maximum Likelihood estimator.

Due to the scaling properties of the Particle Filter and Smoother, which
are discussed in more detail in Section 4.1, it is highly desirable to identify
any parts of the models that conditioned on the other states would be linear
Gaussian. The state-space can then be partitioned asxT =

�
� T zT

�
, where

z are the conditionally linear Gaussian states and� are the rest. Extending
the model above to explicitly indicate this gives

� t +1 =
�

f n
� (� t ; vn

� )
f l

� (� t )

�
+

�
0

A � (� t )

�
zt +

�
0
vl

�

�
(2a)

zt +1 = f z (� t ) + Az (� t )zt + vz (2b)

yt =
�

h� (� t ; en )
hz (� t )

�
+

�
0

C(� t )

�
zt +

�
0
el

�
(2c)

vl
� � N (0; Q� (� t )) ; vz � N (0; Qz (� t )) ; el � N (0; R(� t )) (2d)

As can be seen all relations in (2) involvingz are linear with additive Gaussian
noise when conditioned on� . Here the process noise for the non-linear states
v� is split in two parts: vl

� appears linearly and must be Gaussian whereas
vn

� can be from any distribution, similarly holds true for el and en . This is
referred to as a Rao-Blackwellized model.

If we remove the coupling from z to � we get what is referred to as a
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hierarchical model

� t +1 = f � (� t ; v� ) (3a)

zt +1 = f z (� t ) + A(� t )zt + vz (3b)

yt =
�

h� (� t ; en )
hz (� t )

�
+

�
0

C(� t )

�
zt +

�
0
el

�
(3c)

vz � N (0; Qz (� t )) ; el � N (0; R(� t )) (3d)

Another interesting class are Mixed Linear/Nonlinear Gaussian
(MLNLG) models

� t +1 = f � (� t ) + A � (� t )zk + v� (4a)

zt +1 = f z (� t ) + Az (� t )zt + vz (4b)

yt = h(� t ) + C(� t )zt + e (4c)

e � N (0; R(� t )) (4d)
�

v�

vz

�
� N

��
0
0

�
;
�

Q� (� t ) Q�z (� t )
Q�z (� t )T Qz (� t )

��
(4e)

The MLNLG model class (4) allows for non-linear dynamics but with the
restrictions that all noise must enter additively and be Gaussian.

4. Algorithms

This section gives an overview of some common particle based algorithms,
they are subdivided into those used for �ltering, smoothing and static pa-
rameter estimation. For each algorithm it is identi�ed which operations need
to be performed on the model.

4.1 Filtering
This subsection gives a quick summary of the principles of the Particle Filter,
for a thorough introduction see for example [Doucet et al., 2000].

The basic concept of a Particle Filter is to approximate the probability
density function (pdf) for the states of the system by a number of point
estimates

p(x t jy1:t ) �
NX

i =1

w( i ) � (x t � x ( i )
t ) (5)

Each of the N particles in (5) consists of a state,x ( i )
t , and a corresponding

weight, w( i )
t , representing the likelihood of that particular particle. Each esti-

mate is propagated forward in time using (1a) by samplingvt from the corre-
sponding noise distribution, providing an approximation of p(x t +1 jyt ; :::; y1).
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The measurementyt +1 is incorporated by updating the weights of each par-
ticle with respect to how well it predicted the new measurement, giving an
approximation of p(x t +1 jyt +1 ; yt ; :::; y1). This procedure is iterated forward
in time providing a �ltered estimate of the state x.

A drawback with this approach is that typically all but one of the weights,
w( i )

t , eventually go to zero resulting in a poor approximation of the true
pdf. This is referred to as particle degeneracy and is commonly solved by
a process called resampling [Arulampalam et al., 2002]. The idea behind
resampling is that at each time-step, or when some criteria is ful�lled, a new
collection of particles with all weights equal (w( i ) = 1

N ; 8i ) is created by
randomly drawing particles, with replacement, according to their weights.
This focuses the particle approximation to the most likely regions of the
pdf, not wasting samples in regions with low probability. This method is
summarized in Algorithm 1.

Another issue with the standard Particle Filter is that the number of
particles needed in the �lter typically grows exponentially with the dimension
of the state-space as discussed in [Beskos et al., 2014] and [Rebeschini and
Handel, 2013], where they also present methods to avoid this issue. Another
popular approach is to use Rao-Blackwellized methods when there exists
a conditionally linear Gaussian substructure. Using the partitioning from
model (2) this provides a better approximation of the underlying pdf for a
given number of particles by storing the su�cient statistics for the z-states
instead of sampling from the Gaussian distributions. For an introduction to
the Rao-Blackwellized Particle Filter (RBPF) see [Sch•on et al., 2005].

A variant of the Particle Filter is the so called Auxiliary Particle Filter
(APF), it attempts to focus the particles to regions of high interest by look-
ing one step ahead by evaluatingp(yt +1 jx t ) and using this to resample the
particles before the propagation stage. Since there is typically no analytic
expression for this density it is often approximated by assuming that the
next state will be the predicted mean; p(yt +1 jx t +1 = �x t +1 j t ).

Table 1 summaries the methods needed for the two di�erent �lters.

Table 1. Operations that need to be performed on the model for the
di�erent �lter algorithms. (*typically only approximately).

Operations Methods

Sample from p(x1) PF, APF

Sample from p(x t +1 jx t ) PF, APF

Evaluate p(yt jx t ) PF, APF

Evaluate* p(yt +1 jx t ) APF
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Algorithm 1 Standard Particle Filter algorithm, this is typically improved
by not performing the resampling step at every iteration, but only when some
prespeci�ed criteria on the weights is ful�lled

Draw x ( i )
0 from p(x0); i 2 1::N

Set w( i )
0 = 1

N ; i 2 1::N
for t  0 to T � 1 do

for i  1 to N do
Samplex ( i )

t +1 from p(x t +1 jx ( i )
t )

Set w( i )
t +1 = w( i )

t p(yt +1 jx ( i )
t +1 );

Normalize weights, ŵ( i ) = w( i )
t +1 =

P
j w( j )

t +1

for i  1 to N do
Sample x ( i )

t +1 � p(x t +1 jyt +1 ) by drawing new particles from the

categorical distribution de�ned by ( x (k )
t +1 ; ŵ(k ) ); k 2 1::N

Set w( i )
t +1 = 1

N ; i 2 1::N

4.2 Smoothing
Conceptually the Particle Filter provides a smoothed estimate if the tra-
jectory for each particle is saved and not just the estimate for the current
time-step. The full trajectory weights are then given by the corresponding
particle weights for the last time-step. In practice this doesn't work due to
the resampling step which typically results in that all particles eventually
share a common ancestor, thus providing a very poor approximation of the
smoothed pdf for t � T . An example of this is shown in Fig. 1

Forward Filter Backward Simulator s (FFBSi) are a class of methods that
reuse the point estimates forx t j t generated by the particle �lter and attempt
to improve the particle diversity by drawing backward trajectories that are
not restricted to follow the same paths as those generated by the �lter. This
is accomplished by selecting the ancestor of each particle with probability
! t jT � ! t j t p(x t +1 jx t ). Evaluating all the weights ! t jT gives a time complexity
O(MN ) where N is the number of forward particles and M the number of
backward trajectories to be generated.

A number of improved algorithms have been proposed that improve this
by removing the need to evaluate all the weights. One approach is to use
rejection sampling (FFBSi-RS) [Lindsten and Sch•on, 2013], this however does
not guarantee a �nite end-time for the algorithm, and typically spends a lot
of the time on just a few trajectories. This is handled by introducing early
stopping (FFBSi-RSES) which falls back to evaluating the full weights for a
given time step after a predetermined number of failed attempts at rejection
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Figure 1. Example realization of a model of a simple integrator. The solid
red line is the true trajectory. The black points are the �ltered particle esti-
mates forward in time, the blue dashed lines are the smoothed trajectories
that result from using the particles ancestral paths. As can be seen this is
severely degenerate for small values oft , whereas it works well for t close
to the end of the dataset.

sampling. Determining this number ahead of time can be di�cult, and the
method is further improved by introducing adaptive stopping(FFBSi-RSAS)
[Taghavi et al., 2013] which estimates the probability of successfully applying
rejection sampling based on the previous successes and compares that with
the cost of evaluating all the weights.

Another approach is to use Metropolis Hastings (MH-FFBsi) [Bunch and
Godsill, 2013] when sampling the backward trajectory, then instead of cal-
culating N weights, R iterations of a Metropolis-Hastings sampler are used.

All the methods mentioned so far only reuse the point estimates from the
forward �lter, there also exists methods that attempt to create new samples
to better approximate the true posterior. One such method is the Metropolis-
Hastings Backward Proposer (MHBP) [Bunch and Godsill, 2013], another is
the Metropolis-Hastings improved particle smoother (MH-IPS) [Dubarry and
Douc, 2011].

MHBP starts with the degenerate trajectories from the �lter and while
traversing them backwards proposes new samples by runningR iterations of a
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Metropolis-Hastings sampler targetingp(x t jx t � 1; x t +1 ; yt ) for each time-step.
MH-IPS can be combined with the output from any of the other smoothers

to give an improved estimate. It performs R iterations where each iteration
traverses the full backward trajectory and for each time-step runs a single
iteration of a Metropolis-Hastings sampler targeting p(x t jx t � 1; x t +1 ; yt ).

Table 2 lists the operations needed for the di�erent smoothing meth-
ods. For a more detailed introduction to Particle Smoothing see for example
[Briers et al., 2010], [Lindsten and Sch•on, 2013], and for an extension to the
Rao-Blackwellized case see [Lindsten and Sch•on, 2011]

Table 2. Operations that need to be performed on the model for the
di�erent smoothing algorithms. They all to some extent rely on �rst running
a forward �lter, and thus in addition require the operations needed for
the �lter. Here q is a proposal density, a simple option is to choose q =
p(x t +1 jx t ), as this does not require any further operations. The ideal choice
would be q = p(x t jx t +1 ; x t � 1 ; yt ), but it is typically not possible to directly
sample from this density.

Operations Methods

Evaluate p(x t +1 jx t ) FFBSi, FFBSi-RS, FFBSi-RSES,

FFBSi-RSAS, MH-FFBSi, MH-IPS,

MHBP

Evaluate argmaxx t +1
p(x t +1 jx t ) FFBSi-RS, FFBSi-RSES,

FFBSi-RSAS

Sample from q(x t jx t � 1; x t +1 ; yt ) MH-IPS, MHBP

Evaluate q(x t jx t � 1; x t +1 ; yt ) MH-IPS, MHBP

4.3 Parameter estimation
Using a standard Particle Filter or Smoother it is not possible to estimate
stationary parameters, � , due to particle degeneracy. A common work-around
for this is to include � in the state vector and model the parameters as a
random walk process with a small noise covariance. A drawback with this
approach is that the parameter is no longer modeled as being constant, in
addition it increases the dimension of the state-space, worsening the problems
mentioned in Section 4.1.

PS+EM Another way to do parameters estimation is to use an Expecta-
tion Maximization (EM) algorithm where the expectation part is calculated
using a RBPS. For a detailed introduction to the EM-algorithm see [Demp-
ster et al., 1977] and for how to combine it with a RBPS for parameter
estimates in model (4) see [Lindsten and Sch•on, 2010].
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The EM-algorithm �nds the maximum likelihood solution by alternating
between estimating the Q-function for a given � k and �nding the � that
maximizes the log-likelihood for a given estimate ofx1:T , where

Q(�; � k ) = E X j � k [L � (X; Y jY )] (6a)

� k+1 = argmax
�

Q(�; � k ) (6b)

Here X is the complete state trajectory (x1; :::; xN ), Y is the collection of all
measurements (y1; :::; yN ) and L � is the log-likelihood as a function of the
parameters � . In [Lindsten and Sch•on, 2010] it is shown that the Q-function
can be split into three parts as follows

Q(�; � k ) = I 1(�; � k ) + I 2(�; � k ) + I 3(�; � k ) (7a)

I 1(�; � k ) = E � k [logp� (x1)jY ] (7b)

I 2(�; � k ) =
N � 1X

t =1

E� k [logp� (x t +1 jx t )jY ] (7c)

I 3(�; � k ) =
NX

t =1

E� k [logp� (yt jx t )jY ] (7d)

The expectations in (7b)-(7d) are approximated using a (Rao-Blackwellized)
Particle Smoother, where the state estimates are calculated using the old pa-
rameter estimate� k . This procedure is iterated until the parameter estimates
converge. The methods needed for PS+EM are listed in Table 3

PMMH Another method which instead takes a Bayesian approach is Par-
ticle Marginal Metropolis-Hastings (PMMH)[Andrieu et al., 2010] which is
one method within the broader class known as Particle Markov Chain Monte
Carlo (PMCMC) methods. It uses a particle �lter as part of a Metropolis-
Hastings sampler targeting the joint density of the state trajectory and the
unknown parameters. This method is not discussed further in this paper.
The methods needed for PMMH are listed in Table 3.

5. Implementation

5.1 Language
The framework is implemented in Python, for an introduction to the use
of Python in scienti�c computing see [T. E. Oliphant, 2007]. The numerical
computations rely on Numpy/Scipy [Jones et al., 2001{] for a fast and e�cient
implementation. This choice was made as it provides a free environment,
both in the sense that there is no need to pay any licensing fees to use it,
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Table 3. Operations that need to be performed on the model for the pre-
sented parameter estimation methods. PS-EM relies on running a smoother,
and thus in addition requires the operations needed for the smoother. The
maximization is with respect to � . Typically the maximization can not be
performed analytically, and then depending on which type of numerical
solver is used, gradients and Hessians might be needed as well. PMMH
does not require a smoothed estimate, it only uses a �lter, and thus puts
fewer requirements on the types of models that can be used. Hereq is the
proposal density for the static parameters, � is the prior probability den-
sity function. PMMH does not need a smoothed trajectory estimate, it is
su�cient with the �ltered estimate.

Operations Methods

Maximize E� k [logp� (x1)jY ] PS+EM

Maximize E� k [logp� (x t +1 jx t )jY ] PS+EM

Maximize E� k [logp� (yt jx t )jY ] PS+EM

Evaluate q(� 0j� ) PMMH

Sample from q(� 0j� ) PMMH

Evaluate � (� ) PMMH

but also that the code is open source and available for a large number of
operating systems and hardware platforms. The pyParticleEst framework is
licensed under the LGPL [FSF, 1999], which means that it can be freely
used and integrated into other products, but any modi�cations to the actual
pyParticleEst code must be made available. The intent behind choosing this
license is to make the code easily usable and integrable into other software
packages, but still encourage sharing of any improvements made to the library
itself. The software and examples used in this article can be found in [Nordh,
2013].

5.2 Overview
The fundamental idea in pyParticleEst is to provide algorithms operating on
the methods identi�ed in Section 4, thus e�ectively separating the algorithm
implementation from the problem description. Additionally, the framework
provides an implementation of these methods for a set of common model
classes which can be used for solving a large set of problems. They can also
be extended or specialized by the user by using the inheritance mechanism in
Python. This allows new types of problems to be solved outside the scope of
what is currently implemented, but it also allows creation of classes building
on the foundations present but overriding speci�c methods for increased per-
formance, without rewriting the whole algorithm from scratch. The author
believes this provides a good trade-o� between generality, extensibility and
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ease of use.
For each new type of problem to be solved the user de�nes a class ex-

tending the most suitable of the existing base classes, for example the one for
MLNLG systems. In this case the user only has to specify how the matrices
and functions in (4) depend on the current estimate of the nonlinear state.
For a more esoteric problem class the end user might have to do more imple-
mentation work and instead derive from a class higher up in the hierarchy, for
example the base class for models that can be partioned into a conditionally
linear part, which is useful when performing Rao-Blackwellized �ltering or
smoothing. This structure is explained in more detail in sections 5.3-5.3.

The main interface to the framework is through the Simulator class, it
is used to store the model used for the estimation toghether with the input
signals and measurements, it also provides a mechanism for executing the
di�erent algorithms on the provided model and data. It is used by creating an
object of the Simulator class with input parameters that specify the problem
to be solved as follows

sim = Simulator(model, u, y)

Here model is an object de�ning all model speci�c operations, u is an
array of all the input signals and y is an array of all measurements. Once the
object has been created it serves as the interface to the actual algorithm, an
example of how it could be used is shown below

sim.simulate(num, nums, res=0.67, filter='PF', smoother='mcmc')

Here numis the number of particles used in the forward �lter, numsare
the number of smoothed trajectories generated by the smoother,res is the
resampling threshhold (expressed as the ratio of e�ective particles compared
to total number of particles), filter is the �ltering method to be used and
�nally smoother is the smoothing algorithm to be used.

After calling the method above the results can be access by using some
of the following methods

(est_filt, w_filt) = sim.get_filtered_estimates()
mean_filt = sim.get_filtered_mean()
est_smooth = sim.get_smoothed_estimates()
smean = sim.get_smoothed_mean()

where (est_filt, w_filt) will contain the forward particles for each
time step with the corresponding weights,mean_filt is the weighted mean
of all the forward particles for each time step.est_smooth is an array of all
the smoothed trajectories andsmeanthe mean value for each time step of
the smoothed trajectories.
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5.3 Software design
The software consists of a number of supporting classes that store the objects
and their relations, the most important of these are shown in Figure 2 and
are summarized below.

Figure 2. Overview of the classes used for representing particle estimates
and their relation. The grey boxes are classes that are part of the frame-
work, the white boxes represent objects of problem speci�c data-types. A
box encapsulating another box shows that objects from that class contains
objects from the other class. The illustration is not complete, but serves as
an overview of the overall layout.

The particles are stored as raw data, where each model class is responsible
for determining how it is best represented. This data is then sent as one of the
parameters to each method the model class de�nes. This allows the model
to choose an e�cient representation allowing for e.g., parallell processing of
all the particles for each time-step. The details of the class hierarchy and the
models for some common cases are explored further in sections 5.3-5.3.

The particle data is stored using the ParticleApproximation class,
which in addition to the raw data also stores the corresponding weights
according to (5). The classTrajectoryStep stores the approximation for a
given time instant combined with other related data such as input signals and
measurement data. TheParticleTrajectory class represents the �ltered es-
timates of the entire trajectory by storing a collection of TrajectoryStep s, it
also provides the methods for interfacing with the chosen �ltering algorithm.

The SmoothTrajectory class takes aParticleTrajectory as input and
using a Particle Smoother creates a collection of point estimates repre-
senting the smoothed trajectory estimate. In the same manner as for the
ParticleApproximation class the point estimates here are of the problem
speci�c data type de�ned by the model class, but not necessarily of the same
structure as the estimates created by the forward �lter. This allows for exam-
ple methods where the forward �lter is Rao-Blackwellized but the backward
smoother samples the full state vector.

Model class hierarchy The software utilizes the Python ABC package to
create a set of abstract base-classes that de�ne all the needed operations for
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the algorithms. Figure 3 shows the complete class hierarchy for the algorithm
interfaces and model types currently implemented.

Figure 3. Class hierarchy for models that are used in the framework. The
ParticleLSB class is presented in Section 6.3 and is an implementation of
Example B from [Lindsten and Sch•on, 2011].

ˆ PFde�nes the basic operations needed for performing particle �ltering:

{ create initial estimate : Create particle estimate of initial
state.

{ sample process noise : Sample vt from the process noise distri-
bution.

{ update: Calculate x t +1 given x t using the supplied noisevt .

{ measure: Evaluate logp(yt jx t j t � 1) and for the RBPF case update
the su�cient statistics for the z-states.

ˆ APFextends PF with extra methods needed for the Auxiliary Particle
Filter:

{ eval 1st stage weights : Evaluate (approximately) the so called
�rst stage weights, p(yt +1 jx t ).

ˆ FFBSi de�nes the basic operations needed for performing particle
smoothing:
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{ logp xnext full : Evaluate logp(x t +1: T jx1:t ; y1:T ). This method
normally just calls logp xnext , but the distinction is needed for
non-Markovian models.

{ logp xnext : Evaluate logp(x t +1 jx t ).

{ sample smooth: For normal models the default implementation
can be used which just copies the estimate from the �lter, but for
e.g., Rao-Blackwellized models additional computations are made
in this method.

ˆ FFBSiRSextends FFBSi:

{ next pdf max: Calculate maximum of logp(x t +1 jx t ).

ˆ SampleProposer de�nes the basic operations needed for proposing new
samples, used in the MHBP and MH-IPS algorithms:

{ propose smooth: Propose new sample fromq(x t jx t +1 ; x t � 1; yt ).

{ logp proposal : Evaluate logq(x t jx t +1 ; x t � 1; yt ).

ˆ ParamEstInterface de�nes the basic operations needed for performing
parameter estimation using the EM-algorithm presented in Section 4.3:

{ set params: Set � k estimate.

{ eval logp x0: Evaluate logp(x1).

{ eval logp xnext : Evaluate logp(x t +1 jx t ).

{ eval logp y: Evaluate logp(yt jx t ) .

ˆ ParamEstInterface GradientSearch extends the operations from the
ParamEstInterface to include those needed when using analytic deriva-
tives in the maximization step:

{ eval logp x0 val grad: Evaluate logp(x1) and its gradient.

{ eval logp xnext val grad: Evaluate logp(x t +1 jx t ) and its gra-
dient.

{ eval logp y val grad: Evaluate logp(yt jx t ) and its gradient.

Base classes To complement the abstract base classes from Section 5.3
the software includes a number of base classes to help implement the required
functions.

ˆ RBPFBaseProvides an implementation handling the Rao-Blackwellized
case automatically by de�ning a new set of simpler functions that are
required from the derived class.

ˆ RBPSBase Extends RBPFBase to provide smoothing for Rao-
Blackwellized models.
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Model classes These classes further specialize those from sections 5.3-5.3.

ˆ LTVHandles Linear Time-Varying systems, the derived class only needs
to provide callbacks for how the system matrices depend on time.

ˆ NLGNonlinear dynamics with additive Gaussian noise.

ˆ MixedNLGaussianSampledProvides support for models of type (4) us-
ing an algorithm which samples the linear states in the backward sim-
ulation step. The su�cient statistics for the linear states are later re-
covered in a post processing step. See [Lindsten and Sch•on, 2011] for
details. The derived class needs to specify how the linear and non-linear
dynamics depend on time and the current estimate of� .

ˆ MixedNLGaussianMarginalized Provides an implementation for mod-
els of type (4) that fully marginalizes the linear Gaussian states, re-
sulting in a non-Markovian smoothing problem. See [Lindsten et al.,
2013] for details. The derived class needs to specify how the linear and
non-linear dynamics depend on time and the current estimate of� . This
implementation requires that Q�z = 0.

ˆ Hierarchial Provides a structure useful for implementing models of
type (3) using sampling of the linear states in the backward simulation
step. The su�cient statistics for the linear states are later recovered in
a post processing step.

For the LTV and MLNLG classes the parameters estimation interfaces,
ParamEstInterface and ParamEstInterface GradientSearch , are imple-
mented so that the end-user can specify the element-wise derivative for the
matrices instead of directly calculating gradients of (7b)-(7d). Typically there
is some additional structure to the problem, and it is then bene�cial to over-
ride this generic implementation with a specialized one to reduce the com-
putational e�ort by utilizing that structure.

5.4 Algorithms
RBPF The Particle Filter implemented is summarized with pseudo-code in
Algorithm 2. The predict step is detailed in Algorithm 3 and the measurement
step in Algorithm 4. Ne� is the e�ective number of particles as de�ned in
[Arulampalam et al., 2002] and is used to trigger the resampling step when
a certain prede�ned threshold is crossed.

RBPS The main RBPS algorithm implemented in pyParticleEst is of the
type JBS-RBPS with constrained RTS-smoothing from [Lindsten et al.,
2013]. It simulates M backward trajectories using �ltered estimates. Dur-
ing the backward simulation step it samples the linear/Gaussian states, but
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Algorithm 2 (Rao-Blackwellized) Particle Filter

for t  0 to T � 1 do
for i  1 to N do

Predict x t +1 j t  x t j t using Alg. 3
Update x t +1 j t +1  x t +1 j t ; yt +1 using Alg. 4
if Ne� < N treshold then

Resampleusing Alg. 5

Algorithm 3 RBPF Predict, step 4-6 is only needed for the Rao-
Blackwellized case
1. Update system dynamics,f (x t ; vt ), based on� t

2. Sample process noise,vt

3. Calculate � t +1 j t using sampledvt

4. Use knowledge of� t +1 j t to update estimate ofzt

5. Update linear part of system dynamics with knowledge of� t +1 j t

6. Predict zt +1 j t (conditioned on � t +1 j t )

Algorithm 4 RBPF Measure, step 2 is only needed for the Rao-
Blackwellized case
1. Update system dynamics,h(x t ; et ), based on� t +1 j t

2. Calculate zt +1 j t +1 using yt +1

3. Update weightsw( i )
t +1 j t +1 = w( i )

t +1 j t p(yt +1 jx t +1 j t )

later recovers the su�cient statistics, i.e., the mean and covariance, by run-
ning a constrained RTS-smoother [Rauch et al., 1965] conditioned on the
nonlinear part of the trajectory. It can be combined with any of the back-
ward simulation methods, for example FFBSi-RS or MH-FFBSi. The method
is summarized in Algorithm 6.

Algorithm 5 The resampling algorithm used in the framework. Di�erent
resampling algorithms have been proposed in the literature, this one has the
property that a particle, x ( i ) , with w( i ) � 1

N is guaranteed to survive the
resampling step.
~! c = cumsum(! )
! c = ~! c=

P
~! c

u = ([0 : N � 1] + U(0; 1))=N
for k  1 to N do

x (k ) = x ( i ) ; i = argmin
j

! ( j )
c > u (k )
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Additionally for MLNLG models (4) there is another RBPS algorithm im-
plemented which fully marginalizes the linear states, it is an implementation
of the method described in [Lindsten et al., 2013]. This is the statistically
correct way to solve the problem, and it gives better accuracy, but it also
requires more computations resulting in a longer execution time. Due to the
di�culty in evaluating argmax x t +1: T

p(x t +1: T ; yt +1: T jx t j t ; zt j t ; Pt j t ) rejection
sampling is not implemented, it is anyhow unlikely to perform well due the
large dimension of target variables (since they are full trajectories, and no
longer single time instances). The implementation is also limited to cases
where the cross covariance (Q�z ) between the nonlinear and linear states is
zero. This method is summarized in Algorithm 7.

Algorithm 6 (Rao-Blackwellized) Particle Smoother
(0. Run RBPF generating �ltered estimates)
Sample indexi with probability w( i )

T jT

Add x ( i )
T jT to the backward trajectory

for t  T � 1 to 0 do
Sample ~zt +1 from z( i )

t +1 jT

Sample indexk with probability w(k )
t j t p(� ( i )

t +1 ; ~zt +1 jx (k )
t j t )

Update su�cent statistics of z(k )
t conditioned on (� t +1 ; ~zt +1 )

Append x (k )
t jT to trajectory

i  k
Calculate dynamics for Rao-Blackwellized states conditioned on the non-
linear trajectory � 0:T

Run constrained RTS-smoothing to recover su�cient statistics for z0:T

Parameter estimation Parameter estimation is accomplished using an
EM-algorithm as presented in Section 4.3. It requires that the derived par-
ticle class implementsParamEstInterface . The method is summarized in
Algorithm 8. The maximization step in (6b) is performed using
scipy.optimize.minimize with the l-bfgs-b method [Zhu et al., 1997],
which utilizes the analytic Jacobian when present.
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Algorithm 7 Fully Marginalized Particle Smoother for MLNLG (4)
(0. Run RBPF generating �ltered estimates)
Sample indexi with probability w( i )

T jT

Add � ( i )
T jT to the backward trajectory

for t  T � 1 to 0 do
Sample indexk with probability w(k )

t j t p(� ( i )
t +1: T ; yt +1: T j� (k )

t j t ; z(k )
t j t ; Pz

(k )
t j t )

Append � (k )
t jT to trajectory

i  k
Calculate dynamics for Rao-Blackwellized states conditioned on the non-
linear trajectory � 0:T

Run constrained RTS-smoothing to recover su�cient statistics for z0:T

Algorithm 8 RBPS+EM algorithm
(0. Initial parameter guess, � 0)
for i  1 to max iter do

Estimate p(x1:T jy1:T ; � i � 1) using Alg. 6 (RBPS)
Approximate Q(�; � i � 1) using estimated trajetory
Calculate � i = argmax

�
Q(�; � i � 1)

6. Example models

6.1 Integrator
A trivial example consisting of a linear Gaussian system

x t +1 = x t + wt (8a)

yt = x t + et ; x1 � N (0; 1) (8b)

wt � N (0; 1); et � N (0; 1) (8c)

This model could be implemented using either theLTV or NLGmodel
classes, but for this example it was decided to directly implement the re-
quired top level interfaces to illustrate how they work. In this example only
the methods needed for �ltering are implemented. To use smoothing the
logp xnext method would be needed as well. An example realization using
this model was shown in Fig. 1
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1 c lass I n t e g r a t o r ( i n t e r f a c e s . P a r t i c l e F i l t e r i n g ) :
def i n i t ( s e l f , P0 , Q, R) :

s e l f . P0 = numpy . copy (P0)
s e l f .Q = numpy . copy (Q)
s e l f .R = numpy . copy (R)

6

def c r e a t e i n i t i a l e s t i m a t e ( s e l f , N) :
return numpy . random . normal ( 0 . 0 , s e l f . P0 , (N, )

) . reshape (( � 1 , 1 ) )

11 def s a m p l e p r o c e s s n o i s e ( s e l f , p a r t i c l e s , u , t ) :
N = len ( p a r t i c l e s )
return numpy . random . normal ( 0 . 0 , s e l f .Q, (N, )

) . reshape (( � 1 , 1 ) )

16 def update ( s e l f , p a r t i c l e s , u , t , n o i s e ) :
p a r t i c l e s += n o i s e

def measure ( s e l f , p a r t i c l e s , y , t ) :
logyprob = numpy . empty ( len ( p a r t i c l e s ) )

21 for k in range ( len ( p a r t i c l e s ) ) :
logyprob [ k ] = kalman . lognormpdf (

p a r t i c l e s [ k , 0 ] � y ,
s e l f .R)

return logyprob

Line 08 Samples the initial particles from a zero-mean Gaussian distribution
with variance P0.

Line 13 This samples the process noise at timet .

Line 16 Propagates the estimates forward in time using the noise previously
sampled.

Line 19 Calculates the log-probability for the measurementyt for particles x ( i )
t .
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6.2 Standard nonlinear model
This is a model that is commonly used as an example when demonstrating
new algorithms, see e.g., [Lindsten and Sch•on, 2013], [Arulampalam et al.,
2002] and [Briers et al., 2010]

x t +1 = 0 :5x t + 25
x t

1 + x2
t

+ 8 cos 1:2t + wt (9a)

yt = 0 :05x2
t + et ; x1 � N (0; 5) (9b)

wt � N (0; 10); et � N (0; 1) (9c)

For the chosen noise covariances the �ltering distribution is typically
multi-modal whereas the smoothing distribution is mostly unimodal. Fig-
ure 4 shows an example realization from this model, the smoothed estimates
have been calculated using backward simulation with rejection sampling us-
ing adapative stopping (FFBSi-RSAS).

The corresponding model de�nition exploits that this is a model of the
type Nonlinear Gaussian, and thus inherits the base class for that model
type.

c lass StdNonLin ( n lg . Non l i nea rGauss ian In i t i a lGauss ian ) :
def i n i t ( s e l f , P0 , Q, R) :

super ( StdNonLin , s e l f ) . i n i t (Px0=P0 , Q=Q, R=R)
4

def c a l c g ( s e l f , p a r t i c l e s , t ) :
return 0 .05 * p a r t i c l e s ** 2

def c a l c f ( s e l f , p a r t i c l e s , u , t ) :
9 return ( 0 . 5 * p a r t i c l e s +

25 .0 * p a r t i c l e s / (1 + p a r t i c l e s ** 2) +
8 * math . cos ( 1 . 2 * t ) )

Line 03 In this example the covariance matrices are time-invariant and can
thus be set in the constructor. This also allows the base class to later
perform optimization where the fact that the matrices are identical for
all particles can be exploited.

Line 05 calc g utilizes that all the particles are stored in an array to e�ectively
evaluate gt (x

( i )
t ) for all particles in a single method call.

Line 08 calc f evaluatesf t (x
( i )
t ) in a similar fashion as above.
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Figure 4. Example realization using the standard nonlinear model. The
solid red line is the true trajectory. The black points are the �ltered particle
estimates forward in time, the green dashed line is the mean value of the
�ltered estimates, the blue dashed line is the mean value of the smoothed
trajectories. The smoothing was performed using the BSi RSAS algorithm.
Notice that the �ltered mean does not follow the true state trajectory due
to the multi-modality of the distribution, whereas the smoothed estimate
does not su�er from this problem.
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6.3 Lindsten and Sch•on, Model B
This model was introduced in [Lindsten and Sch•on, 2011] as an extension to
the standard nonlinear model from Section 6.2. It replaces the constant 25
by the output of a fourth order linear system.

� t +1 = 0 :5� t + � t
� t

1 + � 2
t

+ 8 cos 1:2t + v�;t (10a)

zt +1 =

0

B
B
@

3 � 1:691 0:849 � 0:3201
2 0 0 0
0 1 0 0
0 0 0:5 0

1

C
C
A zt + vz;t (10b)

yt = 0 :05� 2
t + et (10c)

� t = 25 +
�

0 0:04 0:044 0:008
�

zt (10d)

� 0 = 0 ; z0 =
�

0 0 0 0
� T

(10e)

Since this model conforms to the class from (4) it was implemented using the
MLNLGbase class. Doing so it only requires the user to de�ne the functions
and matrices as a function of the current state. The corresponding source
code is listed below.

c lass Par t ic leLSB (
2 mlnlg . MixedNLGauss ianMarg ina l izedIn i t ia lGauss ian ) :

def i n i t ( s e l f ) :
x i0 = numpy . z e r o s ( ( 1 , 1 ) )
z0 = numpy . z e r o s ( ( 4 , 1 ) )
P0 = numpy . z e r o s ( ( 4 , 4 ) )

7

Az = numpy . ar ray ( [ [ 3 . 0 , � 1.691 , 0 .849 , � 0 .3201] ,
[ 2 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ,
[ 0 . 0 , 1 . 0 , 0 . 0 , 0 . 0 ] ,
[ 0 . 0 , 0 . 0 , 0 . 5 , 0 . 0 ] ] )

12

Qxi = numpy . d iag ( [ 0 . 0 0 5 ] )
Qz = numpy . d iag ( [ 0 . 01 , 0 .01 , 0 .01 , 0 . 0 1 ] )
R = numpy . d iag ( [ 0 . 1 , ] )

17 super ( Part ic leLSB , s e l f ) . i n i t ( x i0=xi0 , z0=z0 ,
Pz0=P0 , Az=Az ,
R=R, Qxi=Qxi ,
Qz=Qz , )

22 def ge t non l i n p red dynamics ( s e l f , p a r t i c l e s , u , t ) :
tmp = numpy . vs tack ( p a r t i c l e s ) [ : , numpy . newaxis , : ]
x i = tmp [ : , : , 0 ]
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Axi = ( x i / (1 + x i ** 2 ) ) . dot ( C theta )
27 Axi = Axi [ : , numpy . newaxis , : ]

f x i = ( 0 . 5 * x i +
25 * x i / (1 + x i ** 2) +
8 * math . cos ( 1 . 2 * t ) )

32 f x i = f x i [ : , numpy . newaxis , : ]

return ( Axi , f x i , None )

def get meas dynamics ( s e l f , p a r t i c l e s , y , t ) :
37 i f ( y != None ) :

y = numpy . asar ray ( y ) . reshape (( � 1 , 1 ) ) ,
tmp = 0 .05 * p a r t i c l e s [ : , 0 ] ** 2
h = tmp [ : , numpy . newaxis , numpy . newaxis ]

42 return (y , None , h , None )

Line 03 In the constructor all the time-invariant parts of the model are set

Line 22 This function calculates A � (� ( i )
t ); f � (� ( i )

t ) and Q� (� ( i )
t )

Line 27 The array is resized to match the expected format (The �rst dimension
indices the particles, each entry being a two-dimensional matrix)

Line 34 Return a tuple containing A � , f � and Q� arrays. Returning Nonefor
any element in the tuple indicates that the time-invariant values set in
the constructor should be used

Line 37 This function works in the same way as above, but instead calculates
h(� t ), C(� t ) and R(� t ). The �rst value in the returned tuple should be
the (potentially preprocessed) measurement.
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7. Results

The aim of this section is to demonstrate that the implementation in pyPar-
ticleEst is correct by reproducing results previously published elsewhere.

7.1 Rao-Blackwellized particle �ltering / smoothing
Here Example B from [Lindsten and Sch•on, 2011] is reproduced, it uses the
model de�nition from Section 6.3 the marginalized base class for MLNLG
models. The results are shown in Table 4 which also contains the correspond-
ing values from [Lindsten and Sch•on, 2011]. The values were calculated by
running the RBPS-agorithm on 1000 random realizations of model (10) using
300 particles and 50 smoothed trajectories. The smoothed trajectories where
averaged to give a point estimate for each time step. The average was used to
calculated the RMSE for a single realization. The values in this article were
computed using the marginalizedMLNLGbase class, which uses the smoothing
algorithm presented in [Lindsten et al., 2013]. This is a later improvement
to the algorithm used in the original article, which explains why the val-
ues presented here are better than those in [Lindsten and Sch•on, 2011]. The
mean RMSE is also highly dependent on the particular realizations, 89.8%
of the realizations have a lower RMSE than the average, whereas 3.3% have
an RMSE greater than 1:0. This also makes a direct comparison of the val-
ues problematic since the exact amount of outliers in the dataset will have a
signi�cant impact om the average RMSE.

Table 4. Root mean squared error (RMSE) values for � and � from model
10, compared with those presented in [Lindsten and Sch•on, 2011].

RMSE � �

pyParticleEst 0:275 0:545

Lindsten & Sch•on 0:317 0:585

7.2 Parameter estimation in MLNLG
In [Lindsten and Sch•on, 2010] the following model is introduced

� t +1 = � 1 arctan � t +
�

� 2 0 0
�

zt + v�;t (11a)

zt +1 =

0

@
1 � 3 0
0 � 4 cos� 5 � � 4 sin � 5

0 � 4 sin � 5 � 4 cos� 5

1

A zt + vz;t (11b)

yt =
�

0:1� 2
t sgn(� t )

0

�
+

�
0 0 0
1 � 1 1

�
zt + et (11c)
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The task presented is to identify the unknown parameters,� i . Duplicating
the conditions as presented in the original article, but running the algorithm
on 160 random data realizations instead of 70, gives the results presented in
Table 5. The authors of [Lindsten and Sch•on, 2010] do not present the number
of smoothed trajectories used in their implementation, for the results in this
article 5 smoothed trajectories were used.

Table 5. Results presented by Lindsten and Sch•on in [Lindsten and
Sch•on, 2010] compared to results calculated using pyParticleEst . The col-
umn marked with * are the statistics when excluding those realizations
where the EM-algorithm was stuck in local maxima for � 5 .

True value Lindsten & Sch•on pyParticleEst pyParticleEst*

� 1 1 0:966� 0:163 0:981� 0:254 1:006� 0:091

� 2 1 1:053� 0:163 0:947� 0:158 0:984� 0:079

� 3 0.3 0:295� 0:094 0:338� 0:308 0:271� 0:112

� 4 0.968 0:967� 0:015 0:969� 0:032 0:962� 0:017

� 5 0.315 0:309� 0:057 0:263� 0:134 0:312� 0:019

Looking at the histogram of the estimate of � 5 shown in Figure 5 it is
clear that there are several local maxima. Of the 160 realizations 21 con-
verged to a local maximum for � 5 thus giving an incorrect solution. This is
typically handled by solving the optimization problem using several di�er-
ent initial conditions and choosing the one with the maximum likelihood.
However since that does not appear to have been performed in [Lindsten and
Sch•on, 2010] it is problematic to compare the values obtained, since they will
be highly dependent on how many of the realizations that converged to local
maxima. Therefore Table 5 contains a second column named pyParticleEst*
which presents the same statistics but excluding those realizations where� 5

converged to a local maxima.

8. Conclusion

pyParticleEst lowers the barrier of entry to the �eld of particle methods,
allowing many problems to be solved with signi�cantly less implementation
e�ort compared to starting from scratch. This was exempli�ed by the models
presented in Section 6, demonstrating the signi�cant reduction in the amount
of code needed to be produced by the end-user. Its use for grey-box identi�-
cation was demonstrated in Section 7.2. The software and examples used in
this article can be found at [Nordh, 2013].
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Figure 5. Histogram for � 5 . The peaks around � 0:3 and 0 are likely due
to the EM-algorithm converging to local maxima. Since � 5 enters the model
through sin � 5 and cos� 5 , with cos being a symmetric function the peak
around � 0:3 could intuitively be expected.

There is an overhead due to the generic design which by necessity gives
lower performance compared to a specialized implementation in a low-level
language. For example a hand optimized C-implementation that fully exploits
the structure of a speci�c problem will always be faster, but also requires sig-
ni�cantly more time and knowledge from the developer. Therefore the main
use-case for this software when it comes to performance critical applications
is likely to be prototyping di�erent models and algorithms that will later be
re-implemented in a low-level language. That implementation can then be
validated against the results provided by the generic algorithms. In many
circumstances the execution time might be of little concern and the per-
formance provided using pyParticleEst will be su�cient. There are projects
such as Numba [Continuum Analytics, 2014], Cython [Behnel et al., 2009]
and PyPy [Rigo, 2004] that aim to increase the e�ciency of Python-code.
Cython is already used for some of the heaviest parts in the framework. By
selectively moving more of the computationally heavy parts of the model
base classes to Cython it should be possible to use the framework directly
for many real-time applications.

For the future the plan is to extend the framework to contain more al-
gorithms, for example the interesting �eld of PMCMC methods [Del Moral
et al., 2006]. Another interesting direction is smoothing of non-Markovian
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models as exampli�ed by the marginalized smoother for MLNLG models.
This type of smoother could also be combined with Gaussian processes as
shown by [Lindsten and Sch•on, 2013]. The direction taken by e.g., [Murray,
In review] with a high level language is interesting, and something that might
be worthwhile to implement for automatically generating the Python code
describing the model, providing a further level of abstraction for the end user.
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Paper II

A Quantitative Evaluation of Monte
Carlo Smoothers

Jerker Nordh Jacob Antonsson

Abstract

In this paper we compare the performance of several popular meth-
ods for particle smoothing to investigate if any of the algorithms can
deliver better performance for a given computational complexity. We
use four di�erent models for the evaluation, chosen to illuminate the
di�erences between the methods. When comparing the computational
cost we avoid the issues of implementation e�ciency by instead count-
ing the number of evaluations required for a set of high level primitives
that are common for all the algorithms. Our results give some in-
sight into the performance characteristics of the chosen methods, even
though no universal best choice can be identi�ed since the cost/per-
formance ratios of the methods depend on the characteristics of the
problem to be solved which can be clearly seen in the results.
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1. Introduction

We are concerned with the problem of inferring the latent statesx1:T ,
f x t gT

t =1 , x t 2 Rn , given a set of observationsy1:T , f yt gT
t =1 , yt 2 Rm from a

state-space model,

x t +1 � p(x t +1 jx t ); (1a)

yt � p(yt jx t ); (1b)

x1 � p(x1): (1c)

Speci�cally, we want to estimate the joint smoothing density (JSD),
p(x1:T jy1:T ) for such a system. An estimate of the JSD can be found by the
particle �lter, which approximates the marginal densities p(x t jy1:T ); t � T
of the JSD by a set of weighted samples, called particles. The particle �lter
is a sequential Monte Carlo (SMC) algorithm applied to state-space models.
Due to the degeneracy property [Doucet and Johansen, 2009] of the particle
�lter, the amount of unique samples approximating the marginal densities
are decreasing with decreasingt; the approximations are said to lack particle
diversity. The �lter density, p(x t jy1:t ), estimates are diverse in the parti-
cles however, and they can be used to simulate realizations, usually called
backward trajectories, from the JSD. This is the idea of the forward �lter
backward simulator (FFBSi) algorithm [S. J. Godsill et al., 2004]. Let N
and M be the number of particles and backward trajectories respectively.
The FFBSi has O(MN ) complexity [S. J. Godsill et al., 2004], which can be
prohibitive. Asymptotically in N , the complexity can be reduced toO(N )
by the use of rejection sampling, giving the FFBSi-RS algorithm, proposed
by [Douc et al., 2011].

Another approach, developed by [Dubarry and Douc, 2011], among oth-
ers, is to use the degenerate particle approximations of the JSD in a Metropo-
lis within Gibbs sampler to get univariate realizations from all time points
of the smoothed trajectory. In each step of the Gibbs sampler, the state at
time t is sampled using Metropolis Hastings (MH) sampling. This algorithm
is known as the Metropolis Hastings improved particle smoother (MH-IPS).

A couple of algorithms based on using the degenerate particle �lter ap-
proximation of the JSD as a pseudo likelihood in a Markov chain Monte
Carlo (MCMC) sampler have also been proposed, yielding the particle Gibbs
(PG), and the particle Metropolis Hastings algorithms. It was shown by [An-
drieu et al., 2010] that such samplers do indeed target the JSD. The samplers
originally proposed by [Andrieu et al., 2010] have been improved by the use
of backward simulation by for example [Lindsten and Sch•on, 2012; Lindsten
et al., 2014; Olsson and Ryden, 2011], giving the particle Gibbs with back-
ward simulation (PGBS), particle Gibbs with ancestor sampling (PGAS) and
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particle Metropolis Hastings (PMMH-BS) algorithms. The particle MCMC
methods generally have higher complexity than the aforementioned smooth-
ing algorithms, but it has been proposed [Lindsten and Sch•on, 2013] that
they might be more e�cient, and can give better approximations of the JSD
for fewer particles.

These algorithms have a lot of subtle di�erences and none have been
shown to clearly perform better than the others for smoothing in general
state space models. We here try to investigate the performance of the dif-
ferent types of smoothing methods for some state space models commonly
used in the literature. We also include a model whose transition kernel (1a)
does not admit a density, a common case in practice. One algorithm from
each type of method is chosen to, hopefully, re
ect the variety between them.
The methods chosen are FFBSi-RS, with an additional improvement of adap-
tive early stopping, proposed by [Taghavi et al., 2013], MH-IPS and PGAS.
We compare the algorithms for di�erent parameter choices using a novel ap-
proach which is independent of implementation and computer system. The
theory of these algorithms will not be detailed, we refer the comprehensive in-
troduction and review made by [Lindsten and Sch•on, 2013], and the original
articles for further details.

Smoothing in state space models is an important topic in its own right,
but it also has many applications. The smoothing distributions are for ex-
ample a key component in several parameter estimation algorithms and can
thus be used to �nd the posterior distributions of parameters in general state
space models, or to learn the whole model itself. For example [Lindsten et
al., 2013] uses PMCMC, and [Wills et al., 2013] uses an FFBSi-RS smoother
together with an expectation maximization procedure, for identi�cation of
Hammerstein-Wiener systems.

2. Theoretical Preliminaries

In this section we give a brief review of the particle �lter which is the basis
for all the other algorithms. We also brie
y discuss the backward kernel for
state space models, as both the FFBSi-RS and PGAS uses it to simulate
from the JSD.

2.1 The Particle Filter
The particle �lter is an SMC sampler targeted at the marginal posterior
densities p(x t jy1:t ); 8t 2 f 1; : : : ; tg, which are approximated as discrete dis-
tributions,

p(x t jy1:t ) �
NX

i =1

wi
t �

�
x t � x i

t

�
: (2)
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The sets of weighted particles targeting the �ltering densities are calcu-
lated by sequential importance sampling. Given a weighted set of particles
f wi

t � 1; x i
t � 1gN

i =1 approximating p(x t � 1jy1:t � 1), a set of particles approximat-
ing p(x t jy1:t ) can be found by sampling from an importance distribution,
q(x t jx i

t � 1; yt ), chosen to satisfy the Markov property, and the weights can be
calculated as

wi
t / wi

t � 1
p(yt jx i

t )p(x i
t jx

i
t � 1)

q(x i
t jx

i
t � 1; yt )

;

after which they are normalized to sum to unity. The approach leads to an
approximation with a variance that will increase toward in�nity for increas-
ing t [Doucet and Johansen, 2009]. This will gradually shift all weight to one
particle, leading to an e�ective approximation size of only one sample. To mit-
igate this a resampling step is introduced when the number of e�ective par-
ticles, measured by the e�ective sample size statisticESS(t) � 1=

P
(wi

t )
2,

described by [Doucet and Johansen, 2009], is too low. A rule of thumb is
to resample if ESS < 2N=3, where N as before is the number of particles.
The resampling is done by sampling new equally weighted particles from the
existing set of particles, where the probability of selecting thei :th particle
is wi

t , giving samples distributed according to the empirical distribution (2).
This procedure is encoded in ancestor indicesai

t that keeps track of which
previous sample the particlex i

t originates from.
The simplest choice of importance distribution, which we use and which is

often used in practice, is to use the transition kernel (1a), giving the bootstrap
�lter outlined in Algorithm 1. [Doucet and Johansen, 2009] gives more details
of the particle �lter and SMC for state-space models.

2.2 The Backward Kernel
The key to a lot of the smoothing algorithms for (1), such as FFBSi and
PGAS, is the backward kernel,

p(x t jx t +1 ; y1:T ) =
p(x t +1 jx t )p(x t jy1:t )p(x t +1 jy1:T )

p(x t +1 jy1:t )
; t � T: (3)

This expression is dependent on the �lter distribution which can be ap-
proximated with high particle diversity by the particle �lter. Mark particles
representing the smoothed distribution with a tilde. Using (2) in (3), an
empirical approximation to the backward kernel is given by,

p(x t j~x t +1 ; y1:T ) �
NX

i =1

wi
t jT �

�
x t � x i

t

�
; (4)

with smoothing weights calculated as

wi
t jT / wi

t p(~x t +1 jx i
t ):
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Algorithm 1 Bootstrap Particle Filter for (1)

Input: Measurements f yt gT
t =1 .

Output: Particle system f wi
t ; x i

t g
N
i =1 ; t 2 f 1; : : : ; T g and ancestor indices

f ai
t g

N
i =1 ; t 2 f 2; : : : ; T g approximating the marginal �lter- and the degenerate

smoothing distributions.
1: for i = 1 to N do
2: Sample x i

1 from p(x1).
3: Compute ~wi

1 = p(y1 jx i
1)

4: end for
5: Set wi

1 = ~wi
1=(

P N
j =1 ~wj

1); 8i 2 f 1; : : : ; N g.
6: for t = 1 to T � 1 do
7: for i = 1 to N do
8: if ESS(t) < 2N=3 then
9: Sample ancestor indices,ai

t +1 , with P(ai
t +1 = j ) = wj

t ; j 2 f 1; : : : ; N g.
10: else
11: ai

t +1 = i
12: end if
13: Sample x i

t +1 from p(x t +1 jx
a i

t +1
t )

14: Compute ~wi
t +1 = p(yt +1 jx i

t +1 )
15: end for
16: Set wi

t +1 = ~wi
t +1 =(

P N
j =1 ~wj

t +1 ); 8i 2 f 1; : : : ; N g.
17: end for

Smoothed samples can then be drawn using the following recursive sampling
scheme; starting at t = T and iterating until t = 1, all the time conditioning
on the already sampled future states ~x t +1: T ,

Sample ~xT with P
�
~xT = x i

T

�
= wi

T ; (5a)

sample ~x t with P
�
~x t = x i

t

�
= wi

t jT : (5b)

3. Algorithms

We chose three algorithms to represent the diversity of particle smoothing
algorithms: FFBSi-RS, MHIPS and PGAS. Here we brie
y discuss these
algorithms and list them as they are implemented. For details and theoretical
results we refer to references given in the introductory section of the paper.

3.1 Forward Filtering Backward Simulation with Rejection
Sampling - FFBSi-RS

The FFBSi-RS algorithm uses the recursive scheme (5) to sample smoothed
trajectories. However, to avoid evaluating all the smoothing weights (2.2), it
samples from the categorical distribution de�ned by wi

t jT ; i 2 f 1; : : : ; N g,
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using rejection sampling. It uses the �lter weights, wi
t ; i 2 f 1; : : : ; N g, as

proposal distribution. When the number of particles is large, this renders
the complexity of the algorithm approximately linear in the number of parti-
cles [Douc et al., 2011]. However, the rejection sampler can get stuck for more
improbable realizations of the backward trajectories. We therefore use a hy-
brid scheme where the rejection sampler is run a certain number of iterations,
and if needed the �nal realizations are drawn by evaluating the smoothing
weights explicitly. The stopping rule for the rejection sampler is adaptive and
depends on an estimate of the average acceptance probability, as suggested
by [Taghavi et al., 2013]. The algorithm used is outlined in Algorithm 2. The
expression for the acceptance probability is derived by [Douc et al., 2011]
in the original article. Our notation approximately follows that of [Lindsten
and Sch•on, 2013], Cat(�) for instance, refers to the categorical distribution.
Rejection sampling is treated exhaustively by [Robert and Casella, 2013].

3.2 Metropolis Hastings Improved Particle Smoother - MH-IPS
We now move over to two algorithms that combine the inference approaches
of SMC and MCMC. The �rst one, the MH-IPS, samples from the trajectory
using Gibbs sampling by sampling the state at each time-stept separately,
while conditioning on the rest of the trajectory. For a Markovian model
like (1), the smoothed statesx t should thus be sampled from

p(x t jx1:t � 1; x t +1: T ; y1:T ) / f (x t +1 jx t )g(yt jx t )f (x t jx t � 1):

This is done by MH sampling. A samplex0
t is drawn from a proposal distri-

bution
q(x t jx t � 1; x t +1 ; y1:T ) and accepted with probability,

1 ^
p(x t +1 jx0

t )
p(x t +1 jx t )

p(yt jx0
t )

p(yt jx t )
p(x0

t jx t � 1)
p(x t jx t � 1)

q(x t jx t +1 ; yt ; x t � 1)
q(x0

t jx t +1 ; yt ; x t � 1)
; (6)

where ^ is the min-operator. We use the proposal density

q(x t jx t � 1; x t +1 ; y1:T ) = p(x t jx t � 1); (7)

which simpli�es the acceptance probability (6) and gives Algorithm 3.
[Dubarry and Douc, 2011] outlines MH-IPS in greater generality, and with
more theoretical details. [Robert and Casella, 2013] provides more details on
MH and Gibbs sampling.

3.3 Particle Gibbs Ancestral Sampling - PGAS
We saw that MH-IPS updates each state in the trajectory univariately, which
can lead to poor mixing [Lindsten and Sch•on, 2013]. In contrast, PG samples
whole trajectories at each update. The trajectories are sampled from a set
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Algorithm 2 FFBSi with rejection sampling and early stopping, for (1). For
details of the stop criterion see [Taghavi et al., 2013]

Input: Forward �lter particle system f wi
t ; x i

t g
N
i =1 ; t 2 f 1; : : : ; Tg.

Output: M realizations from the JSD.
1: Sample indices f bT (j )gM

j =1 from Cat
�
f wi

T gN
i =1

�

2: for j = 1 to M do
3: ~x j

T = xbT ( j )
T

4: end for
5: for t = T � 1 to 1 do
6: L  f 1; : : : ; M g
7: � t = max

i
argmax

x t +1

p(x t +1 jx i
t )

8: while length( L ): 0 or stop criterion not ful�lled do
9: n  length( L )

10: �  ;
11: Sample f I (k)gn

k =1 from Cat
�
f wi

t g
N
i =1

�

12: Sample f U(k)gn
k =1 from U ([0; 1])

13: for k = 1 to n do
14: if U(k) � p(~xL ( k )

t +1 jx I ( k )
t )=� t then

15: bt (L (k))  I (k)
16: �  � [ f L (k)g
17: end if
18: end for
19: L  L n �
20: end while
21: for j = 1 to length( L ) do
22: Compute ~wi;j

t j T / wi
t p(~x j

t +1 jx i
t ); i 2 f 1; : : : ; N g.

23: wi;j
t j T = ~wi;j

t j T =(
P

i ~wi;j
t j T ); i 2 f 1; : : : ; N g.

24: Sample bt (L (j )) from Cat
�

f wi;j
t j T gN

i =1

�

25: end for
26: for j = 1 to M do
27: Set ~x j

t = xbt ( j )
t and ~x j

t :T = f ~x j
t ; ~x j

t +1: T g:
28: end for
29: end for

of degenerate SMC approximations of the smoothed trajectory. Invariance of
the sampler is achieved by doing the SMC sampling conditioned on a �xed
trajectory. Due to the degeneracy of the trajectories from the SMC pass,
the PG sampler can also su�er from bad mixing [Lindsten et al., 2014]. In
PGAS this is alleviated by splitting the reference trajectory at each time
point t, by assigning a new history to the future trajectory. This is done by
sampling a new ancestor index,ai

t , with probability given by the smoothing
weights (2.2). This keeps the invariance of the PG sampler and improves
mixing. The algorithm we use, with the same choices for proposal density as
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Algorithm 3 MHIPS with MH proposal(7) for model (1), performing R
iterations of the Gibbs sampler
Input: Degenerate smoothing trajectories f wi

T ; x i
1:T gN

i =1 .
Output: Improved smoothing trajectories f ~x i

1:T gM
i =1 .

1: Initialize f ~x j
1:T gM

j =1 by sampling from the ancestral paths of the forward �lter,
drawing each trajectory with probability wi

T .
2: for r = 1 to R do
3: for j = 1 to M do
4: Modifed acceptance probability for last time-step
5: Sample x0j

T � p(xT j ~xT � 1)

6: With probability 1 ^ p( y T j x 0
T )

p( y T j ~x T ) , set ~x j
T = x0j

T

7: for t = T � 1 to 2 do
8: Sample x0j

t � p(x t j ~x t � 1)

9: With probability 1 ^ p(~x t +1 j x 0
t )

p(~x t +1 j ~x t )
p( y t j x 0

t )
p( y t j ~x t ) , set ~x j

t = x0j
t

10: end for
11: Modifed proposal distribution for �rst time-step
12: Sample x0j

1 � p(x1)

13: With probability 1 ^ p(~x 2 j x 0
1 )

p(~x 2 j ~x 1 )
p( y 1 j x 0

1 )
p( y 1 j ~x 1 ) , set ~x j

1 = x0j
1

14: end for
15: end for

in Algorithm 1, is listed in Algorithm 4. Further details and theory is given
by [Lindsten et al., 2014]. A related sampler is the Particle Gibbs Backward
Simulator (PGBS) developed by [Lindsten and Sch•on, 2012; Lindsten and
Sch•on, 2013].

4. Models

We chose four di�erent models to evaluate the smoothing algorithms. We use
a standard one-dimensional nonlinear model that is commonly seen used in
the particle �ltering and smoothing literature for benchmarking algorithms.
A model often used in two-dimensional tracking applications is also included
to test how the algorithms fare in a higher dimensional scenario. Especially
interesting in that regard is the FFBSi-RS algorithm, since rejection sampling
notoriously gets trickier for higher dimensions.

It is not uncommon for models used in engineering to have degenerate
transition kernels. This is for example true for orientation �lter models, used
for �nding the orientation of a physical body using inertial measurement
sensors, and other types of dynamical �rst principles models [Gustafsson,
2010]. Such models impose a further di�culty for the smoothing algorithms,
and are very common in practice. As an example of such a model we therefore
include a double integrator. It is included both in its degenerate formulation
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Algorithm 4 PGAS kernel for(1)

Input: Measurements and conditional trajectory f yt ; x0
t g

T
t =1

Output: Smoothed trajectories f ~x i
1:T gM

i =1 and intermediate quantities such as the
same particle systems given by the particle �lter.

1: for i = 1 to N � 1 do
2: Sample ~x i

1 from p(x1).
3: Compute ~w( i )

1 = p(y1 j ~x i
1)

4: Set ~xN
1 = x0

1 :
5: end for
6: Set wi

1 = ~wi
1=(

P N
j =1 ~wj

1); 8i 2 [1; N ].
7: for t = 1 to T � 1 do
8: for i = 1 to N � 1 do
9: Sample ancestor indices,ai

t +1 , with P(ai
t +1 = j ) = wj

t ; j 2 [1; N ].

10: Sample ~x i
t +1 from p(x t +1 j ~x

a i
t +1

t )
11: end for
12: Set ~xN

t +1 = x0
t +1 :

13: Sample aN
t +1 with P

�
aN

t +1 = i
�

=
w i

t p( x 0
t +1 j ~x i

t )
P N

l =1 w l
t p( x 0

t +1 j ~x l
t )

14: for i = 1 to N do
15: Set ~x i

1: t +1 = f ~xa i
t

1: t ; ~x i
t +1 g

16: Compute wi
t +1 = p(yt +1 j ~x i

t +1 )
17: end for
18: end for

and as a non-Markovian model, that is the result of marginalizing over the
deterministic state. The following subsections state the models in some more
detail.

4.1 Standard Benchmark Model
The model

x t +1 = 0 :5x t + 25
x t

1 + x2
t

+ 8 cos 1:2t + wt ; (8a)

yt = 0 :05x2
t + et ; x1 � N (0; 5); (8b)

wt � N (0; 10); et � N (0; 1); (8c)

whereN (m; P ) is the Gaussian distribution with mean m and covarianceP,
is commonly used for evaluating �lter and smoother performance. It has been
used by for example [Lindsten and Sch•on, 2013; Arulampalam et al., 2002;
S. J. Godsill et al., 2004] as a benchmark model. For such a model the �ltering
and smoothing distributions are multi-modal, which makes algorithms that
assume a �xed distribution on the posterior, such as the extended Kalman
�lter [S•arkk•a, 2013], perform very poorly.
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4.2 Double Integrator
An example of a state space model with a degenerate transition kernel is the
double integrator

x t +1 =
�

1 1
0 1

�
x t +

�
0
1

�
wt ; (9a)

yt =
�

1 0
�

x t + et ; (9b)

wt � N (0; Q); et � N (0; R): (9c)

Due to the noise only acting on the input there is a deterministic relation
between the two states making the model degenerate and not suitable for the
standard particle smoothing methods. This coupling means thatp(x i

t +1 jx j
t ) =

0; 8j 6= ai
t , where ai

t is the index of the ancestor for particlex i
t +1 .

The model in (9) can be rewritten as a �rst order system with a non-
Markovian structure. For notational brevity introduce the notation x t =
(pt vt )T . The model can then be rewritten as

vt +1 = vt + wt ; (10a)

yt = p1 +
t � 1X

i =1

vi + et ; (10b)

wt � N (0; Q); et � N (0; R); (10c)

and the smoothing problem can be solved using a non-Markovian particle
smoother [Lindsten and Sch•on, 2013]. For this particular model it is possible
to reduce the computational e�ort by propagating additional information in
the forward and backward steps of the algorithms. Writing the model (10)
as

vt +1 = vt + wt ; (11a)

st +1 = st + vt ; (11b)

yt = st + et ; (11c)

s0 = p0; (11d)

wt � N (0; Q); et � N (0; R); (11e)

it is clear that during the �ltering step, each particle also stores the sum of
all its previous states. At a quick glance this looks like simply reintroducing
the p-state from the original model, but the key distinction is that this new
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variable is a function of the past trajectory, and not included as a state in
the model.

The smoothing weights for the model (11) are computed using the density

TY

k= t +1

p(yk jvk )p(vk jv1:k � 1; y1:k � 1) (12)

/
v1: t

p(yt +1: T jv1:T )p(vt +1 jvt ); (13)

as noted by [Lindsten and Sch•on, 2013]. Evaluating this directly leads to a
computational e�ort for each time-step that grows with the length of the full
dataset. This is clearly undesirable, but using the same approach as [Lindsten
and Sch•on, 2013], and noticing that (13) only needs to be evaluated up to
proportionality (with regard to v1:t ) it is possible to propagate information
backwards during the smoothing in the same way as thest variables propa-
gate the sum during �ltering. The �rst factor of (13) can be evaluated up to
proportionality as follows,

p(yt +1: T jst ; vt :T ) =
TY

k= t +1

p(yk jst ; vt :T ) (14a)

/
st ;v t

TY

k= t +1

e(st + v t )2 � 2(yk �
P k � 1

j = t +1 v j )( st + v t ) (14b)

= e(T � t )( st + v t )2 � 2
P T

k = t +1 (yk �
P k � 1

j = t +1 v j )( st + v t ) : (14c)

Through the introduction of two new variables N t ; 
 t that are propagated
backwards during the smoothing this allows (14) to be evaluated as

logp(yt +1: T jst ; vt ; vt +1: T ) + constant =
1

2R
(N t +1 (st + vt )2 � 2
 t +1 (st + vt )) ; (15a)

N t = N t +1 + 1 ; NT = 1 ; (15b)


 t = 
 t +1 + yt � N t +1 vt ; 
 T = yT : (15c)

Using (15) it is now possible to evaluate the required smoothing density
in constant time. A more detailed derivation of these expressions for this
particular model is given by [Nordh, 2015, Submitted].

4.3 Tracking Model
To test how the algorithms fare in a higher dimensional setting we have
included a four dimensional model commonly used for tracking. The model
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was also used to test a new FFBSi smoother, similar to MHIPS, in [Bunch
and S. Godsill, 2013]. De�ne the state vector of positions and velocities in
two dimensions,x t =

�
x t yt _x t _yt

�
, let h = 0 :1 be the sampling time,I 2

the identity matrix in R2� 2, 02� 2 the null matrix in R2� 2, and 0n the null
vector in Rn respectively. The model is then given by,

x t +1 =
�

I 2 hI 2

02� 2 I 2

�
x t + wt ; (16a)

yt =
�

atan2(yt ; x t )p
x2

t + y2
t

�
+ et ; (16b)

wt � N

 

04;

 
h3

3 I 2
h2

3 I 2
h2

3 I 2 hI 2

!!

; (16c)

et � N
�

02;
� �

�
720

� 2
0

0 0:1

��
; (16d)

where atan2(�; �) is the four-quadrant inverse tangent.

5. Method

To compare the smoothing performance of the algorithms we use the Root
Mean Square Error (RMSE) metric which is a standard choice in the litera-
ture. It is however 
awed in that it only compares the estimated mean value
to the true value, whereas the goal of a particle smoother is to provide a
good approximation of the JSD. The fact that the average of the posterior
density most of the time will not coincide with the true state means that
there is a problem speci�c lower bound for the RMSE. This is related to the
Cram�er-Rao Lower Bound (CRLB)[Tichavsky et al., 1998] which provides a
bound on the achievable performance of any estimator for a given problem. In
theory all the methods examined in this paper should reach the same RMSE
since they all converge to the true posterior distribution as the quality of the
approximations are increased. To reduce the variance of the measured RMSE
metric we compute the average over a large number of realizations from each
model. To ensure a fair comparison for the di�erent algorithms they are all
given the exact same set of realizations. Denote, as before, the number of
realizations asN and the length of each realization asT, the true value asx
and the estimated mean value as �x. The average RMSE is then calculated as

1
N

NX

i =1

vu
u
t 1

T

TX

t =1

(�x t � x t )2:
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The standard error of the average RMSE is also computed to determine if
the observed di�erences between the methods are statistically signi�cant.

Our goal is not only to investigate which methods can provide the low-
est RMSE for a given problem, but also to analyze the computation e�ort
required to do so. To avoid any issues arising from the e�ciency of our im-
plementation, the execution time is not used as the metric of computation
e�ort. The methods are all based on a few common operations. We therefore
use the number of times these operations are performed by the algorithms
as a complexity measure. The high-level primitives are listed in Table 1. In
the presented graphs all the operations are equally weighted to give a quick
overview, in practice the relative cost of the operations are both problem and
implementation speci�c. The level of parallelization that can be exploited,
both in the hardware and software, and which simplifying assumptions that
can be made about the model will greatly a�ect the cost of each operation.
Therefore we chose to not include the actual execution times for the algo-
rithms as that would be more a benchmark of our implementation than of the
methods themselves. This is especially true in our case since we used a 
exi-
ble generic framework to test the methods. This facilitates implementation to
a great degree, but causes an overhead in terms of execution time, since the
framework does not exploit model speci�c characteristics to increase speed,
such as knowledge about which matrices are time-invariant, sparsity struc-
tures and so on. As a drastic example consider an embedded system where
for performance reasons it is decided to sample from distributions by simply
iterating over a pre-calculated array with numbers. The relative cost of the
operations in that scenario will di�er drastically compared to an implementa-
tion running on a desktop system and where accuracy and correctness might
be more important than execution time. The interested reader can download
the raw results together with the source code from the homepage of [Nordh
and Antonsson, 2013] and make their own analysis for their particular target
platform.

6. Results

The mean of the RMSE together with a band of 2 standard errors on both
sides is plotted as a function of computation e�ort, encoded in numer of high-
level primitive operations, for all the methods and a few di�erent parameter
choices are presented in Figure 1 for the standard nonlinear model, Figure 2
for the tracking example, Figure 3 for the degenerate double integrator and
in Figure 4 for the marginalized double integrator.

For the marginalized double integrator model we use the normal FFBSi-
smoother instead of rejection sampling. This is because we can only evaluate
the required probability densities up to proportionality and we can therefore
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Table 1. List of common high-levels operations for all the algorithms
used. The number of times each operation is performed is compared for the
di�erent algorithms and used as the computational cost

Sample from p(x t +1 jx t ) Used in e.g the particle �lter
when propagating the estimates
forward

Evaluate p(yt jx t ) Used in e.g the particle �l-
ter when updating the particle
weights

Evaluate p(x t +1 jx t ) Used in most of the smoothers
to update the weights of parti-
cles given information about the
future trajectories

Compute argmax
x t +1

p(x t +1 jx t ) Used for rejections sampling
in combination with FFBSi
smoothers

Sample from p(x1) Draw particles from the initial
distribution

not compute the required normalization factor. Additionally, in theory the
rejection sampling would work very poorly since it is actually sampling the
full ancestral path in each step,x1:t , which is a very high-dimensional problem
and therefore not suitable for rejection sampling.
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7 Discussion

7. Discussion

By studying the �gures in Section 6 we see that there is no method that
consistently outperforms the others, however some general trends can be ob-
served. For the FFBSi smoothers, using a larger number of backward trajec-
tories only gives an improvement when also increasing the number of forward
particles. Thus, unless a large amount of computation e�ort can be spent,
it is typically better to use a large number of forward particles and fewer
backward trajectories.

The MH-IPS algorithm shows the most varying results. For the degener-
ate case it shows no improvement in the RMSE when increasing the num-
ber of iterations performed. This is expected since due to the degeneracy it
will not be possible to �nd any new particles that give nonzero probability
for p(x t +1 jx t ) and p(x t jx t � 1). For both the tracking example and the stan-
dard nonlinear model we see that the average RMSE only slowly decreases
with the number of iterations performed, making MH-IPS a less attractive
method for these models. However, for the marginalized double integrator
we see that for low e�ort of computation MH-IPS clearly outperforms the
other methods, and it also remains competitive for larger computation ef-
forts. For the results presented in this paper the proposal was chosen as
q(x t jx t � 1; yt ; x t +1 ) = p(x t jx t � 1). This a common choice since it is typically
already used in the particle �lter, however using a proposal taking more in-
formation in account might improve the performance of MH-IPS. Finding
such a proposal density is a model speci�c problem and in many cases it
might not be easily obtainable.

We can see that PGAS in general performs very well, but for the degen-
erate model it is outperformed by the FFBSi smoother for all but the lowest
computation e�orts. Worth noting is that in this case the ancestral sampling
part of the PGAS algorithm will not be e�ective and the extra computation
e�ort required for the AS step is wasted. The end result will therefor be the
same as for a regular PG smoother, which is thus preferable in this case.

8. Conclusion

In this paper we have clearly demonstrated that there is no universal best
choice of method for performing particle smoothing. Assuming that the goal
is to have the lowest possible RMSE for a given number of computations, all
the available methods have to be compared for the particular problem. To
facilitate easy comparison and experimentation it is useful to use a software
that separates the model speci�c implementation parts from the generic parts
of algorithms. One such framework is pyParticleEst[Nordh, 2013] which is
what we used for the work presented in this paper.
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Paper III

Nonlinear MPC and Grey-Box
Identi�cation using PSAEM of a

Quadruple-Tank Laboratory Process

Erik Ackzell Nuno Duarte Jerker Nordh

Abstract

This paper describes how to apply model predictive control to
a quadruple-tank laboratory process, which is a nonlinear and non-
minimum phase system. It shows how to use grey-box identi�cation to
identify a nonlinear process model using the recently proposed particle
stochastic approximation expectation maximization algorithm. Non-
minimum phase systems pose several challenges in the MPC frame-
work which are discussed and a method that gives good results for
the system in question is presented. The nonlinearity of the process is
handled by linearizing around the predicted trajectory of the previous
solution of the optimization problem and the bene�ts of this approach
is demonstrated by comparing it with using a �xed linearization point.
The paper is concluded by demonstrating the validity of the approach
presented by applying it to the real process.

Submitted to Control Engineering Practice.
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1. Introduction

The objective of this paper is to describe a method to control a nonlinear
process with non-minimum phase behavior. This is done by �rst determining
the physical parameters of the process using grey-box identi�cation and then
make use of the identi�ed model to control the process using nonlinear model
predictive control, where the CVXGEN software [Mattingley and Boyd, 2012]
is used to create a fast solver for a convex optimization problem.

The particle �lter was introduced more than two decades ago as a solu-
tion to the nonlinear state estimation problem, see e.g. [Doucet and Johansen,
2009] for an introduction. Recently, it has also proven useful when solving
the nonlinear system identi�cation problem, see [Kantas et al., 2014] for a
recent survey. The work presented in this paper uses the so-called PSAEM al-
gorithm introduced by [Lindsten, 2013] to identify a nonlinear model for the
process. It provides a solution to the nonlinear maximum likelihood prob-
lem by combining the stochastic approximation expectation maximization
algorithm of [Delyon et al., 1999] with the PGAS kernel of [Lindsten et al.,
2014].

Model predictive control (MPC) algorithms were �rst introduced almost
40 years ago in the control of processes for which a linear model could be
obtained. Early work include [Richalet et al., 1978] and [Clarke, 1987]. Since
the beginning of the 1990s, di�erent approaches to control nonlinear processes
using MPC have been studied, see e.g. [Kouvaritakis et al., 1999] or [Cannon
et al., 2011]. In this paper, the system is linearized around the predicted
trajectory of the previous solution at every time step, similar to the approach
described in [Oliveira and Biegler, 1995].

A description of the process considered is given in Section 2 and the sys-
tem identi�cation method is described in Section 3. In Section 4 the MPC
formulation is introduced and extensions to handle the nonlinear case are de-
scribed. A method to handle the non-minimum phase behavior of the process
is discussed in Section 5. Lastly, the method presented in the prior sections
is used to control the real process and the results are presented in Section 6.

2. Process

The process considered in this paper, illustrated in Figure 1, consists of four
water tanks, all of which have the same cross-section areaA and an outlet
cross-section areaai , i = 1 ; 2; 3; 4. The objective is to control the water levels
(y1; y2) in the two lower tanks, by adjusting the 
ow ( q1; q2) from the two
pumps. The 
ow from pump 1 is divided between tanks 1 and 4 and the 
ow
from pump 2 is divided between tanks 2 and 3. Denote these distributive
relations by 
 1 and 
 2. For 
 i < 0:5, i = 1 ; 2, the system is non-minimum
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2 Process

Figure 1. The quadruple-tank process.

phase [Johansson, 2000], which is the case studied in this paper. Denote by
x i the water level in tank i . By Bernoulli's law and a mass balance, the
dynamics of the system is given by

dx1

dt
= �

a1

A

p
2gx1 +

a3

A

p
2gx3 + 
 1q1 (1a)

dx2

dt
= �

a2

A

p
2gx2 +

a4

A

p
2gx4 + 
 2q2 (1b)

dx3

dt
= �

a3

A

p
2gx3 + (1 � 
 2)q2 (1c)

dx4

dt
= �

a4

A

p
2gx4 + (1 � 
 1)q1; (1d)

where g is the gravitational constant. Equation (1) can then be discretized
using forward Euler, yielding

x1;k +1 = x1;k + h(� � 1
p

x1;k + � 3
p

x3;k + 
 1q1;k ) (2a)

x2;k +1 = x2;k + h(� � 2
p

x2;k + � 4
p

x4;k + 
 2q2;k ) (2b)

x3;k +1 = x3;k + h(� � 3
p

x3;k + (1 � 
 2)q2;k ) (2c)

x4;k +1 = x4;k + h(� � 4
p

x4;k + (1 � 
 1)q1;k ); (2d)

where h is the step size in time and� i = a i
A

p
2g.
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3. Grey-box system identi�cation

The identi�cation problem is a so called grey-box identi�cation problem,
where the goal is to estimate a set of parameters for a prede�ned model
structure, here provided by the physical modeling of the process. Knowing
the in
ows, qi , the problem is to identify all the process-speci�c parameters,
this corresponds to �nding the maximum likelihood estimate (ML) of (3)
given the model structure in (2) and measurements over a given time interval
(y1:T ).

b� ML = argmax
�

logp� (y1:T ) (3a)

� = ( � 1 � 2 � 3 � 4 
 1 
 2)T (3b)

Section 3.1 provides a quick introduction to ML-estimation using PSAEM
and Section 3.2 gives the details for how to apply PSAEM to system identi-
�cation and the speci�c design choices made in this paper.

3.1 Introduction to ML-estimation using PSAEM
The Expectation Maximization (EM) algorithm [Dempster et al., 1977] is
an iterative algorithm to compute ML estimates of unknown parameters �
in probabilistic models involving latent variables. In this case the unknown
latent variables are the true water levels in the tanks, ie. the trajectory x1:T .
The EM algorithm computes the ML estimate (3) by iteratively computing
the so-calledintermediate quantity

Q(�; � ) =
Z

logp� (x1:T ; y1:T )p� k (x1:T j y1:T )dx1:T (4)

and then maximizing Q(�; � k ) w.r.t. � . For linear Gaussian state space models
there exist closed form solutions for all the required expressions [Shumway
and Sto�er, 1982; Gibson and Ninness, 2005]. However for nonlinear models,
such as the one considered here, approximate methods have to be used, see
e.g. [Lindsten, 2013; Sch•on et al., 2011; Capp�e et al., 2005].

The sequential Monte Carlo (SMC) methods [Doucet and Johansen, 2009]
or the particle Markov chain Monte Carlo (PMCMC) methods introduced
by [Andrieu et al., 2010] can be exploited to approximate the joint smooth-
ing density (JSD) with a weighted point mass distribution arbitrarily well
according to

bp(x1:T j y1:T ) =
NX

i =1

wi
T � x i

1: T
(x1:T ): (5)
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The quality of such an approximation increases with the number of parti-
cles (N ) used. Here,x i

1:T denotes the samples,wi
T denotes the corresponding

weights and � x denotes a point-mass distribution at x. [Sch•on et al., 2011]
uses SMC to approximate the intermediate quantity (4). When using this
approximation it is possible to improve the performance of the resulting algo-
rithm by instead of using regular EM to make use ofstochastic approximation
EM (SAEM) [Delyon et al., 1999]. In the SAEM algorithm, the intermediate
quantity (4) is replaced by the following stochastic approximation update

bQk (� ) = (1 � 
 k ) bQk � 1(� ) + 
 k logp� (x1:T [k]; y1:T ); (6)

where
 k denotes the step size, which is a design parameter that should ful�llP 1
k=1 
 k = 1 and

P 1
k=1 
 2

k < 1 to achieve asymptotic convergence of the
approximation [Delyon et al., 1999]. Furthermore, x1:T [k] denotes a sample
from the JSD p� k (x1:T j y1:T ).

For the problem under consideration the recently developed PMCMC
methods [Andrieu et al., 2010; Lindsten et al., 2014] are useful to approxi-
mately generate samples from the JSD. In [Lindsten, 2013] SAEM is com-
bined with the Particle Gibbs Ancestral Sampler (PGAS), a recently devel-
oped type of PMCMC method [Andrieu et al., 2010; Lindsten et al., 2014],
resulting in the so-called particle SAEM (PSAEM) algorithm which is the
method used in this paper.

The PGAS kernel was introduced by [Lindsten et al., 2014]. From an
implementation perspective it is very similar to the standard particle �lter,
except for the fact that the particles are conditioned on a so-calledrefer-
ence trajectory x0

1:T , which is a single trajectory estimate sampled from the
particle approximation from the previous iteration. Hence, x0

1:T have to be
retained throughout the sampling procedure, for details see [Lindsten et al.,
2014]. Intuitively this allows for the gradual improvement of the particle ap-
proximation over the iterations for any number of particles N > 1. This
avoids the need to increase the number of particles for each iteration of
the EM-algorithm, which is a drawback when using a regular particle �l-
ter combined with (SA)EM. PGAS is summarized in Algorithm 5 where the
notation is as follows: x t = ( x1

t ; : : : ; xN
t ) denotes all the particles at time t

and x1:T = ( x1; : : : ; xT ) the entire trajectories. x i
1:T denotes the trajectory

obtained by following the ancestral path of particle i at time T. The parti-
cles are propagated according to a proposal distributionr t (x t j x t � 1; y t ). The
resampling step and the propagation step of the standard particle �lter has
been collapsed into jointly sampling the particles f x i

t g
N
i =1 and the ancestor

indices f ai
t g

N
i =1 independently from

M t (at ; x t ) =
wa t

tP N
l =1 wl

t

r t (x t j xa t
1:t � 1; y1:t ): (7)
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Finally, Wt denotes the weight function,

Wt (x1:t ; y1:t ) =
p(y t j x1:t )p(x t j x1:t � 1)

r (x t j x1:t � 1; y1:t )
: (8)

With minor alterations to M and W for the �rst time-step, where the prior
distribution is used instead.

Algorithm 5 PGAS kernel
1: Initialization ( t = 1 ): Draw x i

1 � r 1(x 1 jy 1) for i = 1 ; : : : ; N � 1 and set
x N

1 = x 0
1 . Compute wi

1 = W1(x i
1) for i = 1 ; : : : ; N .

2: for t = 2 to T do
3: Draw f ai

t ; x i
t g � M t (at ; x t ) for i = 1 ; : : : ; N � 1.

4: Set x N
t = x 0

t , where x 0
1:T is the reference trajectory

5: Draw aN
t with P

�
aN

t = i
�

/
w i

t � 1 p( x 0
t j x i

1: t � 1 )
P N

l =1 w l
t � 1 p( x 0

t j x l
1: t � 1 )

6: Set x i
1: t = f x a i

t
1: t � 1 ; x i

t g for i = 1 ; : : : ; N .
7: Compute wi

t = Wt (x i
1: t ; y 1: t ) for i = 1 ; : : : ; N .

8: end for
9: Return x 1:T ; w T .

The PSAEM algorithm for ML identi�cation now simply amounts to mak-
ing use of the PGAS kernel in Algorithm 5 to generate a particle system
x1:T ; w1:T that is then used to approximate the intermediate quantity ac-
cording to

bQk (� ) = (1 � 
 k ) bQk � 1(� ) + 
 k logp� (x1:T [k]; y1:T ); (9)

where x1:T [k] is a sampled trajectory from x1:T ; w1:T generated at iteration
k. This trajectory is, in addition to its use in the intermediate quantity, then
used as the reference trajectory (x0

1:T ) for the next iteration. The result is
provided in Algorithm 6. Note that the initial reference trajectory x1:T [0]
is obtained by running a regular forward �lter backward simulator (FFBSi)
particle smoother, see [Lindsten and Sch•on, 2013] for details.

3.2 Nonlinear Grey-box identi�cation using PSAEM
A stochastic model is needed to apply the methods from the previous section.
Therefore model (2) is extended with additive Gaussian noise,

x k+1 = F (x k ; qk ) + v k (10a)

y k = Cx k + ek ; (10b)

v k � N (0; V ); ek � N (0; R ): (10c)
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Algorithm 6 PSAEM for grey-box identi�cation
1: Initialization: Set � [0] = � 0 and compute x 1:T [0] using an FFBSi particle

smoother. Set bQ0 = 0 and set w [0] to an empty vector.
2: Draw x 0

1:T using FFBSi.
3: for k � 1 do
4: Draw x 1:T ; w T by running Algorithm 5 using x 0

1:T as reference and with the
parameters as � [k].

5: Draw j with P(j = i ) = wi
T .

6: Set x 0
1:T = x j

1:T [k]
7: Compute bQk (� ) according to (9).
8: Compute � [k] = argmax bQk (� ).

9: if termination criterion is met then
10: return f � [k]g
11: end if
12: end for

Here F (x k ; qk ) are the nonlinear dynamics from (2).
There are a few important details to make the PSAEM algorithm from the

previous section work well for system identi�cation. One important choice is
the proposal densityr (x t jx t � 1; y t ). A common choice in particle �lters is the
bootstrap proposal r = p(x t jx t � 1). However, since the model is unknown,
this would require modeling the process noise,v , as having a very large
covariance to ensure that particles end up in the regions corresponding to
the measurements. If all the states can be directly measured, that isC = I 4x4 ,
it is also possible to use the proposalp(x t +1 jy t +1 ). For the model in question
in this paper, an analytic expression for the optimal proposal can also be
found, r = p(x t jx t � 1; y t ), having the form shown in (11).

p(x t +1 jx t ; y t +1 ) = N ( �x t +1 ; P) (11a)

�x t +1 = F (x t ; qt ) + VC T S� 1(y t +1 � CF (x t ; qt )) (11b)

P = V � VC T S� 1CV (11c)

S = CVC T + R (11d)

This still has the problem mentioned above that initially the model will
be very inaccurate, thus requiring a large process noise uncertainty,V . By
including V as an unknown parameter it is possible to have a large value
as an initial guess. Then, as the prediction accuracy of the model increases,
the estimated process noise covariance will decrease, helping to focus the
particles to regions of high probability.

A more problem speci�c improvement is to use the knowledge that the
water tanks can not have negative water levels, and neither can they be
�lled more than to the height of the tank. The proposal density is therefore
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further improved by sampling from a truncated Gaussian instead, which helps
avoid spending time computing particles that can not represent the true
state. Using the symbolN trunc (m; P; a; b) to indicate the truncated normal
distribution with mean m, variance P, lower limit a and upper limit b it is
thus wished to sample from

N trunc ( �x t +1 ; P ; 0; hmax ): (12)

Due to the assumption that V and R are diagonal this is easily accom-
plished using rejection sampling, since the problem just corresponds to sam-
pling four independent univariate truncated Gaussian variables. The multi-
variate case is in general more complicated.

The maximization step now requires the computation of the ML estimate
of all the parameters given the estimated trajectories. To simplify the compu-
tations the solution is approximated as the ML estimate of f � 1� 4; 
 1� 2gk+1

using the estimated process noise covariance,V k , from the previous step, and
then using the new values off � 1� 4; 
 1� 2gk+1 to compute V k+1 . This approx-
imation allows the values of f � 1� 4; 
 1� 2gk+1 to be found as the solution to
a weighted linear least squares (WLS) problem, and the estimation ofV re-
duces to calculating the weighted mean value of the squared residuals. Notice
that the problem is essentially a double-weighted least squares problem, for a
given trajectory the states are weighted according to theV -matrix, since this
choice of weights implies that the solution of the WLS problem coincides with
the maximum-likelihood solution. In addition to weighting of the individual
states within a single trajectory according to the process noise covaraince,
the trajectories generated from all the iterations up to the current one should
also be weighted relative each other according to the sequence
 1:k , which is
part of the SAEM approximation (6).

Even though the process earlier was presented as providing measurements
of all the four tank levels, this is not necessary using the algorithm presented
above. Using the measured tank levels from only the lower tanks simply
corresponds to

C =
�

1 0 0 0
0 1 0 0

�
: (13)

The design choices required are the choice of initial parameter guesses,� 0,
the measurement noise,R , the sequencef 
 k g1

1 and the termination criterion.

3.3 Grey-box identi�cation validation data results
The performance of the identi�cation algorithm is evaluated on 100 simulated
realizations of the nonlinear model (with C = I 4x 4) using the input signal
shown in Figure 2, which also shows a sample realization. The process noise
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Table 1. Parameter estimation results for 100 simulated datasets, pre-
sented is the mean values� one standard deviation. The least squares so-
lution is the estimated parameter values from assuming that the measure-
ments correspond exactly to the true states (x1 ; x2 ; x3 ; x4). "PSAEM, all
tanks" is the maximum-likelihood solution using PSAEM while measuring
the water levels in all the tanks. "PSAEM, lower tanks" it the maximum-
likelihood solution when only measuring the water levels in the lower tanks.
As can be seen the LS solution appears to consistently over estimate the
outlet areas, � i , whereas PSAEM is much closer to the true value. There is
a slight improvement in accuracy when measuring all the tank levels, which
is expected since the algorithm then has access to more data.

True Least Squares PSAEM, all tanks PSAEM, lower tanks

� 1 0:27 0:2891� 0:0031 0:2713� 0:0017 0:2723� 0:0043

� 2 0:29 0:3102� 0:0031 0:2916� 0:0016 0:2921� 0:0023

� 3 0:31 0:3311� 0:0040 0:3074� 0:0022 0:3072� 0:0039

� 4 0:33 0:3538� 0:0034 0:3274� 0:0018 0:3270� 0:0036


 1 0:28 0:2836� 0:0067 0:2872� 0:0029 0:2782� 0:0050


 2 0:32 0:3216� 0:0073 0:3269� 0:0029 0:3178� 0:0049

covariance was set toxQ = 0 :12I and the simulated measurement noise had
covarianceR = 0 :252I .

To evaluate the performance of the algorithm it is compared against the
least-squares solution that is obtained by directly using all the four measure-
ments. Included are also the results when using PSAEM and only having
access to the lower tank levels (C = I 2x 4). The initial guess for each � and

 was drawn uniformly in the range 0:15 � 0:45. The termination criterion
used was a �xed number of iterations. For the case when all tank levels were
measured 500 iterations were used, and for the case when only measuring the
lower tank levels 50000 iterations were used. In both cases
 k = k� 0:51 was
used. Figure 3 shows the convergence of the parameter estimates from the
PSAEM algorithm when only measuring the lower tank levels. The results for
both cases can be seen in Table 3.3. It is obvious that the PSAEM algorithm
outperforms the least-squares approach. Interestingly there is only a minor
degradation in performance when only using the water levels from the lower
tanks.

For the case when 50000 iterations were used, only the last 4000 sampled
trajectories were used in the maximization step, i.e. at iteration k the max-
imization problem was solved using onlyf x1:T [i ]gk

i = k � 4000 . This was done
to reduce the computational complexity. The estimation problem was solved
using the pyParticleEst framework [Nordh, 2013].
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Figure 2. Example realization from those used for verifying the system
identi�cation. Notice that the tank levels for both the upper and lower tanks
move over almost their full range (0 � 20). This was a design goal when
selecting the input signal used for the identi�cation, as the authors believe
that will provide a good scenario for distinguishing between the outlet areas,
� i , and the pump 
ow ratios 
 i . The red dots are the measurements and
the continuous lines are the true trajectories.

4. MPC

4.1 Introduction
Let a discrete mathematical model of some physical process be given and let
it be linearized around some point, yielding the state space model

x k+1 = Ax k + Bu k + fk

y k = Cx k + Du k ;
(14)

where x k 2 Rn is the state vector and uk 2 Rm is the input signal at time
step k. Furthermore, let some state referencef x ref

k g1
1 be given.

Let W be a positive de�nite weight matrix and let P be a positive integer.
By minimizing the cost function

J =
k+ PX

t = k

kx t � x ref
t kW (15)

at the current time step, subject to (14) and possibly to linear physical con-
straints, an input signal f u t gk+ P

k for the following P time steps is obtained.
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Figure 3. Parameter convergence plot for one of the example datasets
using PSAEM and only measuring the heights of the lower tanks. As can
be seen the parameters converge very slowly, thus requiring a large num-
ber of iterations. For this particular realization it even appears that 50000
iterations could have been slightly too few to reach stationarity.

The �rst input signal uk is then used and (15) is then minimized again for
f tgk+1+ P

k+1 . Since W is positive de�nite and the constraints are all linear,
minimizing (15) is a linear convex problem.

4.2 NMPC
Instead of linearizing the system around a �xed point independent of the
current state of the process, the system can be linearized around the predicted
trajectory, similar to the approach described in [Oliveira and Biegler, 1995].
Given that, at each time step, the predicted trajectory for the states over the
following P time steps describes the states more accurately compared to if
the states were assumed to remain at a �xed linearization point, this method
would ensure a smaller loss in accuracy of the model. A slight di�culty is
that the linearized model becomes time-varying.

In this paper, no attempt is made to use the nonlinear model of the
process when solving the control problem without linearizing the model �rst.
This is mainly due to the increased complexity of the numerical problem as
well as the availability of methods and software for solving linear problems.
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4.3 Controlling the quadruple-tank process
By linearizing (2) around some point x0, the state space model

x k+1 = A 0x k + Bq k + f0

y k = Cx k
(16)

is obtained, where

A 0=
h
2

2

6
6
6
6
6
4

1 � � 1p
x 0

1

0 � 3p
x 0

3

0

0 1� � 2p
x 0

2

0 � 4p
x 0

4

0 0 1� � 3p
x 0

3

0

0 0 0 1� � 4p
x 0

4

3

7
7
7
7
7
5

(17a)

B = h

2

6
6
4


 1 0
0 
 2

0 1� 
 2

1 � 
 1 0

3

7
7
5; C = I 4x4 (17b)

f0=
h
2

2

6
6
4

� � 1

p
x0

1 + � 3

p
x0

3

� � 2

p
x0

2 + � 4

p
x0

4

� � 3

p
x0

3

� � 4

p
x0

4

3

7
7
5: (17c)

Let P denote the number of steps in the cost function. The software
used to solve the minimization problem is CVXGEN [Mattingley and Boyd,
2012]. Naturally, the software has certain limitations, one of which being
the maximum numbers of non-zero KKT matrix entries for the problem, see
[Mattingley and Boyd, 2012] for details. Hence, the maximum number of
possible stepsP for this speci�c problem is approximately P = 30.

In order to increase the possible prediction horizon, limited by the num-
ber of steps in the cost function, each step in the cost function can be chosen
to represent more than one time step. If the pump 
ow is assumed to change
in each of the �rst P1 time steps in the prediction horizon and thereon after
only change every third time step, the prediction horizon can be increased
signi�cantly. This implies that the initial P1 steps in the cost function rep-
resent one time step each, while the remainingP � P1 represents three time
steps each. If the system is stationary after the initialP1 steps, no loss in the
accuracy of the model occurs with this approach.

Let some reference for the water levels be given,f x ref
i;k g1

k=1 with i = 1 ; 2,
and let w x

t be the weight on the di�erence between the states and their
respective references at stept. In order to favor solutions where the pump

ow remains constant, a penalty on the change in pump 
ow, denoted � qt =
qt � qt � 1, is also included in the cost function. Let w � q

t denote the weight
on � qt at step t. Introduce the cost function
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J =
k+1+ PX

t = k+1

(w x
t k(~x1;t ~x2;t ) � (~x ref

1;t ~x ref
2;t )k2

2 + w � q
t k� qt k2

2) (18)

subject to the constraints

~x t +1 = A t ~x t + Bq t + f t ; t = k; : : : ; k + P1 � 1 (19a)

~x k+ P1 +1 = A k+ P1 +1 (A k+ P1 ~x k+ P1 + Bq k+ P1 + fk+ P1 )

+ Bq k+ P1 + fk+ P1 +1 (19b)

~x t +1 = A k+ P1 +2+3( t � P1 � k ) (A k+ P1 +1+3( t � P1 � k ) (A k+ P1 +3( t � P1 � k ) ~x t

+ Bq t + fk+ P1 +3( t � P1 � k ) ) + Bq t + fk+ P1 +1+3( t � P1 � k ) )+

+ Bq t + fk+ P1 +2+3( t � P1 � k ) ; t = k + P1 + 1 ; : : : ; k + P � 1 (19c)

0 � ~x i � xmax i = 1 ; 2; 3; 4 (19d)

0 � qj � qmax j = 1 ; 2: (19e)

Here A t and f t denote the matrices linearized around the predicted statex t .
Furthermore, ~x i = x j , where

j =

8
<

:

i; i = k + 1 ; k + 2 ; : : : ; k + P1

i + 1 ; i = k + P1 + 1
k + P1 + 2 + 3( i � P1 � 1 � k); i = k + P1 + 2 ; k + P1 + 3 ; : : : ; k + P

:

With the same use of the indexj , the references are chosen as

~x ref
i =

8
<

:

x ref
j ; i = k + 1 ; k + 2 ; : : : ; k + P1

1
3

P 1
m = � 1 x ref

j + m ; i = k + P1 + 1 ; k + P1 + 2 ; : : : ; k + P
:

Since the last P � P1 steps in the cost function represent three time steps
each, the references~x ref

t ; t > k + P1, are chosen as the mean value of three
consecutive steps in order to make changes in references smoother.

If it is of interest to put di�erent weights on the di�erent tanks, w x
t k � k2

2
can be replaced byk�kW in the cost function for some positive de�nite matrix
W .
When comparing the linear MPC controller and the NMPC controller, the
NMPC controller performs better, in terms of both the root mean square
error (RMSE) and the integrated absolute error (IAE). Furthermore, the
NMPC controller also handles the change in reference faster than the linear
MPC controller. The result can be seen in Figures 4 and 5.
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Figure 4. Control of the simulated quadruple-tank process using
linear MPC. The system is linearized around a �xed state, x 0 =
(5:0; 5:0; 2:45; 2:45). A prediction horizon of 30 seconds is used, with P1 = 15
and time step h = 0 :5 seconds. In the initial 4.5 seconds in the cost function,
the states are weighted by a �xed negligible weight, the following 3 seconds
they are are weighted by one unit of weight, while the remaining states are
weighted by 3 units of weight. See Section 5 for a discussion about how the
weights are chosen. LU and RU are the outputs from the left upper and
right upper tank, LL and LR are the outputs from the left lower and right
lower tank, the dotted and dashed line are the references for the lower left
and lower right tank, while P1 and P2 are the 
ows from pump 1 and pump
2. The controller handles the change in reference slower than when using
nonlinear MPC as can be seen in Figure 5 and stationary errors also occur.
The RMSEs for the lower tanks are 0.59 and 0.61 for the left and right tank,
respectively, and the IAEs are 50.04 and 49.81 for the left and right tank,
respectively.
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Figure 5. Control of the simulated quadruple tank process using non-
linear MPC. In each time step the system is linearized around the predicted
trajectory from the previous time step. The same prediction horizon, step
size, weighting and naming is used as in Figure 4. The controller handles the
changes in references faster than when using linear MPC and no stationary
error occurs. The RMSEs for the lower tanks are 0.52 and 0.52 for the left
and right tank, respectively, while the IAEs are 35.54 and 36.86 for the left
and lower tanks, respectively.
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5. Improved MPC for non-minimum phase systems

5.1 Introduction
A typical behavior of a non-minimum phase system is that in order to change
the value of one of the outputs in a desired direction, the value of the output
initially has to change in the opposite direction. Due to the non-linearity
of the process, this initial change depends on the magnitude of the desired
change. When controlling a non-minimum phase system, including the initial
time steps of the prediction horizon in the cost function is not the best
approach [Richalet and O'Donovan, 2009]. On the other hand, it is possible
to exclude too many time steps, so a good choice for the number of steps to
exclude needs to be determined.

5.2 Dealing with the non-minimum phase behavior of the
quadruple-tank process

Only when a change in the di�erence of the water levels is desired, the non-
minimum phase behavior occurs. Hence, this is the case studied in this sec-
tion.

In order not to exclude too many initial time steps in the cost function
due to the non-minimum phase behavior, a negligible weight ought to be
put on these as well. This would imply that the controller has no reason to
postpone a change in the pump 
ow which would otherwise lead to stationary
errors.

A good choice of the weightsw x
t and w � q

t in (18) in order to deal with
the non-minimum phase behavior is desired. Three di�erent approaches are
considered in this paper. The �rst two use a constant weight w � q

t on the
di�erence in the pump 
ow and are chosen in such a way that an increasing
amount of weight w x

t is put on the states. These methods increase the weight
over time linearly and quadratically respectively.

The third method uses a weightw � q
t on the di�erence in the pump 
ow

proportional to the time qt is allowed to vary. Furthermore, the weights w x
t

on the states are chosen as three �xed values, a negligible weight on the initial
p steps, 1 unit of weight on the P1 � p following steps and 3 units of weight
on the last P � P1 steps. These are selected in such a way since the �rstP1

steps represent 1 time step each and the lastP � P1 steps represent 3 time
steps each.

5.3 Handling non-minimum phase behavior
When the weights on the states are chosen to increase linearly, the controller
handles the change in reference slower compared to when they are chosen to
increase quadratically as can be seen in Figures 6 and 7.
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Figure 6. Control of the simulated quadruple-tank process using non-
linear MPC. The weights on the states in the cost function are chosen to
increase linearly. A prediction horizon of 30 seconds is used, with P1 = 15
and time step h = 0 :5 seconds. LU and RU are the outputs from the left
upper and right upper tank, LL and LR are the outputs from the left lower
and right lower tank, the dotted and dashed line are the references for the
lower left and lower right tank, while P1 and P2 are the 
ows from pump
1 and pump 2. The controller handles the change in references slower com-
pared to when the weights are chosen to increase quadratically, as can be
seen in Figure 7. The RMSEs are 0.50 and 0.49 for the left and right tank,
respectively, and the IAEs are 31.88 and 29.94 for the left and right tank,
respectively.
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Figure 7. Control of the simulated quadruple-tank process using non-
linear MPC. The weights on the states in the cost function are chosen to
increase quadratically. The same prediction horizon, step size and naming
is used as in Figure 6. The controller handles the change in references faster
compared to when the weights are chosen to increase linearly, but slower
compared to when the weights are chosen in the way as can be seen in Fig-
ure 5. The RMSEs are 0.51 and 0.50 for the left and right tank, respectively,
while the IAEs are 32.32 and 31.49 for the left and right tank, respectively.
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6 Experiment on the real process

When the third scheme of weights is used withp = 9, the controller han-
dles the change in reference faster compared to both previous methods. This
can be seen in Figure 5. A comparison of di�erent values ofp can be seen
in Figure 8. That the water levels converge faster to the references asp is
increased implies that the prediction horizon can be decreased. Since the pre-
diction horizon is limited by the software used when solving the minimization
problem, reducing the prediction horizon might be needed for more complex
problems.

6. Experiment on the real process

6.1 Identi�cation
The lab process is designed so that it is possible to block the out
ows from
the di�erent tanks. Utilizing this it is possible to experimentally determine
the values of �; 
 . The � -values are determined measuring the time it takes
for the water to decrease from one level to another in each tank isolated by
itself, and the 
 -values by studying the ratio of water being pumped into the
di�erent tanks when all the outlets are closed. Table 6.1 compares the values
obtained in this way for a couple of lab processes by those found by the
algorithm from Section 3. Worth noticing is that the real processes introduce
some extra unmodeled nonlinearities. The value of
 for instance varies with
the 
ow, when the 
ow is low it is essentially zero due to the way the process
is constructed. Another issue is that the tubing in the process introduces
time delays that are not modeled either.

Table 2. Parameter estimation results for three di�erent labprocesses
compared with the results obtained from performing manual experiments
as described in Section 6.1. As can be seen the results are close, but not
identical. This is expected since the real process includes additional nonlin-
earities and time-delays that are not present in the model.

Process 1 Process 2 Process 3

Manual PSAEM Manual PSAEM Manual PSAEM

� 1 0:32 0:33 0:46 0:44 0:40 0:38

� 2 0:40 0:40 0:43 0:44 0:45 0:45

� 3 0:45 0:40 0:45 0:42 0:42 0:42

� 4 0:44 0:42 0:44 0:42 0:42 0:41


 1 0:27 0:28 0:27 0:29 0:27 0:23


 2 0:35 0:36 0:29 0:32 0:30 0:26
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Figure 8. Control of the simulated quadruple-tank process using non-
linear MPC. The same prediction horizon and step size as in Figure 6 is
used. The initial state is chosen asx 0 = (5 :0 5:0 2:45 2:45) and the dot-
ted line denotes the references for the lower tanks. Three di�erent choices
for how many initial states p in the cost function to only weight with a
negligible weight are compared. The dash-dotted lines describe the output
and pump 
ows when p = 0, the dashed lines describe the output and pump

ows when p = 2, while the continuous line describes the output and pump

ows when p = 9. The tank levels converge to the references signi�cantly
faster when p is increased.
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7 Conclusion

6.2 Integral action
In order to deal with possible steady state errors as a result of any modeling
errors and disturbances, an integral part is added to the controller using
the same approach as in [Oliveira and Biegler, 1995]. The state vectorx
introduced in Section 2 is extended with the integrals i 1; i 2 of the errors
of the two �rst states, yielding x̂ = ( x1 x2 x3 x4 i 1 i 2)T . The state
space model (16) can then be extended with

x̂ k+1 =
�

A 0 2x 2

� ZA I 2x 2

�

| {z }
Â

x̂ k +
�

B
� ZB

�

| {z }
B̂

qk +
�

f
x ref

k+1 � Zf

�

| {z }
f̂

; (20)

where

Z =
�

1 0 0 0
0 1 0 0

�
:

A new cost function to minimize is then introduced,

J =
PX

t = k+1

(w x
t k(x̂1;t x̂2;t ) � (x̂ ref

1;t x̂ ref
2;t )k2

2 + w � q
t k� qt k2

2 + w i
t k(i 1;t i 2;t )k2

2)

(21)
subject to (19) with appropriate changes.

6.3 Results
In Figure 9, the performance of the controller on the real quadruple-tank
process can be seen. The physical parameters of the process was �rst iden-
ti�ed using the method described in Section 3.2 and the process was then
controlled using the methods described in the previous sections.

7. Conclusion

As seen in Section 3, a good approximation to the physical parameters of
the simulated quadruple-tank process can be obtained using grey-box iden-
ti�cation. Furthermore, the method yields good results when using it on the
real process as well. That only measurements from two of the four tanks
are needed for the algorithm to converge indicates that the method can be
used on processes when not all states are measurable, which is desirable to
decrease complexity and cost of the hardware.

In Section 4, it is shown that controlling the quadruple tank process using
nonlinear MPC yields a much better behavior compared to when using linear
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Figure 9. Control of the real quadruple-tank process using nonlinear
MPC. The physical parameters of the process are �rst determined using
the method described in Section 3.2 and the process is then controlled
using the method described in Section 4.3. To deal with modeling errors
and disturbances, the controller is augmented with an integral part in the
way described in Section 6.2. The prediction horizon is 28.5 seconds, with
P1 = 15 and time step h = 0 :5 seconds. The weights on the states in the
cost function are chosen in the same way as in 4 with an extra large weight
on the last state. The weight on the integral part is chosen to be �xed for
the �rst 4.5 seconds, increased by a factor of 10 for the following 3 seconds
and increased by a factor of ten for the remaining prediction horizon. LU
and RU are the outputs from the left upper and right upper tank, LL and
LR are the outputs from the left lower and right lower tank, the dotted and
dashed line are the references for the lower left and lower right tank, while
P1 and P2 are the 
ows from pump 1 and pump 2.
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MPC. This is expected, since a better model is obtained when linearizing
around the predicted trajectory compared to a �xed point.

The results presented in Section 5 show that by using di�erent approaches
when choosing the weights in the cost function, the needed prediction horizon
for the minimization problem can be reduced and quicker convergence is
achieved.

The real process is then controlled with good results after �rst determin-
ing the physical parameters of the nonlinear process using nonlinear grey-box
system identi�cation and using the parameters to construct a nonlinear MPC
controller which deals with the non-minimum phase behavior of the process.
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Paper IV

Particle Filtering Based Identi�cation
for Autonomous Nonlinear ODE

Models
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Abstract

This paper presents a new black-box algorithm for identi�cation
of a nonlinear autonomous system in stable periodic motion. The par-
ticle �ltering based algorithm models the signal as the output of a
continuous-time second order ordinary di�erential equation (ODE).
The model is selected based on previous work which proves that a
second order ODE is su�cient to model a wide class of nonlinear sys-
tems with periodic modes of motion, also systems that are described
by higher order ODEs. Such systems are common in systems biol-
ogy. The proposed algorithm is applied to data from the well-known
Hodgkin-Huxley neuron model. This is a challenging problem since the
Hodgkin-Huxley model is a fourth order model, but has a mode of os-
cillation in a second order subspace. The numerical experiments show
that the proposed algorithm does indeed solve the problem.
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1. Introduction

The identi�cation of nonlinear autonomous systems is a fairly unexplored
�eld. While a very large amount of work has been devoted to the analysis
of autonomous systems, given an ordinary di�erential equation (ODE), the
inverse problem has received much less attention. At the same time system
identi�cation based on particle �ltering ideas is expanding rapidly. However,
little attention has so far been given to identi�cation of nonlinear autonomous
systems. The present paper addresses this by presenting a new approach
for identi�cation of nonlinear autonomous ODE model based on recently
developed particle �ltering methods. Furthermore, the paper presents new
results on neural modeling, by applying the new algorithm to data generated
by the well-known Hodgkin-Huxley model. These constitutes the two main
contributions of the paper.

As stated above, much work has been performed on the analysis of a given
nonlinear autonomous system, see e.g. [Khalil, 1996]. The classical analysis
provided by e.g. Poincar�e provide tools for prediction of the existence of pe-
riodic orbits of a second order ODE. Bifurcation analysis and similar tools
have also been widely applied to the analysis of chaos, inherent in nonlinear
autonomous ODEs [Khalil, 1996; Li et al., 2007]. There are much less publi-
cations on and connections to the inverse problem, i.e. the identi�cation of an
autonomous nonlinear ODE from measured data alone. However, algorithms
tailored for identi�cation of second order ODEs from periodic data appeared
in [Wigren et al., 2003a], [Manchester et al., 2011] and [Wigren, 2014]. A
result on identi�ability that gives conditions for when a second order ODE
is su�cient for modeling of periodic oscillations is also available, see [Wigren
and S•oderstr•om, 2005] and [Wigren, 2015]. That work proves that in case the
phase plane of the data is such that the orbit does not intersect itself, then
a second order ODE is always su�cient for identi�cation. In other words,
higher order models cannot be uniquely identi�able.

There is a vast literature on stable oscillations in biological and chemical
systems, see e.g. [Rapp, 1987]. An important example is given by neuron
spiking [Doi et al., 2002; Izhikevich, 2003; Hodgkin and Huxley, 1952]. This
spiking is fundamental in that it is the way nerve cells communicate, for
example in the human brain. The �eld of reaction kinetics provides further
examples of dynamic systems that are relevant in the �eld of molecular sys-
tems biology, see e.g. [Ashmore, 1975]. Such kinematic equations typically
result in systems of ordinary di�erential equations with right hand sides
where fractions of polynomials in the states appear. The many authors that
have dealt with identi�cation of the Hodgkin-Huxley model have typically
built on complete models, including an input signal current, see e.g. [Doi et
al., 2002; Saggar et al., 2007; Tobenkin et al., 2010; Manchester et al., 2011;
Lankarany et al., 2013]. With the exception of [Wigren, 2015] there does no
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seem to have been much work considering the fact that identi�cation may
not be possible if only periodic data is available.

The particle �lter was introduced more that two decades ago as a solution
to the nonlinear state estimation problem, see e.g. [Doucet and Johansen,
2009] for an introduction. However, when it comes to the nonlinear system
identi�cation problem in general, it is only relatively recently that the particle
�lter has emerged as a really useful tool, see [Kantas et al., 2014] for a
recent survey. The algorithm presented here is an adaptation of the so-called
PSAEM algorithm introduced by [Lindsten, 2013]. It provides a solution
to the nonlinear maximum likelihood problem by combining the stochastic
approximation expectation maximization algorithm of [Delyon et al., 1999]
with the PGAS kernel of [Lindsten et al., 2014]. This improves upon the
earlier work of [Wigren et al., 2003b], since it is no longer necessary to rely
on the sub-optimal extended Kalman �lter and restrictive models of the
model parameters.

2. Formulating the model and the problem

The periodic signal is modeled as the output of a second order di�erential
equation, and can in continuous-time thus be represented as

x t = ( pt vt )T ; (1a)

_x t =
�

vt

f (pt ; vt )

�
: (1b)

The discretized model is obtained by a Euler forward approximation and
by introducing noise acting on the second state and on the measurement
according to

pt +1 = pt + hvt ; (2a)

vt +1 = vt + hf (pt ; vt ) + wt ; wt � N (0; Qw ); (2b)

yt = pt + et ; et � N (0; R): (2c)

The noise is only acting on one of the states, implying that one of the states
can be marginalized resulting in the following non-Markovian model

pt +1 = pt + h(vt � 1 + hf (pt � 1; vt � 1) + wt � 1)

= 2pt � pt � 1 + h2f
�

pt � 1;
pt � pt � 1

h

�
+ hwt � 1; (3a)

yt = pt + et ; (3b)
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where the noise is still Gaussian according to

wt � 1 � N (0; Qw ); et � N (0; R): (3c)

As suggested by [Wigren et al., 2003b], the functionf (p; v) is parametrized
according to

f (p; v) =
mX

i =0

mX

j =0

aij pi vj : (4)

Here, m is a design parameter deciding the degree of the model used
for the approximation and the indices aij denote unknown parameters to be
estimated together with the process noise covarianceQw . Hence, the unknown
parameters to be estimated are given by

� = f Qw a00 ::: a0m ::: am 0 ::: amm g: (5)

It has been assumed that the measurement noise covarianceR is known. The
problem under consideration is that of computing the maximum likelihood
(ML) estimate of the unknown parameters � by solving

b� ML = argmax
�

logp� (y1:T ); (6)

where y1:T = f y1; : : : ; yT g and p� (y1:T ) denotes the likelihood function pa-
rameterized by � .

3. Particle �ltering for autonomous system identi�cation

After the marginalization of the v state in model (2) the problem becomes
non-Markovian, for an introduction to non-Markovian particle methods see
e.g., [Lindsten et al., 2014] and [Lindsten and Sch•on, 2013]. The remainder
of this section will go through the components required for the algorithm
and note speci�c design choices made to apply the methods to the particular
class of problems that are of interest in this paper.

3.1 Expectation maximization algorithms
The expectation Maximization (EM) algorithm [Dempster et al., 1977] is an
iterative algorithm to compute ML estimates of unknown parameters (here� )
in probabilistic models involving latent variables (here, the state trajectory
x1:T ). More speci�cally, the EM algorithm solves the ML problem (6) by
iteratively computing the so-called intermediate quantity

Q(�; � k ) =
Z

logp� (x1:T ; y1:T )p� k (x1:T j y1:T )dx1:T (7)
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and then maximizing Q(�; � k ) w.r.t. � . There is now a good understanding
of how to make use of EM-type algorithms to identify dynamical systems.
The linear state space model allows us to express everything in closed form
[Shumway and Sto�er, 1982; Gibson and Ninness, 2005]. However, when it
comes to nonlinear models, like the ones considered here, approximate meth-
ods have to be used, see e.g. [Lindsten, 2013; Sch•on et al., 2011; Capp�e et al.,
2005].

The sequential Monte Carlo (SMC) methods [Doucet and Johansen, 2009]
or the particle Markov chain Monte Carlo (PMCMC) methods introduced by
[Andrieu et al., 2010] can be exploited to approximate the joint smoothing
density (JSD) arbitrarily well according to

bp(x1:T j y1:T ) =
NX

i =1

wi
T � x i

1: T
(x1:T ): (8)

Here, x i
1:T denotes the samples (also referred to as particles, motivating the

name particle �lter/smoother), wi
T denotes the corresponding weights and� x

denotes a point-mass distribution atx. [Sch•on et al., 2011] used the SMC ap-
proximation (8) to approximate the intermediate quantity (7). However, there
is room to make even more e�cient use of the particles in performing ML
identi�cation, by making use of the stochastic approximation developments
within EM according to [Delyon et al., 1999]. In the so-called stochastic ap-
proximation expectation maximization (SAEM) algorithm, the intermediate
quantity (7) is replaced by the following stochastic approximation update

bQk (� ) = (1 � 
 k ) bQk � 1(� ) + 
 k logp� (x1:T [k]; y1:T ); (9)

where 
 k denotes the step size, which is a design parameter that must ful�llP 1
k=1 
 k = 1 and

P 1
k=1 
 2

k < 1 . Furthermore, x1:T [k] denotes a sample
from the JSD p� k (x1:T j y1:T ). The sequence� k generated by the SAEM al-
gorithm outlined above will under fairly weak assumptions converge to a
maximizer of p� (y1:T ) [Delyon et al., 1999].

For the problem under consideration the recently developed PMCMC
methods [Andrieu et al., 2010; Lindsten et al., 2014] are useful to approxi-
mately generate samples from the JSD. This was realized by [Lindsten, 2013],
resulting in the so-called particle SAEM (PSAEM) algorithm, which is used
in this work.

3.2 The PGAS kernel
The particle Gibbs with ancestor sampling (PGAS) kernel was introduced by
[Lindsten et al., 2014]. It is a procedure very similar to the standard particle
�lter, save for the fact that conditioning on one so-called reference trajectory
x0

1:T is performed. Hence,x0
1:T have to be retained throughout the sampling
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procedure. For a detailed derivation see [Lindsten et al., 2014], where it is also
shown that the PGAS kernel implicitly de�ned via Algorithm 1 is uniformly
ergodic. Importantly, it also leaves the target density p(x1:T j y1:T ) invariant
for any �nite number of particles N > 1 implying that the resulting state
trajectory x?

1:T can be used as a sample from the JSD. The notation used in
Algorithm 1 is as follows, x t = ( x1

t ; : : : ; xN
t ) denotes all the particles at time t

and x1:T = ( x1; : : : ; xT ) the entire trajectories. The particles are propagated
according to a proposal distribution r t (x t j x t � 1; yt ). The resampling step
and the propagation step of the standard particle �lter has been collapsed
into jointly sampling the particles f x i

t g
N
i =1 and the ancestor indicesf ai

t g
N
i =1

independently from

M t (at ; x t ) =
wa t

tP N
l =1 wl

t

r t (x t j xa t
1:t � 1; y1:t ): (10)

Finally, Wt denotes the weight function,

Wt (x1:t ; y1:t ) =
p(yt j x1:t )p(x t j x1:t � 1)

r (x t j x1:t � 1; y1:t )
: (11)

Algorithm 1 PGAS kernel
1: Initialization ( t = 1 ): Draw x i

1 � r 1(x1 jy1) for i = 1 ; : : : ; N � 1 and set
xN

1 = x0
1 . Compute wi

1 = W1(x i
1) for i = 1 ; : : : ; N .

2: for t = 2 to T do
3: Draw f ai

t ; x i
t g � M t (at ; x t ) for i = 1 ; : : : ; N � 1.

4: Set xN
t = x0

t .

5: Draw aN
t with P

�
aN

t = i
�

/
w i

t � 1 p( x 0
t j x i

1: t � 1 )
P N

l =1 w l
t � 1 p( x 0

t j x l
1: t � 1 )

6: Set x i
1: t = f xa i

t
1: t � 1 ; x i

t g for i = 1 ; : : : ; N .
7: Compute wi

t = Wt (x i
1: t ; y1: t ) for i = 1 ; : : : ; N .

8: end for
9: Return x 1:T ; w T .

3.3 Identifying autonomous systems using PSAEM
The PSAEM algorithm for ML identi�cation of autonomous systems now
simply amounts to making use of the PGAS kernel in Algorithm 1 to gen-
erate a particle systemf x i

1:T ; wi
T gN

i =1 that is then used to approximate the
intermediate quantity according to

bQk (� ) = (1 � 
 k ) bQk � 1(� ) + 
 k

NX

i =1

wi
T logp� (x i

1:T ; y1:T ): (12)
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Note that similarly to (9) only the reference trajectory x1:T [k] could have
been used, but in making use of the entire particle system the variance of the
resulting state estimates are reduced [Lindsten, 2013]. The result is provided
in Algorithm 2.

Algorithm 2 PSAEM for sys. id. of autonomous systems
1: Initialization: Set � [0] = ( Qw

0 0T ) and set x1:T [0] using an FFBSi particle
smoother. Set bQ0 = 0 and set w [0] to an empty vector.

2: Draw x0
1:T using FFBSi.

3: for k � 1 do
4: Draw x 1:T [k]; w T by running Algorithm 1 using x0

1:T as reference.
5: Draw j with P(j = i ) = wi

T .
6: Set x0

1:T = x j
1:T [k]

7: Set w [k] = ((1 � 
 k )w [k � 1] 
 k w T )
8: Compute bQk (� ) according to (12).
9: Compute � [k] = argmax bQk (� ).

10: if termination criterion is met then
11: return f � [k]g
12: end if
13: end for

Note that the initial reference trajectory x1:T [0] is obtained by running
a so-called forward �lter backward simulator (FFBSi) particle smoother, see
[Lindsten and Sch•on, 2013] for details. To indicate that the trajectories were
generated at iteration k, we use x1:T [k] and analogously for the weights.
The 9th row of Algorithm 2 will for the model (3) under consideration amount
to a weighted least squares problem, which is solved in Algorithm 3. For the
work presented in this article the run Algorithm 2 for a �xed number of
iterations, which gives the termination criterion.

Algorithm 3 MaximizingQ

1: For each trajectory in x 1:T [k] calculate the velocity at each time v( i )
t = ( p( i )

t +1 �

p( i )
t )=h

2: For each time step and for each trajectory in x 1:T [k], evaluate f (p( i )
t ; v( i )

t ).
3: Find a00 :::amm via the related weighted least squares (WLS) problem.
4: Find Qw by estimating the covariance of the residuals of the WLS-problem.
5: Set � [k] = f Qw a00 ::: amm g:

3.4 Choosing the proposal distribution
The proposal densityr (x t jx1:t � 1; y1:t ) constitutes an important design choice
of the particle �lter that will signi�cantly a�ect its performance. The com-
monly used bootstrap particle �lter amounts to making use of the dynamics
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to propose new particles, i.e.r (x t jx1:t � 1; y1:t ) = p(x t j x1:t � 1). However, we
will make use of the measurement model and the information present in
the current measurement to propose new particles, i.e.r (x t jx1:t � 1; y1:t ) =
p(yt j x t ). This is enabled by the marginalization of the deterministic state
in the model, since the dimension of the state-space then matches that of
the measurement. As a possible further improvement, the proposal could
also include the predicted state using the model. Recently, [Kronander and
Sch•on, 2014] showed that the combined use of both the dynamics and the
measurements results in competitive algorithms. In such a scenario the esti-
mated uncertainty in the model would initially be large and thus not a�ect
the proposal distribution signi�cantly, but for each iteration of the PSAEM
algorithm the model will be more and more accurate in predicting the future
states, and its in
uence on the proposal distribution would increase accord-
ingly.

4. Numerical illustrations

The performance of the proposed algorithm is illustrated using two examples,
namely the Van det Pol oscillator in Section 4.1 and the Hodgkin-Huxley
neuron model in Section 4.2 { 4.3. There is no prior knowledge of the model,
hence it is assumed that all the parametersaij in (4) are zero. The initial
covarianceQw

0 is set to a large value. The Python source code for the following
examples can be downloaded from [Nordh, 2015], the implementation was
carried out using the pyParticleEst software framework [Nordh, 2013].

4.1 Validation on the Van der Pol oscillator
To demonstrate the validity of the proposed solution it is �rst applied to the
classic Van der Pol oscillator [Khalil, 1996], which belongs to the model class
de�ned by (3). The oscillator is described by

_x t =
�

vt

� pt + 2(1 � p2
t )vt

�
; (13)

where x t = ( pt vt )T . Performing 50 iterations of Algorithm 2 gives the
parameter convergence shown in Fig. 1. HereN = 15 particles were used
for the PGAS sampler, and the model order was chosen asm = 2. For the
SAEM step, the sequence
 1:K is chosen as


 k =
�

1 if k � 5;
(k � 5)� 0:9 if k > 5:

(14)

It can be seen that the parameters converge to values close to those ob-
tained from the Euler forward discretization. To analyze the behavior further
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4 Numerical illustrations

Figure 1. Parameter convergence for the Van der Pol example (13). The
dashed lines are the coe�cients obtained from the discretization of the
model, the other lines represent the di�erent parameters in the identi�ed
model. Note that while the parameters do not converge to the 'true' values,
they provide a very accurate model for predicting the signal as shown in
Fig. 3.

the phase-plane for the system is shown in Fig. 2 and the time-domain re-
alization in Fig. 3. Here it can be seen that the identi�ed model captures
the behavior of the true continuous-time system signi�cantly better than the
model obtained from the discretization.

4.2 The Hodgkin-Huxley neuron model
The well-known Hodgkin-Huxley model uses a nonlinear ODE to describe
the dynamics of the action potentials in a neuron. In this paper the model
will be used for two purposes. First, simulated spiking neuron data is used to
characterize the performance of the proposed algorithm when identifying a
nonlinear autonomous system. It should be noted that the data does not cor-
respond to a system that is in the model set. The ability to handle nonlinear
under-modeling is therefore also assessed. Secondly, the new algorithm and
the identi�cation results contribute to an enhanced understanding of spiking
neurons by providing better performance compared to previous algorithms.
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Figure 2. Phase-plane plot for the Van der Pol example (13).

The Hodgkin-Huxley model formulation of [Siciliano, 2012] is used, where
the following ODE is given

dv
dt

=
1

Cm

�
I � gna m3h(v � Ena )

� gK n4(v � EK ) � gl (v � E l )
�

; (15a)

dn
dt

= � n (v)(1 � n) � � n (v)n; (15b)

dm
dt

= � m (v)(1 � m) � � m (v)m; (15c)

dh
dt

= � h (v)(1 � h) � � h (v)h: (15d)

Here, v denotes the potential, whilen, m and h relate to each type of gate of
the model and their probabilities of being open, see [Siciliano, 2012] for de-
tails. The applied current is denoted byI . The six rate variables are described
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Figure 3. Predicted output using the true initial state and the estimated
parameters. The plot labeled "discretized" is obtained by discretization of
the true continuous-time model using Euler forward and using that to pre-
dict the future output. It can been seen that the discretized model diverges
over time from the true signal, clearly the identi�ed parameter values give
a better estimate than using the values from the discretization.

by the following nonlinear functions of v

� n (v) =
0:01(v + 50)

1 � e� (v+50) =10
; (16a)

� n (v) = 0 :125e� (v+60) =80; (16b)

� m (v) =
0:1(v + 35)

1 � e� (v+35) =10
; (16c)

� m (v) = 4 :0e� 0:0556( v+60) ; (16d)

� h (v) = 0 :07e� 0:05( v+60) ; (16e)

� h (v) =
1

1 + e� 0:1(v+30)
: (16f)

The corresponding numerical values are given byCm = 0 :01 �F=cm 2 , gNa =
1:2 mS=cm2, ENa = 55:17 mV , gK = 0 :36 mS=cm2, EK = � 72:14 mV ,
gl = 0 :003 mS=cm2, and E l = � 49:42 mV .

133



Paper IV. Identi�caton of Autonomous Nonlinear ODE Models

4.3 Identifying the spiking mode of the Hodgkin-Huxley model
Using a simulated dataset of lengthT = 10 000, a model of the form (3)
with m = 3 is selected. Algorithm 2 was run for 200 iterations, employing
N = 20 particles in the PGAS kernel. For the SAEM step, the sequence
 1:K

is chosen as


 k =
�

1 if k � 40;
(k � 40)� 0:5 if k > 40:

(17)

The predicted phase-plane of the identi�ed model is shown in Fig. 4 along
with the true phase-plane and the measurements.

Fig. 5 shows the same dataset in the time-domain, it shows the true signal
(without added noise) and the output predicted by the identi�ed model when
initialized with the correct initial state. It can be seen that the model captures
the behaviour of the signal, but introduces a small error in the frequency of
the signal, causing the predicted and true signal to diverge over time.

Figure 4. Phase-plane for the Hodgkin-Huxley dataset. It can be seen
that the predicted model fails to capture the initial transient, but accurately
captures the limit cycle.
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Figure 5. Predicted output using the true initial state and the estimated
parameters. The overall behaviour of the signal is captured, but there is a
small frequency error which leads to the predicted signal slowly diverging
from the true signal.

5. Conclusions

The new identi�cation method successfully identi�ed models for both the
Van der Pol example and for the more complex Hodgkin-Huxley model. Even
though the Hodgkin-Huxley model in general cannot be reduced to a second
order di�erential equation it is possible to identify a good second order model
for its limit cycle as shown in Fig. 4.

The use of a Bayesian nonparametric model in place of (4) constitutes an
interesting continuation of this work. A �rst step in this direction would be
to employ the Gaussian process construction by [Frigola et al., 2013; Frigola
et al., 2014].
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Paper V

Metropolis-Hastings Improved Particle
Smoother and Marginalized Models

Jerker Nordh

Abstract

This paper combines the Metropolis-Hastings Improved Particle
Smoother (MHIPS) with marginalized models. It demonstrates the ef-
fectiveness of the combination by looking at two examples; a degenerate
model of a double integrator and a �fth order mixed linear/nonlinear
Gaussian (MLNLG) model. For the MLNLG model two di�erent meth-
ods are compared with the non-marginalized case; the �rst marginal-
izes the linear states only in the �ltering part, the second marginalizes
during both the �ltering and smoothing pass. The results demonstrate
that marginalization not only improves the overall performance, but
also increases the rate of improvement for each iteration of the MHIPS
algorithm. It thus reduces the required number of iterations to beat
the performance of a Forward-Filter Backward Simulator approach for
the same model.
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1. Introduction

During the last decade particle �lters have become popular for solving non-
linear estimation problems. For linear Gaussian systems the Kalman �l-
ter[Welch and Bishop, 1995] provides the optimal estimate, and some ex-
tensions such as the Extended Kalman Filter[Welch and Bishop, 1995] and
Unscented Kalman Filter[Julier and Uhlmann, 2004] have been proposed to
handle nonlinear systems. These make simplifying assumptions such as that
the system can be locally approximated by a linearized model or that the
resulting distribution will be Gaussian. For models where these assumptions
do not hold particle �lters[Doucet et al., 2000] can provide superior per-
formance, some examples are multi-target tracking[Okuma et al., 2004] and
Simultanous Localization and Mapping (SLAM) [Montemerlo et al., 2002].
Instead of assuming a Gaussian distribution the true distribution is approx-
imated using a set of weighted point estimates, or particles,

p̂(x t jy1:t ) =
NX

i =1

w( i )
t � (x t � x ( i )

t ) (1)

where x ( i )
t are particles andw( i )

t the weights. As the number of particles in-
creases the approximation approaches the true distribution.. A typical par-
ticle �lter implementation is shown in algorithm 1, a common choice of pro-
posal distribution is r (x t +1 jx t ; yt +1 ) = p(x t +1 jx t ) which leads to some sim-
pli�cations during the computations. For a more detailed introduction to the
particle �lter see [Doucet et al., 2000].

Algorithm 1 Particle Filter
1: for i = 1 to N do
2: Sample x ( i )

1 � r (x1).
3: Set ~w( i )

1 = p(x ( i )
1 )p(y1 jx ( i )

1 )=r(x ( i )
1 )

4: end for
5: Set w( i )

1 = ~w( i )
1 =(

P N
j =1 ~w( j )

1 ); 8i 2 [1; N ].
6: for t = 2 to T do
7: for i = 1 to N do
8: Sample ancestor indices,ai

t , with P
�
ai

t = j
�

= w( j )
t � 1 .

9: Sample x ( i )
t +1 from r (x t +1 jx ( a i

t )
t ; yt +1 )

10: Calculate weights:

~w( i )
t +1 = p(yt +1 jx ( i )

t +1 )p(x t +1 jx ( a i
t )

t )=r(x t +1 jx ( a i
t )

t ; yt +1 )
11: end for
12: Set w( i )

t = ~w( i )
t =(

P N
j =1 ~w( j )

t ); 8i 2 [1; N ].
13: end for

A drawback with particle �lters is that the number of particles needed
increases with the dimension of the problem[Beskos et al., 2014][Rebeschini
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and Handel, 2013], because of this it is of interest to marginalize over some
of the states if possible to reduce the dimension of the estimation problem
and thus the computational complexity. A typical example of this are models
where some of the states only occur linearly and are only a�ected by additive
Gaussian noise. Conditioned on the remainder of the states those could thus
be optimally estimated using a Kalman �lter. Filters exploiting this is typ-
ically referred to as Rao-Blackellized Particle Filters (RBPF)[Sch•on et al.,
2005].

Conceptually by storing the ancestral paths of the particles the �lter also
provides a smoothed state estimate, i.ep(x t jy1:T ) where t < T . However, due
to the resampling step in the particle �lter, in practice for all t � T the
ancestral path will be identical, thus providing a very poor approximation of
the true posterior distribution[Lindsten and Sch•on, 2013]. Because of this a
number of particle smoothing algorithms have been proposed, the most com-
monly used is the Forward Filter Backward Simulator (FFBSi). The FFBSi
complements the particle �lter by performing a backwards sweep where the
ancestor of each particle is sampled using updated weights that depend on
both the old �lter weights, as well as the probability p(x t +1 jx t ). For a more
thorough introduction to particle smoothing see [Briers et al., 2010] and for
the Rao-Blackwellized particle smoothing see [Lindsten and Sch•on, 2011].

A weakness with the FFBSi is that it only reuses the samples from the
forward �lter, this is something the Metropolis-Hastings Backward Proposer
(MHBP) [Bunch and Godsill, 2013] and Metropolis-Hastings Improved Parti-
cle Smoother (MHIPS) addresses. The rest of this paper will focus on how to
combine MHIPS with marginalized models, showing how to combine it with a
previously published method[Lindsten et al., 2013][Lindsten and Sch•on, 2011]
for marginalization of mixed linear/nonlinear Gaussian models (MLNLG).
First it brie
y discusses the, in general non-Markovian, �ltering/smoothing
problem then shows a trivial example of a model where the computational
cost of the general solution can be avoided through the introduction of extra
variables. These variables are propagated backwards during the smoothing
step in similar manner as the mean and covariance are propagated forward
in a RBPF. Section 2 introduces the example models used in this article, sec-
tion 3 discussed MHIPS in detail and shows how to extend it for marginalized
models and section 4 presents some results of applying the method to the
example models and �nally section 5 summarizes the paper.
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2. Models

Two models are used in this paper, a degenerate double integrator and a �fth
order MLNLG model. The double integrator is included to illustrate how the
methods are a�ected by degeneracy and to introduce the concept used for
the marginalization of MLNLG models in a simpler setting.

2.1 Double integrator
Due to the noise only acting on the input there is a deterministic rela-
tion between the two states making the model degenerate and not suit-
able for the standard particle smoothing methods. This coupling means that
p(x ( i )

t +1 jx ( j )
t ) = 0 ; 8j 6= ai where ai is the index of the ancestor for particle

x ( i )
t +1 .

x t +1 =
�

1 1
0 1

�
x t +

�
0
1

�
wt (2a)

yt =
�

1 0
�

x t + et (2b)

wt � N (0; Q); et � N (0; R) (2c)

The model in (2) can be rewritten as a �rst order system with a non-
Markovian structure, for notational brevity the notation x t = ( pt vt )T is
introduced and the model can then be rewritten as

vt +1 = vt + wt (3a)

yt = p0 +
t � 1X

i =0

vi + et (3b)

wt � N (0; Q); et � N (0; R) (3c)

The estimation problem could now be solved using a non-Markovian particle
smoother[Lindsten and Sch•on, 2013]. For this particular model it is possible
to reduce the computational e�ort by propagating additional information in
the forward and backward steps of the algorithms. During the �ltering each
particle also stores the sum of all its previous states. At a quick glance this
looks like simply reintroducing the p-state from the original model, but the
key distinction is that this new variable is a function of the past trajectory,
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and not included as a state in the model.

vt +1 = vt + wt (4a)

st +1 = st + vt (4b)

yt = st + et (4c)

s0 = p0 (4d)

wt � N (0; Q); et � N (0; R) (4e)

The (non-Markovian) smoother will need to evaluate the probability density
(5), but only up to proportionality which allows it to be rewritten as (6).
Evaluating this directly leads to a computational e�ort for each time-step
that grows with the length of the full dataset

TY

k= t +1

p(yk jvk )p(vk jv1:k � 1; y1:k � 1) (5)

/
v1: t

p(vt +1: T ; yt +1: T jv1:t ; y1:t )

= p(yt +1: T jv1:T ; y1:t )p(vt +1: T jv1:t )

/
v1: t

p(yt +1: T jv1:T )p(vt +1 jvt ) (6)

This is clearly undesirable, but utilizing the same approach as the authors of
[Lindsten et al., 2013] and noticing that (6) only needs to be evaluated up to
proportionality (with regard to v1:t ) it is possible to propagate information
backwards during the smoothing in the same way as thest variables propa-
gates the sum during �ltering. The �rst factor of (6) can be evaluated up to
proportionality as follows

p(yt +1: T jst ; vt :T ) =
TY

k= t +1

p(yk jst ; vt :T ) (7a)

/
st ;v t

TY

k= t +1

e(st + v t )2 � 2(yk �
P k � 1

j = t +1 v j )( st + v t ) (7b)

= e(T � t )( st + v t )2 � 2
P T

k = t +1 (yk �
P k � 1

j = t +1 v j )( st + v t ) (7c)

Through the introduction of two new variables N t ; 
 t that are propagated
backwards during the smoothing this allows (7) to be evaluated as
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logp(yt +1: T jst ; vt ; vt +1: T ) + constant =
1

2R
(N t +1 (st + vt )2 � 2
 t +1 (st + vt )) (8a)

N t = N t +1 + 1 ; NT = 1 (8b)


 t = 
 t +1 + yt � N t +1 vt ; 
 T = yT (8c)

Using (8) it is now possible to evaluate the required smoothing density in
constant time.

2.2 Mixed Linear/Nonlinear Gaussian
This model was introduced in [Lindsten and Sch•on, 2011] as an extension
to the commonly used standard nonlinear model, the di�erence is that the
constant 25 has been replaced by the output of a fourth order linear system.

� t +1 = 0 :5� t + � t
� t

1 + � 2
t

+ 8 cos 1:2t + v�;t (9a)

zt +1 =

0

B
B
@

3 � 1:691 0:849 � 0:3201
2 0 0 0
0 1 0 0
0 0 0:5 0

1

C
C
A zt + vz;t (9b)

yt = 0 :05� 2
t + et (9c)

� t = 25 +
�

0 0:04 0:044 0:008
�

zt (9d)

� 0 = 0 ; z0 =
�

0 0 0 0
� T

(9e)

v�;t � N (0; Q� ); vz;t � N (0; Qz ) (9f)

et � N (0; R) (9g)

The z-states are not fully observable, but the a�ne combination � is. The
four z-states appear a�nely and given the trajectory � 1:T the remaining esti-
mation problem could easily be solved using a regular Kalman �lter. Several
solutions have been proposed to utilize this fact when performing particle
smoothing, in this paper two of these are compared. In the forward step
both methods work the same way, marginalizing the linear states by comput-
ing the su�cient statistics, i.e. the mean value ( �zt ) and the covariance (Pt ),
instead of sampling the z-states. This allows the densitiesp(� t +1 j� 1:t ; y1:t )
and p(yt j� 1:t ; y1:t � 1) to be expressed asp(� t +1 j� t ; �zt ; Pt ) and p(yt j� t ; �zt ; Pt )
respectively. The di�erences are in the backward smoothing recursions; the
�rst method[Lindsten and Sch•on, 2011] samples the linear states during the
smoothing step, the second instead fully marginalizes the model resulting in
a non-Markovian smoothing problem[Lindsten et al., 2013]. The �rst method
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thus e�ectively only uses marginalization during the �ltering. The smooth-
ing for the second method is accomplished using the concept of propagating
information backwards that was demonstrated in section 2.1. This allows
p(� t +1: T ; yt +1: T j� 1:t ; y1:t ) to be evaluated in constant time, for the details the
reader is referred to the original paper[Lindsten et al., 2013].

3. Algorithm

This section shows how to combine MHIPS[Dubarry and Douc, 2011] with the
type of marginalized models shown in section 2. Algorithm 2 summarizes the
MHIPS algorithm for Markovian models. It is initialized with the ancestral
trajectories, denoted ~x1:T , from the forward particle �lter, it then iterates
over the trajectories from end to beginningR times, and for every time-step
a new sample,x0, is proposed from the proposal densityq(x0

t j~x t +1 ; yt ; ~x t � 1).
This new sample is accepted with probability given by

1 ^
pf (~x t +1 jx0

t )
pf (~x t +1 j~x t )

pg(yt jx0
t )

pg(yt j~x t )
pf (x0

t j~x t � 1)
pf (~x t j~x t � 1)

q(~x t j~x t +1 ; yt ; ~x t � 1)
q(x0

t j~x t +1 ; yt ; ~x t � 1)
: (10)

where (a ^ b) denotes the minimum value of a and b. When a sample is
accepted it replaces the previous value in ~x1:T by setting ~x t = x0

t . For
the non-Markovian case the proposal and acceptance probabilities have
to be extended in the same way as for the backward simulator type of
smoother[Lindsten et al., 2014][Lindsten and Sch•on, 2013]. This results in
the proposal densityq(x0

t j~x t +1: T ; y1:T ; ~x1:t � 1) and the acceptance probability
is now given by

1 ^
pf (~x t +1: T ; yt +1: T jx0

t ; ~x1:t � 1; y1:t )
pf (~x t +1 ; yt +1: T j~x1:t ; y1:t )

�
pg(yt jx0

t ; ~x1:t � 1; y1:t � 1)
pg(yt j~x1:t ; y1:t � 1)

�
pf (x0

t j~x1:t � 1; y1:t � 1)
pf (~x t j~x1:t � 1; y1:t � 1)

q(~x t j~x t +1: T ; y1:T ; ~x1:t � 1)
q(x0

t j~x t +1: T ; y1:T ; ~x1:t � 1)
: (11)

At each time-step t, the MHIPS is choosing between two complete trajectories
x1:t , they are however identical except for the last state (x t ). Algorithm 3
gives the extended algorithm exempli�ed using the propagation of backwards
variables as derived for the marginalized double integrator in (8), the concept
is the same for other models where the necessary information can be back-
propagated in a similar manner. For models where that is not possible it is of
course possible to evaluate the required densities by iterating over the future
parts of the trajectory, however the poor scaling properties of that approach
makes it an unattractive method.
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Algorithm 2 MHIPS

1: Sample f ~x ( j )
1:T gM

j =1 from the ancestral paths of the forward �lter, drawing each
trajectory with probability ! ( i )

T .
2: for r = 1 to R do
3: for t = T to 1 do
4: for j = 1 to M do
5: Sample x0( j )

t � qt (x t j ~x
( j )
t +1 ; yt ; ~x ( j )

t � 1)

6: With probability given by (10) set ~x ( j )
t = x0( j )

t

7: end for
8: end for
9: end for

Algorithm 3 MHIPS non-Markov

1: Sample f ~x ( j )
1:T gM

j =1 from the ancestral paths of the forward �lter, drawing each
trajectory with probability ! ( i )

T .
2: for r = 1 to R do
3: for t = T to 1 do
4: for j = 1 to M do
5: Sample x0( j )

t � qt (x t j ~x
( j )
t +1: T ; yt ; ~x ( j )

1: t � 1)

6: With probability given by (11) set ~x ( j )
t = x0( j )

t

7: Calculate backward propagating variables ( N ( j )
t ; 
 ( j )

t )
8: end for
9: end for

10: for t = 1 to T do
11: for j = 1 to M do
12: Update forward propagating variables ( s( j )

t )
13: end for
14: end for
15: end for
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4. Results

All the experiments have been done using the proposal density
q(x0

t j~x t +1: T ; y1:T ; ~x1:t � 1) = p(x0
t jy1:t � 1; ~x1:t � 1) for the marginalized case and

q(x0
t j~x t +1 ; yt ; ~x t � 1) = p(x0

t j~x t � 1) for the Markovian case. The Python source
code for the examples can be downloaded from [Nordh, 2015], all simulation
have been done using the pyParticleEst[Nordh, 2013] software framework.

4.1 Double integrator
The methods are tested against an example withQ = R = 1 and initial state
x1 = ( � 10 1)T and using 50 particles in the forward �lter and 10 smoothed
trajectories. Fig. 1 shows the RMSE for the double integrator example as a
function of the number of iterations of the MHIPS algorithm. As expected
there is no improvement for the degenerate case. For the marginalized case
there is clear improvement using MHIPS and after only 9 iterations it yields
better average RMSE than the FFBSi smoother. It would of course have been
possible to initialize the MHIPS algorithm using the trajectories obtained
from the FFBSi smoother instead of the ancestral paths from the particle
�lter, giving a lower initial RMSE, but to clearly demonstrate the initial rate
of improvement of the MHIPS algorithm this was not done.

Figure 1. Average RMSE over 10000 realizations in logarithmic scale.
The dotted black line is for the degenerate model, as expected it shows
no improvement using MHIPS. The solid red line is for MHIPS on the
marginalized model and dashed line when for using FFBSi
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Figure 2. Average RMSE over 1500 realisation for � in logarithmic scale.
The black (top) solid line is for the non-marginalized model, the blue (mid-
dle) solid line is for the model marginalized in the forward direction and
the red (bottom) solid line is for the fully marginalized model. The dashed
lines with corresponding colors (and order) are the RMSE obtained when
using FFBSi.

4.2 MLNLG model
The methods are tested against an example withQe = 0 :005,Qz = 0 :01I 4x4 ,
R = 0 :1 and initial state ( � T

1 zT
1 )T = 0 5x1 and using 100 particles in the

forward �lter and 10 smoothed trajectories. Fig. 2 shows the average RMSE of
the � -state as a function of the number of iterations of the MHIPS algorithm,
Fig. 3 shows the average RMSE of� , the a�ne function of the z-states. Both
�gures include results for three di�erent methods; the case when all the
states are sampled, when thez-states are sampled during the smoothing step
and �nally when the z-states are fully marginalized for both the �lter and
smoother. The �gures also include the performance of a FFBSi smoother
for all three cases as a reference. It can be seen that marginalization as
expected leads to a lower average RMSE for both FFBSi and MHIPS. It also
shows a higher rate of improvement when using MHIPS and marginalization,
requiring fewer iterations to beat the performance of FFBSi. Suggesting that
proper marginalization is even more important for MHIPS than for FFBSi.
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Figure 3. Average RMSE over 1500 realisation for � in logarithmic scale.
The black (top) solid line is for the non-marginalized model, the blue (mid-
dle) solid line is for the model marginalized in the forward direction and
the red (bottom) solid line is for the fully marginalized model. The dashed
lines with corresponding colors (and order) are the RMSE obtained when
using FFBSi.

5. Conclusion

This article has demonstrated how to combine MHIPS with marginalized
models and combines it with the method for fully marginalizing the linear
sub-states in a MLNLG model using the approach presented in [Lindsten et
al., 2013]. It compares the marginalized MHIPS with the regular MHIPS,
showing the importance of marginalization with MHIPS since it enables
MHIPS to outperform the FFBSI smoother using fewer iterations.
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Paper VI

Rao-Blackwellized Auxiliary Particle
Filters for Mixed Linear/Nonlinear

Gaussian models

Jerker Nordh

Abstract

The Auxiliary Particle Filter is a variant of the common particle
�lter which attempts to incorporate information from the next mea-
surement to improve the proposal distribution in the update step. This
paper studies how this can be done for Mixed Linear/Nonlinear Gaus-
sian models, it builds on a previously suggested method and introduces
two new variants which tries to improve the performance by using a
more detailed approximation of the true probability density function
when evaluating the so called �rst stage weights. These algorithms
are compared for a couple of models to illustrate their strengths and
weaknesses.

© 2014 IEEE. Reprinted with permission, from J. Nordh, Rao-Blackwellized
Auxiliary Particle Filters for Mixed Linear/Nonlinear Gaussian models,
Proceedings of the 12th International Conference on Signal Processsing,
Hangzhou, China, October 2014
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1. Introduction

The particle �lter (PF) [Gordon et al., 1993][Doucet and Johansen,
2009][Arulampalam et al., 2002] has become one of the standard algorithms
for nonlinear estimation and has proved its usefulness in a wide variety
of applications. It is an application of the general concept of Sequential
Importance Resampling (SIR)[Doucet et al., 2000]. At each time the true
probability density function is approximated by a number of point estimates,
the so called particles. These are propagated forward in time using the sys-
tem dynamics. For each measurement the weight of each particle is updated
with the corresponding likelihood of the measurement. The last step is to
resample the particles, this occurs either deterministically or only when some
criteria is ful�lled. This criteria is typically the so called number of e�ec-
tive particles, which is a measure of how evenly the weights are distributed
among the particles. The resampling is a process that creates a new set
particles where all particles have equal weights, which is accomplished by
drawing them with probability corresponding to their weight in the original
set. This process is needed since otherwise eventually all the weights except
one would go to zero. The resampling thus improves the estimate by focusing
the particles to regions with higher probability.

The Auxiliary Particle Filter (APF)[Pitt and Shephard, 1999][Pitt and
Shephard, 2001][Johansen and Doucet, 2008] attempts to improve this by
resampling the particles at time t using the predicted likelihood of the mea-
surement at time t + 1. If done properly this helps to focus the particles to
areas where the measurement has a high likelihood. The problem is that it
requires the evaluation of the probability density function p(yt +1 jx t ). This
is typically not available and is therefore often approximated by assuming
that next state is the predicted mean state, i.e.x t +1 = �x t +1 j t and the needed
likelihood instead becomesp(yt +1 jx t +1 = �x t +1 j t ).

This paper focuses on the special case of Mixed Linear/Nonlinear Gaus-
sian (MLNLG) models, which is a special case of Rao-Blackwellied models.
For an introduction to the Rao-Blackwellized Particle Filter see [Sch•on et al.,
2005]. Rao-Blackwellized models have the property that conditioned on the
nonlinear states there exists a linear Gaussian substructure that can be opti-
mally estimated using a Kalman �lter. This reduces the dimensionality of the
model that the particle �lter should solve, thereby reducing the complexity
of the estimation problem. The general form for MLNLG models is shown
in (1), where the state vector has been split in two parts,x = ( � z )T . Here
� are the nonlinear states that are estimated by the particle �lter, z are the
states that conditioned on the trajectory � 1:t are estimated using a Kalman
�lter.
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2 Algorithms

� t +1 = f � (� t ) + A � (� t )zt + v� (1a)

zt +1 = f z (� t ) + Az (� t )zt + vz (1b)

yt +1 = g(� t +1 ) + C(� t +1 )zt +1 + e (1c)
�

v�

vz

�
� N

�
0;

�
Q� (� t ) Q�z (� t )
Qz� (� t ) Qz (� t )

��
(1d)

e � N (0; R(� t )) (1e)

In [Fritsche et al., 2009] an approximation is presented that can be used
with the APF for this type of models, section 2 presents that algorithm and
two variants proposed by the author of this paper. Section 3 compares the
di�erent algorithms by applying them to a number of examples to highlight
their strengths and weaknesses. Finally section 4 concludes the paper with
some discussion of the trade-o�s when choosing one of theses algorithms.

2. Algorithms

2.1 Auxiliary Particle Filter introduction

x t +1 = f (x t ; vt ) (2a)

yt = h(x t ; et ) (2b)

Looking at a generic state-space model of the form in (2) and assuming
we have a collection of weighted point estimates (particles) approximating
the probability density function of x t j t �

P N
i =1 w( i ) � (x t � x ( i )

t ) the standard
particle �lter can be summarized in the following steps that are done for each
time instant t.

1. (Resample; drawN new samples ~x ( i )
t from the categorical distribution

over x ( i )
t with probabilities proportional to w( i )

t . Set ~w( i )
t = 1

N .)

2. For all i ; samplev( i )
t from the noise distribution

3. For all i ; calculate x ( i )
t +1 j t = f (~x ( i )

t ; v( i )
t )

4. For all i ; calculate w( i )
t +1 = ~w( i )

t p(yt jx
( i )
t +1 j t )

The resampling step introduces variance in the estimate, but is necessary for
the long term convergence of the �lter. Step 1 is therefore typically not done
at each time instant but only when a prespeci�ed criteria on the weights are
ful�lled.
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The Auxiliary Particle Filter introduces an additional step to incorpo-
rate knowledge of the future measurementyt +1 before updating the point
estimatesx ( i )

t .

1. For all i ; calculate ~w( i )
t = l ( i ) w( i )

t , where l ( i ) = p(yt +1 jx ( i )
t )

2. (Resample; drawN new samples ~x ( i )
t from the categorical distribution

over x ( i )
t with probabilities proportional to l ( i ) w( i )

t . Set ~wt = 1
N .)

3. For all i ; sample from v( i )
t from the noise distribution

4. For all i ; calculate x ( i )
t +1 j t = f (~x ( i )

t ; v( i )
t )

5. For all i ; calculate w( i )
t +1 = ~w ( i )

t
l ( i ) p(yt jx

( i )
t +1 j t )

The di�erence between the algorithms in the rest of section 2 is in how
the �rst stage weights, l ( i ) , are approximated for the speci�c class of model
(1).

2.2 Algorithm 1
The �rst algorithm considered is the one presented in [Fritsche et al., 2009].
It computes p(yt +1 jx t ) using the approximate model shown in (3). This ap-
proximation ignores the uncertainty in the measurement that is introduced
through the uncertainty in � t +1 , thereby underestimating the total uncer-
tainty in the measurement. Tbjs could lead to resampling of the particles
even when the true particle weights would not indicate the need for resam-
pling. Here Pzt denotes the estimated covariance for the variablezt . In (3e)
the dependence on� t has been suppressed to not clutter the notation.

p(yt +1 jx t ) � N (�yt +1 ; Py t +1 ) (3a)
�� t +1 = f � (� t ) + A � (� t )�zt (3b)

�zt +1 = f z (� t ) + Az (� t ) �zt (3c)

�yt +1 = g( �� t +1 ) + C( �� t +1 )�zt +1 (3d)

Py t +1 � C(AzPzt A
T
z + Q)CT + R (3e)

2.3 Algorithm 2
Our �rst proposed improvement to the algorithm in section 2.2 is to attempt
to incorporate the uncertainty of � t +1 in our measurement by linearizing
the measurement equation around the predicted mean. For the case whenC
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and R has no dependence on� the pdf of the measurement can then be ap-
proximated in the same way, except forPy t +1 which instead is approximated
according to (4), hereJg is Jacobian ofg. The di�erence compared to model
1 lies in the additional terms for the covariancePy t +1 due propagating the
uncertainty of � t +1 by using the Jacobian ofg.

Py t +1 � (JgA � + CAz )Pzt (JgA � + CAz )T

+ ( Jg + C)Q(Jq + C)T + R (4)

2.4 Algorithm 3
If the linearization scheme presented in Section 2.3 is to work wellg must
be close to linear in the region where� t +1 has high probability. Another
commonly used approximation when working with Gaussian distributions
and nonlinearities is the Unscented Transform used in e.g. the Unscented
Kalman Filter[Julier and Uhlmann, 2004]. The second proposed algorithms
uses the UT to approximate the likelihood of the measurement. It propagates
a set of so called Sigma-point through both the time update (2a) and the
measurement equation (2b) and estimates the resulting mean and covariance
of the points after the transformations. This is then used as the approxima-
tion for �yt +1 and Py t +1 . This avoids the need to linearize the model, and can
thus handle discontinuities and other situations where linearization cannot
be used or gives a poor approximation.

The Sigma-points, x ( i )
� , were chosen according to (5), using twice the

number of points as the combined dimension of the state and noise vectors
(Nx ). � x is the combined covariance matrix. (

p
Nx � x ) i is the i -th column of

R, whereNx � x = RRT . All the points were equally weighted. This conforms
to the method introduced in section III-A in [Julier and Uhlmann, 2004].

� x = diag( Pzt ; Q; R) (5a)

W ( i ) = (2 Nx ) � 1; i 2 1::2Nx (5b)

x ( i )
� = �x + (

p
Nx � x ) i ; i 2 1::Nx (5c)

x ( i + N x )
� = �x � (

p
Nx � x ) i ; i 2 1::Nx (5d)
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3. Results

To study the di�erence in performance of the three algorithms we will look
at two models, the �rst one was introcuded in [Lindsten and Sch•on, 2011]
and is an extension of a popular nonlinear model to include a linear Gaussian
substructure. The second model was designed to highlight problems with the
approximation used in Algorithm 1.

3.1 Model 1

� t +1 =
� t

1 + � 2
t

�
0 0:04 0:044 0:008

�
zt +

+ 0 :5� t + 25
� t

1 + � 2
t

+ 8 cos 1:2t + v�;t (6a)

zt +1 =

0

B
B
@

3 � 1:691 0:849 � 0:3201
2 0 0 0
0 1 0 0
0 0 0:5 0

1

C
C
A zt + vz;t (6b)

yt = 0 :05� 2
t + et (6c)

� 0 = 0 ; z0 =
�

0 0 0 0
� T

(6d)

R = 0 :1; Q� = 0 :005 (6e)

Qz = diag(0 :01 0:01 0:01 0:01) (6f)

Notice the square in the measurement equation in (6c), depending on
the magnitude of uncertainty in � t a linearizion of this term might lead to a
poor approximation. So we might expect that for this model the unscented
transform based approximation might fare better.

The performance of the algorithms was tested by generating 25000 dataset
from (6), all the algorithms were then tested on this collection for a number of
di�erent particle counts. The average RMSE values are presented in table 1,
they are also shown in Fig. 1. The relative RMSE of the algorithms compared
to the standard particle �lter is shown in Table 2. As can be seen both
algorithm 2 and 3 outperform Algorithm 1, most of the time Algorithm 3
also beats Algorithm 2. This is expected since they use a more detailed
approximation of the true density of p(yt +1 jx t ).
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3 Results

Table 1. Average RMSE for � over 25000 realizations of model 1. As can
be seen the improved approximations in Algorithm 2 and 3 lead to slightly
better performance, but for this model the di�erence in performance of the
algorithms is small

N PF Alg. 1 Alg. 2 Alg. 3

10 1.701 1.611 1.607 1.600

15 1.395 1.338 1.322 1.322

20 1.234 1.170 1.153 1.154

25 1.121 1.061 1.060 1.052

30 1.049 0.992 0.978 0.978

40 0.955 0.893 0.885 0.880

50 0.874 0.831 0.824 0.819

75 0.782 0.737 0.732 0.730

100 0.720 0.689 0.686 0.687

Table 2. RMSE compared to the RMSE for the regular particle �lter, for
� over 25000 realizations of model 1. As can be seen the improved approx-
imations in Algorithm 2 and 3 lead to slightly better performance, but for
this model the di�erence in performance of the algorithms is small

N Alg. 1 Alg. 2 Alg. 3

10 94.7% 94.5% 94.1%

15 96.0% 94.8% 94.7%

20 94.8% 93.4% 93.5%

25 94.6% 94.5% 93.8%

30 94.5% 93.2% 93.2%

40 93.5% 92.7% 92.1%

50 95.0% 94.2% 93.7%

75 94.2% 93.5% 93.3%

100 95.7% 95.2% 95.4%
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Figure 1. Average RMSE as a function of the number of particles when
estimating model 1 with the three algorithms in this paper. The particle
�lter is included as a reference. Average over 25000 realizations. Data-points
for 10; 15; 20; 25; 30; 40; 50; 75 and 100 particles
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3.2 Model 2

� t +1 = 0 :8� t + at zt + v� (7a)

zt +1 = 0 :8zt + vz (7b)

yt = � 2
t + at zt + et (7c)

v� � N (0; 0:5at + 0 :1(1 � at )) (7d)

vz � N (0; 0:1) (7e)

R � N (0; 0:1) (7f)

at = t mod 2

The model in (7) was constructed to exploit the weakness of neglecting the
uncertainty introduced in the measurement due to the uncertainty of � t +1 .
In order for this to a�ect the estimate it is also important that the trajec-
tory leading up to the current estimate is of importance. Sincezt depends
on the full trajectory � 1:t it captures this aspect. The estimate ofz for di�er-
ent particles will also in
uence the future trajectory, this implies that even
if two particles at time t are close to the same value of� the path they
followed earlier will a�ect their future trajectories. This means that a pre-
mature resampling of the particles due to underestimating the uncertainty
in the measurement can lead to errors in the following parts of the dataset.

To clearly demonstrate this issue a time-varying model was chosen were
the z-state only a�ects every second measurement and every second state
update. It turns out that this model is di�cult to estimate, and when using
few particles the estimates sometimes diverge with the estimated states ap-
proaching in�nity. To not overshadow the RMSE of all the realization were
the �lters perform satisfactorily they are excluded, the number of excluded
realizations are presented in Table 3.

The model was also modi�ed by moving the pole corresponding to the
� -state to 0:85 and the one for thez-state to 0:9, this makes the estimation
problem more di�cult. The corresponding number of diverged estimates are
shown in Table 4. It can seen that even though all three algorithms are more
robust than the standard particle �lter, Algorithm 1 clearly outperforms the
rest when it comes to robustness.

The RMSE of the algorithms are shown in Fig. 2 for model (7) and
Fig. 3 for the case with the poles moved to 0:85 and 0:9. Surprisingly the
RMSE of Algorithm 1 increases as the number of particles increases. The
author believes this is an e�ect of the particles being resampled using a too
coarse approximation, thus introducing a modeling error. When the number
of particles is increased the estimate of a particle �lter normally converges to
the true poster probability density, but in this case the estimate is converging
to the true posterior for the incorrect model, leading to an incorrect estimate.
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Table 3. The number of diverged estimates for 1000 realizations of model
2. A diverged realization is de�ned as one where the RMSE exceeded 10000.

N PF Alg. 1 Alg. 2 Alg. 3

25 3 0 0 2

50 2 0 0 0

75 1 0 0 0

100 0 0 0 0

125 0 0 0 0

150 0 0 0 0

200 0 0 0 0

Figure 2. Average RMSE as a function of the number of particles when
estimating model 2 with the three algorithms in this paper. Data-points
for 30; 35; 40; 50; 60; 75; 100; 125; 150 and 200 particles. The particle �lter
is included as a reference. Average over 1000 realizations, excluding those
that diverged (RMSE � 10000). Both algorithm 2 and 3 beat the PF for
low particle counts, but only the algorithm 3 keeps up when the number of
particles increases. Surprisingly algorithm 1's performance degrades as the
number of particles increases.
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Table 4. The number of diverged estimates for 5000 realizations of model
2 with the pole for � moved to 0:85 and the pole for z in 0:9 instead. A
diverged realization is de�ned as one where the RMSE exceeded 10000.

N PF Alg. 1 Alg. 2 Alg. 3

50 124 1 40 35

75 62 0 12 13

100 45 0 7 8

125 22 0 5 4

150 17 0 4 2

200 9 0 1 2

300 1 0 0 0

Figure 3. Average RMSE for the three algorithms as a function of the
number of particles when estimating the modi�ed model 2 (poles in 0.85
and 0.9 instead). Data-points for 50 ; 75; 100; 125; 150; 200 and 300 particles.
The particle �lter is included as a reference. Average over 5000 realizations,
except for the PF where 25000 realizations were used for 50; 75; 75; 100 and
125 particles due to the large variance of those estimates. The RMSE was
calculated excluding those realizations that diverged (RMSE � 10000). All
�lters beat the PF for low particle counts, but only algorithm 3 keeps up
when the number of particles increases. Surprisingly the performance of
algorithm 1 degrades as the number of particles increases.
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4. Conclusion

The three algorithms compared in this paper are all variants of the general
Auxiliary Particle Filter algorithm, but by choosing di�erent approximations
when evaluating the �rst stage weights (l ) they have di�erent performance
characteristics. eps As was especially evident when looking at model 2 all
three auxiliary particle �lters were more robust than the ordinary particle
�lter, particularly when using fewer particles. Algorithm 1 is especially note-
worthy since it almost did not su�er at all from the problem with divergence
that was noted for the other approximations when estimating model 2. How-
ever it does seem to have problems approximating the true posterior, as
evident by the high RMSE that also was unexpectedly increasing when the
number of particles were increased.

Algorithm 2 and 3 both beat the standard particle �lter both in terms
of average RMSE and robustness. Algorithm 3 has the best performance,
but also requires the most computations due to the use of an Unscented
Transform approximation for each particle and measurement.

In the end the choice of which algorithm to use has to be decided on a case
by case basis depending on relative computational complexity for the di�erent
approximations for that particular model, so this article can not present any
de�nitive advice for this choice. The linearization approach doesn't increase
the computational e�ort nearly as much as using the Unscented Transform,
but it doesn't always capture the true distribution with the needed accu-
racy. However, for models where the linearization works well this is likely
the preferred approximation due to the low increase in computational e�ort
needed.

When it is possible to increase the number of particles it could very well
be most bene�cial to simply use the standard particle �lter with a higher
number of particles, thus completely avoiding the need to evaluatep(yt +1 jx t ).
As always this is in
uenced by the speci�c model and how the uncertainty
in the update step compares to the uncertainty in the measurement.
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Paper VII

Extending the Occupancy Grid
Concept for Low-Cost Sensor-Based

SLAM

Jerker Nordh Karl Berntorp

Abstract

The simultaneous localization and mapping problem is approached
by using an ultrasound sensor and wheel encoders. To account for
the low precision inherent in ultrasound sensors, the occupancy grid
notion is extended. The extension takes into consideration with which
angle the sensor is pointing, to compensate for the issue that an object
is not necessarily detectable from all positions due to de�ciencies in
how ultrasonic range sensors work. A mixed linear/nonlinear model is
derived for future use in Rao-Blackwellized particle smoothing.

© 2012 IFAC, reprinted with permission, from 10th International IFAC
Symposium on Robot Control, Dubrovnik, Croatia, September 2012
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1. Introduction

The problem of having a robot simultaneously localize itself and learn its map
is commonly referred to as simultaneous localization and mapping (SLAM),
and is still considered a challenging problem. The problem is often solved
using odometry readings in combination with vision or range sensors. In
mobile robotics it has been studied extensively over the last three decades.
For surveys and tutorials of the SLAM problem and its di�erent solutions
up to recently, see for example [Thrun, 2002] or [Durrant-Whyte and Bailey,
2006].

At least since the early 1990's the approach to SLAM has been probabilis-
tic, and one of the earliest works on this was presented in [Smith et al., 1990],
where extended Kalman �ltering (EKF) was used for state estimation. One
of the problems with using Kalman �ltering is that the nonlinearities that
typically are present tend to lead to divergence of the state estimates. For ex-
ample, the kinematics of a planar robot is typically nonlinear in the heading
angle, and the consequent linearizations that the EKF uses for estimating
the odometry may lead to instability. To remedy this, particle �ltering was
introduced as a means to solve the SLAM problem; the reader is referred to
[Grisetti et al., 2005] and [Grisetti et al., 2007] for state of the art algorithms.

Several approaches exist of how to represent the map, where two possi-
ble approaches are metric and topological. In the metric approaches, which
this paper will focus on, the maps capture the geometric properties of the
environment, while the topological maps try to describe the connectivity of
di�erent places using graphs, see [Thrun, 1998]. Perhaps the most popular
representative of the metric approaches is known as occupancy grid map-
ping. In this representation the space is described by evenly spaced grids,
see [Siciliano and Khatib, 2008] for an introduction. The grids are considered
to be either occupied or free, with some probability distribution associated
with the grid. A possible usage of occupancy grid maps is when utilizing
range sensors, such as laser sensors or sonar sensors. Both types of sensors
have noise and may occasionally give severe measurement errors. Since laser
sensors have very high spatial resolution, thus giving a sharp probability dis-
tribution, they appear to be the most common solution, see [H•ahnel et al.,
2003], [Eliazar and Parr, 2003], and [Grisetti et al., 2007] for some exam-
ples. In contrast, sonar sensors have the problem of covering a cone in space,
which typically makes it impossible to determine from a single measurement
whether a certain cell is occupied or not because of the low spatial resolution
in the tangential direction. Also, ultrasound sensors are very sensitive to the
angle of an object's surface relative to the sensor. This leads to the problem
that measuring the same surface from slightly di�erent angles may render
di�erent results. Obviously, this could potentially lead to estimation errors.
See Fig. 1 and Section 2 for a more detailed description of the problems
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encountered with ultrasound based range sensors.
In this paper the SLAM problem is approached using only wheel encoder

readings and one ultrasonic sensor. To get rid of, or at least attenuate, the
problems inherent in ultrasonic sensors described earlier, a new approach to
grid mapping is developed. This should be seen as an extension to the notion
of occupancy grids described in [Siciliano and Khatib, 2008], in the sense that
the angle with which the sensor is facing the cell is now taken into account.
Particle �ltering is used for position estimation, and each particle represents
a possible robot position and a map. It is known that using particle �lters
for SLAM tends to destroy the map over time caused by sample depletion,
see [Kwak et al., 2007] for an investigation. However, an idea is that particle
smoothing could be a way to get rid of this problem. To prepare for exploiting
the ideas of Rao-Blackwellized particle smoothing established in [Lindsten
and Sch•on, 2011], a mixed linear/nonlinear state-space model is developed.
Compared to the regular occupancy grid this formulation also represents the
variance of each probability estimate.

Using sonar sensors for SLAM has been studied before; an example is
[Burgard et al., 1999], in which an o�ine expectation maximization algorithm
was used for occupancy grid mapping using 24 Polaroid sensors with 15
degrees opening angle. An early work is [Rencken, 1993], where the SLAM
problem was solved in simulation using 24 ultrasonic sensors by estimating
the errors introduced in the localization and mapping parts, respectively,
and correcting for them using a modi�ed Kalman �lter approach. A third
example is [Leonard et al., 1992] in which the SLAM problem was solved
using a feature based approach with the aid of servo-mounted ultrasonic
sensors. A more recent work is [Ahn et al., 2008], where ultrasonic sensors
and a stereo camera is used in an EKF-SLAM setting.

The paper is organized as follows: The SLAM problem is introduced in
Section 2, where the di�culties with ultrasonic sensors is explained in more
detail. Section 3 details the scope of the work presented in this article. In
Section 4 the kinematics, sensor, map modeling, as well as the SLAM algo-
rithm are introduced. Implementational aspects are discussed in Section 5.
The validation results are shown in Section 6. Finally, the paper is concluded
in Section 7.

2. Problem Formulation

As previously mentioned there are two major systematic issues with ultra-
sonic sensor that have been observed:

1. Large �eld of view; making it uncertain from which point a measure-
ment originated. This leads to a fundamental limitation on the resolu-
tion of the sensor, which varies with the distance to the object. Because
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Figure 1. Properties of ultrasonic sensors. The sensor has an opening
angle, � . The sound only re
ect back to the sensor if the angle of incidence
is less than � . The �gure illustrates a straight wall. Sections marked 3 are
outside the �eld of view, the section marked 2 is inside the �eld of view but
the angle of incidence is so large that it is not visible to the sensor. The
section marked 1 is inside the �eld of view. Also, the angle of incidence is
steep enough for it to be detected by the sensor. The range returned by
the sensor will be the distance to the closest point within section 1, marked
with an X .

of the typically large opening angle of ultrasonic sensors the resolution
is of the same order as the distance to the detected object. That is,
when detecting an object at a range of 1 meter, the spatial resolution
of the sensor is roughly 1 meter in the tangential direction.

2. Angle of incidence; for angles above a certain threshold the object be-
comes more or less invisible for the sensor. Thus an object can only
be detected from certain directions. This problem becomes apparent
when the sensor is close to a wall and measuring along it. Typically the
wall will be inside the �eld of view of the sensor, but the sensor will
not detect it because of a too narrow angle of incidence. If the same
wall is then measured from another position within the room where the
sensor faces it perpendicularly, it will be detected. Note that the angle
is dependent on the material of the observed object.

See Fig. 1 for an illustration.
The basic premise for the SLAM problem is that it is possible to reobserve

parts of the environment, thus relating the current position to those before.
Therefore if it is not possible to observe objects that have been detected
previously, it will lead to inconsistencies in the map as well as inaccuracy in
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the position estimate. This article aims to provide a method for dealing with
these systematic errors.

3. Article Scope

The method presented in this paper extends the concept of occupancy grids
to take the angle of incidence into consideration and partitioning each cell
of the map into several parts, where each part is visible only from certain
regions within the environment. This reduces the problem of con
icting mea-
surements. The drawback is that it also reduces the correlation between mea-
surements, and thus the underlying SLAM algorithm will require more data
to converge.

3.1 Computational Complexity
Particle methods are sensitive to the number of states in the model as the
number of particles needed to represent the probability density function ex-
plodes with the number of states. Therefore a conditionally linear model
is very bene�cial for reducing the computational burden. The method pre-
sented in this paper is conditionally linear given the position and orientation
of the sensor, thus for the planar case only 3 nonlinear states are needed.
The number of linear states depends on the size and resolution of the map.

3.2 Evaluation
To evaluate the model, simulated data corresponding to di�erent sensors
characteristics were generated. The data sets were used with di�erent levels
of subdivision of the grid cells, showing the methods strengths and weaknesses
for a selection of sensor characteristics. The focus is on investigating how the
angle-of-incidence limitations on the sensor a�ect the position estimate of
the SLAM algorithm. The goal is position estimation, the map is merely a
tool. Therefore the map estimates are not presented.

The results presented are generated using more pessimistic noise values
than what could be expected for even very inexpensive sensor, typically avail-
able from hobby electronics suppliers for a few tens of dollars. The amount
of noise introduced by the wheel encoders is also believed to be exaggerated.
The interesting quantity to study is the relative performance of using the
simulated ultrasonic sensor for SLAM, with angle-of-incidence dependence,
compared with relying only on dead reckoning. The absolute positioning er-
ror is therefore not as relevant and all the results presented in the article are
normalized against the dead-reckoning scheme.

The model presented contains a large number of parameters, but the work
in this paper does not address how to optimally choose them. Rather, the
same set of parameters for all parametrizations of the model are used to show
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the relative merits of the method. It is surely possible to improve the results
by better parameter choices and more sophisticated particle methods, but
that is outside the scope of this paper. More e�ective methods for storing
the map could be implemented. This is however not done as this is currently
only a proof of concept.

The concept of modeling the angle of incidence could also be applied to
methods for the SLAM problem which are not particle based.

4. Modeling

4.1 State-Space Model
The robot used is a di�erential-driven mobile robot, with the sensor placed at
the front end. Since the robot moves in a plane, only three states are needed
to describe the motion. Using the position variablespx and py , as well as the
heading � as state variables, the robot's kinematics is

_x r =

0

@
_px

_py
_�

1

A =
R
2

0

@
cos� cos�
sin � sin �

� 2B � 1 2B � 1

1

A
��

! l

! r

�
+

�
vl

vr

��
(1)

which in short is written as _x r = f (x r ; !; v ): Here, ! l;r is the left and right
wheel angular velocity which have noisevl;r , R is the wheel radius, andB is
the distance between them. To be implementationally useful, this model is
discretized using a second order approximation.

By assuming that the map is slowly time varying, the map can be modeled
as a constant position model. Every cell in the occupancy grid representation
is a state. Since each state represents a probability it should only take values
between zero and one, representing the probability that a cell is occupied.
The discretized occupancy grid model is on the form

xm
t +1 = xm

t + vm ; (2)

where eachxm is a cell in the map and vm is the noise on the states. This
representation allows that the map varies over time meaning that old mea-
surements should not be given as much weight as more recent measurements.
Taking the angle of incidence into account gives rise to additional states. As
an example, assume that a map with two cells is used, and assume further
that the angle dependence has a resolution of 45 degrees. This means that
the cell can be viewed from 8 di�erent angles, which gives that there will be
16 states in total for representing this simple map.
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4.2 Measurement Model
Assume that an ultrasound measurement returns a distance, and that the
opening angle of the sensor is� degrees. The �eld of view is then a closed
cone with aperture 2� . The cells that are inside the �eld of view can now be
calculated, given that a position estimate exists. Assuming that a method
exists for directly measuring the states of each cell inside the �eld of view
the measurement equation would be linear, and theC-matrix in the equation
y = Cx would be sparse with a single 1 per row, and the same number of
rows as the number of cells inside the �eld of view.

The question of how to generate the measurements,y, is not trivial. A
common way to generate the measurements is to create a probability function
with a peak in the center of the cone, depending on the distance from the
robot that the sensor returned. The probability function then decays with the
angle from the center of the cone and the distance from the most probable cell,
reaching the nominal value of occupancy at the end of the cone. This is called
evidence mapping. Here, the focus is instead on exploiting variance. Each
measurement is given a variance, dependent on which distance is returned
from the sensor. If the distance is short the variance should be low, since
fewer cells are visible. Furthermore, the cells' angles with respect to the
center of the cone is also in
uencing the variance. For cells at a given distance
the probability is the same. This is of course an approximation, as a single
distance measurement does not contain information about the individual
cells. However, it provides the conditionally linear formulation that is desired.

A typical C matrix for the example in Section 4.1 could be

yt =
�

1=2
1=2

�
=

�
1 0 0 0 � � � 0
0 0 1 0 � � � 0

�
xm

t + wt = Ct xm
t + wt : (3)

In this particular example both cells were equally probable to be occupied
since they were at the same distance from the sensor. The cells not inside the
�eld of view at time t does not generate any measurements at all for timet.
The measurement noise at timet, wt , is a tuning parameter, parametrized
by the angle and distance as previously discussed.
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4.3 Map Estimation
Since the approximated measurement model is linear, a Kalman �lter ap-
proach will yield the optimal result. The Kalman �lter equations are written
out next with the notation from (2) and (3). The reader is referred to [An-
derson and Moore, 1979] for a thorough investigation on linear �ltering.

x̂m
t j t � 1 = x̂m

t � 1j t � 1 (4)

Pt j t � 1 = Pt � 1j t � 1 + Qn (5)

St = Ct Pt j t � 1CT
t + Rn (6)

K t = Pt j t � 1CT
t S� 1

t (7)

et = yt � Cx̂m
t j t � 1 (8)

x̂m
t j t = x̂m

t j t � 1 + K t et (9)

Pt j t = ( I � K t Ct )Pt j t � 1 (10)

Here, x̂m are the linear states andP is the estimated covariance matrix. The
matrices Qn and Rn are the variances of the process noise and measurement
noise, respectively.

This is a convenient result. First of all, it means that the solution is an-
alytic. Secondly, the computation of the distribution function, characterized
by the mean x̂m

t j t and the variance Pt j t , is relatively cheap compared to if a
particle �lter would be used for map estimation.

4.4 Pose Estimation
As already mentioned, particle �ltering is used to estimate the robot's pose.
A good tutorial on particle �lters is [Arulampalam et al., 2002]; only the
parts relevant for this paper will be explained next: The key idea with the
particle �lter is to approximate the density function p as a weighted set of
samples

pN (x t jyt ) =
NX

i =1

wi
t � (x t � x i

t );
NX

i =1

wi
t = 1 ; wi

t � 0; 8i; (11)

where� is the Dirac function used to represent the empirical probability den-
sity function with support in N discrete samples. The weightswi re
ects the
importance of each particle. These values are updated when new measure-
ments arrive.

Each of the N particles represent a �ltered trajectory estimate. To pro-
ceed in the algorithm the particles are simulated forwards one step using the
input signals, yielding

x̂ i
t = f (x i

t � 1; ! t � 1; vt � 1); i = 1 ; : : : ; N: (12)
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The weights are normally calculated according to the measurement density
error function p(yt jx t ). However, due to the parametrization used for the
measurements, the weights are now instead updated as

wi
t = ( ei

t )
T S� 1

t ei
t ; i = 1 ; : : : ; N; (13)

wi
t = wi

t =
NX

i =1

wi
t : (14)

The weighting in (13) stemming from (4)-(10) re
ects how likely the particle
was, given the ultrasound measurement. The state estimate may now be
formed as

x̂ t =
NX

i =1

wi
t x̂

i
t :

Since all particles but a few will have negligible weights after a while, new
particles are drawn with replacement according to the sampling importance
resampling principle

P(x i
t = x̂ j

t ) = wj
t ; j = 1 ; : : : ; N: (15)

Note that this step is only performed given that the e�ective sampling number
1=(

P N
i =1 (wi

t )
2) < N e� , where Ne� is a number between zero andN . To

summarize: The SLAM algorithm is run by �rst calculating (3) as explained
in Section 4.2, and then running (4)-(15).

5. Implementation Details

There are a number of parameters to be chosen when implementing the model
described in Section 4. In addition to this a number of minor tweaks to help
with the implementation have been made.

Each particle contains a Kalman �lter that estimates the probability of
occupancy for each cell in the grid. Instead of storing this value directly
it is �rst converted to log-odds format and thus spans the entire range of
real numbers instead of only the interval (0; 1). All measurements are also
converted to this format before being passed to the Kalman �lter. The co-
variance matrix grows quadratically with the map size, therefore it is critical
to exploit the sparsity that occurs. Under the assumption that all cells are
independent only the diagonal elements will be nonzero.

Because of the large �eld of view of the sensor it rarely provides accurate
information on the position of objects. However, it provides information on
which cells are likely to be empty. To exploit this fact a threshold value has
been added, and whenever the measured range exceeds this value only the
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cells that are detected as empty are included in the measurement update.
For closer distances also the cells that are on the edge of the cone and thus
likely to be occupied are included in the measurement update.

Since the model not only contains an estimate of the probability of occu-
pancy, but also an estimate of how certain that estimate is, it is possible to
have a very high prior probability of occupancy since the map will quickly
converge to the new estimate once a measurement has been made. This al-
lows the algorithm to successively clear areas of the map, relying more on the
information on which areas are empty rather than those that are occupied.
This is a better match for the characteristics of an ultrasound sensor.

6. Results

The focus of this section is to show the relative merits of the method for dif-
ferent sensor characteristics, and to give an indication of what performance
di�erent number of angular subdivisions of each cell provide. Therefore the
�gures are normalized such that the absolute position error of the dead reck-
oning is 1 at time 1.

The data used for the simulations were generated by driving a robot
in a simulated environment consisting of a number of walls with di�erent
orientations and lengths. The trajectory was a circle repeated roughly twenty
times, with the sensor sweeping back and forth through 180� in front of the
robot.

The data presented in this section are the absolute errors of the position
estimates. As a reference comparison for the SLAM algorithm the same num-
ber of particles (200) was simulated using the same noise model, but only
using the information from the wheel encoders. The position of the dead-
reckoning estimate was then taken as the mean of these particles. For the
SLAM estimate the position was taken as a weighted mean with the weight
at each instant being proportional to how good the particular particle is
deemed to be, with the particles being resampled whenever the weights are
considered to be too unevenly distributed.

The results presented in Fig. 2 are the mean of the estimates and standard
deviations calculated by repeated Monte-Carlo simulations using di�erent
noise perturbations of the correct input. As can be seen in the �gure the
SLAM estimate is clearly improved by subdividing each cell taking the angle
of incidence into consideration. Most notable is the signi�cant decrease in
the variance of the estimate, the mean error is roughly the same for all the
di�erent subdivisions.

Unexpectedly this method also seems to improve the estimates when us-
ing a simulated sensor with no dependence on the angle of incidence, which
can be seen in the right-most column in Fig. 2. It is believed that this could
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Figure 2. Comparison of the absolute position error for 3 di�erent sen-
sors with di�erent characteristics and number of angular subdivisions for
each grid cell. All the simulated sensors have an opening angle of 60� . The
maximum angle of incidence is denoted � , the number of subdivisions is
denoted d. Note that d = 1 is similair to a normal occupancy grid ap-
proach. All �gures are normalized such that the total accumulated error of
the dead reckoning is 1 at time 1. The red line is the accumulated error
for the dead-reckoning. For each simulation the dead reckoning is evaluated
as the mean of 200 particles simulated using the same noise model as that
provided to the SLAM algorithm. The blue line corresponds to the same
quantities when using the SLAM algorithm. The position of the SLAM
estimate is taken as the weighted average of 200 simulated particles. The
dot-dashed line is the 1 standard-deviation interval estimated by repeatedly
running the Monte-Carlo simulation but with di�erent noise realizations for
each iteration. From the results shown it can be seen that for all the sensor
characteristics it is bene�cial to increase the number of subdivisions, d, for
each cell. Counter-intuitively this also seems to hold for the 'perfect' sensor
where the angle of incidence,� , does not a�ect the measurement.
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be explained from the fact that the wide �eld of view of the sensor is still
a limiting factor of the performance, and that using the angular subdivision
scheme increases the resolution by separating the measurements from di�er-
ent positions. This e�ect, however, might not always be desirable since it also
decreases the correlation between di�erent robot poses, making it harder for
the particle �lter to converge.

7. Conclusions and Future Work

The results presented in this paper show that by extending the concept of
the regular occupancy grid to model the fact that objects are not necessarily
detected from all positions within a room, the performance for a particle
�ltering based SLAM algorithm can be signi�cantly improved. The method
presented here can thus be seen as a way to trade sensor performance against
computational resources. In a world with computing power becoming cheaper
day by day, this tradeo� will become more relevant as time progresses, per-
haps allowing the use of SLAM algorithms in inexpensive consumer products.

The model presented in this paper is clearly suited for Rao-Blackwellized
particle methods due to its conditional linearity, and in the future the im-
plementation will most likely be extended with smoothing methods, such as
those presented by [Lindsten and Sch•on, 2011]. It is believed that smoothing
will decrease the position error since a single measurement contains fairly
little information of the robot pose. Also, the problem with particle deple-
tion should be possible to solve with particle smoothing. Therefore a method
which takes the trajectory into consideration is likely to perform signi�cantly
better, but with larger computational burden

More extensive simulations and individual tweaking of the parameters for
the di�erent number of subdivision of the cells would be bene�cial for clearly
establishing the methods merits, but our initial results seem promising.

We will gather actual measurement data under conditions where we have
access to a reliable ground truth. In this way it is possible to provide proper
estimates on the accuracy of the method under real-world conditions.
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Paper VIII

Rao-Blackwellized Particle Smoothing
for Occupancy-Grid Based SLAM

Using Low-Cost Sensors

Karl Berntorp Jerker Nordh

Abstract

The simultaneous localization and mapping problem is approached
by using an ultrasound sensor and wheel encoders on a mobile robot.
The measurements are modeled to yield a conditionally linear model
for all the map states. We implement a recently proposed Rao-
Blackwellized particle smoother (RBPS) for jointly estimating the po-
sition of the robot and the map. The method is applied and successfully
veri�ed by experiments on a small Lego robot where ground truth was
obtained by the use of a VICON real-time positioning system. The
results show that the RBPS contributes with more robust estimates at
the cost of computational complexity and memory usage.

© 2014 IFAC, reprinted with permission, from the 19th IFAC World
Congress, Cape Town, South Africa, August 2014
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1. Introduction

Having a robot simultaneously localizing itself and learning its map is com-
monly referred to as simultaneous localization and mapping (SLAM). The
problem is often solved using odometry in combination with vision or range
sensors. In mobile robotics it has been studied extensively over the last three
decades. For surveys and tutorials of the SLAM problem and its di�erent
solutions up to recently, see for example [Thrun, 2002] or [Durrant-Whyte
and Bailey, 2006].

At least since the early 1990's the approach to SLAM has been proba-
bilistic. In [Smith et al., 1990], extended Kalman �ltering (EKF) was used
for state estimation. An issue with using Kalman �ltering is that the non-
linearities that typically are present tend to lead to divergence of the state
estimates. For example, the kinematics of a planar mobile robot is nonlinear
in the heading angle, and the consequent linearizations that the EKF uses
for estimating the odometry may lead to instability. To remedy this, particle
�ltering was introduced as a means to solve the SLAM problem. State-of-
the-art particle �lter algorithms when using high-resolution laser scanners
are found in [Grisetti et al., 2005; Grisetti et al., 2007].

One way to describe the map is to use occupancy-grid mapping [Siciliano
and Khatib, 2008]. The grids are considered to be either occupied or free,
with some probability distribution associated with the grid. One usage of
occupancy-grid maps is when utilizing range sensors, such as laser sensors
or sonar sensors. Both types of sensors have noise and may occasionally
give severe measurement errors. Since laser sensors have very high spatial
resolution, thus giving a sharp probability distribution, they appear to be
the most common solution, see [H•ahnel et al., 2003], [Eliazar and Parr, 2003],
[Grisetti et al., 2007]. In contrast, sonar sensors cover a cone in space. Because
of the low spatial resolution in the tangential direction, it is impossible to
determine from a single measurement whether a certain cell is occupied or
not. Also, ultrasound sensors are sensitive to the angle of an object's surface
relative to the sensor; that is, they have a small angle of incidence. This leads
to that measurements of the same surface from slightly di�erent angles may
render di�erent results. Obviously, this could potentially lead to estimation
errors and must be handled by the algorithms.

In [Nordh and Berntorp, 2012] we performed SLAM using di�erential-
driven mobile robots equipped with an ultrasound sensor. To handle the
de�ciencies with sonar sensors we extended the occupancy-grid concept by
dividing every cell into subcells. Further, we developed a conditionally linear
Gaussian state-space model for use in SLAM. In this paper we propose a
novel measurement model aimed at sonar sensors, and extend the work in
[Nordh and Berntorp, 2012] to include Rao-Blackwellized particle smooth-
ing (RBPS) as a means for SLAM. Rao-Blackwellization takes advantage of

182



1 Introduction

a linear substructure in the model, which can be handled by a Kalman �l-
ter. Rao-Blackwellized particle �ltering (RBPF) has been used for a number
of years, see [Andrieu and Doucet, 2000], [Doucet et al., 2000], [Sch•on et
al., 2005]. During the last years Rao-Blackwellized particle smoothers have
gained interest, see [S•arkk•a et al., 2012], [Lindsten and Sch•on, 2011], where
RBPS are developed for conditionally linear Gaussian models. We utilize the
methods in [Lindsten and Sch•on, 2011] and provide an extension to also han-
dle uniform noise for the class of di�erential-drive mobile robots. Particle
�lters for SLAM tend to have a particle depletion problem, thus produc-
ing overcon�dent estimates of uncertainty and eliminating particles with low
weights. This leads to that the number of particles used to perform loop clo-
sure decreases, yielding degenerate performance [Kwak et al., 2007]. Using
particle smoothing could potentially eliminate this loop-closure problem since
more information is available for map estimation and position localization.

We verify the method on a Lego Mindstorms mobile robot, see Fig. 1,
equipped with a low-cost ultrasonic range �nder. The Lego Mindstorms robot
has low-performance motors, with severe backlash and highly uncertain en-
coder readings. Therefore, this setup represents a worst-case scenario.

1.1 Related Work
Using sonar sensors for SLAM has been studied before; an example is [Bur-
gard et al., 1999], in which an o�ine expectation maximization algorithm
was used for occupancy-grid mapping using 24 Polaroid sensors with 15 de-
grees opening angle. An early work is [Rencken, 1993], where the SLAM
problem was solved in simulation using 24 ultrasonic sensors by estimating
the errors introduced in the localization and mapping parts, respectively,
and correcting for them using a modi�ed Kalman �lter approach. A third
example is [Leonard et al., 1992], in which a feature-based approach with
the aid of servo-mounted ultrasonic sensors was used. A more recent work
is [Ahn et al., 2008], where ultrasonic sensors and a stereo camera is used
in an EKF-SLAM setting. All of the previously mentioned work either use
o�ine approaches and/or a vast number of sensors to perform SLAM. As
such, their approaches are quite di�erent from ours.

The state-of-the-art algorithms mentioned earlier, [Grisetti et al., 2005;
Grisetti et al., 2007], are designed for use with laser scanners. Further, laser
scanners, besides having high precision, are several orders of magnitude more
expensive than the sensors we use. Therefore, a comparison with laser-based
approaches would be unfair.
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1.2 Outline
The structure of the rest of the paper is as follows: In Sec. 2 we give the
preliminaries. Sec. 3 presents the state-space and measurement model. In
Sec. 4 we explain the forward �lter used. In Sec. 5 we summarize the RBPS,
derive how to handle uniform noise in the RBPS, and discuss implementation
aspects. The algorithm is evaluated in Sec. 6. Finally, we conclude the paper
in Sec. 7.

Figure 1. The Lego Mindstorm di�erential-driven mobile robot used in
the experiments. The ultrasound sensor is placed at the front end of the
robot.

2. Preliminaries

The conditional distribution density of the variable x at time index k con-
ditioned on the variable y from time index i to time index k is denoted
p(xk jyi :k ). At each time step k the state can be partitioned into a non-
linear part, � k , and a linear part, zk . The total state vector is a discrete-time
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Markov process, which obeys the transition densityp(� k+1 ; zk+1 j� k ; zk ). The
robot model is written as

� k+1 = f (� k ; uk ; vk ; wk ); (1)

zk+1 = A(� k )zk + ez;k ; (2)

ym
k (r k ; � k ) = C(r k ; � k )zk + eym ;k (r k ; � k ); (3)

where � 2 R7x1 . The state vector z 2 Rn x1 contains the cells of the modi�ed
occupancy grid, where the sizen depends on the map dimension, resolution,
and the number of subcells used in every cell. The measurement functionC(�)
and measurementym are parametrized in the nonlinear state vector� and the
ultrasound range measurementr . The inputs enter in the nonlinear states,
and z is linear given � . The process noisev is independent uniform with zero
mean, andw is white Gaussian with zero mean. Moreover, the process noise
ez and measurement noiseeym are assumed to be white Gaussian with zero
mean.

3. Modeling

Here, we derive the robot kinematics and the conditionally linear map model.
Moreover, we describe how the measurement equation is approximated as
linear despite that the ultrasound sensor measurements are highly nonlinear.

3.1 State-Space Model
The robot used is assumed to be a di�erential-driven mobile robot, equipped
with a sonar sensor. Since the robot moves in a plane, only three states
are needed to describe the motion in continuous time. Using the position
variables x and y, as well as the heading� as state variables, the discretized
kinematics (1) is, using a bilinear transformation, written as

� k+1 = f (� k ; uk ; vk ; wk ): (4)

Here, � k = ( xk yk � k PR
k � 1 PL

k � 1 PR
k � 2 PL

k � 2)T is the state vector, with PR;L
k

being the right and left wheel encoder positions at time indexk. The input uk

equalsuk = ( PR
k+1 PL

k+1 )T , and the wheel encoder noise vector is assumed
uniformly distributed according to vk � U(� �; � ). The process noisewk only
enters in � with variance Qw . After introducing

�� k = � k +
�

1
2l � 1

2l

�
�

PR
k � 2

PL
k � 2

�
+

�
1
2l � 1

2l

�
(uk + vk );
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where l is the wheel axis length, the kinematics vectorf (� k ; uk ; vk ; wk ) be-
comes

f (� k ) =

0

B
B
B
B
B
B
B
B
@

1 0 0 1
4 a 1

4 a � cos� k � cos� k

0 1 0 1
4 b 1

4 b � sin � k � sin � k

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

1

C
C
C
C
C
C
C
C
A

� k

+

0

B
B
B
B
B
B
B
B
@

1
4 cos�� k

1
4 cos�� k

1
4 sin �� k

1
4 sin �� k

0 0
1 0
0 1
0 0
0 0

1

C
C
C
C
C
C
C
C
A

(uk + vk ) +

0

B
B
B
B
B
B
B
B
@

0
0

�� k + wk

0
0
0
0

1

C
C
C
C
C
C
C
C
A

:

wherea = cos � k � cos�� k , and b = sin � k � sin �� k . This model is a�ected both
by the wheel encoder noise and the Gaussian distributed noise entering in� .
Wheel encoders typically have backlash uncertainties, which may be modeled
as uniform noise. Moreover, the robot exhibits wheel slip, which provides the
physical justi�cation for the Gaussian � -noise. As we will discuss later the
Gaussian noise can also be motivated with that it helps both the smoothing
and �ltering to perform better, by mitigating the issue of particle depletion.

The map is modeled as a slowly time-varying linear model; that is, every
cell in (2) is modeled as

zk+1 = zk + ez;k ; (5)

where z contains the probability that a cell is occupied, stored in log-odds
format. The process noiseez;k is a tuning parameter re
ecting that the un-
certainty of the cell grows when no new measurements arrive.

3.2 Measurement Model
Assume that an ultrasound measurement returns a distance to an object, and
that the opening angle of the sensor is� degrees. The �eld of view is then
a closed cone with aperture 2� . The cells that are inside the �eld of view
can now be calculated, given that a position estimate exists. Assuming that
a method exists for converting a single range measurement to an observation
of the map states inside the �eld of view, the measurement equation would
be linear. Further, the C-matrix in (3) would be sparse with a single 1 per
row and with the same number of rows as the number of cells inside the �eld
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of view. A typical C matrix in (3) could be

ym
k (r k ; � k ) =

�
1 0 0 0 � � � 0
0 0 1 0 � � � 0

�
zk + eym ;k (r k ; � k ): (6)

The cells not inside the �eld of view at time index k do not generate any
measurements at all for time indexk.

To convert a range measurement to an observation of the map states, we
set ym

k to a high probability ( p = 0 :99) of occupancy for all the cells along
the arc at the range of the distance measurement. All the cells closer than
the measured distance are considered to be empty (p = 0 :01). The additive
noise is also parametrized by the distance so that when the detected object
is far away the measurement is considered more noisy, thus suppressing the
in
uence on the map. This re
ects the high spatial uncertainty along the arc.

4. Forward Filtering

The particle smoothing needs a weighted particle estimate as input. However,
this estimate does not necessarily have to be generated by the same model
as the one used for RBPS. In our case we use a slightly modi�ed particle
�ltering approach.

For an RBPF in our setup, (1){(3), the particle weights would be updated
using the marginal density function of the linear states for the measurement.
Instead we use a nonlinear function of the robot position and the map with
a more physically intuitive formulation, which has proved e�ective in both
simulations and on real data. Conditioned on the robot position all the cells
that are inside the �eld of view are collected in a list and then sorted in
ascending order of the range to the robot. The list is then traversed and
the probability of each cell generating that measurement is calculated and
weighted by the probability that all the earlier cells were empty, thus yielding

p(r k ) =
nX

j =1

p(r k jzj
k )pocc(zj

k )
j � 1Y

i =1

(1 � pocc(zi
k )) ; (7)

where zj
k is cell j at time index k. Each individual probability in (7) is

evaluated against a 
at probability density centered around the center point
of the cell with width equal to the diagonal of a cell. Outside the 
at region
it falls o� linearly over another cell width. See Fig. 2 for a visualization. This
models the fact that a map with a certain resolution cannot di�erentiate
measurements with higher precision than the resolution.

In a standard RBPF the weights of each particle i = 1 ; : : : ; N is up-
dated by multiplying it with the new weight provided by the measurement.
However, we have replaced this multiplication by a �rst order low-pass �lter.
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The resulting algorithm is no longer a true RBPF, but from experience using
both simulations and experimental data we have found that it works very
well for our problem formulation.

Figure 2. The probability density function at time index k, p(r k jzj
k ),

for a single measurement conditioned on cell j being the origin of that
measurement. Pj is the center point of cell j , and d is the diagonal width
of a cell

5. Rao-Blackwellized Particle Smoothing

In this section we only summarize the RBPS algorithm and provide our
extension. The reader is referred to [Lindsten and Sch•on, 2011] for algorithm
details.

5.1 Rao-Blackwellized Particle Smoother{Summary
The RBPS in [Lindsten and Sch•on, 2011] consists of three main steps:

1. A backward particle smoother

2. A forward Kalman �lter

3. A Rauch-Tung-Striebel (RTS) smoother

Backward Particle Smoother The backward pass starts with initializing
j = 1 ; : : : ; M backward trajectories at time T|that is, initializing f � j

T ; zj
T g

using the �ltered estimates at time T. Then, for the timespan of interest,
rejection sampling is performed to �nd an index I (j ) corresponding to the
forward �lter particle that is to be appended to the j -th backward trajectory.
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This index is exploited to set � j
k = � I ( j )

k and to draw linear samples from the
Gaussian density

p(zk j� I ( j )
1:k ; � k+1 ; zk+1 ; ym

1:k ) / p(� k+1 ; zk+1 j� I ( j )
1:k ; ym

1:k )

� p(zk j� I ( j )
1:k ; ym

1:k ; ):
(9)

Finally, the backward trajectory vector is appended, yielding f � j
k :T ; zj

k :T g =
f � j

k ; � j
k+1: T ; zj

k ; zj
k+1: T g:

Kalman Filter After the backward smoothing step the nonlinear states
are assumed �xed, thus yielding a linear model suitable for Kalman �ltering
[Anderson and Moore, 1979]. Hence, for eachj = 1 ; : : : ; M a Kalman �lter
runs for the whole timespan using (6).

RTS Smoother After the Kalman �lter step both linear and nonlinear
estimates are available. Then, an RTS smoothing (backward pass) step is
performed, concluding the RBPS-algorithm. Note that steps 2 and 3 are
needed to �nd continuous, unsampled, conditional smoothing densities.

5.2 RBPS with Uniform Noise
In the rejection sampling step in Sec. 5.1, [Lindsten and Sch•on, 2011] exploits
that the forward density p(� j

k+1 ; zj
k+1 j� i

1:k ; ym
1:k ), where j is the trajectory

index and i is the particle index, is Gaussian distributed. Also, calculation
of the maximum of the distribution is needed. However, since we also have
uniform noise in (4), some modi�cations are required:

From the factorization and Markov properties of (4) we have

p(� k+1 ; zk+1 j� 1:k ; ym
1:k ) = p(� k+1 j� 1:k )p(zk+1 j� 1:k ; ym

1:k )

= p(� k+1 j� k )p(zk+1 jzk ); (10)

where the input uk is suppressed for reasons of notation. The second factor
of (10) is the linear �ltering density|that is, the density resulting from a
Kalman �lter. However, since the map is modeled as a slowly time-varying
map, we have assumed it to be constant in the implementation. We can
deduce the �rst factor in (10) as follows: Assume that we have the estimate
� �

k+1 . Then the probability p(� k+1 = � �
k+1 j� k ; uk ) can be reformulated as

p(� k+1 = � �
k+1 j� k ; uk ) = p(� �

k+1 = f (� k ; uk ; vk ; wk )j� k ; uk ): (11)

Due to the form of (4) we can solvef (:) for vk and wk . Thus (11) transforms
to

p((vk ; wk ) = g(� k+1 ; � k ; uk )j� k+1 ; � k ; uk ): (12)

Using the noise independence properties yields that (12) is equal to

p(vk jg1(� k+1 ; � k ; uk ))p(wk jg2(� k+1 ; � k ; uk )) : (13)
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To �nd the solution to (13), we start by forming the di�erence of (4) between
two consecutive time steps (i.e., � x = xk+1 � xk ). After reshu�ing the
equations for the translational coordinates we get

cos� k+1 =
4� x � (PR

k � PR
k � 1 + PL

k � PL
k � 1) cos� k

PR
k+1 � PR

k + PL
k+1 � PL

k

(14)

sin � k+1 =
4� y � (PR

k � PR
k � 1 + PL

k � PL
k � 1) sin � k

PR
k+1 � PR

k + PL
k+1 � PL

k

(15)

� � =
1
2l

�
PR

k+1 � PR
k � 1 � (PL

k+1 � PL
k � 1)

�
: (16)

Utilizing the trigonometric identity on (14) and (15) gives that

(PR
k+1 + PL

k+1 � PR
k � PL

k )2 = 
 1 (17)

for some constant
 1. Likewise, we get from (16) that

PR
k+1 � PL

k+1 = 
 2; (18)

where 
 2 = 2 l� � + PR
k � 1 � PL

k � 1. Moreover, by dividing (15) with (14) we
can solve for the� k+1 congruent to (xk+1 ; yk+1 ):

� 1;2
k+1 = atan2( d1; d2) + m�; m = 0 ; 1; (19)

where atan2(�; �) is the four quadrant inverse tangent, and

d1 = 4� x � (PR
k � PR

k � 1 + PL
k � PL

k � 1) cos� k ;

d2 = 4� y � (PR
k � PR

k � 1 + PL
k � PL

k � 1) sin � k :

From (17) we see that there are two input vectors that give the same (x; y)-
coordinates|that is,

PR
k+1 + PL

k+1 = PR
k + PL

k �
p


 1: (20)

Also, from (16), (18), and (19), we �nd the two possible input vectors coin-
cident to the two solutions of (20) to be

PR
k+1 � PL

k+1 = 2 l� � 1;2 + PR
k � 1 � PL

k � 1: (21)

Using (20) and (21) we can calculate the (uniformly distributed) probabil-
ity, p(PR;L

k+1 ), of the two possible combinations of input vectors that yield
the coordinates � x, � y, and � � 1;2. The probability for the two possible so-
lutions � 1;2

k+1 is Gaussian. Now (12) is formed by multiplying the Gaussian
probability for � 1;2

k+1 with the two distributions for the wheel encoders and
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choosing the solution with the largest probability. Further, the maximum of
p(� k+1 ; zk+1 j� 1:k ; ym

1:k ; uk ) is found by setting � 1;2
k+1 to be in the middle of the

distribution.
We now transform (9), which for our model yields

p(zk j� 1:k+1 ; zk+1 ; ym
1:k ) = p(zk j� 1:k ; zk+1 ; ym

1:k )

/ p(zk+1 jzk ; � 1:k ; ym
1:k )p(zk j� 1:k ; ym

1:k )

= p(zk+1 jzk )p(zk j� 1:k ; ym
1:k ): (22)

Here, the �rst equality follows from that there is no new measurement at
time index k + 1, whereas the second and third steps follow from Bayes' rule
and the Markov property, respectively. Now, (22) may be estimated using a
Kalman �lter.

Remark 1
We do not use an RBPF for �nding the density (10), see Sec. 4. However,
this is not a restriction since for the RBPS it actually does not matter how
the density was produced. 2

Remark 2
The addition of the Gaussian state noise for� can be motivated from that it
can be used to model wheel slip. However, it also improves smoothing per-
formance. Assume that we at time indexk have the robot position estimate
(x0; y0; � 0), and that the estimate at time index k + 1 is ( x1; y1; � 1). Then � 1

is uniquely determined by the initial conditions and x1 and y1, since there
are not enough degrees of freedom in the motion model, see Fig. 3 for an
illustration. This means that the smoother will never switch between tra-
jectories, caused by only having two degrees-of-freedom noise. This leads to
that the smoother (and �lter) will be unable to recover from spurious errors.
However, if noise (i.e., an additional degree of freedom) is added to� we
remedy this, which is essential for the smoothing to give any impact, and for
the forward �lter to avoid particle depletion. 2

5.3 Implementation Aspects
The computational demands when using smoothing are greater than for �l-
tering. Not only the amount of computations needed increases, but there is
also a need for storing the �ltered estimate for each time instant over which
the smoothing will be performed. For the problem described in this paper
each particle contains an estimate of the entire map, thus it is of signi�cant
size. This means that for larger maps the memory requirements will be prob-
lematic unless some representation of the map which takes advantage of the
similarities between particles at time instances is used. However, this is not
an issue we investigated further in this work.
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Figure 3. The bilinear transformation (the arc) is a second order approx-
imation of the robot motion. Thus, the end point is uniquely determined
from the initial conditions and ( x1 ; y1). This implies that when evaluating
(10) for all j trajectories conditioned on particle i , the probabilities will
equal zero when j 6= i . By adding noise for � this uniqueness disappears,
which implies that the smoother will be able to recover from errors caused
by, for example, wheel slip.

When implementing the RBPS for SLAM some parameter considerations
have to be made. For example, the performance depends both on the time
window used for the smoothing and the number of trajectories. Also, we will
have to decide when to trigger the smoothing. Further, when the smoothing
is �nished it is not obvious from where we should reinitialize the forward
�lter. Since we are primarily interested in real-time estimation, it is not
feasible to perform smoothing over the entire data set. We therefore use
smoothing over a subset of the data. We then reinitialize the �ltering at a
point within the subset and restart from there. This provides the �ltering
with a "future" estimate of the map, which in theory should make it possible
to perform better: Assume that the smoothing was triggered at time indexk,
and that we have a time window of length t. Thus, we suspend the forward
�ltering at time index k. Also assume that we initialize an additional forward
�lter halfway through the smoothing time window|that is, at time index
k� t=2. Then we use the smoothed estimates at time indexk� t=2 to initialize
this additional forward �lter, and executes it up to time index k. At time
index k we may then attach these estimates and resume the original forward
�lter. Overlapping the �ltering and smoothing in this way means that we
can improve the future �ltering with the smoothing. However, it increases
the total amount of computations needed since we recompute the same time
step several times.
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The implementation as presented in this paper is available as open source
software, see [Nordh and Berntorp, 2013a]. It is built on top of the open source
framework pyParticleEst, see [Nordh and Berntorp, 2013b].

6. Experimental Results

For the experiments we used a di�erential-driven mobile robot built using
Lego Mindstorms, see Fig. 1. One of the aims of the present work is to use
low-cost sensors, with rather poor performance. The sensor chosen was an
ultrasonic range �nder XL-Maxsonar EZ4 [Inc., 2012], with a resolution of 1
cm at 10 Hz. The maximum target range is 7.65 m, but because of voltage
division in the building process the range was limited to approximately 3.8 m.
Further, the maximum angle of incidence was measured to be approximately
10 deg. The sensor was mounted on a motor, enabling it to sweep back
and forth. The motor used for this was of the same type as those used for
driving the robot, which are part of the standard Lego Mindstorms toolkit.
The backlash of the motors was estimated to roughly 5 deg. When it comes
to precision in odometry, we believe that this setup represents a worst-case
scenario.

The ground truth, only used for evaluation, was gathered using a VICON
real-time positioning system, see Fig. 4, installed at Link•oping University,
Sweden. The VICON system uses 10 infrared cameras and infrared lamps to
track markers attached to the robot. The positioning precision provided by
the system is about 1 mm.

The results were generated by e�ectuating the algorithm 40 times on the
same data set. We set the number of backward trajectories toM = 25 and
the number of forward particles to N = 100. The maximum smoothing length
was set to 400. The reinitialization overlap was set to be half of the smoothing
time window. Further, we chose to trigger the smoothing every �fth resample
of the forward �lter. These parameter choices were quite arbitrary, and most
likely a better trade-o� between complexity and performance can be found
by tweaking the parameters.

We chose the mean of the norm of the position error at each time instance
as performance measure. Figure 5 shows the results for smoothing-based
SLAM, forward-�lter SLAM, and dead reckoning. Included in the �gure is
the standard deviation for all three methods. It is clear that although the
smoothing-based SLAM does not have much smaller mean error, it is more
robust than only using the forward �lter. The dead reckoning is deterministic
since each execution was performed on the same data set. At aboutt = 120
the SLAM estimates seem to have converged to an error of about 0:4 m,
which is of the same order of magnitude as the map resolution (0:2 m). The
error in the odometry is clearly increasing with time, and gives substantially
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Figure 4. The experimental setup. The cameras in the upper part are
part of the VICON system.

larger error than the SLAM algorithms in the position estimate for t > 140.
Note that the SLAM algorithms start with no knowledge about its environ-
ment, and, hence, they do not outperform the odometry until su�cient map
knowledge has been built up. The data set used was challenging in that dur-
ing the last seconds the dead reckoning diverged quickly, with an angle error
of about 180 deg and a position error of approximately 3 m. This was caused
by severe wheel slip. The two SLAM algorithms managed to handle this in
about 2/3 of the realizations.

Figure 5 is truncated in order to more clearly visualize the di�erences
between the �ltering and smoothing. In Fig. 6 we show results from a suc-
cessful execution of the whole data set, where the smoothing-based SLAM
has a mean error that is roughly the same as the map resolution throughout
the realization. Further, it manages to converge to the ground truth at the
execution end time. Although the error of the forward-�lter SLAM in Fig.
6 is from an unfortunate realization, it still shows that the smoothing-based
SLAM is more robust and consistent. Results as inadequate as the forward-
�lter SLAM in Fig. 6 is not something we have observed when using the
smoothing-based SLAM.

In Fig. 7 we visualize a map generated using the ground truth robot po-
sitions from the VICON system. In Fig. 8 we show the map obtained by the
SLAM algorithm presented in this paper. For both cases each grid cell in the
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map actually consists of eight sub-cells corresponding to di�erent directions
in the environment according to the occupancy-grid extension mentioned in
Sec. 1, see [Nordh and Berntorp, 2012]; what is visualized is the direction
from which it is most likely to observe something, for each cell. In the maps
presented the color blue represents areas that are unexplored by the sensor.
The red color scale, starting from black, indicates the probability of a cell
being occupied, starting from probability zero. The green color scale corre-
sponds to the uncertainty (variance) of the probability estimate, with black
implying large uncertainty and green corresponding to low uncertainty. Thus
a yellow cell corresponds to that it is likely to be occupied, and there is low
uncertainty associated with it. A green cell is believed to be empty with low
uncertainty. A red cell is believed to be occupied, but because of a lack of
good measurements of that area the uncertainty is large. Similarly, black
corresponds to areas believed to be empty, but with large uncertainty.

In Fig. 7 the position estimates for both the SLAM and dead reckoning
are overlaid on the map, corresponding tho the last time step in Fig. 6. Also
shown is the reference position from the VICON system. As seen the SLAM
algorithm nearly coincides perfectly with the reference position at the end
time, whereas the dead reckoning is several meters of, mainly due to the
large wheel slip aroundt = 210. By visual inspection only, the map appears
quite poor, and indeed it is of quite low resolution (each cell is 0:2 m wide)
and rather noisy. But as can be seen from the SLAM position estimate it
contains enough information to correct for the severe de�ciencies in the dead
reckoning. Looking for correspondences between the map and Fig. 4, we note
that there is a concentration of yellow pixels roughly corresponding to the L-
shaped wall in the upper right part of Fig. 4. There is also a blob of red pixels
corresponding to the box in front of the L-shaped wall. The red arcs along
the edges of the map are a result of the wide opening angle of the sensor;
we simply have no other information other than that there somewhere along
this arc exists an object. It is not possible to locate the object more precisely
from the observations made.
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Figure 5. Mean error and standard deviation for 40 realizations. The
red curve shows the smoothing-based SLAM estimate, the blue curve shows
the �ltered SLAM estimate, and the green curve is the dead-reckoning es-
timate. The smoothing-based SLAM estimate is more consistent than both
forward-�lter SLAM and dead reckoning. Notice that initially neither the
�ltered nor the smoothed SLAM estimate outperforms the odometry, which
is natural since initially there is no map estimate that can correct for the
error in odometry. At around t = 210 a wheel slip occured that caused
large odometry divergence. Therefore the data set is truncated at t = 200
in order to more clearly visualize the di�erences between the �ltering and
smoothing.
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Figure 6. Mean error for a single realization with same notation as in
Fig. 5. The poor performance of the �ltered estimates can be explained by
that the map has converged with a bias compared to the real world, an
issue which is largely corrected for by using smoothing instead. This data
set is slightly longer than the one presented in Fig. 5 to clearly demonstrate
the presented methods' abilities to handle severe odometry errors. Note the
large error also for the �ltering SLAM estimate (blue), something which the
smoothing-based SLAM managed to correct for.
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Figure 7. The map corresponding to the last time step in Fig. 6, gener-
ated using the measurement model described in Sec. 3 but with the known
positions from the VICON system. Since the position is known, this cor-
responds to the mapping part of the problem. Overlaid on this map is the
position estimates; the white dot is the VICON reference, the blue dot close
to the white is the SLAM estimate, and the pink dot is the dead reckoning.
As can be seen the SLAM estimate has converged to the VICON ground-
truth.
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Figure 8. The map corresponding to the last time step in Fig. 6, gener-
ated using the full SLAM algorithm as described in this article. Compared
to the map in Fig. 7 this one is more noisy, and not all straight walls are
preserved. But as can be seen from the accuracy of the position estimate
(Figs. 5{7), this information is enough to compensate for the inaccuracy in
the odometry. Further, it is also able to compensate for the large wheel slip
that occurred around time t = 210.

199



Paper VIII. RBPS for Occupancy-Grid SLAM

7. Conclusions

We presented a novel approach to the SLAM problem using an ultrasound
sensor. The method uses a particle �ltering inspired technique paired with
a Rao-Blackwellized particle smoother. The experimental results show that
the smoothing gives a substantial robustness improvement and increased pre-
dictability of the algorithm. Further, the results show that the algorithm is
able to converge to the true position even for scenarios with extreme odom-
etry uncertainty.
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