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Abstract

Correspondence problems are of great importance in
computer vision. They appear as subtasks in many appli-
cations such as object recognition, merging partial 3D re-
constructions and image alignment. Automatically match-
ing features from appearance only is difficult and errors are
frequent. Thus, it is necessary to use geometric consistency
to remove incorrect correspondences. Typically heuristic
methods like RANSAC or EM-like algorithms are used, but
they risk getting trapped in local optima and are in no way
guaranteed to find the best solution.

This paper illustrates how pairwise constraints in com-
bination with graph methods can be used to efficiently find
optimal correspondences. These ideas are implemented on
two basic geometric problems, 3D-3D registration and 2D-
3D registration. The developed scheme can handle large
rates of outliers and cope with multiple hypotheses. De-
spite the combinatorial explosion, the resulting algorithm
which has been extensively evaluated on real data, yields
competitive running times compared to state of the art.

1. Introduction
We focus on two basic geometric problems. The first

is 3D-3D registration, also known as 3D pose. Given two
point sets in 3D space, the task is to estimate a rigid trans-
formation aligning one point set with the other. What makes
the problem challenging is that often the correspondences,
that is, which points should be matched between the sets,
are not known in advance. Hence we need to estimate both
the correspondences and the transformation. See Fig. 1 for
an alignment result based on our method. The second prob-
lem we consider is 2D-3D registration, also known as cal-
ibrated camera pose. As in the 3D-3D case, we need to
estimate both the correspondences and the transformation
simultaneously, but now the transformation is the perspec-
tive camera mapping, projecting 3D points to image points.

Given correct correspondences, it is straightforward to
estimate the transformation, see [10]. For 3D-3D registra-
tion, it can even be done in closed form. On the other hand,
given an estimate of the transformation, it is easy to deter-

Figure 1. 3D-3D registration of two stereo reconstructions. Green
circles and stars are matched 3D points in a maximal inlier set. Red
x-marks and blue dots are unmatched points in the two models.

mine likely correspondences. So, a natural idea is to use
an alternating minimization procedure, and there are many
such algorithms in the literature ([8]), the most famous one
being Iterative Closest Point (ICP) [1]. However, such ap-
proaches require a good initial estimate of the transforma-
tion and still there is no guarantee of getting a reasonable
solution, especially when there are lots of outliers.

The aim of this paper is to find a more reliable and if pos-
sible faster method to deal with incorrect matchings. Our
goal is to find the largest set of consistent correspondences.
The key idea is to consider point correspondences and check
whether pairs of such correspondences are consistent or not.
This leads us to the vertex cover problem in graph theory.
The bad news is that the problem is known to be NP-hard.
The good news is that we are still able to solve instances of
the problem for quite large data sets using a combination of
branch-and-bound and approximation algorithms.

For the experiments we have used SIFT [18] to gener-
ate correspondences. The motivation is that SIFT is widely
used which allows easier comparison to other work. How-
ever, as pointed out in [7], SIFT is actually not ideal for 3D
problems with occlusions and perspective changes. Hence,
we would like to compare the performance using other de-
scriptors. Moreover, many feature detectors are optimized
to give a high inlier-to-outlier ratio. Since our method can
handle large amounts of outliers, it would be interesting to
look more at the number of correct correspondences.



2. Problem Formulation and Related Work
Definition 1. A correspondence is a pair of indices (i, j) in-
dicating that point xi in the first set corresponds to point yj
in the second set. A correspondence is an inlier with respect
to a transformation T and a threshold ε, if d(yj , T (xi)) ≤ ε
and otherwise it is an outlier with respect to T .

Furthermore, two correspondences are inconsistent if
they match the same point in one point set to different points
in the other set. We want to solve the following problem.

Problem 1. For a prescribed threshold ε find the transfor-
mation T that maximizes |I|, where I is the maximal con-
sistent set of inliers to T .

For 3D-3D registration, the transformation T is just a
rigid transformation and the error residual is the geometric
distance. For 2D-3D registration, T is a rigid transformation
followed by a perspective mapping and the error residual is
the angular reprojection error, that is, the angular difference
between the measured image point and the reprojected 3D
point.

Pairwise constraints. We approach Problem 1 by con-
sidering pairs of correspondences. For each problem we
will show how to detect geometric inconsistency of such a
pair. Two geometrically inconsistent correspondences can-
not both belong to the optimal solution and hence we look
for large sets of pairwise consistent correspondences. In
general pairwise consistency is not sufficient, but we will
show how to get around this problem.

Assume we have established pairwise consistencies. We
then build a graph with all hypothetical correspondences as
vertices and edges connecting inconsistent ones. Clearly a
consistent subset according to Definition 1 cannot include
any edges. Thus the maximal subset of pairwise consistent
correspondences should be a good candidate for the opti-
mal solution. Finding this set is equivalent to removing as
few vertices as possible while covering all edges. This is
known as the vertex cover problem and one of Karp’s 21
NP-complete problems [14] presented in 1972.

Definition 2. A vertex cover for an undirected graph, is a
subset S of its vertices such that every edge of the graph has
at least one endpoint in S.

Problem 2. The vertex cover problem is the problem of
finding the smallest vertex cover for a given graph.

Related work. The idea of using vertex cover for find-
ing mutually consistent correspondences is not new in the
vision literature. One of the earliest work we have found
is [2] where it is used for 2D part location. Pairwise con-
straints are also discussed in [9]. In [22], an association

graph is built for 2D matching which results in a maximum
clique problem. This is an alternative formulation of the
same graph problem as ours. In [16], the registration prob-
lem was formulated in a graph setting, but solved using a
non-optimal spectral technique. Graph matching has also
been applied to non-rigid registration problems [21], which
are not considered in this paper. In [3], a branch-and-bound
algorithm over rigid transformations in the 2D plane is pro-
posed. This works well since the transformations have only
three degrees of freedom, but the approach becomes compu-
tationally infeasible for rigid transformations in 3D space.

For 3D-3D registration, the most popular class of meth-
ods are EM-type algorithms using alternating optimization,
such as ICP [1] and SoftAssign [8]. Other non-optimal
approaches include the Hough transform, geometric hash-
ing and hypothesize-and-test algorithms like RANSAC [6].
Recently, in [17], the problem was solved globally using
branch and bound in rotation space. The method requires
that all points are matched and that the translation compo-
nent is given, which are severe limitations so this is effec-
tively not solving the complete problem. We have compared
our algorithm to several of these competitors in the experi-
mental section.

For 2D-3D registration, the literature is more diverse.
There are several heuristic methods with no guarantee of
optimality such as [12, 19, 4] where RANSAC is perhaps
the most popular one [6]. In multiple view geometry, the
camera pose problem is often solved with DLT [10], but the
method cannot handle outliers among the correspondences.
Another class of methods is based on subdividing transfor-
mation space and aiming for global solutions such as [13]
using an affine camera model. Our approach is based on the
global method in [5], but we present a more sophisticated
tool for discarding outliers and show how to incorporate ori-
entation constraints.

Unlike many of the above mentioned methods, by using
pairwise constraints, it is possible to generate multiple hy-
potheses for a single point, but in the final solution, it is
guaranteed that no conflicting hypotheses are included. An-
other advantage is that it is possible to use extra information
from the feature extractor, for example the orientation.

3. Vertex Cover

We will review two classical approaches for solving the
vertex cover problem, namely the linear-time factor-2 ap-
proximation and a branch-and-bound approach [23]. These
methods will form the basis for our vertex cover algorithm,
specially designed for registration problems.

Factor-2 approximation. A factor-k approximation for a
minimization problem is an approximation that is guaran-
teed to give no worse than k times the optimal value. For



the vertex cover problem there is a well-known linear-time
factor-2 approximation. It is obtained by repeatedly picking
a random edge in the graph and then placing both its end-
points in the covering. Take for example the graph in Fig. 2.
We start by picking the edge between vertices 1 and 2, add
these vertices to our solution set and remove them from the
graph. In the next step we pick the edge between 4 and
5 and remove these two vertices. We have found a vertex
cover {1, 2, 4, 5}. This happens to be exactly twice as big
as the minimal vertex cover {2, 5}. Note that starting with
the edge between 2 and 5 would have yielded the optimal
solution.
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Figure 2. Example graph for vertex cover.

Branch and bound. Using branch and bound one can get
guaranteed optimal solutions to difficult problems like ver-
tex cover. Using the factor-2 approximation as bounding
function we get an effective method to remove incorrect cor-
respondences from our problem.

Assume that for some graph we want to determine
whether there is a vertex cover with less than n elements.
If a factor-2 approximation does not give a hard enough
bound, we pick a vertex v and split the problem in the
following way. Either (i) v belongs to the minimal vertex
cover, or (ii) v does not belong to the minimal vertex cover.

In the first case we remove v from the graph as well as
any edges to v. In the second case any vertices having an
edge to v must lie in the minimal vertex cover so we remove
these and update the graph. This gives us two smaller vertex
cover problems that can be approached in a similar fashion.
To quickly reduce the size of the graph we pick v to be the
vertex with most edges.

Multiple hypotheses. An advantage of our approach to
correspondence problems is that multiple hypotheses can
easily be incorporated, that is, several hypothetical corre-
spondences concerning the same point. To avoid getting a
solution where one point is matched to several points, we
simply add edges between any vertices (correspondences)
matching the same point. The set of vertices matching a
certain point will thus form a clique in the graph (Fig. 3).

3.1. An Algorithm for Vertex Cover

In general the vertex cover problem is very challeng-
ing, but what we have found is that the problems arising
from registration are often much simpler. This section will
describe an algorithm to solve such vertex cover problems
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Figure 3. Example graph with multiple hypotheses. Correspon-
dences matching the same point form a clique in the larger graph.

with good empirical performance. The algorithm is based
on two classical approaches to the vertex cover problem -
the effective factor-2 approximation and the guaranteed op-
timal branch and bound. By combining them, we get a
method which is fast but still robust enough for difficult reg-
istration problems.

The algorithm has two objectives. One is to find better
and better solutions and one is to remove outliers (incor-
rect correspondences). When all correspondences that have
not been removed are elements of an optimal solution the
algorithm has converged. Switching to graph terminology,
the first objective is to find smaller and smaller vertex cov-
ers and the second to prove for more and more vertices that
they must lie in the minimal vertex cover.

Algorithm 1. Vertex Cover

Let N be an upper bound for the minimal vertex cover.
Iterate until convergence:
1. Pick a vertex v from the graph.
2. Try to prove that v lies in the minimal vertex cover.

If this works
- Remove v and update the graph.

otherwise
- Find a vertex cover S with v /∈ S .
- If |S| < N , update N .

Removing vertices. LetN be the size of the smallest ver-
tex cover that we have found so far. Naturally the minimal
vertex cover S∗ satisfies |S∗| ≤ N . To prove that a certain
vertex v is an element of S∗, we use the following scheme.

1. Assume that v /∈ S∗. Then all vertices
having an edge to v must lie in S∗.

2. Remove these and update the graph.
The solution to the reduced problem is the
smallest vertex cover that does not include v.

3. Find a factor-2 approximation for the reduced problem.
If this is > N , reject the hypothesis that v /∈ S∗ and
remove v from the graph.

For many vertices it will not be necessary to use the factor-
2 approximation in step 3. Simply counting the remaining
vertices will be sufficient. Having multiple hypotheses for



each point it is even more effective to look at the number
of unique points that these remaining vertices match. This
also means that it is rarely necessary to actually set up the
complete graph.

Finding smaller vertex covers. To find smaller and
smaller vertex covers we use a simple heuristic that worked
well in the experiments. Given a vertex v that we cannot
prove to belong to the minimal vertex cover.

1. Assume that v /∈ S∗.
2. Remove all vertices that have an edge to v.
3. Repeat until no edges remain:

- Remove the vertex with most edges. Update the graph.
This yields a vertex cover for the graph.

4. Pairwise Constraints
In this section, the mechanisms for generating pairwise

correspondence constraints are described.

4.1. 3D-3D Registration

Consider two hypothetical correspondences (i, j) and
(m,n). If they are both correct then |xi − xm| = |yj − yn|
provided that there is no noise. This enforces that dis-
tances between corresponding points must be equal in the
two point clouds. Thus two inliers in the optimal solution
of Problem 1 must satisfy∣∣|xi − xm| − |yj − yn|∣∣ < 2ε, (1)

for noise threshold ε.
Note that a set of correspondences can be pairwise con-

sistent even though they are not consistent according to Def-
inition 1. To verify that a given set of correspondences is
consistent we instead use an approximate method to esti-
mate the transformation and then check that all correspon-
dences are consistent with this transformation. For the ex-
periments we used the method from [11].

This leads to a simple and straightforward algorithm for
registration, see Algorithm 2. In the experimental section,
we have tested the empirical performance on numerous of
real data sets and compared with other algorithms.

Algorithm 2. 3D-3D Registration

1. Compute all paiwise distances.
2. Solve the vertex cover problem using Algorithm 1.
3. Compute the transformation for the obtained inlier set.
4. Verify consistency.

This approach will give bounds on the optimal number of
outliers. The lower bound is the size of the minimal vertex

cover and the upper bound is the number of outliers to the
approximate transformation. As the experiments will show,
the gap between these bounds is often very small. Even so,
a method to reduce this gap is desirable.

Sufficiency. The error threshold of Problem 1 can be in-
terpreted as an uncertainty in one of the 3D models. In-
stead of a discrete position each point has a sphere of pos-
sible positions. Let us first assume that this uncertainty is
zero. We consider the inliers indicated by the minimal ver-
tex cover. We know that they are all pairwise consistent,
i.e. that all pairwise distances match. However, this means
that the transformation between the two point sets can be
described by a rotation, a translation and possibly a reflec-
tion.

This hints at a way of refining our search. By dividing
some of the point uncertainty spheres into smaller spheres
(or boxes) our bounds get harder. Each new smaller sphere
yields a new hypothetical correspondence. Since we can
already handle multiple hypotheses we can solve the refined
problem using Algorithm 2. In the limit we approach the
exact case when our constraints are sufficient - assuming
that we also check for the reflection.

If many divisions of this type have to be made, execution
will tend to get slow but the experiments suggest that this is
rarely the case.

Remark 1. In many applications, for example, 3D-3D
surface registration, there are also orientation constraints
available. Surface normals at corresponding points should
match. Given an angular threshold ε for consistency, such
constraints are trivial to incorporate and will (generally)
speed up the execution time of the algorithm since outliers
are easier to discard in the vertex cover algorithm.

4.2. 2D-3D Registration

In [5] a method to solve the 2D-3D registration prob-
lem with outliers was presented. The approach was based
on pairwise constraints combined with a branch-and-bound
search over the possible camera positions. It was shown
how this could be used to find the optimal camera pose from
a calibrated camera. As in the 3D-3D case, the suggested
pairwise constraints cannot guarantee convergence but [5]
showed how this can be handled. This paper contributes two
improvements to the method. Most importantly it is noted
that the subproblems given by the pairwise constraints are
instances of vertex cover and a method to efficiently handle
these instances is presented. Furthermore, in the appendix
it is shown how to incorporate orientation constraints in the
search.

Let us first briefly go through the algorithm. For a thor-
ough derivation, see [5]. Assume for a moment that we
have no noise and no false correspondences. Then, given



two correspondences (i, j) and (m,n) with 3D points Xi

and Xm and corresponding image vectors yj and yn, we
have

∠
(
Xi − C,Xm − C

)
= ∠

(
yj , yn

)
. (2)

This yields a constraint on the camera position C. On the
left hand side of this equation Xi and Xm are given by our
3D-model. On the right hand side we have the angle be-
tween two image vectors, which is simply a constant that
can be calculated from the measured image coordinates. We
denote it α.

We seek the pointsC in space that form exactly the angle
α with Xi and Xm. It turns out (see [5]) that they all lie on
a surface obtained by rotating a circular arc, see Fig. 4.
Moreover, any C̄ such that XiC̄Xm > α lies in the set
enclosed by this surface. We define

Mα(Xi, Xm) = {C ∈ R3 : XiCXm > α}. (3)

If α < π/2, this set will be non-convex and shaped like a
pumpkin.

Figure 4. Mα for angles less than (left) and larger than (right) π/2
respectively.

Now suppose (Xi, yj) and (Xm, yn) are two inliers each
having an angular reprojection error less than ε in the op-
timal solution, cf. Problem 1. Consider a box of R3. If
there exists a camera position C in this box such that the
correspondences are correct, then by the spherical triangle
inequality

α− 2ε ≤ ∠
(
Xi − C,Xm − C

)
≤ α+ 2ε . (4)

Checking whether there exists such a camera position C in
the box amounts to checking whether the pumpkins Mα±2ε

intersect the box. If the intersection is empty, an inconsis-
tency is obtained.

For a candidate box in R3 of camera positions, it is not
required that we solve the complete vertex cover problem
every time. Since we are performing branch and bound, it
is enough if we can get a bound on the number of possible
inliers. Algorithm 1 does indeed keep track of this bound.
The success of the registration algorithm is dependent on
discarding whole boxes at an early stage without having to

subdivide it many times. Another crucial factor is if we are
able to discard individual outliers early, because then we
will get smaller vertex cover problems when we subdivide
the box. See Algorithm 3.

Algorithm 3. 2D-3D Registration

Initialize to get a bounded set in R3.
Iterate until desired precision is reached:

1. Pick a box from the queue.
2. Set up a graph with all pairwise consistencies for this box.
3. Use the vertex cover techniques to discard the box.
4. If the box cannot be discarded:

- Use vertex cover techniques to remove outliers
- Divide the box and update the queue.
- Try to update the bound on the optimum.

6. Remove the box from the queue.

Remark 2. The constraints of the last section use the po-
sitions of image features to restrict on the camera position.
However, often the orientation of feature points is also avail-
able (e.g. from SIFT) and enforcing consistent orientations
as well will give harder constraints on the camera position
and make it easier to find the correct correspondences.

In Appendix A we derive an algebraic constraint to en-
force orientation consistency. To incorporate this in our op-
timization we reformulate Problem 1 slightly considering
the reprojection errors of the feature orientations as well.

5. Results
Simple C implementations of the algorithms were made

for the experiments. Execution times are for a computer
with a 3.0 GHz Intel DualCore CPU and 3 GB RAM.

5.1. 3D-3D Registration

We tried our algorithm on a 500-point 3D model of the
Stanford bunny (see Fig. 5). The same data set was used
in [17], but there the translation was assumed known and
only the rotation was estimated. To mimic the experiments
from [17] we computed a random rotation and translation
and added uniform noise of magnitude 0.1 to the trans-
formed points. The error threshold of Problem 1 was set
to 0.3 (approximately 1% of the bunny length). We then set
the algorithm to seek a solution matching at least 90 % of
the points. In all cases the optimal solution was found with
the basic Algorithm 2 without splitting any hypotheses.

In this experiment the total number of hypothetical cor-
respondences was 250 000 and the rate of true correspon-
dences 0.2%, since no correspondences were given and
hence all points were matched against all points.1 Our mean

1This means that a basic RANSAC algorithm would have required on
average 125 million iterations to converge.



Figure 5. Left: The Stanford Bunny used in the 3D-3D experi-
ments. Right: One of the images of the shopping street used in the
2D-3D experiments.

execution time was 0.77 seconds. Essential to get this low
average is that thanks to the bounding discussed in Section 3
we never have to set up the complete vertex cover graph.

The algorithm in [17] obtains similar results on this data
set as our algorithm, but they assume that the translation is
known and reported execution times are much higher. The
ICP and the SoftAssign algorithms [1, 8] work only when
the initial rotation is within an angle of less than 50 degrees
of the correct solution.

To get more realistic examples, the 3D-3D registration
algorithm was also tested on the data introduced in [15].
An example of those images is shown in Fig. 10. Three-
dimensional models were constructed from each stereo pair
in the training set. Then the registration was performed to
the two neighboring stereo pairs for each model. The bear,
ball, vase and Bournvita images were used.

To generate the 3D models the training images of the
data set were downsampled a factor four. Then SIFT fea-
tures [18] were extracted and matched for each stereo pair.
The matching was performed by comparing the ratio be-
tween the best and the second best match, as proposed by
Lowe, with a threshold at 0.6. To construct the actual 3D-
model, points were triangulated using the optimal method
described in [10]. Points with a reprojection error larger
than two pixels were removed.

In the matching between two stereo models all SIFT fea-
tures with a dot product greater than 0.75 were considered
to be hypothetical matches. This results in many multiple
hypotheses. The algorithm was set to seek a solution with
20 inliers. If none was found this number was divided by
two and the algorithm restarted. In all cases an optimal so-
lution was found and verified, but in a few examples we did
not prove uniqueness. This could have been done using the
refined algorithm discussed in Section 4.1.

In Fig. 1 a concatenation of two stereo models of the
bear is shown. In Fig. 6 the execution times for the model
concatenation is given for different ratio of outliers.

5.2. 2D-3D Registration

Recognition. Again, we worked with the data sets intro-
duced in [15], in this case, the bear and the Bournvita ob-
jects. Our aim was not a complete recognition system but
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Figure 6. Execution times for 3D-3D registration with 34 stereo
pairs from [15] versus the ratio of inliers. The bars show the mean
execution time and the numbers give the number of examples in
each interval. The optimal solutions have between 6 and 100 in-
liers.

rather to show that our algorithm is robust enough to work
with challenging real world data. It is also an example of
how to use an optimal algorithm to evaluate features for
recognition. Our goal is again to find the largest consis-
tent set of correspondences. The size tells how well the 3D
model matches the image.

First SIFT features were extracted from the test images.
The features were then matched to the stereo model with
most overlapping view as well as three other models, one
of the same object in a different view and two of another
object. The threshold of the ratio in the feature matching
was set to 0.8. Since we were interested in the recognition
problem, we ran the algorithm until we had tight bounds on
the optimal inlier set. Figure 9 shows the lower and upper
bounds in two examples. For all but one image the dif-
ference between lower and upper bound was ≤ 5 and in
this image there were between 252 and 270 inliers. The
error threshold used was 0.0015 radians. To initialize Al-
gorithm 3 we put a lower bound on the size of object in the
image yielding a bound on the distance from the camera to
the object.

The sizes of the inlier sets are presented in Figs. 7–8.
In 2 out of 22 bear images, there were less than 20 cor-
respondences in the optimal set when matched against the
bear stereo models. For the Bournvita images, all test im-
ages had optimal sets larger than 20 correspondences. There
was not a single case with more than 20 correspondences in
other cases. In Fig. 10 the 3D model is re-projected for one
of the test images in the data set.

The same setup was used in a RANSAC engine where
three points were randomly chosen to estimate the camera
position. After 10,000 iterations for each test image, 3 out
of 22 bear images did not get more than 20 inliers and 1
out of 9 images of the Bournvita objects. So RANSAC may
give lower number of correspondences in some cases but
more importantly, no bounds on the solutions are given.
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Figure 7. Size of the inlier sets for 22 bear images from [15]. Note
the axis. Matching these images to stereo models of the other ob-
jects gave inlier sets exclusively in the shaded area.
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Figure 8. Size of the inlier sets for the 10 Bournvita images from
[15]. Note the axis. Matching these images to models of the other
objects gave inlier sets exclusively in the shaded area.
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Figure 9. Upper and lower bounds for the solution as a function of
time in vertex cover algorithm. (Test images 15 and 16 from [15].)

Figure 10. A bear with the 3D model reprojected onto the image.

Shopping street. The 2D-3D registration was also tested
on a data set consisting of 94 images of a shopping street
covering approximately 100 meters. An example of these
images is shown in Fig. 5. On this data set both registra-
tion with and without the use of orientation constraints were
tested. To perform these experiments a model consisting
of 3D points and camera matrices were constructed using
Photo Tourism [20]. Then one image at the time was re-
moved from the model and the proposed method was used
to find the largest possible inlier set for that image. The
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Figure 11. Comparison with the method from [5]. Red rings show
execution times of [5] and blue stars show our result.
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Figure 12. Blue bars give the number of inliers when the angle
constraint is not used. The red bars give the number of inliers for
the same problem when the angle constraint is used.

method from [5] was also implemented and tested for com-
parison. Fig. 11 shows that our method scales in a much
more favorable way when the number of outliers increases.

The method using orientation constraints was also tested
on this data set. For each pair of images in the model the
points visible in both images were located. For these points
the orientation vector given by SIFT was reconstructed in
3D by intersecting planes. We then ran our 2D-3D reg-
istration algorithm with and without enforcing orientation
consistency. Figure 12 shows the number of inliers in the
two cases. It shows that the orientations given by SIFT are
indeed stable enough to use in such a setting. The error
thresholds used in this experiments were 0.005 for the posi-
tions and 0.2 for the less stable orientation vectors.

6. Conclusions

The vertex cover formalism is not a new idea for corre-
spondence problems, but it has previously only been used
with limited success. Even though it is an NP-complete
problem, we have shown that it is possible to achieve com-
petitive results with sophisticated use of approximation al-
gorithms in combination with today’s fast computers. For
several state-of-the-art methods, we have compared the per-
formance to our approach in terms of number of inliers and
running times with good results. For example, at high rates
of outliers we have demonstrated significant speedup com-



pared to [5] on real world data.

A. Orientation Constraints
In this section we derive the constraints for orientation

consistency in 2D-3D registration. This makes it possible
to incorporate orientation consistency into Algorithm 3.

Let Xi be a 3D point with orientation given by Vi and
and xi be the corresponding image point with orientation
given by vi. Ideally, the image orientation vector is the pro-
jection of the corresponding 3D orientation vector. Thus the
angle φ = ∠

(
vi, xj − xi

)
in the image is the projection of

Φ = ∠
(
Vi, Xj −Xi

)
.

To get a simple algebraic constraint, we place the ori-
gin at Xi and choose a coordinate system such that Vi
is parallel to (0, sin Φ, cos Φ) and (Xj − Xi) parallel to
(0,− sin Φ, cos Φ). In this coordinate system the orienta-
tion consistency yields an amazingly simple constraint on
the camera position. For a unit vector (x, y, z) parallel to
(C −X1), it follows

y2 + x2 cos2 Φ− sin2 Φ = |x| sin (2Φ) cotφ. (5)

Given a box in the branch and bound, (x, y, z) is known
within some angular uncertainty. This gives us,

c1x+ c2y + c3z ≥ 1. (6)

We are mostly interested in the boundary of this area. Using
the norm constraint on (x, y, z) we get

c23x
2 + c23y

2 + (c1x+ c2y − 1)2 = c23 (7)

which is a quadratic equation in x and y. Equations (5) and
(7) can be combined to one fourth degree polynomial in x.
Using this equation we can determine if any camera in the
current branch and bound box is consistent with this pair of
features.
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