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Abstract

This thesis deals with experimental tests and methods for strength analysis of glu-
lam beams with holes. Test results and methods for strength analysis available in
literature are compiled and discussed. The methods considered comprise both code
strength design methods and more general methods for strength analysis.

New strength tests of beams with quadratic holes with rounded corners are pre-
sented. The test programme included investigations of four important design para-
meters: material strength class, bending moment to shear force ratio, beam size and
hole placement with respect to beam height. One important finding from these tests
is the strong beam size influence on the strength. This finding is in line with previ-
ous test results found in literature but the beam size effect is however not accounted
for in all European timber engineering codes.

A probabilistic fracture mechanics method for strength analysis is presented.
The method is based on a combination of Weibull weakest link theory and the
mean stress method which is a generalization of linear elastic fracture mechanics.
Combining these two methods means that the fracture energy and the stochastic
nature of the material properties are taken into account. The probabilistic fracture
mechanics method is consistent with Weibull weakest link theory in the sense that
the same strength predictions are given by these two methods for an ideally brittle
material. The probabilistic fracture mechanics method is also consistent with the
mean stress method in the sense that the same strength predictions are given by
these two methods for a material with deterministic material properties.

A parameter study of the influence of bending moment to shear force ratio, beam
size, hole placement with respect to beam height and relative hole size with respect
to beam height is presented for the probabilistic fracture mechanics method.

Strength predictions according to the probabilistic fracture mechanics method is
also compared to the present and previous test results found in literature and also
to other methods for strength analysis including code design methods. The prob-
abilistic fracture mechanics method shows a good ability to predict strength, with
the exception of very small beams.

Keywords: glulam, hole, stress, strength, test, design, Weibull, fracture mechanics,
probabilistic fracture mechanics.
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Chapter 1

Introduction

1.1 Background

The mechanical properties of wood are very different for different orientations of
loading with respect to material direction. Wood is very weak when exposed to
tensile stress perpendicular to grain, the tensile strength perpendicular to grain
is only a few percent of the tensile strength parallel to grain. Due to the low
strength, special attention should hence be given when designing timber structures
in order to avoid or at least limit this type of stress. Fracture caused by tension
perpendicular to grain commonly has a brittle course which emphasizes the need for
careful design considerations even more. Avoiding tension perpendicular to grain all
in all when designing is not a trivial task. There are a number of common and in
many respects appealing technical solutions that however introduce risk of fracture
due to perpendicular to grain stresses. Three such examples are shown in Figure 1.1;
a beam with a hole, an end-notched beam and a curved beam. There are also other
possible causes for perpendicular to grain stresses, for example various types of joints
and development of an uneven moisture content due to variations in temperature
and relative humidity.

Introducing a hole through a beam drastically changes the stress state and re-
duces the strength significantly due to the high perpendicular to grain tensile stresses
and shear stresses appearing in the vicinity of the hole. It is however sometimes nec-
essary to make holes through glulam beams, for example for installations as can be
seen in Figure 1.2.

Beam with a hole End-notched beam Curved beam

(eI D e DL )

Figure 1.1: Structural timber elements with perpendicular to grain tensile stresses.




Figure 1.2: Examples of structures with glulam beams with holes. Indoor swimming
pool, Visteras, Sweden (with permission for Martinssons Trd AB) and Restaurant
Ideon, Lund, Sweden.

There are several available methods for rational strength analysis when it comes
to timber engineering. Timber is in many aspects a complex construction mate-
rial which is partly due to the anisotropic properties and the large differences in
strength between loading modes. The choice of method for strength analysis de-
pends on the application. Assumptions and simplifications for a certain method and
material model may be acceptable for some applications but may for other cases
lead to unreliable results if the analysis is possible to perform at all. A distinction
can be made between deterministic and stochastic material models. In the deter-
ministic models, wood is viewed as a homogeneous material with the same material
properties in all points. In the stochastic models, the natural heterogeneity due to
knots and other defects is considered by some type of statistical measure. For both
deterministic and stochastic models, another distinction can be made concerning
whether the material strength is assumed to have a finite or an infinite value. Dis-
tinctions between different models can also be made based on properties of fracture
energy, where the material can be assumed to be either ideally brittle (zero fracture
energy) or be assumed to show fracture ductility (nonzero fracture energy). Based
on the distinctions mentioned above, various kinds of methods for rational strength
analysis of timber elements can be categorized as in Table 1.1.

There are also other types of methods which do not fit in the categorization
presented here, for example empirically based methods. Such methods are here
defined as a method where empirical relations between material-, geometry-, load
parameters and load carrying capacity are established based only on experimental
tests. This type of method is to be considered as a last resort when more rational
methods, such as the ones presented above, are not useful for some reason. Empirical
and semi-empirical methods are found in various codes and handbooks as will be
shown below. Among the methods presented here, the applicability for strength
analysis of glulam beams with holes varies.



Table 1.1: Methods for rational strength analysis in timber engineering.

Deterministic Stochastic
(homogeneous strength) (heterogenous strength)
finite material infinite material finite material infinite material
strength strength strength strength
Ideally Conventional - Weibull weakest -
brittle stress analysis link theory
With Generalized Linear elastic Probabilistic Probabilistic
fracture linear elastic fracture mechanics generalized linear elastic
ductility | fracture mechanics linear elastic fracture mechanics
fracture mechanics
Nonlinear
fracture mechanics Probabilistic
nonlinear
fracture mechanics

Looking at the literature concerning the strength of glulam beams with holes,
it can be seen that several experimental and theoretical investigations have been
carried out within this field over the last decades. A brief summary is given below
while a more comprehensive literature review, focusing on experimental tests but
also relating to methods for strength analysis, is presented in [7]. This report is
published separately but is however also a part of this thesis.

Among the early work within the field, contributions concerning experimental
tests were presented by Bengtsson & Dahl [4] 1971, Kolb & Frech [18] 1977 and Pent-
tala [20] 1980. Rather comprehensive experimental investigations and also different
methods for strength analysis were presented by Johannesson [17] 1983. Based
on the test results, an empirical method for strength analysis was proposed and
this method is now one of the two methods found in the Swedish design handbook
Limtrahandbok. This method is presented in Section 3.3. Theoretical investigations
presented by Kolb & Epple [19] 1985, partly dealt with stress analysis of beams with
holes and a design method was presented. The design procedure in the German code
DIN 1052, which is presented in Section 3.4, is based on this method.

From the 1990’s and forward, much of the theoretical work have focused on
approaches based on fracture mechanics. Various fracture mechanics methods have
been investigated and contributions within this field are for example presented by:
Pizio [22] 1991, Hallstrom [15] 1995, Riipola [24] 1995, Aicher, Schmidt & Brunhold
[1] 1995, Petersson [21] 1995, Gustafsson, Petersson & Stefansson [13] 1996, Scheer
& Haase [25] and [26] 2000 and Stefansson [28] 2001.

The studies presented by Hofflin [16] 2005 and Aicher & Hofflin [2] 2006 deal
with the strength of glulam beams with circular holes and are two of the most recent
and also two of the most comprehensive studies. Substantial test programmes were
carried out including investigations of influence of beam height, relative hole size and
bending moment to shear force ratio. A design method based on Weibull weakest
link theory was also proposed. This method is presented in Section 3.5.



The study presented by Rautenstrauch, Franke and Franke [23] 2007 deals with
the strength of glulam beams with rectangular or circular holes. Contact-free mea-
surements by so called close range photogrammetry was used to measure the strain
field in the vicinity of the holes.

One of the most important overall aims of timber engineering research is to in-
corporate findings in design codes and handbooks since they are the everyday tools
used by practising structural engineers. Looking at design recommendations for glu-
lam beams with holes in European timber engineering codes and handbooks over
the last decades, it can be seen that the issue has been treated in many different
ways. The theoretical backgrounds on which the recommendations are based show
fundamental differences and both empirically based methods and more rationally
based methods are found. In spite of the research effort in this field, there are
still major discrepancies between the predicted strengths according to the different
codes and also between codes and experimental test results. This reflects the lack
of knowledge in the area which is further emphasized by the fact that the contem-
porary version of Eurocode 5 [8] does not state any equation concerning design of
glulam beams with holes and the design recommendations for glulam beams with
rectangular holes were withdrawn from the German code DIN 1052 [5] during 2007.

1.2 Problem statement

The lack of reliable design recommendations in European timber engineering codes
reflects the insufficient knowledge of the strength of glulam beams with holes in
particular and of fracture caused by high perpendicular to grain stresses in general.
The assumption of a homogeneous and ideally brittle material behavior commonly
adopted in timber engineering seems to be inadequate for strength predictions of
glulam beams with holes.

1.3 Aim and objectives

The aim of the work presented in this thesis is to develop a probabilistic fracture
mechanics method for strength analysis of glulam beams with holes, taking into
consideration the nonzero fracture energy of the material and also accounting for
the heterogeneity in material properties. The method derived and implemented
here is based on the so called mean stress method (generalized linear elastic fracture
mechanics) and Weibull weakest link theory. The specific objectives are to deter-
mine influence of four important design parameters on the strength according to
the probabilistic fracture mechanics method and to evaluate the correlation with
experimental test results. The considered design parameters are:

e Bending moment to shear force ratio

e Beam size

e Hole placement with respect to beam height

e Relative hole size with respect to beam height



1.4 Research approach and limitations

The research approach adopted in the work presented in this thesis can in general
terms be described as development of a rational method for strength analysis which
is based on (and consistent with) established theories relating to strength analysis.
The method is then evaluated by comparison to previous and new experimental test
results.

The probabilistic fracture mechanics method presented in this thesis is founded
on a combination of Weibull weakest link theory and the so called mean stress
method. Weibull weakest link theory is often put forward as an explanatory theory
for the well known size-strength dependency found for various applications within
timber engineering. The mean stress method is based on a generalization of linear
elastic fracture mechanics. Different approaches based on fracture mechanics have
over the last decades received increasing interest within the timber engineering re-
search community and are generally believed to have great potential for applications
where failure is caused by high perpendicular to grain tensile stresses.

In order make a thorough evaluation of the purposed method, comparison to a
wide and reliable base of experimental tests results is needed. There are however
a number of problems related to this. Costly and time consuming full-scale experi-
mental tests are needed since model-scale testing generally are of little value due to
the strong size-strength dependency. Another issue is the relatively high variability
which is characteristic to timber as a material. The strength is further dependent
on many different parameters relating to beam geometry, material properties and
loading conditions. Based on time and economical considerations, the number of
nominally equal tests within a test series needed for reliable results stands against
the number of parameters that can be investigated. For the tests presented in Paper
A, four nominally equal tests were used in each test series and four design param-
eters were (to various extent) investigated in the study. The comparisons between
different test results and also between the proposed method and test results are
partly based on results presented in [2] and [16]. There are some inevitable epis-
temic risks involved with using test results from other sources. The tests are in these
two studies are however very well documented.

The four design parameters mentioned in Section 1.3 are consequently considered
regarding experimental tests, design codes and also the computational parameter
study. This is not to say that these parameters are the most important ones, or
that other parameters are unimportant, but the work presented within this thesis
has been limited to these four design parameters. The computational parameter
study does furthermore comprises material parameters of the present probabilistic
fracture mechanics method. The aim with the work presented is not to propose a
design method suitable for design codes but rather to increase the knowledge of the
strength of glulam beams with holes and to investigate the possibilities with the
proposed method.



1.5 Structure of thesis

This thesis consists of this main report and a separately published report [7]. The
thesis is structured in the following way:

Chapter 1 - Introduction

Chapter 2 - Strength tests of glulam beams with holes
Strength tests of glulam beams with quadratic holes are presented and compared to
test results of previously performed tests.

Chapter 3 - Code design methods for glulam beams with holes
Design methods according to some European timber engineering design codes are
review and compared.

Chapter 4 - Weibull weakest link theory
The basics of Weibull weakest link theory are presented and some comments on
influence of volume and heterogeneity in stress distribution are given.

Chapter 5 - Fracture mechanics
The basics of linear elastic fracture mechanics and generalized linear elastic fracture
mechanics, in particular the mean stress method, are presented.

Chapter 6 - A probabilistic fracture mechanics method — PFM
A probabilistic fracture mechanics (PFM) method based on Weibull weakest link
theory and the mean stress method is derived and illustrated.

Chapter 7 - Implementation of the PFM method
An implementation of the PFM method based on finite element stress analysis and
numerical integration of stresses is presented.

Chapter 8 - Parameter study and verification
A parameter study and verification concerning design parameters is presented for
the PFM method. The study also comprises experimental tests.

Chapter 9 - Concluding Remarks
Some concluding remarks concerning the strength of glulam beams with holes and
the PFM method are given.

Paper A
A detailed description of the strength tests of beams with quadratic holes.

Paper B
CIB-paper concerning the strength tests of beams with quadratic holes, literature
test result compilation and also comparison between tests results and design codes.

Paper C
Journal-paper concerning the probabilistic fracture mechanics method.

Separately published report
This report holds a literature review focusing mostly on experimental tests but also
relating to methods for strength analysis.



Chapter 2

Strength tests of glulam beams
with holes

2.1 General

There are numerous experimental investigations found in literature concerning the
strength of glulam beams with holes. The experimental test results published by the
authors mentioned in Chapter 1 prior to 2007 are reviewed in [7| and a compilation
of the results is also found in Paper B. Although these tests all in all represent much
work the review reveals that important parameters such as mode of loading, beam
size and hole placement with respect to beam height have often been varied only
within a very limit range. It seems for example that all beams tested have had a
hole centrically placed with respect to beam height.

2.2 Tests of glulam beams with quadratic holes

With the aim of widening the experimental data base, tests of beams with quadratic
holes were carried out at Lund University during the spring of 2008. The test
programme consisted of nine test series with four nominally equal tests in each series.
Four design parameters were investigated; material strength class, bending moment
to shear force ratio, beam size and the previously overlooked design parameter hole
placement with respect to beam height.

Test setups and hole placements with respect to beam height used in the test
series are illustrated in Figure 2.1. Two different test setups were designed in order
to investigate the influence of bending moment to shear force ratio. Three different
hole placements were tested in test setup 1 in order to investigate the influence
of hole placement with respect to beam height. The influence of beam size was
investigated by scaling all in-plane dimensions while the out-of-plane dimension was
constant. Two different beam cross sections (7' x H = 115 x 180 and 115 x 630
mm?) were used for test setup 1 and all three hole placements with respect to beam
height. The material strength class GL 32h was used for all test setups and all hole



placements. For test setup 1 with a centrically placed hole, beams of the Swedish
material strength class L40 were also tested. All holes were quadratically shaped
with rounded corners. The side lengths of the holes were a« = b = H/3 and the
corner radius was r = 7 mm for H = 180 mm and r = 25 mm for H = 630 mm.

A more thorough presentation of the tests is given in Paper A and Paper B where
density, moisture content, test procedure, recorded load levels and other character-
istics of the tests are given. The findings concerning the four investigated design
parameters are here summarized only in general terms:

Material strength class
There was no significant difference in strength between the different material strength
classes. The results of these two test series are however comparatively scattered.

Bending moment to shear force ratio
The beams with holes placed in a position of zero bending moment show on average
slightly higher capacity compared to the beams with holes placed in a position of
combined bending moment and shear force.

Beam size
The test results indicate a strong beam size effect on the strength. Increasing the
beam size by a factor 3.5 gave about 30-35 % reduction of nominal capacity.

Hole placement with respect to beam height
Slightly lower capacities were found for the beams with eccentrically placed holes
compared to the beams with centrically placed holes.

V=P 2P
‘M=2HP
Test setup 1 y
MI(VH) =2
Som !
2H 2H 4 T
ﬂb ﬂb * * %
P V=P op
¢ M=0
Test setup 2 y
MI(VH)=0
W T o 2H o o T
" " £ f ¥
_Middle s=0 Upper s = H/6 Lower s = -H/6
,,,,,,,,,,, r, a HI2
Hole size =~ || 7 b T 12 777777777 S+ i
and placement , a

r - |
alg

Figure 2.1: Test setups, hole size and placements with respect to beam height.



2.3 Comparison of test results

In order to relate the tests of beams with quadratic holes to previously performed
tests on glulam beam with holes, test results concerning the four design parameters
stated in Section 1.3 are presented: bending moment to shear force ratio, beam size,
hole placement with respect to beam height and relative hole size. These design
parameters are also the ones considered in Chapter 3 and Chapter 8.

The comparisons are based on the results of the tests of beams with quadratic
holes (quadratic marks and solid lines) and on the results of beams with circular
holes presented by HofHlin [16] and by Aicher & Hofflin [2] (circular marks and dashed
lines). The nominal shear strength V./A,.; given in the figures relate to the mean
strength values of the test series where each test series consists of 4-6 individual
tests. The value of shear force V, is that at the instant of crack development across
the entire beam width. A,,.; refer to the beam net cross section area at hole center
and ¢ is the hole diameter for circular holes. All test results relate to beams of
material strength class GL 32h. Lines connecting two or more marks indicate that
these test series are identical concerning the four parameters considered here, except
the particular parameter illustrated in the respective figures.

Since there seems to be no previous tests of beams with eccentrically placed holes
with respect to beam height, the comparison of test results for this design parameter
is only based on the tests of quadratic holes presented in the previous section. These
tests do however not include any study of the influence of relative hole size, and this
comparison is hence only based on the previously performed tests.

As illustrated in Figure 2.2, the influence of the bending moment to shear force
ratio seems to be rather small. The test results suggest only a small decrease in
strength with increasing bending moment to shear force ratio. Concerning beam size,
illustrated in Figure 2.3, the test results indicate a strong influence. For uniformly
scaled in-plane dimensions and constant out-of-plane dimensions, the beam size
effect can be expressed according V,/Ane ~ (H?)~/™. The parameter m describes
the beam size effect and can be determined from two test series of different scales.
The values of m are for the nine pair of test series given in Figure 2.3. As an
example, m = 4 corresponds to V./A,e ~ 1/ VH. Note that this definition of m
differs from the definition in Paper B. As illustrated in Figure 2.4 and mentioned
in the previous section, the tests of beam with quadratic holes indicate somewhat
lower strength for beams with eccentrically placed holes. Concerning the relative
hole size, illustrated in Figure 2.5, the test results seem to indicate a small decrease
in strength considering the nominal shear strength V. /A,,.;. Considering the absolute
values of the shear force V, and constant beam cross section, the strength decreases
significantly with increasing hole size.

Among the presented results, there is one test series with a surprisingly low
strength and there seems to be no obvious explanation for it. The mean strength
of this test series is lower than the strength of the test series with the same beam
cross section and bending moment to shear force ratio but with a larger hole. This
deviating test series is in the figures indicated by a filled mark.
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Chapter 3

Code design methods for glulam
beams with holes

3.1 General

Looking at design recommendations for glulam beams with holes in European timber
engineering codes and handbooks over the last decades, it can be seen that the issue
has been treated in many different ways. The theoretical backgrounds on which the
recommendations are based show fundamental differences and there are also major
discrepancies between the strength estimations according to the different codes as
well as between tests and estimations according to codes. Finding a simple, general
and reliable method for design of glulam beams with holes seems to be a difficult
task which is reflected in several ways:

e The contemporary version of Eurocode 5 [8] does not state any equation con-
cerning design of glulam beams with holes although it was included in a pre-
vious draft version of the code [9].

e The recommendations in the German code DIN 1052 [5] concerning rectangular
holes were withdrawn during the fall of 2007 since they were believed to lead
to unsafe design.

e The Swiss timber design code is currently under revision and the design ap-
proach for glulam beams with holes is likely to be altered [29].

e The fact that empirical and semi-empirical methods play an important role in
contemporary design codes shows the need for further development of methods
for strength analysis.

Some of the design recommendations which are found or have been found in
European timber design codes are reviewed in the following sections. There are in
general some basic rules concerning for example hole placement, maximum allowed
hole sizes and corner radius for rectangular holes and so on that need to be fulfilled.

13
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Examples of these are presented in Table 3.1 and Figure 3.1. It is generally recom-
mended to place the hole in the neutral axis of the beam. This is probably partly
because it is believed to give the highest capacity and partly due to the fact that,
with exception of recent tests performed at Lund University, all previous tests seem
to have been performed on beams with holes placed in the neutral axis [7].

Table 3.1: Regulations concerning hole geometry and placement.

Limtréhandbok [6] DIN 1052:2004 [5]
L - > 0.5H
ly - >H
l, >H > H and > 300mm
” > 0.15H > 0.256H
hy > 0.15H > 0.25H
a < 3b <H
bor ¢ <0.5H <04H
r > 25 mm > 15 mm
[, Iy
(O K —
hl(
o inzile o
hy
AN VAN

plfaltlal | 7] I A A )

Figure 3.1: Notations for regulations concerning hole geometry and placement.

3.2 Draft version of Eurocode 5

As mentioned earlier, there are no design recommendations stated in the contem-
porary version of Eurocode 5 [8]. In a previous draft version of the code from 2002
[9] there is however a section on design of glulam beams with holes. The method
stated is the same as the "end-notched beam” analogy method in Limtrahandbok.

3.3 Swedish handbook - Limtrihandbok

Limtréhandbok (Glulam Handbook) [6] is not an official Swedish code but rather
a tool for recommendations concerning design of glulam structures. Two different
methods for design of glulam beams with holes are stated in the handbook; an em-
pirically based method and a method based on estimations by means of comparison
with fracture mechanics analysis of end-notched beams.
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Method 1 - Empirically based design

This method was originally proposed by Johannesson [17] as a simple but rather
crude estimation of strength for glulam beams with holes. The method is based on
short term loading tests of some 50 beams with more or less the same beam cross
section (90x500 mm?). Beams with holes of various geometries were tested, with all
holes placed centrically with respect to beam height. The design criterion consists
of a comparison of shear stress 7 and a reduced shear strength f, ,.q according to
Equation (3.1). The shear stress 7 is due to the shear forces V; where index i
indicates that either the upper (u) or lower (1) part of the beam is considered. The
total shear force at hole center V' can be divided between the upper and lower part
based on the relative stiffness but V;,; = V,, + V; must of course always hold. The
shear strength f, is reduced by the factors k., and k.. accounting for a beam width
effect (but no beam height effect) and an influence of hole size respectively. There
is also a comment found relating to design with respect to bending moment of the
net cross section but the description of how this should be done is rather unclear.
Definitions of loads and geometry parameters are shown in Figure 3.2.

3V
T = 2Th < fored where index ¢ = u or [ (3.1)
fv,red = kvolk'holefv
koot = ( ) for 90 < T < 215 mm
1 —555(D/H)* for D/H < 0.1
khole = 1.62
for D/H > 0.1
As+pjmEe ‘orbH>
D — Va2 + b2 for rectangular hole
n o for circular hole
i Vaon
o : AN
Ap C el Aap Coeih B
l W 1 Veom|

al2 | al2

LTl

Figure 3.2: Notations for design according to method 1, Limtrdhandbok.
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Method 2 - ”End-notched beam” analogy

There is also another method suggested for design of glulam beams with holes placed
in a shear force dominated region presented in Limtrahandbok. This method is based
on the assumption that the stress distribution in the vicinity of a hole is rather alike
the stress distribution in an end-notched beam. Hence, the design method for end-
notched beams can be used in a slightly modified way. The original method for end-
notched beams is derived in [10] and based on a fracture mechanics approach. As for
the empirically based method, the design criterion formally reads as a comparison of
shear stress 7 and a reduced shear strength f, s according to Equation (3.2). Both
corners with perpendicular to grain stresses must be checked. The shear strength f,
is reduced by the factor k, in analogy with the strength reduction for a corresponding
end-notched beam. A rectangular hole is assumed to correspond to a right angled
end-notch while a circular hole is assumed to correspond to a 1:1 tapered end-notch.
Influence of possible bending moment is not considered in method 2 and neither in
method 1. Definitions of loads and geometry parameters are shown in Figure 3.3.

3V . .
T S Th = fored where index i = u or [ (3.2)
fv,red = kva
(1.0

1'1'1.5
6.5 <1+ 2 )
k, = min Vh
1
\/ﬁ(\/a—a2+0.8% ——a2>
a
\

h=h;+b/2 [mm]

. |0 for rectangular hole
77 1.0 for circular hole
_f a)2 for rectangular hole
10 for circular hole
A e
(T: ' b2 l‘) (T CON 92 l‘) b
bzl N, 92
i wl [iom

al2 | al2 $/2|¢/2 T

Figure 3.3: Notations for design according to method 2, Limtrdhandbok.
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3.4 German code - DIN 1052

Design of glulam beams with holes is treated rather differently in the German code
DIN 1052 [5] compared to the two methods in Limtréhandbok. The German method
can be referred to as a semi-empirical method since it is partly based on analysis
of the stress field in the vicinity of the hole and partly based on results from ex-
perimental tests. The method is based on the work presented in [19]. The design
criterion is a comparison between tension stress perpendicular to grain and perpen-
dicular to grain tensile strength according to Equation (3.3). The perpendicular to
grain tension force F; gy consists of contributions due to shear force V' (Fy) and
bending moment M (F} ) and both sections 1 and 2 should be checked. The per-
pendicular to grain stress is assumed to have a triangular shaped distribution over
a length [, 99. Definitions of loads and geometry parameters are shown in Figure
3.4. As mentioned earlier, the design recommendations for rectangular holes were
withdrawn during the fall of 2007 since they were believed to lead to unsafe design.

(3.3)

‘/i 2
Foyv = 4; (3 — %) where index ¢ = 1 or 2
M; : .
Fov = 0.00Sh— where index 7 = 1 or 2
for rectangular holes: for circular holes:
lt790 = O5(b + H) lt790 - O353¢ + O5H
x =0 x = 0.7¢
. Iy . hy 4+ 0.15¢
h, = min { hy h, = min { hy + 0.15¢

vlz,9ol
(1

A

Figure 3.4: Notations for design according to DIN 1052.
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3.5 Design proposal by HofHin and Aicher

A design proposal for glulam beams with circular holes based on Weibull weakest
link theory is presented in [16] and [2]. The design criterion is stated in Equation
(3.4) as a comparison of maximum perpendicular to grain tensile stress oy g9 and the
perpendicular to grain tensile strength f; go. In accordance with Weibull weakest link
theory, the strength is modified depending on the size of the stressed volume and
on the level of heterogeneity in the stress distribution. The stress distribution, the
magnitude and location for the maximum tensile stress o, 9o were for different types
of loading (for different relations between shear force V' and bending moment M)
investigated by 2D plane stress finite element analysis. Based on this analysis, the
below stated expression for the maximum perpendicular to grain tensile stress oy go
was assumed to be a good approximation for a general case. The choice of volume
for integration of stresses is not obvious but based on the finite element analysis,
the volume () according to Figure 3.5 was chosen. Considering only this volume, the
level of heterogeneity of the stress distribution (described by the distribution factor
kais = 0190/ 0wei) Was determined for various relations of shear force V' and bending
moment M. The strength is further modified depending on the relation between the
reference volume €,y and the considered volume 2.

Do 1/5
o190 < ft,QOkdisC( 0 > (3.4)
3V o\ 0.6M ¢
= 2 (1234082~ -
7190 2TH( 3108 H)+TH2H
1.79 for 0< M/(VH) <2
P 1.83 for M/(VH) =
dis T ) 1.88 for M/(VH) =10

2.04 for M/(VH) =0

c = 1.16 empirical calibration factor
Qey = 107 reference volume [mm?|

Q = ¢/2(¢/2c0820° — ¢/2c0s80°) T = 0.1915¢°T  [mm®]

\:‘; N B

o2 Lr]

Figure 3.5: Notations for design according to H6flin’s proposal.

Z




19

3.6 Comparison of code design methods

To make a simple comparison of the predicted strengths according to the different
methods, influence of four design parameters stated in Section 1.3 are illustrated
in Figure 3.6. The comparison is based on a reference beam with cross section
T x H = 120 x 450 mm?, a circular hole of diameter ¢ = 0.3H placed with its
center in the neutral axis (s = 0) and in a position of bending moment to shear
force ratio of M/(VH) = 1.5. Characteristic shear strength f,; = 3.8 MPa and
characteristic perpendicular to grain tensile strength f; g0, = 0.5 MPa (based on
values for GL 32h stated in [27]) are used for the comparison. In the graphs a)-d);
one design parameter is varied while the others are kept constant and V/A,,.; refers
to the characteristic nominal shear stress at failure. It is worth pointing out that
the strong beam size effect suggested by test results, shown in Figure 2.3, is not
taken into account in design of glulam beams with holes according to DIN 1052 and
method 1 in Limtrahandbok.

3 3
= a) = b)
o Limtréhandbok — method 2 o \ Limtréhandbok — method 2
= 2.5F =250
g g
< | < . R
3 2 S 2 Hofflin/Aicher
ES ES
g 1.5¢ g 1.5r
g~ g~
7 DIN 1052 ® DIN 1052
fé‘ 1t Hofflin/Aicher § 1t
T(g Limtrahandbok — method 1 T(: Limtrahandbok — method 1
[ = f=
‘€ 0.5- ‘€05
o o
4 z
0 L L L L 0 L L L L
0 2 4 6 8 10 0 200 400 600 800 100
Bending moment to shear force ratio M/(VH) [-] Beam height H [mm]
3 3
— |9 — |9
g Limtrahandbok — method 2 g Limtrahandbok — method 2
225 ... T ] 225
< L < L
3 2 S 2 DIN 1052
s =
245l 215}
g~ g
@ | Hofflin/Aicher DIN 1052 2
8 1 8 1 HGTfin/Aicher
r—wu Limtrahandbok — method 1 % Limtrahandbok - method 1
c
E 0.5 €05
[=] o
z 2
L L L L L 0 Il Il L L
-0.2 -0.1 0 0.1 0.2 0 0.1 0.2 0.3 0.4 0.5
Position of hole center relative to neutral axis s/H [-] Relative hole size @/H [-]

Figure 3.6: Influence of design parameters a) bending moment to shear force ratio,
b) beam size, ¢) hole placement with respect to neutral axis and d) relative hole size
on the characteristic strength of glulam beams with holes according to codes.






Chapter 4

Weibull weakest link theory

4.1 General

The Weibull weakest link theory [30] enables a probabilistically based approach to
strength analysis. This means that the probability of failure at a certain state of
stresses for a certain volume of a material can be determined with knowledge of
the magnitude and the scatter of the strength of the material. The global strength
perpendicular to grain is for wood strongly dependent on the size of the stressed
volume, the larger the volume the more likely it is that severe defects are present in
the volume and thereby reducing the strength. This makes the theory very useful
for timber applications considering the heterogeneity of the material due to annual
rings, knots and other defects. The material is assumed to be ideally brittle and
since structural failure due to tensile stresses perpendicular to grain or shear stresses
parallel to grain commonly has a brittle course (although the material is not ideally
brittle) the theory may appear appropriate for analyzing perpendicular to grain
tensile failure. A general drawback of the Weibull weakest link theory is that it can
not be applied to strength analysis of structural elements with a stress singularity
caused for instance by a crack or a sharp corner [11].

The basic assumption in Weibull weakest link theory is, as the name suggests,
that global failure occurs when the strength of the weakest link is reached. The
theory can be derived considering a system of links loaded in tension and a general
body loaded in tension according to Figure 4.1.

i=1 i=2 i=

3 i=n
0 ~a— O — 0

Q

Figure 4.1: System of n serial coupled links and volume §2 loaded in tension.

21



22

Considering the system of n links coupled in series and loaded by a tensile stress
o, the probability of global survival S is

S — 51525«3.”8” — 61n51+ln52+1n53+...+1n5'n — ezi:l In S; (41)

where S; is the survival probability for link ¢, which is a function of the stress o;. Note
that the stress o; may be different for different links although the simple illustration
in Figure 4.1 suggests equal stress in all links. Assuming statistically equal properties
for all links, the survival probability S; can for all links be expressed as a function
g = g(o;) according to

S; = e~9(@) or InS; = —g(o;) (4.2)

where g(o;) is a monotonically increasing function, referred to as the material func-
tion, that defines the strength properties of the link. The global failure probability
F of a chain with n links is then found to be

F=1-8=1-—¢xiz1790) (4.3)

Moving from a chain with n links to a body or material volume 2 made up of
n = Q/AQ smaller volumes A2 and then letting AQ — df2, the probability of global
failure is found to be

F o= 1—6_/99(0) - (4.4)

where there are two suggestions for the material function g(o)

2-parameter model: glo) = (i) (4.5)
00
(0_0u> for o > o,
3-parameter model:  g(o) = 70 (4.6)
0 for o < o0y,

where o is the stress in the body and where o¢, 0, and m relate to the magnitude
and scatter in the strength of the material. These three parameters are often referred
to as the scale parameter og, location parameter o, and shape parameter m. The
failure probability distribution and density functions for a stress ¢ in a unit volume
dS) are illustrated in Figure 4.2 for the 2- and 3-parameter models for some different
values of the shape parameter m.
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Figure 4.2: Failure probability distribution (F =1 — e¢™9)) and density functions.

4.2 Volume and stress distribution effects

According to Weibull weakest link theory, there is a volume influence as well as an
influence of the heterogeneity of the stress distribution on the probability of global
failure. The global strength of a body is not only dependent on the value of the
stress in the most stressed point but also on the distribution of stresses and the
stressed volume. The influence of volume and stress distribution can be investigated
by assuming equal probability of failure for bodies of different volume and/or with
different stress distributions. According to Equation (4.4), the condition for equal
probability of failure for body 1 with stress o, and body 2 with stress o5 is

/ g(on) dQ = / 9(0) d9 (4.7)
Q1 QZ
which for the 2-parameter model according to Equation (4.5) gives

o 0o Qs 00

The volume and stress distribution effects can be established by considering the
different cases concerning volume and stress distribution according to Figure 4.3.

reference case case A general case
y
Qref - Q > Q  —_— z }*x
0(X,3,2) = Oper o(x,,z) = o4 6(xX,),2) = Cpmax MX,Y,2)

Figure 4.3: Considered cases for illustration of volume and stress distribution effects.
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In the reference case, a body of volume €2,.f is exposed to a homogeneous stress
distribution o(x,y,2) = o,r. In case A, a body of volume  is exposed to a
homogeneous stress distribution o(z,y,2) = 0. In the general case, a body of
volume (2 is exposed to a heterogeneous stress distribution o(x, y, 2) = ez A(T, Y, 2)
where \(z,y,2) = o(2,Y,2)/0ma and hence 0 < A(z,y,2z) < 1. Consider now a
large number of nominally equal bodies and describing the mean strengths related
to the three cases by the mean values of the stress in the most stressed point (o,
o4 and 0y,4,) at failure. These mean strengths are denoted f,.r, f4 and f for the
reference case, case A and the general case respectively. The influence of volume
and heterogeneity in stress distribution on the mean strength can then be derived
by assuming equal probability of failure according to Equation (4.8) for two of the
cases in Figure 4.3.

Pure volume effect

The influence of stressed volume on the strength is found by comparing the reference
case and case A which both have a homogeneous stress distribution but different
volumes. The influence of the volume on the strength is found to be

—1/m
fA = fref <Q£f) (49)

which shows that the theory predicts decreasing strength with increasing volume.

Pure stress distribution effect

The influence of a heterogeneous stress distribution is found by comparing case A
and the general case which both have a stressed volume 2 but with different stress
distributions. The influence of the heterogeneity in the stress distribution is found
to be

—1/m
f = fa (é/ﬁx\m(x,y, z) dQ) (4.10)

which shows that the theory predicts increasing strength for increasing heterogeneity
in stress distribution since A(z,y, z) < 1.
Combined volume and stress distribution effect

The combined influence of volume and heterogeneity in stress distribution on the
strength is found by comparing the reference case and the general case or inserting
Equation (4.9) in Equation (4.10). The combined influence is hence found to be

0 —-1/m 1 . —1/m
f = fref (m) (6/9/\ (x,y,z) dQ) (4.11)
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A convenient way of comparing the probability of failure between structural
elements with different stress distribution is the so called the Weibull stress (or
equivalent Weibull stress or effective Weibull stress). The Weibull stress is a fictive
homogeneous stress in the volume €2 that yields the same probability of failure as
the the actual heterogeneous state of stress for the volume {2 considered.

1 1/m
Owei = (—/Jm(w,y,z) dQ) (4.12)
Q Jo

The level of heterogeneity in the stress distribution is often expressed by the
distribution factor kg which is defined as the ratio between the maximum stress in
the body 0,4, and the Weibull stress o,,.; according to

mazx 1 ~1/m
fogr = Jmer (5/ A (2, y, 2) dQ) (4.13)
Q

Owei

where kgis = 1 for a homogeneous stress distribution and kg, > 1 for all other
stress distributions. The distribution factor kg4, can be identified as the last parts
of Equation (4.10) and of Equation (4.11).

4.3 Interpretations of the material function

Using the expression for the Weibull stress 0,,; according to Equation (4.12) and
the distribution factor kg according to Equation (4.13) in Equation (4.11) for the
mean strength, the following expression can be obtained

Omar (] a<x,y,z>>m )“’”
; (% / ( 22 o (4.14)

where 0,4, 18 the maximum stress in the body of volume €2, f is the mean of 7,4,
at the instant of failure and f,.y is the mean strength valid for a homogeneous stress
distribution in the volume €2,..

The ratio o4,/ f can be interpreted as a global effective dimensionless stress
parameter Qgiopa and o(x,y, 2)/ frer as an effective dimensionless stress field oz, y, z)
defined in the volume (). The expression can then be rewritten as

1 1/m
Qglobal = (Q f/o/”(x,y,z) dQ) (4.15)
re Q

where the value of agopa for the effective dimensionless stress field a(z,y, z) in the
volume €2 corresponds to equal probability of failure as for the constant value of
a(z,y, 2) = agoba for a homogeneous stress in the volume €Q,.¢. Since f.f is here
defined as the mean strength of the reference volume €2,..¢, agiopar = 1.0 will for the
volume €2 give the mean failure value of 0,,,,. It is in calculation of the external
load that give o = 1.0 convenient that o(z,y, z) and then also «(z,y, z) and
Qiglobar are proportional to the load.
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The effective dimensionless stress field a(x, y, z) may for a multi-axial stress state
also be chosen to consider both tensile stresses and shear stresses according to

where o(z,y, z) is the tensile stress, 7(x,y, z) is the shear stress and f, and f, are
the corresponding mean strengths valid for a volume €,.;. In the same way as
described above, agioper = 1.0 corresponds to the mean failure stress state since f,
and f; are the mean strengths valid for the reference volume ;..

4.4 Example: Beam in bending

The volume and stress distribution effects predicted by the Weibull weakest link
theory can be illustrated by considering a beam according to Figure 4.4. The ratio
between the bending moments at the two ends of the beam is n = My /Mg and
0 < n < 1. Weibull weakest link theory is applied considering only the tensile
stresses perpendicular to grain and assuming a mean perpendicular to grain tensile
strength f, valid for the volume €,.;. The global effective dimensionless stress
parameter agopq according to Equation (4.15) and the mean value of the bending
moment at failure Mg fqiure (Obtained for agepe = 1.0) are then found to be

_ 6My (LHT 1 1—pm\V/"
Oéglobal - TH2fo_ QQref (m + 1)2 1 . T]

THf, (LHT 1 1—nm+l>‘1/m
MR,failure

6 2 (m+1)2 1—n
Details of the derivation of the above given equations are found in Appendix A.

For the case of a constant bending moment Mg along the beam length (n = 1.0),
the expressions are reduced to

_ 6Mg (LHT 1 \Y"
Aglobal = THZfU QQrefm+1

THf, (LHT 1 \ /™
MRJailure f ( )

6 200, Fm+ 1
For the special case m — oo, corresponding to conventional deterministic stress

analysis, the global effective dimensionless stress parameter oy, and the bending
moment at failure Mg tqiure are found to be

6Mp
Qglobal — m
TH*f,
6

MR,failure
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irrespective of the value of 77. The load bearing capacity is hence determined by the
value of the stress in the most stressed point only and independent of the stressed
volume and stress distribution.

M,V ; vV Mg

0 B D

Figure 4.4: Beam in bending analyzed by Weibull weakest link theory.






Chapter 5

Fracture mechanics

5.1 Linear elastic fracture mechanics

Linear elastic fracture mechanics (LEFM) deals with analysis of cracks and propa-
gation of cracks. The theory presented in this chapter is based on [3], where fracture
mechanics theories for timber applications are presented. LEFM is based on the ex-
istence of a crack (or a sharp notch) and the assumption of an ideally linear elastic
behavior of the material. A consequence of the assumed material behavior is that
stresses at the tip of a crack theoretically are infinite, see Figure 5.1, but this is
however accepted in LEFM as long as the fracture process region is small compared
to the length of the crack and also compared to the distance to loads and supports.
For wood, the fracture process region is approximately one to a few centimeters.
Although stresses and strains may be very large in the vicinity of the tip of the
crack, the theory of small strains is used.

Figure 5.1: Linear elastic stress distribution at the tip of a crack.

For a given plane of a crack, there are three possible types of relative displace-
ments which can be referred to as modes of loading. These modes are illustrated in
Figure 5.2 where mode I represent fracture due to pure tensile stress perpendicular
to the plane of fracture while mode II and mode III represent fracture due to in-plane
shear stresses and transverse shear stress respectively. The general case consists of
a mixture of the three modes but for most applications, the most common cases are
modes I and II. Hence, the term mized mode is often used to refer to a mixture of
mode I and mode II only.
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Mode 1 Mode 11 Mode 111

[\
A%

i

Figure 5.2: Loading modes I, II and III.

LEFM can not be used to determine where and when one can expect a crack in
a stressed body to arise but it can be used for analysis of whether an existing crack
will propagate or not. Crack propagation analysis can be done by considering the
energy balance of the system, by considering the so called stress intensity factors or
by some similar method.

Energy balance approach

One approach when analyzing crack propagation is to consider the energy balance
and how a virtual extension of the crack will effect the energy of the system. The
energy release rate G (sometimes also called the crack driving force) is defined as
the decrease in potential energy U of the system at an infinitely small increase of
the crack area A according to
oU

G = 94 (5.1)
where the potential energy U of the system consists of elastic strain energy and the
potential energy of the loads acting on the structure. The value of the energy release
rate GG is dependent on the geometry of the structure, the geometry of the crack, the
boundary conditions, the applied loads and the stiffness properties of the material.
In order to determine whether a crack will propagate or not, the energy release rate
G is compared to the critical energy release rate G. (sometimes also called the crack
resistance) which is a material property. The general crack propagation criterion
can thus be expressed as G = G, which says that a crack is just about to propagate
when the crack driving force equals the crack resistance or in other terms when the
energy release rate equals its critical value.

There are three possible crack propagation scenarios; stable, semi-stable and
unstable crack growth. Unstable crack growth corresponds to the common case of
increasing (G with increasing crack area. It is however also possible that G decreases
with increasing crack area and if the value of GG falls below the critical energy release
rate GG, the crack propagation will stop and the crack growth is termed stable. Semi-
stable crack growth corresponds constant G with increasing crack area.

As mentioned earlier, there are three possible modes of loading and the critical
energy release rate may have different values for the different modes. It is also
possible to separate the energy release rate GG into the three modes and obtaining
G1, Grr and Gppr. For an ideal elastic material, the critical energy release rate G.
is equal to the fracture energy Gy.
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Stress intensity factor approach

Another approach for analysis of crack propagation is to consider the distribution of
stresses in the vicinity of the tip of the crack by consideration of the stress intensity
factors Ky, K;; and Krrr. With coordinate system and stresses according to Figure
5.3, the stress intensity factors are defined as

K; = hm Oyy(r)V2mr for 6 =0 (5.2)
K = hr% Tuy(Y)V 211 for 0 =0 (5.3)
KIII = hH(l) Tyz<7“) 2mr for 0 =0 (54)

Oy

zy il
Gxx
"c o T Xz

Figure 5.3: Stresses used in definition of stress intensity factors.

The values of the stress intensity factors are governed by the geometry of the
structure, the geometry of the crack, the boundary conditions and the applied load.
The factors are also effected by by possible anisotropic properties of the material.
Due to the linear elastic assumption, stresses and thereby also the stress intensity
factors are proportional to the applied load. The crack propagation criterion is
a comparison of the stress intensity factor K and the fracture toughness K. (also
known as critical stress intensity) and can in general terms be expressed as K = K.

Relation between energy release rate and fracture toughness

The relationship between G and K for mode I and II for an orthotropic material
considering a plane state of stress and a fracture plane which is oriented parallel to
the direction of grain (z-direction) are given by

2L, F,
K[ = \/E]G] where (55)
/ Ey
— yxE_y
and
2E?
K[[ = \/E][G][ where E]]— (56)

| =

A / — Vya Ex
Y
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where E, is the modulus of elasticity parallel to grain, F, is the modulus of elasticity
perpendicular to grain, G, is the shear modulus and v,, is Poisson’s ratio defined
as Vy, = —€,/€, for uniaxial loading in the y-direction. Equations (5.5) and (5.5)
are found in [3].

5.2 Generalized linear elastic fracture mechanics

The theory concerning LEFM suffers from one obvious limitation: it is based on the
assumption of an existing crack or sharp notch giving rise to a square root stress
singularity. Conventional stress analysis with a stress based failure criterion is on the
other hand not applicable when such a singularity is present. The LEFM-theory can
however be modified (generalized) in order to overcome this limitation and make it
valid for a general case, with or without a stress singularity. Two different methods,
namely the the initial crack method and the mean stress method, are presented in
[3] but here only the latter of the two methods will be dealt with.

The basic idea of the mean stress method is to consider not the stress state in a
point of the material but instead the mean stresses acting across a potential fracture
area. These stresses, which has a finite value also for the case of presence of a stress
singularity, are then used in a conventional stress based failure criterion. The size
of the potential fracture area is related to the size of the fracture process region at
the instant of start of unstable crack growth and is derived in such a way that the
method will give the same strength prediction for a body in a homogeneous state of
stress as the conventional stress based failure criterion used and also give the same
strength prediction as LEFM for a body with a square root stress singularity.

The following section is based on assumptions of a body in plane stress, a fracture
plane which coincides with the direction of grain (a-direction) and mixed mode I
and mode II loading. Two basic criteria need to be chosen, a conventional stress
analysis failure criterion and a LEFM crack propagation criterion. The stress failure
criterion can for example be chosen as the criterion of Norris

<%>2+(%)2 = 1.0 (5.7)

where ¢ is the perpendicular to grain tensile stress, 7 is the shear stress and f, and
f- are the corresponding strength values. The LEFM crack propagation criterion
can for example be chosen as the criterion of Wu

K, ( K )2
+ - 1.0 5.8
Ko Ko (58)

where K; and K;; are the mode I and mode II stress intensity factors and K- and
Ko are the corresponding fracture toughness. Considering now the mean stresses
acting across a potential fracture area instead of the stress state in a point, the stress

failure criterion is then
_\ 2 N2
o T
— | + = = 1.0 5.9
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where 0 and 7 are the mean values of the perpendicular to grain tensile stress o
and the shear stress 7 in the potential fracture area. Using the definitions of the
stress intensity factors according to Equation (5.2) and (5.3), the stresses in front of
a crack tip can be expressed as

K
o(z) = Nors + ... (5.10)
7(z) K | (5.11)

\V2Tx

where the first term in these series are dominating for small values of x. The size of
the potential fracture area is given by the width T' of the plane stress body and a
length a,,s in the grain direction. Assuming a small length a,,; compared to other
dimensions in the body, the mean stresses in a potential fracture area starting from
the surface of the body can be expressed as

1 foms 2K?

G = / o(z) dr = ! (5.12)
Ams Jo Tms
1 foms 22

T o= / 7(z) dov = I (5.13)
Ams Jo TQms

The length a,,s is then derived by inserting the expressions for the mean stresses
o and 7 according to Equations (5.12) and (5.13) into Equation (5.9), using Equation
(5.8) and introducing the mixed mode ratio k = K;;/K; = 7/a. The length a,,s is
then found to be

2E:Gic E, GIIc Ey Gre. o f2
= — 4k2 — 14+ k=% .14
Gms =02 E, ( Gre 4k4 \/ PV E G ( ) B

and depends hence on material properties (stiffness, fracture toughness, shear- and
perpendicular to grain tensile strengths) and also the mixed mode ratio k. Deter-
mining the length a,,s is hence an iterative process where an initial guess of the
mixed mode ratio k is needed. The expression can be simplified for pure mode I or
pure mode II according to

2E;G

s = ;TEIC for pure mode I, kK =0 (5.15)
2E1G

s = HTQHC for pure mode II, k£ — oo (5.16)
T T

As mentioned above, the strength prediction of the mean stress method derived
here will be the same as when using the conventional stress analysis failure criterion
for a body in homogeneous stress and also the same when using the LEFM crack
propagation criterion for a deep crack in a large body. Moving from the extreme
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of a body in homogeneous stress towards a increasing stress gradient, the influence
on the strength prediction of the size, stiffness and fracture toughness of the body
increases whereas the influence of the material strength parameters decreases. One
can in general expect the mean stress method to give accurate strength predictions
only if the length a,,s is reasonably small as compared to relevant dimensions of the
body analyzed.

5.3 Example: Beam in bending

The mean stress method can be illustrated considering the same beam as in Section
4.4. As shown in Figure 5.4, the beam is exposed to a constant bending moment
M along the beam length and the grain direction coincide with the y-direction. For
this loading condition, the failure criterion according to Equation (5.9) is reduced to
0 = f,. The mean perpendicular to grain tensile stress ¢ acting across a potential
fracture area from the bottom and of length a,,s in the y-direction and the bending
moment at failure M fqure (Obtained for ¢ = f,) are hence

B 1 /§+ams 12M p 6M (1 ams)
o = — = _
s Y YT TR H
TH?ft 1
M atlure
Jadl 6 11— ams/H
2E:Gy.
where a,,s = st since k =0
T f?

To expect reasonably accurate results of M tgure, @ms must be significantly less
than H/2 since there are tensile stress only in the lower half of the beam. For the
case of an ideally brittle material (Gj. = 0), corresponding to conventional stress
analysis, the length of the potential fracture area is zero and the bending moment
at failure Mg iure is hence

TH?ft
6

Mfailure

which was also found in Section 4.4 for Weibull weakest link theory when m — oo.
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Figure 5.4: Beam in bending analyzed by mean stress method.



Chapter 6

A probabilistic fracture mechanics
method — PFM

6.1 General

Using Weibull weakest link theory (presented in Chapter 4) means that the hetero-
geneity of the material is taken into account in a statistical sense by acknowledging
stochastic scatter in the strength of the material. The failure is however consid-
ered to be ideally brittle due to the assumption that a body will fail as soon as
the strength of the weakest point of the body is reached. In linear elastic fracture
mechanics and generalized linear elastic fracture mechanics (presented in Chapter
5) on the other hand, fracture ductility is considered but the material is assumed
to have deterministic properties meaning that homogeneous material properties are
assumed throughout the body. Combining some fracture mechanics theory, taking
into account the fracture ductility of the material, and Weibull weakest link theory
or some other statistical method, taking into account the stochastic strength of the
material, results in something that can be called probabilistic fracture mechanics. A
proposal for such a method, based on the mean stress method and Weibull weakest
link theory, is briefly outlined in [12] and will be further developed here.

The starting point for the description of this probabilistic fracture mechanics
method is the reformulation of Weibull weakest link theory in Section 4.3. Based
on analysis of different volumes and stress distributions with equal probability of
failure, the global effective dimensionless stress parameter ag.p, Was introduced as

1 1/m
Qglobal — (Q ; / Ozm(:lj,y, Z) dQ) (61)
re Q

where a(x,y, z) is an effective dimensionless stress field, 2 is the considered volume,
Q¢ is the reference volume and m is the Weibull shape parameter. The value of
Qglobar 10 the volume 2 corresponds to equal probability of failure as the constant
value of a(x,y, 2) = agiopa for a homogeneous stress in the volume €.
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For a body in plane stress and considering both perpendicular to grain tensile
stresses and shear stresses, the effective dimensionless stress field can be chosen

according to
aay) = ((a(;;y))2+<r(§;y))2)l/2 6.2)

where o(x,y) is the perpendicular to grain tensile stress, 7(x,y) is the shear stress
and f, and f, are the corresponding mean strengths valid for the reference volume
Q,ef. Acknowledging the heterogeneity in the material strength in this way, the
strength prediction will depend both on the volume and the distribution of the
stress fields but the material is still assumed to behave ideally brittle.

In order to account also for the fracture toughness of the material, other choices
of the effective dimensionless stress field a(x,y) than stated above can be made. In
accordance with the mean stress method presented in Section 5.2, it can be useful
to consider not the stresses in a point but instead the mean stresses acting across a
potential fracture area. Assuming a fracture plane which coincides with the grain
direction, the effective dimensionless stress field can be chosen according to

alz,y) = <<a(2y))2+<7(2y)>2)”2 (6.3)

where (z,y) and 7(z,y) are the mean values of the perpendicular to grain tensile
stress o and the shear stress 7 in the potential fracture area. If the mean stress
perpendicular to grain is compressive, the contribution &(x,y) is ignored and the
effective dimensionless stress field a(x,y) is determined by the mean shear stress
T(z,y) only. The effective dimensionless stress field a(z,y) is hence defined in the
entire body and the value in a material point (x,y) is determined by the values
of o(z,y) and 7(z,y) along a potential fracture plane in the grain direction in the
vicinity of the material point.

Since f, and f, are here defined as the mean strengths valid for the reference
volume €2, ¢, Agiopar = 1.0 will for the volume €2 correspond to the mean failure stress
state. For example, agopqr = 0.5 in the volume €2 corresponds to the equal probability
of failure as the homogeneous dimensionless stress a(x,y,z) = 0.5 in the volume
Qep. Accordingly, to obtain the probability of failure in volume 2 corresponding
to agopar = 1.0 and hence to equal probability of failure for the homogeneous stress
a(x,y,z) =1 in s, the stress in Q should be doubled.

The physical interpretation of the method is that all points in the body are
considered as potentially weak points where fracture initiation may occur. The
material is, due to fracture toughness and ductility, assumed to have the ability to
distribute stresses over the fracture area and it is hence the mean stresses acting
within this area which are considered. In accordance with Weibull weakest link
theory, the resistance to fracture is not homogeneous but viewed as a stochastic
property. Since fracture may start from any point in the body, all possible points
need to be considered.
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The strength prediction of the probabilistic fracture mechanics method depends,
among other parameters, on the value of the Weibull shape parameter m and the
fracture energy parameters Gj. and Gp.. For an ideally brittle material (G, =
Grre = 0), the method will break down to Weibull weakest link theory. This is
also true for a body with a homogeneous stress distribution, since the mean stresses
then are equal to the actual stresses. The probabilistic fracture mechanics method
will also approach Weibull weakest link theory for increasing size of the considered
body since the relative size of the potential fracture area decreases. For a material
which is assumed to show fracture ductility (Gj. # 0 and G # 0) but where
the material properties are assumed to be deterministic (m — 00), the probabilistic
fracture mechanics method will break down to the mean stress method meaning that
the potential fracture area with the most severe combined action of ¢ and 7 will be
decisive. For the special case of a a deep crack in a large body, the mean stress
method will in turn break down to conventional linear elastic fracture mechanics.
For an ideally brittle material with deterministic properties, the strength prediction
of the probabilistic fracture mechanics method will be the same as according to
conventional stress analysis and the material point with the most severe combined
action of ¢ and 7 will be decisive.

( probabilistic fracture mechanics )
G]c:G[Ic:O¢ ‘m—mxs

( Weibull weakest link theory ) ( mean stress method )

m—oe ¢ #Glc—Gllc—O

( conventional stress analysis )

Figure 6.1: Relation between methods for strength analysis.

6.2 Size of the potential fracture area

As shown in the previous section, the effective dimensionless stress field «o(z,y)
depends on the stress fields o(z,y) and 7(z,y), the corresponding strength values
fo and f, and also on the size of the potential fracture area used for integration
of stresses. How to determine the appropriate size of the potential fracture area is
however not obvious and there are two separate considerations that need to be taken
into account.

According to mean stress method described in Section 5.2, the size of the po-
tential fracture area depends on material properties (stiffness, fracture toughness,
shear- and perpendicular to grain tensile strengths) and also the mixed mode ratio
k = 7/a. For the general case with arbitrary stress distributions, the size of the
potential fracture area hence depends on the location of the considered material
point since the mixed mode ratio k in general varies throughout the body.
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There is however also another reason why the size of the potential fracture area
depends on the location of the considered point. The expression stated in Equation
(5.14) for the length a,,s is valid for a potential fracture area starting from the
surface of the considered body, which corresponds to interpreting a defect on the
surface as a surface crack. The integration of a(z,y) should however be carried out
over the entire considered volume meaning that points on the surfaces as well as
points in the interior of the body need to be considered.

For a point far from the surfaces, a defect in the material can be interpreted as an
interior crack which hence has two tips. In accordance with the mean stress method,
the potential fracture area used for determining mean stresses should hence be twice
that valid for a surface crack. For points which are not on a surface, but neither far
from them, some approximation needs to be made. Aiming for a smooth transition
of the size of the potential fracture area when moving from a point on the surface
of the material to a point far from the surface, the length of the potential fracture
area a,, is in the present implementation determined as expressed mathematically
in Equation (6.4) and illustrated in Figure 6.2.

s for 0 << aps/2
am(x) = 2z for Ums/2 << Qs (6.4)

20ms for Ums < T

| Gms

' Length of potential

F—o—

—— -~ fracture area a,,

— Material point (x,y) relating to

mean stresses G(x,)) and T(x,))
ams ams

Figure 6.2: Interpretation of length of the potential fracture area for different posi-
tions of a material point with respect to a surface at x = 0.

6.3 Example: Beam in bending

The probabilistic fracture mechanics method can be illustrated by considering the
same example as in Section 4.4 and Section 5.3 with a constant bending moment
M along the beam length according to Figure 6.3. The probabilistic fracture me-
chanics method is applied assuming a mean perpendicular to grain tensile strength
f» valid for the volume (2,.r. The global effective dimensionless stress parameter
Qgiobar according to Equation (6.1) and the mean bending moment at failure M pq e
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(obtained for agope, = 1.0) are then found to be

6M ams\ ((LHT [ aps 1 1 oa,.\\Y™
Aglobal — (1 - ) —+ —
TH?f, H/)\20. \H " m+1 m+1H

ur TH2f, 1 LHT (@, 1 1 oams\\ /™
Jatture 6 1 —ams/H\20ef \H m+1 m+1H
2F:G;. .
where a,,s = ikl since k =0
Tf2

Details of the derivation of the above given equations are found in Appendix
A. For an ideally brittle material (G;. = 0), corresponding to Weibull weakest
link theory, the length of the potential fracture area is zero and the global effective
dimensionless stress parameter oyepe and the bending moment at failure M gqiiyre
are hence

6M (LHT 1 \Y™
Qgloba -
global TH2f, \2Qe;m + 1

TH%f, (LHT 1 \ Y™
Mfailure f < >

6 2Qrefm—|—1

which are the same expressions as found in Section 4.4 for Weibull weakest link
theory. For the case G;. # 0 and m — oo, corresponding to the mean stress
method, the bending moment at failure M,ipre is found to be

TH2f, 1
6 1—ams/H

Mfailure

which is the same expression as found in Section 5.3 for the mean stress method.

For G;. = 0 and m — o0, the probabilistic method breaks down to conventional
deterministic stress analysis and in the same way as Weibull weakest link theory and
the mean stress method.

CE T )

T

Figure 6.3: Beam in bending analyzed by probabilistic fracture mechanics method.






Chapter 7

Implementation of the PFM
method

7.1 General

This chapter deals with implementation of the probabilistic fracture mechanics
method for glulam beams with holes derived in Chapter 6. Plane stress condi-
tions are assumed to be valid and the combined action of perpendicular to grain
tensile stress o and shear stress 7 is assumed to be decisive. The strength is hence
determined by the effective dimensionless stress field a(z, y) and the global effective
dimensionless stress parameter agpe according to

o(ay) = ((5(2@)2 (r(r;;y)>2>l/2 (7.1)

1 1/m
Qglobal — (Q ; / am(l‘7y) dQ) (72)
re Q

where &(x,y) and 7(x,y) are the mean stresses and f, and f, are corresponding
mean strengths valid for the reference volume §2,.;. The strength prediction is given
by the external loads that corresponds to stress fields o(x,y) and 7(x,y) which give
a global effective dimensionless stress parameter ogopqar = 1.0.

The implementation of the method can been seen as being composed of three parts:

1. Determination of stress fields o(z,y) and 7(z,y) by the finite element method.

2. Determination mean stresses a(x,y) and 7(z,y) and the effective dimensionless
stress fields a(z,y) according to Equation (7.1).

3. Integration of a(z,y) according to Equation (7.2) to obtain the global effective
dimensionless stress parameter ogioper. Knowing agiepe for the present magnitude of
the loads, the failure load corresponding to agepar = 1 is easily obtained since avopar
is proportional to the applied load.

41
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7.2 Finite element stress analysis

The stress fields o(z,y) and 7(z,y) are determined by 2D plane stress finite element
analysis. The entire beam is not modeled but only a part of the beam close to the
hole as illustrated in Figure 7.1 where also beam geometry and load parameters are
defined. The length 1.5H + 1.5H is consistently used for all models. This approach
is adopted since it decreases the computational demands and enables an easy way of
changing load conditions. Another advantage is that a possible disturbance of the
stress fields near beam supports and point loads is avoided. This approach should not
influence the results for holes that are placed reasonable far from the supports and
point loads since the high perpendicular to grain tensile stresses, which are believed
to be the most decisive for the strength, are limited to the close vicinity of the hole.
The shear forces V' and the bending moments M and Mg are applied as parabolic
shear stress distributions and linear normal stress distributions respectively.

An orthotropic and linear elastic material model is used for the finite element
stress analysis. With this model, material directions are only distinguished as paral-
lel and perpendicular to grain. The influence of a possible uneven stress distribution
in the beam width direction due to the difference in stiffness between radial and
tangential direction with respect to annual rings is hence ignored. The values of
the modulus of elasticity parallel to grain E,, = 13700 MPa and the shear modulus
Gy = 850 MPa are based on mean values stated in [27] for strength class GL 32h.
The value for the modulus of elasticity perpendicular to grain F,, = 460 MPa is
based on the commonly used relation E,, ~ E,,/30. Poisson’s ratio (defined as
Vgy = —€yy/€sp for uniaxial loading in the z-direction) is set to v,, = 0.35. The
stress-strain relationship can be expressed in matrix notation according to Equa-
tion (7.3). The stress component o, is the perpendicular to grain normal stress
component which in this thesis in general is referred to as o (without index).

€rx 1/Exx _Va:y/Exx O Ozx
Eyy = ~Vay/ Eze 1/E,, 0 Oyy (7.3)
Yy 0 0 1/Gy Tay

The commercial software ABAQUS is used for the finite element stress analysis.
8-node plane stress quadrilateral elements with biquadratic displacement interpo-
lation and reduced integration (denoted CPS8R in ABAQUS) are used throughout.
Dynamic and geometrical non-linear effects are not included in the analysis.

Due to the geometry, there are high stress gradients around the hole. In general
that means a fine mesh is needed to be able describe the stress field accurately. This
problem is however less pronounced since the mean stresses within a certain area are
considered. The maximum element size in the regions with a high stress gradient
should however be considerably smaller than the size of the potential fracture area
used to determine the mean stresses. A typical finite element mesh used for the stress
analysis is shown in Figure 7.2. The side length of the elements is typically about
H/600 at the hole. The number of elements and degrees of freedom are typically 90
000 and 500 000, respectively.
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Figure 7.1: Geometry and load parameters for considered part of beam.
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Figure 7.2: Typical finite element mesh used for the stress analysis.
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7.3 Determination of mean stresses

Once the stress fields o(x,y) and 7(z,y) are determined by finite element stress
analysis in ABAQUS, the next steps are to determine the mean stresses &(x,y) and
T(z,y), the effective dimensionless stress field a(x,y) and o™ (z,y). These parts,
and the also the rest of the implementation, are performed in MATLAB.

The output from the finite element stress analysis is taken as the stresses o and 7
in the nodal points of the elements. These stresses are then interpolated at reference
points in an evenly distributed grid in the body using MATLAB build in function
griddata. The distance between the reference points is equal in z- and y-directions
and is denoted a,,. The mean stresses ¢ and 7 are determined at all reference
points by numerical integration of the stresses within the potential fracture area a,,
associated with the specific reference point. The effective dimensionless stress field
a(z,y) is determined at the reference points according to Equation (7.1).

The considered beam volume 2 = LHT for the stress parameters ¢, 7 and « is
smaller than the volume used for the finite element stress analysis, see Figure 7.3.
The reason for this is that the mean stresses in an interior material point of the
body represent stress of both sides of the material point in the z-direction. Hence,
the volume where &, 7 and « are determined must be somewhat smaller than the
volume where the stresses o and 7 are determined.

An illustration of the grid of reference points is also shown in Figure 7.3. This
grid is very coarse compared to the actual grid used in order make the illustration
clearer. For the numerical calculations presented in Chapter 8, the length of the
volume for determining the mean stresses is L = 0.75H + 0.75H and the distance
between the evenly distributed reference points is a,, = H/1000.

'

o c—

E] considered beam volume for
: finite element stress analysis

grid of reference points

considered beam volume Q = LHT reference point (xi, yi)
for determination of mean stresses with related volume 7a?,

+ L L

Figure 7.3: Considered volume ) for &, T, a and grid of reference points.
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The size of the potential fracture a,, depends on the mixed mode ratio k = 7/&
and determining the mean stresses is hence an iterative process where an initial
guess of the mixed mode ratio is needed. In this implementation, this iteration
is however ignored and the mixed mode ratio is assumed to be determined with
sufficient accuracy by the ratio between the stresses in the considered reference
point k = 7/0.

Apart from the elastic stiffness properties previously stated, the material prop-
erties needed to determine &, 7 and « are based on values stated in [3]. These
are the perpendicular to grain tensile strength f, = 3.0 MPa, the shear strength
fr = 9.0 MPa and the fracture energies G, = 0.300 Nmm/mm? and Gz. = 1.050
Nmm/mm?.

An illustration of typical distributions of o, 7, @ and o/ in the vicinity of a hole is
shown in Figure 7.4. The length of the potential fracture area a,,, the perpendicular
to grain tensile stress o, the shear stress 7 and the corresponding mean stresses &
and T along a line of reference points are shown in Figure 7.5. Both figures are based
on the beam geometry and the load given in Figure 7.5.
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Figure 7.4: Distributions of o, 7, & and o™ in vicinity of a hole.
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Figure 7.5: Geometry and line of reference points considered in this illustration,
length of potential fracture area a,,, perpendicular to grain stress and shear stress.
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7.4 Stress integration and strength prediction

The strength prediction according to the probabilistic fracture mechanics method is
implicitly given by the value of the global effective dimensionless stress parameter
Qgiobal- 10 Obtain this value, the effective dimensionless stress field a(x, y) should be
integrated according to Equation (7.2). This integration is carried out numerically
according to

Ta? & Y
Qglobal = (Q—mz@m(%,yi)) (7.4)

ref i—1

where €, s is the reference volume, 7" is the beam width, a,, is the distance between
the reference points, n is the number of reference points in the considered volume
Q, a(x;,y;) is the value of the effective dimensionless stress field at reference point
© and m is the Weibull shape parameter. The volume Tafp is the volume related to
each reference point.

The strength prediction according to the probabilistic fracture mechanics method
is given by g = 1.0. This strength prediction corresponds to the same proba-
bility of failure as a body of the reference volume (2, in homogeneous stress o and

T according to
N () — 7
(7)< (7) - w o

and since f, and f, in the present calculations are defined as the mean strengths
valid for the reference volume §2,.¢, the criterion ayope = 1.0 hence gives the mean
global failure load.

Since the relation between the applied load and e is linear, the strength
prediction according to the probabilistic fracture mechanics method in terms of
shear force at failure Vigijure is given by

1

Uglobal

Vfailure VFE (76)

where Vg is the shear force applied in the finite element stress analysis and agepar
is the value obtained from Equation (7.4) for this applied shear force.

In addition to the previously stated material properties, the Weibull shape para-
meter m and the reference volume €2,..; are needed to determine avgopqe. These para-
meters are set to m = 5 and Q,.; = 31250 mm?®. These values relate to experimental
tests of the strength for homogeneous tensile stress perpendicular to grain. The
reference volume is determined from the empirical relation f,/fo = 1.5(Qycr/ Q)92
where f; = 1.0 MPa and ©y = 10° mm?® which is found in [14]. The value of
the Weibull shape parameter corresponds to the volume influence in this empirical
relation and also to about 23 % coefficient of variation in strength.
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As described in Chapter 6, the probabilistic fracture mechanics method will break
down to other methods for strength analysis depending on the choice of material
properties. The following methods will be used for comparison of the results of the
probabilistic fracture mechanics (PFM) method:

Weibull weakest link theory with o = ((o/f,)? + (1/f,)?)'/?
denoted WEIoT

Weibull weakest link theory with a = o/ f,
denoted WEIo

Mean stress method with failure criterion (5/f,)* + (7/f-)* = 1.0
denoted MSM

Conventional stress analysis with failure criterion (o/f,)* + (7/f;)* = 1.0
denoted CSAoT

Conventional stress analysis with failure criterion o/f, = 1.0
denoted CSAc

Two possible sources of reduced numerical accuracy introduced in the implemen-
tation are the length L of the beam volume €2 considered for integration of stresses
and the reference point grid density given by a,,. The influence of these implemen-
tation parameters is shown in Figure 7.6. The length L has obviously no influence
on the conventional stress analysis methods and the mean stress method since the
highest stresses are at the very vicinity of the hole. This example indicates that
there is some influence, although rather small, on the predicted strength according
to the probabilistic fracture mechanics method and the Weibull weakest link theory
considering both ¢ and 7. The grid density of the reference points has a very small
influence on the strength prediction according to the probabilistic fracture mechan-
ics method as long as a,, < 3H/1000. As expected, strength predictions according
to the conventional stress analysis methods are much more influenced by the grid
density. The values L = 1.5H and a,, = H/1000 are used in Chapter 8.
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Figure 7.6: Influence of considered beam length and reference point grid density.
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7.5 Influence of fracture energy and Weibull shape
parameter

The influence of the fracture energies G. and G;. and the Weibull shape parameter
m on the strength is illustrated in Figure 7.7. The illustration is based on beams
with quadratic holes. The beams are of height H = 180 mm for the graphs to the left
and H = 630 mm for the graphs to the right and 7'= 115 mm, a = b= H/3, s = 0,
M/(VH) = 2 for both beam heights. Implementation parameters a,, = H/1000
and L = 1.5H are used. The graphs are based on the constant ratio Gr./Gr. = 3.5.
Material properties other than the ones illustrated in the figures are as previously
stated and summarized in Table 8.1.

As discussed above, the probabilistic fracture mechanics breaks down to either
the mean stress method, Weibull weakest link theory or conventional stress analysis
depending on the choice of the fracture energies and the Weibull shape parameter.
It can be noted that the influence of m is not monotonic for a beam with a hole.
Peak strength is predicted for intermediate values of m. For a beam without a hole
and in pure bending, the influence of m and G/, is given in Figure 7.9.
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7.6 Verification: Beam in bending

In order to verify the implementation of the probabilistic fracture mechanics method,
the method is applied to a beam in bending according to Figure 7.8. The analytical
solutions for this example according the different methods for strength analysis are
given in Section 4.4, Section 5.3 and Section 6.3. The verification is based on a beam
of dimension L = 2H = 27T = 200 mm with a constant bending moment M along
the beam length. Material properties other than the ones illustrated in the figures
are as previously stated and summarized in Table 8.1. Applying a pure bending
moment gives a mixed mode ratio £ = 0 and with the given material properties the
length of the potential fracture area is a,,s ~ 21 mm.

The strength prediction according to the analytical solutions (dashed and solid
lines) and the numerical solutions (marks) are for different values of m and G/,
shown in Figure 7.9 for the different methods for strength analysis. The numerical
implementation of the probabilistic fracture mechanics method gives almost exactly
the same results as the analytical solution.

)

Figure 7.8: Beam in bending used for verification of the implementation of the
probabilistic fracture mechanics method.
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Chapter 8

Parameter study and verification

8.1 General

The parameter study concerns application of the probabilistic fracture mechanics
method on glulam beams with holes. The study comprises the four design parame-
ters bending moment to shear force ratio, beam size, hole placement with respect to
beam height and relative hole size with respect to beam height. The influence of these
design parameters on the strength is illustrated graphically for beams with circular
or quadratic holes with rounded corners. A circular hole can formally be regarded
as a quadratic hole with corner radius ratio r/a = r/b = 0.5. In addition to the
circular holes and the quadratic hole with rounded corners, a quadratic hole with
sharp corners (r = 0) was also analyzed.

The strength according to the probabilistic fracture mechanics method is also
compared to experimental test results and other methods for strength analysis.

The length of the considered volume €2 where &, 7 and «a are determined is
L = 1.5H and the distance between the evenly distributed reference points is a,, =
H/1000. The material properties used for the parameter study and verification are
summarized in Table 8.1.

Table 8.1: Material properties related to stiffness, strength and fracture energy.

Modulus of elasticity parallel to grain E.. 13700 MPa
Modulus of elasticity perpendicular to grain E,, 460 MPa

Shear Modulus Gy 850 MPa
Poisson’s ratio Vay 0.35 -
Perpendicular to grain tensile strength fo 3.0 MPa

Shear strength fr 9.0 MPa
Fracture energy mode I Gr.  0.300 Nmm /mm?
Fracture energy mode II Grie  1.050 Nmm /mm?
Reference volume Qrer 31250 mm?
Weibull shape parameter m 5 -

o1
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8.2 Parameter study

The relative influence of the four design parameters on the strength is illustrated in
Figure 8.1 for quadratic holes and in Figure 8.2 for circular holes. The illustrations
are based on a reference beam according to the figures. For each of the four graphs
in the respective figures, one of the design parameters is varied while the others are
constant. The nominal shear strength V/A, . is 1.35 MPa for the reference beam
with a circular hole (r/¢ = 0.5), 1.16 MPa for the reference beam with a quadratic
hole and rounded corners (r/a = r/b ~ 0.14) and 1.14 MPa for a corresponding
quadratic hole with sharp corners (r = 0).

The influence of hole placement with respect to beam height is illustrated in
Figure 8.3 for different bending moment to shear force ratios and in Figure 8.4 for
different beam sizes. The influence of relative hole size is illustrated in Figure 8.5 for
different bending moment to shear force ratios and in Figure 8.6 for different beam
sizes. Stress distributions for some geometries are illustrated in Figures 8.7-8.10.
Some comments concerning the design parameters are given below.

Bending moment to shear force ratio

The influence of bending moment to shear force ratio is comparatively small for
holes centrically placed with respect to beam height. This agrees well with the over-
all behavior found in the experimental tests, see Figure 2.2.

Beam size

The beam size seems to be the most influential parameter out of the four investi-
gated design parameters. The method predicts a strong beam size influence on the
strength which was also found in the experimental tests, see Figure 2.3.

Hole placement with respect to beam height

Concerning hole placement with respect to beam height, the influence on the strength
is rather complex. For holes placed in position where M/(VH) = 0, the strength
is greater for eccentrically placed holes than for centrically placed holes. For larger
bending moment to shear force ratios, the strength is however considerably lower for
the eccentrically placed holes compared to the centrically placed ones. The study
comprises only one hole size (0.30H) for the eccentrically placed holes. The general
behavior shows reasonable agreement with available test results, see Figure 2.4

Relative hole size with respect to beam height

The nominal shear strength decreases with increasing relative hole size. In general,
the method suggests greater strength for a beam with a circular hole compared to a
beam with a quadratic hole for a = b = ¢. The strength reduction for increasing hole
size is further greater for the quadratic holes than for the circular holes. Increasing
the holes size from ¢ = a = b = 0.20H to 0.40H, the nominal shear strength is
reduced by about 25 % for the quadratic holes and about 15 % for the circular holes.
The findings seem reasonable compared to experimental test results, see Figure 2.5.
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Figure 8.7: Stress distributions o, T and « for beam geometry H = 600 mm, T' = 115
mm, a = b = 0.3H, r = 25 mm. Applied loads correspond to PFM failure loads:

V/Apet = 1.22 MPa for M/(VH) =0 and V/A,e = 1.16 MPa for M/(V H)
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Figure 8.8: Stress distributions o, T and « for beam geometry H = 600 mm, T' = 115
mm, a = b = 0.3H, r = 25 mm. Applied loads correspond to PFM failure loads:

V/Aner = 1.03 MPa for s/H = 0.15 and V//A,¢; = 1.03 MPa for s/H = —0.15.
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8.3 Verification

The verification of the probabilistic fracture mechanics method is based on compar-
ison to experimental test results. The method is also compared to Weibull weakest
link theory, conventional stress analysis and the mean stress method. The compar-
ison to experimental test results is shown in Figure 8.11 for quadratic holes and in
Figure 8.12 for circular holes from [2] and [16]. The test series notation in the figures
refer to the notation used in Paper B. Some comments on the correlation between
test results and the probabilistic fracture mechanics method are given below.

Bending moment to shear force ratio

The probabilistic fracture mechanics method seems to capture the the influence of
the bending moment to shear force ratio well. The difference in strength for the
considered bending moment to shear force ratios are however comparatively small.

Beam size

The probabilistic fracture mechanics method seems to capture the beam size effect
well for the beams with H = 450, 630 and 900 mm. However, the method con-
siderably overestimates the capacity for the small beams with H = 180 mm. One
probable explanation is that the size of the potential fracture area a,,, used to de-
termine mean stresses ¢ and 7, is too large in relation to the size of the small beams.
Further comments on this is given in Chapter 9.

Hole placement with respect to beam height

The method predicts higher strength for test series AUh with a hole placed in the
upper part of the beam (s = H/6) than for test series AMh with a centrically placed
hole (s = 0), see Figure 8.11. The test results however shows the opposite relation.
The difference in predicted strength is however small. For the small beams in the
same figure, both test results and the probabilistic fracture mechanics method show
lower strength for eccentrically placed holes. The strength reduction predicted by
the method is however smaller than found in experimental tests.

Relative hole size with respect to beam height

The probabilistic fracture mechanics method seems to predict the influence of rela-
tive hole size well. As can be seen in Figure 8.12, the test results are comparatively
scattered but the decrease in nominal shear strength seems in general fairly equal
for the test results and the probabilistic fracture mechanics method.

Other methods

The conventional stress analysis methods (CSAco and CSAo7) and the mean stress
method (MSM) show in general very poor agreement with the experimental test
results. The Weibull weakest link theory (WEIo and WEloT) shows overall fairly
good correlation also concerning the beam size influence including the small beams.
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Chapter 9

Concluding Remarks

Finding a simple, general and reliable method for design of glulam beams with holes
seems difficult. Much effort has however been put into research within the field
over the last decades. There is an obvious lack of knowledge which is reflected by
the large differences concerning theoretical backgrounds and strength predictions
between different design methods found in European timber engineering codes.

In order to increase the knowledge of the strength of glulam beams with holes
and to increase the data base of experimental test results, full scale tests were carried
out. One important finding from these tests is the strong beam size influence on the
strength. This finding is in line with previous test results but the beam size effect
is however not accounted for in all European timber engineering codes.

With the aim to investigate the possibilities for more accurate strength pre-
dictions of glulam beams with holes, a probabilistic fracture mechanics method is
derived and implemented. The method is based on Weibull weakest link theory and
the mean stress method. Combining these two methods means that the probabilistic
fracture mechanics method takes the fracture energy and the stochastic nature of
material properties into account. The method is consistent with Weibull weakest
link theory in the sense that the same strength predictions are given by these two
methods for an ideally brittle material. The probabilistic fracture mechanics method
is also consistent with the mean stress method in the sense that the same strength
predictions are given by these two methods for a material with deterministic material
properties.

Good general features of the probabilistic fracture mechanics method are the
ability to a analyze holes of arbitrary geometry and to consider the material proper-
ties that are believed to be the most important for strength of a glulam beam with a
hole: material strength, fracture toughness and heterogeneity. Although of a general
applicability, the method is furthermore simple in the sense that non-linear stress
or fracture course analysis is not required. It is interesting that the probabilistic
fracture mechanics method seems to be able to make a credible prediction of the
influence of the curvature of the corners of a quadratic hole including sharp cor-
ners (r = 0). Weibull weakest link theory and conventional stress analysis methods
predict zero beam strength for a hole with sharp corners.
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The probabilistic fracture mechanics method seems to have an overall good abil-
ity to predict the strength based on the verification to experimental tests. One
case when the method however obviously fails to make accurate predictions is small
beams (H = 180 mm) where the strength is overestimated by about 30 %. A prob-
able explanation is that the size of the potential fracture area a,,, used to determine
the mean stresses, is too large in relation to the size of the small beams. The size
of a fracture process region can, according to fracture mechanics, be expected to be
governed by the properties of the material and to be independent of the size of the
structure only as long as the structure is large as compared to the size of the frac-
ture region. Further decrease of structural size implies decreased size of the fracture
region. To overcome this problem, some kind of stress gradient related reduction of
the length of the potential fracture area can be introduced for small beams.

Since the available experimental test results are limited, the extent to which the
method can be verified is also limited. The present tests of beams with quadratic
holes included tests of eccentrically placed holes, which seem to never have been
tested before. Further full-scale testing is needed to increase the data base of test
results for further verification and to increase the knowledge within the area. The
influence of the different design parameters seems however to be rather complex.

There are also several other interesting design parameters which are not included
in the this study. One example is influence of beam width 7" which was not analyzed
in this study although the method gives a prediction according to Equation (7.4).
Another example is the influence of a tensile or compressive axial force which would
for example be of interest for design of glulam columns with holes. It seems that the
combined action of axial force and bending neither has been tested nor analyzed.
Another interesting load case not consider here is pure bending (M/(VH) — o0)
which is of interest for straight beams but of even greater interest for tapered beams
and curved beams. For these two load cases, the strength might however be limited
by tensile or compressive failure parallel to grain and these failure modes are not
considered in the present implementation. The probabilistic fracture mechanics
method could possibly be generalized with respect to consideration of the normal
stress along grain by modification of Equation (7.1) and corresponding modifications
of the length of the potential fracture area a,,;.

A comparison of the overall ability to predict strength of different methods is
presented in Figure 9.1, where the ratio between the theoretically predicted capacity
and the capacity found in experimental tests is given. The considered methods are:
the probabilistic fracture mechanics method (PFM), Weibull weakest link theory
considering interaction of ¢ and 7 (WEIo7) and considering only o (WElo), the
mean stress method (MSM), conventional stress analysis considering interaction of
o and 7 (CSAo7) and considering only o (CSAc). Some code design methods are
also included in the comparison: the empirically based method (method 1) and the
"end-notched beam”-analogy method (method 2) found in Limtrdhandbok [6], the
method in the German code DIN 1052 [5] and the Weibull-based design proposal
presented by Hofflin and Aicher in [16] and [2]. The latter method is presented for
circular holes, but is here used also for quadratic holes assuming a = b = ¢.
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The experimental test results are the mean values of the test series that are also
presented in Figure 8.11 and in Figure 8.12. The previously commented test series
(H4) with somewhat deviating results in terms of a surprisingly low strength is how-
ever excluded from this comparison. A logarithmic scale is used in the comparison.
Quadratic and circular marks represent test series with quadratic and circular holes
respectively. Characteristic shear strength f,, = 3.8 MPa and characteristic per-
pendicular to grain tensile strength f; 90, = 0.5 MPa (based on values for GL 32h
stated in [27]) are used for the code design methods. For the other six methods, the
theoretical capacities are based on material properties stated in Table 8.1.

The probabilistic fracture mechanics shows good agreement compared to test
results used in this comparison, with the exception of the four test series with small
beams. The two methods based on Weibull weakest link theory (WEIo7 and WEIlo)
show overall good agreement. It is remarkable that the agreement is good also for
the square holes with rounded corner r/a = r/b ~ 0.12, having in mind that Weibull
theory predict an unrealistic zero strength for square holes with sharp corners. The
"end-notched beam™analogy method (Limtrdhandbok method 2) shows in general
the most un-conservative strength predictions among the code design methods. It is
however interesting that the scatter in ratio between theoretical and experimental
strength is fairly low considering the beams with circular holes and quadratic holes
separately. The overall agreement with experimental tests could easily be improve
by some general reduction for beams with circular holes.
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Derivation of global effective dimensionless stress parameter ogopq for beam in bend-
ing with varying bending moment according to Weibull weakest link theory.
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Derivation of global effective dimensionless stress parameter ogopq for beam in bend-
ing with constant bending moment according to Weibull weakest link theory.
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Derivation of global effective dimensionless stress parameter ogopq for beam in bend-
ing with constant bending moment according to the probabilistic fracture mechanics
method.
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Abstract

This report deals with strength tests of glulam beams with quadratic holes with
rounded corners. A total of 36 individual tests were carried out, divided into nine
test series with four nominally equal tests in each test series. There were four para-
meters varied within these test series: beam size, bending moment to shear force
ratio, material strength class and also hole placement with respect to the height of
the beam. The latter parameter seems to never have been investigated before since
all previously performed tests found in the literature have been carried out on beams
with holes placed centrically in the beam height direction. The test results indicate
a strong size effect. The influence of eccentric placement of the hole on the crack
load was found to be small.

Keywords: glulam, hole, strength, test, size effect, eccentric hole.
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1 Introduction

The tests presented in this report deals with the strength of glulam beams with
holes. A total of 36 individual tests were carried out, divided into nine test series
with four nominally equal tests in each test series. All holes were quadratic with
rounded corners and with a side length equal to one third of the beam height. The
study comprises investigations of primarily two interesting and potentially important
design variables: beam size effect and hole placement with respect to beam height.
Two other design parameters are also studied to some extent: material strength class
and bending moment to shear force ratio at hole center.

Beam size
Two different beam cross section sizes were used within the test series, 115x 180
mm? and 115 x 630 mm?, in order to investigate the size dependence of the
strength.

Hole placement with respect to beam height
Three different hole placements with respect to the height of the beam were
tested, centrically placed holes and holes placed with its center in the upper
or lower part of the beam respectively.

Material Strength Class
Two different material strength classes were used, homogeneous glulam of

lamination strength class 1.S22 and combined glulam of lamination strength
classes LS22 and LS15.

Bending moment to shear force ratio
Two different test setups were used concerning the bending moment to shear
force ratio, one with the hole center placed in a position (in the length direction
of the beam) with a combined state of shear force and bending moment and
another setup where the hole is placed with its center at a point of zero bending
moment.

Different hole placements with respect to the beam height seems to never have been
investigated before since all previously performed tests found in the literature have
been carried out on beams with holes placed centrically with respect to the beam
height [1].

The report is organized in the following way. The nine test series and the dif-
ferent test setups, test procedures, recorded measures and other characteristics of
the tests are presented in Section 2. The glulam beams are described concerning
material strength class, lamellae size, density, moisture content and other material
properties in Section 3. The results of the strength tests are presented in Section 4
and some concluding remarks on the results are given in Section 5.



2 Test series

The test series are in Table 1 described concerning name, number of tests, test
setup, hole placement, strength class type, beam size and hole size. The geometric
properties and the bending moment to shear force ratios at hole center for Test
Setup 1 and Test Setup 2 are illustrated in Figure 1. The names of the test series
consist of a three letter combination. All tests with the same first letter (A, B, C,
D) have the same test setup and geometry with the exception of the hole placement
which is described by the second letter (M=Middle, U=Upper, L=Lower) according
to Figure 1. The last letter of the combination tells whether the beams are strength
class homogeneous (h) or strength class combined (c).

Table 1: Test series.

Test ~ Number  Test Hole Strength Beam size Hole size
series  of tests setup placement class type TxH axb r
w2 [mm? o]
AMh 4 1 Middle homogeneous 115 x 630 210 x 210 25
AMec 4 1 Middle combined 115 x 630 210 x 210 25
AUh 4 1 Upper homogeneous 115 x 630 210 x 210 25
ALh 4 1 Lower homogeneous 115 x 630 210 x 210 25
BMh 4 2 Middle homogeneous 115 x 630 210 x 210 25
CMh 4 1 Middle homogeneous 115 x 180 60 x 60 7
CUh 4 1 Upper homogeneous 115 x 180 60 x 60 7
CLh 4 1 Lower homogeneous 115 x 180 60 x 60 7
DMh 4 2 Middle homogeneous 115 x 180 60 x 60 7
V=P 2P
M=2HP l
Test setup 1 |:| H
o =~
2H 2H 4H T
* £ £ £ #
P Vy=p 2P
| M=0
Test setup 2 |:| H
o =~
2H 2H 2H 2H T
£ £ £ £ £ #
Middle Upper Lower
r H/2
Hole size 7 b jz 777777777 +—H |
and placement y +—4 b n

Figure 1: Test setups and hole placements.



All tests were run in deformation control. The rate of total deformation was 0.02
mm/s for test series AMh (except AMh-1 were the rate was 0.05 mm/s), AMc, AUh,
ALh and BMh while the rate of total deformation was 0.007 mm/s for test series
CMh, CUh, CLh and DMh. These rates resulted in a test duration of approximately
20-30 minutes. The rate of total deformation referred to is the rate of the actuator
in the testing machine. These rates of total deformations allowed careful observa-
tions of the two corners of the holes where cracks were expected during the loading
procedure which enabled a careful investigation of the initiation and propagation of
the cracks.

The following variables were recorded for all tests: the total deformation, applied
load P, beam deflection ¢ and also vertical deformations d in the beam at the two
failing corners of the hole. Four LVDT sensors were used to measure these defor-
mations, one on each side of the beam at the two failing corners of the hole. A fifth
LVDT sensor was used to measure the beam deflection §. The placement of these
sensors, glulam beam sizes and sizes of steel beams and support plates are shown in
Figures 2 and 3.

For test series AMh, AMc, AUh, ALh, CMh, CUh and CLh the glulam beams
were delivered with a total length which was longer than the span length of the test
setup and there where two holes in each beam as shown in Figure 3. Hence, two
test were performed on the same beam. For these test series, tests 1 and 2 and tests
3 and 4 were performed on the same beam. The larger beams (H = 630 mm) were
by means of a roller type of support stabilized in the weak direction at three points
along the beam length. Photos of the hole and the LVDT sensors are for some tests
shown in Figure 4. Photos of the test setups used for the nine different test series
are shown in Figure 5.

Test series: Test series:
AMh, AMc, AUh, ALh, BMh CMh, CUh, CLh, DMh
aluminum L-profile [mm] aluminum L-profile [mm]
glued to beam glued to beam —lN
r=25 r=7
crack path measure crack path 10
length measure
length
LVDT sensor 10
LVDT sensor

Figure 2: Placement of LVDT sensors for measurement of deformation d.



Test series AMh, AMc, AUh and ALh [mm]
lP 115
Deformation d = , 600 T A
Loy { - | 230, || 630
pany | Deflection & moniN B
90 1pe0 | 1260 | 2520 | ] 1400
7 g g 1 g
8000
Test series BMh
lp
Steel beam HEA 300, L = 5300 mm | 115
= 1
1 }‘230 Deformation d —_ ) 230
230, |, 4 ) 230, | 630
pany | Deflection & =
180 180
¥ 1260 | 1260 4L 1260 | 1260 ¥
5400
Test series CMh, CUh and CLh
lP 115
Deformationd —f , 160 | h - ------------------ :
B — 80| 180: :
I Deflection & - foor
Steel beam HEB 140, L = 1505 mm
|_|_|_l
40 360 | 360 | 720 | | 400
7 7 7 1 7
2300
Test series DMh
lp
Steel beam HEB 140, L = 1505 mm | U115,
— =
, 145 | Deformationd—fl , 145 |
145 , .. 145 | 180
| Deflection & o)
80, 360 | 360 | 360 | 360 ,80
1 1 1 g g
1600

Figure 3: Test setups with dimensions of glulam beams and steel parts.



Figure 4: Photos of the holes and LVDT sensors from test series: AMh, AMc and
AUL (top); ALh, BMh and CMh (middle); CUh, CLh and DMh (bottom).



Figure 5: Photos of test setups used for test series AMh, AMc, AUh and ALh (top
left); BMh (top right); CMh, CUh and CLh (bottom left) and DMh (bottom right).



3 Materials

All glulam beams were produced and delivered by Téreboda Moelven AB. The beams
were made of spruce (Lat. Picea Abies), glued with melamine-urea-formaldehyde
(MUF) resin and delivered with pre-made holes. The lamella thickness was consis-
tently 45 mm which means that there were 4 lamellae in the small beams (115 x 180
mm?) and 14 lamellae in the large beams (115 x 630 mm?). All small glulam beams
were strength class homogeneous while both strength class homogeneous glulam
and strength class combined glulam were represented among the large beams. The
strength class combined glulam beams were produced with the three outmost lamel-
lae on each side of lamination strength class LS22 and the remaining eight of lam-
ination strength class LS15. The strength class homogeneous glulam beams were
produced with lamination strength class S22 throughout the entire beam cross sec-
tion. The lamellae compositions of the cross sections are illustrated in Figure 6 and
the material properties for these lamination strength classes are presented in Table
2. These material properties correspond to the requirements of lamella material
properties for the different glulam strength classes in SS-EN 1194 [4]. There were
no obvious differences in the average width of the growth rings, in the number of
knots or any other visually observable property between the two lamination strength
classes.

Table 2: Material properties for lamination strength classes according to [3].

y |  Lsi5 LS22 |
Characteristic tensile strength ~ [MPal] 14.5 22
Mean tensile Young’s modulus [MPa] 11 000 13 000
Density, 5" percentile [kg/m?3) 350 390

The strength class homogeneous glulam beams correspond to glulam strength class
GL32h according to SS-EN 1194 [4]. The strength class combined glulam beams
correspond to the glulam strength class L40 according to Swedish BKR [2] and this
class is usually considered to correspond to GL32c¢ although this class should be
composed of LS22 and LS18 according to SS-EN 1194.

The nominal beam cross section sizes 115 x 180 mm? and 115 x 630 mm? are
used throughout this report although the real cross section sizes were measured
to 114 x 178 mm? and 114 x 628 mm? respectively at moisture content correspond-
ing to the moisture content at the time of testing. Figure 6 shows the arrangement
and relative growth ring orientation of the lamellae in the cross sections and also the
location of the holes in relation to the location of the glue lines. The placement of
the holes and the direction of load was random with respect to the orientation of the
growth rings. The holes were not perfectly shaped according to the dimensions in
Table 1 although there were no major discrepancies. The corners of the holes in the
small beams were however not ideally quarter circular in shape. The hole surfaces
were not smoothed in any way.
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Figure 6: Illustration of beam cross section composition and hole placement.

The beams were delivered wrapped in plastic cover and with a moisture content be-
lieved to be approximately 12 %. From the time of delivery to the time of testing the
beams were kept indoors in a climate of about 20 °C and 35 % RH. The beams were
kept in the plastic covers until about ten minutes before testing in order to reduce
the risk of any drying and development of any moisture gradient in the material.
The moisture content u at time of testing and the density p were determined from
samples of the tested beams. This was carried out by cutting a piece of length about
100 mm from the beam cross section. The pieces from the large beams where then
cut into smaller pieces denoted I, IT and IIT according to Figure 6. The volume V.
was determined by measuring the side lengths 7},, H, and L, and the mass at time of
testing myes; was also determined. The pieces were then left to dry in a temperature
of 105 °C until the mass was constant and the moisture content was considered to
be zero. The moisture content u were for the individual parts determined according
to Equation (1) and the mean value according to the same equation with the masses
Myest and mgy, replaced by > myes and ) mygy, respectively. The density was de-
termined in the same manner according to Equation (2). The measured data, the
moisture content © and the density p are presented in Table 3.

Myiest — Mdry

u = e kg /kg] or [%] (1)
p = ”; [ke/m’] (2)
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Table 3: Measured data, density p and moisture content u at time of testing.

Test series mno. piece T o, L, Miest My U P
[mm] [mm] [mm] | [g] [¢] (%] [kg/m®]
AMh 1,2 I 114 134 100 714.7  638.4 | 11.95 | 467.9

II 114 359 100 | 1850.4 1656.7 | 11.69 | 452.1
111 114 132 99 655.4  593.8 | 10.37 | 439.9
AMh 3,4 I 114 132 100 625.2  565.6 | 10.54 | 415.5
II 114 359 102 | 1914.6 1719.3 | 11.36 | 458.6
111 114 133 101 641.2  579.7 | 10.61 | 418.7

AMc 1,2 I 114 133 99 665.3  595.1 | 11.80 | 443.2
II 114 360 99 1802.2 1610.5 | 11.90 443.6*
111 114 132 99 640.4  571.8 | 12.00 | 429.9

AMc 3,4 I 114 134 98 711.2  633.6 | 12.25 | 475.1
II 114 360 99 1803.2 1607.1 | 12.20 443.8*
111 114 131 100 681.9  610.3 | 11.73 | 456.6

AUh 1,2 I 114 133 101 649.2  586.5 | 10.69 | 423.9

I 114 359 100 | 1889.3 1687.7 | 11.95 | 461.6
111 114 132 101 693.3  620.8 | 11.68 | 456.2
AUh 3,4 I 114 133 102 722.6  649.7 | 11.22 | 467.2
II 114 360 102 | 1954.1 1751.5 | 11.57 | 466.8
111 114 132 101 721.5  648.8 | 11.21 | 474.7

ALh 1,2 I 114 131 92 638.6  574.6 | 11.14 | 464.8
II 114 359 95 1857.7 1663.1 | 11.70 | 477.8
II1 114 134 99 7879  704.1 | 11.90 | 521.0
ALh 3,4 I 114 130 94 671.6  601.3 | 11.69 | 482.1
I 114 359 96 1816.6 1629.5 | 11.48 | 462.4
111 114 134 99 797.8  709.5 | 12.45 | 527.5

BMh 1 I 114 132 100 768.4  694.5 | 10.64 | 510.6
I 114 360 100 | 1876.6 1682.1 | 11.56 | 457.3
111 114 133 100 735.7  663.1 | 10.95 | 485.2
BMh 2 I 114 133 98 702.2  631.8 | 11.14 | 472.6
II 114 359 99 1882.2 1675.9 | 12.31 | 464.5
IIT 114 132 99 704.6  633.2 | 11.28 | 473.0
BMh 3 I 114 133 99 7172 6419 | 11.73 | 477.8
I 114 359 99 1781.6 1598.9 | 11.43 | 439.7
111 114 132 99 623.4  564.3 | 10.47 | 418.5
BMh 4 I 114 133 101 765.0  686.1 | 11.50 | 499.6
II 114 360 99 1883.8 1688.8 | 11.55 | 463.7
II1 114 131 99 749.4  668.4 | 12.12 | 506.9

CMh 12 114 178 100 [ 1021.2 908.7 [ 12.38 | 503.3
CMh 34 114 178 99 | 9449 8423 | 12.18 | 470.4
CUh 1,2 114 178 99 | 987.6  879.7 | 12.27 | 491.6
CUh 3,4 114 178 101 | 1065.9 946.9 | 12.57 | 520.1
CLh 1,2 114 178 99 [ 9804 8719 [ 12.44 | 488.0
CLh 3,4 114 178 100 | 1029.4 916.8 | 12.28 | 507.3
DMh 1 114 178 99 [ 948.0 8453 [ 1215 | 471.9
DMh 2 114 178 99 | 945.6  841.9 | 12.32 | 470.7
DMh 3 114 178 99 | 960.3  854.6 | 12.37 | 478.0
DMh 4 114 178 100 | 986.8  879.1 | 12.25 | 486.3
mean \ | 11.73 | 468.8 443.7

* = lamination strength class LS15.
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4 Results

Three different load levels are used to present and compare the test results:

Crack initiation shear force V,
Shear force at first crack development visually observable by the naked eye.

Crack shear force V.
Shear force at the instant of crack development across the entire beam width.

Maximum shear force V;
Shear force at instant of either a sudden crack propagation or a step-wise
stable /unstable crack growth to the end of the beam.

The crack patterns for these load levels are illustrated in Figure 7 and some exam-
ples from the tests are given in Figures 8, 9 and 10 where dashed lines have been
drawn under the cracks to emphasize their length and location.

The shear forces corresponding to the three definitions above are for all tests pre-
sented in Table 4 and Figures 11 and 12. The exact values of the presented shear
forces were determined from visual observations during the testing with aid from
the recorded beam deflection ¢ and the deformations d at the cracked corners of the
hole. The crack initiation shear force V,y is only given in the cases when there was
a visually observable crack in the cross section before there was a crack spreading
across the entire beam width at the given corner. The crack shear force V, is given
for both corner B and corner T for all tests. The length of the crack (in the beam
length direction) at this level varies between the tests. For some tests, the crack was
only one to a few centimeters in the length direction at this load level while other
tests showed an instant crack propagation all the way to the end of the beam at
this load level. The maximum shear force V; is not given for test series BMh and
DMh since the test setup for these test series is such that this load level is irrelevant.
All forces refer to the shear force at hole center due to the externally applied load.
The dead weights of the glulam beams are hence not taken into account. The dead
weights of the steel beams used in test series BMh and DMh are however included
in the presented loads.

The shear force V is plotted vs the beam deflection ¢ and the deformations d re-
spectively in Figures 13 to 21 for all individual tests. The crack shear forces V.p
and V. for the individual tests are in these figures indicated in by dotted lines.
The deformation dg corresponds to the measurements from the LVDT sensors at
corner B and dr corresponds to measurements at corner T. Some plots lack defor-
mations from one or more of the LVDT sensors at the corners of the holes due to
technical problems. The beam deflections ¢ for test series CMh, CUh and CLh are
presented as measured and is hence not compensated for the deflection in the steel
beam (approximately 1 mm at V' = 30 kN) used in the test setup.
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—0 VT corner T

Figure 9: Photos of crack patterns for corner B of BMh-4.

V=Ve=VcT=Vf V=VcB=Vcr=Vf

S'h

Figure 10: Photos of crack patterns for CUh-4.
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Table 4: Shear forces V' for all test series.

Vio [kN] V. [N vy [kN]
Vo Veor min Ven Ver  min

AMh 1 476 45.7 45.7 52.1

2 475 475 475 714 644 644 71.4

3 42.0 42.0 58.4 584 584 58.4

4 60.5 60.5 60.5 60.5

mean (std) 44.8  (3.9) 57.3 (8.1) | 60.6 (8.0)
AMc 1 61.0 61.0 64.3 64.3 64.3 64.3

2 48.0 444 444 49.7  51.3 49.7 63.6

3 45.0 40.0 40.0 51.2 512 51.2 52.8

4 49.1 477 477 54.4

mean (std) 48.5  (11.1) 53.2  (7.5) | 58.8 (6.0)
AUh 1 28.6 28.6 59.2 H7.6 57.6 59.2

2 51.6 59.0 51.6 60.5

3 55.1  55.1 56.2  56.2 56.2 56.2

4 475 54.6 475 57.4 574 574 57.4

mean (std) 43.7  (13.6) 55.7  (2.8) | 58.3 (1.9)
ALh 1 50.2 415 415 53.9 50.2 50.2 58.9

2 43.7  43.7 54.5 521 521 69.6

3 40.0 40.0 64.8 53.2 53.2 64.8

4 395  39.5 57.0 446 44.6 69.8

mean (std) 412  (1.9) 50.0 (3.8) | 65.8 (5.1)
BMh 1 51.9 51.9 61.3 61.3 61.3 -

2 59.4 49.0 49.0 65.7 65.7 6b5.7 -

3 61.4 56.0 56.0 62.1 62.1 62.1 -

4 48.5 48.5 59.7 68.7 59.7 -

mean (std) 51.4  (3.4) 62.2 (2.5)
CMh 1 20.6 20.6 20.6 273 2713 273 27.3

2 241 233 233 249 249 249 29.5

3 231 179 179 244 231 231 25.3

4 244 244 244 270 270 27.0 27.0

mean (std) 21.6  (2.9) 9.6 (2.0) | 27.3 (1.7
CUh 1 240 18.8 188 253 253 253 25.3

2 19.0 19.0 23.2 225 225 25.3

3 20.5 205  20.5 23.3 233 233 23.3

4 16.7 16.7 16.7 22.3 223 223 22.3

mean (std) 18.8  (1.6) 234 (1.4) | 236 (2.2)
CLh 1 175 175 23.1 223 223 26.9

2 19.2  19.2 19.2 23.7  23.7 23.7 29.5

3 21.8 234 218 243 243 243 25.5

4 21.8 21.8 218 24.5

mean (std) 195 (22) 230 (L.2) | 266 (2.2)
DMh 1 26.0 26.0 26.0 29.1  29.1 291 -

2 253 253 253 -

3 23.3 23.3 253 253 253 -

4 254 226 226 26.7 281 26.7 -

mean (std) 24.0 (1.8) 26.6 (1.8)
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Figure 15: Deflection § and deformations d for test series AUh.
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Figure 16: Deflection ¢ and deformations d for test series ALh.
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Figure 17: Deflection ¢ and deformations d for test series BMh.
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Figure 18: Deflection § and deformations d for test series CMh.
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Figure 19: Deflection § and deformations d for test series CUh.
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Figure 20: Deflection ¢ and deformations d for test series CLh.
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Figure 21: Deflection § and deformations d for test series DMh.



5 Concluding remarks

Some comments on the test results concerning the influence of the four investigated
design parameters are listed below.

Beam size
The test results indicate a strong beam size effect on the relative strength
as can be seen in Figure 12. Increasing the beam size by a factor 3.5 gave
about 30-35 % reduction in nominal shear stress V/A,,.; at the instant of crack
development across the entire beam width.

Hole placement with respect to beam height

Slightly lower (approximately 5-15 % considering mean values) crack shear
forces V. were found for the beams with eccentrically placed holes compared
to the beams with centrically placed holes. There is furthermore another
interesting difference concerning the beams with eccentrically placed holes.
Both among the large and the small beams the tests generally showed a more
sudden crack propagation all the way to the end of beam for the beams with
the hole placed in the upper part of the beam (test series AUh and CUh)
compared to the beams with the hole placed in the lower part of the beam
(test series ALh and CLb).

Material Strength Class
There was no significant difference in the behavior between the material strength
class homogeneous beams of test series AMh and the strength class combined
beams of test series AMc. The results of these two test series are however
comparatively scattered.

Bending moment to shear force ratio
For beams with centrically placed holes, two different bending moment to shear
force ratios were investigated. The beams with holes placed in a position of
zero bending moment (test series BMh and DMh) shows on average slightly
higher (approximately 5-10 % considering mean values) crack shear forces V,
compared to the beams with holes placed in a position of combined bending
moment and shear force (test series AMh and CMh).

The scatter in the strength between nominally equal tests within a test series is not
very large, the coefficient of variation of V. being from 4 % to 14 % with an average
of 8 %.

The test results furthermore show that it is more frequent with crack development
across the entire beam width (V) at the upper corner T before the lower corner
B than the other way around. The most frequent scenario is however that cracks
develop simultaneously at both corners. The most common place for crack initia-
tion (Vo) is in the middle of the beam width although some tests showed a crack
initiation all the way to one side of the beam width.
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Strength of Glulam Beams with Holes —
Tests of Quadratic Holes and
Literature Test Result Compilation

Henrik Danielsson and Per Johan Gustafsson

Division of Structural Mechanics, Lund University, Sweden

1 Background

Looking at design recommendations for glulam beams with holes in European timber engi-
neering codes over the last decades, it can be seen that the strength design has been treated in
many different ways. The theoretical backgrounds on which the recommendations are based
shows fundamental differences and there are major discrepancies between the strength esti-
mations according to the different codes as well as between tests and estimations according
to codes [5]. The contemporary version of Eurocode 5 [7] does not state any equations con-
cerning design of glulam beams with holes and the recommendations in the German code
DIN 1052 [3] concerning rectangular holes were withdrawn during the fall of 2007. The ab-
sence of design recommendations indicates a need for further investigations of the subject.
There are, however, several tests found in the literature concerning the strength of glulam
beams with holes. Two of the most recent and more comprehensive studies were presented
by Hofflin in 2005 [10] and by Aicher and Hofflin in 2006 [1]. These studies dealt exclu-
sively with beams with circular holes. Although the test results found in literature all in all
represent much work, important parameters such as mode of loading, beam size and hole
placement have often been varied only within a very limit range. Among other limitations,

it seems that all available test results relate to glulam beams with holes that are centrically
placed with respect to the beam height [5].

2 Strength tests of glulam beams with quadratic holes

2.1 Test series and test setups

Experimental tests of the strength of glulam beams with quadratic holes have been carried
out at the Division of Structural Mechanics at Lund University and they are in detail reported
in [6]. The study comprised investigations of four design variablesnding moment to
shear force ratio at hole centematerial strength clasdeam size effe@nd the previously
overlooked design variable bble placement with respect to beam heigho different test
setups were used to investigate the influence of bending moment to shear force ratio. Three
different hole placements were used for one of the test setups to investigate the influence
of hole placement with respect to beam height. The size effect was investigated for each
combination of test setup and hole placement by using two test series with a scale factor of
3.5 for the length and height dimensions while the width was kept constant. All holes had
rounded corners and a side length equal to 1/3 of the beam height. Altogether, the study
consists of nine separate test series with four nominally equal tests in each series according
to Table 1 and Figure 1.



Table 1:Description of test series.

Test Number Test Hole Strength Beam size Hole size
series oftests setup placement classtype T'x H axb r
[mm] [mm] [mm]
AMh 4 1 Middle homogeneous 115 x 630 210 x 210 25
AMc 4 1 Middle combined 115 x 630 210 x 210 25
AUh 4 1 Upper homogeneous115 x 630 210 x 210 25
ALh 4 1 Lower homogeneous 115 x 630 210 x 210 25
BMh 4 2 Middle homogeneous 115 x 630 210 x 210 25
CMh 4 1 Middle homogeneous 115 x 180 60 x 60 7
Cuh 4 1 Upper homogeneous115 x 180 60 x 60 7
CLh 4 1 Lower homogeneous 115 x 180 60 x 60 7
DMh 4 2 Middle homogeneous 115 x 180 60 x 60 7
y=p 2P
M= 2HP l
Test setup 1 |:| IH
O ~
P y=p lzp
' M=0
Test setup 2 ‘];H
O ~
Middle Upper Lower

r H/2
Holesize | 7 b Ib 777777777 - B
and placement _ e E =D

Figure 1: Test setups and hole placements.

2.2 Materials

The beams were all made of spruce (LRicea Abie} and glued with melamine-urea-
formaldehyde (MUF) resin. The lamella thickness was consistently 45 mm. All beams ex-
cept the beams of test series AMc were of strength class homogeneous glulam. The strength
class combined beams of test series AMc were composed of lamination strength class LS22
in the three outmost lamellae on each side and of lamination strength class LS15 in the re-
maining eight lamellae. The strength class homogeneous glulam beams were composed of
lamination strength class LS22 throughout the entire beam height. The requirements on the
two lamination strength classes are stated in [15] as: characteristic tensile strength, 14.5 and
22 MPa; mean tensile Young's modulus, 11 000 and 13 000 MPa and derfsipe(Bentile),

350 and 390 kg/rhfor LS15 and LS22, respectively. The homogeneous beams correspond
to the requirements in SS-EN 1194 [16] for glulam strength class GL 32h. The strength
class combined beams correspond to the Swedish strength class L40. The mean value of the
moisture content at the time of testing was measured to 11.7 % and the mean densities for
the two different lamination strength classes was measured to 444 kgbt69 kg/m for

LS15 and LS22, respectively.



2.3 Test Results

Three different load levels are used to present and compare the test results according to the
definitions in Figure 2. The test results are presented in Figure 3 and in Table 2. The crack
initiation shear forcd/,, is only given in the cases when there was a visually observable
crack in the cross section before there was a crack spreading across the entire beam width
at the given corner. The crack shear fok¢as given for both corner B and corner T for all

tests. The maximum shear foreg is not given for test series BMh and DMh since the test
setup for these test series is such that this load level is irrelevant.

&l T

TSy P Crack initiation shear force Vg
Shear force at first crack development
visually observable by the naked eye.

g

[ —o— ]
= = Crack shear force V,
Shear force at the instant of crack
development across the entire beam width.
VT corner T
lV Maximum shear force Vr

Shear force at instant of either a sudden crack
propagation or a step-wise stable/unstable
crack growth to the end of the beam.

Figure 2:Definitions and illustrations of load levels.
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Figure 3:Shear force¥ for the three load levels and all tests in all nine test series.



Table 2:Beam cross section, hole size, hole placement, bending moment to shear force ratio
and test results for the three defined load levels for all tests in all nine test series.

Test | TxH axb 1 hole 2z Veo Ve Vi
series placement Voo Veor min Ve Ver min
[mm] [mm]  [mm] [] [kN]  [kN]  [kN] | [kN] [kN] [KN] | [kN]

AMh | 115x 630 | 210x 210 25 middle 2.0 1 476 457 457| 52.1
2 47.5 47.5 475| 714 644 64.4| 714
3

42.0 42.0 | 584 58.4 58.4| 58.4

4 60.5 60.5 60.5| 60.5

mean 44.8 57.3 | 60.6

(std) (3.9) (8.1) | (8.0)

AMc 115x 630 | 210x 210 25 middle 2.0 1 61.0 61.0 | 643 643 64.3| 64.3

2 48.0 44.4 444 | 49.7 51.3 49.7| 63.6
3 45.0 40.0 40.0 | 51.2 51.2 51.2| 5238

4 49.1 47.7 47.7| 544
mean 48.5 53.2 | 58.8
(std) (11.2) (7.5) | (6.0)
AUh 115x 630 | 210x 210 25 upper 2.0 1 28.6 28.6 | 59.2 57.6 57.6| 59.2
2 51.6 59.0 51.6| 60.5
3 55.1 55.1 | 56.2 56.2 56.2| 56.2
4 475 54.6 475 | 57.4 574 57.4| 57.4
mean 43.7 55.7 | 58.3
(std) (13.6) (2.8) | (1.9)
ALh 115x 630 | 210x 210 25 lower 2.0 1 50.2 41.5 415| 539 50.2 50.2| 58.9
2 43.7 43.7 | 545 52.1 52.1| 69.6
3 40.0 40.0 | 64.8 53.2 53.2| 64.8
4 39.5 395 | 57.0 446 44.6| 69.8
mean 41.2 50.0 | 65.8
(std) (2.9) 3.8) | (5.2)
BMh 115x 630 | 210x 210 25 middle 0.0 1 51.9 519 | 61.3 61.3 613 -

2 59.4 49.0 49.0 | 65.7 65.7 657 -
3 61.4 56.0 56.0| 621 621 621 -

4 48.5 485 | 59.7 68.7 59.7 -
mean 51.4 62.2
(std) (3.4) (2.5)

CMh | 115x 180 60 x 60 7 middle 2.0 1 20.6 20.6 206 | 27.3 273 27.3| 273
2 24.1 23.3 233 | 249 249 249| 295
3 23.1 17.9 179 | 244 231 231| 253
4 24.4 24.4 244 | 270 270 27.0| 27.0

mean 21.6 25.6 | 27.3

(std) (2.9) 2.0) | 1.7)

CUh 115x 180 60 x 60 7 upper 2.0 1 24.0 18.8 18.8 | 25.3 253 25.3| 25.3
2 19.0 19.0 | 23.2 225 225| 253

3 20.5 20.5 205| 23.3 233 23.3| 233
4 16.7 16.7 16.7 | 223 223 223| 223

mean 18.8 234 | 236
(std) (1.6) 1.4) | (2.2
CLh | 115x180| 60x60 7  lower | 20 | 1 175 175 | 231 223 22.3] 269

2 19.2 19.2 19.2 | 23.7 237 23.7| 295
3 21.8 23.4 21.8| 243 243 24.3| 255

4 21.8 21.8 21.8| 245
mean 195 23.0 | 26.6
(std) (2.2) 1.2) | 2.2)
DMh | 115x 180 60 x 60 7 middle 0.0 1 26.0 26.0 260 29.1 291 291 -
2 253 253 253 -
3 23.3 233 | 2563 253 253 -
4 25.4 22.6 226 | 26.7 28.1 26.7 -
mean 24.0 26.6
(std) (1.8) (1.8)




2.4 Comments concerning test results

The scatter in the strength between nominally equal tests within a test series is not very large,
the coefficient of variation of.. ,..;, being from 4 % to 14 % with an average of 8 %. The test
results furthermore show that it was more frequent with crack development across the entire
beam width at the upper corner T before the lower corner B than the other way around. The
most frequent scenario was, however, that cracks developed simultaneously at both corners.
The most common place for crack initiation was in the middle of the beam width although
some tests showed a crack initiation all the way to one side of the beam width. Some fur-
ther comments on the test results concerning the influence of the four investigated design
parameters are listed below. When nothing else is stated, the crack shedr foebers to

the minimum ofV_z andV,_r.

Bending moment to shear force ratid:or beams with centrically placed holes, two dif-
ferent bending moment to shear force ratios were investigated. The beams with holes placed
in a position of zero bending moment (test series BMh and DMh) shows on average slightly
higher (approximately 5-10 % considering mean values) crack shear figroesnpared to

the beams with holes placed in a position of combined bending moment and shear force (test
series AMh and CMh).

Material Strength ClassThere was no significant difference in the behavior between the
material strength class homogeneous beams of test series AMh and the strength class com-
bined beams of test series AMc. The results of these two test series are, however, compara-
tively scattered.

Beam size:The test results indicate a strong beam size effect on the strength. Increasing
the beam size by a factor 3.5 gave about 30-35 % reduction in nominal sheait/stréss.

Hole placement with respect to beam heigBlightly lower (approximately 5-15 % consid-

ering mean values) crack shear forégsvere found for the beams with eccentrically placed
holes compared to the beams with centrically placed holes. There is furthermore another
interesting difference concerning the beams with eccentrically placed holes. Both among the
large and the small beams the tests generally showed a more sudden crack propagation all
the way to the end of beam for the beams with the hole placed in the upper part of the beam
(test series AUh and CUh) compared to the beams with the hole placed in the lower part of
the beam (test series ALh and CLh).

3 Previous tests of glulam beams with holes

3.1 Compilation of test results in literature

A compilation of previously performed tests of glulam beams with holes from various sources

is presented in Table 3. The tests are described concerning beam cross section, hole design,
bending moment to shear force ratio, number of tests and results corresponding to the three
load levels defined in Figure 2. All holes were centrically placed with respect to beam height.
Load levelsV,, andV, refers to the minimum of the values for the two corners, if values for
both corners are given in the original source. A more comprehensive compilation including
further details such as material strength class, moisture content, how well the definition of
load levels correspond with the ones found in the original sources, etc. is found in [5].
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Table 3: Compilation of test results of glulam beams with holes= number of tests.

Reference TxH O:axb r |l 25| Veo Ve Vi
O: ¢ mean (std)| mean (std)| mean (std)
[mm] [mm] (1 | [1 | kN [kN] | [kN]  [kN] | [kN]  [kN]
Bengtsson & Dahl [2] 90 x 500 300x 150 0 | 1.20 | 2 39.0 (0.3)
90 x 500 200x 100 O | 1.20 | 2 49.6 (1.1)
Kolb & Frech [12]] 80 x 550 250%x 250 ? | 091 | 2 32.7 (2.1)
80 x 550 250x 150 ? | 091 | 2 44.0 (2.8)
80 x 550 250%x 250 ? | 1.82| 2 33.8 (1.1)
80 x 550 250%x 150 ? | 1.82 | 2 35.4 (4.0)
Penttala [13] 90 x 500 200x 200 ? | 160 | 1 33.8
90 x 500 400x 200 ? | 160 | 1 25.0 31.3
90 x 500 600x 200 ? | 160 | 1 20.8 30.0
115 x 800 400x 200 ? | 1.25| 1 69.1
115 x 800 200x 200 ? | 1.25| 1 52.5 84.4
Johannesson [11] 90 x 500 250%x 250 25| 1.30 | 2 26.8 (0.5)| 285 (2.8)
90 x 500 250%x 250 25| 280 | 2 22.2 (2.3)| 256 (0.6)
140 x 400 600x 200 25| 225| 1 30.0 37.0
88 x 495 125x 125 25| 253 | 4 404 (11.1)
88 x 495 375x 125 25| 253 | 4 37.7 (6.4)
88 x 495 370x 370 25| 253 | 4 9.1 (2.1)
88 x 495 735x 245 25| 253 | 4 12.8 (1.1)
88 x 495 1100x 370 25| 253 | 4 4.2 (0.3)
Pizio [14]| 120x 400 180x 180 O | 1.05| 2 241 (12.4)| 30.6 (3.1)| 63.7 (4.6)
120 x 400 180 x 90 0| 105| 2 37.2 (15.4)| 549 (34)| 755 (1.6)
120 x 400 180x 10 0| 105| 2 925 (26.3)| 103.3 (14.8)| 103.3 (14.8)
120 x 400 180 x 90 0|105| 1 56.6 71.0 84.5
120 x 400 180x 10 0| 105| 1 | 1101 110.1 110.1
120 x 400 360x 180 0 | 1.75 | 2 21.7 (23)| 233 (0.0)| 248 (2.1)
120 x 400 10x180 O | 1.75| 1 34.0 34.0 34.0
120 x 400 360x 180 0 | 1.75| 1 19.2 21.1 28.8
120 x 400 10x180 O | 1.75| 2 30.0 (1.1)| 338 0.0)| 33.8 (0.0)
120 x 400 180 x 90 0| 175| 3 458 (11.2)| 54.2 (7.0)| 54.2 0.7)
120 x 400 180x 180 O | 1.05| 2 20.6 (49)| 26.8 (3.8)| 70.0 (11.2)
Hallstrom [9] 90x 315 400%x 150 25| 2.78 | 5 11.9 (1.5)
90 x 315 400x 150 0 | 2.78 | 5 12.2 (1.2)
90 x 315 400%x 150 25| 2.78 | 5 12.2 (0.5)
90 x 315 400x 150 25 ? 1 12.2
165 x 585 600x 295 25 ? 4 27.1 (1.9)
Bengtsson & Dahl [2] 90 x 500 $250 120 | 2 38.4 (1.2)
90 x 500 ¢150 120 1 52.5
Penttala [13] 90 x 500 $255 120 1 33.8
90 x 500 $250 210 | 1 31.6
90 x 500 ¢150 120 1 51.3
115 x 800 $400 103 | 1 57.1 65.9
115 x 800 $300 200 | 1 89.5
Johannesson [11] 90 x 500 $250 130 | 2 29.6 (5.4)| 365 (4.3)
90 x 500 $250 280 | 2 33.2 (2.6)| 375 (3.5)
90 x 500 $250 0.60 | 2 33.8 (7.1)| 417 (4.2)
90 x 500 ¢125 0.60 | 2 - 40.1 (0.1)
88 x 495 $125 253 | 4 51.9 (4.6)
88 x 495 $396 253 | 4 16.1 (1.5)
Hallstrom [9] 90x 315 $150 278 | 5 245 (3.5)
Hofflin H1| 120x 900 $180 150 | 5 69.2 (23.2)| 106.4 (27.8)| 128.1 (19.2)
[10] H2| 120x 900 $270 150 | 6 65.3 (22.1)| 96.4 (11..7)| 108.7 (6.7)
H3| 120 x 900 $360 150 | 5 48.0 (8.4)| 69.2 (9.0)| 88.6 (15.6)
H4| 120 x 900 $270 5.00| 5 43.1 (8.3)| 55.1 (8.6)| 84.2 (18.0)
H5| 120 x 450 $90 150 | 5 62.8 (15.6)| 76.8 (13.8)| 82.1 (7.6)
H6| 120 x 450 ¢135 150 | 6 38.8 (6.0)| 65.5 (7.6)| 67.9 (7.0)
H7| 120 x 450 $180 150 | 4 34.6 (7.4)| 476 (8.5)| 51.8 (5.9)
H8| 120 x 450 ¢135 500 | 5 347 (18.2)| 58.0 (71)| 63.4 (6.5)
Aicher & Hofflin -~ A1| 120 x 900 $180 500 | 4 66.4 (21.5)| 106.4 (15.0)| 111.6 (13.1)
[1] A2| 120x 900 $360 500 | 5 46.7 (15.3)| 61.6 (15.0)| 79.9 3.2)
A3| 120 x 450 ¢180 500 | 6 42.4 (9.6) | 48.8 (7.7)| 53.7 (8.0)
120 x 450* $180 5.00 | 3 15.4 3.1)| 379 (6.8)| 4438 (2.5)
120 x 900* $360 500 | 3 335 (13.6)| 496 (17.4)| 66.6 (6.9)

* = curved beam, radius of curvature H/0.03




3.2 Influence of bending moment to shear force ratio

Figure 4 illustrates the influence of the bending moment to shear force ratio on the strength.
The results indicate a only a small influence of the bending moment on the crack shear force
V.. There is however one exception: The test series Wit/ = 120x900 mnt and¢ =

270 mm shows a 43 % reduction in the crack shear fofder M /(V H) = 5.0 compared

to M/(VH) = 1.5. Itis worth pointing out that the mean value of the crack shear force is
lower for the test series witli'’x H = 120x900 mn¥, M/(VH) = 5.0 and¢ = 270 mm

than it is for the test series with equal cross section and bending moment to shear force ratio
but with a larger holep = 360 mm, as can be seen in Figure 4 and in Table 3.
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=~ ~
~
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~
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3 G ---_CIIIz----__ RN
S eof T TT----__731-0 §
- _ - T <=0
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<
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O 40 - -
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G -_ - ‘o)
~g----
o - —a _
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201 TxH=90x500 a=b=250 |
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— © — Tests from Table 3 - [1], [10] and [11]/
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Bending moment to shear force ratio M/(VH) [-]

Figure 4: Influence on strength of bending moment to shear force ratio for nominally equal
tests concerning beam cross section, material strength class, hole size and hole placement.

3.3 Influence of beam size

The present tests of glulam beams with quadratic holes indicated a strong beam size effect.
Figure 5 shows the test series mean of the nominal shear $ire$s.; vs. beam height/

for these tests and tests presented in [1] and [10]. Test results connected with lines represent
test series which are equal concerning bending moment to shear force ratio, material strength
class, beam width and hole size to beam height ratio but with different beam ligigttte

beam size effect can be expressed according.te\,., ~ H~™ where the parameten
describing the beam size effect can be determined from two test series of different size scale.
The values ofn are for the nine pair of test series given in Figure 5. It can be seen that
the tests from [1] and [10] and relating to circular holes indicate a stronger beam size effect
than the tests relating to quadratic holes presented in Section 2. The value of the parameter

v



m = 1.07 for test series with//(V H) = 5.0 andp = 0.3H is substantially higher than the
value for the other eight pair of test series. This deviating result is due to the test series with
TxH = 120x900 mnt, M/(VH) = 5.0 andy = 270 mm. The result of that series gave
also the deviating result with respect to influence of bending moment according to Figure 4
and showed lower strength than the corresponding beam with a largephel860 mm.
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Figure 5: Influence on strength of beam size (beam height, beam length and hole size uni-
formly scaled) for otherwise nominally equal tests.

4 Comparison of design codes and test results

In order to make a simple evaluation of some of the proposed design recommendations, a
comparison between test results and the shear force capacities according to codes is pre-
sented. The characteristic shear force capacities according to the following three methods
are used in the comparison; (1) the empirically based method found in Swedish code of
practiseLimtrahandbol4], (2) The "end-notched beam analogy"-method found in a previ-
ous version of Eurocode 5 (prEN 1995-1-1 [8]) and also fouridnmtrdhandbolkand (3) the

design method found in the German code DIN 1052 [3] (recently withdrawn for rectangular
holes). The present results of beams with quadratic holes and test results of straight beams
with circular holes presented in [1] and [10] are used in the comparison. The beams of test
series AMc are considered to correspond to strength class GL 32c¢ while the material strength
class of all other beams is GL 32h. The following strength values (taken from SS-EN 1194
[16]) are used when determining characteristic capacities according to ¢goges;3.8 MPa
and f; 90 = 0.5 MPa for GL 32h and, , = 3.2 MPa andf, oo, = 0.45 MPa for GL 32c.
Characteristic values for the beam test resu]ts and the coefficient of variationov are
determined according to Equations (1) and (2)
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Vie = Vi-(1—1.645-cov) (1)

1 n; Ny ‘—/z_‘/z 2
o = e () @

i=1 j=1

wheren,,, is the total number of individual tests; is the number of test series; is the num-

ber of individual tests within the test serids,is the mean value of the crack shear foi¢e

for test series andV/; is the individual value of the crack shear foii¢eor test; in test series

i. For the beams with quadratic holes, the minimum crack shear fgreemin (V.5, V.r)

of the test results according to Table 2 and the overall coefficient of varietive- 7.55 %

based on these 36 test is used to determine the characteristic Vaju&®r the beams with
circular holes, the crack shear forég according to Table 3 and the overall coefficient of
variationcov= 15.3 % based on these 56 tests is used to determine the characteristic values
Vi k. The comparison between tests and codes is presented in Table 4 and in Figure 6 for the
guadratic holes and in Figure 7 for the circular holes. The test series notations for circular
holes (H1-H8 and A1-A3) refer to notations in Table 3.

Comparing the characteristic valués, based on the test results and the characteristic
strength value¥’,,,. according to codes, some observations are worth pointing.outra-
handbokand DIN 1052 underestimates the capacity of all test series with quadratic holes.
This underestimation is more severe for the test series with small beams since the beam size
effect is not taken into account in any way in these two codes. The test results of beams with
guadratic holes do however not indicate the strong size effect suggested by Eurocode 5. This
code is on the unsafe side for all test series with quadratic and circular holes, but shows a
fairly good ability to predict relative influence of the various parameters.

Table 4: Test results and characteristic shear force capacities according to codes in kN.

Test series{ Test results Characteristic shear force capacitiés,. according to codeiﬁ
mean characteristic Limtrahandbok Eurocode 5 DIN 1052
V; Vik empirical method ~ prEN 1995-1-1
AMh 57.3 50.1 36.6 60.1 41.8
AMc 53.2 46.6 30.8 50.6 37.6
AUh 55.7 48.8 36.6 53.3 35.9°
ALh 50.0 43.8 36.6 53.3 35.9°
BMh 62.2 54,5 36.6 60.1 50.2
CMh 25.6 22.4 10.5 321 11.9
CUh 23.4 20.5 10.5 28.5 10.2
CLh 23.0 20.2 10.5 28.5 10.2
DMh 26.6 23.3 10.5 32.1 14.3
H1 106.4 79.6 83.7 176.4 116.5
H2 96.4 72.2 66.4 134.7 88.2
H3 69.2 51.8 51.9 108.0 72.8
Al 106.4 79.6 83.7 176.4 78.1
H4 55.1 41.3 66.4 134.7 63.8
A2 61.6 46.1 51.9 108.0 54.9
H5 76.8 57.5 41.8 109.4 58.3
H6 65.5 49.0 33.2 95.8 44.1
H7 47.6 35.6 25.9 77.9 36.4
H8 58.0 43.4 33.2 95.8 31.9
A3 48.8 36.5 25.9 77.9 27.4

* = Hole placement with respect to beam height not according to regulations in code.
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Abstract A probabilistic fracture mechanics method for str- 1 Introduction

ength analysis of glulam beams with holes is presented. The

method is based on a combination of Weibull weakest linkntroducing a hole through a glulam beam drastically changes
theory and the mean stress method which is a generalizatidghe stress state and reduces the strength significantly due to
of linear elastic fracture mechanics. Combining these twdhe high perpendicular to grain tensile stresses and the shear
methods means that the fracture energy and the stochastitresses appearing in the vicinity of the hole. It is however
material properties are taken into account. The probabilissometimes necessary to make a hole, for example for instal-
tic fracture mechanics method is evaluated by comparisolations. Wood is weak when loaded in tension perpendicular
to experimental test results. The method shows good abilitio grain and fracture caused by this type of loading com-
to predict strength, with the exception of very small beamsnonly has a brittle course, which emphasizes the need for
where the capacity is overestimated. The comparison to exareful design.

perimental tests deals also with other methods for strength  Finding a simple, general and reliable design method is

analysis including code design methods.
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however a difficult task. Looking at European timber engi-
neering design codes over the last decades, it can be seen
that strength design of glulam beams with holes have been
treated in many different ways. The theoretical background
on which the recommendations are based show fundamen-
tal differences and there are also major discrepancies be-
tween strength predictions according to different codes as
well as between codes and experimental tests (Danielsson
2007; Danielsson and Gustafsson 2008). The lack of know-
ledge is further reflected by the fact that the contemporary
version of the European timber code EC5 (Eurocode 5 2004)
does not state any equation concerning design of beams with
holes and the recommendations in the German timber code
DIN 1052 (Blaf3, Ehlbeck, Kreuzinger and Steck 2005) were
withdrawn for rectangular holes during 2007 since they were
believed to lead to unsafe design.

The hypothesis in this study is that accurate strength pre-
dictions for glulam beams with holes can be obtained by
what can be referred to aspgobabilistic fracture mechan-
ics methodA proposal for such a method is briefly outlined
in (Gustafsson and Serrano 1999) and will be further de-
veloped here. The considered method is based on a combi-
nation of Weibull weakest link theory and the mean stress
method which is a generalization of linear elastic fracture



mechanics. Combining these two methods means that trf&A probabilistic fracture mechanics method

nonzero fracture energy and the stochastic nature of the ma-

terial properties are taken into account. The derivation of the probabilistic fracture mechanics method
The aim with the study is to investigate the possibili-(PFM) considered here starts with a reformulation of the

ties of the proposed method. Specifically, the influence o¥Veibull theory. Based on analysis of different volumes and
four important design parameters on the strength is considtress distributions with equal probability of failure, the fol-
ered for both quadratic and circular holes: bending momerlPwing expression can be obtained
to shear force ratio, beam size, hole placement with respect m 1/m
. . : : Omax 1 a(x,y,2)

to beam height and relative hole size with respect to beamf— = (Q / < ) dQ>
height. Strength predictions according to the probabilistic ref /Q
fracture mechanics method is also compared to experimentalhereomay is the maximum stress in the body of volufle
test results and other methods for strength analysis includingnd with stress distributioa(x,y, z), f is the mean 06max
code design methods. at the instant of failurefret is the mean strength valid for
a homogeneous stress distribution in the reference volume
Qe andm is the Weibull shape parameter related to the
scatter in material strength.

The ratioomay/ f can be interpreted asgobal effective

There are a few basically different methods for rational strdimensionless stress parametgjopa anda(x, Y.z )/ frer as
) . . . |g;lmef'fectwe dimensionless stress fialt, y, z) defined in the
ength analysis based on linear elastic stress analysis. The

dominating method in timber engineering is what can be re\_/olumeQ. The expression can then be rewritten as

ferred to asconventional stress analys{f€SA) with some (

@)

fref

2 Methods for rational strength analysis

1 1/m
failure criterion based on the stresses in a point. Determirglobal = { 5~ /Qam(x, %:2) dQ) )
istic and ideally brittle material behavior is assumed, mean- .
ing that the strength properties are homogeneous throquhere the value oftgiopal for a(x,y,2) in Q corresponds to
out the body and that the fracture energy is assumed to beequal probability of failure as the constanF value((ns.k, y,2) =
zero. This type of strength analysis method is of little use”g'obal for a homogeneous stress@es. Sincefres is here
for glulam beams with a hole due to the high stress gradien efined as the mean strength@g+, dgiobal = 1.0 will for
in the vicinity of the hole. Th&Veibull weakest link theory Q give the mean failure ve_llue @inax. 1L IS in calgulaﬂon
(Weibull 1939) is, just as CSA, based on the assumptiongf the external load that givegioba) = 1.0 convenient that
of a linear elastic and ideally brittle material. The material®(*%¥:2) and thus als@(x,y,z) andagiopal are proportional
strength properties are however allowed to be heterogeno %the load. : . .
and the method is hence stochastic. Weibull theory have Acknowledgmg the hetero_ge_nelty_mthe material strength
been applied to glulam beams with circular hole©ffth in this way, the strength prediction will depend both on the

2005). A general drawback of Weibull theory and CSA iSyolu_me and the distributiop of the s_tresses but the material
however that they cannot be applied to strength analysis a5 still assumed to behave ideally brlt.tle. To accou_nt also for
structural elements with a stress singularity caused by a craLhke frgcturg toughness of the matenal, other choices of the
or a sharp notch (Gustafsson 1988)lihear elastic fracture effective dlmensmnless_stress field than stated abovg can be
mechanicgLEFM), is infinite material strength assumed andmade' In acco'rdance with the mean stres§ method, it can be
the global strength is instead governed by fracture energ seful to consider the mean stresses acting across a poten-

properties. LEFM suffers however from one major limita- f'al fractu:e area;_ﬁssu_mlng plar?i s['_t]ress (_:ogc_htlor?s anﬁ a
tion: it is based on the assumption of an existing crack giv_racture plane which coincides with the grain direction, the

ing rise to a square root stress singularity. The theory Caﬁf“fective dimensionless stress field can be chosen according
however be modified (generalized) in order to overcome thil®

limitation. Themean stress methpgresented in (Gustafs- ooy N2 /Txy))\2 1/2
son 2002), is one such generalization. The basic idea of th&(X.Y) = (f) < )
method is to consider the mean tensile and shear stresses °

acting across a potential fracture area. These stresses, whigherea(x,y) andt(x,y) are the mean values of the perpen-
has a finite value also for the case of presence of a stress sidicular to grain tensile stregsand the shear stressn the
gularity, are then used in a conventional stress based failupotential fracture area anfd and f; are the corresponding
criterion. The mean stress method have been applied to glmean strengths valid for the reference volugdgs. If the

lam beams with holes (Gustafsson 2002) and have recentipean stress perpendicular to grain is compressive, this con-
also been applied to steel-timber dowel jointsdn and tribution is ignored and the effective dimensionless stress is
Serrano 2008). determined by the mean shear stress only.

. ®



The size of the potential fracture area is related to the
size of the fracture process region at the instant of start of un-
stable crack growth and is defined by the plane stress widtgm(x)
and a lengthans in the grain direction (Gustafsson 2002).

The lengthaysis derived in such a way that the mean stress
method will give the same strength prediction for a body in ~ The physical interpretation of the method is that all points
a homogeneous state of stress as CSA and give the sarifiethe body are considered as potentially weak points where
strength prediction as LEFM for a body with a square roofracture initiation may occur. The material is, due to fracture
stress singularity. For a potential fracture area starting frontoughness and ductility, assumed to have the ability to dis-

ams for 0 <X< ams/2
=< 2x for ams/2 < X< ams (5)
2ams for Ams < X

a surface of the body, this length is found to be tribute the stresses over the fracture area and it is hence the
2 mean stresses acting within this area that are considered. In
<= 2EGic B <G”C) 1 o accordance with Weibull theory, the resistance to fracture is
n & By \Gc/ 4k not homogeneous but viewed as a stochastic property.
2 5 The strength prediction of PFM depends, among other
A /1+4k2\/?YG'C _1 <1+ kaG) (4) parameters, on the value of the Weibull shape paranneter
Ex Giic f? and the fracture energy paramet&is andG,,c. For an ide-
EE ally brittle material Gic = Gyjic = 0), the method will break
where E; = Xy down to Weibull theory. This is also true for a body with a
Ex n B, B homogeneous stress distribution, since the mean stresses are
Ey, 2Gy VB equal to the actual stresses. PFM will also approach Weibull

o theory for increasing size of the considered body since the
whereEy, Ey, Gxy andvyy are the elastic stifiness parametersg|ative size of the potential fracture area decreases. For a
(Poisson’s ratio defined agx = —&x/¢y for uniaxial loading  material which is assumed to show fracture ductility but
in they-direction),Gic andGjc are the mode | and mode Il \yhere the material properties are assumed to be determin-
critical energy release rates (which are equal to the fracturgy;c (m — ), PFM will break down to the mean stress

energies for an ideally linear elastic material) &ndT/0is  method meaning that the potential fracture area with the

the mixed mode ratio. The grain direction is here representegh st severe combined action ofand T will be decisive.

by thex-direction. _ o _ For the special case of a deep crack in a large body, the
The expression in Equation (4) is valid for a potential ;yean stress method will in turn break down to conventional

fracture area starting from the surface of the considered bodyg ). For an ideally brittle material with deterministic prop-

which corresponds to initiation of fracture at a surface degtjes the strength prediction of PFM will be the same as ac-

fect. The integration af(x, y) should however be carried out ¢oding to CSA and the material point with the most severe
over the entire considered volume meaning that also interiqko mbined action off andt will be decisive.

points need to be considered. For an interior point, a defect

in the material can be interpreted as an interior crack which

has two tips and the potential fracture area is hence takefi Method for strength analysis of glulam beams with

as twice that valid for a surface crack. For points which aréholes by probabilistic fracture mechanics

not on a surface, but neither far from them, some approx-

imation needs to be made. Aiming for a smooth transitior#.1 Determination of stress fields

when moving between these two extremes, the length of the

potential fracture arean, is in the present implementation The stress fields(x,y) andt(x,y) are determined by 2D

determined as illustrated in Figure 1 and expressed math@lane stress finite element analysis by the commercial soft-

matically in Equation (5). ware ABAQUS. The entire beam is not modeled but only a
certain part of the beam close to the hole according to Fig-
ure 2. The reason for adopting this approach is that it de-

— creases the computational demands and enables an easy way

o Length of potential of changing load conditions. The geometry is defined by the
— ~ fracture area a,, . . |
— 7 beam heighH, beam widthT, hole side lengthga andb,
E——— Material point (x,) relating to hole corner radiusand position of hole center relative to the
— mean stresses 5(x,y) and T(x.y) neutral axis of the bears A circular hole can formally be
$ e regarded as a quadratic hole with diamegier a=b = 2r.
X

The length of the beam part considered for the finite element
Fig. 1 Interpretation of the length of the potential fracture area forstress analysis i$.5H + 1.5H. The shear force¥ and the
different locations of a material points with respect to asurfagedd.  bending momentM,_ andMg are applied as parabolic shear



stress distributions and linear normal stress distributions ret.2 Determination of mean stresses
spectively. The load condition is represented by the bending
moment to shear force ratd /(V H) at hole center. The output from the finite element stress analysis is taken

An orthotropic and linear elastic material model is used®S the stressesandt in the nodal points of the elements.
with stiffness properties according to Table 1. 8-node pland N€se stresses are then interpolateefarence points an
stress quadrilateral elements with biquadratic displacemeffenly distributed grid in the body. The distance between
interpolation and reduced integration are used. Dynamic anti€ reference points is equabinandy-directions and is de-
geometrical non-linear effects are not included in the analf©tedarp. For the presented numerical calculationaris=
ysis. Due to the geometry, there are high stress gradientd/1000 The mean stresses(x,y) and T(x.y) are deter-
around the hole which in general means that a fine mesfpined at aI_I r(_aference pon_’nts by numerical mtegratlon c_)f the
is needed to describe the stress accurately. This problem $§€Sses within the potential fracture asggassociated with
however less pronounced since the effective dimensionledBe specific reference point. The size of the potential fracture

stress field is based on the mean stresses for an area. TigPends on the mixed mode rakie= T/0 and determining

minimum element size in the regions with high stress graLhe mean stresses is hence an iterative process. In this imple-

dient should however be considerably smaller than the siZ&'€ntation, this iteration is however ignored and the mixed
of the potential fracture area for which the mean stresses afB0de ratio is assumed to be determined with sufficient ac-
determined. A typical finite element mesh used for the stresgUracy by the ratio between the stresses in the considered

analysis is shown in Figure 3. reference poink = 1/0.
The mean stresses must be determined in a part of the

beam somewhat smaller than the one used for the finite el-
| ement stress analysis. The reason for this is that the mean
%] stresses in an interior material point of the body represent
H
Lrl

stress of both sides of the material point in thdirection.
The mean stresses are for the presented numerical calcula-
tions determined within a length75H + 0.75H.

i IR 5 .

H/2

4.3 Stress integration and strength prediction

| 1.5H | 1.5H |

Fig. 2 Beam geometry, hole geometry and applied loads. The strength prediction according to the probabilistic frac-
ture mechanics method is implicitly given by the value of
the global effective dimensionless stress paramejgal
which is determined by integration of the effective dimen-
sionless stress field(x,y) according to Equation (2). This
integration is carried out numerically according to

T n 1/m
Oglobal = (Qii’ .Zam(Xth)) (6)

wheren is the number of reference points in the body and
a(xi, Vi) is the effective dimensionless stress at reference
pointi according to Equation (3). The criteriogjgpa = 1.0
gives the mean global failure load sinagopal is propor-
tional to the applied loads and the strength prediction in
terms of shear force at failukg sjiure is hence given by

H/10

VEE (7)

Vailure =
Oglobal

| whereVEe is the shear force applied in the finite element
stress analysis aryqbal is the value obtained from Equa-
Fig. 3 Typical finite element mesh used for the stress analysis. tion (6) for this applied shear force.




An illustration of typical distributions of, T, a and  Table 1 Material properties used in the PFM calculations.

a™in the _vic_inity of a hole_ are shown in Figur(_a 4. Itis Modulus of elasticity| E. 13700 MPa
from the distribution ofx™ evident that the two regions that Modulus of elasticityl. ~ Eyy 460 MPa
contributes significantly toigiopas are very small. The illus- Shear Modulus Gyy 850 MPa
tration is based on the material properties stated in Table | Poisson's ratio Vxy 035 -

| . Tensile strength fo 3.0 MPa
1. Beam geometry and load condition dfe= 600 mm, Shear strength f, 9.0 MPa
T=115mm,a=b=0.30H, r/a=r/b~ 0.14, s= 0, Fracture energy mode |  Gi¢ 0.300 Nmm/mnr
M/(VH) =4.0and the applied load corresponds to the PFM | Fracture energy mode Il Gyc ~ 1.050 N%m/mrﬁ

i _ Reference volume Qe 31250 m

failure load,V /Anet = 1.16MPa. Weibull shape parameter m 5 -
o [MPa]

5 Verification: Beam in bending

In order to verify the numerical implementation, the method
is applied to a beam in bending according to Figure 5. For
this loading and geometry, an analytical solution is derived
in (Danielsson 2009) according to

! TH2f, 1
H Mfailure: 6 1 am/H
- S/
1 LHT (ans, 1 1 aw)) " o
Mos 20f \H 'm+1 m+iH
! 0.4
o 2E, .
%2 where ams = 1Cic sincek =0

mif2

l i i The results for the special cases of the mean stress method
; +and Weibull theory are found iy — o andanys= 0 respec-
: v © tively. The strength prediction according to the analytical
' R ' solutions (dashed and solid lines) and the numerical solu-
tions (marks) are for different values of and G, shown
in Figures 6 and 7 for the probabilistic fracture mechan-
ics method (PFM), Weibull theory (WEI), the mean stress
method (MSM) and also according to conventional stress
4.4 Material properties analysis (CSA) with failure criterion = fs. The numerical
implementation of PFM gave almost exactly the same re-
The material properties used for the numerical calculationsults as the analytical solution. The verification is based on
are given in Table 1. The stiffness propertgg, Eyy, Gxy  a beam of dimensioh = 2H = 2T = 200mm and with di-
andvyy are assumed to correspond to mean values valid fagection of grain iny-direction. The material properties other
glulam strength class GL 32h. The material strenghsnd  than the ones illustrated in these two figures are as stated
fr and the fracture energi€3c andGyic are based on val- in Table 1. Applying a pure bending moment gives a mixed
ues used in (Gustafsson 2002). The values of the referenggode ratiok = 0 and with the given material properties the
volume Qret and the Weibull shape parametarrelate to  |ength of the potential fracture areaggs~ 21 mm.
experimental tests of the strength for homogeneous tensile
stress perpendicular to grain. The reference vol@ng is

Fig. 4 Distributions ofa, T, a anda™ in the vicinity of a hole.

determined from the empirical relation M : M
-0.2 A X H
fo/ fo = L.5(Qret/Q0) ®) ( =] )
where fg = 1.0 MPa andQq = 10° mm? which is found in g z
L

(Gustafsson 2003). The chosen value of the Weibull shape
parameterm = 5, corresponds to the volume influence in Fig. 5 Beam in bending for verification of numerical implementation.
the above given equation and also to about 23 % coefficient

of variation in strength.



A T T T recent and most comprehensive test programmes on glulam
35 MSM beams with circular holes and the design parameters primary
_ studied were: bending moment to shear force ratio, beam
g N een AT size and relative hole size with respect to beam height. The
~25 _ comparison concerning these tests is shown in Figure 10 for
£l Weibul the quadratic holes and in Figure 11 for circular holes. All
@ beams of the presented tests are of material strength class
3 L5 GL 32h.
o 1 Some comments on the strength predictions and on their
0.5t ] correlation to the experimental test results concerning the
0 ‘ ‘ four design parameters are given below:
10° 10" 107 10°
Weibull shape parameter m [] Bending moment to shear force ratio
Fig. 6 Predicted strength8M e/ (T H?) versusm. PFM predicts a comparatively small influence of the bend-
4 ing moment to shear force ratio for holes centrically placed
35 with respect to beam height. This agrees rather well with the
overall behavior found in the tests. The difference in strength
g 3 for the considered bending moment to shear force ratios are
%2,5, however comparatively small. According to PFM, the influ-
N,E - _ ence of bending moment to shear force ratio seems to a large
=2 weibull extent to depend on the hole placement with respect to beam
215 height. This is commented below.
s 1 Beam size
05 The beam size seems to be the most influential parameter out
of the four investigated design parameters. PFM predicts a
% 0.1 0.2 0.3 0.4 strong beam size influence on the strength which was also
Fracture energy Gic [Nmmimmz] found in the experimental tests. The method seems to cap-
Fig. 7 Predicted strengttBMraiure/(TH?) versusGic. ture the beam size effect well for the beams with= 450,

630 and 900 mm. However, the method considerably overes-
timates the capacity for the small beams wkth= 180mm.

6 Parameter study and verification Comments regarding this is found in Section 8.

The relative influence on the strength of the four design paHole placement with respect to beam height
rameters investigated are illustrated in Figure 8 for a bearConcerning hole placement with respect to beam height, the
with a quadratic hole with rounded corners and in Figure 9nfluence on the strength predicted by PFM is rather com-
for a beam with a circular hole. The illustrations are baseglex. For the reference beams in Figure 10 and Figure 11
on a reference beam according to the figures. For each of thehereM /(VH) = 4, the strength is greater for the centri-
four graphs in the respective figures, one of the design paeally placed holes than for the eccentrically placed ones.
rameters is varied while the others are constant. The nomin&urther calculations showed that this difference in strength
shear strengtV /Anet is 1.35 MPa for the reference beam increases with increasing bending moment to shear force ra-
with a circular hole (/@ = 0.5), 1.16 MPa for the refer- tio (Danielsson 2009). For holes placed in a position where
ence beam with a quadratic hole and rounded cormgas{ M /(VH) = 0, the method however predicts greater strength
r/b~ 0.14) and 1.14 MPa for a corresponding quadraticfor eccentrically placed holes than for centrically placed ones.
hole with sharp corners & 0). PFM predicts higher strength for test series AUh with a hole
Verification of PFM is carried out by comparison to ex- placed in the upper part of the beas A H /6, M/(VH) =
perimental test results. Strength tests of beams with quadrafy than for test series AMh with a centrically placed hole
holes with rounded corners were performed at Lund Uni{s= 0, M/(VH) = 2), see Figure 10. The test results how-
versity (Danielsson 2008). The design parameters primaever show the opposite relation. The difference in predicted
ily studied in this test programme were: bending moment tstrength is however small. For the small beams in the same
shear force ratio, beam size and hole placement with respefigure, both PFM and the test results show lower strength
to beam height. For beams with circular holes is verificatiorfor eccentrically placed holes. The strength reduction pre-
made by means of test results presented idfffth 2005; dicted by PFM is however somewhat smaller than found in
Aicher and Hfflin 2006). These studies are two of the mostexperimental tests.



Relative hole size with respect to beam height 25
PFM predicts decreasing nominal shear strength with in-
creasing relative hole size. In general, the method suggests

greater strength for a beam with a circular hole compared

to a beam with a quadratic hole far=b = @. The strength £

reduction for increasing hole size is further greater for the

quadratic holes than for the circular holes. Increasing the""

holes size fromp=a=b = 0.20H to 0.40H, the nominal
shear strength is reduced by about 25 % for the quadratic
holes and about 15 % for the circular holes. Compared to ei?-
perimental test results, PFM seems to predict the influenge
of relative hole size well. As can be seen in Figure 11, the .
decrease in nominal shear strength seems in general fairly

treng

T T T
— = — Probabilistic fracture mechanics method
Mean values of test results

Individual values of test results

equal for the test results and PFM.

25

Reference beam:
H H=600 mm
T=115mm
20 M/(VH)=4.0
s/H=0.0
a/H=h/H=0.30
r=25 mm

0 1 2 3 4 5 6 7 8
Bending moment to shear force ratio M/(VH) [-]

Nominal shear strength V/Anet [MPa]

a/H=b/H  1/3 13 1/3 13 13 13 1/3 13

.5 rla=r/b 0.12 0.12 0.12 0.12 0.12 0.12 0.12 0.12
s/H 0.0 1/6 -1/6 0.0 0.0 1/6 -1/6 0.0
M/(VH) 2.0 2.0 20 0.0 2.0 2.0 20 0.0

T [mm] 115 115 115 115 115 115 115 115

H [mm] 630 630 630 630 180 180 180 180
I I I I I I I I

0 AMh AUh ALh BMh CMh CUh CLh DMh

Fig. 10 Comparison to experimental test results for quadratic holes.
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— = — Probabilistic fracture mechanics method
—— Mean values of test results
o Individual values of test results

151

Nominal shear stress V/Anet [MPa]

05 260 360 460 5(;0 6(;0 760 860 960 1(;00
Beam height H [mm]
—0.‘150 —0.675 ‘ 6 ‘ 0‘0‘75 0.1‘50 0.5 @H 0.2 0.3 0.4 0.2 0.3 0?4 0.2 0.3 0.4 0.3 0.4 -
Position of hole center relative to neutral axis s/H [-] s/H 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 L L L L L L L M/(VH) 1.5 15 15 5.0 5.0 5.0 15 15 15 5.0 5.0
0.20 0.25 Relative hole gi.jeo alH=bH [] 0.35 0.40 T [mm] 120 120 120 120 120 120 120 120 120 120 120
H[mm] 900 900 900 900 900 900 450 450 450 450 450
Fig. 8 Influence of design parameters for a beam with a quadratic hole. ° HL H2 H3 AL H4 A2 H5 He H7 H8 A3
Fig. 11 Comparison to experimental test results for circular holes.
25 T
H
Reference beam:
H=600 mm H H
s, 7 Comparison of methods for strength analysis
2+ M/(VH)=4.0
s/H=0.0
@H=0.30

0 1 2 3 4 5 6 7 8
Bending moment to shear force ratio M/(VH) [-]

Nominal shear strength V/Anet [MPa]

0.5

I ! ! I ! I ! !
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I | I I I I I
-0.150 -0.075 0 0.075 0.150
Position of hole center relative to neutral axis s/H [-]
I I I I I I |
° 0.20 0.25 0.30 0.35 0.40

Relative hole size ¢/H [-]

A comparison of the overall ability to predict strength of
different methods is presented in Figure 12, where the ratio
between the theoretically predicted capacity and the capac-
ity found in experimental tests are given. The test results
are the mean values of the test series also presented in Fig-
ures 10 and 11. Test series H4 in Figure 11 is however ex-
cluded from this comparison since it shows a deviating re-
sult in terms of a considerably lower strength compared to
the other test series. Quadratic and circular marks represent
test series with quadratic and circular holes respectively and
a logarithmic scale is used for the comparison.

The considered methods are: the probabilistic fracture

Fig. 9 Influence of design parameters for a beam with a circular hole mechanics method (PFM), Weibull theory considering inter-

action ofo andt (WElot) and considering onlg (WElo),
the mean stress method (MSM), conventional stress analy-



sis considering interaction af andt (CSAot) and consid- 8 Concluding remarks

ering onlyo (CSA0). Some code design methods are also

included in the comparison: the empirically based method he probabilistic fracture mechanics method seems to have
(method 1) and the "end-notched beam”-analogy methodood ability to predict the strength of glulam beams with
(method 2) in Limtahandbok (Carling 2001), the German holes, with the exception of small beams. An overestima-
code DIN 1052 (BlaRR 2005) and the Weibull-based designion of about 30 % was found for the small bearHs=€ 180
proposal by Hfflin and Aicher (Hfflin 2005; Aicher and mm). One probable explanation is that the size of the po-
Hofflin 2006). The latter method is presented for circulartential fracture arean,, used to determine mean stresses, is
holes only, but is here used also for quadratic holes assumirigo large in relation to the size of the small beams. The size
a=b = @. The "end-notched beam” method is identical toof a fracture process region can, according to fracture me-
the design method found in a previous draft version of EC 5chanics, be expected to be governed by the properties of the
Characteristic strengttfs = 3.8 MPa andf; gox = 0.5MPa  material and to be independent of the size of the structure
are used for the code design methods (SS-EN 1194:193ly as long as the structure is large as compared to the size
2000). The theoretical capacities for the other six methodsf the fracture region. Further decrease in structural size im-
are based on material properties stated in Table 1. plies decreased size of the fracture region. To overcome this

PFM shows good agreement compared to the test rdroblem, some kind of stress gradient related reduction of
sults, with the exception of the four test series with smalf"€ length of the potential fracture area can be introduced
beams and quadratic holes as previously mentioned. THar small beams. Such a reduction should give good correla-
two methods based on Weibull theory (WEland WEb) tion to experimental test results also for small beams.
show overall good agreement compared to the test results Since the available experimental test results are limited,
used in this comparison. It is remarkable that the agreemeff€ extent to which the method can be verified is also lim-
is good also for square holes, having rounded corners witl{ed- The present tests of beams with quadratic holes in-

r/a=r/b= 0.12, since Weibull theory predicts an unreal- cluded tests of eccentrically placed holes, which seem to
istic zero strength for square holes with sharp corner®. ~ Never have been tested before. There are however for exam-

R Y ple no test of circular holes with eccentric placement with
The "end-notched beam”-analogy method (Liaftand- respect to beam height.

bok method 2) shows the most un-conservative strength pre- . . .
- . : . There are also several other interesting design parame-
dictions among the code design methods. It is however in- . . )
: . . . ters which are not included in the parameter study presented
teresting that the scatter in ratio between theoretical and ex- . . .

. . S ... here. One example is the influence of a tensile or compres-

perimental strength is fairly low considering the beams with . . :
. . sive axial force on the strength which would for example be
circular and quadratic holes separately. The overall agree-, . . .
. : . . of interest for design of glulam columns with holes. It seems
ment with experimental test could easily be improve by us- . . ) . .
ing some general reduction for beams with circular holesthat the combined action of axial force and bending neither
have been tested or analyzed. Another load case that would
be of interest to analyze is pure bendily,(V H) — . This
kind of loading is of interest for design of straight beams but
of even greater interest in relation to design of tapered beams
and curved beams.

Good general features of the probabilistic fracture me-
chanics method are the ability to a analyze holes of arbi-
trary geometry and to consider the material properties that
are believed to be the most important for strength of a glu-
lam beam with a hole: material strength, fracture toughness
,,,,,,,,,,, 8 ____ and heterogeneity. Although of a general applicability, the
method is furthermore simple in the sense that non-linear
stress or fracture course analysis is not required. General-
ization of PFM with respect to consideration of the normal
stress along grain by modification of Equations (3) and (4)
may be relevant in several applications, for example in ana-
lyzes of cases of pure bending.

! ! ! ! ! ! ! ‘ ‘ . A more thorough description of the probabilistic fracture
PRML WElor WEle MM CoAr - CoAa me andbok - 102 meer Mechanics method, a more comprehensive parameter study
Fig. 12 Comparison of strength found in experimental tests and pre@Nd @ brief review of the code design methods considered

dicted strength according different methods for strength analysis.  here is presented in (Danielsson 2009).
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