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Abstract

This thesis aims to find algorithms for optimal control of hybrid systems
and explore them in sufficient detail to be able to implement the ideas in
computational tools. By hybrid systems is meant systems with interact­
ing continuous and discrete dynamics. Code for computations has been
developed in parallel to the theory.
The optimal control methods studied in this thesis are global, i.e. the

entire state space is considered simultaneously rather than searching for
locally optimal trajectories. The optimal value function that maps each
state of the state space onto the minimal cost for trajectories starting
in that state is central for global methods. It is often difficult to com­
pute the optimal value function of an optimal control problem, even for
a purely continuous system. This thesis shows that a lower bound of the
value function of a hybrid optimal control problem can be found via convex
optimization in a linear program. Moreover, a dual of this optimization
problem, parameterized in the control law, has been formulated via gen­
eral ideas from duality in transportation problems. It is shown that the
lower bound of the value function is tight for continuous systems and that
there is no gap between the dual optimization problems.
Two computational tools are presented. One is built on theory for piece­

wise affine systems. Various analysis and synthesis problems for this kind
of systems are via piecewise quadratic Lyapunov­like functions cast into
linear matrix inequalities. The second tool can be used for value function
computation, control law extraction, and simulation of hybrid systems.
This tool parameterizes the value function in its values in a uniform grid
of points in the state space, and the optimization problem is formulated
as a linear program. The usage of this tool is illustrated in a case study.
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1

Introduction

This thesis consists of a collection of papers related to optimal control
of hybrid systems and a few additional chapters that further illustrates
some benefits of the papers.
Section 1.1 of this introductory chapter briefly describes the contribu­

tion of each paper and subsequent chapters. Section 1.2 discusses various
ways of modeling a hybrid system and puts the model used for this thesis
into perspective. Section 1.3 presents current efforts in optimal control of
hybrid systems.

1.1 Contribution of This Thesis

In optimal control, every possible trajectory (control signal/state trajec­
tory combination) is assigned a positive number, called the cost of the
trajectory. This way, it is possible to state the optimal control problem as
to find the cheapest trajectory between two points in the state space.
In global optimization methods, i.e. methods in which the optimization

considers the entire state space rather than searches for local minima, the
value function plays an important role. To each control feedback law, there
is a corresponding value function or cost­to­go function that maps every
state of the state space onto the cost of the trajectory starting in that
state. The optimal value function is the value function corresponding to
the optimal control law.
Much of the work in this thesis relates to hybrid systems, i.e. systems

that contain continuous time­driven dynamics that interacts with discrete
event­driven dynamics. Most of the papers included are related to optimal
value functions of optimal control problems for hybrid systems.

Paper A. Convex Dynamic Programming for Hybrid Systems

This paper shows how the optimal value function corresponding to a hy­
brid optimal control problem can be computed via a linear program (LP).

11



Chapter 1. Introduction

Any function that satisfies the constraints of the presented LP is a lower
bound of the optimal value function.
The paper, that is an extension of [Hedlund and Rantzer, 1999], also

presents a possible method of discretizing the LP to find lower bounds
of optimal value functions numerically. An example shows that this dis­
cretization scheme can be used for hybrid systems with a complexity level
of at least three continuous states.

Paper B. Duality Between Cost and Density in Optimal Control

Purely continuous systems are treated in this paper. An optimization prob­
lem that is dual to the continuous systems version of the optimal value
function LP in Paper A is derived. The dual is used to prove that the
lower bound of the optimal value function derived in Paper A is tight.
The dual optimization problem is parameterized in the control law and
an interesting property is that any (non optimal) control law that satisfies
the inequalities of the dual problem is stabilizing.
Though standing on its own, in the context of hybrid systems this

paper can be regarded as preparatory work for Paper C.

Paper C. Duality in Hybrid Optimal Control

This paper is an extension of Paper B to hybrid systems. The main result,
the dual of the optimization problem stated in Paper A, is formulated for
hybrid systems.
The paper tries to convey an intuitive understanding of the two dif­

ferent optimization approaches via a thorough discussion around simple
examples.

Paper D. Hybrid Control Laws From Convex Dynamic Programmin g

This paper describes an attempt to discretize the dual optimization prob­
lem for hybrid systems.

Paper E. A Toolbox for Computational Analysis of Piecewise L inear
Systems

This paper reports the development of a MATLAB toolbox for analysis and
synthesis of piecewise affine systems (called piecewise linear systems in
this paper). The toolbox is based on the theory presented in [Johansson,
2002].
The paper gives insight into the features and functionality of the tool­

box via command listings and computational examples.

2. A Matlab Tool for Dynamic Programming for Hybrid Systems

This chapter presents a set of MATLAB commands, called CDP Tool, that
makes the theory of Paper A easy accessible. CDP Tool contains com­

12



1.2 Hybrid System Models

mands for finding approximations to the optimal value function, control
law computation, and simulation. Some equations are presented as they
are needed to understand the tool, though the main focus of this presen­
tation is usage of the tool rather than implementation issues.
For a complete description of the commands of the tool, see the refer­

ence manual included in [Hedlund, 1999].

3. Case Study: CDP Tool in the Control Laboratory

This chapter documents a case for which the computational tool reported
in Chapter 2 has been used successfully in practice. The case study aims
to give insight into considerations that the CDP Tool user faces and to
hint a general work flow working with the tool.

1.2 Hybrid System Models

A hybrid system consists of continuous dynamics that interacts with dis­
crete dynamics. By continuous dynamics, we mean dynamics described
by variables that take values from a continuous set. Similarly, discrete
dynamics is described by a variable that takes values from a discrete
set. A hybrid system usually also contains both time­driven and event­
driven dynamics. Time driven dynamics means that the evolution of the
corresponding variable is synchronized by a clock. Event­driven dynamics
means that the changes in the corresponding variable are triggered by
events, not necessarily at regular intervals, not necessarily known in ad­
vance. The continuous dynamics is often time­driven, while the discrete
dynamics is event­driven.
The hybrid model used in this thesis consists of continuous and discrete

states as well as continuous and discrete inputs.
As in all mathematical modeling, the choice of approach for hybrid

modeling heavily depends on the purpose of the model. In computer sci­
ence, hybrid modeling often means extending event­driven models to al­
low time­driven dynamics between the event occurrences, or to determine
event occurrence times. In automatic control, it is common to extend time­
driven models to allow events that drastically change the dynamics or
trigger jumps in the continuous states. Hybrid systems are also suitable
for modeling of systems with multiple time scales, where the fast dynam­
ics can be treated as discrete, abrupt changes compared to the slower
dynamics.
Below are some examples of hybrid systems to show what we have in

mind. A more precise formulation of the hybrid system model used in this
thesis will be given in the end of Section 1.2.
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Chapter 1. Introduction

P

P0

0
Ton To f f T

Figure 1.1 Thermostat power profile that shows the power fed to the radiator,
P, as a function of the room temperature, T . The dashed lines indicate that the
radiator is switched on when the temperature falls below Ton and switched off
when the temperature rises above To f f .

Introductory Examples

EXAMPLE 1.1—THERMOSTAT CONTROLLED HEATING
Consider the problem of heating a room with a radiator. The radiator is
controlled by a thermostat that turns the radiator on when the room tem­
perature, T , falls below a threshold, Ton, and turns the radiator off when
T rises above To f f (Ton < To f f ). This hysteresis behavior is illustrated in
Fig. 1.1 where T is the room temperature and P is the power that the
radiator feeds the room.
This closed loop heating system can be interpreted as a hybrid system

and one way of modeling the system is as a hybrid automaton according
to Fig. 1.2.
The system has two discrete modes (represented by the ellipses), “no

heating” and “heating”, and one continuous variable, T . Each discrete
mode has an associated differential equation that governs the evolution
of the continuous state; in the "no heating" mode the temperature tends
towards zero, in the heating mode the temperature tends towards a sta­
tionary value Tstat (> To f f ).
Each discrete mode also has a constraint, a mode invariant (written

below the differential equation in Fig. 1.2), that must be satisfied in that
mode. There are also arrows between the discrete modes that indicate pos­
sible mode switching. Along with each mode switch there is a constraint,
a guard (written next to the base of the arrow). No mode switch can take
place unless the corresponding guard is satisfied.

14



1.2 Hybrid System Models

heatingno heating

Ṫ = −T Ṫ = −T + cP0
T ≥ Ton T ≤ To f f

T < Ton

T > To f f

Figure 1.2 A hybrid automaton modeling the heating of a room. The “heating”
mode is entered (the radiator is turned on) when the the temperature T falls below
Ton. The system returns to “no heating” when T rises above To f f .

{

ẋ1 = x2
ẋ2 = −n
x1 ≥ 0

(x1 = 0) ∧ (x2 < 0)x2 := −cx2

Figure 1.3 A hybrid automaton modeling a bouncing ball, where x1 is the height
of the ball above floor and x2 is the velocity. There is an abrupt change of velocity
(x2 := −cx2) when the ball bounces.

EXAMPLE 1.2—BOUNCING BALL EXAMPLE
Consider the problem of a bouncing ball. Let the continuous state variable
x1 be the distance between the ball and the floor (x1 ≥ 0). Let x2 be the
velocity of the ball. This example does not contain any discrete state, but
it is convenient to model the bouncing of the ball as a discrete event in a
hybrid system. Assume that each bounce can be modeled as an inelastic
collision, where the ball looses some momentum. Each bounce will then
result in a jump in the velocity state such that x+2 = −cx−2 , where x−2 and
x+2 means the velocity just before the bounce and just after the bounce
respectively, and c is a constant 0 < c < 1.
The entire trajectory can be modeled with a hybrid automaton as in

Fig. 1.3. In the figure, the state jump is indicated next to the tip of the ar­
row using the assignment operator “:=”. The constant n is the acceleration
of gravity, and the symbol “∧” denotes the logical operator “and”.
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Chapter 1. Introduction

{

ẋ1 = x2
ẋ2 = f1(x2,u)

1:st gear

q = 1

µ = 2

µ = 1

{

ẋ1 = x2
ẋ2 = f2(x2,u)

2:nd gear

q = 2

µ = 3

µ = 2

{

ẋ1 = x2
ẋ2 = f3(x2,u)

3:rd gear

q = 3

µ = 4

µ = 3

{

ẋ1 = x2
ẋ2 = f4(x2,u)

4:th gear

q = 4

Figure 1.4 A model of a car with a manual gear box, where x1 is the longitudinal
position and x2 is the velocity. There is a continuous input u corresponding to the
throttle, and a discrete input µ corresponding to the gear.

EXAMPLE 1.3—A CAR WITH A MANUAL GEAR BOX
The former examples of hybrid systems have been autonomous. This ex­
ample has both a continuous input and a discrete input. A car that travels
along a predefined path can be modelled with two continuous states, the
position, x1, and the velocity, x2. It also has a discrete state, the gear, q.
The gas pedal is the continuous input, denoted u, and the gear lever is the
discrete input, denoted µ. A schematic view of a system with four gears
is shown in Fig. 1.4
As seen from the figure, there are different acceleration functions f i

for different gears i, (1 ≤ i ≤ 4). Since all gears have their maximum
efficiency at different speeds, the f i:s will have their peaks for different
values of x2. The figure also shows that certain combinations of states and
inputs are not allowed, i.e. the domain of the model is limited. The model
does for instance not accept switching from gear = 1 to gear = 4.
The list of applications that can be modelled as hybrid systems is enor­
mous. Additional examples include constrained robotic systems, auto­
mated highway systems, air traffic management systems, electric circuits
with diodes and switches, disk drives, and computer controlled systems,
see [IEEE, 1998; IEEE, 2000; van der Schaft and Schumacher, 2000] and
the rest of this thesis.

Modeling Pitfalls

Modeling hybrid systems, there is a risk of producing models that are
unreasonable, either physically or mathematically. Modeling issues such
as existence and uniqueness of trajectories certainly have their counter­
parts also in pure continuous systems, but the possibly higher complexity
of hybrid systems often make these problems more difficult to discover
in modeling. It should also be mentioned, though, that hybrid systems
are often intentionally modelled without uniqueness to incorporate un­
certainty.
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1.2 Hybrid System Models

x1

2v0
n

2v0
n(1−c) t

Figure 1.5 Simulation of the bouncing ball automaton where x1 is the distance
between the ball and the floor and t is the time.

One issue that is unique for hybrid systems is the possibility of an
infinite number of mode switches in finite time, called Zeno behavior.
One can argue that physical systems do not exhibit Zeno behavior. Hav­
ing modelled a hybrid system, however, and having created a model that
seems reasonable from a physical point of view, a refined analysis of the
model may show unintentionally introduced Zeno behavior. Fig. 1.5 shows
a trajectory of the bouncing ball automaton. The states are initialized to
(x1, x2)(0) = (0, v0), where v0 > 0 is the initial upwards velocity. As indi­
cated in the figure, there is an infinite number of bounces up to t = 2v0

n(1−c)
and the simulation reaches no further. A special case of Zenoness is live­
lock, an infinite number of switches at the same time. An example of this
is chattering which may appear in the discontinuous dynamics of sliding
mode control.

Various Formal Models

Hybrid systems is an immature research area, and there have been var­
ious efforts to state an overall unified model[Branicky et al., 1994; Ben­
soussan and Menaldi, 1997], as well as finding common ground between
different models[Heemels et al., 2001]. Generally, a hybrid system can be
described as a hybrid automaton, H = (X , Q̄, Ωu, Ωµ , f , Inv,G, R) where

• X ⊂ Rn is the state space for the continuous variable.

• Q̄ = {1, 2, . . . ,Q} is the mode set, the state space of the discrete
variable.

• Ωu ⊂ Rp is a set of inputs (disturbances as well as controlled inputs).

17



Chapter 1. Introduction

• Ωµ is a finite set of discrete inputs (disturbances as well as controlled
inputs).

• f is a map from X � Q̄ � Ωu to Rn that describes the continuous,
time­driven evolution, as explained below.

• the mode invariant Inv ⊂ X � Q̄ � Ωu � Ωµ , the guard G ⊂ X �
Q̄ � Ωu � Ωµ , and the reset map R : X � Q̄ � Ωu � Ωµ → 2X�Q̄

describes the discrete, event­driven evolution1. The invariant tells
where continuous evolution is possible, the guard tells where dis­
crete transitions are possible, and the reset map gives possible new
states resulting from a transition.

The pair (x, q) ∈ X � Q̄, consisting of the continuous state x and the
discrete state q, is called the state of H. The values of the discrete state are
called different discrete modes. The possible evolutions of the automaton
can be described as follows. Starting at an initial state, (x0, q0) ∈ X � Q̄,
given the inputs u ∈ Ωu and µ ∈ Ωµ , the continuous state x evolves
according to ẋ(t) = f (x(t), q(t),u(t)) while the discrete state q(t) remains
constant. Continuous evolution can go on as long as (x, q,u, µ) ∈ Inv. If
the situation arises during the evolution that (x, q,u, µ) ∈ G, a transition
is possible to a new state. The set of possible new states is given by
R(x, q,u, µ). The transition from the old state (x, q) to the new state (x′, q′)
is called a jump if x′ �= x and a switch if q′ �= q. After the transition, there
are either new transitions or the continuous evolution resumes and the
whole process is repeated.
The above general model incorporates uncertainty in different ways.

Necessary (but not sufficient) additional constraints for uniqueness of tra­
jectories include Inv

⋂

G = ∅ and R(x, q,u, µ) being a singleton for each
(x, q,u, µ) ∈ X � Q̄�Ωu�Ωµ . The issue of determinism of hybrid systems
is outside the scope of this thesis, but is treated in for example [Lygeros
et al., 1999].

EXAMPLE 1.4—BOUNCING BALL, FORMAL MODEL
Consider again the bouncing ball of Ex. 1.2. Following the above notation,
X = {(x1, x2) ∈ R2h x1 ≥ 0}, Q̄ = {1}. Since the system is autonomous, the
sets Ωu and Ωµ are empty and can be omitted. The continuous dynamics
is

f (x, 1) =
[

x2

−n

]

and the discrete dynamics is given by G = {(x1, x2, q) ∈ X � Q̄ h x1 =
1The expression 2X�Q̄ denotes the power set (the set of all subsets of) X � Q̄

18



1.2 Hybrid System Models

0, x2 < 0, q= 1}, Inv = (X � Q̄) \ G,

R(x, 1) =
{

{(x1,−cx2, 1)} if (x, 1) ∈ G
∅ otherwise

EXAMPLE 1.5—FORMAL MODEL OF A CAR WITH A MANUAL GEAR BOX,
Consider again the car in Ex. 1.3. For this example, X ⊂ R2 is a hy­
perrectangle reflecting the positions under consideration and the veloc­
ity constraints of the vehicle. The number of discrete modes Q = 4, i.e.
Q̄ = {1, 2, 3, 4}, Ωu = {u ∈ R h 0 ≤ u ≤ umax} for some positive umax, and
Ωµ = {1, 2, 3, 4}.

f (x, q,u) =
[

x2

fq(x2,u)

]

where fq(x2,u), q ∈ Q̄ are the functions in Fig. 1.4. The sets governing the
event­based evolution are Inv =

⋃Q
i=1 X�{i}�Ωu�{i}, G =

⋃

(q,µ)∈Gqµ X�
{q} � Ωu � {µ} where Gqµ = {(1, 2), (2, 1), (2, 3), (3, 2), (3, 4), (4, 1)} ⊂
Q̄ � Ωµ , and, with slight abuse of notation,

R(x, q,u, µ) =
{

{(x, µ)} if (x, q,u, µ) ∈ G
∅ otherwise

Hybrid automata models have been used in slightly different forms by
many researchers in both control and computer science, for example [Göllü
and Varaiya, 1989; Stiver and Antsaklis, 1992; Branicky et al., 1994; Alur
et al., 1997; van der Schaft and Schumacher, 1998; Sussmann, 1999; Tom­
lin et al., 2000; Johansson et al., 2003]. Some of the models include an
output as a function of states and inputs. Because of the nature of the
control problem studied in this thesis, we are not interested in an output
and will not carry with us this extra notational burden for each model.
Some of the models are specified with a set of possible initial states.

Switched Systems Switched systems is a class of hybrid systems con­
sisting of a family of time driven (continuous time or discrete time) subsys­
tems and a possibility to switch between them. There exist various system
definitions that offer different switching possibilities. One approach is to
regard the switching as an external event, an input that can or cannot
be controlled, in which case there is no need for a discrete state. Another
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approach is to regard the switching as internally generated (the switching
dynamics fits into Inv, G, and R above), in which case there is no need for
a discrete input. Switched systems are treated in for example [Hou et al.,
1996; Branicky, 1998; Xu and Antsaklis, 2000; Hespanha et al., 2002].
Switched systems do not feature jumps in the continuous state.
An important special case of the latter approach are the piecewise

affine models.

Piecewise Affine Models The reason for the popularity of piecewise
affine (PWA) models is that they make a good compromise between gen­
erality and ease of analysis. They are one of the simplest extensions of
linear systems that can model a variety of nonlinear systems arbitrarily
well.
For PWA systems, the continuous part of the state space is partitioned

into convex polyhedra2 X1, X2, . . . , XQ such that X =
⋃Q
i=1 Xi, Xi

⋂

X j =
∅ for i �= j. The time driven dynamics is affine in the states and inputs,
i.e.

ẋ(t) = f
(

x(t), q(t),u(t)
)

= Aqx(t) + Bqu(t) + cq for x ∈ Xq

where Aq ∈ Rn�n, Bq ∈ Rn�p, cq ∈ Rn�1. A discrete time counterpart is
also commonly used:

x(k+ 1) = Aqx(k) + Bqu(k) + cq for x ∈ Xq

Note that the discrete state q is redundant in PWA models, i.e. the
above model (continuous time version) is equivalent to

ẋ(t) = f̂
(

x(t),u(t)
)

with the function f̂ (x,u) = f (x, q,u) for q ∈ Xq possibly discontinuous in x
on the boundary of the partitioning polyhedra. It is sometimes beneficial,
however, to view the abrupt changes in the dynamics as hybrid mode
switches.
In their most general form, PWA systems are not only partitioned in

the state space, but also in the input space, i.e. Xq � Ωu,q ⊂ X � Ωu.
For information about discrete time PWA systems, see for example [Son­

tag, 1981; Heemels et al., 2001; Bemporad and Morari, 1999a] For con­
tinuous time PWA systems see for example [Johansson, 2002; Heemels,
1999].
2A convex polyhedron is a set that can be described as intersections of a finite number

of half spaces.
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Timed Automata In traditional model checking, a high­level descrip­
tion of a discrete event system is compared against a logical correctness
requirement to discover inconsistencies. In real time systems, where the
correctness does not only depend on the results of the computations but
also on the time when they are delivered, there is a need for explicit
modeling of time. The timed automaton, which is a discrete event system
extended with continuous timer states, was introduced to take care of this
problem[Alur and Dill, 1994].
The continuous time­driven dynamics of timed automata is simple,

ẋi = 1, i = 1, 2, . . . , N, with possible jumps in the continuous states (re­
setting of the timers). Though the timed automaton is rudimentary for
a hybrid system, its applicational relevance has lead to extensive re­
search lately. There exist generalizations such as multirate timed au­
tomata where ẋi = ci, ci ∈ R, and rectangular timed automata where
ẋi ∈ [ci, ci], ci ≤ ci ∈ R[Henzinger et al., 1998].

Manufacturing Model The combination of time­driven and event­
driven dynamics is a natural framework for manufacturing processes.
The physical characteristics of production parts undergo changes at vari­
ous operations described by time­driven models, while the timing control
of operations is described by event­driven models[Pepyne and Cassandras,
2000].
Represented in the general hybrid automaton model, the manufactur­

ing system easily grows to a high dimension. In its most general form,
each manufactured part has its continuous state, for example temperature
or geometry, and each possible configuration of different parts at different
machines requires its own discrete mode. There is no discrete input to
this system, but the discrete state is affected by the continuous input (for
example higher power to the furnace means less heating time and earlier
switching to another part).
This rather special case of hybrid system is listed here for its practical

interest and because its special structure makes it possible to analyze and
control despite its complexity.

The Hybrid System Model Used in This Thesis The model pre­
sented below has been used (with slight variations) in most of the papers
included in this thesis. It has much in common with the hybrid automaton
H and some differences will be commented after the following definition.
Let X ⊂ Rn and Ωu ⊂ Rp denote the continuous state space and

input respectively. Let the finite sets Q̄ and Ωµ denote the discrete state
space and input respectively. The time driven dynamics is governed by
the function f : X � Q̄ � Ωu → Rn, and the event driven dynamics is
given by ν : X � Q̄ � Ωµ → Q̄.
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The hybrid system model is then defined via the trajectories it accepts.
Given a time interval [ti, t f ] ⊂ R, the function u : [ti, t f ] → Ωu, and the
piecewise constant function µ : [ti, t f ] → Ωµ , a trajectory of the hybrid
system

{

ẋ(t)= f (x(t), q(t),u(t))
q(t)= ν(x(t), q(t−), µ(t))

(1.1)

is defined as the collection (T , x, q) with the following properties. T =
t0, t1, . . . , tM is an increasing sequence of M + 1 real numbers with t0 = ti
and tM = t f , x : [t0, tM ] → X is absolutely continuous, q : [t0, tM ] → Q̄ is
constant in each interval [tk, tk+1), k = 0, 1, . . . ,M − 1, and











ẋ(t)= f (x(t), q(t),u(t)) for almost all t ∈ [t0, tM ]
q(t)= ν(x(t), q(t), µ(t)) = q(tk) t ∈ (tk, tk+1)

q(tk+1)= ν(x(tk+1), q(tk), µ(tk)) k = 0, 1, . . . ,M − 1
(1.2)

This model differs from the hybrid automaton, H , in that the event­
driven dynamics is described by the ν ­function instead of the triple Inv,
G, and R. This model does allow a finite number of switches (autonomous
as well as controlled), but no jumps. Thus it can be used for Ex. 1.1 and
Ex. 1.3 but not Ex. 1.2. The model does not allow the kinds of uncertainty
that the automaton H incorporates by Inv

⋂

G �= ∅ or R not being a
singleton.

EXAMPLE 1.6—THERMOSTAT CONTROLLED HEATING REVISITED
The continuous variable of Ex. 1.1 is T . Let q ∈ Q̄ = {1, 2} be the discrete
variable, where q = 1 corresponds to the radiator being switched off and
q = 2 corresponds to the radiator being active. Since the closed loop system
is autonomous, it can be described as

{

Ṫ(t)= f (T(t), q(t))
q(t)= ν(T(t), q(t−))

where f (T , 1) = −T , f (T , 2) = −T + cP0, and

ν(T , q) =
{

1, if (q = 1 ∧ T ≥ Ton) ∨ (q = 2 ∧ T > To f f )
2, if (q = 1 ∧ T < Ton) ∨ (q = 2 ∧ T ≤ To f f )
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1.3 Optimal Control of Hybrid Systems

1.3 Optimal Control of Hybrid Systems

The purpose of optimal control is to give a general systematic method
to synthesize a control law with certain properties. These properties are
specified in an optimization criterion, or a cost function. This is a mathe­
matical expression in the state variables (and possibly the control signals)
that should be minimized subject to the process constraints. For hybrid
systems, the cost function in general involves an integral cost accumulated
along continuous evolution and switching costs associated with discrete
transitions. The cost function can be used to penalize various quantities
such as energy consumption, deviation from a desired set point, areas of
the state space that are not considered safe etc.
Once a cost function for the problem is specified, the control synthesis

is transformed to an optimization problem. In this way, it would ideally
be possible to formally state once and for all what is good control for a
certain process, and then apply suitable mathematical tools to find the
controller that best meets the specifications.
One problem, however, is that it is often difficult to find a good cost

function a priori. It is therefore common practice to choose a cost function,
compute the controller, run experiments (by simulation or controlling the
real process), evaluate the results, go back to the first step of adjusting
the cost function. Thus, the design procedure will still have to be iterative.
Another potential obstacle is that the resulting mathematical prob­

lem may be hard to solve. It often involves non­convex optimization of a
nonlinear function subject to dynamic constraints. This obstacle may be
particularly visible in optimal control of hybrid systems, where the con­
straints of combined time­driven and event­driven dynamics in general
are very complex. In practical systems, it is thus often desirable to reduce
complexity by optimizing a selection of subcomponents of the process to
make the overall result “almost optimal.” Various approximations are also
common, modifying the original specification of the problem, e.g by lin­
earization of nonlinear dynamics or by discretizing the continuous state
space. Below are various methods for optimal control of hybrid systems.

Variational Formulation

The maximum principle was formulated for continuous systems in 1962
by Pontryagin [Pontryagin et al., 1962]. Given an initial state, it is used
to find an optimal trajectory by calculus of variation.
Consider the simple example of finding the minimum of the differ­

entiable scalar function n : Rn → R. It is well known that a necessary
constraint for x∗ to be a minimum is that (dn/dx)(x∗) = 0. If a minimum
exists, it can thus be located by finding all points that satisfy the deriva­
tive constraint and compare the value of n for each point. The maximum
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principle gives similar necessary constraints on a trajectory to minimize
a cost function in a dynamical system. Each trajectory that satisfies the
constraints of the maximum principle is a candidate for the optimal trajec­
tory. Having found a (possibly infinite) number of candidates, the optimal
one has to be selected by other means. The candidates can sometimes be
found analytically (such as in linear quadratic control), but often have to
be computed by numerical methods.
Being a valuable method for optimal control of continuous systems,

there have been recent efforts to extend the maximum principle to hy­
brid systems[Sussmann, 1999; Grammel, 1999; Riedinger et al., 1999].
However, the local optimization of the maximum principle relies on com­
parisons between neighboring trajectories — comparisons which have a
different nature in a system with mode switches. The maximum principle
can still be used on the continuous evolution of the trajectory between
switches.

Value Function Based Approaches

Dynamic Programming The term dynamic programming was intro­
duced by Bellman in 1957 [Bellman, 1957]. The basic idea is the principle
of optimality, which says that in any state along an optimal trajectory, the
remaining part must constitute an optimal trajectory when that state is
considered as an initial state.
The value function or the cost­to­go function is central in dynamic pro­

gramming. This is a function that maps every state onto the cost for a
trajectory starting in that state. The principle of optimality can be trans­
lated to mathematics in terms of constraints on the optimal value function
and the corresponding control signal. The constraint equation, called the
Hamilton­Jacobi­Bellman (HJB) equation, is a partial differential equa­
tion for the continuous systems case and a difference equation for the
discrete systems case.
One of the difficulties in applying the HJB equation for systems with

continuous dynamics is that the value functions of many optimal con­
trol problems are not differentiable. The HJB equation still make sense,
however, if non­classical interpretation of solutions to differential equa­
tions are used, such as viscosity solutions[Bardi and Capuzzo­Dolcetta,
1997; Bensoussan and Menaldi, 1997].
Being a global optimization method in that the value function needs to

be computed for the whole state space rather than along a trajectory, the
complexity of all existing numerical methods grows exponentially with
the dimension of the state space. Bellman referred to this obstacle as “the
curse of dimensionality.” Nevertheless, it is possible to derive an analytic
solution for the simple but important case of quadratic loss function and
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linear dynamics.
Lately, versions of the Hamilton­Jacobi­Bellman equation for hybrid

systems have been formulated[Bensoussan and Menaldi, 1997; Branicky
and Mitter, 1995].

Bounds on the Value Function As shown in this thesis, see for
example Paper B, it is possible to replace the HJB equation by an in­
equality constraint to avoid dealing with a possibly non­differentiable op­
timal value function. The resulting linear inequality ensures that the con­
strained function is a lower bound of the optimal value function.
A similar approach for optimal control of piecewise affine systems us­

ing a piecewise quadratic cost function was used in [Johansson, 2002],
where the resulting optimization problem is a linear matrix inequality.

Model Predictive Control

In Model Predictive Control (also called receding horizon control), a per­
formance index is minimized over a finite horizon, subject to the con­
straints of the dynamical system. For each measurement, a sequence of
control signals is computed based on a prediction of the future evolution
of the system. This sequence is applied to the process until new mea­
surements are available and the procedure is repeated by computing a
new control signal sequence. The control signals are computed to opti­
mize tracking performance while avoiding possible constraint violations.
Model predictive control has been successfully applied to discrete time
piecewise affine systems, where each control sequence computation can be
formulated as a mixed integer quadratic program[Bemporad and Morari,
1999a]. There are also other algorithms for MPC of piecewise affine sys­
tems [Schutter and van den Boom, 2001].

Other Methods

Various methods exist that utilize the structure of certain subclasses of
hybrid systems. A common approach is to split the optimization algorithm
in a discrete part and a continuous part rather than to optimize simul­
taneously over discrete and continuous variables. An outer loop of the
algorithm takes care of the discrete events by clever choice of different
number of switchings and order of discrete modes. The inner loop finds
the optimal continuous evolution given the switching scheme dictated by
the outer loop. Examples of this include optimal control of switched sys­
tems[Xu and Antsaklis, 2000] and optimal control in the manufacturing
model[Pepyne and Cassandras, 2000].

Reachability

The reachability problem is a well known and extensively studied prob­
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lem. It is the question of whether, under given system dynamics, a given
set of states can be reached from a given set of initial conditions. To see
that the reachability problem is equivalent to the optimal control prob­
lem, consider the following example. Given the dynamics of the purely
continuous system

ẋ = f (x,u), x(0) = x0 (1.3)

and the constants c > 0 and T > 0, is minu
∫ T

0 l(x,u)dt < c? Another
equivalent question is whether there exists a state (x, z) that is reachable
at time T with z(T) < c in a system where (1.3) has been extended with
ż = l(x,u), z(0) = 0. This way, optimal control problems can be cast as
a reachability problems. Conversely reachability problems can be cast as
optimal control problems. Below are some examples of reachability studies
for hybrid systems.

Controller Synthesis as a Game When designing safety critical con­
trol systems, it is beneficial to view the evolution of trajectories as a game
between the controller and disturbances. One can pose safety games to
meet safety specifications[Tomlin et al., 2000]. The controller is computed
to prevent the trajectory from leaving a desired region of the hybrid state
space, the safe set, under all possible disturbances. Control synthesis
involves computations of reachable sets which are found via Hamilton­
Jacobi equations. Applicational examples involve collision avoidance of
various vehicles as platooning cars and aircrafts.
There is an ongoing development of computational tools for estima­

tion of reachable sets of general hybrid systems, for example [Silva and
Krogh., 2000; Asarin et al., 2000], as well as of simpler abstractions such
as generalizations of timed automata [Daws et al., 1994; Larsen et al.,
1995; Henzinger et al., 1995].
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Convex Dynamic Programming for

Hybrid Systems

Sven Hedlund and Anders Rantzer

Abstract

A classical linear programming approach to optimization of flow
or transportation in a discrete graph is extended to hybrid systems.
The problem is finite­dimensional if the state space is discrete and fi­
nite, but becomes infinite­dimensional for a continuous or hybrid state
space. It is shown how lower bounds on the optimal value function can
be computed by gridding the continuous state space and restricting
the linear program to a finite­dimensional subspace. Upper bounds
can be obtained by evaluation of the corresponding control laws.

Keywords Hybrid systems, optimal control, dynamic programming,
linear program

c& 2002 IEEE. Reprinted, with permission, from Hedlund, S. and
A. Rantzer (2002): “Convex Dynamic Programming for Hybrid Systems”,

IEEE Transactions on Automatic Control.

27



Paper A. Convex Dynamic Programming for Hybrid Systems

1. Introduction

For several decades, linear programming has been one of the main theo­
retical and computational tools for analysis and optimization of discrete
systems. This includes problems of optimal transportation and optimal
flow in a network [Koopmans, 1947; Ford and Fulkerson, 1962; Bertsekas
and Tsitsiklis, 1996]. The objective of the current paper is to extend the
computational linear programming approach to hybrid systems, i.e. sys­
tems that involve interaction between discrete and continuous dynamics.
Practical control systems typically involve switching between several

different modes, depending on the range of operation. Even if the dynam­
ics in each mode is simple and well understood, automatic mode switching
can give rise to unexpected phenomena. Moreover, many phenomena can
be described either by a discrete model or a continuous one, depending
on the context and purpose of the model [Antsaklis and Nerode, 1998].
Consider for example an asynchronous discrete­event driven thermostat,
which discretizes temperature information as {too cold, normal, too hot}.
Basic aspects of hybrid systems were treated in [Ezzine and Haddad,

1989] and [Utkin, 1977]. For stability analysis, see [Branicky, 1998] and
references therein. The reformulation of a nonlinear optimal control prob­
lem in terms of infinite­dimensional linear programming has previously
been used for continuous time systems in [Rantzer and Johansson, 2000]
and is closely connected to ideas of [Vinter, 1993; Rachev and Rüschendorf,
1998].
It should be noted that there is a close connection between optimal

control and reachability. A control system can be extended with an extra
state that integrates a cost along the trajectories. Hence, a certain control
cost is achievable if and only if the corresponding state in the extended
system is reachable. Conversely, reachability of a certain state can be
investigated by solving the optimal control problem to get there in min­
imum time. Verification (reachability analysis) of discrete event systems
and timed automata is an extensively studied topic in computer science
cf. [Henzinger et al., 1998; Alur et al., 1997; Bemporad and Morari, 1999b].
Lately, various efforts have been made to extend the classical opti­

mal control methods to hybrid systems. Hybrid versions of the maximum
principle have been presented in [Riedinger and Iung, 1999; Sussmann,
1999; Piccoli, 1999]. Dynamic programming for hybrid systems is dis­
cussed in [Branicky and Mitter, 1995; Bensoussan and Menaldi, 1997].
In this paper, it is shown how strict lower bounds on the optimal value
function can be computed by gridding the continuous state space and
restricting the linear program to a finite­dimensional subspace. Upper
bounds can be obtained by evaluation of the corresponding control laws.
Computational examples are given with up to three dimensions in the
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continuous state space.
Below, the set of all integers will be denoted Z. The set of strictly

positive real numbers will be denoted R+.

2. Problem Formulation

DEFINITION 1
Let Q and Ωµ be finite sets, while X ⊂ Rn and Ωu ⊂ Rm. Let ν : X �Q�
Ωµ → Q and for every q ∈ Q let fq : X �Ωu → Rn. A solution (trajectory)
of the hybrid system

{

ẋ(t)= fq(x,u)
q(t)= ν(x(t), q(t−), µ(t))

(1)

will be defined given u : [t0, tM ] → Ωu, a finite sequence of real numbers
t0 < t1 < t2 < . . . < tM , and µ : [t0, tM ] → Ωµ constant in each interval
[tk, tk+1).
The pair (x, q), where x : [t0, tM ] → X is absolutely continuous and

q : [t0, tM ] → Q is constant in each interval [tk, tk+1), k = 0, 1, . . . ,M − 1,
is called a trajectory of the hybrid system (1) if










ẋ(t)= fq(t)(x(t),u(t)) for almost all t ∈ [t0, tM ]
q(t)= ν(x(t), q(t), µ(t)) = q(tk) t ∈ (tk, tk+1)

q(tk+1)= ν(x(tk+1), q(tk), µ(tk)) k = 0, 1, . . . ,M − 1
(2)

Note that the second equation of (1) gives rise to autonomous switching
in points (x, q) where ν(x, q, µ) �= q, ∀µ ∈ Ωµ . The time argument, t, will
often be omitted in the sequel.
The optimal control problem is to minimize the cost function

J(x0, q0,u(⋅), µ(⋅), tM ,M) =
∫ tM

t0

lq(t)(x(t),u(t))dt+
M
∑

k=1
s(x(tk), q(tk−1), q(tk))

(3)
with respect to u(⋅), µ(⋅), tM , and M subject to (2) given an initial state
(x0, q0) at time t0, and a fixed set of possible final states, (x, q)(tM ) ∈
YM ⊂ X � Q.
The function s(x, q, r) > ε > 0 is a cost for switching from discrete

state q to r, the continuous part being x just before the switch. Note that
s(⋅) > ε > 0 limits the number of jumps in solutions close to optimality.
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The framework developed in this paper would also allow the number
of continuous states to vary with the discrete mode according to ẋq(t) =
fq(t)(xq(t),uq(t)), where xq(t) ∈ Xq ⊂ Rn(q), uq(t) ∈ Ωuq ⊂ Rm(q). The
usage of the system description (1), however, will simplify notation.
Also the possibility of state jumps [Bensoussan and Menaldi, 1997;

Branicky and Mitter, 1995] has been omitted to keep the notational com­
plexity at a reasonable level.

3. Hybrid Dynamic Programming

PROPOSITION 1
Let X = ∪Nk=1Xk where X1, . . . , XN are closed polyhedra with disjoint
interior, with Q, Ωu, Ωµ , fq, and ν defined as in Definition 1. Let s :
X � Q � Q → (0,∞] and for q ∈ Q let lq : X �Ωu → [0,∞]. Suppose that
Vk ∈ C 1(Xk � Q,R) with Vk(x, q) = Vj(x, q) for x ∈ Xk ∩ X j , q ∈ Q. Let
YM ⊂ Y ⊂ X � Q and V (x, q) = Vk(x, q) for x ∈ Xk, q ∈ Q. If for almost
all (x, q) ∈ Y\YM

0 ≤ VVV x (x, q) fq(x,u) + lq(x,u) u ∈ Ωu (4)

0 ≤V (x,ν(x, q, µ)) − V (x, q) + s(x, q,ν(x, q, µ)) µ ∈ Ωµ (5)
0 ≥V (xM , qM) ∀(xM , qM ) ∈ YM (6)

then

∫ tM

t0

lq(t)(x(t),u(t))dt +
M
∑

k=1
s(x(tk), q(tk−1),ν(x(tk), q(tk−1), µ(tk)))

≥ V (x(t0), q(t0))

for every solution to (1) that is contained in Y with (x, q)(tM ) ∈ YM .

Proof. Let û(⋅) and µ̂(⋅) be control signals that drive the system from the
initial state (x0, q0) ∈ Y at time t0 to (xM , qM) ∈ YM at time tM . Let
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xk = x(tk) and qk = q(t), tk ≤ t < tk+1. Then

J(x0, q0, û(⋅), µ̂(⋅), tM ,M)

=
M−1
∑

k=0

∫ tk+1

tk

lqk(x, û)dt+
M
∑

k=1
s(xk, qk−1,ν(xk, qk−1, µ̂(tk)))

≥
M−1
∑

k=0

∫ tk+1

tk

−VVV x (x, qk) fqk(x, û)dt+
M
∑

k=1
{V (xk, qk−1) − V (xk, qk)}

=
M−1
∑

k=0
{V (xk, qk) − V (xk+1, qk)} +

M
∑

k=1
{V (xk, qk−1) − V (xk, qk)}

=V (x0, q0) − V (xM , qM) = V (x0, q0)

For the purely discrete case, the value function,

V L(x, q) � min
u(⋅),µ(⋅),tM ,M

J(x0, q0,u(⋅), µ(⋅), tM ,M),

is obtained from the LP, i.e. supV = V L. Continuous dynamics adds dif­
ficulty, however, and the bound above may in general not be tight, i.e.
supV (x, q) ≤ V L(x, q).
For purely continuous systems, conditions for tightness have been de­

rived in [Vinter, 1993]. The theory needed, however, is quite advanced and
an extension to the hybrid case falls outside the scope of this paper.

4. Discretization

Utilizing a computer to solve (4)­(6) for a specific control problem, a
straight forward approach is to grid the state space and require the in­
equalities to be met at a set of uniformly distributed points in Y. This
approximation will, however, not guarantee a lower bound on the optimal
cost, unless the nature of fq and V between the grid points is taken into
consideration.
For uniform gridding of R2, let

x jk = jhe1 + khe2, j, k ∈ Z, h ∈ R+, (7)

where e1 and e2 are unit vectors along the coordinate axes, and h is the
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grid size. Also let

X jk = {x jk + θ1he1 + θ2he2 : −1 ≤ θ i ≤ 1} (8)
( f jk
q
)i = min

x∈X jk,u∈Ωu
( fq(x,u))i (9)

( f jkq )i = max
x∈X jk,u∈Ωu

( fq(x,u))i (10)

l jkq = min
x∈X jk,u∈Ωu

lq(x,u) (11)

V jkq = V (x jk, q) (12)
∆iV jkq = (V (x jk + hei, q) − V (x jk, q))/h (13)

∆−iV jkq = (V (x jk, q) − V (x jk − hei, q))/h (14)

where (⋅)i denote the i:th vector component of (⋅). For A ⊂ R2 � Q, define
the index set

I(A) = {( j, k, q)h j, k ∈ Z, q ∈ Q, (x jk, q) ∈ A} (15)

One possible finite approximation of (4)­(6) is then given by

0 ≤(λ jkq )1 + (λ jkq )2 + l jkq ( j, k, q) ∈ I(Y\YM) (16)
(λ jkq )hih ≤( f jkq )hih∆iV

jk
q i ∈ {−2,−1, 1, 2}, ( j, k, q) ∈ I(Y\YM)

(17)

(λ jkq )hih ≤( f
jk

q )hih∆iV jkq i ∈ {−2,−1, 1, 2}, ( j, k, q) ∈ I(Y\YM)
(18)

0 ≤V jkν(x jk,q,µ) − V
jk
q

+ s(x jk, q,ν(x jk, q, µ)) ( j, k, q) ∈ I(Y\YM), µ ∈ Ωµ (19)
0 ≥V jkq ( j, k, q) ∈ I(YM ) (20)

where λ jkq ∈ R2 for ( j, k, q) ∈ I(Y\YM).
The constraints (16)­(18) form a combination of backward and forward

difference approximations of (4) where the variable λ jkq , whose i:th com­
ponent is an approximation of (VV jkq /V xi)( fq)i, is used to preserve the
lower bound property of the continuous inequality.
For x = x jk+θ1he1+θ2he2, where 0 ≤ θ i ≤ 1, define the interpolating

function

V (x, q) = (1− θ1)(1− θ2)V jkq + θ1(1− θ2)V ( j+1)kq

+ (1− θ1)θ2V j(k+1)q + θ1θ2V ( j+1)(k+1)q (21)
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4. Discretization

THEOREM 1—DISCRETIZATION IN R2

Define Q, Ωu, Ωµ , fq, ν , Y, and YM as in Prop. 1. With definitions (7)–
(15), and (21), if there exist V jkq ∈ R for ( j, k, q) ∈ I(Y) and λ jkq ∈ R2 for
( j, k, q) ∈ I(Y\YM) that satisfy (16)–(20) then

∫ tM

t0

lq(t)(x(t),u(t))dt +
M
∑

k=1
s(x(tk), q(tk−1), q(tk)) ≥ V (x(t0), q(t0))

for every solution to (1) that is contained in Y with (x, q)(tM ) ∈ YM .

Remark 1. Any function that meets the constraints, even the trivial choice
V (x, q) = 0, is a lower bound on the true cost. Thus, to yield useful bounds,
V (x, q) needs to be maximized subject to (16)–(20). The maximization
could be carried out in either several points in Y simultaneously (by max­
imizing the sum of the value function in several points (x jk, q) ∈ Y) or in
one point (x0, q0) ∈ Y.
For the discretized problem, different choices of maximization criteria

may lead to different results and it would be interesting to construct an
example where this difference is significant. Experience from examples
shows, however, that the difference between the results of a single­point
and a multi­point maximization is often small, making it possible to com­
pute the value function in a large subset of Y solving one LP.

Remark 2. The restriction (x, q)(t) ∈ Y in the optimal control problem
is essential. It may happen that for some initial states x0 there exist no
admissible solutions inside X . Then the maximization of V (x0, q0) can
lead to arbitrarily large values.

Remark 3. The theorem is easily extended to Rn. Define j = ( j1, j2, . . . , jn)
and exchange jk for the multi­index j in the above inequalities. The limits
of all summations and enumerations should also be adjusted. Section 6
shows an example in R3.

Proof. Assume that x ∈ X jk. Noting that ∆1V jkq = ∆−1V
( j+1)k
q , ∆2V jkq =

∆−2V
j(k+1)
q , the inequalities (16)–(18) taken at grid points jk, j(k + 1),

( j + 1)k, and ( j + 1)(k+ 1) give

0 ≤ fq1(x,u)∆1V jkq + fq2(x,u)∆2V jkq + lq(x,u) (22)
0 ≤ fq1(x,u)∆1V j(k+1)q + fq2(x,u)∆2V jkq + lq(x,u) (23)
0 ≤ fq1(x,u)∆1V jkq + fq2(x,u)∆2V ( j+1)kq + lq(x,u) (24)
0 ≤ fq1(x,u)∆1V j(k+1)q + fq2(x,u)∆2V ( j+1)kq + lq(x,u) (25)
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The gradient of V is given by

VVq
V x =

[

(1− θ2)∆1V jkq + θ2∆1V j(k+1)q

(1− θ1)∆2V jkq + θ1∆2V ( j+1)kq

]T

and thus, adding (22)–(25) weighted with (1 − θ1)(1 − θ2), (1 − θ1)θ2,
θ1(1−θ2), and θ1θ2 respectively proves that (4) is met for x. The inequality
(5) holds since V is a convex combination of grid points that all meet (19),
and (6) is the same condition as (20).
Note that the minimization/maximization in (9)–(11) is in general not

convex. However, Theorem 1 can be applied with any upper and lower
bounds on fq and lq and such bounds are often easy to obtain.
Also note a special case for which the burden of the local optimizations

in Theorem 1 is lightened: if fq(x,u) = hq(x) + nq(x)u and lq(x,u) =
oq(x)+mq(x)u while Ωu = [−1, 1], then u can be entirely eliminated from
(16)–(18) by replacing f jk

q
, f

jk

q , and l
jk
q with h

jk
q ± n jkq , h

jk

q ± n jkq , and
o
jk
q ±m jkq respectively. This will double the set of equations (16)–(18), but
the functions hq, nq, oq, and mq are optimized over X jk solely.

5. Computing the Control Law

Provided that the lower bound V is a good enough approximation of the
optimal cost, the optimal feedback control law can be calculated as

{

u(x, q)= argminû∈Ωu

{ VV
V x (x, q) fq(x, û) + lq(x, û)

}

µ(x, q)= argminµ̂∈Ωµ hx∈Sq,ν {V (x,ν) + s(x, q,ν)}
(26)

where ν = ν(x, q, µ̂). Note that the discrete input, µ, is chosen such that
switching occur whenever there exist a discrete mode for which the value
function has a lower value than the cost of the value function for the
current mode minus the cost for switching there.
Consider the true optimal value function, V L. For those (x, q, r) where

the optimal trajectory requires mode switching, the inequality (4) will
turn to equality i.e. V L(x, q) = V L(x, r) + s(x, q, r). A consequence of this
is that for (26) to describe correct switching between the modes, s(x, q, q)
has to be defined as s(x, q, q) = ε > 0 (rather than the natural choice
s(x, q, q) = 0). For V L, the proper control law is achieved as ε approaches
0. A small value of ε suffices, however, for numerical computations.
In practice, it is suitable to discretize u into Ω̂u = {u1,u2, . . . ,ua} ⊂ Ωu.

Then for each grid point, x jk, the problem is to find u jkq ∈ Ω̂u and µ jkq ∈ Ωµ
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6. Numerical Example — A Truck With a Flexible Transmission

n1(x) n2(x)

--0.5

0.0

0.5
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--0.5 0.0 0.5 1.0 1.5 2.0
x

Figure 1. Gear profiles for the truck.

off­line that minimize (26). On­line, during control, u(x, q) and µ(x, q) are
obtained by multilinear interpolation analogously to (21).
The choice of Ω̂u may be crucial and is often a trade off between speed

of computations and how close to optimal the result will be. For time
optimal control problems where u enters affinely, however, the control
signal only assumes its extremal values.

6. Numerical Example — A Truck With a Flexible
Transmission

The applicability of the theory is here illustrated by an example with
three continuous states. See [Hedlund and Rantzer, 1999] for additional
examples. Consider the system











ẋ1= x2
ẋ2= 1

m
(−cx2 + kx3)

ẋ3= −x2 + nq(x2)
k
u, q = 1, 2 − 0.1 ≤ u ≤ 1.1

(27)

The three continuous states of the system could be seen as position
(x1) and velocity (x2) of a truck, and the rotational displacement of its
transmission shaft (x3). There are two discrete modes corresponding to
different gears of the truck; the input throttle, u, is weighted by nq(x)
that represents the efficiency of gear number q. The weighting functions
are plotted in Fig. 1.
All the constants (the mass of the car, m, the frictional damping, c,

and the spring constant of the transmission shaft, k) are set to 1.
The objective is to bring Eq. (27) to YM = {(0, 0)} in minimum time.

Torque losses when using the clutch calls for an additional penalty for gear
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−5 −4 −3 −2 −1 0
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0.8

1.2

x1

x2

Figure 2. Phase portrait of x1 and x2 under simulation. The solid line shows
where gear number one has been used, the dashed line shows the second gear. The
initial point is marked with a square.

changes. Thus, the terms of (3) have been chosen as l1(x,u) = l2(x,u) = 1,
s(x, 1, 2) = s(x, 2, 1) = 0.8.

Since it is difficult to visualize the three dimensional value function,
it is not shown here. A feedback control law is derived from the value
function, however, and results from simulations using this law are shown
in Fig. 2.

With the current cost function, it is obvious that whenever a gear
switch is required, it is optimal to switch at the speed of equal efficiency
between the gears (x2 = 0.7). This action can be noted in the figure when
switching from the first gear to the second. The switch back to the first
gear during the deceleration phase, however, occurs in the simulation at
a much higher (non optimal) speed. This is a reasonable approximation
error though, since the deceleration power is small (u = −0.1). The dif­
ference in cost depending on how early the gear switch is made, is low
compared to the total cost.

Figure 3 shows how the rotational displacement of the transmission
shaft varies with u. The spring tension builds up during the acceleration
phase (approximately. 0 ≤ t ≤ 4.3) and is then released.

An upper bound is obtained by integrating the cost along the simulated
trajectory, starting in xi = (−5, 0, 0)T , qi = 1, is 8.5. The lower bound given
by the value function is 7.9.
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7. Conclusion
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Figure 3. Plot of spring tension (x3) and the continuous valued control signal (u).

7. Conclusion

This paper presented an extended version of the Hamilton­Jacobi­Bellman
inequality to be used for optimal control of hybrid systems. The extended
version constitutes a successful marriage between computer science and
control theory, containing pure discrete dynamic programming as well as
pure continuous dynamic programming as special cases.

The extended HJB inequality, that gives a lower bound on the value
function, was discretized to a finite, computer solvable LP that preserves
the lower bound property. Based on the value function, an approximation
of the optimal control feedback law was derived.

A problem with DP is the “curse of dimensionality”, an expression that
was coined by Richard Bellman, the inventor of this method. Since the cost
for a family of trajectories is computed (rather than a single trajectory as
in the Pontryagin Maximum Principle), the problem grows exponentially
in the number of states.

The advantage with this method, however, is its applicability and ease
of use for low dimension systems. The discretization method presented
in this paper allows problems with up to three continuous states on a
336MHz Ultra Sparc II.

A set of MATLAB commands has been compiled by the authors to make
it easy to test the above methods and implement the examples. The LP
solver that is used is “PCx”, developed by the Optimization Technology
Center, Illinois. The MATLAB commands and a manual of usage are avail­
able free of charge upon request from the authors.
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Duality Between Cost and Density in

Optimal Control

Anders Rantzer and Sven Hedlund

Abstract

A theorem on duality between cost functions and density func­
tions in optimal control is derived using the Hahn­Banach theorem.
The result puts focus on convexity aspects in control synthesis and
the recent theory of almost global stability. In particular, it gives a
new proof that existence of a density function is both necessary and
sufficient for almost global stability in a nonlinear system.
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1. Introduction

The idea of duality between cost and flow has old roots. In fact, a non­
linear problem of optimal transportation stated by G. Monge in 1781
was converted into convex optimization by [Kantorovich, 1942] and in­
spired much of the later developments in the theory of convex duality.
See [Rachev and Rüschendorf, 1998]. Kantorovich later received the No­
bel price for related work in mathematical economics.
The ideas were introduced in the context of optimal control by [Young,

1969] using the concept of generalized flow. For later work, see [Vinter,
1993]. More recently, [Rantzer, 2001] introduced the concept of density
function as a tool for verification of almost global stability in non­linear
systems. The relation to duality theory was then briefly discussed.
The new stability concept has a remarkable convexity property in the

context of control synthesis. This was explored for numerical computa­
tions in [Rantzer and Parrilo, 2000] and for smooth transitions between
different nonlinear controllers in [Rantzer and Ceragioli, 2001].
The purpose of the present paper is to establish the duality between

cost functions and density functions in a more rigorous manner. The main
result is stated and discussed in section 2. The next two sections are
devoted to the proof. The main duality argument is given section 3, while
the relation to optimal control is established in section 4.

2. Main Result

Let f i ∈ C 1(Rn,Rn), li ∈ C (Rn,Rm) with li ≥ 0 for i = 1, . . . ,M . Let
Γ, X ⊂ Rn be open bounded sets with C1 boundary and Γ ⊂ X . Suppose
that f i points strictly inwards on the boundary of X and the same on the
boundary of Γ. Introduce U as the set of all non­negative (u1, . . . ,uM ) ∈
C 1(X ,RM ) with u1(x)+ ⋅ ⋅ ⋅+uM (x) � 1. The solution of ẋ =

∑

i ui(x) f i(x),
x(0) = x0 is denoted φu(x0, t). Let

Vu(x) =
∑

i

∫ ∞

0
ui
(

φu
(

x, t
))

li
(

φu
(

x, t
))

dt

V ∗(x) = inf
u∈U
Vu(x)

The main theorem can now be stated as follows:

THEOREM 1
Consider X , f i, li,U, φu and V ∗ as above. Let li > 0 outside Γ and define
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2. Main Result

ψ ∈ C (X ) with ψ > 0. Then

sup
V

∫

X

ψ (x)V (x)dx =
∫

X

ψ (x)V ∗(x)dx = inf
ρi

M
∑

i=1

∫

X

li(x)ρi(x)dx

where sup is taken over non­negative V ∈ C 1(Rn) such that for i =
1, . . . ,M

∇V (x) ⋅ f i(x) + li(x) > 0 x ∈ X \ Γ (1)
V (x) = 0 x ∈ Γ (2)

and inf is taken over ρi ∈ C 10 (X ) with ρi > 0 in X and

M
∑

i=1
∇ ⋅ ( f i(x)ρi(x)) > ψ (x) x ∈ X \ Γ (3)

Moreover, u := (ρ1, . . . , ρM)/(
∑

i ρi) is an element in U and

∫

X

ψ (x)Vu(x)dx <
M
∑

i=1

∫

X

li(x)ρi(x)dx

Before giving the proof in the following sections, we make a couple of
remarks.

The Case of No Control Variable (M=1) In this case, the value of
the integral

∫

X

ψ (x)V ∗(x)dx (4)

is interesting as a stability indicator. A finite value of the integral means
that V ∗(x) =

∫∞
0 l(x(t))dt is finite for almost all x ∈ X \ Γ. For all these

initial states, the trajectory must approach Γ as t→∞. Hence, Theorem 1
proves existence of non­negative ρ ∈ C 10 (X ) such that

∇ ⋅ ( f (x)ρ(x)) > ψ (x) > 0 x ∈ X \ Γ

Conversely, if such a ρ exists, then the theorem shows that (4) is finite
and almost all trajectories eventually approach Γ.
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V0

V1

V2

V3

l31

l32

l21

l10

l20

Figure 1. The products produced in nodes 1­3 should be transported to the con­
sumer in node 0 while minimizing the transportation cost.

Control Synthesis by Convex Optimization It should be noted that
the minimization corresponding to the infimum expression in Theorem 1
is a problem of convex optimization. In fact, every multiple (ρ1, . . . , ρM )
that solves the divergence inequality not only gives an upper bound on
the optimal value

∫

X
ψ (x)V ∗(x)dx, but also corresponds to a control law

achieving this upper bound. This can be viewed as the reason behind the
previously mentioned convexity property of density functions in control
synthesis.

Comparison to a Discrete Transportation Problem It is natural to
compare Theorem 1 to the standard linear programming solution to the
discrete transportation problem illustrated in Figure 1. Such problems
have been studied extensively since the 1940’s [Hitchcock, 1941; Ford
and Fulkerson, 1962]. Some product is produced with unit rate in each of
the three nodes 1­3 and is consumed in node 0. The cost for shipping the
product between node i and node j is given by the number li j . It is well
known that the minimal total transportation cost can be found by solving
the following linear programming problem.

Maximize V1 + V2 + V3 − 3V0
subject to V3 − V1 ≤ l31

V3 − V2 ≤ l32
...

V2 − V0 ≤ l20

Note that there is one variable Vi for each node and one inequality con­
straint for each path connecting two nodes. For every solution to the in­
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3. A Min­Max Inequality

equality constraints, the number Vi − V0 provides a lower bound on the
cost for shipping products with unit rate from node i to node 0. The ex­
pression V1 + V2 + V3 − 3V0 therefore gives a lower bound on the total
transportation cost.
A dual linear programming problem can be stated as follows.

Minimize l31ρ31 + l32ρ32+l21ρ21 + l10ρ10 + l20ρ20
subject to ρ31, . . . , ρ20 ≥0

ρ31 + ρ32 ≥1
−ρ31 − ρ21 + ρ10 ≥1
−ρ32 + ρ21 + ρ20 ≥1

For each path connecting two nodes, the variable ρi j can be interpreted as
the transportation density from node i to node j. There is one constraint
for each node stating that the total production in this node is at least as
big as the assigned value.

3. A Min-Max Inequality

An inequality relating the supremum and the infimum in Theorem 1 will
next be proved as a separate statement.

LEMMA 1
Let f i ∈ C 1(Rn,Rn), li ∈ C (Rn,Rm) with li ≥ 0 for i = 1, . . . ,M . Let
Γ ⊂ X be open and bounded subsets of Rn with C1 boundary. Suppose
that f i points strictly inwards on the boundary of X and the same on the
boundary of Γ. Let li > 0 outside Γ and define ψ ∈ C (X ) with ψ > 0.
Then

sup
V

∫

X

ψ (x)V (x)dx ≥ inf
ρi

M
∑

i=1

∫

X

li(x)ρi(x)dx (5)

where supremum is taken over all non­negative V ∈ C 1(Rn) satisfying

∇V (x) ⋅ f i(x) + li(x) > 0 x ∈ X \ Γ (6)
V (x) = 0 x ∈ Γ (7)

and infimum is taken over all ρi ∈ C 10 (X ) with ρi > 0 in X and

M
∑

i=1
∇ ⋅ ( f i(x)ρi(x)) > ψ (x) x ∈ X \ Γ (8)
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Proof. Define two subsets of K = R�C (X ):

K1 =
{

(

−
M
∑

i=1

∫

X

liρidx + γ ,
M
∑

i=1
∇ ⋅

(

f iρi
)

−ψ

)

∣

∣

∣

∣

ρi ∈ C 10 (X ), ρi > 0 in X
}

K2 ={(z, h) ∈ K h z ≥ 0, h(x) > 0 for x ∈ X \ Γ}

For the following five statements, we will prove the implications I<II<III
<IV;V.
I The number γ is not larger than the right hand side of (5).
II K1 contains no interior point of K2.

III There exists kL ∈ K L, kL �= 0 such that

sup
k1∈K1

〈kL, k1〉 ≤ inf
k2∈K2

〈kL, k2〉, (9)

where K L is the dual space of K , i.e. K L = R�C (X )L

IV There exists a nonzero pair (a,φ) where a ≥ 0 is a number and φ ≥ 0
is a measure of bounded variation on X , vanishing inside Γ, such
that 〈φ ,ψ 〉 :=

∫

X
ψ (x)dφ(x) ≥ aγ and

ali +∇φ ⋅ f i ≥ 0 in X for i = 1, 2, . . . ,M (10)

The derivative ∇φ is interpreted in the sense of distributions.

V The number γ is not larger than the left hand side of (5).
The equivalence I<II is trivial once it is noted that (z, h) ∈ K2 is an
interior point if and only if z > 0 and h(x) > 0 for x ∈ X . The second
equivalence II<III holds because of the following separation property of
convex sets [Luenberger, 1969; Rudin, 1991]:
Let K be a normed vector space and denote its dual K L. Let K1 and

K2 be convex sets in K such that K2 has interior points and K1 contains

no interior point of K2. Then there is a closed hyperplane separating K1
and K2; i.e., there is a k

L ∈ K L, kL �= 0 such that

sup
k1∈K1

〈kL, k1〉 ≤ inf
k2∈K2

〈kL, k2〉, (11)
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To show that III<IV, let kL = (a,φ) ∈ K L = R � C (X )L. The space
C (X )L is the set of measures of bounded variation and support in X
[Dunford and Schwartz, 1958, page 262]. Expand the right hand side of (9)
to

inf
k2∈K2

〈kL, k2〉 = inf
(z,h)∈K2

{az+ 〈φ , h〉} (12)

The right hand side is equal to zero if and only if a and φ are both non­
negative and φ = 0 in Γ. Otherwise it is −∞.
The left hand side of (9) can be expanded to

sup
k1∈K1

〈kL, k1〉

= sup
ρi

{

a
(

−
∑

i

∫

X

liρidx + γ
)

+
〈

φ ,
∑

i

∇ ⋅ ( f iρi) −ψ
〉

}

= sup
ρi

{

∑

i

〈

−ali −∇φ ⋅ f i, ρi
〉

}

+ aγ −
〈

φ ,ψ
〉

The supremum is taken over ρi ∈ C 1(Rn) with support in X and ρi > 0
in X . The value is equal to aγ −〈φ ,ψ 〉 if and only if (10) holds, otherwise
it is +∞. The statement III is thus equivalent to IV.
It remains to prove the implication from IV to V. Hence, assume ex­

istence of a non­zero pair (a,φ) as in IV. Note that φ can be identified
with a distribution of order zero on Rn, which is identically zero outside
X . If a = 0, define ā = ε̄ and γ̄ = γ . If a > 0, define ā = a(1 + ε̄ ) and
γ̄ = γ /(1+ 2ε̄ ). In both cases, for sufficiently small ε̄ > 0,

0 < āli +∇φ ⋅ f i in Rn \ Γ 〈φ ,ψ 〉 > āγ̄ (13)

Here, the assumption that all f i points strictly inwards on the boundary
of X is critical to guarantee that ∇φ ⋅ f i ≥ 0 on the boundary of X .
Note that φ cannot be singular on the boundary of Γ, due to the first in­

equality of (13) in combination with the assumption that f i points strictly
inwards on the boundary of Γ. Hence, one can write φ = ∑∞

i=1 φ i where
each φ i is zero within a distance ε i from Γ. Each of the terms can be
regularized by convolution with a smooth non­negative function having
support in a ball of sufficiently small radius and integral equal to one.
In this way, φ can be approximated by a smooth function function φ0,
vanishing inside Γ and satisfying

0 < āli +∇φ0 ⋅ f i in Rn \ Γ 〈φ0,ψ 〉 > āγ̄

Finally, V = φ0/ā ∈ C 1(Rn) gives (6)­(7) and
∫

X

ψ (x)V (x)dx > γ̄
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Condition V follows and the proof is complete.

4. Proof of the Main Theorem

Two more lemmata are needed before completing the proof of Theorem 1.

LEMMA 2
Suppose that X ⊂ Rn is open and bounded and that Γ ⊂ X is open. Given
f ∈ C (X ) and l ∈ C (X ), assume that l(x) ≥ 0 with strict inequality
outside Γ. If V ∈ C 1(X ), V (x) = 0 for x ∈ Γ and

∇V (x) ⋅ f (x) + l(x) ≥ 0 x ∈ X \ Γ

then V (x0) ≤
∫∞
0 l (x(t)) dt when ẋ = f (x), x(0) = x0 and x(t) ∈ X for

all t.

Proof. If
∫∞
0 l (x(t)) dt < ∞, then there exists a sequence 0 < t1 < t2 < . . .

where ti → ∞ as i → ∞ such that limi→∞ l (x(ti)) = 0. It follows that
x(ti) → Γ as i→∞ and

V (x0) − V (x(ti)) = −
∫ ti

0

d

dt
V (x(t))dt

= −
∫ ti

0

VV
V x f (x(t))dt ≤

∫ ∞

0
l(x(t))dt

In the limit as i→∞ we get the desired inequality.

LEMMA 3
Let X ⊂ Rn be open and bounded. Given f ∈ C 1(X ,Rn), suppose that
X and the subset Γ are both invariant under the dynamics ẋ = f (x).
Suppose that l ∈ C (X ), ρ ∈ C 1(X ) and ψ ∈ C (X ) are non­negative.
Define V (x) =

∫∞
0 l

(

φ
(

x, t
))

dt. Then

∫

X

ψ (x)V (x)dx ≤
∫

X

l(x)ρ(x)dx

provided that ∇ ⋅ ( f ρ)(x) >ψ (x) for x ∈ X \ Γ.

The proof of Lemma 3 uses the following version of Liouville’s theorem
[Rantzer, 2001]:
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PROPOSITION 1
Let f ∈ C 1(X ,Rn) and let ρ ∈ C 1(X ) be non­negative and integrable. For
a measurable set Z, assume that φτ (Z) =

{

φτ (x)
∣

∣ x ∈ Z
}

is a subset of
X for all τ between 0 and t. Then

∫

φ(Z ,t)
ρ(x)dx −

∫

Z

ρ(z)dz =
∫ t

0

∫

φ(Z ,τ )
[∇ ⋅ ( f ρ)] (x)dxdτ

Proof of Lemma 3. Consider T > 0 and a piecewise constant l(x) =
∑

i liχ i(x), where χ i is the characteristic function of the set Xi ⊂ X .
Then

∫

X

l(x)ρ(x)dx ≥
∑

i

li

(∫

X i

ρ(x)dx −
∫

φ(X i,−T)
ρ(x)dx

)

=
∑

i

li

∫ T

0

∫

φ(X i ,−t)
∇ ⋅ ( f ρ)(z)dzdt

>
∑

i

li

∫ T

0

∫

φ(X i ,−t)
ψ (z)dzdt

=
∑

i

li

∫ T

0

∫

X

χ i(φ(z, t))ψ (z)dzdt

=
∫

X

ψ (z)
∫ T

0
l(φ(z, t))dtdz

This proves the desired inequality for piecewise constant l. Non­strict
inequality follows by continuity for arbitrary continuous l. 2

Proof of Theorem 1 Let γ ∗ be the value of the infimum. Define ρi ∈ C 10 (X ),
i = 1, . . . ,M such that (3) holds, ρi > 0 in X and

M
∑

i=1

∫

X

li(x)ρi(x)dx < γ ∗ + ε

for some ε > 0. Define u ∈ C 1(X ) and f ∈ C 1(X ) according to

ρ(x) =
∑

i

ρi(x)

ui(x) =
ρi(x)
ρ(x)

f (x) =
∑

i

ui(x) f i(x)
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Then

∇ ⋅ ( f ρ)(x) =
∑

i

∇ ⋅ ( f iρi)(x) >ψ (x) x ∈ X

and for every solution to the equation ẋ = f (x)

0 < ψ (x)
ρ(x) <

∇ ⋅ ( f ρ)
ρ

= ∇ ⋅ f + ∇ρ
ρ ⋅ f = ∇ ⋅ f +∇(log ρ) ⋅ f

0 < (∇ ⋅ f )(x(t)) + d
dt
log ρ(x(t))

By continuity of ∇ ⋅ f on the compact set X , there is a constant C such
that ∇ ⋅ f (x) ≤ C for x ∈ X . Hence

−C < d
dt
log ρ(x(t)) ρ(x(t)) > e−Ctρ(x(0))

This shows that the trajectory can not reach the boundary of X , where
ρ = 0, but must stay in X for all t ≥ 0. Hence by Lemma 3

∫

X

ψ (x)Vu(x)dx ≤
M
∑

i=1

∫

X

li(x)ρi(x)dx < γ ∗ + ε

The choice of ε > 0 was arbitrary, so
∫

X

ψ (x)V ∗(x)dx ≤ γ ∗

For an opposite bound, Let γ ∗ be the value of the supremum. Define V ∈
C 1(X ) non­negative, satisfying (1)­(2) and

γ ∗ − ε <
∫

X

ψ (x)V (x)dx

Then by Lemma 2

γ ∗ − ε <
∫

X

ψ (x)V ∗(x)dx

In the limit as ε → 0 we get

γ ∗ ≤
∫

X

ψ (x)V ∗(x)dx ≤ γ ∗

Finally, Lemma 1 proved that γ ∗ ≤ γ ∗, so the proof is complete. 2
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Paper C

Duality in Hybrid Optimal Control

Sven Hedlund and Anders Rantzer

Abstract

It has lately been reported that a lower bound of the value func­
tion of a hybrid optimal control problem can be computed via a linear
program. Moreover, a dual of this optimization problem has been for­
mulated via general ideas from duality in transportation problems.
Paper B has shown that the lower bound of the value function is

tight for continuous systems and that there is no gap between the
dual optimization problems. This paper extends the main result of
Paper B to the hybrid system formulation.
This paper also tries to convey an intuitive understanding of the

two different optimization approaches via a thorough discussion around
simple examples.

Keywords Hybrid systems, optimal control, dynamic programming,
linear program, duality.
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1. Introduction

An optimal control problem in general contains a dynamical system and a
cost function to be minimized by the choice of control law. In this paper, the
performance of the control law is measured as a weighted sum of the cost
for trajectories starting in a certain set of initial states. Previous papers
have shown that the resulting optimization problem can be approached
in two different ways, both approaches resulting in a linear program.
One approach gives a lower bound on the performance and the cor­

responding decision variables are a lower bound of the value function,
see [Hedlund and Rantzer, 2002] for treatment of hybrid systems. The
other approach, a dual formulation of the first approach, uses decision
variables that are closely related to the optimal control law, see [Hedlund
and Rantzer, 2000] for a hybrid system version.
It has recently been shown for continuous systems that the lower

bound is tight and that there is no gap between the dual optimization
problems, see Paper B of this thesis, and the same can be shown to hold
for for discrete systems. Moreover, the proof for discrete systems can be
built with the same components, lemmas and propositions, as for the con­
tinuous case. Following the same procedure for hybrid systems, merging
the continuous lemmas with their discrete counterparts, this paper proves
a major part of a corresponding duality theorem for hybrid systems.
The dual formulations of the minimum cost problems in this paper can

be interpreted as optimizing mass flows and the idea of duality between
cost and flow has old roots. In fact, a non­linear problem of optimal trans­
portation stated by G. Monge in 1781 was converted into convex optimiza­
tion by [Kantorovich, 1942] and inspired much of the later developments
in the theory of convex duality. See [Rachev and Rüschendorf, 1998]. Kan­
torovich later received the Nobel price for related work in mathematical
economics.
The ideas were introduced in the context of optimal control by [Young,

1969] using the concept of generalized flow. For later work, see [Vinter,
1993].
The outline of this paper is as follows. In Section 2, an optimal control

problem for a discrete system is solved in two different ways. These two
approaches result in two different LP formulations, one being the dual of
the other. This section does not contain any new theory, but is included
to introduce ideas and concepts to make way for the understanding of the
theory for the more complex continuous and hybrid systems.
A more rigorous presentation of duality for discrete systems is given

in a theorem in Section 3. The different parts of this theorem have their
counterparts in a duality theorem for continuous systems, presented in
Section 4. The main part of the above mentioned theorems are merged in
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Figure 1. Graphic illustration of the transportation example. The circles represent
cities and the numbers in the circles are their milk production. The colored circle is
a city with a dairy. The arrows are roads and the number next to each arrow is the
road tax.

Section 5 to a duality for hybrid systems.
Section 6 contains an example on the importance of the formulation of

the optimal control problem, and Section 7 summarizes our results. The
proofs of the duality for discrete systems and hybrid systems are presented
in Section 8. (For a proof of the continuous system duality, see Paper B.)

2. Duality in a Transportation Problem

Imagine a nation with several cities and several roads that connect the
cities. There are cows with a steady rate milk production close to all but
one city. In the city without milk production, there is a dairy. There is one
company transporting all of the milk that is produced by trucks to the
dairy.
For each production city, the company has picked one exit road to

be used by all transports leaving that city. There is a certain road tax,
transportation cost, connected to each road.
A graph of the setting is shown in Fig. 1. The circles represent the

cities, and the number in each circle is the milk production measured
in trucks per day. The shaded circle is the city with a dairy. The arrows
represent the roads that have been chosen for transportation and the
number next to each arrow is the road tax per truck for that road.

2.1 Computation of the Total Transportation Cost

Consider the problem of computing the total transportation cost per day.
This problem can be approached in two ways.
The first approach is called the “cost first approach” or “value function

approach”. For each city, compute the total transportation cost per truck
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Figure 2. Transportation cost computation, value function approach. The number
in each circle is the milk production in the corresponding city and the number at
the beginning of each arrow is the total road tax from the city to the dairy.
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Figure 3. Transportation cost computation, density function approach. The num­
ber inside each arrow is the transport flow density, i.e. the total number of trucks per
day on the road. The number next to each arrow is the road tax of the corresponding
road.

from that city to the dairy, see Fig. 2. The resulting map from cities to their
transportation costs is called the cost­to­go function or value function.
The daily cost for the complete transport of the production in one city is
the cost­to­go multiplied by its production number. The total cost for this
example is 4 ⋅ 2+ 5 ⋅ 1+ 3 ⋅ 1+ 3 ⋅ 3+ 2 ⋅ 2 = 29.
The second approach is called the “flow first approach” or “density

function approach”. Compute the daily number of trucks on each road,
i.e. for a road leaving a city, sum all the trucks entering the city plus the
production in the city itself, see Fig. 3. The resulting map from cities to
their outflow is called the flow density function or just density function.
The daily cost for all transports from one city to its immediate successor
is obtained by multiplying the flow density out from the city with its road
tax. The total transportation cost for this example is 2 ⋅ 1+ 1 ⋅ 2+ 1 ⋅ 1+
6 ⋅ 1+ 9 ⋅ 2 = 29.
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2.2 Optimizing Transports for Minimum Total Cost

The company wants to reconsider their choice of transportation roads in
order to minimize the total cost. This optimization problem can be solved
in the spirit of either of the two approaches above.

Value Function Approach The total cost depends on the value func­
tion, which in turn depends on the choices of roads. Hence, a naive ap­
proach is to try a certain set of roads, compute the corresponding value
function, compute the corresponding total cost, and then repeat the whole
procedure over and over again to iteratively get a lower total cost.
Note, however, that there are some properties of the value function

that are independent of road choice:

• If there is a road from city A to city B, then the value function in A
can not exceed the value function in B plus the road tax from A to
B.

• The value function is zero in the city with the dairy, since there is
no remaining transportation to the goal.

In fact, the above properties make it possible to obtain the optimal value
function (the value function corresponding to the lowest total cost) re­
gardless of the underlying road choice. The optimal value function is the
largest function (measured by the sum of the value function weighted
with the production for each city) with the above two properties and it
can be found by solving a linear program. This is illustrated by another
simple example.

EXAMPLE 1—THE MINIMUM COST EXAMPLE, VALUE FUNCTION APPROACH.
There are four cities in this example, see Fig. 4. City a, b, and c each
produce one truck of milk per day. The dairy is in city d. Let Va, Vb, Vc,
and Vd denote the value function for city a, b, c, and d respectively. The
aforementioned value function properties translate to

Va ≤Vb + 2
Va ≤Vc + 4
...

Vc ≤Vd + 1

and
Vd = 0

It will be shown in Sec. 3 that the optimal value function is the largest
function that meets the above constraints, i.e. the one maximizing
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2

4 1

12

3

a:1

b:1

c:1

d

Figure 4. Graphic illustration of the minimum cost example. The letter in each
circle is the “name” of the city, while the figure to the right of each colon still is the
production.
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Figure 5. Optimal value function for the minimum total cost example: Va = 4,
Vb = 2, Vc = 1. The total cost is 1 ⋅ 4+ 1 ⋅ 2+ 1 ⋅ 1 = 7

1⋅Va+1⋅Vb+1⋅Vc. Having obtained the solution to this linear program,
i.e. Va = 4, Vb = 2, Vc = 1, the underlying road choice is found in the
active constraints above. Eg. the topmost constraint holds with equality
(Va = Vb + 2) but the second one does not. This means that the optimal
exit road from city a is the one that leads to b. The solution is shown in
Fig. 5.

Density Function Approach The total cost depends on the density
function, which in turn depends on the choices of roads. It would in prin­
ciple be possible to use a naive iterative approach also for this case. There
are some properties also of the density function, however, that are inde­
pendent of road choice:

• The sum of the density function for the roads leading out from a
city, can never be less than the production in the city plus the sum
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Figure 6. Density function solution of the minimum total cost example: λab = 1,
λac = 0, λbc = 2, λ cb = 0, λbd = 0, λ cd = 3. The total cost is 1 ⋅ 2+ 0 ⋅ 4+ 2 ⋅ 1+ 0 ⋅
2+ 0 ⋅ 3+ 3 ⋅ 1 = 7.

of the density function for the roads leading to the city

• On a road, there can be zero or more truck transport per days. Thus,
the density function can not be less than zero for any road.

The above properties make it possible to obtain the optimal flow density
regardless of the corresponding road choice. The optimal value function
is the smallest possible function (measured by the sum of the density
function times the cost for each road) with the above properties and it
can be found solving a linear program.

EXAMPLE 2—THE MINIMUM COST EXAMPLE, DENSITY FUNCTION APPROACH.
Consider again the minimum cost example presented in Fig. 4. Let λab
denote the flow density from city a to b, λac the flow from city a to c etc.
The above density function properties then translate to

λab + λac ≥ 1
λbc + λbd ≥ 1+ λab + λ cb
λ cb + λ cd ≥ 1+ λac + λbc

and
λab ≥ 0, λac ≥ 0, λbc ≥ 0, λbd ≥ 0, λ cb ≥ 0, λ cd ≥ 0

It will be shown in Sec. 3 that the optimal density function is the
smallest function that meets the above constraints, i.e. the one minimizing
λab ⋅ 2+ λac ⋅ 4+ λbc ⋅ 1+ λ cb ⋅ 2+ λbd ⋅ 3+ λ cd ⋅ 1. The solution to this linear
program is shown in Fig. 6. The solution clearly shows the underlying
choice of roads; the roads used are those with a flow density greater than
zero.
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2.3 Extension to General Dynamical Systems

The components and principles behind the transportation problem and
its solution can be extended to optimal control of dynamical systems in
general. Cities correspond to states of a dynamical system and the set of
all cities is the state space. The choice of various roads corresponds to
dynamics that is affected by a control signal. The road tax corresponds to
cost function of an optimal control problem.
The transportation problem of this section has been solved with two

dual formulations for optimal control of a discrete system. A duality theory
for continuous systems and hybrid systems will be presented below, the
interpretation of the transportation problem of this section still being
valid. First however a more general and rigorous treatment of discrete
systems.

3. Duality for Discrete Systems

Define the finite sets Q̄ and Ω. Define the functions ν : Q̄ � Ω → Q̄ and
s : Q̄2 → R. Let M denote the set of functions.
Given the control law µ : Q̄ → Ω, q0 ∈ Q̄, denote the solution to the

system equation

q(k+ 1) = ν
(

q(k), µ
(

q(k)
)

)

, q(0) = q0

by φµ(q0, k). Define the value functions

Vµ(q) =
∞
∑

k=0
s
(

φµ(q, k), φµ(q, k+ 1)
)

V L(q) = inf
µ :Q̄→Ω

Vµ(q)

The main theorem for discrete systems can now be stated as follows:

THEOREM 1
Suppose that Q̄ and Ω are finite sets and that Γ is a non­empty subset
of Q̄. Given ν : Q̄ � Ω → Q̄ and s : Q̄2 → R, define φµ , and V L as above
and assume the existence of a µ : Q̄ → Ω such that φµ(q, k) ∈ Γ for each
q ∈ Q̄ and k ≥ Q. Define S = {(q, r) ∈ Q̄2 h r = ν(q,κ ), κ ∈ Ω}. Assume
that s > 0 on Q̄2 \ Γ2 and s = 0 on Γ2. Let ψ : Q̄ → R be strictly positive.
Then

max
V

∑

q∈Q̄
ψ (q)V (q) =

∑

q∈Q̄
ψ (q)V L(q) = min

λ

∑

(q,r)∈S
s(q, r)λ(q, r) (1)
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where supremum is taken over all non­negative V : Q̄ → R such that

s(q, r) + V (r) − V (q) ≥ 0 (q, r) ∈ S (2)
V (q) = 0 q ∈ Γ (3)

and the minimum is taken over the set of all non­negative λ : Q̄2 → R
∑

rh(q,r)∈S
λ(q, r) −

∑

rh(r,q)∈S
λ(r, q) ≥ψ (q) q ∈ Q \ Γ (4)

Moreover, if there exists a minimum, it is achieved by a λ ′ such that
for each q ∈ Q̄ \ Γ there is one and only one r ∈ Q̄ with λ ′(q, r) �= 0. For
µ : Q̄ → Ω such that µ(q) = argmaxm∈Ω λ ′

(

q,ν(q,m)
)

,

∑

q∈Q̄
ψ (q)Vµ(q) ≤

∑

(q,r)∈S
s(q, r)λ ′(q, r)

The proof is shown in Appendix 8.

Remark 4. There are several connections between Thm. 1 and Sec. 2 in
addition to V and λ : The set Q̄ corresponds to the cities, Γ is the set of
cities with a dairy, S is the set of roads, s(q, r) is the road tax on the road
from city q to city r, ψ (q) is the milk production next to the city q, and
µ(q) is the choice of which road to take from city q.

4. Duality for Continuous Systems

Let f i ∈ C 1(Rn,Rn), li ∈ C (Rn,Rm) with li ≥ 0 for i = 1, . . . ,M . Let
Γ, X ⊂ Rn be open bounded sets with C1 boundary and Γ ⊂ X . Suppose
that f i points strictly inwards on the boundary of X and the same on the
boundary of Γ. Introduce U as the set of all non­negative (u1, . . . ,uM ) ∈
C 1(X ,RM ) with u1(x)+ ⋅ ⋅ ⋅+uM (x) � 1. The solution of ẋ =

∑

i ui(x) f i(x),
x(0) = x0 is denoted φu(x0, t). Let

Vu(x) =
∑

i

∫ ∞

0
ui
(

φu
(

x, t
))

li
(

φu
(

x, t
))

dt

V ∗(x) = inf
u∈U
Vu(x)

The main theorem for continuous systems can now be stated as follows:
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THEOREM 2
Consider X , f i, li,U, φu and V ∗ as above. Let li > 0 outside Γ and define
ψ ∈ C (X ) with ψ > 0. Then

sup
V

∫

X

ψ (x)V (x)dx =
∫

X

ψ (x)V ∗(x)dx = inf
ρi

M
∑

i=1

∫

X

li(x)ρi(x)dx

where sup is taken over non­negative V ∈ C 1(Rn) such that for i =
1, . . . ,M

∇V (x) ⋅ f i(x) + li(x) > 0 x ∈ X \ Γ (5)
V (x) = 0 x ∈ Γ (6)

and inf is taken over ρi ∈ C 10 (X ) with ρi > 0 in X and

M
∑

i=1
∇ ⋅ ( f i(x)ρi(x)) > ψ (x) x ∈ X \ Γ (7)

Moreover, u := (ρ1, . . . , ρM)/(
∑

i ρi) is an element in U and satisfies

∫

X

ψ (x)Vu(x)dx <
M
∑

i=1

∫

X

li(x)ρi(x)dx

The proof can be found in Paper B.
Note the analogy between all parts of Thm. 1 and Thm. 2. The dif­

ference is that the states and transport directions in this section are
continuous. Eg. in each state x, the “road options” are a continuum of
directions spanned by f1(x), . . . , fM (x) and the total flow density in state
x is ρ(x) =∑i ρi(x) in the direction of

∑

i ρi(x) f i(x).

EXAMPLE 3—THE DOUBLE INTEGRATOR I.
Consider the double integrator dynamics

{

ẋ1 = x2
ẋ2 = u

(8)

with the state constraints X = {x h n(x) < 3}, where n(x) =
√
3x21 +

2x1x2 +
√
3x22, and the control signal constraint huh ≤ 2. The cost function

to be minimized subject to this dynamics is
∫ t f
0 hxh2+u2dt, where t f is the
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Figure 7. Value function for the double integrator example. The thick curve is
the boundary of the region under consideration and the thin curves are sample
trajectories starting near the boundary.
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Figure 8. Density function for the double integrator example. The thick curve
is the boundary of the region under consideration and the thin curves are sample
trajectories starting near the boundary.

time when Γ = {x h n(x) < 0.1} is reached. The resulting value function
for this problem is V (x) = max(n(x) − 0.1, 0) and is shown in Fig. 7. For
a certain choice of a positive ψ (x), The density function for this example
will be ρ(x) = 1

n2(x) − 1. The density function is shown in Fig. 8.
The figures also show some trajectories starting at the boundary of X .
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It is clearly seen in Fig. 8 that the trajectories get denser as they approach
Γ. As a consequence, the density function grows quickly towards Γ.

Remark 5. Contrary to the conditions of Thm. 2, the set X of Ex. 3 is not
invariant under all u(x). For a similar example that matches the theorem
without compromises, let the dynamics be ẋ1 = x2 − ε x1 and ẋ2 = u− ε x2
for some ε > 0 and consider an X large enough to be invariant under the
constraint huh ≤ 2.

5. Duality for Hybrid Systems

The hybrid systems version is presented for an autonomous system for
notational convenience. The theory of this section is readily extended to
systems with control signal.
Let Q̄ = {1, 2, . . . ,Q}, X ⊂ Rn, ν : X � Q̄ → Q̄, and f : X � Q̄ →

Rn, with f (x, q) continuously differentiable in x. A trajectory of the au­
tonomous hybrid system

{

ẋ(t)= f (x(t), q(t))
q(t)= ν(x(t), q(t−))

(9)

is defined as the collection (T , x, q) with the following properties. T is
an increasing finite sequence of real numbers 0 = t0, t1, t2, . . . , tM = ∞,
x : [0,∞] → X is absolutely continuous, q : [0,∞] → Q̄ is constant in each
interval [tk, tk+1), k = 0, 1, . . . ,M − 1, and










ẋ(t)= f (x(t), q(t)) for almost all t ≥ 0
q(t)= ν(x(t), q(t)) = q(tk) t ∈ (tk, tk+1)

q(tk+1)= ν(x(tk+1), q(tk)) k = 1, 2, . . . ,M − 1
(10)

Given non­negative functions l : X � Q̄ → R, and s : X � Q̄ � Q̄ → R
with l(x, q) continuous in x, s measurable, s(x, q, r) = ∞ for (x, q, r) ∈
X � Q̄ � Q̄ such that ν(x, q) �= r, define

V L(x0, q0) = inf
{∫ ∞

0
l
(

x(t), q(t)
)

dt+
M−1
∑

k=1
s
(

x(tk), q(tk−1), q(tk)
)

}

(11)

where infimum is taken over all trajectories with
(

x(0), q(0)
)

= (x0, q0).
Then, the main theorem can be stated as follows:
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6. Density Function Singularity

THEOREM 3
Suppose that X ⊂ Rn is open and bounded with C 1 boundary, Q̄ =
{1, 2, . . . ,Q}, and that Γ ⊂ X � Q̄, where Γq = {xh(x, q) ∈ Γ} is open with
C 1 boundary for each q ∈ Q̄. Given Q̄, f , ν , l, s, and V L as above, assume
that f (x, q) points inwards at the boundary of X and at the boundary of
Γq and that s(⋅, ⋅, ⋅) > 0, and l(x, q) > 0 for x �∈ Γq. Define ψ : X � Q̄ → R
such that ψ (x, q) is continuous in x and strictly positive.
Then

inf
ρ, λ

∑

q∈Q̄

∫

X

(

ρ(x, q)l(x, q) +
∑

r∈Q̄
λ(x, q, r)s(x, q, r)

)

dx

≤ sup
V

∑

q∈Q̄

∫

X

ψ (x, q)V (x, q)dx ≤
∑

q∈Q̄

∫

X

ψ (x, q)V L(x, q)dx (12)

where supremum is taken over all non­negative functions V : Rn�Q̄ → R,
with V (x, q) continuously differentiable in x such that

∇xV (x, q) ⋅ f (x, q) + l(x, q) > 0 (x, q) ∈ (X � Q̄) \ Γ (13)
V (x, r) − V (x, q) + s(x, q, r) > 0 x ∈ X , q, r ∈ Q̄ (14)

V (x, q) = 0 (x, q) ∈ Γ (15)

and infimum is taken over all ρ : Rn � Q̄ → R with ρ(x, q) continuously
differentiable in x, ρ(x, q) > 0 for x ∈ X , ρ(x, q) = 0 for x outside X
and λ : Rn � Q̄ � Q̄ → R with λ(x, q, r) ≥ 0 continuous in x such that
λ(x, q, r) = 0 for x outside X and

∇x ⋅
(

f (x, q)ρ(x, q)
)

+
∑

r∈Q̄

(

λ(x, q, r) − λ(x, r, q)
)

>ψ (x, q)

(x, q) ∈ (X � Q̄) \ Γ (16)

The proof is written in Appendix 8. Comparing Thm. 3 with Thm. 1 and
Thm. 2, there is one piece missing in the hybrid case for a complete anal­
ogy to the purely discrete case and the purely continuous case. It remains
to prove equality of the inequalities in (12).

6. Density Function Singularity

The examples below are purely continuous. Issues for hybrid systems that
are also present in the purely continuous case are less complex to show
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Figure 9. Optimal control law for the minimum time double integrator problem.
The shaded region corresponds to u = 1, the white region corresponds to u = −1.

for the continuous case. Moreover, having overcome the problem of finding
a framework with several common properties in the discrete and the con­
tinuous domain, most of the remaining difficulties are in the continuous
domain.

EXAMPLE 4—THE DOUBLE INTEGRATOR II.
Consider again the double integrator dynamics given in Eq. (8). This time,
however, the state space is X = {(x1, x2)h hx1h ≤ 1 − x22/2, hx2h ≤ 1}, and
the control signal is limited to huh ≤ 1. The optimal control problem is of
minimum time, i.e. minimize

∫ t f
0 1dt with x(t f ) ∈ Γ. Here, Γ is a small

ball around the origin.
The trajectories of the optimal solution are shown in Fig. 9. The control

law corresponding to the optimal solution is of bang­bang type, i.e.

u(x1, x2) =
{

1 if (x2 ≤ 0 and x1 ≤ x22/2) or (x2 > 0 and x1 < −x22/2)
−1 otherwise

The region where u = 1 is shaded in the figure. The nature of the tra­
jectories gives a warning for optimal control computation via the density
function approach. In the optimal solution, the flow from particle produc­
tion in a two­dimensional state space is collapsed to a one dimensional
curve (x1 = −x22/2 for x2 > 0, x1 = x22/2 for x2 < 0), leading to infinite
flow density along that curve.
A near optimal solution where the control signal has been smoothened

around the switching curve is shown in Fig. 10. A set of particles starting
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Figure 10. Evolution of a set of states along “near optimal” trajectories.

around (−0.4, 0.75) is traced with a constant time interval. It is seen in
the figure how the particles are squeezed when they reach the switching
curve.
The intractable behavior of the density function and the control sig­

nal comes from the non­smooth control signal penalty. The cost function
l(x1, x2,u) = 1 together with the control signal constraints huh ≤ 1 is
equivalent to

l(x1, x2,u) =
{

1 huh ≤ 1
∞ huh > 1

7. Summary

A duality theorem for optimal control has been organized and recapit­
ulated for dynamical systems. There is one version for discrete systems
and one for continuous systems. Using a weighted sum of the value func­
tion in the whole state space as a measure of the control performance,
the optimal solution can be computed with two, different, dual linear pro­
gramming approaches. One of the approaches uses the value function as
decision variable of the optimization, the other uses the control law as
decision variable.
Having formulated the discrete system duality theorem and the contin­

uous system version in a similar way, these theorems have been partially
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merged to a hybrid system version.
An example has illustrated potential difficulties in computation of con­

trol problems with discontinuous penalty functions l,s using the dual ap­
proach.

8. Proofs of Theorems

8.1 Proof of Theorem 1 for Discrete Systems

One of the main purposes of the proof to follow is to point out analogies
to the building blocks of Thm. 2, to make way for a corresponding hybrid
system duality theorem. The main parts of the proof, with counterparts for
the pure continuous system case, are three lemmas. Lemma 3 essentially
shows equality between the maximization and the minimization of Eq. (1),
call this value γ . Lemma 1 shows that the performance number of the
optimal value function, call it γ L, is greater or equal to γ . Lemma 2 shows
that γ L ≤ γ and gives the control law that achieves this optimum.

LEMMA 1
Suppose Q̄ = {1, 2, . . . ,Q} and Γ ⊂ Q̄. Given ν : Q̄ → Q̄, S = {(q, r) ∈
Q̄2 h r = ν(q)}, and s : Q̄2 → R, assume that s > 0 on Q̄2 \ Γ2 and s = 0 on
Γ2. If V : Q̄ → R, V (q) = 0 for q ∈ Γ, and

s(q, r) + V (r) − V (q) ≥ 0, (q, r) ∈ S

then V (q0) ≤
∑∞
k=0 s

(

q(k), q(k + 1)
)

for a sequence q(k) given by the
dynamical system q(k+ 1) = ν(q(k)), q(0) = q0 ∈ Q̄.

Proof. If
∑∞
k=0 s

(

q(k), q(k + 1)
)

< ∞ then there exists a k̄ such that
s
(

q(k), q(k+ 1)
)

= 0 for k ≥ k̄. It follows that q(k) ∈ Γ for k ≥ k̄.

V (q0) = V
(

q(0)
)

− V
(

q(k̄)
)

=
k̄−1
∑

k=0
V
(

q(k)
)

− V
(

q(k+ 1)
)

≤
k̄−1
∑

k=0
s
(

q(k), q(k+ 1)
)

=
∞
∑

k=0
s
(

q(k), q(k+ 1)
)
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LEMMA 2
Let Q̄ = {1, 2, . . . ,Q} and Γ ⊂ Q̄. Given ν : Q̄ → Q̄ and a non­negative
s : Q̄ → R, denote the solution of q(k+ 1) = ν

(

q(k)
)

, q(0) = q0 by φ(q0, k)
for k ≥ 0. For k < 0, let φ(q0, k) = {q ∈ Q̄ hφ(q,−k) = q0}. Also define
V (q) =

∑∞
k=0 s

(

φ(q, k)
)

. Suppose that λ : Q̄ → R and ψ : Q̄ → R are
non­negative and

λ(q) −
∑

r∈φ(q,−1)
λ(r) ≥ψ (q) ∀q ∈ Q̄ \ Γ

Then
∑

q∈Q̄\Γ

ψ (q)V (q) ≤
∑

q∈Q̄\Γ

s(q)λ(q)

The proof of Lemma 2 uses the following proposition (discrete version of
Liouville’s theorem):

PROPOSITION 1
Let Q̄ = {1, 2, . . . ,Q} and denote the set of integers by Z. Assume that
φ : Q̄ � Z → 2Q̄ has the property φ(q0, k) = {q ∈ Q̄ hφ(q,−k) = q0} for
k < 0. Then for D ⊂ Q̄

∑

r∈D
λ(r) −

∑

q∈φ(D,−k)
λ(q) =

k−1
∑

i=0

∑

q∈φ(D,−i)

(

λ(q) −
∑

r∈φ(q,−1)
λ(r)

)

The proof of the proposition is in realizing that the above equation is a
telescopic sum.

Remark 6. To interpret the proposition in terms of the transportation
problem in Sec. 2, let D be a set of cities. Then, all transports leaving
the cities in the set φ(D,−k) will after passing k − 1 cities end up in
the cities in D. The proposition states that the difference between the
amount of milk transported out from D and the amount transported out
from φ(D,−k) is the milk production next to the cities on the way from
φ(D,−k) to D.
Proof of Lemma 2. For q, r ∈ Q̄, define

χq(r) =
{

1, r = q
0, r �= q
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Then
∑

q∈Q̄
s(q)λ(q) ≥

∑

q∈Q̄
s(q)

{

λ(q) −
∑

r∈φ(q,−N)
λ(r)

}

=
∑

q∈Q̄
s(q)

N−1
∑

i=0

∑

p∈φ(q,−i)

{

λ(p) −
∑

r∈φ(p,−1)
λ(r)

}

≥
∑

q∈Q̄
s(q)

N−1
∑

i=0

∑

p∈φ(q,−i)
ψ (p)

=
∑

q∈Q̄
s(q)

N−1
∑

i=0

∑

p∈Q̄
χq
(

φ(p, i)
)

ψ (p) =
∑

p∈Q̄
ψ (p)

N−1
∑

i=0

∑

q∈Q̄
χq
(

φ(p, i)
)

s(q)

=
∑

p∈Q̄
ψ (p)

N−1
∑

i=0
s
(

φ(p, i)
)

The proof is complete as N →∞. 2

LEMMA 3
Let Γ be a non­empty subset of Q̄ = {1, 2, . . . ,Q}, and S ⊂ Q̄2. Assume
that s : S→ R, s ≥ 0, ψ : Q̄ → R, ψ > 0. Then

max
V

∑

q∈Q̄
ψ (q)V (q) = min

λ

∑

(q,r)∈S
s(q, r)λ(q, r) (17)

where maximum is taken over all non­negative V : Q̄ → R satisfying
V (r) − V (q) + s(q, r) ≥ 0 (q, r) ∈ S (18)

V (q) = 0 q ∈ Γ (19)

and minimum is taken over all λ : Q̄2 → R with λ ≥ 0 and
∑

rh(q,r)∈S
λ(q, r) −

∑

kh(k,q)∈S
λ(k, q) > ψ (q) q ∈ Q̄ \ Γ (20)

Proof. Define the following two subsets of K = RQ+1

K1 =
{

(

−
∑

(q,r)∈S
s(q, r)λ(q, r) + γ ,

∑

rh(1,r)∈S
λ(1, r) −

∑

kh(k,1)∈S
λ(k, 1) −ψ (1),

∑

rh(2,r)∈S
λ(2, r) −

∑

kh(k,2)∈S
λ(k, 2) −ψ (2), . . . ,

∑

rh(Q,r)∈S
λ(Q, r) −

∑

kh(k,Q)∈S
λ(k,Q) −ψ (Q)

)∣

∣

∣ λ : Q̄2 → R, λ ≥ 0
}

K2 =
{

(z, h1, . . . , hQ) ∈ K h z ≥ 0, hq ≥ 0 for q ∈ Q̄ \ Γ
}
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We will prove the following five statements to be equivalent:

I The number γ is not larger than the right hand side of (17).
II K1 contains no interior point of K2.

III There exists kL ∈ K L, kL �= 0 such that

sup
k1∈K1

〈kL, k1〉 ≤ inf
k2∈K2

〈kL, k2〉, (21)

where K L is the dual space of K , i.e. K L = RQ+1

IV There exists a nonzero (Q + 1)­tuple (a,φ1, . . . ,φQ) ∈ RQ+1 with all
elements non­negative, φ q = 0 for q ∈ Γ,

∑

q∈Q̄ φ qψ (q) ≥ aγ , and

φ r − φ q + as(q, r) ≥ 0 (q, r) ∈ S (22)

V The number γ is not larger than the left hand side of (17).

The equivalence I<II is trivial once it is noted that (z, h1, h2, . . . , hQ) ∈ K2
is an interior point if and only if z > 0 and h1, . . . , hQ > 0. The second
equivalence II<III holds because of the following separation property of
convex sets [Luenberger, 1969; Rudin, 1991]:
Let K be a normed vector space and denote its dual K L. Let K1 and

K2 be convex sets in K such that K2 has interior points and K1 contains

no interior point of K2. Then there is a closed hyperplane separating K1
and K2; i.e., there is a k

L ∈ K L, kL �= 0 such that

sup
k1∈K1

〈kL, k1〉 ≤ inf
k2∈K2

〈kL, k2〉, (23)

Note that the current application of this property is a simple special
case where K is of finite dimension. The general formulation above, how­
ever, will also be applied to the more complex counterparts of continuous
and hybrid systems.
To show that III<IV, let kL = (a,φ1, . . . ,φQ) ∈ K L = RQ+1. Expand

the right hand side of (21) to

inf
k2∈K2

〈kL, k2〉 = min
(z,h1,...,hQ)∈K2

{

az+
Q
∑

q=1
φ qhq

}

(24)

The right hand side is equal to zero if and only if a and φ1, . . . ,φQ are
non­negative and φ q = 0 for q ∈ Γ. Otherwise it is −∞.
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The left hand side of (21) can be expanded to

sup
k1∈K1

〈kL, k1〉 =max
λ

{

a
(

−
∑

(q,r)∈S
s(q, r)λ(q, r) + γ

)

+
∑

q∈Q̄
φ q
(

∑

rh(q,r)∈S
λ(q, r) −

∑

kh(k,q)∈S
λ(k, q) −ψ (q)

)

}

=max
λ

∑

(q,r)∈S
λ(q, r)

{

φ q − φ r − as(q, r)
}

+ aγ −
∑

q∈Q̄
φ qψ (q)

The maximum is taken over λ : Q̄2 → R, λ ≥ 0 and the value is equal
to aγ −

∑

q∈Q̄ φ qψ (q) if and only if (22) holds, otherwise it is +∞. The
statement III is thus equivalent to IV.
The implication from V to IV is obtained with a = 1 and φ q = V (q)

where V is the function that maximizes Eq. (17). For the opposite im­
plication, it can be seen that the existence of a non­zero (Q + 1)­tuple
(a,φ1, . . . ,φQ) as in IV, also implies the existence of a (Q + 1)­tuple with
a strictly positive. For such a (Q + 1)­tuple, define V (q) = φ q/a. This
V : Q̄ → R will satisfy (18)–(19) and

∑

q∈Q̄ψ (q)V (q) ≥ γ .

Proof of Theorem 1 Lemma 3 proves equality between the maximum and
the minimum in (1). The next few lines will show the existence of a mono
flow solution, i.e. a solution λ such that for each q ∈ Q̄ \ Γ there is one
and only one r ∈ Q̄ with λ(q, r) �= 0, whenever the optimization problem
of Lemma 3 has a finite solution.
Note that any λ : Q̄2 → R that satisfies λ ≥ 0 and (20) must have

the property that for each q ∈ Q̄ \ Γ there exists at least one r ∈ Q̄ with
λ(q, r) > 0. To show the existence of a solution with no more than one
r ∈ Q̄ with λ(q, r) > 0 for each q ∈ Q̄ \ Γ, recall that if a linear program
with n decision variables has a finite solution, then there exists a solution
with n active constraints. The minimization part of Lemma 3 contains Q2

decision variables, i.e. λ(q, r) with (q, r) ∈ Q̄2. Each of these variables
is constrained to be non­negative and there are #(Q̄ \ Γ) < Q2 additional
constraints.3 Thus, in a solution with Q2 active constraints, λ(q, r) is non­
zero for no more than #(Q̄ \ Γ) combinations of q and r. This solution is
a mono flow solution.
Denote the optimal value of (1) γ L and the corresponding decision

variables V ′ and λ ′. The control µ(q) = argmaxm∈Ωµ λ ′
(

q,ν(q,m)
)

gives
an autonomous system with an S for which λ ′ is feasible in (4) and,
according to Lemma 2,

∑

q∈Q̄ψ (q)Vµ(q) ≤
∑

(q,r)∈S s(q, r)λ ′(q, r). Thus,
∑

q∈Q̄ψ (q)V L(q) ≤ γ L.
3The symbol # denotes an operator that gives the cardinality of a set.

68



8. Proofs of Theorems

By Lemma 1, V ′ ≤ V L and thus γ L ≤
∑

q∈Q̄ψ (q)V L(q) and the proof is
complete. 2

8.2 Proof of Theorem 3 for Hybrid Systems

The proof consists of two different lemmata that have their counter­
parts for purely discrete systems. Lemma 4 corresponds to Lemma 1,
and Lemma 5 corresponds to Lemma 3.

LEMMA 4
Suppose that X ⊂ Rn is open and bounded, Q̄ = {1, 2 . . . ,Q} and that
Γ ⊂ X � Q̄, where Γq = {xh(x, q) ∈ Γ} is open for all q ∈ Q̄. Given
f : X � Q̄ → Rn, f (x, q) continuous in x, l : X � Q̄ → R, l(x, q) continuous
in x, and s : X � Q̄� Q̄ → R, assume that l(x, q) ≥ 0 with strict inequality
for x �∈ Γq, and that s(x, q, r) ≥ 0.

If V is a map from X � Q̄ toR, with V (x, q) continuously differentiable
in x and

∇xV (x, q) ⋅ f (x, q) + l(x, q) ≥ 0 (x, q) ∈ (X � Q̄) \ Γ
V (x, r) − V (x, q) + s(x, q, r) ≥ 0 x ∈ X , q, r ∈ Q̄

V (x, q) = 0 (x, q) ∈ Γ

then V (x0, q0) ≤
∫∞
0 l
(

x(t), q(t)
)

dt +
∑M−1
k=1 s

(

x(tk), q(tk−1), q(tk)
)

where
(

x(t), q(t)
)

with switching times t0, t1, . . ., tM−1 is a trajectory of (9) with
(

x(0), q(0)
)

= (x0, q0).

Proof. To simplify notation, let xk and qk denote x(tk) and q(tk) respec­
tively. If

∫∞
0 l
(

x(t), q(t)
)

dt+
∑M−1
k=1 s

(

xk, qk−1, qk
)

< ∞, then there exists a
sequence τ1 < τ2 < τ3 < . . . with τ1 > tM−1 such that limi→∞ τ i = ∞ and
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limi→∞ l
(

x(τ i), q(τ i)
)

= 0. It follows that x(τ i) → Γq(τ i) as i→∞ and

V (x0, q0) − V
(

x(τ i), q(τ i)
)

=
M−1
∑

k=1

(

V (xk−1, qk−1) − V (xk, qk−1) + V (xk, qk−1) − V (xk, qk)
)

+ V (xM−1, qM−1) − V
(

x(τ i), q(τ i)
)

=
M−1
∑

k=1

{

−
∫ tk

tk−1

d

dt
V
(

x(t), qk−1
)

dt+ V (xk, qk−1) − V (xk, qk)
}

−
∫ τ i

tM−1

d

dt
V
(

x(t), qM−1
)

dt

≤
M−1
∑

k=1

{

∫ tk

tk−1

l
(

x(t), qk−1
)

dt+ s(xk, qk−1, qk)
}

+
∫ τ i

tM−1

l
(

x(t), qM−1
)

dt

In the limit as i→∞ we get the desired inequality.

LEMMA 5
Suppose that X is open and bounded with C 1 boundary and that Q̄ =
{1, 2, . . . ,Q}, Γ ⊂ X � Q̄, where Γq = {xh(x, q) ∈ Γ} is open and bounded
withC 1 boundary for all q ∈ Q̄. Let f : Rn � Q̄ → Rn, f (x, q) continuously
differentiable in x with f (x, q) pointing inwards at the boundary of X
and at the boundary of Γq, ν : Rn � Q̄ → Q̄, l : Rn � Q̄ → R, l(x, q) ≥ 0
continuous in x with strict inequality for (x, q) outside Γ, s : Rn� Q̄� Q̄ →
R, smeasurable, s > 0 with s(x, q, r) = ∞ for (x, q, r) such that ν(x, q) �= r,
and ψ : Rn � Q̄ → R such that ψ (x, q) is continuous in x and strictly
positive. Then

sup
V

∑

q∈Q̄

∫

X

ψ (x, q)V (x, q)dx

≥ inf
ρ, λ

∑

q∈Q̄

∫

X

(

ρ(x, q)l(x, q) +
∑

r∈Q̄
λ(x, q, r)s(x, q, r)

)

dx (25)

where supremum is taken over all non­negative functions V : Rn�Q̄ → R,
with V (x, q) continuously differentiable in x such that

∇xV (x, q) ⋅ f (x, q) + l(x, q) > 0 (x, q) ∈ (X � Q̄) \ Γ (26)
V (x, r) − V (x, q) + s(x, q, r) > 0 x ∈ X , q, r ∈ Q̄ (27)

V (x, q) = 0 (x, q) ∈ Γ (28)
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and infimum is taken over all ρ : Rn � Q̄ → R with ρ(x, q) continuously
differentiable in x, ρ(x, q) > 0 for x ∈ X , ρ(x, q) = 0 for x outside X and
λ : Rn � Q̄ � Q̄ → R with λ(x, q, r) ≥ 0 continuous in x, and λ(x, q, r) = 0
for x outside X such that

∇x ⋅
(

f (x, q)ρ(x, q)
)

+
∑

r∈Q̄

(

λ(x, q, r) − λ(x, r, q)
)

>ψ (x, q)

(x, q) ∈ (X � Q̄) \ Γ (29)

Proof. To simplify notation, let fq(x), lq(x), sq,r(x),ψ q(x), ρq(x) and λ q,r(x)
denote f (x, q), l(x, q), s(x, q, r),ψ (x, q), ρ(x, q), and λ(x, q, r) respectively.
Define the following two subsets of K = R�C (X )Q.

K1 =
{

−
∑

q∈Q̄

∫

X

(ρqlq +
∑

r∈Q̄
λ q,rsq,r)dx + γ ,

∇ ⋅ ( f1ρ1) +
∑

r∈Q̄
(λ1,r − λ r,1) −ψ 1,

∇ ⋅ ( f2ρ2) +
∑

r∈Q̄
(λ2,r − λ r,2) −ψ 2,

...

∇ ⋅ ( fQρQ) +
∑

r∈Q̄
(λQ,r − λ r,Q) −ψQ

h ρq ∈ C 10 (X ), ρq > 0 in X , λ r,q ∈ C0(X ) ≥ 0
}

K2 =
{

(z, h1, h2, . . . , hQ) h z ≥ 0, hq(x) > 0, x ∈ X \ Γq, q ∈ Q̄
}

We will prove the implications I<II<III <IV;V.

I The number γ is not larger than the right hand side of (25).

II K1 contains no interior point of K2.

III There exists kL ∈ K L, kL �= 0 such that

sup
k1∈K1

〈kL, k1〉 ≤ inf
k2∈K2

〈kL, k2〉, (30)

where K L is the dual space of K , i.e. K L = R�
(

C (X )L
)Q
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IV There exists a nonzero (Q + 1)­tuple (a,φ1,φ2, . . . ,φQ) where a ≥ 0 is
a number and φ q ≥ 0, q ∈ Q̄ are measures of bounded variation on
X , vanishing inside Γq, such that
∑

q∈Q̄〈φ q,ψ q〉 :=
∑

q∈Q̄
∫

X
ψ q(x)dφ q(x) ≥ aγ and

alq +∇φ q ⋅ fq ≥ 0 in X for q ∈ Q̄ (31)
asq,r − φ q + φ r ≥ 0 in X for q, r ∈ Q̄ (32)

The derivative ∇φ q is interpreted in the sense of distributions.

V The number γ is not larger than the left hand side of (25).

The equivalence I<II is trivial once it is noted that (z, h1, . . . , hQ) ∈ K2
is an interior point if and only if z > 0 and hq(x) > 0, q ∈ Q̄ for x ∈ X .
The second equivalence II<III holds because of the separation property
of convex sets quoted on page 67.
To show that III<IV, let kL = (a,φ1, . . . ,φQ) ∈ K L = R �

(

C (X )L
)Q
.

The space C (X )L is the set of measures of bounded variation and support
in X [Dunford and Schwartz, 1958] . Expand the right hand side of (30)
to

inf
k2∈K2

〈kL, k2〉 = inf
(z,h1 ,...,hQ)∈K2

{

za+
∑

q∈Q̄
〈φ q, hq〉

}

(33)

The right hand side is equal to zero if and only if a and φ1, . . . ,φQ are
non­negative and φ q = 0 in Γq, q ∈ Q̄. Otherwise it is −∞.
The left hand side of (30) can be expanded to

sup
k1∈K1

〈kL, k1〉 = sup
ρq, λ r,q

{

a
(

−
∑

q∈Q̄

∫

X

(

ρqlq +
∑

r∈Q̄
λ q,rsq,r

)

dx + γ
)

+
∑

q∈Q̄

〈

φ q,∇ ⋅ ( fqρq) +
∑

r∈Q̄
(λ q,r − λ r,q) −ψ q

〉

}

=
∑

q∈Q̄
sup

ρq

〈

−alq −∇φ q ⋅ fq, ρq
〉

+
∑

q∈Q̄

∑

r∈Q̄
sup
λq,r

〈

−asq,r + φ q − φ r, λ q,r
〉

+ aγ −
∑

q∈Q̄

〈

φ q,ψ q
〉

The supremum is taken over ρq ∈ C 1(Rn) with support in X , ρq > 0
in X and λ r,q ∈ C (Rn) ≥ 0 with support in X . The value is equal to
aγ −∑q∈Q̄〈φ q,ψ q〉 if and only if (31) and (32) holds, otherwise it is +∞.
The statement III is thus equivalent to IV.
It remains to prove the implication from IV to V. Hence, assume ex­

istence of a non­zero (Q + 1)­tuple (a,φ1, . . . ,φQ) as in IV. Note that φ q
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8. Proofs of Theorems

q ∈ Q̄ can be identified with distributions of order zero on Rn, which are
identically zero outside X . If a = 0, define ā = ε̄ and γ̄ = γ . If a > 0,
define ā = a(1+ ε̄ ) and γ̄ = γ /(1+2ε̄ ). In both cases, for sufficiently small
ε̄ > 0, it holds that ∑q∈Q̄〈φ q,ψ q〉 > āγ̄ and

ālq +∇φ q ⋅ fq > 0 in X \ Γq for q ∈ Q̄ (34)
āsq,r − φ q + φ r > 0 in X for q, r ∈ Q̄ (35)

Here, the assumption that all fq points strictly inwards on the bound­
ary of X is critical to guarantee that ∇qφ ⋅ fq ≥ 0 on the boundary of
X .
Note that φ q cannot be singular on the boundary of Γq, due to (34) in

combination with the assumption that fq points strictly inwards on the
boundary of Γq. Hence, one can write φ q =

∑∞
i=1 φ q,i where each φ q,i is

zero within a distance ε i from Γq. Each of the terms can be regularized
by convolution with a smooth non­negative function having support in a
ball of sufficiently small radius and integral equal to one. In this way, φ q
can be approximated by a smooth function function φ q,0, vanishing inside
Γq, satisfying

∑

q∈Q̄〈φ q,0,ψ q〉 > āγ̄ and

0 < ālq +∇φ q,0 ⋅ fq in Rn \ Γq, q ∈ Q̄

Finally, V (x, q) = φ q,0/ā ∈ C 1(Rn) gives (6)­(7) and

∑

q∈Q̄

∫

X

ψ (x, q)V (x, q)dx > γ̄

Condition V follows and the proof is complete.
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Paper D

Hybrid Control Laws From Convex

Dynamic Programming

Sven Hedlund and Anders Rantzer

Abstract

In a previous paper, we showed how classical ideas for dynamic
programming in discrete networks can be adapted to hybrid systems.
The approach is based on discretization of the continuous Bellman
inequality which gives a lower bound on the optimal cost. The lower
bound is maximized by linear programming to get an approximation
of the optimal solution.
In this paper, we apply ideas from infinite­dimensional convex

analysis to get an inequality which is dual to the well known Bellman
inequality. The result is a linear programming problem that gives an
estimate of the approximation error in the previous numerical ap­
proaches.

Keywords optimal control, duality, convex dynamic programming,
hybrid systems.

c& 2000 IEEE. Reprinted, with permission, from Hedlund, S. and
A. Rantzer (2000): “Hybrid Control Laws From Convex Dynamic
Programming”, IEEE Conference on Decision and Control.
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1. Introduction

One of the most important aspects of the current research activity in the
field of hybrid systems is the exchange of ideas between the research
fields of discrete and continuous dynamics. This paper can be viewed as
an attempt to approach optimal continuous and hybrid systems using a
classical linear programming perspective for discrete transportation and
flow problems.
The transportation problem was formulated by Hitchcock [Hitchcock,

1941] and a classic reference for network flow theory is [Ford and Fulker­
son, 1962]. A continuous analog is the “Monge­Kantorivich mass transfer
problem” dating back to Monge in 1781 and nicely surveyed in [Evans,
1997].
A primal/dual formulation of a continuous optimal control problem for

a continuous system is presented in [Vinter, 1993] based on the Bellman
inequality. A central concept is L.C. Youngs notion of generalized flow
[Young, 1969].
Discretization of the Bellman inequality for numerical computations

can be done in several ways [Branicky and Mitter, 1995; Rantzer and
Johansson, 2000; Rantzer, 1999; Hedlund and Rantzer, 1999].
This paper is devoted to an inequality which is dual to the “Hybrid

Bellman inequality” which served as basis for the computations in [Hed­
lund and Rantzer, 1999]. The dual gives valuable information about the
conservatism introduced by the discretization.
In Section 2, a discrete transportation problem is discussed as a prepa­

ration for the hybrid problem of Section 3.

2. Discrete Problem Formulation

Define a discrete dynamic system as

q(k+ 1) = ν(q(k), µ(k)) (1)

where q ∈ Q = {1, 2, . . . , N} is the discrete state, µ ∈ Ωµ is the input
signal of the system, and ν : Q �Ωµ → Q is a function telling what state
transitions are possible.
Let Γ ⊂ Q be the set of final states and consider the optimal control

problem of bringing the system from an initial state, q0 ∈ Q, to a final
state, qf ∈ Γ, while minimizing

Vµ(q0) =
kf
∑

k=1
s(q(k− 1), q(k)) (2)
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2

3

1 4s(3,2)s(2,3)

s(1,2) s(2,4)

s(1,3) s(3,4)

Figure 1. A simple discrete dynamic system.

Here s(q, r) > 0, (q, r) ∈ S is the cost for switching from state q to r. The
set S contains all pairs (q, r) such that a transition from mode q to mode r
is possible. The time when Γ is reached is represented by the variable kf .
The function V is commonly referred to as the value function or “cost­

to­go” function of the system.

EXAMPLE 1—THE TRANSPORTATION PROBLEM
A simple discrete dynamic system is shown in Fig. 1. Here the final state
is Γ = {4} and the goal is to find the cheapest path from the initial state
q0 = 1.

Define the optimal value function V L(q0) = minµ∈Ωµ Vµ(⋅)(q0). A lower
bound on V L is then given by any function V : Q → R+ that satisfies

0 ≤ s(q, r) + V (r) − V (q) (q, r) ∈ S (3)
0 = V (q) q ∈ Γ (4)

Moreover, a bound on V L can be found for all possible initial states
simultaneously by solving one LP, maximizing a sum of V for those states,
i.e.

max
V(q)

∑

q∈Q\Γ

ψ (q)V (q), (5)

where a suitable choice of ψ would be ψ (q) � 1.

EXAMPLE 2—THE LP APPROACH TO THE TRANSPORTATION PROBLEM
The transportation problem of Fig. 1 can be viewed as an LP problem
according to (3)–(5), i.e.
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maximize V (1) + V (2) + V (3)
subject to V (1) − V (2) ≤ s(1, 2)

V (1) − V (3) ≤ s(1, 3)
...

V (3) − V (4) ≤ s(3, 4)
V (4) = 0

A common way to solve an LP of this structure is Dijkstra’s algorithm [Cor­
men et al., 1989].

2.1 Upper Bound on the Value Function via the Dual Problem

Knowing that every solution to the above problem gives a lower bound
on the value function, it would be interesting to compute an upper bound
as well. If the gap between the lower and upper bound is small, then the
bounds are close to the optimal function. Fortunately, there is a dual LP
problem that gives an upper bound on the value function.

EXAMPLE 3—DUAL LP OF THE TRANSPORTATION PROBLEM
The dual LP of the transportation problem is to

minimize s(1, 2)λ12 + s(1, 3)λ13 + s(2, 3)λ23
+s(3, 2)λ32 + s(2, 4)λ24 + s(3, 4)λ34

subject to −λ12 + λ23 − λ32 + λ24 ≥ 1
−λ13 − λ23 + λ32 + λ34 ≥ 1

λ12 + λ13 ≥ 1
where λ qr ≥ 0 are the decision variables.

In general, every constraint in a primal problem appears as a variable
in the dual problem. For the transportation problem, every possible tran­
sition gives rise to a constraint via the switching cost, s, and the corre­
sponding dual variable when switching from node q to r is denoted λ qr.
(Conversely, every variable in the primal problem gives rise to a con­
straint in the dual problem, so V (1), V (2), and V (3) correspond to the λ
inequalities above.)
An interpretation of the dual problem can be given in terms of mass

flow instead of the single mass unit transportation of the primal problem.
The variable λ qr is the flow from node q to r. There is a unit mass pro­
duction in the starting states, and mass consumption in the end states.
The dual problem is then to minimize the cost of the overall flow for this
system. Conservation of mass implies that the production in a single node
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3. Hybrid Problem Formulation

must not exceed the net flow out from the node. This corresponds to the
inequality constraints for λ .
The general formulation of the dual problem to the maximization of

(5) subject to (3) and (4) is thus

min
λqr

∑

(q,r)∈S
λ qrs(q, r) (6)

subject to
∑

rh(q,r)∈S
λ qr −

∑

rh(r,q)∈S
λ rq ≥ψ (q), ∀q ∈ Q\Γ (7)

The trajectories that solve the original optimal control problem of min­
imizing (2) subject to the dynamics in (1) are easily found in the solutions
to the primal and dual problem above. In the solution to the primal prob­
lem, the constraint (3) is active (equality holds) only for transitions (q, r)
along the optimal trajectory. The same information is available in the
variables of the dual problem: if there is a unique solution to the prob­
lem, then λ qr is greater than zero for transitions (q, r) along the optimal
trajectory and zero elsewhere.

3. Hybrid Problem Formulation

The idea of how to obtain a lower bound on the value function of the
discrete dynamic system was the primal problem of maximizing the sum
of the value function in a number of points (whereψ (q) = 1 above) subject
to the constraint that the value function in two neighboring states must
not differ more than the cost of switching between those states.
The dual problem to find an upper bound was interpreted as minimiz­

ing the entire mass flow in the graph subject to the constraint that the
mass production in each state of the system (ψ (q) above) must not exceed
the net flow out from that state.
A similar primal/dual problem can also be set up for a continuous

system based on this reasoning. The discrete and continuous problems
can then be combined to the hybrid version presented below (including
the continuous problem as a special case).
Define a hybrid system as

{

ẋ(t)= fq(t)(x(t),u(t))
q(t)= ν(x(t), q(t−), µ(t))

(8)

where x(t) ∈ X ⊂ Rn is the state vector, u(t) ∈ Ωu = Co{u1,u2, . . . ,uK}
⊂ Rm is a continuous input signal of the system. There is also a discrete
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input, µ(t) ∈ Ωµ , which affects the evolution of the discrete variable q(t) ∈
Q = {1, 2, . . . , N}. The notation q(t−) is used for the left­hand limit of q at
t. Sq,r is a set (parameterized by q and r) such that switching from mode q
to r is possible when x ∈ Sq,r ⊆ X . The continuous state, x, is constrained
to a hyperrectangle X = {xhci ≤ xi ≤ ci, ci ∈ R, ci ∈ R, i = 1, . . . , n}.
The optimal control problem is to minimize the cost function

∫ t f

t0

lq(x,u)dt +
kf
∑

k=1
s(x(tk), q(t−k ), q(t+k )) (9)

subject to (8) while bringing the system from an initial state (x0, q0) at
time t0, to a final state (x f , qf ) such that x f ∈ Γqf at time t f , where the
end time, t f , is free. Here, kf is an arbitrary finite number of switches
occurring at times t0 < t1 < t2 < . . . < tkf < t f and s(x, q, r) > 0 is an
associated cost for switching from discrete state q to r, the continuous
part being x just before the switch. Note that s(⋅) > 0 excludes the possi­
bility of infinitely many switches in an optimal solution. The final set is
represented such that Γq ⊂ X contains those x that are final in mode q.
(If finishing in mode q is not allowed, then Γq = ∅.)
Sufficient conditions for a lower bound on the value function were

given in [Hedlund and Rantzer, 1999]:
Let Vq : X → R, q ∈ Q be a set of continuous, piecewise C 1 functions

that satisfy

0 ≤∇Vq(x) ⋅ fq(x,u) + lq(x,u)
∀x ∈ X , u ∈ Ωu, q ∈ Q (10)

0 ≤ Vr(x) − Vq(x) + s(x, q, r)
∀x ∈ Sq,r q, r ∈ Q : q �= r (11)

0 = Vq(x) ∀(x, q)hx ∈ Γq (12)

where fq(x,u) gives the dynamics of a hybrid system according to (8),
lq(x,u) and s(x, q, r) define a cost function for the system according to
(9). Then, for every (x0, q0), Vq0(x0) gives a lower bound on the cost for
optimally bringing the system from (x0, q0) to (x f , qf ) such that x f ∈ Γqf .

3.1 Upper Bound on the Hybrid Value Function

One way of discretizing (10)–(12) to numerically obtain a lower bound of
Vq was shown in [Hedlund and Rantzer, 1999]. The original inequalities
were stated to give a lower bound on the optimal value function and the
discretization was chosen to preserve this property, i.e. the solution to
the discretized problem is in turn a lower bound on a function Vq that
satisfies (10)–(12).
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u

lq(x,u′)

mq(x)u

Figure 2. The solid line shows one possible approximation of u2 (the dashed line)
when K = 5.

It is desirable to estimate the approximation error for the discretized
problem and to grasp the importance of various discretization parameters,
e.g. the grid size. The dual problem formulation, that renders an upper
bound on Vq, can give such insight.
To state the dual hybrid formulation, the following assumptions are

made:

fq(x,u) = fq(x) + nq(x)u (13)
lq(x,u) = lq(x) +mq(x)u (14)

Note that these assumptions are not as restrictive as they might look
at first glance. They allow any functions fq(x,u) and lq(x,u) to be approx­
imated arbitrarily well.

EXAMPLE 4—APPROXIMATION OF A QUADRATIC COST FUNCTION
Consider the cost function lq(x,u′) = u′2 where u′ ∈ [−1, 1]. This function
can be approximated by mq(x)u, u ∈ Co{e1, e2, . . . , eK}, where ei ∈ RK
is a unit vector in the direction of the i:th coordinate axis, mq(x) =
[u21,u22, . . . ,u2K ] is a row vector where ui = (2i− K − 1)/(K − 1).
The accuracy of the approximation increases with K . An example of

K = 5 is shown in Fig. 2.

THEOREM 1—UPPER BOUND ON THE INTEGRAL OF THE VALUE FUNCTION
Assume that ρkq : X → R+, q ∈ Q, k = 1, 2, . . . , K is piecewise C 1 and
λ q,r : X → R+, (q, r) ∈ Q � Q, q �= r such that

0 = ρkq(x) x ∈ VX , q ∈ Q, k = 1, 2, . . . , K
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and

ψ q(x) ≤
K
∑

k=1
∇ ⋅

(

ρkq(x)( fq(x) + nq(x)uk)
)

+
∑

rhx∈Sq,r

λ q,r(x) −
∑

rhx∈Sr,q

λ r,q(x), (15)

for all (x, q) ∈ (X \Γq) � Q.
Then the following inequality holds for every Vq : X → R, q ∈ Q

satisfying (10)–(12) with fq and lq given by (13) and (14).

∑

q

∫

X \Γq
ψ q(x)Vq(x)dx

≤
∑

q

∫

X \Γq

(

K
∑

k=1
ρkq(x)(lq(x) +mq(x)uk)+

+
∑

rhx∈Sq,r

λ q,r(x)s(x, q, r)



 dx (16)

Remark 7. This theorem can be interpreted the same way as was done
for the purely discrete case. Noting that the continuous control signal
can be written as u(x, q) =

∑

k ρkq(x)uk/
∑

k ρkq(x), the inequality (15)
corresponds to the mass production in state (x, q), ψ q(x) not exceeding
the outflow (represented by the flow to other continuous states within the
same discrete mode, ρkq, and the flow to other modes, λ q,r).
The inequality (16) shows that a summation of the value function is

bounded from above by the cost of the overall flow in the dual setting.

Proof. Let f kq (x) � fq(x) + nq(x)uk and lkq(x) � lq(x) +mq(x)uk. Then

−
∑

q∈Q

∫

X \Γq





∑

rhx∈Sq,r

λ q,r(x)s(x, q, r)

+
K
∑

k=1
ρkq(x)lkq(x)

)

dx

+
∑

q∈Q

∫

X \Γq
Vq(x)ψ q(x)dx
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≤
∑

q∈Q

∫

X \Γq





∑

rhx∈Sq,r

λ q,r (Vr(x) − Vq(x))



 dx

+
∑

q∈Q

∫

X \Γq
∇Vq(x) ⋅

(

K
∑

k=1
ρkq(x) f kq (x)

)

dx

+
∑

q∈Q

∫

X \Γq
Vq(x)

(

K
∑

k=1
∇ ⋅ (ρkq(x) f kq (x))

+
∑

rhx∈Sq,r

λ q,r(x) −
∑

rhx∈Sr,q

λ r,q(x)



 dx

=
∑

q∈Q

∫

X \Γq
∇ ⋅

(

Vq(x)
K
∑

k=1
ρkq(x) f kq (x)

)

dx

+
∑

q∈Q

∑

r∈Q

∫

(Γr\Γq)∩Sq,r
λ q,r(x)Vr(x)dx

−
∑

q∈Q

∑

r∈Q

∫

(Γq\Γr)∩Sq,r
λ q,r(x)Vr(x)dx

=
∑

q∈Q

∫

V(X \Γq)

(

Vq(x)
K
∑

k=1
ρkq(x) f kq (x)

)

⋅ ndS = 0

where the inequality above makes use of (10), (11), and (15).
Gauss’ theorem is applied to the first equality on the last row (n is a

unit vector that is orthogonal to V(X \Γq), pointing outwards from X \Γq).
Note that

∫

(Γr\Γq)∩Sq,r
λ q,r(x)Vr(x)dx = 0,

since Vr(x) = 0, x ∈ Γr and that
∫

(Γq\Γr)∩Sq,r
λ q,r(x)Vr(x)dx = 0,

since Γq ∩ Sq,r = ∅ (switching is not allowed from a final state).

4. Discretization

Utilizing a computer to solve (15) for a specific control problem, a straight
forward approach is to grid the state space to require the inequality to

83



Paper D. Hybrid Control Laws From Convex Dynamic Programming

X̂ jp

x1

x2

x jp x( j+1)p

x j(p+1)

Figure 3. Illustration of X jp and X̂ jp.

be met at a set of uniformly distributed points in X . This approximation
will, however, not guarantee an upper bound on the integral of the value
function, unless the nature of fq(x) between the grid points is taken into
consideration. This can be dealt with using a method similar to the one
in [Hedlund and Rantzer, 1999].
For readability, discretization of a purely continuous system in a two­

dimensional state space is presented below (Q = {1}, n = 2), i.e. the
discrete mode subscript q and the mode switching terms containing λ
vanish. Knowing how to handle the discretization of the continuous states,
the discretization is easily extended to the hybrid case. Introduce the
notation

x jp = x f + jhe1 + phe2
X jp = {x jp + θ1he1 + θ2he2 : 0 ≤ θ i ≤ 1}
X̂ jp = {x jp + θ1he1 + θ2he2 : −1 ≤ θ i ≤ 1}

ρk( j, p) = ρk(x jp)
∆iρk( j, p) = (ρk(x jp + hei) − ρk(x jp))/h

∆−iρk( j, p) = (ρk(x jp) − ρk(x jp − hei))/h

where e1 and e2 are unit vectors along the coordinate axes, and h is the
grid size. Define the min jp operator such that

min jp f = min
x∈X̂ jp

f (x)

and the max jp operator analogously.
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5. Summary

Also introduce new variables, α ki ( j, p) ∈ R and β k( j, p) ∈ R for k =
1, 2, . . . , K , i = 1, 2, and ( j, p) such that x jp ∈ X \Γ. The inequality (15) can
then be replaced by the following combination of backward and forward
difference approximations that should hold for all k = 1, 2, . . . , K , i =
−2,−1, 1, 2, and ( j, p) such that x jp ∈ X \Γ:

max jpψ ≤
K
∑

k=1

(

2
∑

i=1
α ki ( j, p) + β k( j, p)

)

(17)

β k( j, p) ≤min jp{∇ ⋅ ( f + nuk)}ρk( j, p) (18)
β k( j, p) ≤max jp{∇ ⋅ ( f + nuk)}ρk( j, p) (19)
α ki ( j, p) ≤min jp{ f hih + nhihuk}∆iρk( j, p) (20)
α ki ( j, p) ≤max jp{ f hih + nhihuk}∆iρk( j, p) (21)

For x = x jp + θ1he1 + θ2he2 ∈ X jp, k = 1, 2, . . . , K , define the interpo­
lating functions

ρk(x) =(1− θ1)(1− θ2)ρk( j, p)
+ θ1(1− θ2)ρk( j + 1, p)
+ (1− θ1)θ2ρk( j, p+ 1)
+ θ1θ2ρk( j + 1, p+ 1) (22)

The following result applies.

THEOREM 2—DISCRETIZATION IN R2

If Q = {1} and ρk( j, p) satisfy (17)–(21) for all grid points x jp ∈ X ⊂ R2
such that X jp intersects X , then the interpolating functions ρk(x) defined
by (22) satisfies (15) and an upper bound of

∫

X \Γ V (x)ψ (x)dx is given
by (16).
Applying the above discretization scheme to a couple of examples, the re­
sulting problem often seem to be ill conditioned. The reason for this is
likely the inequalities (17)–(21) being to conservative. Other parameter­
izations of ρkq may give better results.

5. Summary

We have derived an inequality which is dual to the “Hybrid Bellman in­
equality” presented in an earlier paper. The dual optimization problem
has a simple physical interpretation in terms of particle flows. For a given
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control law one should envision particles flowing along the system trajec­
tories everywhere in the state space. In a steady state situation, with
particle production everywhere, the concentration of particles must be
infinite near the equilibrium. The dual linear programming problem is
stated in terms of the particle concentrations. It can be viewed as a gen­
eralization of the classical flow problems in discrete optimization to the
case of hybrid systems.
The dual gives an upper bound on the optimal cost and thus contains

valuable information about the conservatism introduced in the discretiza­
tion of the primal problem. A discretization scheme that preserves the
upper bound property has been proposed. Numerical problems call for
further research on alternate discretization.
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Paper E

A Toolbox for Computational

Analysis of Piecewise Linear Systems

Sven Hedlund and Mikael Johansson

Abstract

This paper reports the development of a Matlab toolbox for com­
putational analysis of piecewise linear systems. The analysis is based
on piecewise quadratic Lyapunov functions, which are computed via
convex optimization. In this way, exponential stability and system
performance can be assessed. The toolbox also supports efficient sim­
ulation of systems with discontinuous dynamics and sliding modes. A
set of intuitive commands for describing piecewise linear systems is
included, making the analysis routines easily accessible also for the
inexperienced user.
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1. Introduction

As performance demands on modern control systems increase, controllers
are required to work over large operating ranges where assumptions on
linear dynamics are no longer valid. Successful design and tuning of such
controllers are strongly dependent on the possibility of analyzing the ef­
fects that arise away from equilibrium conditions. An interesting class
for studying such problems is the class of piecewise linear systems. It
captures the effects of saturations and state constraints, and is also a
good candidate for studying hybrid control systems (cf. [Sontag, 1996]).
Moreover, many popular control schemes, such as gain scheduling and
fuzzy logic controllers, can be well modeled by piecewise linear systems
(cf. [Årzén et al., 1998]).
Recently, it has been shown how stability and performance of piece­

wise linear systems can be assessed using Lyapunov functions that are
piecewise quadratic [Joahnsson and Rantzer, 1996]. Such Lyapunov func­
tions can be computed via convex optimization in terms of linear matrix
inequalities (LMIs). The approach gives a drastic reduction of conser­
vatism compared to approaches based on a single quadratic Lyapunov
function[Corless, 1994], while computations remain comparatively effi­
cient.
This paper gives an overview of a MATLAB toolbox for computational

analysis of piecewise linear systems. The main purpose of the paper is
to show how simple the toolbox, PWL Tool, makes experimenting with
piecewise linear systems. For a detailed description of usage, the reader
is referred to the manual [Hedlund and Johansson, 1999].
PWL Tool is available free of charge upon request from the authors.

2. Model Representation

The toolbox handles piecewise affine systems on the form
{

ẋ = Aix + ai + Biu
y = Cix + ci + Diu

for x ∈ Xi. (1)

Here, {Xi}i∈I ⊆ Rn is a partition of the state space into a number of closed
(possibly unbounded) polyhedral cells (cf. e.g. Fig. 1), and I is the index
set of the cells. In order to allow rigorous analysis of smooth nonlinear
systems, the toolbox allows the system dynamics to lie in the convex hull
of a set of piecewise affine systems, see [Johansson, 1999]. This is e.g.
useful for the analysis of fuzzy Takagi­Sugeno systems.
For convenient notation, we introduce
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2. Model Representation

Table 1. Commands for building a PWL system.

command description

setpwl initialize PWL object

addregion define polyhedral region

addynamics define system dynamics

getpwl extract PWL object

Āi =
[

Ai ai

0 0

]

C̄i = [ Ci ci ] x̄ =
[

x

1

]

A large part of the analysis results will be concerned with (global) prop­
erties of equilibria. We therefore let I0 ⊆ I be the set of indices for the
cells that contain the origin, and I1 ⊆ I be the set of indices for cells that
do not contain the origin. We will assume that ai = 0, ci = 0 for i ∈ I0.
The cells are represented by matrices Ḡi that satisfy

Ḡi x̄ � 0, if and only if x ∈ Xi (2)

Here, the vector inequality z � 0 means that each entry of z is non­
negative. We recognize this as the halfspace representation of a polyhe­
dron. It is also necessary to specify matrices F̄i = [ Fi f i ] with f i = 0 for
i ∈ I0 that satisfy

F̄i x̄ = F̄j x̄ for x ∈ Xi ∩ X j . (3)

These matrices are used to parameterize the Lyapunov function candidate
to be continuous across cell boundaries. The PWL Tool handles a piecewise
linear (PWL) system as an object. The basic commands for building a PWL
system are listed in Table 1. Having partitioned the state space and used
the functions for entering data into MATLAB, the system is aggregated into
a single record that is passed on to functions for analysis and simulations.
The command setpwl initializes the PWL object and should be run

first. When this is done, one will typically define the entire system by
repeatedly calling addynamics and addregion. The command addynamics
is used to specify the matrix variables (as given by (1)) corresponding
to the dynamics in a certain region of a PWL system. An identifier is
returned for future reference to the dynamics. The command addregion

lets the user enter the region specific data (Ḡi­ and F̄i­matrices) and via
the references returned by addynamics specify the dynamics in the region.
By specifying several system matrices in one region, one indicates that
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Figure 1. Partitions of the flower example.

the dynamics lies in the convex hull of these systems. When all matrices
are entered, the PWL object is extracted by getpwl. In addition to linking
several dynamics to one region, it is also possible to link several regions
to the same dynamics. (This could sometimes be useful to save some data
space and typing effort.)

EXAMPLE 1—THE FLOWER SYSTEM
The following system, whose partition is illustrated in Figure 1, has been
used in [Joahnsson and Rantzer, 1996] in order to demonstrate the flexi­
bility of piecewise quadratic Lyapunov functions.

ẋ =



















A1x =
[−0.1 1

−5 −0.1

]

x x ∈ X1 ∪ X3

A2x =
[−0.1 5

−1 −0.1

]

x x ∈ X2 ∪ X4

The following lines of code defines the “flower system”.

% Initialize the PWL object

setpwl([]);

% Enter A-matrices

A1 = [-0.1 1; -5 -0.1];

A2 = [-0.1 5; -1 -0.1];

% Set up dynamics

d1 = addynamics(A1);

d2 = addynamics(A2);

% Enter G- and F-matrices

G1 = [ 1 1 0; -1 1 0];
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3. Describing Polyhedral Partitions

G2 = [ 1 -1 0; 1 1 0];

G3 = [-1 -1 0; 1 -1 0];

G4 = [-1 1 0; -1 -1 0];

F1 = ...

F2 = ...

...

% Define cells

addregion(G1, F1, d1);

addregion(G2, F2, d2);

addregion(G3, F3, d1);

addregion(G4, F4, d2);

% Extract PWL object

pwlsys = getpwl;

We will return to this example later to assess global exponential stability
of the origin.

3. Describing Polyhedral Partitions

Defining all the data that the computational engine of PWL Tool needs
can be far from easy for the inexperienced user. It is therefore desirable
to relieve the user from this task. In this section, we describe a set of
user­friendly commands for specifying piecewise linear systems that au­
tomatically computes the constraint matrices, Gi and Fi, used by PWL
Tool.
The toolbox currently supports partitions induced by global hyper­

planes and simplex partitions (see [Johansson, 1999] for precise defini­
tions, and more elaborate explanations), but the layered structure of the
toolbox makes it easy to add support for other types of partitions.

3.1 Describing Hyperplane Partitions

Specifying a hyperplane partition essentially consists of defining the gen­
erating hyperplanes, introducing the cells by stating which generating
hyperplanes that bound the cell, and giving the affine dynamics valid
within each region. Table 2 specifies a number of commands that support
these steps.
The command setpart initializes a new partition, and should be issued

prior to defining the partition components. In order to indicate the type of
partition, setpart takes the argument ’h’ for hyperplane partitions and
’s’ for simplex partitions.
The commands addhp and addati define generating hyperplanes and

affine dynamics respectively. Both commands return an identifier for later
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Table 2. Commands for defining hyperplane partitions.

Command Description

setpart Initialize partition data structure

addhp Add hyperplane

addati Specify affine dynamics

addhcell Define hyperplane cell

getpart Retrieve partition data structure

part2pwl Convert to generic data structure

reference. Cells are subsequently defined using the command addhcell,
which takes two arguments. The first argument specifies the bounding
hyperplanes (using their identifiers returned by addhp), and the second
argument specifies the dynamics valid in the region (using the identifiers
returned by addati). The sign of the hyperplane reference indicates on
“what side” of the hyperplane the cell is located.
The command getpart returns a data structure that describes the

partition. Finally, the command part2pwl computes the data required by
the computational engine of PWL Tool. The computations performed by
part2pwl are explained in [Joh99]
We illustrate the commands on a simple relay feedback system.

EXAMPLE 2—A RELAY FEEDBACK SYSTEM
Consider a linear system under relay feedback











ẋ = Ax + Bu
y = Cx
u = −sign(y).

The relay feedback induces a piecewise linear system with two regions,
separated by the switching hyperplane Cx = 0. The following lines of
MATLAB code define the relay system using hyperplane partitions.

% Initialize hyerplane partition

setpart(’h’);

% Define boundary hyperplanes

switch_plane = addhp([C 0]);

% Dynamics \dot{x}=Ax+B and \dot{x}=Ax-B

d_on = addati(A,-B);
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3. Describing Polyhedral Partitions

Table 3. Commands for defining simplex partitions.

Command Description

setpart Initialize partition data structure

addvtx Add vertex

addray Add ray

addati Specify affine dynamics

addscell Define simplex cell

getpart Retrieve partition data structure

part2pwl Convert to generic data structure

d_off= addati(A,B);

% Introduce cells

X_1 = addhcell(switch_plane, d_on);

X_2 = addhcell(-switch_plane, d_off);

% Retrieve data structure

part = getpart;

% Transform to PWL data structure

pwlsys = part2pwl(part);

3.2 Describing Simplex Partitions

The specification of a simplex partition is very similar to the definition
of a hyperplane partition. The main difference is that (generalized) sim­
plices are defined by vertices (“points”) and rays (“directions”) rather than
the equations for its bounding hyperplanes (cf. [Johansson, 1999]). The
commands for building simplex partitions are shown in Table 3. A new
simplex partition is initialized by the command setpart(’s’). A (gener­
alized) simplex in Rn is defined by n + 1 vertices or rays. Vertices and
rays are defined by the commands addvtx and addray. Both commands
return an identifier for later reference. As in the hyperplane case, the
dynamics are defined by the command addati. The cells of the partition
are defined by the command addscell, which takes three arguments. The
first two arguments are lists of vertex and ray references respectively,
while the last argument specifies the dynamics valid within the region.
The total number of vertex and ray references sums to n+ 1, and at least
one extreme point of the cell is a vertex. Once all cells are defined, the
command getpart retrieves a data structure describing the partition, and
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the command part2pwl transform this information into the data required
by pwltools. We return to Ex. 1 to demonstrate the commands.

EXAMPLE 3—FLOWER SYSTEM – SIMPLEX DESCRIPTION
% Initialize simplex partition

setpart(’s’);

% Define vertices and rays

v1 = addvtx([0 0]);

r1 = addray([1 1]);

r2 = addray([-1 1]);

r3 = addray([-1 -1]);

r4 = addray([1 -1]);

% Set-up dynamics

d1 = addati(A1);

d2 = addati(A2);

% Define cells

X_1 = addvcell([v1],[r1 r2],d1);

X_2 = addvcell([v1],[r2 r3],d2);

X_3 = addvcell([v1],[r3 r4],d1);

X_4 = addvcell([v1],[r4 r1],d2);

% Retrieve partition data structure

part = getpart;

% Transform into PWL Tool data structure

pwlsys = part2pwl(part);

4. Simulation of Piecewise Linear Systems

Simulation is one of the most important tools for evaluating new control
strategies, in academia as well as in industry. Although there has been
a strong development of general­purpose simulation environments during
the last 20 years, simulation of systems with switching and discontin­
uous dynamics is still poorly supported by most software packages. In
the context of piecewise linear systems, problems may occur when the
vector fields are discontinuous across cell boundaries. If the flow in two
neighboring cells point toward their common boundary, cf. Fig. 2, the
state goes through a number of infinitely fast mode changes that cause
most simulators to ‘get stuck’. The nature of these fast mode changes has
been studied by several researchers, see [Filippov, 1988; Utkin, 1977]. In
general, the net effect of the fast mode switches is a constrained motion
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ei j

xh

Āi x̄h

Ā j x̄h

x(t)

Xi
X j

Figure 2. Sliding mode surface.

along the switching surface, referred to as a sliding motion. The dynamics
of the sliding motion can be uniquely defined for simple boundaries, while
intersecting boundaries may cause uniqueness problems. Figure 3 gives
an overview of how PWL Tool handles simulations. Before starting, some
preparatory computations are made. During the initialization phase, 1 ,
each region is assigned a number of pointers to the neighboring regions
to allow for efficient switching. In addition, each surface separating the
regions undergo sliding mode analysis. Define ei j to be the normal vector
of the hyperplane between Xi and X j directed from Xi to X j , cf. Fig. 2.
The surface then contains a sliding mode if there exist an x such that

Ḡi x̄ � 0
Ḡ j x̄ � 0
eTi j Āi x̄ > 0

−eTi j Ā j x̄ > 0

(4)

This is an LP problem, the result of which is patched up for each boundary
into one single matrix. The first step of the actual simulation is to find the
initial region, 2 , i.e. if starting in x0, find i such that Ḡi x̄0 � 0. During
the first visit to 2 , the Gi­matrices have to be tested one by one. Thanks
to the initialization phase, however, this is avoided when entering next
time. Having found the right region, the simulation is started, 3 , and
proceeded until the boundary is hit. When a boundary is hit, one must
check whether to enter the sliding mode state, 4 . This is done by first
looking up into the sliding mode matrix whether the surface contains a
sliding mode. If it does, the conditions (4) are checked for the specific entry
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Figure 3. Schematic description of simulation algorithm for systems with sliding
modes.

point. Having entered the sliding mode state, 5 , The resulting equivalent
dynamics is computed according to Filippov’s convex definition [Filippov,
1988]:

ẋ =











Āi x̄, x ∈ Xi
Ā j x̄, x ∈ X j
λ(x)Āi x̄ + (1− λ(x))Ā j x̄, x ∈ Xi ∩ X j

where λ(x) is the solution to

eTi j
(

λ(x)Āi x̄ + (1− λ(x))Ā j x̄
)

= 0

Currently, PWL Tool does not support sliding mode on intersecting hyper­
planes.
Table 4 lists the commands that are available for detecting sliding

modes and simulating PWL systems with sliding modes. The command
findsm searches all the boundaries between cells and informs the user of
between which cells sliding modes are possible. This is of course interest­
ing from a stability analysis point of view. Knowing that most uncontrolled
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Table 4. Simulation related commands.

command description

findsm detect sliding modes

pwlsim simulate PWL system

systems do not exhibit sliding modes, however, this command can some­
times give a first warning if the system is not modeled in an appropriate
way.
A trajectory can be simulated from a given initial state with pwlsim.

The outputs from this function are, in addition to the time vector and
matching state vectors, the times when cell switching occurred and the
corresponding cells that have been visited.

EXAMPLE 4—RELAY SYSTEM WITH SLIDING MODE
Returning to the relay feedback system of Ex. 2, we now consider the
following non­minimum phase system from [Johansson, 1997]:

ẋ =





−3 1 0

−3 0 1

−1 0 0



 x +





1

−2
1



u

y = [ 1 0 0 ] x

It is assumed that A and B have been entered before executing the code
of Ex. 2.

% Search for sliding modes

findsm(pwlsys);

Sliding mode detected on boundary between

cell 1 and 2.

% Simulate the system

x0 = [1 -1 0]’;

[t, x, te] = pwlsim(pwlsys, x0, [0 20]);

The above code establishes that the system exhibits a sliding mode on
the switching surface. Simulating the system using the command pwlsim,
one can see how the system tends to a limit cycle with sliding mode, see
Figure 4.
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Figure 4. Limit cycle with sliding trajectory. The vertical dashed lines in the right
part indicate time instances for the mode selection.

Table 5. Commands for stability analysis.

command description

qstab quadratic stability analysis

pqstab piecewise quadratic analysis

pqstabs d.o. taking sliding into account

5. Computation of Piecewise Quadratic Lyapunov
Functions

In PWL Tool, stability of PWL systems is proved with the aid of piece­
wise quadratic (PWQ) Lyapunov functions. This is less conservative than
the commonly used global quadratic approach and the toolbox makes it
possible to prove stability for PWL systems that do not admit quadratic
Lyapunov functions.
The F­matrices as defined by Eq. (3) are used to force continuity of

the Lyapunov function. It is parameterized by a symmetric matrix, T , as
follows

V (x) = x̄T F̄Ti T F̄i x̄ x ∈ Xi, i ∈ I.
This structure allows the usual constraints on V (x) (positive definiteness
and decrement along the system trajectories) to be expressed as a set of
LMIs [Johansson, 1999].
The commands provided for stability analysis are shown in Table 5.

The command pqstab searches for a PWQ Lyapunov function as described
above. If there exist a piecewise quadratic Lyapunov function, pqstab
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Figure 5. Simulation of the flower system (solid line) and level curves of a PWQ
Lyapunov function (dashed).

returns a three dimensional array, a vector of matrices, where matrix
no. i corresponds to F̄Ti T F̄i of eq. (5). The command qstab tries to find
a global quadratic Lyapunov function (V (x) = xTPx). This is of course
conservative, but qstab uses the state space partitioning structure to relax
the constraints on the Lyapunov function. In addition, the simplicity of
a globally quadratic function often makes it a natural choice for a first
attempt.
The LMI:s stated in pqstab for the decreasing condition are only valid

for systems without any sliding modes. The command pqstabs is slightly
modified to be able to handle the sliding mode case.

EXAMPLE 5—FLOWER SYSTEM — STABILITY ANALYSIS
We now try to prove stability of the flower system (Ex. 1).
% Search for sliding modes

findsm(pwlsys);

There are no sliding modes.

% Since there are no sliding modes, use pqstab

pqstab(pwlsys);

Lyapunov function was found.

Level surfaces of the Lyapunov function are plotted together with a sim­
ulated trajectory (using pwlsim as shown in Ex 4) in Fig. 5.
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Table 6. Commands for performance analysis and control design.

command description

iogain L2 gain computation

pqobserv Output energy estimation

optcstlb Lower cost for LQG problem

pwlctrl Derive piecewise LQG controller

optcstub Estimate cost achieved by pwlctrl

6. Performance Analysis and Control Design

Having utilized the Lyapunov function machinery for assessing stability,
it can be used in a similar way for other computations. PWL Tool sup­
ports performance analysis and control design. Table 6 lists the commands
available. All of these commands estimate an upper and/or a lower bound
on a certain performance property. If the estimates are too coarse, the re­
sults can be refined by further refinement of the state space partitions.
The command iogain computes an upper bound on the L2 induced input
output gain of a PWL system. The command pqobserv computes a lower
and an upper bound on the integral of the output energy for a given initial
state, x(0).
There are three commands related to controller synthesis. The optimal

control problem for piecewise linear systems (while bringing the system to
x(∞) = 0 from an arbitrary initial state, x(0)) can be defined to minimize
the cost

J(x0,u) =
∫∞
0

(

x̄T Q̄i(t) x̄ + uTRi(t)u
)

dt

(Here i(t) is defined so that x(t) ∈ Xi(t).) A lower bound, on the minimum
achievable J is computed by optcstlb The command pwlctrl creates a
PWL controller based on the results from optcstlb. A vector of matrices
representing the state feedback used in different regions is returned. Hav­
ing applied the controller given from above, optcstub returns an upper
bound on the resulting optimal cost.

7. Summary

This paper has presented a MATLAB toolbox for analysis of piecewise linear
systems, a class of nonlinear systems that appears frequently in control
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7. Summary

theory, e.g. in hybrid systems and linear systems with various constraints.
The analysis is based on piecewise quadratic Lyapunov functions, which
are computed via convex optimization. In this way, exponential stabil­
ity and system performance can be assessed for this class of nonlinear
systems. The toolbox also supports efficient simulation of systems with
discontinuous dynamics and sliding modes.
PWL Tool makes it simple to experiment with piecewise linear sys­

tems. The authors provide it free of charge upon request, with a reference
manual [Hedlund and Johansson, 1999] and additional examples.
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2

A MATLAB Tool for Dynamic

Programming for Hybrid

Systems

2.1 Introduction

This chapter presents “CDP Tool”, a set of MATLAB commands for optimal
control via convex dynamic programming of a class of hybrid systems.
The presentation is organized as follows: Section 2.2 defines the main

problem that CDP Tool is designed for. Section 2.3 gives an overview of
the CDP Tool commands and the main ideas behind the computations, the
purpose being to give insight into the possibilities and limitations of CDP
Tool. For a more comprehensive presentation of the underlying theory, see
Paper A of this thesis. For a complete description of the commands, see
the reference manual in [Hedlund, 1999]. Section 2.4 demonstrates the
usage on some examples.

2.2 Problem Formulation

Let X ⊂ Rn and Ωu ⊂ Rp denote a continuous state space and input
space respectively. Let the finite set Q̄ denote a discrete state space as
well as an input space. Time driven dynamics is governed by the function
f : X � Q̄ � Ωu → Rn
The hybrid system model is defined via the trajectories it accepts.

Given the function u : [t0, tM ] → Ωu, an increasing sequence of M + 1
real numbers, T = (0 = t0, t1, . . . , tM ≤ ∞), and the piecewise constant
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function µ : [t0, tM ] → Q̄ such that µ(t) = µk ∈ Q̄ for t ∈ [tk, tk+1), a
trajectory of the hybrid system

ẋ(t) = f (x(t), q(t),u(t)) (2.1)
q(t) = µ(t) (2.2)

is defined as the collection (T , x, q) where x : [t0, tM ] → X is absolutely
continuous and satisfies (2.1) for t ∈ (tk, tk+1), k = 0, 1, . . . ,M − 1 and
q : [t0, tM ] → Q̄ satisfies (2.2). The time argument, t, will often be omitted
in the sequel for readability.
Given the nonnegative functions l : X � Q̄ �Ωu → R and s : X � Q̄ �

Q̄ → R with s(⋅, ⋅, ⋅) ≥ ε > 0, the initial state (x0, q0) ∈ X � Q̄, and the
final set Γ ⊂ X � Q̄, the optimal control problem is to minimize the cost
functional

J(x0, q0,u(⋅), µ(⋅)) =
∫ tM

0
l(x, q,u)dt+

M
∑

k=1
s(x(tk), q(t−k ), q(t+k )) (2.3)

over u(⋅), M , and µ(⋅), subject to (2.1), (2.2), (x, q)(0) = (x0, q0), and
(x, q)(tM ) ∈ Γ.
Hence, l is a function penalizing continuous evolution and s penalizes

switches. The requirement that s ≥ ε > 0 makes CDP Tool exclude solu­
tions with an infinite number of switches. Sec. 2.3 will show that the tool
also handles exponential time weighting of the cost function.
It can be noted that the dynamics of (2.2) is less general than the event

driven dynamics of the hybrid system model (1.1) in Chapter 1, where
q(t) = ν(x(t), q(t−), µ(t)). The role of the ν function, however, preventing
certain mode switches from certain parts of the state space while enforcing
switches from other parts, can be achieved in CDP Tool by appropriate
construction of the penalty functions l and s.

2.3 Features of CDP Tool

The main commands available for solving the control problem are listed
in Table 2.1. The purpose of these commands will be explained in this
section by means of a brief presentation of the underlying theory. For a
more comprehensive presentation of the theory, see Paper A of this thesis.
Most of the MATLAB commands that constitute CDP Tool can be di­

vided into three groups; value function computation, control feedback law
computation, and simulation. The basis for solving the optimal control
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2.3 Features of CDP Tool

Table 2.1 The essential MATLAB commands of CDP Tool.

Command Description

cdplows Compute a lower bound of the value function,
single­point maximization

cdplowes Compute a lower bound of the value function of an
exponential time weighting problem, single­point
maximization

cdplowm Compute a lower bound of the value function,
multi­point maximization

cdplowem Compute a lower bound of the value function of an
exponential time weighting problem, multi­point
maximization

cdpctrl Compute a control signal, based on an approxima­
tion of the value function

cdpsim Simulate controlled system

cdpsimf Simulate controlled system, fixed time step

cdpsime Simulate controlled system with exponential time
cost function

cdpsimef Simulate controlled system with exponential time
cost function, fixed time step

problem in CDP Tool is the optimal value function, V L : X � Q̄ → R,
defined as

V L(x0, q0) = min
u(⋅), µ(⋅)

J(x0, q0,u, µ) (2.4)

CDP Tool makes use of the property derived in Paper A, that any function
V : X � Q̄ → R that satisfies

0 ≤ VV (x, q)V x f (x, q,u) + l(x, q,u)

∀(x, q) ∈ (X � Q̄) \ Γ, u ∈ Ωu (2.5)
0 ≤ V (x, r) − V (x, q) + s(x, q, r)

∀x ∈ X , q, r ∈ Q, q �= r (2.6)
0 = V (x, q) (x, q) ∈ Γ (2.7)

is a lower bound of V L(x, q). Since the inequalities (2.5)­(2.7) are linear
constraints in V (x, q), maximization of V (x0, q0) subject to the inequalities
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is a linear program (LP). Notes on how to discretize this problem to be
able to solve it with a computer will be presented after the following
observation.

Exponential Time Weighting

Value function constraints that are similar to the ones above can also be
used for problems with exponential time weighting of the cost function.
Define the cost function Je(x0, q0,u(⋅), µ(⋅)) as

Je(x0, q0,u(⋅), µ(⋅)) =
∫ ∞

0
le(x, q,u, t)dt+

M
∑

k=1
se(x(tk), q(t−k ), q(t+k ), tk)

=
∫ ∞

0
l̃(x, q,u)e−atdt+

M
∑

k=1
s̃(x(tk), q(t−k ), q(t+k ))e−atk (2.8)

where a > 0. The rest of the parameters is defined analogously to (2.3).
If V Le (x, q, t) is defined as the optimal cost for starting in (x, q) at time t,
then the time dependent lower bound counterpart of (2.5) can be written

VVe(x, q, t)
V t + VVe(x, q, t)V x f (x, q,u) + le(x, q,u, t) ≥ 0 (2.9)

Rewriting the functions like Ve(x, q, t) = e−atṼe(x, q) and le(x, q,u, t) =
l̃e(x, q,u)e−at, (2.9) becomes

−aṼe(x, q) +
V Ṽe(x, q)
V x f (x, q,u) + l̃e(x, q,u) ≥ 0 (2.10)

Thus, the time dependence introduced in the value function cancels and
a slight variation of (2.5)—(2.7) will give the corresponding LP for the
problem with exponential time weighting.

Discretization

Using a computer to find a value function that satisfies (2.5)­(2.7) for a
specific control problem, a straightforward approach is to grid the state
space to require the inequalities to be satisfied for a set of uniformly
distributed points in X . Let e1, e2, . . . , en denote the unit vectors along the
coordinate axes and define the discretization vector h ∈ Rn such that hi
(the i:th component of h) is the distance between the grid points in the
direction of ei. A small part of a discretization in R2 around a grid point
xp is shown in Fig. 2.1.
Each of the value function commands (cdplows, cdplowes, cdplowm,

and cdplowem) applies a discretization grid like this to X . The commands
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PSfrag

e1

e2

xp

xp + h2e2

xp + h1e1

Figure 2.1 Illustration of the discretization grid in R2.

handle sets, X , that are hyperrectangles in Rn, and the user specifies the
granularity of the grid by the input vector N ∈ Zn such that the k:th
component of N is the number of grid points in the direction of ek.
This way, the function V , to be computed to be a lower bound of the

optimal value function, is parameterized by its values in the gridpoints
and the values between the gridpoints are obtained by multilinear in­
terpolation. For (2.5) to hold in the entire state space rather than in
the gridpoints solely, the discretization must be constructed to also con­
sider the values of f and l between the gridpoints. The value function
commands of CDP Tool can be set up to use a method (presented in Pa­
per A) for preserving the lower bound property. For each grid point, xp,
this method requires the extremal values of f (xp, q,u) and l(xp, q,u) in a
neighborhood of xp as follows.
Define the hyperrectangle X̂ p surrounding grid point xp as

X̂ p = {xp +
n
∑

i=1
θ ihiei : −1 ≤ θ i ≤ 1}. (2.11)

An illustration of this set in a two dimensional space is shown in Fig. 2.2.
For each grid point, xp, the value function commands then need

f p(q,u) = min
x∈X̂ p

f (x, q,u) (2.12)

f
p(q,u) = max

x∈X̂ p
f (x, q,u) (2.13)

lp(q,u) = min
x∈X̂ p

l(x, q,u) (2.14)

to form the discretized inequalities. (The extrema should be computed
component wise in the vectors.) Note, however, that the CDP Tool value
function commands also can be called without requiring the true bound
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xp + h1e1
X̂ p

Figure 2.2 Illustration of X̂ p in R2.

property, often resulting in a plausible value function without the some­
times cumbersome search for local extrema.
The extremal values of (2.12)­(2.14) still depend on the continuous

parameter u. The continuous control signal has to be discretized by the
CDP Tool user in a tradeoff between accuracy and computational speed.
The reason for leaving this burden to the user instead of automatically
gridding the problem in u (as was done for x), is that insight in the
structure of the problem might be used for clever gridding and a reduc­
tion of the computational load. Consider e.g. the analysis of a system
with Ωu = [−1, 1]. A standard gridding may lead to the approximation
Ωu = {−1,−0.8,−0.6, . . . , 1}. If the system dynamics is affine in u and the
optimization criterion is minimum time, however, the resulting control
law is bang­bang and the obvious choice is Ωu = {−1, 1}.

Single-point vs. Multi-point Maximization

Instead of computing the value function in one single point, (x0, q0), it
is often desirable to get an estimate for the value function in a larger
subset of X . Some of the CDP Tool value function commands do this
by maximizing the sum of V (x, q) in several grid points, which is called
multi­point maximization. The region that contains the grid points for
which V is maximized, the “optimization region”, is denoted O ⊂ X .
Fig. 2.3 illustrates the two maximization alternatives in R2 with some
sample trajectories.
There is in general no guarantee that a region maximization will give

the same result as a single point maximization, i.e. maximizing V (x0, q0)
solely may give a different result from the value of V (x0, q0) coming from
a region maximization where (x0, q0) ∈ O. Experience from examples,
however, tells that the difference is often small, making the benefit of
receiving the value function in a large region solving one LP an attractive
alternative.
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Figure 2.3 Various choices of maximization in R2 with corresponding optimal
state trajectories. a) Single point maximization. b) Region maximization.

The sample trajectories of Fig. 2.3 raise another issue: the choice of
X . Part of the optimal control problem formulation is the trajectory con­
straint x(t) ∈ X , i.e. the aim is to find the optimal trajectory from (x0, q0)
(or the set of trajectories from O) to Γ that never leaves X . For control
problems that do not experience state constraints of significant impor­
tance, the CDP Tool user still faces the problem of defining X . On one
hand, a smaller X will lead to fewer discretization points and less com­
putational complexity. On the other hand, to obtain the correct solution
to the unconstrained problem, X must be large enough to include those
trajectories. One practical approach to this problem is to start with a big
X and a coarse gridding, make simulations based on the resulting value
function to get a rough estimate of the trajectories, and then make a new
choice of X based on this information.

Computing the Feedback Control Law

Provided that the lower bound, V (x, q), is a good enough approximation
of the optimal cost, the optimal feedback control law can be calculated as

û(x, q) = argmin
u∈Ωu

{VV (x, q)
V x f (x, q,u) + l(x, q,u)

}

(2.15)

µ̂(x, q) = argmin
µ∈Ωµ

{V (x, µ) + ŝ(x, q, µ)} (2.16)

where ŝ is identical to s with the exception that s(x, q, µ) = 0 if q = µ. The
above expressions (implemented in cdpctrl) show a close resemblance to
classical dynamic programming. Given an optimal value function V of an
optimal control problem, (2.15) is how to derive the control signal for a
purely continuous system, and (2.16) is how to derive the control signal
for a purely discrete problem.

109



Chapter 2. AMATLAB Tool for Dynamic Programming for Hybrid Systems

Simulation

The simulation commands take a hybrid system with a cost function and
the associated control law as input and return the resulting trajectories,
x(t), q(t), u(t), and J(t) or Je(t). The basic functions for simulations are
cdpsim and cdpsime, but there also exist faster, less accurate fixed time
step versions, cdpsimf and cdpsimef.

2.4 Examples

To further illustrate the usage of CDP Tool, this section shows the es­
sential MATLAB code behind the the examples in [Hedlund and Rantzer,
1999].

EXAMPLE 2.1—A CAR WITH TWO GEARS
Consider the system

{

ẋ1 = x2
ẋ2 = nq(x2)u, q = 1, 2 huh ≤ 1

(2.17)

where nq(x) is plotted in Fig. 2.4. This could be seen as a crude model of
a car, u being the throttle, nq(x) the efficiency for gear number q.
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Figure 2.4 Gear efficiency at various speeds.

The problem is to bring (2.17) from xi = (−5, 0), qi = 1 to x f = (0, 0),
qf = 1 in minimum time. Torque losses when using the clutch calls for an
additional penalty for gear changes. Thus, the components of (2.3) have
been chosen as l1(x,u) = l2(x,u) = 1, s(x, 1, 2) = s(x, 2, 1) = 0.5.
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We start by writing the functions that define the system: f is entered
into the file car_f.m, l into car_l.m, and finally s into car_s.m. We will not
compute a true lower bound in this example. The extremal computations
that would be needed for true bound purposes are included in the files
anyway, to show how this could be done.

car_f.m

function y = car_f(x,q,u,h,vmode);

if (nargin > 3)

%%% perform extremal computations %%%

minx2 = x(2)-h(2); % min value of x2 over a square

maxx2 = x(2)+h(2); % max value of x2 over a square

if (q==1)

if (vmode == -1) % component-wise minimization

y = [minx2; sigmf(maxx2, [-5, 0.5])*u];

elseif (vmode == 1) % component-wise maximization

y = [maxx2; sigmf(minx2, [-5, 0.5])*u];

end;

elseif(q==2)

if (vmode == -1) % component-wise minimization

y = [minx2; sigmf(minx2, [5, 0.5])*u];

elseif(vmode == 1) % component-wise maximization

y = [maxx2; sigmf(maxx2, [5, 0.5])*u];

end;

end;

else

%%% use the nominal value %%%

if (q==1)

y = [x(2); sigmf(x(2), [-5, 0.5])*u];

elseif(q==2)

y = [x(2); sigmf(x(2), [5, 0.5])*u];

end;

end;

The function sigmf above gives

n1(x2) =
1

1+ e5(x2−0.5) and n2(x2) =
1

1+ e−5(x2−0.5) .

car_l.m

function y = car_l(x,q,u,h);

% For this example, l is the same regardless of the input.

na = nargin; % dummy-line to allow variable number of inputs

y = 1;
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car_s.m

function y = car_s(x, q1, q2);

y = (q1~=q2)*0.5; % The cost for switching is 0.5

Having entered these functions, we are ready to call cdplowm to get an
approximation of the value function. Note that this is a minimum time
problem that will lead to bang­bang control and Ωu can be chosen as
Ωu = {−1, 1}.

>> N = [53;41]; % Number of grid points

>> xmin = [-6.5; -1.5]; % Define the state space

>> xmax = [5; 5.5];

>> Q = 2;

>> XQ = [xmin; xmax; Q];

>> uv = [-1; 1]; % Define the control signal domain

>> xf = [0;0]; % Gamma is a singleton

>> qf = 1;

>> xqf = [xf; qf];

>> omin = [-5.5; -0.5]; % define the optimization region

>> omax = [1; 3.0];

>> O = [omin; omax];

>> [V,xv] = cdplowm(’car_f’,’car_l’,’car_s’,uv,O,xqf,XQ,N,0);

Plots of the value function are shown in Figure 2.5 and 2.6 where xi
and x f also have been marked. The functions look rather similar, since the
cost for changing gears is only 0.5. One can see that V1 has a threshold
along the line x2 = 1. Figure 2.4 reveals that the first gear is almost
useless for high speeds, leading to V1 = V2 + 0.5 for x2 > 1. This is the
cost for using the second gear optimally after a gear switch.
We also compute a control law and use it in simulations

>> [U,Q] = cdpctrl(’car_f’,’car_l’,’car_s’,uv,Vc,xvc);

>> x0 = [-5;0];

>> q0 = 1;

>> xq0 = [x0; q0];

>> tend = 8;

>> [tv,xv2,qv] = cdpsim(’car_f’,’car_l’,’car_s’,U,Q,xvc,xq0,...

[0;tend],xqf);
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Figure 2.5 Plot of V1. The initial point, xi, is marked with a vertical dashed line,
the final point, x f , with a solid line.
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Figure 2.6 Plot of V2.

The resulting trajectory is shown in Fig. 2.7, where the initial point is
marked with a square. In the beginning, maximum throttle is used on the
first gear (solid line). When the speed roughly reaches the point of equal
efficiency between the gears (x2 = 0.5), they are switched in favor of the
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second gear (dashed line). At half the distance, the gas pedal is lightened
to use the breaking force of the engine. In the end, the first gear is used
again before the origin is hit. As seen in the figure, the granularity of
the discretization grid (h1 = 0.22, h2 = 0.18) prevents the solution from
hitting the exact origin.
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0.5

1

1.5

2

Phase plane

x
1

x 2

Figure 2.7 Phase portrait of a simulation. The solid line shows where gear number
one has been used, the dashed line shows the second gear. The initial point is marked
with a square.

Information about the optimal trajectory can also be found in the dual
variables. The following code makes a single point maximization and ex­
tracts trajectory information from the dual variables of the solution.

>> [Vs,xvs,Ws] = cdplows(’car_f’,’car_l’,’car_s’,uv,xq0,...

xqf,XQ,N,0);

>> Nxmin = [-6; -0.5];

>> Nxmax = [1; 3];

>> NX = [Nxmin; Nxmax];

The optimal trajectory is easily found in Figs. 2.8 and 2.9, where the
dual variables are plotted. The function W1(x) corresponds to the con­
straint (2.5) for x ∈ X , q = 1 and thus shows when the first gear has
been used. Similarly, W2(x) corresponds to q = 2 and shows when the
second gear has been used.
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Figure 2.8 Plot of W1. The initial point, xi, is marked with a vertical dashed line,
the final point, x f , with a solid line.
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Figure 2.9 Plot of W2.

EXAMPLE 2.2—ALTERNATE HEATING OF TWO FURNACES
Since the industrial power fee is determined by the highest peak of the
season, it is desirable to spread the power consumption evenly over time.
This is handled by load control, which means that the available electrical
power is altered between different loads of the mill.
In this example, the temperature of two furnaces should be controlled
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by alternate heating. The system has two continuous states that corre­
spond to the temperature of the furnaces and is given by ẋ = fq(x), where

f1(x) =
[

−x1 + u0
−2x2

]

f2(x) =
[

−x1
−2x2 + u0

]

f3(x) =
[

−x1
−2x2

]

Thus, there are three discrete modes: q = 1 means that the first furnace is
heated, q = 2 means that the second furnace is heated, q = 3 corresponds
to no heating. The cost function to be minimized is

J(x0, q0) =
∫ ∞

t0

2
∑

i=1
(xi − ci)2e−tdt+

M
∑

k=1
be−tk

where the desired stationary temperature values are c1 = 1/4, c2 = 1/8
and the cost for switching the power is b = 1/1000. Since the furnaces
can only be fed by a fixed amount of energy, u0, it is impossible to keep
them stationary at the desired temperature. Hence, the time weighting,
e−t, is necessary to get a bounded cost function.
We start by writing the functions that define the system: f is en­

tered into the file furnace_f.m, l into furnace_l.m, and finally s into
furnace_s.m.

furnace_f.m

function y = furnace_f(x,q,u)

u0 = 0.8; % 0.8 will make the system enter mode 3 sometimes,

% 0.4 prevents it

switch (q)

case 1, % Heating furnace no. 1

y = [-x(1)+u0; -2*x(2)];

case 2, % Heating furnace no. 2

y = [-x(1); -2*x(2)+u0];

case 3, % No heating

y = [-x(1); -2*x(2)];

end;

furnace_l.m

function y = furnace_l(x,q,u)

y = (x(1)-0.25)^2+(x(2)-0.125)^2;
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furnace_s.m

function y = furnace_s(x, q1, q2);

y = (q1~=q2)*0.001; % Cost for switching: 0.001

With these functions, we are ready to call cdplowem. Note that we have
no continuous input, u, in this example.

>> N = [21; 21];

>> xmin = [-0.10; -0.10];

>> xmax = [0.50; 0.30];

>> Q = 3;

>> XQ = [xmin; xmax; Q];

>> uv = [];

>> xf = [0.25; 0.125];

>> qf = 3;

>> xqf = [xf; qf];

>> omin = [-0.05; -0.05];

>> omax = [0.40; 0.20];

>> O = [omin; omax];

>> [V, xv] = cdplowem(’furnace_f’,’furnace_l’,’furnace_s’,...

1,uv,O,XQ,N,0);

The control law is derived and simulation is performed by calling
cdpsime this time

>> [Um, Qm] = cdpctrl(’furnace_f’,’furnace_l’,’furnace_s’,...

uv,Vc,xvc);

>> x0 = [0; 0];

>> q0 = 3;

>> xq0 = [x0; q0];

>> tend = 6;

>> [tv,xv2,qv] = cdpsime(’furnace_f’,’furnace_l’,...

’furnace_s’,1,Um,Qm,xvc,xq0,[0;tend]);

and the result is plotted in Fig. 2.10, which shows a time plot of the
states and Fig. 2.11, which shows a phase portrait. The figures clearly
show how the temperature of one furnace always decreases as the other
one is heated. By alternate heating, the temperatures first climb up to,
and above the set­point and then both furnaces are turned off and the
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state drifts towards the origin. This procedure is then repeated over and
over again, making the trajectory enclose the desired steady state (marked
with a circle in the phase portrait). The trajectory has been dashed for
t ∈ [0, 3.5] in Fig. 2.11 to make the limit cycle clear.
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Figure 2.10 Time plot of the trajectories in the furnace example.
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Figure 2.11 Phase portrait of the trajectories in the furnace example.
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3

Case Study: CDP Tool in the

Control Laboratory

3.1 Background

The basic control course is the first of the courses that the Automatic
Control Department in Lund offers to Master students. This course, that
teaches basic principles of automatic control, aims to give some insight
to what is possible to achieve by control, as well as what is not possible.
Linear continuous systems are treated.

The basic course contains three laboratory exercises, two of which use
a double tank system to demonstrate PID control. The tank system, see
Fig. 3.1, consists of a pump that is used to fill a tank. There is a hole in
the bottom of the tank, with a second tank below. The water that flows
out of the first tank, flows into the second tank. The water is drained from
the second tank through a hole at the bottom similar to the hole in the
first tank. Each tank has a level sensor.

A computer connected to the process contains a software PID controller
that can use either of the level sensors as input. The controller output
is the voltage to the pump. The main challenge during the laboratory
exercise is to find controller parameters that give a desired step response
for the tank levels.

In the second of the two laboratory exercises about PID control, the
design method is pole placement. In the first part of the lab, the students
make a model of the double tank system. First principles modeling leads
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Figure 3.1 Double tank system and computer with software running

to a nonlinear state space model

dx1(t)
dt

= −α 1
√

2nx1(t) + βu(t)
dx2(t)
dt

= α 1
√

2nx1(t) −α 2
√

2nx2(t)
(3.1)

where the two states x1 and x2 are normalized levels of the upper and the
lower tank respectively, such that 0 ≤ xi ≤ 1, i ∈ {1, 2}. The value xi = 0
corresponds to an empty tank and xi = 1 means that the tank is full. The
input, u, 0 ≤ u ≤ 1, is normalized voltage to the pump.
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The model is linearized and via Laplace transformed to a transfer
function of the process, where the output is the level of the lower tank.
Fast dynamics of the pump and the level sensor are neglected, leading to
a second order system,

GP(s) =
KpT2

(1+ sT1)(1+ sT2)
(3.2)

where T1 and T2 are the time constants of the two tanks, and Kp is a gain
constant.
The lower tank should be controlled using a PID controller

GR(s) = K
(

1+ 1
sTi

+ sTd
)

where K , Ti, and Td are the controller parameters to be determined.
The resulting closed loop system is of third order

Gcl(s) =
GP(s)GR(s)
1+ GP(s)GR(s)

= KpKT2(s2TiTd + sTi + 1)
s3TiT1T2 + s2Ti(T1 + T2 + KpKT2Td) + sTi(1+ KpKT2) + KpKT2

and the three controller parameters can be used to adjust the closed loop
dynamics. The desired closed loop system is characterized in terms of
speed,ω , and relative damping ζ via the requested characteristic equation
(s+ω )(s2 + 2ζ ω s+ω 2).
This leads to the following (approximate) map from the desired closed

loop behavior, ω and ζ to the controller parameters

K = T1ω 2

Kp
(1+ 2ζ )

Ti = 1+ 2ζ
ω

Td = 1+ 2ζ
ω (1+ 2ζ )

which is used to examine the lab process for different values of ω and ζ .
One purpose of this laboratory exercise is to show the students how the

theory can work in practice. Another lesson to learn, is to avoid relying
on assumptions that may be invalid. Real life offers properties that the
model in Eq. (3.2) does not capture, e.g. nonlinearities such as the limits
of the control signal.
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3.2 Practical Problems During the Exercise

During the exercise, the closed loop system is thoroughly examined by
repeated step responses in the lower tank level, making series of exper­
iments with systematic changes in either speed or damping of the poles.
Many of the tested controllers do not perform very well (either by request
of slow or poorly damped response in the exercise instruction or by miscal­
culation by the student). For consistent experiments, all step responses
should start at the same initial state. If the chosen controller parameters
lead to a very long settling time of the step response, the preparatory
step back to the initial state before the next iteration will involve long
waiting time for the students. In addition to this annoyance, bad choice
of parameters often lead to flooding of the upper tank and the lab risks
being experienced as tedious and splashy.

3.3 Solution

Figure 3.2 The process view of the double tank controller interface.

The introduction of new software and interface for the controller in 2002
made it possible to also include new functionality designed using CDP
Tool. A feature of the new interface is the “Optimal” button. When click­
ing this button, the current PID controller is temporarily discarded and
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Figure 3.3 The controller view of the double tank controller interface.

replaced by an optimal controller that brings both tank levels to the cur­
rent set point in minimum time. When the process has reached the set
point, given by the sliders labeled "ysp" in Figs. 3.2 and 3.3, the optimal
controller hands over to the PID controller again via a bumpless trans­
fer. This functionality reduces the idle time between step response ex­
periments and quickly resolves situations of tank flooding and seemingly
never­ending oscillations.

The following section shows how the optimal controller was computed.

3.4 CDP Tool Design Parameters

Before discussing how to find the parameters, recall the problem that CDP
Tool tries to solve (pure continuous system version):
Given the state space X ⊂ Rn, the final set Γ ⊂ X , and a control

feedback law u = u(x), x ∈ X , define Vu : X → R as

Vu(x0) =
∫ T

0
l
(

x(t),u
(

x(t)
)

)

dt (3.3)
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subject to

ẋ(t) = f
(

x(t),u
(

x(t)
)

)

(3.4)

x(t) ∈ X , 0 ≤ t ≤ T (3.5)
x(0) = x0 (3.6)
x(T) ∈ Γ (3.7)

The CDP Tool optimal control problem is to find V ∗(x0) = minu Vu(x0)
for each x0 ∈ O ⊂ X , where O is the optimization region.
For the double tank process, the states are the water levels, i.e. x =

(x1, x2), the function f (x,u) is given by Eq. (3.1), and l(x,u) = 1 for
minimum time control.
Two sets that should be fed to CDP Tool are the trajectory space, X ,

and the optimization region, O ⊂ X . The optimization region is the part
of the state space for which the value function and the feedback control
law should be computed. The trajectory space is the state space where
trajectories are allowed.
Since xi = 0, i = {1, 2} means that tank i is empty, and xi = 1 means

that the tank is full, 0 ≤ xi(t) ≤ 1 is a hard constraint on the trajecto­
ries. The control feedback law will be needed for all states within these
constraints, so a natural choice is X = O = [0, 1]�[0, 1]. Unwanted asym­
metries for the discretization scheme at the boundaries of X , however,
makes it desirable to let O be strictly contained in X . Thus, let

O = [0, 1] � [0, 1] and (3.8)
X = [−0.05, 1.05] � [−0.05, 1.05]. (3.9)

To overcome numerical problems from very high gain of the system
close to x = (0, 0) and to extend the model down to xi = −0.05, the square
root function

√
2nxi is replaced by its linearization below a certain level,

x0 = 0.05:
√

2nx0 +
√

n
2x0

(xi − x0) (3.10)

To account for variations among the level sensors and to avoid flooding
the tanks, it is desirable to keep the levels below 0.95. For low levels, the
measurements are very noisy because of slosh and the model (3.1) is
invalid (it would be invalid even without the modification of the square
root function, since Torricelli’s law does not account for turbulence), so
the aim is to keep the levels above 0.05.
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3.5 Implementation

The way to do this is to modify l(x,u) to give a high penalty for unde­
sirable states:

l(x,u) =
{

1, 0.05 ≤ x1 ≤ 0.95, 0.05 ≤ x2 ≤ 0.95
lhigh, otherwise

(3.11)

where lhigh is a constant ≫ 1, e.g. lhigh = 1000.
Among the design choices is also the granularity of the discretiza­

tion grid. For this example, 50 points along each coordinate axis of X is
sufficient. Knowing (via the Pontryagin Maximum Principle) that time
optimal control of a system that is affine in the control signal leads to a
bang­bang solution, u can be discretized as u ∈ {0, 1}.

3.5 Implementation

Since the optimal control problem is computationally demanding and too
complex to solve online, CDP Tool is used to compute control signal lookup
tables that can be stored in a text file and fed to the Java based controller.
Given the problem, CDP Tool first computes the value function and then
the control law. The control law is given as the value of u for each grid
point in O. Multilinear interpolation can then be used to get an approxi­
mate value in between the grid points.
The control problem in Eqs. (3.3)–(3.7) is defined for a fixed target set,

Γ. To handle arbitrary setpoints, the CDP Tool must be used several times,
once for each desired setpoint. For the double tank example, eighteen it­
erations are used, with Γ set to {(0.05k, 0.05k)} under the k:th iteration.
The final outcome of all CDP Tool computations is thus a three dimen­
sional lookup table that returns the control signal for different values of
x1, x2, and the setpoint.

3.6 Benefits of the “Optimal”-button

Fig. 3.4 shows a comparison between a well tuned PID controller and
the time optimal controller. Well tuned means that the settling time of
the step response is as short as possible without flooding the upper tank.
The dashed curve and the solid curve are the levels in the upper and
lower tank respectively. The thin solid line is the reference value. The
first 700 seconds show a step response forth and back using the PID
controller, while the remaining time is a step response resulting from the
time optimal controller.
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Fig. 3.4 also shows some robustness to process variations in the op­
timal controller. The controller has been designed using a model where
the two tank levels are equal in stationarity. It is seen in the figure that
the controller works well, though the stationary levels differ significantly
around 0.55.
The PID controller is slower than the optimal controller and this dif­

ference is particularly noticeable in the step downwards. It is not possible
to reverse the pump to empty the tank, but the time optimal approach
is to temporarily lower the level of the upper tank significantly below its
final value, to be able to drain the lower tank faster.
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Figure 3.4 A performance comparison between a well tuned PID controller and
a time optimal controller. The dashed line is the upper tank level, the solid line is
the lower tank level. The PID controller is used the first 700 seconds, the optimal
controller is used the last 300 seconds.

It is of course not fair to compare these two controllers. The PID con­
troller on one hand, is linear with limited tuning possibilities, while the
optimal controller, on the other hand, is model based and takes care of
state constraints, input constraints, using the nonlinear model. The plot
serves, however, as an illustration of the benefits of using the optimal
controller in the lab.
In addition to speed up parts of the laboratory exercise, the opti­

mal controller also works as “panic resolver”. Controller parameters that
lead to a poorly damped system, will give long lasting transients and
sometimes flooding from a step response. The “Optimal” button will then
quickly bring the system back to rest again.
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3.6 Benefits of the “Optimal’’­button

Today the laboratory exercise requires less idle time for the students,
leading to less boredom. Some of the students get fascinated and inter­
ested in how this magic button does its trick. The obvious salesman’s
answer is “You can learn about optimal control in our optional, advanced
courses”.
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