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Algebraic Control Theory

The theory of multivariable, linear, time invariant systems
has developed rapidly during the last two decades. The theory
may be divided into analysis of dynamical systems and design
of controllers for dynamical systems. Algebraic concepts are
playing an important role in the theory for both analysis and
design. One advantage of the algebraic approach is that it
often allows a simultaneous treatment of continuous and
discrete time systems. The algebraic approach was introduced
by Kalman in a series of papers leading to part 4 of Kalman,
Falb, Arbib (1969).

In part 4 of Kalman, Falb, Arbib (1969) Kalman presents an
abstract theory for the analysis of linear, multivariable
systems. He regards the state space of the system as a module
over the polynomials and studies problems concerning realiza-
bility, controllability and observability. Another approach
is presented in Rosenbrock (1970). Rosenbrock starts with a
polynomial matrix description of a system. The system is
analysed with algebraic methods and the concepts of control-
lability and observability appear in the form of decoupling
zeros. The connection between the works of Kalman and Rosen-
brock is not immediately clear. It has, however, to some
extent been clarified by Fuhrmann (1976) and (1977). A third
approach to the theory for analysis of linear, time invariant,
multivariable systems was presented in a series of papers by
Wonham and Morse, leading to Wonham (1975). In Wonham (1975)
the system is supposed to be described in state space form

and linear vector space algebra is used for the analysis.

A variety of design methods for multivariable systems has

been developed. The linear quadratic control method,
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originated in Kalman (1960), is one of the most widely
spread. It is described in many boocks, e.g. in Anderson,
Moore (1971). The method leads to a state feedback control
law and has been followed by other design methods that use
state feedback, e.g. pole placement and the method in Wonham
(1975) . Wonham studies the output regulation problem and the
noninteraction problem from a purely algebraic point of view.
The design method is based on the vector space algebra of
Wonham (1975). All the methods that lead to state feedback
use dynamic observers if the state cannot be measured. In
Wolovich (1974) the polynomial matrix analogue of linear

state feedback and observer theory is developed.

The design methods, developed by Rosenbrock (1974) and Mac
Farlane, Belletrutti (1973), are of a completely different
type. Both methods are generalizations of the frequency
domain methods for scalar systems by Nyquist and Bode. The
idea is to use compensators which make the system "almost
diagonal" and use classical theory to design scalar control-

lers in each loop.

In this thesis a purely algebraic approach is taken and
contributions are made to the theory of both analysis and
design. Part I and part II of this thesis can be read inde-

pendently of each other.

Analysis

The two main concepts in the theory for analysis of dynamical
systems are the system description and the equivalence rela-

tion. Examples of system descriptions are state equations and
higher order differential equations. The system description

must be general enough to cover all systems of interest. When
a system description has been chosen a fundamental problem is
to determine 1f two different sets of equations represent two
different systems or if they can be regarded as two represen-

tations of the same dynamical system. In other words, an
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equivalence relation should be defined. When this is done
the equivalence classes can be identified with the dynamical
systems. It is of great interest to determine the invariants
under equivalence because invariants represent properties of
the system and not only properties of its representations.
It is of course desirable to determine a complete set of
invariants, because this set would completely describe the
dynamical system. This seems to be a difficult problem that
is not yet solved for the most commonly used equivalence

relations like e.g. state transformations.

In the so called classical control theory a system was
described by a transfer function. The equivalence relation
was trivial and never mentioned formally. Each equivalence

class consists of only one transfer function.

At the beginning of the sixties state space equations-were
introduced to describe a dynamical system. All state equa-
tions that can be obtained from a given set of state equa-
tions through coordinate changes in the state space are con-
sidered as equivalent. It was found that equivalent state
equations have the same transfer function but the converse
is not true. It was shown by Kalman that the reason is that
there exist uncontrollable and unobservable parts of the
state space. These parts are invariant under equivalence,

but do not affect the transfer function.

Are the state equations a system description that is general
enough to cover all cases of interest? The question was
asked by Rosenbrock and answered with "no". State equations
are equations of first order, but the differential equations
that describe a physical system may be of higher order. In
Rosenbrock (1970) a polynomial system matrix is introduced

as a system description. The polynomial system matrix is

general enough to cover sets of high order linear differential

equations as well as state equations. Rosenbrock defined an

equivalence relation, called strict system equivalence (s.s.e.),

based on the transformations that were usually employed in
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order to bring a system of high order differential equations
to state space form. It was shown that all invariants under
coordinate changes in the state space are also invariants
under s.s.e. This result gives these invariants a much more
general validity. They are not introduced by the transforma-
tions that are employed when the high order equations are

brought to state space form.

Rosenbrock’s polynomial system matrix is general enough to
describe linear, time invariant, finite dimensional, conti-
nuous time systems. Is the polynomial system matrix general
enough to describe discrete time systems? The question is
answered with "no" in part I of this thesis. The differential
operator in the description of continuous time systems is
replaced by the forward shift operator in the description of
discrete time systems. A polynomial system matrix can there-
fore be used only to describe difference equations containing
variables that are shifted forward in time. The difference
equations that describe a physical system do, however, often
contain past values of the variables. Such equations can not

be represented by a polynomial system matrix.

In part I of this thesis a Laurent polynomial system matrix
is introduced. A Laurent polynomial is a finite linear combi-
nation of positive and negative powers of the indeterminate.
The Laurent polynomial system matrix is general enough to
describe difference equations containing both past and

future values of the variables as well as state equations.

An equivalence relation is defined. The definition is based
on the transformations needed to bring a set of difference
equations, containing both past and future values of the
variables, to state space form. The equivalence transforma-
tions include both forward and backward time shifts of the
equations and the variables. Such transformations were intro-
duced and investigated in Sinervo, Blomberg (1971). It is
shown that the invariants under coordinate changes in the
state space are not invariant under the equivalence relation

defined here. This means, for instance, that a part of the
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uncontrollable or unobservable part of the system, as defined
in the state space framework, may have been introduced by

the transformations that were used to bring the equations to
state space form. This is clearly an unsatisfactory situation.
Concepts like for instance the system order, controllability
and observability are therefore redefined so that they become

invariant under the equivalence relation.

Design

Assume that a dynamical system is given. It is then of inte-
rest to construct a theory that shows what can be achieved if
a controller is applied to the system. Two issues are of
fundamental importance in such a theory. The first issue is
to determine a realistic system description. It has to be
determined how the system interacts with its environment. It
should, for instance, be specified which variables that can
be measured and which control variables that are available.
The description should be general enough to cover all cases
of interest. The second issue is to clearly specify the class

of admissible controllers.

When the system description and the class of admissible con-
trollers have been specified a suitable mathematical machinery
has to be chosen. The most important requirement on the mathe-
matical machinery is that it should be matched to the class of
admissible controllers. It should be such that the admissible
controllers are separated from the nonadmissible in a natural

way.

A design theory, of the type outlined here, is presented in
part II of this thesis. The theory covers both continuous
time and discrete time systems. The given dynamical system is
assumed to be described by the input-output relation of the

box § in figure 1.
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e Y.
u S Z

Figure 1. The given dynamical system.

The system is supposed to be linear, time invariant, finite
dimensional and causal. It interacts with its environment in
the following way. The input u is the control input and e is
a nonmeasurable disturbance. The output y consists of the
variables to be controlled and z consists of the measured
variables. The class of admissible controllers consists of
all linear, time invariant, finite dimensional and causal
controllers R that stabilize the system in figure 2. The in-

put uy is a command input.

U e > ___X__’
F. F? u

Figure 2. The control configuration.

A mathematical structure that suits the chosen class of
admissible controllers is the ring of generalized polynomials.
A generalized polynomial can be identified with a stable and
causal rational transfer function. The ring of generalized
polynomials is a principal ideal domain and many useful re-
sults for principal ideal domains are available in the litera-

ture on algebra.

In the design theory of part II of this thesis it is examined
what can be achieved if admissible controllers R are applied
to a given system S as in figure 2. The class H of achievable
transfer functions from u,. toy and the class F of achievable

transfer functions from e to y are determined. It is shown
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that H and F are independent in the following sense. For any
H€ H and F € F there is an admissible controller R, such
that the transfer function from u,. toy is H and the transfer
function from e to y is F. The servo problem is solved in the
following way. Necessary and sufficient conditions are given
for H to contain certain types of transfer functions, e.g.
diagonal transfer functions. The regulator problem is solved
in an analogous way. Necessary and sufficient conditions are
given for F to contain certain types of transfer functions,
e.g. transfer functions which do not transmit certain speci-
fied disturbances, or transfer functions with poles within a

specified region.
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1. INTRODUCTION

The idea of using polynomial matrices to describe linear,
time invariant, multivariable systems was introduced by
Rosenbrock. In Rosenbrock (1970) the analysis is mainly
done for continuous time systems. Discrete time systems are
only discussed briefly. In part 1 of this thesis discrete
time systems are analysed from a point of view that is

slightly different from Rosenbrock's.

Many authors have considered discrete time systems. Kalman,
in Kalman, Falb, Arbib (1969), introduces a module theoretic
approach and the analysis is made from an input-output point
of view. Fuhrmann (1976) and (1977) generalizes this to
internal system descriptions and gives the connection to
Rosenbrock's work. The algebra, used by Fuhrmann to describe
discrete time systems, is the same as the algebra for con-

tinuous time systems.

There is a connection between the spaces used to describe
the input and output signals and the system algebra. This
was emphasized in Sinervo, Blomberg (1971). It is shown
that it is reasonable to use different algebras for discrete
and continuous time systems. This point of view is adopted

in this thesis.

Consider a linear, time invariant, discrete time system,
described by a set of difference equations. The equations
may contain both future and past values of the variables.

Therefore, the system can be written as
T(q)& = U(g)u (1.1 a)
y = V(@& + W(g)u, (1.1 b)
where ¢ is the forward shift operator, defined through
gx(t) = x(t+l). (1.2)

Furthermore, T(qg), U(g), V(g) and W(g) are matrices, with

entries that are Laurent polynomials. A Laurent polynomial is a
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finite linear combination of positive and negative powers
of g. The formal definition is made in Chapter 2. The matrix

T(q) is assumed to be square and have a nonzero determinant.

The system (1.1) is not included in the polynomial matrix
description in Rosenbrock (1970) since negative powers of g
are allowed. It is natural to allow negative powers of ¢
because they give a causal relationship between the variables.
Observe that if the entries of V(g) are polynomials of non-

zero degree, then y does not depend causally on §&.

For polynomial systems of the form (1.1) Rosenbrock (1970)

defines concepts like the order of the system and decoupling
zeros, i.e. uncontrollable or unobservable modes. A system
matrix is introduced and an equivalence relation, called
strict system equivalence (s.s.e.), is defined. It is desir-
able to make corresponding definitions for the Laurent poly-
nomial description (1.1). This is done in this thesis in the

following way.

Before the system order and the controllability and observ-
ability concepts are defined a state of the system will be
defined. The state of the system is "the least amount of
information that is needed to determine the future behaviour
of the system if the future input is known". It has to be
decided what is meant by "the future behaviour of the system".
This can only be done if the vector spaces for the time
sequences u, &, and y have been specified. Different possible
vector spaces are discussed in Sinervo, Blomberg (1971). In
Chapter 3 of this thesis it is shown that it is reasonable to
use the space of all R¥-valued time sequences, defined on all
positive and negative integers. When this choice has been
made the solutions to the difference equations (1.1) can be

analysed and a state can be defined.

»Based on the definition of the state the definitions of the
system order, decoupling zeros, controllability and observ-

ability indices are made in Chapters 3 and 4. stability and
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causality are also defined from the solutions of (1.1). It
is shown how all these definitions can be expressed in terms
of the matrices T(qg), U(g), V(g) and W(qg).

In Chapter 4 the system matrix is introduced as in Rosenbrock
(1970) and an equivalence relation is defined. The equiva-
lence relation is defined so that there is an isomorfism
between the sets of solutions to equivalent systems. This
implies that the definitions above, which are based on the
solutions to (1.1), are invariant under equivalence. It is
shown that the equivalence relation can be described in the
same way as s.s.e. The only difference is that Laurent poly-
nomials are substituted for the ordinary polynomials. The
analysis of the equivalence relation is very similar to the
analysis of s.s.e. The reason is that the Laurent polynomials
as well as the ordinary polynomials form a principal ideal

domain.

The equivalence relation is more powerful than s.s.e. in the
sense that the equivalence classes are larger. It is shown in
Chapter 4 that each equivalence class contains systems in
polynomial form and in state space form. It also includes
systems where the entries of T(q), U(g), V(g) and W(g) are
polynomials in the backward shift operator g~l. In some cases
it is suitable to use the polynomial form in q_l. An example
is the development of the minimum variance controller in
Astrdm (1970). In other cases the polynomial form in g or the
state space form is more suitable. It is therefore valuable
to have an equivalence relation where each equivalence class

contains all these forms.

It is possible to find certain simple forms of the system
matrix in each equivalence class. In Chapter 4 it is shown
how the system order, the decoupling zeros, the controllabi-
lity and observability indices easily can be computed and how
stability and causability can be checked from these forms of

the system matrix.
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Finally, it should be noted that the theory in part I of
this thesis can be generalized in a straightforward manner.
Generalized polynomials, as defined in part II, can be used
instead of Laurent polynomials to describe the systems. The
equivalence relation, as well as all definitions, should
then be modified analogously. This would give a unified
theory for systems described by system matrices. In parti-
cular the theories for analysis in Rosenbrock (1970) and in
part I of this thesis would be included as special cases.
Furthermore, a theory which disregards stable uncontrollable
or stable unobservable modes would be obtained. Such a theory
might be useful for design purposes. Some ideas in this

direction are used in part ITI of this thesis.
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2. PRELIMINARIES

In section 2.1 we will define Laurent polynomials. It is
shown that they form a ring with essentially the same
properties as the ring of polynomials. The Laurent
polynomials will be used to describe linear dynamical
systems. In section 2.2 two different vector spaces of
time sequences are introduced. The action of the shift

operator on elements in these spaces is analysed.

2.1 Laurent polynomials

Let R denote the field of real numbers, Z the ring of

integers, 2 the positive integers and the non-

+ 20+
negative integers. Furthermore let R[x] denote the ring
of polynomials in the indeterminate x with coefficients

in R, 1i.e.

1l
I™MB
o]
[
>
g}
m
Py
B
m
[NV

R[x] = { p(x)|p(x) i ot |

Def. 2.1.1 The set of Laurent polynomials R(x] is defined

as

m
R(x] = { a(x)]a(x) = = a,x’, a; €R, n,m€ Z, m>n }

Remark. Observe that R(x] is a subset of R(x), rational

functions.

Addition and multiplication in R(x] are defined as in R(x).

It is easy to verify that R(x] is a ring.

Theorem 2.1.1 R(x] 1is an euclidean domain.

Proof. We have to verify that R(x] is an integral domain

and that there is a function v from the nonzero elements

of R(x] into the nonnegative integers such that
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(i) For all pairs a,b from R(x] for which b # 0 there
exist g and r in R(x] such that a = bg+r and

either r =0 or v(r) < v(b).

(ii) For all pairs a,b from R(x] for which a # 0, b # 0,

v(a) < v(ab).

That R(x] is an integral domain is obvious. An element a

in R(x] can be written

with aj € R and a, #Z 0 and a # 0. Define v(a) = m-n,
then (ii) is satisfied. Using the division algorithm for
polynomials it is easy to see that also (i) is satisfied.

[m}

kp (x) ’

Every Laurent polynomial a(x) can be written a(x) =x
where p(x) is a polynomial with p(0) # 0 and k € Z.

Of course p(x) is uniquely determined by a(x).

Def. 2.1.2 The degree of a Laurent polynomial a(x) is

defined as the degree of the polynomial p(x) and denoted
deg a(x), while deg p(x) denotes the degree of the poly-
nomial p(x).

Remark. The degree of a € R(x] is equal to +v(a) in the
proof of theorem 2.1.1.

Def. 2.1.3 The zeros of a Laurent polynomial a(x) are

defined as the zeros of the polynomial p(x).

Remark. Note that a Laurent polynomial has no zeros at

the origin.

Since every euclidean domain is a principal ideal domain

it follows that R(x] 1s a principal ideal domain.




This insures that matrices with entries in R(x] have

properties analogous to those with entries in R[x].

Let Rnxm(x] denote the set of all nxm matrices with
entries in R(x].

nxn(

Def. 2.1.4 A matrix A € R x] is unimodular if there

is a B € Rnxn(x] such that AB = I.

It is well known (e.g. MacDuffee (1946)) that a matrix is

unimodular if and only if its determinant is a unit in the
ring of its entries. The units of R(x] are Laurent poly-
nomials of the form cxk, where ¢ € R~ {0} and k € Z.
Therefore we have:

Theorem 2.1.2 A matrix A € RV
and only if det A = cxk, where ¢ € R~ {0} and k € Z.

x] is unimodular if

Remark. If A is a polynomial matrix, then it is unimodular
if and only if det A = ¢, where ¢ € R~ {0}. It is thus
important to clearly state if a matrix is unimodular as a
polynomial matrix or as a Laurent polynomial matrix. The
matrix diag(x,l) is for instance a unimodular Laurent

polynomial matrix, but not a unimodular polynomial matrix.

Def. 2.1.5 The matrices A,B € RV M (x] are equivalent if
there are unimodular matrices U € RV " (x] and V € RV (4]

such that A = UBV.

Since R(x] is a principal ideal domain the following
result is true (e.g. MacDuffee (1946)).

nxm(

Theorem 2.1.3 Every matrix A € R x] 1is equivalent to

a matrix S of the form
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s = (D 0 ) if m>n
S =D if m=n
D
S = if m<n
0
wh D = di (4 i i 0 0) {1 }k lled
ere = diag(i;, i,,...,1y, y e ooy . lj =1 are calle

invariant factors and have the property ij]i The

j+1°
invariant factors are unique up to units in R{(x].

The matrix S 1is called the Smith form of A. Let us
require that {ij} are polynomials with leading coefficient
1 and ij(x) #0 for x = 0,Y¥j. The Smith form is then
unique.

nxm(x] .

Let A belong to R The following operations on A

are called elementary row operations.
o Multiply a row by a unit in R(x], i.e. by cxk,
where ¢ € R~ {0}, k € Z. (2.1.1)

o Add a multiple by a Laurent polynomial of one row to

another row. (2.1.2)
o Interchange any two rows. (2.1.3)

It is clear that any elementary row operation can be

obtained by multiplying A from the left by a unimodular
matrix. Conversely, since R(x] is a euclidean domain,
multiplication of A from the left by a unimodular matrix
gives a matrix which can be obtained by performing elementary
row operations on A (MacDuffee (1946)). Corresponding
results are true for elementary column operations and

multiplication from the right by a unimodular matrix.

The Laurent polynomial matrices T(x) and U(x) are said
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to be relatively left prime if the only common left

divisors are unimodular Laurent polynomial matrices.

The following theorem is formulated and proven for poly=-

nomial matrices in Rosenbrock (1970).

Theorem 2.1.4 Let T(x) and U(x) be respectively rxr

and rxf Laurent polynomial matrices with det T(x) # 0.

The following conditions are equivalent.

(1) T(x) and U(x) are relatively left prime.

(ii) The rank of (T(x) U(x)) is r for all nonzero

complex x.
(iii) The Smith form of (T(x) U(x)) is (I 0).

(iv) There exist Laurent polynomial matrices V(x) and
W(x), respectively &xr and &x% such that the
matrix

T (x) U (x)

-V (x) W (x)
is unimodular.
(v) There exist relatively right prime Laurent polynomial

matrices X(x) and Y(x), respectively rxr and
2xr, such that

T(x) X(x) + U(x) Y(x) = I

Proof. The theorem is proven as in Rosenbrock (1970), theorem
6.1 with the difference that all concepts related to polyno-
mial matrices should be substituted by the corresponding

concepts for Laurent polynomial matrices.
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2.2 Shift operators and signal spaces

Let R" be the vector space of n-tuples with components

in R.

Def. 2.2.1 Let RE be the set of all functions from %
to RD.

Remark. RE is a vector space over R if all operations

are defined pointwise.

n n .
Def. 2.2.2 Let RZ be a subspace of RZ given by

€7 such that t<t, = u(t) =0 }.

_ n
= { u€R, |3 ¢t 0

0

Def. 2.2.3 The shift operator q is defined as a map from
R to R by

qu(t) = u(t+l) u € R

Positive and negative powers of the shift operator are

defined in the obvious way

qku(t) = u(t+k), k € 7.

A Laurent polynomial in the shift operator is now defined

as

. m
< a; ql> u(t) = = aiu(t+i) n,m € Z.
i=n i=n

The sets of polynomials and Laurent polynomials in the shift

operator are denoted RI[q] and R(g] respectively. Observe

that R(qg l] is equal to R(gl]. If al(g) € R(g] then al(q)

is a linear map from R} to R? and the restriction of

Z
oY A T

a(q) to Rg is a linear map from R? to Rz. It is of

fundamental importance to determine which of these linear

maps that are bijective. In Sinervo, Blomberg (1971) the

following two theorems are proved.
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Theorem 2.2.1 Regard af(g) € R(g] as a map from Rg to

RD. Then al(q) is bijective if and only if it is of the

form afqg) = c qk, c € R~ {0} and k € 7Z.

Remark. The theorem says that a(g) € R(g] is bijective

if and only if it is a unit in R(ql.

—
Theorem 2.2.2 Regard a(g) € R(g] as a map from Rg to

Eg. Then af(g) is bijective if and only if it is nonzero.

Remark. The last result may by a first sight seem strange.
Observe, however, that the equation (g+b)u=0, bER ~ {0},

. (g5
has only the solution u =0 1in RE.

The last two theorems show how important it is to specify
the signal spaces. Let al(q) be a bijective map. Then the

two equations

al(q) a2(q) y = al(q) b(g) u u given

and

have exactly the same solutions. In other words it is
possible to cancel common factors if they represent bijec-
tive maps. Because of theorem 2.2.2 it also makes sense to

represent the solution y to the equation

a(gq) vy = b(g) u u given

as

. . . £n
if we are working with the space Rz'

PN (q] can be regarded as a linear map
)

A matrix A(g) € R
e

from R to R or from R to R
z Z z z

We will now

generalize theorems 2.2.1 and 2.2.2 to matrices A(q)EﬁRnxn(

ql.
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Theorem 2.2.3 Regard A(qg) € Rnxn(q] as a map from RE

to RZ. Then A(q) 4is bijective if and only if it is

unimodular.
Proof. Suppose A(gq) is unimodular. Then by definition
A_l(q) € Rnxn(q]. Therefore A-l(q) is a linear map from
Rg to RQ. A(g) 1is surjective because for any v in Rg
the element A_l(q)v € Rg is mapped by A(g) to v. A(q)
is injective because if A(g)u = 0 then A-l(q)A(q)u =0,
i.e. u = 0.
Conversely suppose that A(g) 1s not unimodular. Then there
is at least one z € C ~ {0} such that det A(z) = 0 and
an u # 0 such that A(z)uO = 0.
We have A(z)uO =0 e A(z)uO =0 e A(z)uO = 0.
Choose u = uozt + EOEt € Rg then A(q)u = A(z)uozt-FA(E)ﬁOEt =
= 0. I.e. A(qg) is not injective.

m]
Theorem 2.2.4 Regard A(g) € Rnxn(q] as a map from IE— to

n
el z
Rz' Then A(g) is bijective if and only if det A(g) # 0.

Proof. Suppose det A(g) # 0. Then A—l(q) can be computed
and A_l(q) € Rnxn(q), matrices whose elements are rational
functions in g, which by theorem 2.2.2 are well defined

linear maps from @; to @;. Therefpre A—l(q) is a well
defined map from ﬁz to EE. That A(g) is bijective

follows as in the proof of theorem 2.2.3.

Conversely suppose that det A(gq) = 0. Suppose A(g) has

rank m, which is less than n. Then there is a nonzero minor
of order m. Without loss of generality we can suppose that
the upper left mxm submatrix has nonzero determinant. Then

A(g) can be partitioned as

All (q) AlZ (q) }

A(q) =
Ayq (@) A, , () J




30

where All(q) is an mxm matrix and det All(q) # 0.
Furthermore the last n-m rows are linear combinations of
the first m rows. I.e. there is a rational (n—-m) xm

matrix B(g) such that

B(q) All(q) Alz(q)} = [Azl(q) Azz(q) (2.2.1)

f_n-m

Let u, be an arbitrary nonzero element in RZ By the
first part of the proof there is a unique solution
om .

Uy € RZ to the equation

App(@) vy = A (9) u, (2.2.2)

—m n-

Now, B(g) is a well defined linear map from R? to R; m
Therefore (2.2.2) implies

Bla) A;(q) uy = -B(a) A, (q) u,
or by (2.2.1)

From (2.2.2) and (2.2.3) it now follows that
Binl@) Ay @ 1

Barla)  Ayyla) Uy

Since U, #0 1t follows that A(g) is not injective.
0

nxm(

Theorem 2.2.5 If A(g) € R x] then

—
A(gq) u=0 VY ue€ Rg = A(g) =0

Proof. Choose the i:th component of u equal to 1 at t =0

and equal to 0 for all other +t. Let all other components
of u be equal to 0 for all t € Z. Then A(g) u = 0 implies
that the i:th column of A(g) 1is zero. Repeat the argument

for every i. o




Remark.

—
for R?
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The theorem is true even if Rg is substituted

since

om

R
z

m

< R
z
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3. LINEAR TIME INVARIANT SYSTEMS

The class of systems to be considered is defined in section
3.1. In the following sections the concepts of system
order, stability, causality, controllability and observ-
ability are defined. The definitions are made using only
the time sequences of the system, i.e. the input, the
internal variable and the output. It is then shown how the
definitions can be expressed in terms of the matrices used

to describe the difference equations.

3.1 The system description

The systems tobe considered here are described by the

difference equations

T(g) g = U(q)u (3.1.1a)
y =V(g)g + W(g)u, (3.1.1b)
where T(q) € R"“(q], u(q) €rR"*(ql, V(g erRVT(q],
W{q) ERmxz(q], 116?%, £ ERé, and y‘ERg. Furthermore
det T(gq) # 0. Here u 1is regarded as a given input and &

is a solution to (3.1l.la) and is called the internal variable.
Finally vy, called the output, is uniquely given by & and

U.

The system description (3.1.1) differs from that of Rosenbrock
(1970) in that we allow the matrices T(g), Ul(g), V(g), and
W(g) to be Laurent polynomial matrices while Rosenbrock
demands them to be polynomial matrices. The restriction to
polynomial matrices may cause trouble if we want to write

down the eguations for a given physical system. It may very
well happen that the output depends on old values of the
internal physical variable. This situation cannot be handled
if V(g) 4is restricted to be polynomial. The problem may be

circumvented if we make a time translation of the internal



33

variable. This is however not a transformation of strict
system equivalence and not studied by Rosenbrock. It will
be studied in chapter 4 of this work, where an equivalence
transformation, slightly more general than strict system

equivalence, is defined.

The question now arises why & and y are allowed to
belong to R; and Rg. An argument against this is that
in a physical system all signals must start at some finite
time. The consequence is that ¢ and y should belong to
gg and ET. This would by theorem 2.2.4 imply that
equation (3.1.la) has a unique solution, which can be
written as

T-l

g = (q) U(g) u.

Inserting this into (3.1.1b) gives

y = (V)T 1) ulg) + wig)) u.

This means that the internal variable and the output are

uniquely given by the input.

The system (3.1.1) is supposed to be a mathematical descrip-
tion of what we may call a process or a physical system.

If the equations (3.1.1) describe the process exactly then
the motivation above would imply that £ belongs to EE
and therefore vy € E?. In most cases the process is not
exactly described by (3.1.1). Some parameters in (3.1.1) may
have incorrect values, noise may act on the process or some
initial value may be given to the process variable &. We
will show that one way to take such phenomena into account
in the mathematical description (3.1.1) is to allow the
solution & to belong to the larger space Rg. This will
then imply that vy belongs to R". Let us start with a

z
simple example.




34

Example 3.1.1 Let the mathematical description of a

system be
(g=2)g=(g-2)u (3.1.2a)
y = ¢ (3.1.2b)

where u € ﬁ;. The solution to (3.1.2a) in ﬁ; is

g(t) = u(v) t € Z, (3.1.3)

while the solution in RZ is
£(t) = u(t) + a-2F t €2, ac€R. (3.1.4)

Suppose that there is some kind of noise acting on the

process, so that it is described by
(g-2)g = (g-2)u + e (3.1.5a)
y = ¢ (3.1.5b)

If for instance e(t) is equal to 1 for t = tO < 0 and

0 for all other t, then the solution for t > 0 is given
by
E(t) = u(t) + b-2°t t >0 (3.1.6)

where b = 2 U, Observe that E(t) = 0 for sufficiently

large negative values of t.

Suppose that we, at time t = 0, want to solve equation
(3.1.2a) to find out what might happen to the internal
variable in the future. If we solve (3.1.2a) in 'ﬁ; then
the solution (3.1.3) gives the answer that ¢ will follow
yr i.e. (3.1.4),

says that there might be a difference between £ and u,
t
2-.

u exactly in the future. The solution in R
which will tend to infinity as Comparing with (3.1.6)
we find that the last answer is correct if there has been

disturbances acting on the system in the past.
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The idea of this example can clearly be generalized to
the system (3.1.1). A disturbance on the process in the
past may drive the internal variable outside the set of
solutions to (3.1.la) in fgz. Since we do not know how
the disturbances influence the internal variable we have
to consider the largest existing solution space, i.e.
R,

Z
For (3.1.1) to describe a physical system there has to be
a causal relationship between u and y. We will later
give necessary and sufficient algebraic conditions for
this. If g 1is describing a set of physical variables
then they have to depend causally on u, and y has to
depend causally on ¢. We will however allow £ to be
mathematical variables with no physical significance. In
this case there does not have to be a causal relationship
between u and ¢ or between & and vy, but still

between u and vy.

3.2 The order of the system

Suppose that a system, described by equations (3.1.1), is
observed at time t = 0. Then knowledge of the future
input sequence wu(t), t > 0 1is not sufficient to
uniquely determine the future sequences of the internal
variable ¢ and the output y. A certain amount of
information about the past behaviour is also needed. The
least "number of parameters" needed together with the
input u(t), t > 0 to uniquely determine the future
behaviour of the system is called the order of the system.
The set of parameters is called the state of the system.
We will later specify what shall be meant by "the future

behavicur of the system".

The following lemma shows that the influence on the

solutions from future inputs can be disregarded.
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) _ [ u(t), £t>0
Lemma 3.2.1 For any u € R~ put uo(t) =10 t <0
and u; T u-ug. Then any solution & € RE to
(3.1.1a) can be written ¢ = EO + gl, where 50 is the

unique solution to

T(q) go = U(q) U-O

, (e . .
in Rg and is some solution to

T(q) &, = Ulq) uy

. r
in R”.
z

Proof. The result follows from theorem 2.2.4 and the

linearity of (3.1.1a).

In this section wu(t), t > 0 is supposed to be known and
we want to examine how the solutions in the future are
influenced by the behaviour of the system for t < 0. It
therefore follows from lemma 3.2.1 that we can put u(t) =
=0, t >0 without loss of generality. Accordingly it
will be supposed throughout this section that u(t) = 0 for

t > 0, unless otherwise is stated.

Def. 3.2.1 R? = {u€Rl|u(t) =0 for t >0 }.

We will need a few more definitions.

Def. 3.2.2 Let Xu and Vu be the set of internal

variables and outputs respectively corresponding to the

fixed input u € EZ: I.e. if
T(g)g = U(g) u (3.2.1a)
y = V(a) € + W(g) u (3.2.1b)
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Remark. Xu and Vu are not linear vector spaces (over R)

for a general input u, but they are for u =0, i.e.
XO and VO‘
Def. 3.2.3 Let v belong to Rg i.e. v: Z » R'. Then

v, is the restriction of v to Z+.

Def. 3.2.4 Let Vz be the set of all v, such that

vy € Y with uw e RY and 1let V+ = U V+.
u A 2 u
u€R
z
Remark. V; is generally not a linear vector space but it
is easily shown that V; and Y are.
Remark. Observe that Xu’ Vu and VZ are defined for
) + L.
any u in Ri, but in the definition of V it is

A
supposed that u € Rz’

Using the previous definitions we can define the order of
the system using only properties of the solutions of the

difference equations and not the equations themselves.

Def. 3.2.5 Denote n; = dim X, and np = dim (¥'/V3).
Then define the order n of the system (3.2.1) to be

n=1’10+1’1D.

Remark. n, and n will be shown to be finite for the

D
systems considered.

Remark. Since V+ is a subspace of V+ then the factor

0]
space V+/V$ is well defined and dim (V+/Vg) = dim V+ -

- dim vg.

Example 3.2.1 We want to determine the order of the system

2 1

2q +d%) £=02+qgYH u

Il
uy
+
Q
1
Q
[«

Yy
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The vectorspace

(2 @ + g2

XO is given by the solutions to

' =0

which has the general solution in Rz'

E'(t) = a (-

Therefore n, =

0

The vectorspace

y'(t) = a (-

and dim Y = 1.

0

1, t
7) a € R
dim XO =1
+ . .
VO is given by
1 t
§) t>1 a € R

The general solutions to the given equations are

I
o

£(t)
y(t) = a

+

Therefore V

y+(t) = a (-

The two parameters a

Y- Therefore

We find that the order of the system is

= N

)t + u

(t-3)
t

) + u (t-1).

is given by

t
%) + u(t-1) t>1, ueR, ac€Rr
and u(0) are needed to determine
dim y¥=2 and np = dim ¥* - dinm vg = 1.

n=1+1= 2,

We will now specify exactly how much of "the future behaviour

of the system" that can be determined with n =

parameters.

Lemma 3.2.2

to
then

T(q)eg = 0.
£ = 0.

matrix with det T(g) # 0
g(t

Ny +np

Let T(g) be an rxr Laurent polynomial
and let £ be a solution in Rg
If ) = 0 when t > ty for some ty € 2,
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Proof. Let Nl(q) be a diagonal polynomial matrix with
det Nl(q) =aqgP, a€ R~{0}, pE Zo . such that

Ql(q) = N;(q)T(g) 1is a polynomial matrix. Qq(q) can be
factored as Q;(q) = 0,(q)Q(q), where Qz(q)k and Q(q)

are polynomial matrices with det Qz(q) =cqg, c € R~{0},
k € Z0+ and det Q{0) # 0. The factorization can be done
using the method of Rosenbrock (1970) p. 61-62. We have

Q(g) = N(q)T(g), where N(q) = Q;l(q)Nl(q) is a unimodular

Laurent polynomial matrix. By theorem 2.2.3, the
equations

T(g) € =0 (3.2.2)
and

0(g) £ =0 (3.2.3)

have exactly the same solutions in RZ‘

Define Q, = Q(0) and 0Q(q) = Q(q) - Qy. Then equation
(3.2.3) can be written

g = —Qalﬁ(q) £. (3.2.4)

At time to—l this gives

- o1l -
E(tg=1) = -0;" O(q) &(ty=1) (3.2.5)
where the right member contains only ¢(t) for t > tO.
Therefore if ¢(t) = 0 for t > tO then £(t) =0 for

t > to—l. Iterating like this it follows that & = 0.

.

Lemma 3.2.3 Any solution to (3.2.1a) (u € RO) can

N

uniquely be decomposed as & = £' +&", where &' is a
solution to T(g)g'=0 and &" is a solution to 3.2.la

with g"(t) = 0 for t > t where t is some integer.

0’ 0
Proof. Let ¢ be a given solution to (3.2.la). Since
u € E@ it is clear that there is a t such that

0
T(g)e(t) =0 for t > ty- Define ¢' as the unique
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solution in RZ to T(q)e' = 0 such that £'(t) = £(t),
t >t
g" = g£-¢', then clearly ¢g"(t) =0, t > ty-

The uniqueness follows by Lemma 3.2.2. Put

Lemma 3.2.4 Let v, € y*. Then y, can be uniquely

decomposed as Yy = y; + yi, where y; € Vg and yi(t) = 0,
t > tO for some t0 € Z+.

Proof. Let ¢ € RZ be a solution to (3.2.l1a) giving vy.

Decompose £ according to lemma 3.2.3 as £ = £' +£" and
define y' = V(g)g' and vy" = V(g)E" + W(g)u. Then

y =y' +y" and Yy = y; + yi is a decomposition of Y.
in the desired form.

Suppose there are two decompositions Yy = yi + yi and

Y, = §i + §1 of the desired type. Then

Define
iy é D T, noo_ n
Y, =Y, Yy =Y, Yo
~ + ~
where v, € VO and y+(t) =0, t > tO for some t, € ZO+'
We will show that §+ = 0. Since v, € VO there is a
E such that
T(g)e =0 (3.2.6a)
v = Vit (3.2.6b)

where vy (t) = y+(t) for t € Z+.

Let X(g) be an rxr Laurent polynomial matrix such .
that

T(q) = Ty(q) X(q) (3.2.7a)

I

Vig) = Vy(a) X(qg) (3.2.7b)
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and To(q) and Vo(q) are relatively right prime.

By theorem 2.1.4 we have
Qla) Tolq) + P(q) Vylq) = I. (3.2.8)

Multiply (3.2.6b) from the left by P(g) and use (3.2.7),
(3.2.8), and (3.2.6a)

P(@)Y = POV (@) X(DE = [I-0(q)Ty (@) IX(@)E =
~ A
= X(q)g = z
Since ?(t) = 0 for sufficiently large +t, the same is true
for =z(t). But =z is by (3.2.6a) and (3.2.7a) a solution to
Tyla)z = 0

By lemma 3.2.2 it follows that 2z = 0. This gives by (3.2.6b)
and (3.2.7b) that ¥ = 0 and therefore Y, = 0. This means

that the decomposition of Y4 is unique.

]
Def. 3.2.6 Define the subset YT of vy¥ through V¢]=
= {y, e v* |y, (&) =0, t > ty for some t, € Z,.}.

r—Q," +

Remark 1. Notice that u € RZ in the definition of Y

1
Remark 2. It is easily shown that v* is a vector space.

The following corollaries are direct consequences of lemma
3.2.4.

Corollary 1. The vector space V+ can be decomposed as
yt = Vg C>;¢1 where @ denotes the direct sum.

—
Corollary 2. dim Yt = dim v* - dim Vg = dim(V+/V$) = np,.




42

Theorem 3.2.1 Let § be an arbitrary solution in Ri

7
to (3.2.1la) with u € Ri and let y be the corresponding

output. To determine Yy and &', defined through lemma

+ n

3.2.3, it is necessary and sufficient with n = N, D

parameters.

Proof. Sufficiency. With n, parameters it is possible to

determine &' since it belongs to the no—dimensional space

XO. y, can be decomposed as vy, = [V(q)a']+-+[V(q)E"-+W(q)u]+,
where §&" 1is given by lemma 3.2.3. The first term is known
when &' 1is known. The second term belongs to V?. Therefore

-
it can be determined by dim yt = n, parameters.

Necessity. By lemma 3.2.4 y, can be dgsgpposed as

Yy = y;—kyi, where y; € Vg 4329 yi € y*. It is sufficient
to show that for any y4} in YT and &' in XO there is a
solution & to (3.2.1) giving this y: and &', By
definition of V¥ there is a £ giving an arbitrary yi

in VIK To this £ can be added an element in X so that

0

the desired &' is obtained. This gives a contribution to
e |
y, in V; but does not affect y! since y*  and Vg are

independent subspaces.

Let &' and yi be defined through lemma 3.2.3 and 3.2.4
respectively. We may define the state of the system at t =1
as the n parameters needed to determine &' and yi. In
that case we have to specify how &' and yi can be
determined from the state. Alternatively we can regard the
pair (&', yi) as the state. We will do the latter thing

here.

Def. 3.2.7 The state at time t = 1 of the system (3.2.1)

is the pair (&', yi), where &' and y: are defined
through lemmas 3.2.3 and 3.2.4 respectively. The state space

of the system is Xox ;in where x denotes the set product.
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Remark 1. If the state at t = 1 and u, are known then
it is possible to determine Y, and £+(t), t > t0 for some
tO € Z0+. In general it is not possible to determine g+.

Remark 2. The state of any other time t € Z 1is defined

analogously.

Example 3.2.2 Consider the same system as in example 3.2.1,

namely

3 1

2 ¢ +qg%) £=(2+qhH u

y=¢t+qt-qu

The general solution is given by

t

g(t) = a(- 3)~ + u(t-3)

t

y(t) = a(= 3) " + u(t-1)

N N

Suppose u E'ﬁ;. Then it is needed four parameters e.g.
(a, u(-2), u(-1), and u(0)) to determine £,r while it
is needed only two parameters (a and u(0)) to determine

Y+’

The order of the system was in example 3.2.2 shown to be

n = 2.

With the two parameters a and u(0) we can uniquely
determine Yy and & (t) for t > 3. It is however not

possible to determine £+.

Define

_ u(0) t
g(t) = { 0 ‘

v
[\

The state at t = 1, as defined in def. 3.2.7, is

t

€',y = (al-9 % g(1)
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We will now show how the order of the system (3.2.1) can be
computed from the matrices T(g), U(g), V(g), and W(q).
Theorem 3.2.2 The number n, = dim X0 in def. 3.2.5 is

= deg det T(gq), where deg det T(q) is the

given by ng

degree of the Laurent polynomial det T(q).

Proof. By theorem 2.2.3 equationi(3.2.la) can be multiplied
from the left by a unimodular Laurent polynomial matrix

without influencing the solutions. Since R(x] 1is a

euclidean domain there is a unimodular N(qg) € Rrxr(q] such
that Tl(q) = N(g)T(g) 1is lower left triangular
ti (@) 0
T, (q) =
t (@, .. (@
and
r
deg det T(q) = deg det Tl(q) = X deqg t,.(q).
T T =1

We want to determine how many independent parameters that are
needed to uniquely determine & in Tl(q)g = 0. The system
of equations can be solved by solving the equations one by
one from the top. The first equation is tll(q)gl = 0. The

equation can be written

k2 k2—l kl
tll El(t+-k2)+-tll El(t-+k2—l)-+..rktll El(t-+kl) = 0,
kl k2
where k2 > kl and tll # 0, tll # 0. By standard theory

for difference equations it is needed kz—kl = deg tll(q)
parameters to uniquely determine gl in Rz’ The second

equation is
f22(@) &5 = "ty (@) &y

Here gl and therefore tZl(q)El is already determined.
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A particular solution to the equation can then be computed.
To completely determine 52 one has to determine the
solution to t22(q)£2 = 0. For this there is needed
deg t22(q) independent parameters. Continuing in this way

we find that the total number of independent parameters

needed to determine gl, 52,...,£r is
r
.Z deg tii(q).
i=1
[m]
-
We will now give a method to compute n, = dim Y'. Define

the transfer function for the system (3.2.1) as

1

c(q) 2 v i U@ + w(g) (3.2.9)

Decompose G(g) as
G(g) = H(g) + D(q) (3.2.10)

where D(g) 1is a strictly proper rational matrix with all
poles of its entries zero and no entries of H(g) have
poles that are zero. This decomposition of G(g) is unique.

oK k
Def. 3.2.8 The subspace RZ of R, is defined as

k' k 1
R>=4<4v € R. |3 t, €2 such that t > t, = v(t) =0
z z 0 0 J

Lemma 3.2.5 Let T(g) be an 1rxr Laurent polynomial

matrix with det T(g) # 0. Then T(g) is a bijective linear

ez
map from RZ to Egi

S —
Proof. That T(g) is a linear map from Rg to R is
clear. It is injective by lemma 3.2.2. Let u be an arbi-
= sy
trary element in RE. We will show that there is a v € Rg

such that

T(g) v = u (3.2.11)
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As in the proof of lemma 3.2.2 there is a unimodular
Laurent polynomial matrix N(gq) such that Q(q) =
= N(qg)T(q) is polynomial with det Q(0) # 0. Therefore
(3.2.11) is equivalent to

Q(g) v = N(g) u (3.2.12)

With QO = Q(0) and 6(q) = Q(q)-—Q0 we have

v(t) = -0 M [G(q) v(t) - N(q) u(t)] tez (3.2.13)
Here Qalﬁ(q) is polynomial with no constant term. Choose
tO such that N(g)u(t) = 0, t > tO and define v(t) = 0

for t > tO‘ ITterate (3.2.13) backwards in time starting at
t = to. This defines v as a solution to (3.2.13) and
therefore also to (3.2.11). Therefore T(gq) 1is subjective.

[m}

Corollary. Any mxf{ rational matrix G(g) 1is a well
. . - Sl

defined linear map from RZ to R, -

Proof. G(g) can be factored as T—l(q)U(q), where T(q)

is an mxm polynomial matrix with det T(gq) # 0 and U(q)

is an mx% polynomial matrix. U(q) is clearly a well

. . N m' -1 .
defined linear map from R, to R, and T “(gq) is by
iU
lemma 3.2.5 a well defined linear map from R? to .ET
o

Lemma 3.2.6 Let D(g) be defined through (3.2.10). Then
y is the range of the mapping f(u) = [D(q)u]+, u € RY,

— - . —m
where D(q) is interpreted as a map from R, to R.

-

Proof. By the proof of lemma 3.2.4 any element yi in VY
- =5
can be written vyl = [V(q)g"-l-W(q)u]+ for some u € Ri,

. -
where ¢&" is a solution to (3.2.la) with &" € RZ. I.e.
y —
T(g)&" = U(q)u, u € Ryr &" € R, (3.2.14)

By lemma 3.2.5 it follows that §&" is uniquely determined
by u and
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e = 1T H@u(gu (3.2.15)
where T “(g)U(g) 1is interpreted as a linear map from Rz

-
to Rg. This gives

1

vy = [V(@T " (@) U(u + Wigul, (3.2.16)

or by (3.2.9) and (3.2.10)

yy = [H(q)ul + [D(g)ul, (3.2.17)

+

It is shown e.g. in Rosenbrock (1970) that any mx% rational

matrix can be written
I
H(g) = A ~(q)B(q) (3.2.18)

where A(gq) and B(g) are mxm and mXx% polynomial
matrices respectively with det A(g) # 0. Furthermore A(qg)
and B(g) are relatively left prime and every zero of

det A(g) is a pole of an entry in H(g) and vice versa.
Since H(g) by definition has no poles that are zero we

have

det A(0) # 0 (3.2.19)
. —m '
To evaluate (3.2.17) we have to find =z € RZ such that
z = H(qQ)u (3.2.20)

This is equivalent to solving the equation

F—E‘ a——

A(q)z = B(q)u, u€R, zE€ R? (3.2.21)
Introduce AO = A(0) and Al(q) = AO-—A(q). Then (3.2.21)
gives

Aoz - Al(q)z = B(g)u (3.2.22)

By (3.2.19) det AO # 0. Therefore

_l —
z = AO Al(q) z + AO

1

L g(q) u (3.2.23)

Here A,

0 Al(q) and ABlB(q) are polynomial matrices and
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-1 . T
AO Al(q) has no constant term. Since u € RZ we have
that AalB(q)u(t) =0, t > 1. Iterating (3.2.23) backwards
in time, starting with =z(t) = 0, t > t0 for some t0 € Z+
gives that =z(t) =0, t > 1. TI.e.
T
(H(g)ul = 0, u € R (3.2.24)
z
It now follows from (3.2.17) that
" 2
yy = [D(q)u]+ u € R (3.2.25)
ey
We have shown that any yi in Y is given by (3.2.25) for

some u € EZi
N ; . .
Conversely any u € RZ will by (3.2.15) give a unique &"

. - . .
and by (3.2.16) a " in YT. But (3.2.16) is equivalent
Yy

to (3.2.25). o

The following lemma is obvious.

Lemma 3.2.7 Let N(g) be a unimodular polynomial matrix.
T A
Then N(g) 1is a bijective linear map from RZ to R

7°

Def. 3.2.9 For any rational matrix G define v (G) as the

sum of the degrees of the denominator polynomials in the
McMillan form of G.

Theorem 3.2.3 Let D(g) be given by (3.2.10). Then ny =
= v (D).

Proof. Let R(f) denote the range space of the linear

mapping £. We have to show that dim R(f) = v (D), where
[aamrsn t

) + . _ =
£ :RZ - Y is given by f(u) = (D(q)u)+, u € Rz'

(1) Let N(g) be a unimodular polynomial matrix. Then it
[ manru]

follows by lemma 3.2.7 that if the mapping £, : R

1
(D(g)N(g)u), then R(£;)

L
Z
= R(f).

is given by fl(u)
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(ii) TLet M(g) be a unimodular polynomial matrix. Define
.yt + =

AN through fz(yl) (M(q)yl)+-

This is clearly well defined. Define f3 : Egje y*t as the

the linear map £

composition map £, = f,of, i.e. £, (u) = [M(q)(D(q)u)+]+ =
= [M(q)D(q)u]+. The last equality is true because M(q)

is a polynomial matrix. It is clear that

dim R(f3) < dim R(£f). (3.2.26)
_ + + - (1
Define £, :Yy" -V through f£,(y;) = (M (q)yl)+ and
f5 :EZ1+ yt  as f5 = f4of3. Then
dim R(fS) < dim R(f3). (3.2.27)
But f; is given by fo(u) = [M_l(q)(M(q)D(q)u)+]+ =
= I H@M(e)D(@)ul, = [D(g)ul,. I.e.
f5 = f (3.2.28)

It follows from (3.2.26)-(3.2.28) that

dim R(f3) = dim R(£) (3.2.29)

(iii) ©Let f : RY o YT  be defined through vy = (M(g)D(g)N(q)u) .,
6 Z +

where M(g) and N(g) are unimodular polynomial matrices.
Then it follows by (i) and (ii) that

dim R(f6) = dim R(f) (3.2.30)

(iv) Choose M(g) and N(g) such that

Dy, (q) = M(q)D(q)N(q) (3.2.31)
is the McMillan form of D(g). Let DM(q) be the strictly
proper part of 5M(q). Since v(D ) = v(BM) = v(D) and

= Ly .
[DM(q)u]+ = [DM(q)u]+,v u € R, it is sufficient to show

the theorem for DM(q).

(v) DM(q) has the form
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€4 (q)
X 0
1
d
D, (@) = e () (3.2.32)
kP
g
0 0
where ¢,(g) are polynomials and ¢,(0) # 0 V i. Let
'——Q,—' 1 + 1
fM :RZ - Y be given by
y = (Dy(a)u), (3.2.33)
-
and let uij € RZ be an input, which is zero except for the
i:th component at time Jj. This component is equal to 1.
iy
L
Clearly {uij}i.e[l,K],j €z, span R . Let Y5 be
defined through Yig = (DM(q)uij)+. Then {yij} span  R(£f,).
Observe that the only nonzero component of yij is the i:th
because DM(q) is diagonal. Now j < —ki gives yij = 0.
Therefore {yij}, j = —ki+-l,...,0 and i =1,...,p span
R(fM). Furthermore these yij are linearly independent
since yij(j4-ki) = ei(O)uij(j), where si(O) # 0, and
yij(j4—k) =0, k > ki' Therefore
‘ p
dim R(fM) = i ki = v(DM) (3.2.34)

We quote the following result from Rosenbrock (1970)
(algorithm 5.1).

Lemma 3.2.8 Let ¢ be the least common denominator of all

minors of all orders of the rational matrix G. Then v (G)

is equal to the degree of the polynomial .

Let D(g) be defined through (3.2.10) and define D*(x) as

1

D*(x) = D(x ). (3.2.35)
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Then D*(x) is a polynomial matrix because D(x) is proper

and its entries have only zero poles.

Theorem 3.2.4 Compute all minors of all orders of D*. The

degree of the minor of highest degree is v (D).

Proof. The degree of a minor of D*(x) is equal to the
degree of the denominator of the corresponding minor of D(x).
Since the minors of D(x) have denominators of the form xk
then the least common denominator is equal to the denominator

of highest degree. -

Corollary. Define G* through G*(x) = G(x_l) and make
the decomposition G*(x) = F*(x) + E*(x), where F*(x) 1is
strictly proper and E*(x) 1is polynomial. Then n of

D
def. 3.2.5 is equal to the degree of the minor of E* that

has highest degree.

Proof. The difference between E*(x) and D*(x) is indepen-
dent of x. Therefore the degree of the minor of highest
degree is the same. The result then follows from theorems
3.2.3 and 3.2.4.

Example 3.2.3 Consider the same system as in example 3.2.1
and 3.2.2
3 -1
2a>+q® £=(2+qhHu

y=t+ (@t -q% u

Theorem 3.2.2 gives n, = deg det (2q3-kq2) = deg (2q3-+q2)==l.

0
The transfer function is

-1
+ — — -
Gla) = 2F4 o 4 gt o g B o gt
297 +q

D(q), defined through (3.2.2), is given by

D(g) =

Q-
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The order o

Example 3.2.4 Determine the ord

f the system is

er of the system

4 2 -—l _2\
g -1 g-l+q “-g El g-1 0 Uy
q° 1+g 1 £, 0 1 u,
Yy 1 0 [ &
- -1
2 -— —
g -1 g-l+q "-g 3 2 =
n, = deg det = deg |—-q +29°-g
0o —= 2 -1
d 1l+q
-1
1 0 q2—l g-l+qg l—q—2 g-1
G(q) = - -
1-g L 1 q2 1+g L 0
g+ 1 —q2 -1
—q3+q2+q+l —q4+q3+q2+q
—q4+q2—l q4+q2—q+l
4 3 2 5 4 3 2
-9 t+qg +tqg +9g g t+tqg +tg +4g
1 g+1 —q2-+l
—q3-+q2-kq-+l —q3—q2+2q+l —q2+3q+2
0 _1
g
+
1 -2g+1
q 2
g
By (2.2.2) D(q) is defined as

+
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Let DM(q) be the McMillan form of D(q)

1
2
Dyla) =
0 1
and ny = v(D) = 2 by theorem 3.2.3. We find that
n = n, + ny = 4 + 2 =6

Alternatively n, can be computed using theorem 3.2.4.

0 -X
D* (x) = 5

-X -2xX +x

The highest degree of the 1x1 minors as deg(—2x+x2

) =2
and the degree of the 2x2 minor is deg(-x2)==2. It
follows that np = 2.

Another possibility is to use the corollary of theorem 3.2.4

to compute n

D
r A
'x3 + x2 —x4 - xz
x3+x2+x—l X3+X2+X—l
G*(X) = =
-X +x2—l X7 -xXx +xXT+X
x3-+x2‘+x-—l X" +x"+x-1
2 3 {
3—x-+l gx -;2x-+l 1 x4 1
X" +x"+x-1 X" +x“+x-1
= +
2 2
SR e — —x+1  x2-2x+2
XT+x"+x-1 X" +x“+x-1
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and

1 -x +1

—x+1 x% = 2x +2

The highest occuring degree of any 1x1 or 2x2 minor

is 2 and therefore nD = 2.

3.3 Stability

We will use Lyapunov's definition of asymptotic stability.
This can for the system

T(g)t = U(q)u (3.3.1a)
y = V(g)g + W(gQ)u (3.3.1Db)

be formulated in the following way.

Def. 3.3.1 The system (3.3.1) is asymptotically stable if
[ —y
all solutions £ to (3.3.1a) with u € R’ satisfy

lim g(t) =0.
t>+co

Remark. 1lim £(t) = 0 = 1im y(t) = 0 since u € R
t++oo t>++co

Theorem 3.3.1 The system (3.3.1) is asymptotically stable

if and only if the zeros of the Laurent polynomial
det T(g) all have a magnitude less than 1.

Proof. The right hand side of (3.3.la) will be zero after
some finite time T. Therefore it is sufficient to study

the equation T(g)g = 0. As in the proof of theorem 3.2.2
there is a unimodular N(g) € Rrxr(q] such that Tl(q) =

= N(g)T(g) is lower left triangular.
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Eyp (@) 0

Tl(q) =

trp (@) ...t (@)

Furthermore the equations Tl(q)g = 0 and T(g)g = 0 have
the same solutiong. Let Aij’ J o= 1,2,.6.,ni, where n, is

the degree of the Laurent polynomial tii’ be the ze-

ros of tii(q). The solution to the first equation in

t

NORSE

Plj

where Pij(t) is an arbitrary polynomial of degree mijml
and m g is the multiplicity of Aij' Now El(t) - 0 if

and only if ixzjl <1, 3 =1,...,n,. The second equation

is ty,(a)e, = ty (@) gy If ]xljl <1, 3=1,...,ny, then
'&:Zl(q)g:L gives a particular solution that tends to zero.
Therefore g,(t) » 0 if and only if ixzjl <1, 3=1,...,n,.
Analogously it follows that the total solution §&(t) - 0 if
and only if

IAij[ <1, 3= Lyeeeyng, &= 1,000,

3.4 Causality

—
Consider system (3.3.1) and let u € Ri be such that wu(t) =
= 0, t £ 0. The solution ¢ to (3.3.l1la) can as usual be
decomposed into g = g1t £y where £1 solves T(q)gl =0

and = Tml(q)U(q)uo Clearly gl does not depend on u.

€
Now gi depends causally on u if and only if gz(t) = 0,
t £ 0 for any u. If ¢ represents physical variables
then €9 has to depend causally on u. However, to gain
flexibility we will allow ¢ to depend noncausally on u.
We must then regard ¢ as a variable in the mathematical
model, a variable that is related to the physical variables,

but not in a causal way.




56

The output vy can be decomposed as y = ¥y + Yor where

¥y = V(q)gl and Yo = V(q)g2 + W(g)u. In analogy with the
previous case we allow a noncausal relationship between ¢
and y. However, u and y are both physical variables,
and we must demand that v depends causally on u. Since
gl is independent on u we have no demand on Y- Introdu-
cing the expression for &y into the expression for Yy, Wwe
get Yy = [V(q)Tml(q)U(q) + W(g)]u = G(g)u. The only causal
relationship we have to demand is that between u and Yoo

Decompose G(g) as
G(q) = Gyla) + Gy (q) (3.4.1)

where Go(q) is strictly proper and Gl(q) is polynomial.
This decomposition is unique. Now it is clear that Yo de-
pends causally on u if and only if Gl(q) is independent

of g. We can therefore make the following definition.

Def. 3.4.1 The system (3.3.1) with transfer function G(qg)
is causal if Gl(q), defined through (3.4.1), does not de-
pend on (.

Example 3.4.1 The system

™
li
o]
o

is causal, while the systemn

g = qu
y = §&

is not causal.
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3.5 Controllability

Consider the system

T(g) g = U(q)u (3.5.1a)
y = V(g)g + W(gu (3.5.1b)

The state at time t = 1 of the system is defined in Def.
3.2.7. Clearly the state is uniquely given by the solution
£ to (3.5.1).

Def. 3.5.1 A state at €t = 1 1is called controllable if it
. . , . Y . 3
is given by a solution & in RO for some u in Rz’ The

system is controllable if all states at t = 1 are controll-
able.

—
Remark. Observe that ¢ must belong to R§ for the defi-

nition to be meaningful. The intuitive meaning of Def., 3.5.1
is the following. Suppose that the system initially is at
rest i.e. E(t) and y(t) are both zero for large negative
t. The controllable states are those that can be obtained

using a finite input sequence.

The set of contrcollable states is a subspace of the state
space called the controllable subspace. We will now give an
algebraic condition for controllability. To do this we need

the following two lemmas.

Lemma 3.5.1 Let a(x) = x & + anmlxnml

0
b(x) = bnalxn 1 + ... + bo be two relatively prime polyno-
mials and consider the system

+ ... + a and

a(gle = b(q)u (3.5.2)




To any &' given by a(g)t' = 0 there is a u € E; such
—

that the unique solution & in ‘Rz to (3.5.2) has the

property £(t) =&"'(t), t > tO for some finite to.

Proof. Explicitely equation (3.5.2) can be written
£ (t+n) + a 18 (ttn=1) + ... + ayE(t) =

= bn_lu(t+nvl) + ... + bgyu(t) (3.5.3)
Suppose u(t) =0 for t < -n and t > 0. The solution ¢
in R, can be found by iterating equation (3.5.3). We find
that g(t) =0 for t < -nt+tl. 1In the interval =-n+2 <

<t < n the solution ¢(t) is given by

( | N \
1 an-1 |20 0 £(n)
|
O. le P21 ) O.
o e ] °
" i 0 *
R i ®
R R u a o
mmmmmm O,,. .m,l.,,,,l 31‘1:1,, RS m,ﬂ.maw ) .,.E,El.), ) _
]
01 a _q a, £(0)
“n L3
§ : . R
s ° oo o
i "'. ° ©
’ o .0 °
‘ 0 1 J L g(-n+2) |
(
bO 0
Bp By O : ;
N a.w u(0)
. .0 i
b ... i
= |_.on-1 2 §0m (3.5.4)
Oa n-1 °° %l .
. o u(ﬂn+l)J
0 b
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For t > n, &(t) is given by
g(t) = = a_ _je(t-1) = ... - aj&(t-n) (3.5.5)

i.e. & 1is equal to a solution &' to .a(g)g' = 0 for
t > n. It has to be shown that it can be made equal to any
solution &' to a(g)g' =0 for t > n by a suitable
choice of u. This is true if the vector (&(n) ... E(l)]T
can be given an arbitrary value by chosing u. Eguation

(3.5.4) can be written

3

| -
a, 0 : bo 0 £(0)
a ag 0 | bl bo 0
| i
. 0 )
| N
=0 : . .0 .
Pnel ottt A Paeycoson s Po | DR
|
Looen I L ! u (0)
e ‘ aO L
o ’ 9' .' R [
.u ‘ Qc .. :
L] ! .. Q. L
e i ° ¢ e
1 i 0 bl’ll‘ \ u (-==n+l) J
n-1"°" 1
1
. [ &£ (n)
= == - - - - - 1. ' (3.5.6)
0 v v o o .0 .
. : L &(1)
0w v v v .0 |
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—=
Rg to (3.5.1la) and to

The square matrix on the left hand side is invertible since
the polynomials a(x) and b(x) are relatively prime (see
e.g. Rosenbrock (1970)), Therefore (u(O) 0o u(=-n+l))T can
be solved for any (£ (n) ... E(l))T.

The following lemma is formulated and proven for polynomial

matrices in Rosenbrock, Hayton (1974).

Lemma 3.5.2 Let T(x) and U(x) be respectively - rxr

and rx% relatively left prime Laurent polynomial mat-
rices with det T(x) # 0. Let Tl(x) and Ul(x) have the

same properties. Suppose that
=1 =1
Tl (x)Ul(x) =T “(x)U(x) (3.5.9)

Then there is a unimodular Laurent pelynomial matrix R(x)
such that

+
}...l

»

il

R(x)T(x) (3.5.10)

c
’_:

>

i

R(x)U(x) (3.5.11)

Proof. The proof is analogous to the one of Theorem 2 in
Rosenbrock, Havton (1974).

Theorem 3.5.1 The system (3.5.1) is controllable if and on-
ly if the Laureéent polynomial matrices T(g) and Ul(g) are

relatively left prime.

Proof. Suppose that there is an rxr Laurent polynomial mat-

rix L(g) with deg det L(g) = n > 0 such that T(g) =

= L(g)T;(g) and U(q) = L(q)Uqy(q). If deg det T(q) = n,

then deg det Tl(q) = ng - nL‘< nge The solutions & in
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Tl(q)g = Ul(q)u (3.5.12)

are identical by Theorem 2.2.4 since det L(g) # 0. Any
solution €& to (3.5.12) with u € RZ is equal to a solu-

tion &' to ‘Tl(q)g' = 0, when t > to for some tO € 7.

The sclutions to Tl(q)g‘ = 0 span an n,.-n dimensional

space by Theorem 3.2.2. Since the solutiogs Eo T(g)e' =0
span an ng, dimensional space there is a solution &' to
T(g)g' = 0 which is not a solution to Tl(q)ﬁi_f 0. This

€' will not be equal to any solution & in RZ to (3.5.12)
and therefore neither to (3.5.la) for large t. Thus, there
exist states (g',yi) that are not controllable and the sys-

tem is not controllable.

To prove the converse suppose that T(g) and U(g) are rela-
tively left prime Laurent polynomial matrices. Let Wml(q)a(q)
be the McMillan form of T—l(q)U(q). Here VY(g) and ¢(q)

are diagonal relatively left prime polynomial matrices. This
means that there are unimodular polynomial matrices N(q),

M(g) such that

(o (@] tu@nia) = ¢ ) e(q) (3.5.13)

Since T(g)N(g) and U(g)M(g) are relatively left prime
Laurent polynomial matrices it follows from Lemma 3.5.2 that

there is a unimodular Laurent polynomial matrix R(g) such
that

R@)T(g)N(g) = v(q) (3.5.14a)
R(a)U(g)M(g) = e(q) (3.5.14Db)
Tt

Define fc;q RZ - XO (Def. 3.2.2) in the following way. To

£ . . . 7
any u € RZ there is a unigue solution ¢ € RZ to

T(g)g = U(g)u (3.5.1a)
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This £ wuniquely determines a &' € XO through £'(t) =
= g(t), t > tq for some t, € Z.

We will show that ‘fc is surjective by showing that

dim R(fc) = dim Xou
Multiplying (3.5.1la) from the left by R(q), defined through
(3.5.14) doesn't change the solutions by Theorem 2.2.3. By
Lemma 3.2.7 u can, in (3.5.la), be substituted by M(qg)u,
where M(q) is defined in (3.5.13), without changing R(fc).
Furthermore ¢ in (3.5.la) can be substituted by N(q)g
without changing dim R(fc) because N(g) 1s by Theorem
2.2.3 abijective map on Rg. As a consequence equation
(3.5.1a) can be substituted by

¥(g)e = e(qlu (3.5.15)

in the definition of fc without changing dim R(fc).

It follows by Lemma 3.5.1 that dim R(fc) = dim XW, where
Xg is the space of solutions in Rg to ¥(g)&' = 0. Theo-

rem 3.2.2 now gives dim Xg = deg det Y(q) = deg det T(q) =

= dim XO and fC is surjective.

The state space is XO X ?¥‘ and we have shown that aqzz

gl € XO can be obtained by a suitable choice of u € R«
This u will, however, also give a component of the state
in ;¥] unless u(t) = 0, t > v, where 1t is some nega-

tive integer.

Take a fix &' € XO. Then qTi' € XO because T(g)E&' = 0 &
= qTT(q)S' = 0 <« T(q)qTE' = 0. Let u € EZ‘ be such that
£, (u) = g't'. This implies that fc(quu) = &' because f,
is time invariant. Clearly g ‘u(t) =0 for t > 1. There~

fore any ¢' € XO can be obtained with the component of the
state in ;¢1 equal to zero. This means that XO is included

in the controllable subspace.
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. . o +1 .
By definition of VY any component of VY can be obtained
from an u € RE. In general this u also gives a component

z
in XO’ but this component can be deleted by another super-

posed u because X belongs to the controllable subspace.

0
-
Therefore also V' belongs to the controllable subspace and

the system is controllable.

Remark. Controllability was defined for states at time t = 1
but this theorem shows that the property of controllability

is dindpendent of t.

Corollary. Suppose that T(g) and U(g) in (3.5.1) have a
common left divisor L(g) so that

T(g) = L(q)Tl(q) (3.5.16a)

a
Q
|

= L(q)Ul(q) (3.5.16Db)
and Tl(q) and Ul(q) are relatively left prime. Let Xéc)
be the space of all ¢' € Rg such that

Ty (@e' =0 (3.5.16¢)

.*_l

Then XéC) x Y is the controllable subspace.

Proof. In the definition of controllable states (Def. 3.5.2)
T —
only solutions ¢ in Rg are regarded. But (3.5.la) and

T (@e =TU;(@u (3.5.17)
N
have the same solutions in R, by Theorem 2.2.4 because
det L(g) # 0. The system (3.5.17), (3.5.1b) is by Theorem

3.5.1 controllable and have a controllable state space
(c) 7 F
X0 x V.
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From the corollary it follows that the zeros of det Tl(q)
in (3.5.16) are those zeros of det T(g) t:that are associa-
ted with the controllable states. The zeros of det L(q)
correspond to solutions in XO that cannot be excited by
the input, they are decoupled from the input. Following

Rosenbrock (1970) we will call them input decoupling zeros.

Let SL(q) be the Smith form of L(g). Then there are uni-
modular Laurent polynomial matrices Ml(q) and Nl(q) such
that L(g) = Ml(q)SL(q)Nl(q) and the zeros of the invariant
factors of SL(q) are the input decoupling zeros. By Theo-

rem 2.1.4 there are unimodular Laurent polynomial matrices

My(q) and W,(q) such that (T (@) Uy (@) =M, () (X 0) N,(q).

Therefore
(T(@) T(@)) = My (@) sy (DN (@My(@) (I 0)N,(q) =

NJ_(q)MZ(q) 0
0 1

N, (q)

My () (s () o){

By the uniqueness of the Smith form it follows that
(SL(q) 0) is the Smith form of (T(g) U(g)). We can thus

formally define the input decoupling zeros in the following
way .

Def. 3.5.2. The input decoupling (i.d.) zeros of a system

are the zeros of the invariant factors of the Smith form of
(T(a) U().

Example 3.5.1. Consider the system

(g=2) (g=1)E = (g=2)u (3.5.18a)

y =& (3.5.18b)

The system is of second order and the state space is spanned
by the two states
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(¢',vy}) = (1,0) (3.5.19)

i
~

(€' ,yy) ,0) (3.5.20)
+! .
For this system VY = 0, by Lemma 3.2.6, since the transfer

function has no poles that are zero.

By the corollary of Theorem 3.5.1 the controllable subspace
is spanned by the state (3.5.19). We will show this directly.

Choose u(0) = a and u(t) =0, t € Z ~ {0}. Equation

(3.5.18a) can be written
g(t) = 3g(t=1) - 2g(t=2) + u(t~-1) = 2u(t=2) (3.5.21)

The solution in 'ﬁ; is found by having ¢£(t) =0, t <t

for some t, € Z_. TIterating (3.5.21) then gives §g(t) = 0

t < 0. Continuing the iteration gives ¢&(t) = a, t > 0.

It follows that the subspace spanned by the state (g',yi) =
= (1,0) is included in the controllable subspace.

Introduce 2z = (g=1l)¢ into (3.5.18a) which gives

(g=2)z = (g-2)u (3.5.22)

This can be written

z(t) = u(t) + 2[z(t-1) - u(t-1)] (3.5.23)
N .
Suppose u € Rz’ i.e. u(t) =0, t < to for some tO‘
The solution to (3.5.23) in ?; is found by iteration this
equation starting with z(t) = 0 for t < tye
We find that z(to) = u(to). Inserting t = to + 1 in

(3.5.23) then gives z(t0+l) = u(to+l) since the quantity

inside the brackets is zero. Continuing like this we find
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z(t) = u(t) Yt € 7 (3.5.24)

The state of t = 1 is found by letting u, = 0. This
gives by (3.5.24) z(t) =0, t > 0 and therefore &(t) =

= constant for t > 0. This means that it is not possible
to reach any states that are not of the form (&',y}) =

= (a,0), where a € R. Therefore the controllable sub-
space is included in the space spanned by the state (E',yi)

= (1,0).

Since the reversed inclusion was shown earlier the controll-
able subspace is equal to the space spanned by the state
(3.5.19),

3.6. Observalibity

The system

T(q)E = U(q)u (3.6.1a)
y = V(glg + W(g)u (3.6.1b)
Ty
has a state space Xg x V according to Def. 3.2.7. Define
the map £q: XO x vy syt g
foletoyl) = [via)e'] + vy (3.6.2)

fo is called the observability map and Yy = fo(g',yi) is
the output from the system (3.6.1) with (g',yi) as state

-

at t = 1 and u, = 0 (see the first part of the proof of
Theorem 3.2.1).

Def. 3.6.1. The system (3.6.1) is observable if fO is in-

jective. If fo is not injective then the nullspace of £

0
is called the unobservable subspace.
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Theorem 3.6.1. The system (3.6.1) is observable if and only

if T(g) and V(g) are relatively right prime.

Proof. The system is observable if and only if the nullspace
of fo is zZero. The nullspace of fo is given by the states
(g',y;) satisfying

[Vie'], + v} =0 (3.6.3)

— —n
Since [V(q)g']+ € Vg, yi € y*' and Vg and ¥© are, by
Corollary 1 of Lemma 3.2.4, linearly independent it follows
that (3.6.3) is equivalent to

[Viggr], =0 (3.6.4)

y! =0 (3.6.5)

Let the r x r Laurent polynomial matrix R(g) be the
greatest common right divisor of T(g) and V(g). R(q)
is unique up to multiplication from the left by unimodular

Laurent polynomial matrices. We have

T(q) = Ty (2)R(q) (3.6.6)

it

Via) = Vi (q@)R(q) (3.6.7)

where Tl(q) and Vl(q) are relatively right prime. Insert
(3.6.7) into (3.6.4)

[Vi(@r@e ], =0 (3.6.8)

We will show that (3.6.8), and therefore (3.6.4), is equiva-
lent to

R(g)g' = 0 | (3.6.9)

If (3.6.9) is true then clearly (3.6.8) is true.
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Since Tl(q) and Vl(q) are relatively right prime there
are by Theorem 2.1.4  Laurent polynomial matrices X(q)
and Y(g), respectively rxr and rxm, such that

X(@) Ty (q) + ¥(g)Vy(q) =TI (3.6.10)
Define y' as

y' = Vi (@)R(q) &’ (3.6.11)

Then we have

Y(q)y' Y(q)Vy (@) R(q) &' =

[T - x(@T (@]R(@ " =
= R(q)g" = X()T(q) g' = R(g) g’ (3.6.12)

where the first equality follows from (3.6.11), the second
from (3.6.10), the third from (3.6.6) and the fourth because
g' € Xg

If (3.6.8) is true then yi = 0. From (3.6.12) it follows
that R(g)g' is zero for +t > ty, some t,. Lemma 3.2.2
then shows that (3.6.9) is true since R(g)g' satisfies the

equation Tl(q)R(q)g' = 0,
We have shown that (3.6.3) is equivalent to

R(q)e' = 0 | (3.6.13)

yr =0 (3.6.14)

i.e. the nullspace of fo is given by the solutions to
(3.6.13) and (3.6.14). By Theorem 2.2.3 ¢' = 0 1is the only
solution to (3.6.13) if and only if R(g) is a unimodular

Laurent polynomial matrix, i.e. if and only if T(q) and




69

V(g) are relatively right prime.

Remark. Observability was defined for states at t = 1 but
the theorem shows that the property of observability is in-
dependent of t.

Corollary. Let R(g) be the greatest common right divisor

of T(g) and V(g). Let Xéo) be the space of all solu-
tions &' € Rg to
R(g)e' =0 (3.6.15)

Then Xéo) x 0, where 0 is the zero element in V+, is

the unobservable subspace of the system (3.6.1).

Proof. The corollary follows from the fact that the null-
space of fo is given by the solutions (E',yi) to (3.6.13)
and (3.6.14).

Remark. The greatest common right divisor R(g) is unique

up to multiplication from the left by unimodular Laurent
polynomial matrices. The solutions in Rg to (3.6.15) are
not affected when (3.6.15) is multiplied from the left by a
unimodular Laurent polynomial matrix. This follows from Theo-
rem 2.2.3. Therefore R(g), in (3.6.15), can be substituted
by any greatest common right divisor of T(g) and V().

From the corollary it follows that the zeros of det R(q)
are those zeros of det T(g) that correspond to solutions
in XO that do not influence the output, they are decoupled
from the output. As in Section 3.5 it follows that if SR(q)
is the Smith form of R(q) then (s_'(@ 0)7 is the Smith
form of (TTﬁp V%q)f: Following Rosenbrock (1270) we make
the definition.
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Def. 3.6.2. The output decoupling (o.d.) zeros of a system

are the zeros of the invariant factors of the Smith form of
T T
(r* (@) vi)T.

Let {Bi} be the set of i.d. zeros of the system (3.6.1) and
let {Bi} be the set of zeros to the invariant factors of
(Tl(q) U(q)) where Tl(q) is given by (3.6.6). As in Rosen-
brock (1970) it is shown that {6, = (1. '

Def. 3.6.3. The set {Bi} \\{ei} is called the set of input-
output decoupling (i.o.d.) zeros of the system (3.6.1).

Remark. Rosenbrock (1970) considers systems (3.6.1) with
T(g), U(g), VI(g) and W(g) restricted to polynomial mat-
rices. Computation of the decoupling zeros according to Def,
3.5.2, 3.6.2 and 3.6.3 for such a system will give the same
decoupling zeros as the ones obtained from Rosenbrock's de-
finitions except for the ones that are zero. Our definition

will never give any decoupling zeros that are zero.

Example 3.6.1. Consider the system

(g-1) (g=2)¢ = u (3.6.14a)

y = (g-2)¢ (3.6.14Db)

(Compare with the system in Example 3.5.1) The system is of

second order and the state-space is spanned by

€'y} = (1,0) (3.6.15)

(E',y;) = (27,0) (3.6.16)
By the corollary of Theorem 3.6.1 the unobservable subspace
is spanned by the state (3.6.16). We will show this directly.

The output is, for ¢ > 1 . and u, = 0, given by the state

in the following way
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v, = [Vi@e'], + v} (3.6.17)

An arbitrary state is given by a linear combination of the
states (3.6.15) and (3.6.16).

(€',y") = a(l,0) + b(2%,0) a,b € R (3.6.18)
Introducing (3.6.18) into (3.6.17) gives
- t = 3
vi = [(g=2) (a+b2") ], + 0 = [-a], (3.6.19)

It follows that 'y, =/0 1if and only if a = 0. Inserting

a =0 into (3.6.18) gives the unobservable subspace

(£',y") =b(2%,0) b € R (3.6.20)

]
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4, AN EQUIVALENCE RELATION

An equivalence relation on the class of systems considered

in Chapter 3 is defined in Section 4.1. In Section 4.2 it

is shown that a system can be described by its system mat-
rix and an equivalence relation on the set of system matri-
ces is defined. It is shown that two systems are equivalent
if and only if their system matrices are equivalent. In Sec-
tion 4.3 it is shown that concepts like the order of a sys-
tem, controllability, observability, stability and causality,
defined in Chapter 3, are invariant under equivalence. In Sec-
tion 4.4 it is examined when a system matrix has equivalent
system matrices, which are in certain simple forms. In Sec-
tion 4.5 we specialize to causal systems and give methods

for computing the order of a system when the system matrix

is in one of a few special forms. In Section 4.6 and 4.7 con-
trollability indices and observability indices are defined
from properties of the solutions to the differential equa-
tions. It is shown how these indices can be computed from

the system matrix.

4.1 Definition of equivalence

As in Chapter 3 consider the system

T()E = U(g)u (4.1.1a)

y = V(g)g + W(g)u (4.1.1b)

where T(q) ERrXr(q],r__U(q) ¢ B5%q1, v € T (q1,
Wi € ®%q), uwerl, £er), yeRrRY and det T(q) # O.

Recall the definition (Ref. 3.2.2) of the set of solutions

Xu and the set of outputs Vu to the system (4.1.1) for
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—
the fixed input u € Rﬁo Consider another system of the

same type

Tl(q)gl = Ul(q)u1 (4.1.2a)

L
where T, (q) € R™ " l(ql, v (q) € R"Y'(q], Vv, (a) € R"Fl(qy,
mx L r ~ .M
Wl(q) € R (ql, Uy € RZ, El Rzl, y € RZ and det Tl(q)

# 0. Let the system (4.1.2) have the set of solutions and

m

*

1 and Vl respectively.

outputs Xé ul

Def. 4.1.1. The systems (4.1.1) and (4.1.2) are equivalent

. T
if for any u € RZ and u; = u

rlxr(

(i) there are 2Z(g) € R gq] and Y(g) € erxﬁ(q] such

that the mapping

£ = Z(g)g + Y(q)u (4.1.3)
is a bijective mapping from Xu to Xi and
(ii) yl =y and the diagram
u u el

X (4.1.1D)
(4.1.3) ld\\\\\\\‘*-v (4.1.4)
1. 0 1.
xi (4.1.2b)

commutes.
Remark 1. Note that the matrices Z(g) and Y(g) must be
independent of u.

Remark 2. It is easy to show that this is an equivalence re-

lation.
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We will immediately give an algebraic condition for testing

injectivity of the mapping (4.1.3).

Theorem 4.1.1. The mapping (4.1.3) is injective if and only

if the Laurent polynomial matrices T(g) and %Z(gq) are re-
latively right prime. The inverse, defined on the range of

the mapping (4.1.3), is of the same type, i.e.

g = Q(q)El + L(g)u (4.1.5)

Proof. Suppose T(q) and Z(g) are not relatively right

prime. Then there is a nonunimodular matrix R(g) such that
Tl(q)R(q)E = U(g)u (4.1.6)
€1 = 27 (@)R(g) g + Y(q)u (4.1.7)

Since R(q) is not unimodular there is a nonzero &' € RE such
that

R(g)g' = 0 (4.1.8)
Let & be an arbitrary element in Xu' Then £ + g' € Xua
The two solutions ¢ and g + g' give the same gl and

therefore (4.1.3) is not injective.

If T(g) and Z(q) are relatively right prime then there
are, by Theorem 2.1.4, Q(q) and X(g) such that

Q) T(g) + o(g)z(qg) =1 (4.1.9)
Therefore
Ql@) gy = Q@ z(a)e + (¥ (gu =

i

& - X(Q)T(g)g + Q)Y (q)u =

Il

e+ [o(@Y(g) - X(Uu(g)] u (4.1.10)




75

where the first equality follows from (4.1.3), the second
from (4.1.9) and the third from (4.l1.la). Introducing L(g) =
= = Q(g)Y(q) + X(q)U(g) gives (4.1.5).

Comparing with Theorem 3.6.1 we see that the mapping (4.1.3)

is injective if and only if the system

T(g)e = U(g)u

gl = Z(Q[)E + Y(q)u
is observable.

We will briefly discuss the different conditions of Defini-
tion 4.1.1. The behaviour of system (4.1.1) for a given in-
put u is completely described by a solution ¢, which is in

Xu' It is therefore natural to demand from the equivalent

system (4.1.2) that for uq
El in Xé, to every & in Xu and vice versa, i.e. that

= u there is a unigue solution

there exist a bijective transformation between Xu and Xi.
Furthermore, it is natural to demand that two corresponding

solutions & and shall give the same output vy. 1In

£
1
other words it is natural to demand that there exist a bijec-

tive mapping (*) such that the diagram

(4.1.1b)

X
u\
(*) Y (4.1.11)

u (4.1.2b)

commutes. It is, however, not clear that the mapping (*)
shall be of the form (4.1.3).

In one special case, namely if the two systems (4.1.1) and
(4.1.2) are observable, then the mapping (*) must be of
the form (4.1.3). This can be shown in the following way.
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Since the system (4.1.2) is observable the matrices Tl(q)
and Vl(q) are by Theorem 3.6.1 relatively right prime. The
mapping (4.1.2b) is therefore by Theorem 4.1.1 invertible and

the inverse is given by
€1 = @y, + L(auy (4.1.12)

where Qf(g) and L(g) are Laurent polynomial matrices. If
the systems (4.1.1) and (4.1.2) are equivalent then u; = u
implies that Yy =V by (4.1.4). Using this and inserting

(4.1.1b) into (4.1.12) gives

Q@) [V(g)e + W(g)u] + L{g)u

&1

= &7 = Q@Vig)e + [o(@)W(q) + L(g)]u (4.1.13)

which is of the form (4.1.3).

For nonobservable systems one has to introduce further con-
ditions on the mapping (*) to get the form (4.1.3) as the
only possibility. We will not do that, but instead directly
demand the structure (4.1.3) even for nonobservable systems.
This structure has the pleasing feature that the restriction
to XO has the form

£f = 2(q) ¢’ (4.1.14)

i.e. it is a linear, time invariant mapping between XO

and X%» Since the state spaces for the two systems are
e w1 +1 . . -

XO x Y and AO x Y respectively, then there is a bijec-

tive, linear, time invariant mapping between the state spa-

ces of equivalent systems.
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Example 4,.1.1. Consider the two systems

=1

(g-1) (g=2)eg = g ~u (4.1.15a)

y = (L+tq 1)g (4.1.15b)
and

qz(qml)(Q“Z)gl = (g+l)uy (4.1.16a)

Y1 ¥ & (4.1.16Db)
We will show that the two systems are equivalent. Put u, = u

1
and let u be an arbitrary element in '§;m The elements in

XU are given by

£ = &P + a+ b2t a,b € R (4.1.17)

where gp is a particular solution to (4.1.15a). Analogous-

ly the elements in Xi are given by

g, = &+ oo+ a2t c,d € R (4.1.18)

Let the linear mapping

1

£(g) = (1+g )¢ (4.1.19)

be defined on Xu' The range space of £ 1is obtained by
inserting (4.1.17) into (4.1.19).

f(g) = (l+qml)gp + (l+q“1)(a+b2t) =
= (L+q 5P + 2a + % b2t (4.1.20)
Inserting gl = (l+q—l)gp into (4.1.16a) and using (4.1.15a)
shows that (l+qwl)gp is a particular solution to (4.1.1l6a).

Putting
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eP = (l+q ) eP (4.1.20)
c = 2a (4.1.21)
3
d = 3 b (4.1.22)
we see that any f£(g), given by (4.1.20), belongs to Xi
and vice versa. Therefore £(£), & € Xu is a surjective
mapping from Xu to Xi. It is injective by Theorem 4.1.1

since the Laurent polynomials (g-1) (g=2) and ‘(l+qml) are

relatively prime. The injectivity can also easily be shown
directly. We have shown that (i) of Def. 4.1.1 is fulfilled.

Inserting &, = (1+ ml)g into (4.1.16b) and using (4.1.15b)
1 d

gives

1

y; = & = (l+q e =y (4.1.23)

This shows that (ii) of Def. 4.1.1 is fulfilled.

[w]
4.2 The system matrix
The system equations
T(g)g = U(g)u (4.2.1a)
y = V(@le + W(g)u (4.2.1b)
can be written
T(q) ! U(q) g 0
e ———— | m | e——— (4.2.2)
=V{g) 1 W(qg) -u -y
£
Here T(q) € R""F(ql, U(q) € R""“(q], V(q) € R {q1,W(@) €

€ Rmxz(q] and det T(g) #* 0.
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Def. 4.2.1 The Laurent polynomial matrix

P(q)

>

(4.2.3)

is called the system matrix for the system (4.2.1).

Remark. Notice the two differences from the system matrix
defined by Rosenbrock (1970). Rosenbrock considers polyno-
mial matrices and demands that r > n, where r is the
dimension of T(g) and n the order of the system. We con-
sider Laurent polynomial matrices and have no restrictions

on e

We can now define an equivalence relation on the set of sys-

tem matrices. Let

Pi(q) = |=-=FecmmbooSooos (4.2.4)

be another system matrix.

Def. 4.2.2. The system matrices .P(g) and Pl(q) are equi-
valent if there is a nonnegative integer k and Laurent po-
lynomial matrices M(q), N(g), X(g) and Y(g), where M(q)

and N({(g) are unimodular, such that

N (q) ; Y (q)
mm— e (4.2.5)
|
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Here I, is an ildentity matrix of dimension a and r

and rl

Tl(q) respectively.

are the dimensions of the matrices T (g) and

Remark. It is easy to show that this is an equivalence re-

lation.

This definition of equivalence is equal to Rosenbrock's
strict system equivalence except that we allow Laurent po-
lynomial matrices while Rosenbrock demands polynomial mat-

rices.
We will eventually show that two systems are equivalent if

and only if their system matrices are eguivalent. One half

of this result is relatively easy to prove.

Theorem 4.2.1. Two systems are equivalent if their system

matrices are equivalent.

Proof. The equations corresponding to the system matrix

can be written

: 0 ) 3 0

<X i
0 T(q) | U(q) S 0 (4.2.6)
0 ~V(q) | W(q) ~u Y

It follows from (4.2.6) that £
the left by

0. Multiply (4.2.6) from

(4.2.7)

and introduce
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L, O I 0
M(g) IO . |
P, (q) = { mmmmmmmmm ] O ta v (4.2.8)
@ VIl ~v(q) | Wi
This gives
T 0
P, (q) &= Y (4.2.9)
~u | —y

It follows that y is not influenced by this operation. The
T T.,T

equations determining (£~ £ )" are multiplied from the left
by the unimodular matrix M(g) and therefore (ET eD)T s
not influenced. Equation (4.2.9) can be written
-1 ; 1 3
N(g) ! v(q) N “(q) ! -N "(q) Y(g)
i i 3 =
i [ R i
0 i I 0 i I —u
0
= mugﬁ (4.2.10)
Y
Introducing
3 3
l = .
= N l(q)( } - N Y@ v (g)u (4.2.11)
€y £
and using (4.2.5) gives
LR 0 : 0 &1 0
I P TACA SC N  U E B (4.2.12)
i
0 ==Vl(q) in(q) =u -y

Zl = 0 and (4.2.11) can be written
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- N @) Y (@)u (4.2.13)

It follows from (4.2.12) that this is a mapping from Xu
to Xi such that the diagram

u\(4.\?;. 1b)

X
(4.2.13) l >y (4.2.14)
X

commutes. Here the mapping (*) is given by the last row
of (4.2.12). It remains to be shown that (4.2.13) is bi-

jective.

Suppose that & ¢ Xu and & + Ag € Xu gives the same

£1 through (4.2.13). This implies that

-1 0

N T (q) = 0 (4.2.15)

AE

Since le(q) is unimodular it follows by Theorem 2.2.3 that
Ag = 0 and (4.2.13) is injective.

Let €1 be an arbitrary element in Xi. By an argument

analogous to the one above it follows that the mapping

0
+ Y(g)u (4.2.16)

ST

oy o

|
il

N(q)[

1

gives a & in Xu’ This & is by (4.2.13) mapped onto Eq-

This means that (4.2.13) is surjective.

Partition le(q) and mle(q)Y(q) as
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- Z, 4 (q) Z.,, ()
N t(q) = { 11 12 } (4.2.17)
221(q) Zzz(q)
- Y. (q)
N l(q)Y(q) = { 1 (4.2.18)
Yz(q)
Then (4.2.13) implies
£ = Zzz(q)a + Yz(q)u (4.2.19)

This is the desired bijective mapping between Xu and Xi

making the diagram (4.2.14) commute.

Before we can prove the converse of Theorem 4.2.1 we need

a few other results.

Theorem 4.2.2. Two equivalent systems have the same trans-

fer function.

Proof. We use the notation introduced in Section 4.1. Equa-
tion (4.1.la) has a unique solution ¢ = Tml(q)U(q)u in
el . . {ry

RZ. By (4.1.3) this & is mapped to a gl in R_*. By

-1 z

unigqueness this £ is equal to £, = Tl (q)Ul(q)u. Dia-

gram (4.1.4) says that & and g, are mapped to the same
y by (4.1.1b) and (4.1.2b) respectively, i.e.

V(@T @U@+ Wigu = V(@1 (@ U (@u + Wy (@u (4.2.20)
Introducing the transfer functions G(g) and Gl(q)
v

(G(q) ~ Gl(q)) u=290 ¥ u € Rz (4.2.21)

Letting all components of u be zero except the j:th gives
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(9@ = g @™ uy =0 i=1,...,m (4.2.22)

where g(q)l] is the i,j:th element of G(g). Since (4.2.22)
is true for all .uj it follows by Theorem 2.2.2 that g(q)lj -
- gl(q)lj = 0, This is true for all i and j. Therefore

G(q) = Gq(a) (4.2.23)

[w}

Theorem 4.2.3. Consider two systems in state space form

(gI-A)x = Bu (4.2.24a)
y = Cx + D(g)u (4.2.24b)
and
(quAl)x1 = Blu (4.2.25a)
vy = Cle + Dl(q)u (4.2.25b)
T T

Suppose that the matrices (A B), (A c7) ., (Al Bl) and
(Ai C?) all have linearly independent rows and that the
systems (4.2.24) and (4.2.25) are equivalent. Then the two
systems are system similar (s.s.), i.e. there is a non-
singular matrix T such that

1 -1

Al = TAT —, Bl = TB, Cl = CT and

Dy (q) = D(q) (4.2.26)

Remark 1. The relations (4.2.26) clearly imply that the sys-
tem matrices corresponding to (4.2.24) and (4.2.25) are equi-
valent.

Remark 2. The condition that the rows of (A B) are linearly
independent means in terms of Rosenbrock (1970) that the sys-

tem (4.2.24) has no input decoupling zero that is equal to

T

zero. The condition on (A CT) means the same thing for
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output decoupling zeros.

Proof. The systems (4.2.24) and (4.2.25) can by s.s. be
brought to the form

qlmi 0 X B
= u (4.2.273a)
0 qI-& P B
_ X
y = (C C) + D{(q)u (4.2.27b)
P
and
qI—i 0 X B
{ 1 1 } = { Nl u (4.2.28a)
0 qI-K; X1 B,
NES
Yy = (Cl Cl) . + Dl(q)u (4.2.28b)
1

where all eigenvalues of A and Kl are zero while no

eigenvalues of A and il are zero. The transformations

from (4.2.24) and (4.2.25) to (4.2.27) and (4.2.28) can be

achieved with real transformation matrices.

It is therefore equivalent to show the theorem for the sys-
tems (4.2.27) and (4.2.28).

Theorem 4.2.2 gives that
C(qI-3) '8 + ¥(q1-3) " + D(q) =

By + Dy(@) (4.2.29)

The strictly proper part with poles that are zero is unique=

ly determined. Therefore
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B (4.2.30)

The fact that (A B) has independent rows implies that
(A B) have independent rows. Since the eigenvalues of A
all are zero this means that the rows of (xI-A B) are in-
dependent for all complex x and the pair (A,B) is a
controllable pair. In the same way it is shown that (Kl,ﬁl)
is a controllable pair and that (X,E) and <Zl,ﬁl) are
observable pairs. It therefore follows from (4.2.30) that
there is a nonsingular T such that

X o=t o5 o-my w o=l (4.2.31)

1 1 1

This is a standard result in system theory shown i.e. by Ro-
senbrock (1970).

Since the systems (4.2.27) and (4.2.28) are equivalent there

are Laurent polynomial matrices Z(g) and Y(q) such that
X4 x
N = Z2(q)| _ + Y(g)u (4.2.32)
Xq X

is a bijective mapping between Xu and Xin Its inverse is

by Theorem 4.1.1 given by

Xl

P a—
b b

N] =Q(q)[~lJ + L(g)u (4.2.33)
X1

Partitioning Z(g) and Y(g) gives

X Zo(a) Z,(q) | Y. (q)
1 Za(q) Z,(q)

¥, (q)
which implies

X

b
X2
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X, = zl(q>§ + zz(q)§ + Y, (@)u (4.2.35)

Eguation (4.2.27a) implies

(qI-2)% = Bu

(4.2.36)
But (quK) is a unimodular Laurent polynomial matrix be-
cause it is polynomial and det(qlwi)
dimension = of A.

= qk, where k is the
Therefore by Theorem 2.2.3

% = (qI-%) 'Bu (4.2.37)
where (qluﬁ)mlﬁ is a Laurent polynomial matrix. Introducing
(4.2.37) into (4.2.35) gives

21 = Z, (@)% + Yy (u (4.2.38)

where Y,(q) = zz(q)(quz)“lﬁ + Y (q).

Write Z4(q) = Zs(q) + Z6(q),

where
matrix and Z6(q)

ZS(q) is a polynomial
contains only negative powers of (.
Using the division algorithm for polynomial matrices, Mac
Duffee (1946), gives

Zg(q) = Z(q) (qI-A) + Zg

(4.2.39)
where Z7(q) is a polynomial matrix and Z8 is independent
Using the invertibility of A
shown that

of (.

it can analogously be
Z6(q) can be written

Zgla) = 2o(q) (qI-R) + 2, (4.2.40)
where Z9(q) is a polynomial matrix in qsl and 210 is
independent of ¢g. Introduce

(4.2.39) and (4.2.40)
(4.2.38).

into

e,
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X, = 2y () (qI-A)x + 28§+zg(q)(qI~A)x + Zi% + Yy(@lu =
= Z7(q)Bu + ZSX + Zg(q)Bu + ZlOX + Y3(q)u =
= Hx + v, (g)u (4.2.41)
where H = Zg t Zy, and Y4(q) = Z7(q)§ + Zg(@)B + Yq(q).

The second equality in (4.2.41) follows from (4.2.27a). Ana-
logously it follows from (4.2.33) that

X = s§l + Ly (@)u (4.2.42)

where 'S 1is independent of ¢g. Introducing (4.2.41) into
(4.2.42) gives

X = SHx + [sY_(a) + 1y(a)]u (4.2.42)
Putting u = 0

X = SHx, V x solution to gx =A% (4.2.43)

Or since A is nonsingular

SH = I (4.2.44)
Analogously
HS = T (4.2.45)

Therefore H is nonsingular.
Introducing (4.2.41) into (4.2.28a) gives

(qI~A;) (Hx+Y, (q)u) = B

= (qI-H TAH)X = H B, - (qI-A) ¥, ()] u (4.2.46)
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Compare this with (4.2.27a)

(gI-A)x = Bu (4.2.47)
Put -u = 0 and subtract (4.2.47) from (4.2.46)

(A-u 13 mz = 0, vV x solution to gx = AXx (4.2.48)
1

Or since A is nonsingular

= HAH : (4.2.49)

Introducing (4.2.49) into (4.2.46) and subtracting (4.2.47)

[H“lﬁl ~ B - H“l(qlmil)Yé(q)]u = 0

Or since this is true for all u
BB, - B - a”l(qr-A) Y, (q) = 0 (4.2.50)
1 A7/ 49 "l

It follows that (qlmﬁl)Yé(q) is independent of ¢g. But this
0 -

implies that Y4(q) = because A, is nonsingular. There-

fore (4.2.50) gives

~1l= =
H BlmB

< B, = HB (4.2.51)

Xy = Hx (4.2.52)

Introducing (4.2.52) into (4.2.28b) and using the fact that
%, = %

Y, = Cle + ClTx + Dl(q)u (4.2.53)
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Now Y1 =Y because the systems are equivalent. Subtracting
(4.2.27b) from (4.2.53) and using (4.2.31) gives

(C;H-C)X + (Dy(q) - D(x))u = 0 (4.2.54)

Put u = 0. Then (4.2.54) is true for all solutions to

g

AX. Because A is nonsingular this implies

i
!

o o, =opt (4.2.55)

Introducing (4.2.55) into (4.2.54) gives

D, (q@) = D(q) (4.2.56)

with H and T defined through (4.2.41) and (4.2.31) resp.

gives the desired result. o

For future purposes we need the following corollary.

Corollary. Consider the two systems

(gI-A)x = Bu

y = Cx + E(q)u
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whexre A and A are nonsingular matrices and E(g) and

1
El(q) are Laurent  polynomial matrices. If the systems
are equivalent then the corresponding two system matrices

are related through the following equalities.

TB

g
I

+d
&
+3

I

o

1l

Q

il

cr E,(q) = E(q)

Proof. The proof follows the lines of the proof of the theo-

rem. The following modifications are made:

In (4.2.27) and (4.2.28) X and ﬁl vanish because

A  and Al are nonsingular.
The part from (4.2.29) to (4.2.37) can be deleted.

The rest of the proof will remain invariant.

Theorem 4.2.4. Let

be an arbitrary system matrix and let r be the dimension of
T(g) and n the order of the system. Then there is a state
space representation (A,B,C,D(qﬁ with D{(g) a polynomial

matrix, A an nxn matrix and rank{(A B) = rank(AT CT) = n
such that
Fen O o M@ Lo )f e 00 N(@) ! Y(Q
0 ql-A | B = |mmmmmmre—= |1 0 T(q) | U(Q) !
i Xl@ ¢ 1 ! 0 f I
0 =C ; D(g) 0 =V(q) | W(g)
(4.2.57)
for some M(qg), N(g), X(g) and Y(g) as in Def. 4.2.2.

Furthermore %k can be chosen k = max{n,r).
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Proof, We will prove the theorem for the case r < n. To
prove the theorem in the case v > n only minor changes have

to be made in this proof.

By Theorem 2.l1.4 there are unimodular Laurent polynomial mat-

rices Ml(q) and Nl(q) such that
S(q) = My (q)T(q)N;y (q) (4.2.58)

where S(g) is the Smith form of T(g). Here S(g) is by
definition a polynomial matrix with deg det S(q) = deg det T(q)
= nge By a standard result in matrix theory there is an np*n,
matrix Ay and unimodular polynomial matrices Mz(q) and
Nz(q) such that

In—»n 0 In-—r 0
0 = M, (q) N, (q) (4.2.59)
0 quAl 0 S (q)
Therefore
Inwn 0 Invr 0
0 = M(q) N (q) (4.2.60)
0 qI-A; 0 T (q)
where
I, 0
M(qg) = Mz(q)
0 Ml(q)
and
Inwr 0
N(q) = N, (q)
0 N, (q)

It follows that
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!
. In-”nO 0 p U@ N
= o= | =
P, () ) qr-a | U, ()
Vi@ V(@) LW ()
1
A M(q) : 0 Inmr 0 { 0 N (q) : 0
S ||| 0 T(q) | Ulq) e (4.2.61)
0 § I i O { I
0 -V (q) { W(g)
Define P3(q) and Wz(q) through
tQ
n"’no ]
Pyl = | 0 ql-Ay U, (@
i
0 “Vy(@ | W,
(1 10 I 0t -U ()
A | | 1
= I0 szy 0O I, 0 (4.2.62)
b !
Vl(q) 0 (I 0 0 | I

Observe that Ay is nonsingular because the polynomial

det S(g) has no zeros that are zero. Therefore as in the
proof of Theorem 4.2.3 sgee (4.2.39-40) there is a Laurent
polynomial matrix U3(q) and a constant matrix Bl such
that

Uz(q) = (quAl)UB(q) + Bl (4.2.63)
In the same way
Vz(q) = V3(q)(quAl) +Cy (4.2.64)

Define P4(q) and W3(q) through
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I 0
Pyl = | 0 ql-A; | By =
- !
0 Cl | W3&ﬁ
T I 0 I 0t 0
|
2 I, 0 Py@| 0 T,-Uy@ (4.2.65)
| !
0 V3(q) | I 0 0 I
The transfer function for P4(q) is
_ _ -1
G(g) = Cl(qI Al) Bl + WB(q) (4.2.606)

The first part has no poles that are zero while all the poles

of the Laurent polynomial matrix W3(q) are zero. W3(q) can
be uniquely decomposed as W3(q) = W4(q) + D(g), where Wé(q)
is strictly proper and D(g) 1is a polynomial matrix. By Theo-
rem 3.2.3 we have

v(Wé) =n = n (4.2.67)

0
By standard theory for linear systems 1l.e. Rosenbrock (1970)
there is a least order state space representation [A B,,C

0’=0"~o0’
D(q)] of W3(q) with the dimension of Aq egqual to n-ng.

Therefore
W3(q) = CO(quAO)BO + D(q) (4.2.68)
Observe that (quAO) is a unimodular Laurent polynomial mat-

rix since AO has all its eigenvalues equal to zeroc. Define

PS(q) through

gI-A. O 0 gI-A, 0 10
A 0 o 0 |
- 3 I

0 C, | W@ 0 0 I
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and define P6(q) through

p

B |
qr-A, 0 ' B
Pel@) =| 0 qr-A, | B, | =
- - |
CO Cl ' D{q)
(1 010 I 0 | (q-a) B,
e x
= 1,0 [p@|0 T 0 (4.2.70)
- _a 11 f |
C, (aT-Ay) 0|1 0o ol

We have shown that the system matrices P(q), P,(a), P5la), P,(q),
Ps(q) and P6(q) are equivalent. This means that (4.2.57)

has been proven.

have that (AO

Since (AO,BO,CO,D(q)) is of least order we

BO) has linearly independent rows. Further-

more A; has linearly independent rows because A, has no

zero eigenvalues. Therefore

(4.2.71)

has full rank equal to n. Analogously

T
0
T (4.2.72)
1

has full rank equal to n.

For future purposes we need the following corollary.

Corollary. Let
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be an arbitrary system matrix and let r be the dimension of
T(g) and ng = deg det T(g). Then there are Laurent polyno=~ *
mial matrices M(qg), N(g), X(g) and Y(g), with M(g) and
N(g) wunimodular, such that

0 0

! |
Tkny, 0 M@ 10| ke | ECR{ON
0 gl-A | B = || ) T(q) | UQ) '
0 - | E@) o @ | we )
Here A 1is an nyxn, nonsingular matrix and E(g) is a

Laurent polynomial matrix. Furthermore k can be chosen

k = max(no,r).

Proof. The proof follows the lines of the theorem. The follow-

ing modifications are made.

We prove the corollary for r < Ng-
ng is substituted for n throughout the proof.

The step (4.2.62) is not necessary since the identity mat-

rix on the left side vanishes.

The proof is finished after (4.2.65).

Theorem 4.2.5. Two equivalent systems have the same order.

Proof. The order n is given by n = ng + Ny where ny

is the dimension of XO (Def. 3.2.4) and ny is determined
by the transfer function (see Theorem 3.2.3). It follows by
Theorem 4.2.2. that np is invariant under equivalence.

Using the definition of equivalence (Def. 4.1.1) and putting

u =0 it follows that there is a bijective mapping

&, = Z(q)g (4.2.73)




97

from XO to X%. The sets X0 and Xé are vector spa-
ces and the mapping (4.2.73) is linear. Therefore (4.2.73)
is a vector space isomorfism between XO and Xéa It fol-
lows that dim XO = dim Xéa This means that n, is inva-

riant under equivalence.

Corollary. The numbers ng and n defined in Def. 3.2.5,

DI
are equal for equivalent systems.

We are now in a position to prove the converse of Theorem
4.2.1.

Theorem 4.2.6. If two systems are equivalent then the cor-

responding two system matrices are equivalent. Furthermore,

in Definition 4.2.2, k can be chosen as

A

k f ko = max(ryrl,no) (4.2.74)
where Ny is given by Def. 3.2.5.
Proof. Let

T(g)E = U(qQ)u (4.2.75a)

y = V(g)g + W(qQ)u (4.2.75b)
and

Tl(q)gl = U(q)u:L (4.2.76a)

Yy = Vl(q)il + Wl(q)ul (4.2.76b)

be the two given systems and let P(gq) and Pl(q) be

their system matrices.
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By the corollary of Theorem 4.2.4 there is a system

gx = Ax -+ Bu (4.2.77a)

y = Cx + E(g)u (4.2.77b)

where A is an noxno

Laurent polynomial matrix, such that its system matrix

nonsingular matrix and E(q) is a

P(g) is equivalent to P(g) with k = max (r,ny) and
clearly also with k = ko.

Similarly there is a system

gxq = Alxl + Bu,y (4.2.78a)

Yy = Clxl + El(q)ul (4.2.78b)

with a system matrix El(q), which is equivalent to Pl(q)
O) and therefore also with k = ko and
X0, nonsingular matrix and El(q) is a Lau-

with k = max(rl,n
Al is an n,
rent polynomial matrix.

By Theorem 4.2.1 the systems (4.2.75) and (4.2.77) are
equivalent. Analogously the systems (4.2.76) and (4.2.78)
are equivalent. Consequently the systems (4.2.77) and
(4.2.78) are equivalent. By the corollary of Theorem 4.2.3
they are system similar. It follows by Remark 1 of Theorem
4.2.3 that DP(q) and_El(q) are equivalent with k = ng
and therefore with k = k,. Consequently P(g) and Pl(q)

0
are equivalent with k = ko.

Theorem 4.2.7. Two system matrices are equivalent with

k > ko 4 max(r,rl,no) if and only if they are equivalent
with k = ko.
Proof. If the system matrices are equivalent for k = ko

then clearly they are equivalent with k > koa
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Conversely if the system matrices are equivalent with
k > ko then by Theorem 4.2.1 the corresponding systems
are equivalent and by Theorem 4.2.6 the system matrices

are equivalent with k = kO'

The corresponding result for strict system equivalence,
see Rosenbrock (1970), is shown in Pernebo (1977) and Ro-
senbrock (1977).

Example 4.2.1. Consider the two system matrices

(q-1) (g=2) | o *
mmmmw“mmmamm% mmmmm (4,2.79)
=’(l-%‘-qml) L0
and
2 I
g (g-1) (g-2) ! (g+1)
i N (4.2.80)
-1 L0

The two corresponding systems were shown to be equivalent
in Example 4.1.1. By Theorem 4.2.6 it follows that the two
system matrices are eguivalent. Furthermore it follows that
kX din Def. 4.2.2 can be chosen as k = max(r,rl,no) = 2
since ng = 2, We find that

qu + 4qg 1 : 0 1 0 :
3 2 | | -1
—at 433 - 2g d+q ) o || 0 (q-1)(q-2) | e
1 0 1 0 m(l+qml) 0
- i - - I
o™ ledaan)| teg g 1o 0
, !
L1 - |
. -% L(-g*#iq) | "% a " =0 g (e-D(g2),; gt
0 0 |1 0 -1 | 0
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which verifies that the two system matrices are equiva-

lent and k can be chosen k = 2.

Suppose we can choose k = 1. This means that there are
Laurent polynomials m(g), n(g), =x(g) and y{(g) with
m(g) = aqi and n(g) = bqj, where a,b € R~{0} and
i,j € Z, such that

[n@ | m)J Ff(qﬂ) (-2) ! q+lJ
mmmmmmmmm & pmmim e deno ol (4.2.81)

Taking the (1,2) element of (4.2.81) gives
2 -1
m(q) [(@“=3gq+2)y(q) + q "] =g+ 1 (4.2.82)

which cannot be satisfied. Therefore it is not possible to

choose Lk = 1,

4.3 Invariants under equivalence

In the previous section we showed that equivalence between

systems of the type

T(g)g = U(q)u (4.3.1a)

y = V(Q)e + W(g)u (4.3.1b)

is the same as equivalence between the corresponding system
matrices with k in Def. 4.2.2 equal to max(r,rl,nOL In
practice it is often more convenient to work with system
matrices, while the concept of equivalence for systens
(Def. 4.1.1) is intuitively more satisfactory. It was shown
in Section 4.2 that the transfer function and the order of
the system are invariant under equivalence. This is very

easily verified using equivalence for system matrices. In




this section we
fined in Chapte

bility and obse

Theorem 4.3.1.

Proof. Suppose

T (
P(q) = |~===
=V (

and
T
Pi(q) = “:;

are equivalent.

{ Ik"“rl 0

0 Tl

It follows that
det Tl(q) =
and the zeros o

det Tl(q) are

rem 3.3.1.

Theorem 4.3.2.
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will show that all the other concepts de-
r 3 such as stability, causality, controlla-

rvability are invariant under equivalence.

Stability is invariant under equivalence.

that the system matrices

a) | ua)
mmmm e (4.3.2)
a) | wW(q)

(@) | U, ()
émmmm%wm;mmwu (4.3.3)
(@) 1 wyla)

Then by (4.2.5)

IP“r 0
= M(q) ~ N (q) (4.3.4)

(q) 0 T (q)
det M(qg)det T(qg)det N(q) (4.3.5)

f the Laurent polynomials det T(g) and

the same. The theorem now follows from Theo-

Causality is invariant under equivalence.
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Proof. Causality is by Def. 3.4.1 defined from the transfer
function and this is by Theorem 4.2.2 invariant under equi-

valence.

Theorem 4.3.3. The following are invariant under equivalence.

(1) the set of i.d. zeros
(ii) the set of o.d. zeros

(iii) the set of i.o0.d. zeros.

Proof. The theorem is proved for polynomial system matrices
in Rosenbrock (19270). Only minor changes need to be made.

i}

Corollary 1. The property of controllability is invariant

under equivalence.

Proof. A system i1s controllable if and only if it has no

i.d. zZeros. -

Corollary 2. The property of observability is invariant

under equivalence.
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4.4 Special forms of the system matrix

In this section we will show that a system matrix can by
equivalence transformations be brought into a form, which
is more easy to deal with than a general system matrix. In
section 4.2 we have already shown that any system matrix

can be brought to an egquivalent state space form.

We will consider a system

T(q)E = U(qg)u (4.4.1a)

y = V(@) g + W(g)u (4.4.1b)

with system matrix P(qg).

Theorem 4.4.1. Let P(g) be an arbitrary system matrix.

Then there is an equivalent system matrix

in polynomial form with the matrices (Tl(O) Ul(Oﬂ and

(r7 (0 v T (e))"

iaving full rank.

Proof. The state space form of Theorem 4.2.4 has the de-

sired properties.

Theorem 4.4.2. Let P(g) be an arbitrary system matrix.

Then there is an equivalent system matrix




104

which is a polynomial matrix in qjl. Furthermore the mat-~
rices (T*(O) U*(O)] and (T*T(O) V*T(O))T both have
full rank.

Proof. Regard the system matrix in Theorem 4.2.4 P(qg) as

a Laurent polynomial matrix in g l. Going through the proof

this will lead to a final system matrix of the form

where D(qwl) is a polynomial matrix in g 1 and the mat-

rices (A B) and (AT CT)T have both full rank.

Def, 4.4.1. We will say that the system matrix P (x) is

in standard polynomial form in x if P(x) is.a polyno-
mial matrix and the matrices (T(0) U(0)) and (TT(O)

VT(O))T both have full rank. Here x can-be ¢ or qml.

Example 4.4.1. Consider the system matrix

-1, -1
q q

S|
a4 a9

P(g) = [mmmmmmmm e
-1 10

Multiplying from the left by diag(g,q,1,1) gives
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Pl(q) is not in standard polynomial form in g since

has linearly dependent rows. It can be brought to standard

polynomial form in g by subtracting row 1 of Pl(q) from
row 2 and multiplying the resulting row by q”l.

q 11 1 0 |
I -1 -1 |
A g-1 0 ;0 -q q | O
Polg) S [=m=mmmmm—me—— = o i Py (a)
-1 0 : 0 0 1
0 -1 | 0 0 0
P?(q) is in standard polynomial form in .

The transformation of strict system equivalence (s.s.e) is
defined by Rosenbrock (1970). It is a special case of our
transformations of equivalence for Laurent polynomial sys-—
tem matrices. Therefore, and because of Theorem 4.4.1, the
standard forms under s.s.e. are also standard forms under

equivalence for system matrices.

Theorem 4.4.3. Let P(g) be the system matrix of an ob-

servable system. Then there is an eguivalent system matrix

Pl(q) in standard polynomial form in g of the form

Pi(q) = |-mmFammokemSeoe (4.4.4)

Proof. If the system is observable then it has no o.d. ze-
ros. By Theorem 4.4.1 it is equivalent to a system matrix
Pz(q) in standard polynomial form in ¢g. This system mat-

rix has no o.d. zeros by Theorem 4.3.3. This, together with
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the fact that (Tg(O) VE(O)) has full rank ensures that
the system has no o.d. zeros in the sense of Rosenbrock
(see the remark after Def. 3.6.3). By Rosenbrock (1970),

Corollary 1 of Theorem 3.2.1, it is s.s.e. to

T,(g) t U4(q)
Palg) = [“mmémmwm%Mmém»mw
-1 t Wa(q)
but
T, (@) | U, (q) I, (q)
Pola) = «wwimmam%mm;mmmw A P, (q) mwm%__é_mmm
-1 i 0 0, I

The following theorem was shown for polynomial system mat-
rices and s.s.e. by Rowe (1971). Our proof will follow the

lines of Rowe.

Theorem 4.4.4. Let P(g) and TPl(q) be Laurent polynomial

system matrices of the form

T(q) | U(q)
P(g) = e Raaintalal
-1 i 0
and
T, (q) ' UL ()
Py(q) = (mmﬁ;mm“m%mm;wmwm}
T i 0

P(g) and Pl(q) are equivalent if and only if there is

a unimodular Laurent polynomial matrix Q(q) such that

Ty (@) = 0(q)T (a) (4.4.5a)

(4.4.5Db)

o)
5

-

i
©
5
=
2
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Proof. If (4.4.5) is true then P(g) and Pl(q) clearly
are eguivalent.
To prove the converse let L(g) and Ll(q) be such that

(T(@) U(@) =Ll [T(@ T@) (4.4.6)
and

(r,(@ Uy (@) =Dy (Fy@ Uy (4.4.7)
where T(q) and U(q) are relatively left prime and so are

%l(q) and ﬁl(q). P(g) and Pl(q) give the same transfer

function

15 - T @U@ = TN @U) (@ = B @b @ (4.4.8)

Lemma 3.5.2 shows that there is a unimodular R{qg) such that

T, (q) R(q)T (q) (4.4.9)

H

Gl(q) R(q)U(q) (4.4.10)

Now by (4.4.6), (4.4.7), (4.4.9) and (4.4.10)

(T = LlR(*"f U) = L R L(T  U)

U,) = Ll(Tl U 1

1 1 l)
We have to show that LlRLml is a unimodular Laurent polyno-

mial matrix.

Since P(g) and Pl(q) are equivalent there are M(qg) ,
N(q), X(gq) and Y(q) such that

| i

o 1o w oo [T 010 J(w v

0 LR LiE| = 0 IT | 10 (4.4.11)
mmmmmmmm i X I
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where we have omitted the argument ¢g. This gives

0 oy T0 Iy (4.4.12)
0 L. RT 0 LT
1
and
T 0
X o+ -1y |w= (0 -1 (4.4.13)
0 LT

Solving (4.4.12) for N and substituting into (4.4.13)

gives
I 0 I 0 Y
X OIS eq oM | = -1
0 LT 0 T "L 0  LyRT
11 I 0
= [x + (0 -T "L )] = (0 -1) -1 =1 -1 M
0 T "R "L

= [x+ (0 -Th7= %"lR"lLIl(o -I)M
= LlRﬁx + (0 leRLml) = (0 =-I)M (4.4.14)

It follows that LJ_RLml is a Laurent polynomial matrix. Taking

determinants of (4.4.12) gives

det L.RT = det M det LT det N

< det LlR = ch det L

< det LlRL“l = oqf (4.4.15)

Therefore LlRL“l is unimodular and the theorem is proved.

[u}
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Theorems 4.4.3 and 4.4.4 can of course be formulated for

controllable systems and system matrices of the type

as well.

Theorem 4.4.5. Let P(g) and Pl(q) be two system matrices
in standard polynomial form in g. Then P(g) and Pl(q)

are equivalent if and only if they are s.s.e.

Proof. If P(g) and Pl(q) are s.s.e then clearly they are
equivalent.

Suppose that P(g) and Pl(q) are equivalent..

It is shown by Rosenbrock (1970) that P(q) and Pl(q) are

s.8.e to some system matrices

- gI-A ' B
P(g) = wmnm“wu% mmmmmm
=C i D(q)
and
- gIi-a, ' B
Bll@) = |memmmmdobocdeoo
=C i Dl (C_I)

and that the Smith form of the polynomial matrices (T(q)
U(q)) and {gI-A B) are the same. Analogously the Smith

form of the polynomial matrices (TT(q) VT(q)) and
(quAT CT) are the same. Therefore the conditions that

(T(0) U(0)) and (rT(0) WV (0)) have Full rank imply

that (A B) and (AT CT) have full rank. Furthermore
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P (q)

are equivalent.

and El(q) are
By Th
and therefore s.s.e.

SeS5.E,

Theorem 4,.4.6. Let
T(a) |
Plg) = |==m====qs
=T i

and

T, (q) !
1 (
Po(q) = |===Fem=—-
1 {«-I |

be system matrices in
are equivalent if and

mial matrix Q(g) such

Tl(q) = Q(q) T (q)
Ul(q) = Q(q)U(q)
Proof. If (4.4.16) is

are equivalent.

If P(g) and Pl(q)
by Theorem 4.4.5. The

Theorem 4.4.7. Let

ces without decouplin

P

equivalent because
P (q)
It follows that

P (q)
and §l(q)

P(q)

and Pl(q)
eorem 4.2.3 are S.S.

and Pl(q) are

m}

standard polynomial form in g. They
only if there is a unimodular polyno-

that

(4.4.16a)

(4.4.16Db)

true then clearly P(g) and Pl(q)

are eguivalent then they are s.s.e.
(1971) .

(]

result ther follows from Rowe

be two system matri-
P(q)

(q)
g zeros. Then

and Pl(q)
and Pl(q) are

equivalent if and only if they have the same transfer func-

tion.
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Proof. If P(g) and Pl(q) are equivalent then they have

the same transfer function by Theorem 4.2.2.

Conversely suppose that P(g) and Pl(q) have the same
transfer function. By Theorem 4.4.1 there are system matri-
ces P(g) and ﬁl(q) in standard polynomial form in g
equivalent to P(g) and Pl(q) respectively. P{g) and
Pl(q) have by Theorem 4.2.2 the same transfer function.
Furthermore they have no decoupling zeros by Theorem 4.3.3.
This together with the fact that they are in standard poly-
nomial form in g implies that they have no decoupling
zeros in the sense of Rosenbrock (see the remark after Def.
3.6.3). It is then shown in Rosenbrock (1970) that they are

s.s.e. Therefore P(g) and Pl(q) are equivalent.

Example 4.4.2 (Rowe (1971)]. Let

g+l 0 :
0 q+2 :
P(q) = |=====rmococoooooeo oo
=1 0 v 0
i
0 -1 |
and
1 \ 1
5 (gtl) (@+3) =35 (@) (@+2) | 1 -3 (g-1)
|
-k 1 i L
~ 0 L 0
-1 o o0




112

1f
1 0 1 g+3 -=(g+2)
0 -1 g+l -q
1 -1 0 -3
X = Y = 1
1 -1 0 -5
then
Moo Ny
“mgo o Pl@ -2 -+ =Py (@)
X , I 0, I

By Theorem 4.4.6 there is a unimodular polynomial matrix
0(g) such that (4.4.16) is satisfied. In this case Q(q)

can be chosen as

Qla) =%

g+3 w(q+l)}

= (g+2) g

We have shown that if the system matrices take some special
forms then also the equivalence transformations can without
loss of generality be taken from a smaller class of trans-

formations. This is summarized below.

Theorem 4.4.5 shows that for system matrices in standard
polynomial form in g the systems are equivalent if and
only if the system matrices are s.s.e. If we further spe=
cialize the system matrices to be in a state space form
which also is in standard polynomial form in g then the
systems are equivalent if and only if the system matrices
are s.s. by Theorem 4.2.3. A specialization in another di-

rection is given by Theorem 4.4.4. However, unlike in the
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two previous cases, not every system matrix can be brought
to the desired form, but only observable ones. If the sys-
tem matrices in Theorem 4.4.4 are in standard polynomial
form in g then Q(g) can be chosen as a unimodular poly-

nomial matrix as shown by Theorem 4.4.6.

4,5, Causal systems in standard polynomial form

In this section we will specialize to systems in standard
polynomial form in g or qml. First we will give crite-
ria for causality for these systems. Then we will further
specialize to causal systems and present alternative me-

thods for computing the order of such a system.

Consider the system matrix

il "'%P) denote the
31 eee 3

minor of P(g) formed by row l,2,...,r,r+il,.a

and column l,Z,Q,e,r,r+jl,,..,r+jp, where 0 < p < min(£,m).

where T(gq) has dimension r. Let P

I

This notation is introduced in Rosenbrock (1970) and the fol-

lowing definition can be found in Rosenbrock (1974).

Definition 4.5.1. Let P(x) be a polynomial system matrix

in x, where x is g or qml, The degree of P(x) 1is

max (deg P%l°°°%P)) where the maximum is taken over all nonzero

i Y 1.3
pri-oeip), 70 < E < min(£,m) .
j1---3p = Ps

Theorem 4.5.1. Let P(g) be a polynomial system matrix in

g. Then the system is causal i1f and only if the degree of

P(g) 1is equal to deg det T(q).
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Proof. It is easy to see that

1yeeed
i...d Fo oo
g.t P _17777p (4.5.1)
Jyoedp det T

(see Rosenbrock (1970) ). Here G?%"’?P denotes the minor
e @ o ?L:)

of the transfer function G(g) that is formed by rows

il""’ip and colunns jl,a.e,jpn

Suppose that the system is causal. Every element of G(q)

is then by definition proper. This implies that every minor

of G(g) is proper. By (4.5.1) it follows that the degree

of P(g) is less than or equal to deg det T(q).

Conversely suppose that the degree of P(g) 1is less than
or equal to deg det T(g). In particular it is true that
deg P?i) < deg det T. By (4.5.1) G%l is proper for all

. . i1 s : : . .
l<i;j sm 123, 24L& But G is element (i,,j;) of

jl
G(g) and the theorem is proved.

Lemma 4.5.1l. Let P(x) be a system matrix in standard po-

lynomial form in =x. Then there is a minor P§i'°';P)
. e e o P
which is nonzero for x = 0.

Proof. Let T(x) Dbe of dimension r and put k = rank T(0).

By assumption rank(T(O) U(O)) = r. Therefore there are

r-k columns Ujl""’Ujrmk of U(0) such that rank(T(O)

Ujy-+:Uj.q) = r. In the same way ther; are r;k row; Vilé
crVig of =V(0) such that rank (T (0) Vil"'vir«k] = r.

It follows that P%l°°°%r“k) # 0 for x = 0,
Jle--Jr-k
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-1

Theorem 4.5.2. Let P¥*(g ) be a system matrix in standard

polynomial form in g la Then the system is causal if and
only if det ¥ (0)y # 0.

Proof. Let P(g) be an equivalent system matrix in standard
polynomial form in ¢g. Then there are Laurent polynomial mat-
rices M(q), N(g), X(g) and Y(g), where M(gq) and N(qg)

are unimodular, such that

Tgy-r¢ O ' 0 | Iggr O 10O
0 AR N I I (@) | v |9 Y@
| = i
sl - { i O I
0 g Lweh) F@D e v | W !
(4.5.2)
, . ile..1
Consider a minor P P) of P(g). IEf
Jleomjp
I 0
- ko=r
P(q) = 0
0 P (q)
then 5%%"“;9) = Eii“"ln) -det Tkg-r = P?i”' “P). The same
is true for g* -1y, Furtgermore it is easily sgown that
P$§i .P) is independent of X(q) and Y(q). Define k,
and kN through det M(g) = aqakM and det N(g) = qukN. Then
we have
#ip. = ape Kutky) piie..ip
P P) = ab ) (q) (4.5.3)
31 :Jp (@™ 4 Pi1...9p @

Put n; = deg det T(g) and n, as the degree of P(qg).

Then ky+ky 2 n, because every minor *li : ;P)(q_l) is a
polynomlal 1n q-i. Suppose ky tky > nj,. Thenpevery minor

*ll
p0581ble Therefore kM-+kN = n,. Now from (4.5.3) with index

)(q ) has a factor g~ l. By Lemma 4.5.1 this is not

p = 0 we have the equivalence

ES — - —
det T"(0) £ 0 <=> kM + kN = ng

Oor since kM + kN = n2
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det T (0) # 0 <=>n, = n

1 2

But n, = n, if and only if the system is causal by Theo-
rem 4.5.1.

We will now turn to the problem of calculating the order

of a system (Def. 3.2.5).

Theorem 4.5.3. Let P(g) be a system matrix in standarxrd

polynomial form in g. The order n of the corresponding

system is given by n = deg det T(qg).

Proof. It follows from Theorem 4.2.4 that there is an equi-
valent system matrix E(q) in state space form in standard
polynomial form in ¢g. Furthermore the A-matrix of this
state space form is an nxn matrix, where n is the order

of the system. Therefore n = deg det(gI-A).

By Theorem 4.4.5 P(g) and E(q) are s.s.e. Therefore
there are unimodular polynomial matrices M(g) and N(q)
such that (gI-2)

M(q)T(g)W(g). Taking determinants
c det T(g) and deg det T(g) =

gives det (gI-A)
= deg det(gI-a) = n.

Theorem 4.5.4. Let P*(qwl) be a causal system matrix in

standard polynomial form in g l. The order n of the sys-

tem is equal to the degree of P*(qml).

Proof. Let P(g) be an equivalent system matrix in stan-

dard polynomial form in g. Then (4.5.2) is true and it
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follows as in the proof of Theorem 4.5.2 that

1,001 _ =(k, +k ) ii...1
p*. b Py =apg MW Pt D@ (4.5.4)
le-ajp 1003y
Here kM + kN = deg det T(q) = n, where the first equality

follows because the system is causal and the second by Theo-
rem 4.5.3. Lemma 4.5.1 applied to P(g) shows that there

is a minor P*%i:::gp)(qml) of P*(q“l) of degree n. No
minor is of higher degree. Therefore the degree of the sys-

tem matrix P*(q l) is n.

Consider a system matrix of the form
(4.5.5)

where T(x) 1is of dimension r. The minor P%%:::ig)(x)
is here, after possibly a sign change, equal to the determi-
nant of the matrix formed by columns jl""’jp of U(x)
and the columns of T(x) that are left when columns iil,
“"’ip are deleted. Therefore the degree of P(x) can be
computed in the following way in this case. Compute the de-
terminants of all matrices that can be obtained by choosing
r columns from the matrix (T(x) U(x)). The highest deg-

ree of these determinants is equal to the degree of P(x).

Theorem 4.5.4 can be reformulated for systems of the type
(4.5.5).

Theorem 4.5.5. Consider the causal system

ag Ny = B(g Hu (4.5.6)

where A(qml) and B(g l) are polynomial matrices in ¢ l,
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The dimension of A(qml) is mxm, det A(qml) # 0 and the
rows of [A(O) B(O)) are linearly independent. Compute

the determinants of all matrices that are obtained by choos-
ing m columns of the matrix (A(qml) B(qml)]. These de=-
terminants are polynomials in qwl, The order of the sys-

tem is equal to the highest degree of these determinants.

Example 4.5.1. Consider the system of Example 3.2.4. The

corresponding system matrix is

9 -1 g-l+gq "=gq © | g-1
- l ‘
plo) = | % e %
-1 0 L0 0
“l+q b -1 ! 0

It can be brought to standard polynomial form in g by mul-
tiplying the first column by g and the second by qz. This

gives
g -1 q mq2+qm1 bog-1 0
SRR . o S S A
-q 0 L0 0 Vil o0
-g+l  -q !

Multiplicationsof the first and second rows and the first

column of P(qg) by qml brings it to standard polynomial

form in g l. The resuit is

1672 1 g g L B

N A L P Y I
“qm 1 0 : 0 “VZ (g™) 1 0
ghg? {0 0
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Theorem 4.5.1 can be used on Pl(q) to determine i1f the sys-
tem is causal or not. It is, however, tedious to check all
relevant minors. It is easier to use Theorem 4.5.2 on Pz(q),
We find that

1 1
det TZ(O) = det = -1 % 0
1 0

and the system is causal.

Causality can also be determined from the transfer function.
In Example 3.2.4 the transfer function G(g) is calculated.
Since all entries of G(q) are proper the system is causal

by Def. 3.4.1.

The order of the system can be calculated using Theorem
4.5.3.

n = deg det Tl(q) = 6
This result was also obtained in Example 3.2.4.

To use Theorem 4.5.4 to calculate n 1is tedious. We see,

however, that it is not sufficient to check deg det Tz(x) =

= 4, We also see that deg det Pz(x) = 3, but
lr—-x2 l~x+x2“x3 0
deg P, ;)(x) = deg det 1 x+x2 X = 6
4 “““X+X2 -1 0
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4.6 Controllability indices

Suppose we have a controllable but not necessarily observ-

able system of the type

T(g)e = U(q)u (4.6.1a)

y = V(g)g + W(g)u (4.6.1b)

In Def. 3.2.7 the state and the state space is defined for

this system. Let u(t) =0 for t < 0 and u(0) = U, * 0.
Furthermore let the state at t = 0 be zero. In general the
state will be nonzero for t = 1. Because the system is

controllable it is possible to determine a sequence {u(t)}_;=l

such that the state is zero at t = 1t + 1 for some rt. Let

Ty be the smallest t—-value that can be obtained with some

input sequence for the given Uq - Now minimize T with
respect to Uy and call the minimal value Al‘ If a non-
zero uy gives a state that is zero at t = 1 then Al = 0.
It is easy to see that all Uy that minimize T form a
linear subspace Al of Rz. Define dl = dim A1 and put

Ai = xl for i = 2,,,e,dl.

Now choose u(0) = U, d Al and minimize T with respect

to u, as before. Call the minimal value Adl+l- Clearly

2

less than or equal to Xd1+l form a linear subspace A2 D Al
Put d, = dim hy > dl and define A, = Adq+1 for 1 = dl+2,
coopd

Adl+1 > Ala It is easy to see that all u) giving a T

9°

Continue in this way until A, = r* for some k. This is

k
higp P2

possible because and dim Ai+
now defined & numbers A

, > dim A, . We have
b 1 i
< Az < ae0 < AR.

=

Def. 4.6.1l. The numbers Al"“"xz are the controllability

indices of the controllable system (4.6.1)
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Remark. Observe that X, < A5 < see < XA e

1 2 = = "2

As we have seen the space Rz, in which the input u(t)

> 1 < AZ C sao &
< Ao =R for some k < ¢. Suppose that a disturbance in
1 Then the ef-

fect of this disturbance can be made to vanish in Al time

takes its values, has a subspace structure A
form of a pulse in the input enters in A

steps, but not in fewer. If the disturbance enters in A2
but not in Al' then the effect of it can be made to wvanish
in Adl+l time steps but not in fewer, and so on. The ef-
fect of any disturbance in the input can be made to vanish

in AQ time steps.

Theorem 4.6.1. The controllability indices are invariant

under equivalence.

Proof. Let the system

Tl(q)il = Ul(q)u (4.6.2a)

y; = Vil@e, + Wi(q@u (4.6.2b)

be eguivalent to (4.6.1). Then by definition there is a

bijective mapping.
g, = Z2(@)g + Y(Qu (4.6.3)
which gives Yy =Y for any input u.

When defining the controllability indices we suppose that

u(t) = 0 for t < 0 and that the state is zero at t = 0.
T

This implies that £ € RZ and & 1is uniquely determined
—_—
by u. The mapping (4.6.3) then gives a gl in Rgl. This

-
gl is, by unigueness, the solution to (4.6.2a) in Rzl.
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AL 5 TF
Consequently the solutions in R, and Rzl are related via
(4.6.3).

We will show that if the solutions to the systems (4.6.1)

and (4.6.2) are related via (4.6.3) then the state of (4.6.1)
is zero if and only if the state of (4.6.2) is zero. We will
show it for the states at t = 1. Because the systems are

time invariant it will then be true for any t.

In order to determine the states at time t = 1 for the

+
and y;, defined through Lemma 3.2.4, is uniquely give by

systems (4.6.1) and (4.6.2) we put u, = 0. Since Yy =V

y, the states at t = 1 for the two systems are (g',yi)

and (Ei,yi) respectively. Here &' and Ei are defined

through Lemma 3.2.3. &' and gi coincide, by definition,
for large t with the solutions to (4.6.1la) and (4.6.2a)
with u, = 0. Therefore for large t we have by (4.6.3)

ii = Z2(q)g’ (4.6.4)

Since the mapping (4.6.4) is bijective and the inverse is a

mapping of the same type we have for large t

g] =0 <=> ¢! = 0 (4.6.5)

By Lemma 3.2.2 it follows that (4.6.5) is true for all +t.

Therefore
(8',y}) = 0 <=> (g],y%) = 0

It follows from the definition of controllability indices

that they are the same for the two systems.
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We will use a state space representation in standard poly-
nomial form in g to calculate the controllability indices
of a system. In the definition of controllability indices
we have used XO x ;$1 as a state space. We will show that
if the system is in state space form in standard polynomial
form in g then this state space is isomorfic to what is
usually regarded as the state space, i.e. the vector space

Rn of n-vectors x(1).

Let

gx = Ax + Bu (4.6.6a)
y = Cx + D(g)u (4.6.6Db)
be in standard polynomial form in g. By Theorem 4.2.4 the

dimension of A 1is n, the order of the system. The system

(4.6.6) is s.s. to a system

B
+ u (4.6.7a)

LS
to?

y = (C E){ + D(g)u (4.6.7b)

e

where all the eigenvalues of A are zero and no eigenvalues

of A are zero. Suppose u, = 0, then X is given by
A% (1) £> 1 (4.6.8)

We see that §(l) F 0 = g(t) * 0 t > 1.

T(t) = A5IR (1) £ 1 (4.6.9)

and g(t) =0 for t > dim A.

-
It follows that the state (x',y}) € XO x y© is in this

case given by
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A x (1)
x'(t) = ¥ (4.6.10)
0
and
yy(t) = Cx(t) t > 1 (4.6.11)
Therefore (4.6.8) - (4.6.11) define a mapping f from Rn
to XO x';m, This mapping is linear and the dimension of

the range space is by definition equal to n. The dimension
of the domain is also n, as pointed out earlier. Hence £

is an isomorfism.

Observe that this is not true if the system is not in stan-
dard polynomial form in ¢g. Then A will be of larger di-

mension than n.
For the system (4.6.6) form the matrix
[B AB A“B cee AT TB] (4.6.12)

Choose columns from the left in the following way. Accept
every column linearly independent of the previously accepted
columns. Reject the others. Because the system is controll-
able and in standard polynomial form in g it is possible
to choose n independent columns in this way. The chosen

columns will be of the form

Al-1 Ab-1
[bl Aby ... A"l by b2 AD, ... A by e
. ,
. M (4.6.13)
for some integers Xi,a.,,xé . Here by,...,b, are the co-

lumns of B.

It is well known (see e.g. Rosenbrock (1970)] that the sys-
tem (4.6.6) is s.s. to a system




0 l_
0 1
all ° alpl ------
0 1

By  eesesnns °a2pl+l
1 blZ oo blg

u
0 1 by ©24)

u
0 covcasnona 0 1
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(4.6.14)
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where

All unmarked entries of the matrices are zero. The C-matrix

has no special form.

Theorem 4.6.2. The set of controllability indices {Al.,axl}

are equal to the set of numbers {Ai.,.Aé} nct taken in or-

der.

Proof. By Theorem 4.6.1 it is sufficient to show the theorem
for the system (4.6.14) with =x(t) as the state at time ¢t.
Let the input be written wu(t) = Hu(t), where H is non-
singular and choose H such that BH becomes as B in
(4.6.14) but with all bij equal to zero.

Suppose that X(O)T= 0 and that Gi(O), the i:th component

of u(0), is equal to a % 0. This gives Xpi(l) = a. Inte-

rating the equations (4.1.14) we see that x ) (2) = x (3)
pi-l 1 i2

== = ! = i u (- i i -
oo Xpiml+l(xi) a independent of how {u(t)}t=l is cho

- !
It is possible to choose {u(t)}x%=l such that x(Ai+l) = 0,
This is done by choosing u(t) = -Lx(t) for t = 1,2,...,xi,
where L 1is given by
A1 ¢ e oo oAy,
L = . (4.6.15)

21 n
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This gives

A - BHL = diag e .l oo P (4.6.16)

and clearly x(Ai+l) = 0,

To determine the controllability index Ay we have to find
the u(0) # 0 that can give x(1) = 0 for the smallest
possible 1 > 0. TLet Al be the smallest Ai and suppose

11
there are d Ai:s that are equal to Al Call the cor-

lQ
responding subscripts 12‘°°id° Now any u(0) with arbi-
trarymvalu§§ of uyﬁO),,..,uig(O) will give x(kil+l) = 0
if {u(t)}ti% is chosen as u(t) = Lx(t), where L is given
by (4.6.15). Furthermore it was shown above that it is not
possible to make x(1) = 0 for 0 < 1 < Kil if u(0) % 0.
. - - T

Therefore Ay o= Ail, Since (uil(0)°-~uld(0)) span a
d-dimensional space it follows that lj = Ail for J = 2,

eoard'

Let Aﬁl be the smallest Ai not equal to Ail..,xid and

suppose Aé, = Akl for 3 = 2,...,2. Then (Gil(O).,.Gid(O),
Ekl(O).a.er(O)]T + 0 will give X(Aﬁl) = 0. Therefore

. i 3 —
Ad+i = Kkl for i =1,...,e.

Continuing like this it follows that {xi} are the controlla-

bility indices.

The following corollary follows from Theorem 4.6.2.

Corollary

where n is the order of the system.
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Def, 4.6.1. Let A(x) be a polynomial matrix in =x. The

column degree of column i in A(x) 1s equal to the highest

power of X occuring in column i.

Def. 4.6.2. Let ki be the column degree of column i in

A(x). A(x) is column proper if the matrix

lim A(x)diag(xmkl,,,e,xmkp)
X=>+oo

has linearly independent columns.

Theorem 4.6.3. Any controllable system is equivalent to a

system

I
mmmummmwlmmmJ (4.6.17)

in standard polynomial form in ¢g. Furthermore Tl(q) is
column proper with column degrees equal to the controllabi-

lity indices (not in order).

Proof. This is shown as Theorem 3.2.1 in Rosenbrock (1970)
by making operations of s.s.e. on the system (4.6.14). The

details are omitted.

Lemma 4.6.1. Let A(x) be an m x & polynomial matrix in

x with m > 2. Suppose A(x) has full rank i.e. there
is a nonzero 2 x & minor of A(x). Then there is a unimodu-

lar polynomial matrix R(x) such that A(x)R(x) is column

proper.,




129

Proof. Let P be a permutation matrix such that the column
degrees of B(x) = A(x)P increase from left to right. Let

61 be the column degree of column i in B(x) and

[b =0y

R bz] = lim B(x)diag(xmél oo X )

X=>c0

If the columns bl”'bl are linearly independent then B(x),

and therefore A(x), is column proper.

Suppose that the columns bl’“'bl are linearly dependent.

Examine the columns from the left and suppose that bk is
the first one linearly dependent on the previous ones. Then
it is possible to find constants Cle++Cprq such that the

k:th column of the matrix

[by «.. b,] ©, k-1 (4.6.18)

is zero. Here Cl“'”ckwl are in the k:th column of the se-=

cond matrix. The matrix

B, (x) = B(x) e Ck-1 (4.6.18)

has the same column degrees as B(x) except for the k:th
column, which has lower degree. Since 6i > 6j for i > j

the second matrix in (4.6.18) is a unimodular polynomial

matrix.
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If Bl(x) is column proper then we are ready. If Bl(x)
is not column proper the procedure can be repeated with
Bl(x) substituted for A(x).

Continuing like this we will eventually get a column proper
matrix. That this is true follows from the fact that each
iteration decreases the sum of the column degrees. If we

have not got a column proper matrix before, we will eventual-
ly get a matrix with all column degrees equal to zero. Call

this matrix H. Then

H = A(x)R(x) (4.6.19)
for some unimodular matrix R(x). By assumption there is a
nonzero & x 4 minor of A(x). It follows from (4.6.19)

that the corresponding minor of H is nonzero. Therefore

H is column proper.

Theorem 4.6.3 shows that to any controllable system there
exists an equivalent system with system matrix (4.6.17) such
that the controllability indices are the column degrees of
T(g). The next theorem shows that the column degrees of
any such system matrix are the controllability indices of

the system.

Theorem 4.6.4. Let the system matrix

P(g) = pe=————m——o (4.6.20)

be in standard polynomial form in g with T(g) column
proper. Then the column degrees of T(g) are the controlla-

bility indices (not in order).




131

Proocf. Since P(g) 1is controllable it is by Theorem 4.6.3
equivalent to Pl(q) in (4.6.17). By Theorem 4.4.6 there

is a unimodular polynomial matrix Q(g) such that
T(g) = Ty (q)Q(q) (4.6.21a)
Vig) = Vy(q)alq) (4.6.21Db)

By Theorem 4.6.3 the column degrees of Tl(q) are equal to
the controllability indices Apesehy of Pl(q) and there-
fore of P(gq) by Theorem 4.6.1. Let the column degrees of
T(g) be Ai..,xi where Xy < A5 £ ...<A;. Because T(q)

1 2
and Tl(q) are both column proper we have

deg det Tl(q) (4.6.22)

I M=
>
il

deg det T(q) (4.6.23)

M=
>
i

Since the orders of the systems corresponding to P(g) and

Pl(q) are equal it follows by Theorem 4.5.3 that
L L
z Ai = X AL (4.6.24)

For the simplicity of notation suppose that the column degrees
of T(g) and Tl(q) are ascending from left to right. This
is no restriction. Then column 1 in Tl(q) has degree Ai

and similarly for T(g). Define

%l = lim Tl(x)diag(xaxl, co oy mez)
X=r+4co
We see that xi > A because column 1 in T(g) is by
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(4.6.21a) a linear combination (by polynomials) of the co-
lumns of Tl(q) and %l has full rank.

Furthermore, A} > A, because otherwise Ai < Aé <A, 2

< eee < Az. This means that the linear combinations giving
columns 1 and 2 in T(g) cannot include columns 2, 3, coeyp 4L
of Tl(q) because %l has full rank. So columns 1 and 2

in T(g) must be multiples by polynomials of column 1 in
Tl(q), But this implies that det T(g) = 0. Therefore

Ay > Ay

Analogously Ai > Ai for 1 = 3,4,...,%. This together

with (4.6.24) gives Ai = Ai for 1 =1,2,c00,%.

Theorem 4.6.4 can be used together with Lemma 4.6.1 and Theo-
rem 4.4.4 to calculate the controllability indices for a
controllable system in the following way. Transform the sys-
tem to the form

(4.6.25)

which is in standard polynomial form in q. Use the method
of the proof of Lemma 4.6.1 to make T(g) column proper.
The controllability indices are then the column degrees of
T (q) .

Another way to determine the controllability indices is of
course to transform the system to a state space form in
standard polynomial form in g and then determine 2
from (4.6.12).

lem.kz

The controllability indices can also be determined from a

system matrix in standard polynomial form in g
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Theorem 4.6.5. Let the system matrix

(g™l I
mmmmmm A N (4.6.26)

be in standard polynomial form in (g l. Suppose that the sys-

tem is causal and that the matrix

T# (x) }

mv*(x)

is column proper. Then the column degrees of

=V*(x)

T# (x) }

are the controllability indices (not in order).

Proof. Let the column degrees of

T* (%)

mv*(x)

be x',.a.,xé. Because

T (x) }

mv*(x)

is column proper there is an & x £ minor of degree

and no minor of higher degree. It follows from Theorem 4.5.5
that
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L
n= x Ai (4.6.26)

T(q) | I T*(q )| I O(q) | 0
P(q) = Sttt Sent I Rt atatied Sub bt Rt tol == (4.6.27)
“V(g) 1 0 =V¥(g 7)1 0 0 i I
Clearly P(g) is a polynomial matrix.
T(0) T* (x) o1
= 1im Q(x ™) (4.6.28)
=V (0} X=>+oo | =V¥ (3)
Because
T (x)
=V¥{x)

is column proper it follows that

T(0) J

-V (0)

has full rank and therefore P(g) is in standard polynomial

form in ¢g. By Theorem 4.5.3
n = deg det T(q) (4.6.29)

Let 1,.0°,A; be the column degrees of T(g). It is al=-

ways true that

M

Az > deg det T(q) (4.6.30)
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This together with (4.6.29) and (4.6.26) gives

AT >

I M
M=

§
A (4.6.30)

But it follows from (4.6.27) that A; < A, L=1,000,40.
Therefore

X; = Xi for i =1, cea, & (4.6.31)

Now (4.6.31), (4.6.26) and (4.6.29) give

H M»

A; = deg det T(q) (4.6.32)
i

1
This means that T(g) is column proper. By Theorem 4.6.4
the numbers A",...,AE are the controllability indices (not

in order). Using (4.6.31) gives the desired result.

4]
Example 4.6.1. Consider the system matrix
lbg © g T 11 0
qmz l+qw2 | 1 T(qml) [
=1 ' A 1
e B R e o vt e
! i 0 -V{g 7)1 0
0 - ‘} 0

It is easy to see that P(q_l) is causal, controllable, and in

standard polynomial form in q“l. The matrix
T (x)
=V (x)

is, however, not column proper since the matrix
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1+x bl
lim %2 14x2 { x7% 0 , ]
Koo ! —x 0 0 b4

0 -1

has linearly dependent columns.

Subtract the first column of P(qml

gives the equivalent system matrix

1+qg -1 11
-2 |
-1 q 1 !0
Pr@ ™) = jmoooyommmogyeoses
-q q ;0
0 -1 to o
-1 ] . .
Pl(q ) is in standard polynomial
Ty (x) }
—Vy (%)

is column proper.

By Theorem 4.6.5 the controllability indices are

and AZ = 2.
of the system is n = Al + AZ = 3,
Multiplication of column 1 in Pl(q
2 by g gives
q2+q -q | 0
i
1 q 1
A
Pylq) = [m==mmmmmmmedecee o 2
=q 1,0 0
0 -q ! 0
Pz(q) is in standard polynomial fo

is column proper.

o O P O

)

a | DLl
-V, (g
form in g

rm ins g

O O O

2
d

from the second. This

and

A

1 1

By the corollary of Theorem 4.6.2 the order

and column

and Tz(x)
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By Theorem 4.6.4 the controllability indices are = 1

and KZ = 2,

A

Pz(q) can be brought to state space form in the following

way. The sign ~ means "is equivalent to".

0 0 ! ) 1 0 0 ' 0 )
q~+g =g : 0 g +g+l 0 ¢+ 1
3
Pola) ~] 0 1 gl 1 |~ 0 1 q ! ~
0 -q 1 | 0 0 -q 1! 0
0 0 -q i J 0 0 ~q |
q 0 : 1 q 0 : 0
0 g%+q+l 0 | ~g-11 0 |1
~ 10 1 q ! ~ 0 1 g, 0 ~
s e o D En e D e e D w W e e s e | ] e o o o oo e oo o e e -T mmmmmmm
g 1,0 0 1 (0
|
0 0 =~-q 10 0 | 1 0,0 1
a -1 010
L g+l 0 |
~ 1 0 q |
o o o o e e e e o ) e i et
-1 1,0
i
o 0 0 0 1

Therefore (A,B,C,D) is an equivalent system in state space

form, where

The controllability indices can be found by selecting linearly

independent columns of the matrix.
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6o 0o 1 -1 -1 -1
[B a8 a%B] = |1 1 =1 -1 0 0
o 1 0 0 -1 -1

as explained after (4.6.12). The first three columns are

independent. Therefore Al = 1 and AZ = 2,

4.7 Observability indices

Suppose we have an observable but not necessarily controll-

able system of the type

T(g)g = U(g)u (4.7.1a)

y = V{(g)g + W(g)u (4.7.1Db)

For any Yy ¥ 0 in V+ (see Def. 3.2.4) define 1 so
that y+(r) # 0 and y+(t) =0 for t=1,2,...,T=1 and
define n € RV through n = y+(r).

Let u € R and suppose that the state of the system at

L

z
time t = 1 1is nonzero. Because the system is observable
this state gives a nonzero Y and therefore a 1 and
an n. All nonzero states in the same onedimensional sub-
space of the state space give by linearity the same .
Because the state space is finite dimensional and the sys-
tem is observable there is a finite largest value of 1
that can be obtained from the states at t = 1. Call _this
largest value :l, It is easy to see that all n that can
be obtained from states with 1 = uq form a linear subspace
Ml < R". Let the dimension of Ml be dl and define :i =
= g i=2,i..,d

1
Now find the largest 1 that can be obtained from states
giving n € Ml' Call this largest wvalue idl+l° Clearly
Hdp+1 < My All n that can be obtained from states giving
T > :dl+l form a linear subspace M, < R, Furthermore,

2
M2 2 Ml° Let the dimension of M., be d then dz > dle

2 2
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Define Hy = 3dl+l' i = dl+2, oo e g dz.

Continue in this way until there are no states giving

. m , _oom

n ¢ My _, Ffor some k. If My _, *# R° define M, = R and
Hy = 0, 1 = dyml+l, .5y M. We have now defined m numbers
uiiuzz@.. Zumo

Def. 4.7.1. Define the observability indices {ul,...,um}

i=1,

of the observable system (4.7.1) as My = Mpiigqr

oy, Mo

Remark. Observe that Hy S Hy S eee S Moo

We have seen that the space Rm, in which the output y+(t)

takes its values, has a subspace structure M, ¢ M, € ... <

1 2
< Mk = R" for some k. Introduce a basis {vi}?=l in RM
in the following way. Let Vi oeee Vaq be a basis of Ml.
Determine Vgq+l «-- Vd, SO that Vi oeee Vd, becomes a ba-

sis of MZ and so on. This choice of basis is of course not

unigque.

Because the system is observable it is possible to determine
the state at t = 1 from Y. It is, however, not necessa-
ry to know Y, completely. It is sufficient to know y+(t)

for t =1, ..., Hir the projection of y+(t) on Mkml

along {v, ™ for t = :m+l, ooy ; the projec=

1 l:d]{'ﬂl+l m
tion of Z+(t) on M along {Vi}i=dkm2+l

k=2
+1, ... etc. This can be seen in the following way.

”%wlf
or

r Hdg-o

Suppose that two states xl(l) and xz(l) give the same
projections defined above. Then the state x(l) = xl(l) -

- xz(l) will give zero projections. We will show that x(1)

= 0. sSince x(l) gives 'y, (t) =0 for 1 <t < Km it fol-

lows by definition of Mo that x(1) gives an n in M

But the projection of vy, (t) on is zero for 1 < t <

M
k-1
S Mdgeq® It follows, by definition of Wy 1 that n be-

= Mag-1

<+
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longs to M
that n € M

2" Continuing like this it follows eventually

;- But the projection of y+(t) on My is zero

for 1< t < :dl = Hqe Therefore y+(t) =0 for 1< t< :1.
By definition of El it follows that Yy, = 0 and therefore
by observability that x(1) = 0.

Theorem 4.7.1. The observability indices are invariant un-

der equivalence,

Proof. Let the system

T, @&y = U (u (4.7.2a)
Yy = Vy(@é + Wy (qu (4.7.2b)
[

where u & Ré, be equivalent to (4.7.1).

By the definition of equivalence (Def. 4.1.1) there is a

bijective transformation
Ei = Z(q)e’ (4.7.3)

where &' € XO and Ei € X%, between X and Xé such

that the diagram

X (4.7.1Db)
(4.7.3) ] \\\\\\$ (4.7.4)
Y /
X . 7.2b)
commutes. It follows that the diagram
“TP

X X (ll)

A \w; e
V. ox Y (4.7.5)
0

Xlx v+ (111.)

0
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where the mappings (i), (ii), and (iii) are defined from
(4.7.4) in the obvious way, commutes and that (i) is bijec-
tive. Here ;¥1 is defined in Def. 3.2.6. Clearly diagram

(4.7.5) is true if Vg is substituted for VO and the map-

pings (ii) and (iii) modified accordingly. (For Vg see

Def. 3.2.4) By Lemma 3.2.4 there is a bijection between
I

Vg x ¥t ang V+. Therefore there are mappings (iv) and

(v} such that the diagram

-
X X

F .
() [ /v+ (4.7.7)
i
K ox V0T w)
e 1+
commutes. Now XO x Y and XO x Y are the state spaces

for (4.7.1) and (4.7.2) respectively. The theorem now fol=
lows from the definition of observability indices because

(1) is linear and bijective.

We will now find methods to compute the observability indi-
ces. It has been shown that there is an equivalent system

in state space form and in standard polynomial form in d.

gx = Ax + Bu (4.7.8a)

y = Cx + D(g)u (4.7.8b)
Form the matrix
i T ==,T
{CT ateT  a2%ct ., an-l CT] (4.7.9)

choose linearly independent columns as in (4.6.12) - (4.6.13).

The n chosen columns will be of the form.

5.
le. 2%, ... @™o ¢ alc

uh=1,T UL T
1Cy 1 1 S (A ) C2 eos (A ) qn

5 coe
(4.7.10)
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for some integers “i oo u&

colunns of CTm

It is well known that the system (4.7.8) is s.s.

of the form

) 0, a1
’ 1 .
‘0 .
1 épll
. 1°.
q s . 1
Xon k any
1
€21
Y =
le
where
i
— ¥
Pi il U]

The B and D(g) matrices have

°

Q F o

no special form.

Here

32

m2

are the

to a system

(4.7.11a)

x + D(g)u

(4.7.11b)
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Theorem 4.7.2. The observability indices are equal to the

nunbers {ui ona u&} (not in order).

Proof. By Theorem 4.7.1 it is sufficient to show the theo-
rem for the system (4.7.11). It was shown in Section 4.6
(4.6.8) - (4.6.11) that x(t) 1is the state of the system
(4.7.11) at time t. Define y(t) = Hy(t) where H is
nonsingular and such that HC becomes as C in (4.7.11)
but will all Cij equal to zero. Suppose ui < eee < uﬁo
This can always be achieved by a coordinate change in the

state space and the output space.

Let u, = 0 and x(l) have the component X, * 0 and all

-
other ;omponents equal to zero. We have pjml + 1 < i< pj
for some j (pO g 0). This x(1) will give vy(t) = 0 for
t=1, ..., pjmi afd yj(pjmi+l) = Xy where Zj is the
j:th component of y. The other components of y(pjwi+l)
are zero. To determine Mo we have to maximize pjmi+l°
This is done by choosing j = m and 1 = Pp-1 + 1. Then

pj - i+ 1 = p$¢ Therefore W, = u&- Suppose that “é =

= pu'y, r=m, e.., m=06, + 1 for some &,. Then we could

m 1 1

have chosen j equal to any ¥, where ¥ =m, ..., m = 61 +

+ 1. If i = pj.; + 1 then they will all give y(t) = 0,

t =1, ..., up ~ 1 and §(u£) £ 0. All §(u£) will lie in
the space spanned by {em“51+l’ “op em} , Wwhere e; is

the i:th column in Imm This space is by definition Ml
' fOor O = M.y

and has dimension 6 Therefore By = ¥

1° r
m - 61 + 1.
To determine L we have to choose an x(1l) which gives
an n outside Ml' Therefore X, must be nonzero for some
i=1, oo, pmm51° Choose X, = 0 for i = pmwél + 1, ...,n
and repeat the procedure above. If u£ = uémél for r =
= m - 61, R (B 62 + 1 +then this will give By = “é for
r =m - 61,,0.,m - 62 + 1. TFurthermore M2 will be spanned

by {emm62+l’ cooy em}o




144

If we continue like this it follows that Mo

I
=
Hn
O
s

r=1, ..., M.

Corollary

where n is the order of the system.
Now the observable versions of Theorems 4.6.3, 4.6.4 and

4.6.5, and Lemma 4.6.1 follow directly. We state the theo-

rems. The proofs are analogous to the ones in Section 4.6.

Theorem 4.7.3. Any observable system is equivalent to a sys-

tem
1 |
Pl(q) = [moo S S
=1 i 0
in standard polynomial form in g. Furthermore Tl(q) is

row proper with row degrees equal to the observability in-

dices {(not in order).

Remark. "Row proper" and "row degree" are defined analogous-
ly to "column proper" and "column degree"” (see Def. 4.6.2
and 4.6.3).

Lemma 4.7.1. Let A(x) be an m x & polynomial matrix in

X with m < #%. Suppose A(x) has full rank i.e. there is
a nonzero m x m mwminor of A(x). Then there is a unimodular

polynomial matrix R(x) such that R(x)A(x) is row proper.
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Theorem 4.7.4. Let the system matrix

(4.7.12)

be in standard polynomial form in g with T(g) row pro-
per. Then the row degrees of T(g) are the observability

indices of the system (not in order).

Theorem 4.7.5. Let the system matrix

) = | (4.7.13)

be in standard polynomial form in g l. Suppose that the sys-
tem is causal and that the matrix (T*(x) U*(x)) is row
proper. Then the row degrees of (T*(x) U*(x)) are the ob-

servability indices of the system (not in order).
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1. INTRODUCTION

The problem of controlling a linear, time invariant system has
been examined extensively. The problem may be divided into
three sub-problems, the servo problem, the regulator problemn,
and the sensitivity problem. The servo problem and the regula-
tor problem will be treated in this thesis. The sensitivity
problem means that the closed loop system should be insensitive
to modelling errors. This problem will not be treated here. It
will be examined what can be done if the system is known accur-

'ately.

Consider a linear, time invariant, finite dimensional, causal,
dynamical system, which can be represented by the following

block diagram.

Figure 1.1. The system to be controlled.

The system is supposed to have two input vectors u and e and

two output vectors y and z. The components of u are the control
variables and the components of e represent the disturbances that
act on the system. It will in general be assumed that e cannot be
measured. The output vector y contains all variables that are to
be controlled and the vector z contains all variables that can be
measured. The vectors y and z may have components in common. Both

continuous and discrete time systems are considered.

The control problem is assumed to be formulated as follows. Find
a linear, time invariant, finite dimensional, causal controller R,
such that the closed loop system fulfils requirements of the

following types.
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Servo requirements:

The input - output relation between a command input U, and the

output y should satisfy given specificationé.

Requlator requirements:

The input - output relation between the disturbance e and the

output y should satisfy given specifications.

Stability requirements:

The closed loop system should be stable.

An example of a servo specification is that y should be equal
to u,.. An example of a regulator specification is that step

changes in e should give no steady state error in y.

The information available to the controller R is the measured
output z and the command input u.. A block diagram showing the

closed loop system is found in figure 1.2.

Ur
—Tp
—>

Figure 1.2. The closed loop system.

The following viewpoint will be adopted. The closed loop system
is assumed to work over an infinite time interval and the behaviour
right after start-up is assumed to be of minor importance. The im-

portant thing is that the servo and regulator requirements are
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satisfied when the effects of the initial conditions have
vanished. Note that these effects will be negligible after a
short time interval if the stability requirements are satis-
fied. Observe also that this viewpoint does not imply that the
design is made for a steady state situation. The inputs e and

u,. may vary arbitrarily.

A consequence of this viewpoint is that the system S and the
controller R are appropriately described by their multivariable
transfer functions. Furthermore, the expression "input - output
relation" can be substituted by "transfer function" in the servo
and regulator requirements. The transfer function is however not
sufficient for the closed loop system when stability is dealt
with. The reason is that some variables may become uncontrollable
or unobservable when S or R are connected. These variables will
occur as "common factors", that will cancel out, if the transfer
function is formed. This problem can be circumvented if a poly-
nomial matrix representation, due to Rosenbrock (1970), is used.

The stability requirement is treated in chapter 4.

The solution to the control problem will be obtained from solu-

tions to different polynomial matrix equations and rational matrix

equations. Not all solutions to these equations are however valid.

It turns out that the valid solutions are precisely those that are

generalized polynomial matrices. The set of generalized polynomials

is, in chapter 2, defined to be the set of rational functions with

poles outside some subset A of the complex plane. It is shown to

be a ring and in fact a principal ideal domain. Many useful results

can be shown for matrices with entries in a principal ideal domain.

Some results are given in e.g. Mac Duffee (1946). If the equations,

mentioned previously, are interpreted as generalized polynomial
matrix equations then necessary and sufficient conditions for the
existence of valid solutions are easily obtained. These condi-
tions will thus be necessary and sufficient for the existence

of a solution to the control problem. Different servo and regu-

lator specifications correspond to different subsets A.
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There is a system theoretical interpretation of the use of general-
ized polynomials. Let A be regarded as the unstable region of

the system. Poles and zeros of the transfer function outside A
then correspond to stable and minimum phase'properties of the
system, i.e. to the part of the system that behaves well and needs
no special attention. This corresponds to the fact that the units,
i.e. invertible elements, in the ring of generalized polynomials
are precisely the rational functions with poles and zeros outside
A. Multiplication or division of an element in a ring by a unit
does not change the properties of the element from the point of

view of the ring.

The introduction of generalized polynomial matrices gives a tool
for isolation of the part of a system that is difficult to handle
from the part that is easily handled. The part that is difficult
to handle is completely described by a polynomial matrix, called

the structure matrix. Two versions are defined in chapter 3. The

left structure matrix gives information about how well the system

can be controlled in the servo sense. It can therefore be used to
formulate the servo specifications or to check if given specifi-

cations can be fulfilled. The right structure matrix gives infor-

mation about how well the disturbances can be estimated from
measurements of the output z. These measurements are used by the
controller in order to fulfil the regulator specifications. The
right structure matrix will therefore appear in the conditions
that have to be checked in order to determine if the regulator
specifications can be fulfilled. The left and right structure

matrices are dual concepts.

It will be shown that the control problem can be separated into
two parts. First choose a feedback controller be which satis-
fies the regulator and stability requirements. Then choose a feed-
forward controller Rff to satisfy the servo requirements. The con-

figuration is shown in figure 1.3.
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_ey 1Yy
| U,

r \
Rff be

Figure 1.3. Separation of the control problem.

The problem to determine be is solved by feedforward design

and feedback realization in the following way. Consider the con-
trol configuration in figure 1.4.

Figure 1.4. A possible control configuration if e were
measurable.

The controller Rf is said to be feedback realizable if there is

a causal and stabilizing feedback controller be from z to u,

such that the system in figure 1.5 has the same transfer function
from e to u as the system in figure 1.4.

€ » __)L_’
Uy S|z
be

Figure 1.5. A feedback realization of the system in
figure 1.4.
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Necessary and sufficient conditions for Rf to be feedback realiz-
able are given in chapter 7. The right structure matrix is used
to characterize the class of feedback realizable transfer func-
tions. It is also shown how a causal and stabilizing be can be
£ The

special case of z being the state vector has been solved in

computed from the system S and a feedback realizable R

Bengtsson (1977b). The results in chapter 7 extend Bengtsson's

results to arbitrary =z.

The control configuration in figure 1.4 with feedback realizable
Rf is in chapter 8 used to find a method for checking if the re-
gulator specifications can be fulfilled. It is also shown how a

feedback realizable Rf, that satisfies the regulator specifica-

tions, can be computed, if one exists.

The results in chapters 7 and 8 are combined to compute a feed-
back controller be that satisfies regulator and stability re-
quirements if this is possible. When this is done it has to be
determined how the input v in figure 1.3 shall be connected to
be. In chapter 6 it is shown that there is a "best way" to do

this.

It remains to determine the feedforward controller Rff in figure
1.3. Let GVy be the transfer function from v to y and let K be
the transfer function for the controller Rff. It follows that

'Gv K=H, where H is the transfer function from the command input

y
u,. to the controlled output y.

r
The transfer function GVy is given and a stable and causal K
should be determined, such that H fulfils the servo specifica-
tions. This problem has been treated by many authors. In Wang,
Davison (1973a) H is supposed to be given and a least order and
causal K is found if one exists. They can however not guarantee
that K becomes stable. Bengtsson, Wonham (1976) do also suppose
that H is given and a stable and causal K is found if one exists.

This K might not be of least order.
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The results of Bengtsson, Wonham (1976) will be extended in
chapter 5. It is shown how the class of possible transfer func-
tions H can be characterized by the left structure matrix of

the system S. The characterization makes it(possible to check

if the servo specifications can be fulfilled. It also gives a
method for choosing H in this class, such that the servo speci-
fications are fulfilled, if such an H exists. An algorithm for
finding a stable and causal K, when H is given properly, is pre-

sented. It will not necessarily give a K of least order.

The design procedure in chapters 5 - 8 is applied to a simple
multivariable system in chapter 9. Simulations show that the
closed loop system behaves as desired. The simulations also show
that the closed loop system is, in this example, insensitive to

parameter changes in the system S.
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2, GENERALIZED POLYNOMIALS

Generalized polynomials are defined in this chapter. They are
useful when dealing with design problems for linear, time
invariant systems. They provide for instance a convenient way

to formalize allowable cancellations.

A generalized polynomial is defined as a rational function with
all its poles outside a given subset A of the complex plane C.
The reason for giving them a name including the word "polynomial"
and not "rational function" is that the generalized polynomials
algebraically have more properties in common with the polynomials
than with the rational functions. They are a ring and in fact a
euclidean domain just as the polynomials are, but not a field

like the rational functions.

2.1. A-generalized polynomials

Let R and C be the fields of real and complex numbers and let A
be an arbitrary subset of C. Furthermore let R[A] be the polyno-
mials and R(A) the rational functions with coefficients in R.
Poles and zeros of a rational function are as usual defined as

the zeros in C of the denominator and numerator polynomials.

Definition 2.1. The set of A-generalized polynomials, denoted

RA[A], is defined as the set of rational functions with no poles

in A.

Remark. If A is specialized to C then RA[A] becomes the ordinary
polynomials R[A]. With A=¢, the empty set, RA[A] is equal to the
rational functions R(A). Finally if A is C ~ {0} then RA[A] is
the Laurent polynomials R(A] (part 1 of this thesis).

Define addition and multiplication in RA[A] as it is defined in
R(X). It then follows directly from the definition of a ring
that RA[A] is a ring. The invertible elements, units, in the

ring RA[A] are characterized by the following lemma.
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Lemma 2.1 The units in RA[A] are all nonzero rational functions

with no poles and zeros in A.

An integral domain is a ring that fulfils the following three
conditions.

(1) There is a multiplicative identity.

(1ii) Multiplication is commutative.

(iii) a*b = 0 = a = 0 or b = 0 for all a and b in the ring.

Lemma 2.2 The ring of A-generalized polynomials RA[A] is an

integral domain.

Lemma 2.3 Every nonzero a € RA[A] can be uniquely factorized
as a = p*r, where p 1is a monic polynomial with all its zeros
in A and r is a unit in RA[X].

The simple proofs of the lemmas above are omitted.

Definition 2.2 Let a be a nonzero element in RA[A]. The A-degree

of a, denoted degAa, is the degree of the polynomial p, defined
through lemma 2.3.

Remark 1. If A = C so that RA[A] is the ring of polynomials then

the degree will be denoted "deg" as usual.
Remark 2. Note that if a is a polynomial then in general
degAa * deg a. Let for instance A be the left half plane then

degA(Az-l) = 1 while deg(r®-1) = 2.

Theorem 2.1 RA[A] is a euclidean domain.

Proof An integral domain D is a euclidean domain if there is
a function v from the nonzero elements of D into the nonnegative
integers such that
(1) For all pairs a, b in D for which b # 0 there exist ¢
and r in D such that
a =bg + r with v(r) < v(b) or r =0
(ii) For all pairs a, b in D for which a # 0 and b * 0

v(a) £ v(a b).
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For all a € RA[A] define v(a) = degAa. Choose a and b in RA[A]

with b # 0. Decompose them according to lemma 2.3 as a = apar
and b = bpbr’ where ap and bp belong to RfA]. By the division

algorithm for polynomials there are x and y in R[A] such that
a_ = b x + with d < deg b_ or = 0. 2.1
o D y eg y g by y ( )

Multiply (2.1) by a_

Choose g = x B£ and ¥ =y a. Clearly gq and r belong to RA[A].
If y = 0 then F =0 and (1) is fulfilled. If y # 0 then
degAr < deg y < deg bp = degAb and (i) is fulfilled.

Choose nonzero a and b in RA[A] and decompose them as above,

a =a_a_and b = b_b_. Then

pr pr

degAa = deg ap < deg apbp = degA apbparbp = degA ab
and (ii) is fulfilled.

Corollary RA[A] is a principal ideal domain.

Proof Every euclidean domain is a principal ideal domain.

2.2 A-generalized polynomial matrices

Matrices with entries in RA[A] will now be considered. These
matrices have properties analogous to the properties of the
polynomial matrices. The reason is that most of the results
shown for polynomial matrices are in fact special cases of
results that can be shown for matrices with entries in any prin-
cipal ideal domian or euclidean domain. This is for instance
done in Mac Duffee (1946).
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Different concepts, that can be defined for matrices with entries
in any principal ideal domain, will be given below for A-gener-
alized polynomial matrices. We will use the conventional names,
but the names will be preceeded by "A"-(e.g. A-unimodular,
A-equivalent) to indicate that the underlying principal ideal
domain is the ring of A-generalized polynomials. If A = C so

that we have ordinary polynomials then the "A"™ will be omitted.

Definition 2.3 A A-generalized polynomial matrix is a matrix

with entries in R ,JA]. The set of nxm matrices with entries in

RA[A] is denoted Rnxm[k]

Definition 2.4 A matrix A € Rnxn[k] is A-unimodular if there

A
is a B € R?xn[l] such that AB = I.

The following theorem is shown in Mac Duffee (1946) for a prin-

cipal ideal domain.

nxn
A
if det A is a unit in RA[A], i.e. is a nonzero rational func-

Theorem 2.2 A matrix A € R [A] is A-unimodular if and only

tion with no poles or zeros in A.

Definition 2.5 The matrices A and B in RY*™[A] are A-equivalent

A
if there are A-unimodular U € Rnxn[k] and V € Rmxm[k] such that
A =UDB V.
Theorem 2.3 Every A = Rnxm[x] is A-equivalent to a matrix
S € Rixm[k] in A-Smith form.
S = (D 0) if m > n
S =D if m=n
D
S = ifm<n
0
i . .k . ,
Here D = diag (i lyreeey kY,O .+.,0), where {1 } are monic polynomials
with all thelr zeros in A. Furthermore 1 |1 J41 for 3 = 1,2,...,
k - 1 and {1 } are called the A- 1nvar1ant factors of A. The

A-Smith form is unique.
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Proof The existence of an equivalent Smith form with invariant
factors, that are unigque up to units, is shown for a general
principal ideal domain in e.g. Mac Duffee (1946). In our case
we can choose the units so that the A-invariant factors become
monic polynomials with all their zeros in A. They will then

clearly be unique.

Since Rixm[x] c Rnxm(x) the definitions of rank and linearly

independent column or row vectors as stated for rational matrices
also apply to A-generalized polynomial matrices. Let RX[A] denote

the vectors of n-tuples of A-generalized polynomials.

Definition 2.6 Let {ai}i belong to RX[A]. {ai}i are linearly
independent if the only biER(A), i=1,...,k that satisfy

blal + ... + b,a, =0

are bi =0, i=1, ..., k.

nxm

Definition 2.7 The rank of A € RA [A] can be defined in either

of the following three ways

(1) The highest order of any nonzero minor of A.

(ii) The maximal number of linearly independent columns that
can be found among the columns of A.

(iii) The maximal number of linearly independent rows that can

be found among the rows of A.

The definitions are equivalent.

Remark Linear independence for complex vectors is defined in
the usual way i.e. through definition 2.6 with c” substituted
for R?[A] and C for R(X). Definition 2.7 can then be applied

to complex matrices. This gives the usual definition for complex

matrices.
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A rational matrix is left (right) invertible if and only if its
columns (rows) are linearly independent. If a A-generalized
polynomial matrix has linearly independent columns (rows) then
consequently there is a rational left (right) inverse. It might,
however, not be possible to find a left (right) inverse, which
is a A-generalized polynomial matrix.

Definition 2.8. The matrix A € Rixm
there is a B € R} "[A] such that AB = I.

[A] is right A-invertible if

nxm

Theorem 2.4. Let A € RA

[*], n £ m. The following statements

are equivalent.

(1) A is right A-invertible.

(ii) The A-Smithform of A is [I 0].

(iid) A(AO) has linearly independent rows for every AOEA.
(iv) There is a B € Rim—n)xm[x] such that

[g] is A-unimodular.

Remark. If A = ¢, i1.e. A is a rational matrix, then (iii) is
meaningless and should be substituted by:

(i1i)' A has linearly independent rows in the sense of definition 2.6.

We will prove the theorem in the case A % @, but only minor

modifications have to be made if A = ©.

Proof. (i) & (ii). Let S be the A-Smith form of A. Then there
are A-unimodular N and M such that S = N A M. Suppose that A is
right A-invertible and let B € R?xn
A. Then M—lB Nnl belongs to Rﬁxn[x] and is a right A-inverse to
S. Conversely suppose that S is right A-invertible and 2 € R?Xn[x]

be a right A-inverse to S()). Then M Z N belongs to RTXH[A] and

[A] be a right A-inverse of

is a right A-inverse to A. We have shown that A is right A-in-

vertible if and only if S is right A-invertible.

If S is equal to [I 0] then Z = {g] is a right A-inverse to S.
Conversely suppose that S is right A-invertible and that

Z € R?xn[k] is a right A-inverse. According to theorem 2.3 S
has the form [D 0], where D = diag (dl,...,dn) and the nonzero

di are monic polynomials with no zeros outside A. Decompose Z
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Dz, =T (2.2)

It follows that all di must be nonzero. (2.2) is then equivalent
to

Zl =D (2.3)

The left member of (2.3) has no poles in A since Z € R?Xn[x]

and D—l has no poles outside A. Therefore D—l is a polynomial

matrix, i.e. dil are polynomials. Since di by definition are

monic polynomial they must all be equal to 1. I.e. S = 1[I 0].

(ii) = (iv). We have A = N[In 0]M, where N and M are A-unimodular.
Choose B = [0 I IM. Then
m-n

P=[5 9] 5z -4

(m-n) xn

Clearly B € RA

[A] and [g} is A-unimodular.

(iv) = (iii). Choose A EN. We know that Né[g} belongs to RTXm

Therefore N(ko) is a well defined matrix with entries in C.

[A]

Since N is A-unimodular it follows from theorem 2.2 that
det N(AO) is a nonzero complex number. Consequently N(AO),

and therefore also A(AO), has linearly independent rows.

(1iii) = (ii). Let S = [D 0], where D = diag(dl...dm), be the
A-Smith form of A. Then there are A-unimodular matrices N and
M such that

[D 0] =NAM (2.5)

It was shown above that N and M are nonsingular complex matrices
for every AO in A. Since A has linearly independent rows for
every AOEA it follows that also the right member of (2.5) has

linearly independent rows for every AOEA. The polynomials di
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must therefore be nonzero for all ko A. It follows from theorem
2.3 that the polynomials di have no zeros outside A. Consequently
they are nonzero for all A in C. They must therefore be inde-

pendent of A. They are then by definition egual to 1.

2.3 The structure matrix

It was mentioned previously that a A-generalized polynomial matrix
is not necessarily (left or right) A-invertible. In this section
it will be shown how an arbitrary A-generalized polynomial matrix
can be factorized into a product of a matrix, called the struc-
ture matrix, and a A-invertible matrix. This factorization will

be of great importance when discussing dynamical systems. The
structure matrix represents in some sense the part of the matrix
that is difficult to handle, while the A-invertible part is

easily handled. The factorization is essentially unique.

One way to do the factorization is given in theorem 2.5 below.
This factorization will be of interest in chapter 3, but it is
from the modified version in theorem 2.6 that the structure matrix
is defined.

Theorem 2.5 Let A € Rnxm[A] have rank r. Then A can be factor-

A
ized as A = B C, where B € Rﬁxr[x] has rank r and C is a right

A—invertible matrix in Rixm[k]. The matrix B is unique up to

multiplication from the right by A-unimodular matrices.

Proof Let S be the A-Smith form of A. Then S can be written
s = [D O], (2.6)

where rank D = rank A = r. There are A-unimodular matrices N and
M such that A = N S M. Partition N and M compatibly with the

partitioning of S:

D © M
A= [N, NI (2.7)
L 2 O O M
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This is equivalent to

A = NlD Ml (2.8)
Choose B = N,D and C = M . Then B belongs to Rxxr[h] and C belongs
to Rixm[x]. Furthermore C is right A-invertible by theorem 2.4.
((iv) = (1)) and B has rank r since A has. We have thus shown

that there is a factorization of the desired type.

Let A = B,C, -and A = B2C2 be two different factorizations.

171
Since rank A = r and Bl has r columns it follows that Bl has
linearly independent columns. Therefore there is a rational matrix
= rxn = _ . . _
Bl € R (r») such that BlBl = I. Multiply the equality BlCl = B2C2

from the left by él' This gives
c, = RC, , (2.9)

where R = ﬁle is a rational rxr matrix. Rank R = r since rank
Cl = r. Therefore R_l exists as a rational matrix. By theorem

2.4 ((i) = (ii)) there exist A-unimodular N and M such that

c2 = N[I OlM (2.10)

Insert this into (2.9)

C; = RN[I oM
‘ -1 _ N O]
- ClM = R[I o][O 1]
s C M_l[N_l O] - [R 0] (2.11)
1 0 I| *

The left member of (2.11) is a A-generalized matrix. Therefore R

is also a A-generalized polynomial matrix. From (2.9) we get
C, =R C (2.12)

We can now proceed as above to conclude that R—l is also a A-gener-
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alized polynomial matrix. Consequently R is A-unimodular.

Introduce (2.9) into

Blcl = B2C2. (2.13)
This gives
BlR C2 = B2C2 (2.14)

1 R =B, (2.15)

where R is A-unimodular.

The factorization of theorem 2.5 can be modified so that the
matrix B becomes a polynomial matrix, which is essentially
unigue. To show this we need the following two lemmas.

RN,

Lemma 2.4 Let the polynomial matrix A € R n ¢ m, have

linearly independent columns. Then A can be written A = B C,
WX 1n
where B € R

c e RMVM

[X] has linearly independent colums and
[A] has nonzero determinant. Furthermore the invariant
factors of B have no zeros outside A and det C has no zeros

inside A.

Proof Let [g}, where D = diag(di,...dn), be t%eNSmithforonf
the polynomial matrix A. Fagtorize every d. = didi, wherf di
has all its zeros in A and dl has no zeros in A. Defing D =
= dlag(dl d ) and D = dlag(d ..,d ). Then D = D D and

there are unlmodular N and M such that

i
r—-—-—l
o TU>
[E—

3

(2.16)

Since A has linearly 1ndependent columns it follows that all d

are nonzero. Therefore all d and di are also nonzero. Define
] and C = DM. (2.17)

A
The Smith form of B is [g]. It follows that B and C fulfil +the

conditions of the lemma.
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mxn

Lemma 2.5 Let the polynomial matrix A € R [X]; ng m, have

linearly independent columns and invariant factors with no

zeros outside A. Let B belong to Rmxk[x]. If there is an
L € Rﬁxk[x] such that
AL =28 (2.18)

then L is a polynomial matrix.
Proof Suppose there is a A-generalized polynomial matrix L
satisfying (2.18). It will then be shown that I must be a
polynomial matrix.
There are unimodular polynomial matrices N och M such that
Dl y am (2.19)
0]
is the Smithform of A. Here D = diag(di,...,dn), where di are
nonzero polynomials withno zeros outside A. Introduce (2.19)
into (2.18)

(g) M—lL - N B (2.20)

where N B is polynomial. Partition N B as N B
Then

fl
———
o w
[ NSRS ool
 E——

(2.21)

The left member has no poles in A and the right member has no
1

poles outside A. M L will therefore be polynomial. Consequently
L =M M_lL is polynomial. o
The desired factorization of a A-generalized polynomial matrix
is given by the following theorem.

nxm

Theorem 2.6 Let A € R [A] have rank r. Then A can be factorized




168

AN ~

as A = A A, where A is a right A-invertible matrix in RrE*M

A A
and A is a polynomial matrix in RY™F[A] with rank r. The

[A]

A
invariant factors of A have no zeros outside A. The matrix A

is unique up to multiplication from the right by unimodular

polynomial matrices.

A~
Proof The desired factorization of A = A A is of the type
described in theorem 2.5, with the additional condition that
A
A is a polynomial matrix, whose invariant factors have no

Zeros outside A.

Let A = B C be a factorization of the type described in theorem
2.5. We have to show that there is a A-unimodular R such that

B R is a polynomial matrix with no zeros of its invariant fac-
tors outside A.

For i = 1,...,r, choose ry equal to the least common denominator
of the elements in column i of B. Then Rl = diag(rl...rr) is
A-unimodular and

Bl = B R (2.22)

is a polynomial matrix. Furthermore Bl has rank r and therefore

linearly independent columns.

Apply lemma 2.4 to Bl

B, = B,R (2.23)

where B2 is a polynomial matrix, whose invariant factors have

no zeros outside A and R2 is A-unimodular. Combination of (2.22)

and (2.23) gives

B, = BR (2.24)

- A ~ -
Rlel is A-unimodular. Choose A = B2 and A = R lC.

Clearly A is right A-invertible since C is. We have thus found

where R

~

a factorization of the desired type.
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AN ~ A~
Let A = AlAl and A = A2A2 be two different factorizations of the
type described in the theorem. By theorem 2.5 there is a A-uni-

modular matrix R such that

A A
A, = AR (2.25)

By lemma 2.5 R is polynomial. Lemma 2.5 applied to

A, = AR 2.26
Al = A2R (2.206)
shows that also R-_l is a polynomial matrix. Therefore R is a uni-

modular polynomial matrix. o

A
The matrix A turns out to be very important later in this thesis.

It is called the structure matrix. The precise definition is

given below.

Definition 2.9 The left A-structure matrix of a A-generalized

A
polynomial matrix A is defined to be the polynomial matrix A in

theorem 2.6.

2.4 Divisors

The divisors of A-generalized polynomial matrices will now be
explored. They will be defined to be nonsquare matrices in general.
Mac Duffee (1946) and Rosenbrock (1970) consider only square

divisors.

nxm
A
B and C are A-generalized polynomial matrices and B has linearly

Definition 2.10 If A € R [A] can be factorized as B C, where

independent columns, then B is a left A-divisor of A.

Lemma 2.6 Let A and B belong to Rixm[x] and RﬁXk[A], respectively,
and let r be the rank of [A B]. Then there is a pA-unimodular
matrix N € R§m+k)X(m+k)[A] such that

[A B] N = [L 0] (2.27)
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nxr

where L € RA

[A] and L has linearly independent columns.
Proof There are A-unimodular N and M such that

M[A BIN = {g 8] (2.28)

where the right member is the A-Smith form of [A B] and D is

anrxr nonsingular matrix. Multiplying (2.28) from the left by M—l
gives (2.27) with
= y~1 [D]
L =M 10} (2.29)
m]

Definition 2.11 Let A and B belong to Rﬁxm[x] and RﬁXk[x],
respectively. Let L belong to Rxxx[k], for some &. Then L is a
greatest common left A-divisor (g.c.l.A.d.) to A and B if it is
a left A-divisor to both A and B and if every other left A-div-—
isor to A and B is also a left A-divisor to L.
Theorem 2.7 There exists a g.c.l.A.d. to every pair A € Rixm[x]
and B € RXXk[A]. If rank [A B] is r then any g.c.l.A.d. L has
r columns and can be expressed as

L = AX + BY (2.30)

for some X € for[x] and Y € Ri

to multiplication from the right by a A-unimodular matrix.

“*FIA]. Furthermore L is unique up

Proof By lemma 2.6 there is a A-unimodular N such that
[A BIN = [L 0] (2.31)

where L has r linearly independent colums. It will be shown that

L is a g.c.l.A.d to A and B. The equality (2.31) is equivalent to

(A B] = [L OIN T. (2.32)

Partition N_l as
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N, X
-1 _ A A2
N = |§ 4 (2.33)
4
Then (2.32) gives
A A
[A B] = L[Nl Nz]. (2.33)

Since L has linearly independent columns it is a left A-divisor
of both A and B. Partition N as

where N, is mxr. Then (2.31l) gives
L = AN, + BN, (2.36)

which is of the form (2.30). Let M be an arbitrary left A-divisor
of A and B so that

A
B

M A, (2.37 a)

M BO. (2.37 b)

li

Insertion of (2.37) into (2.36) gives

L = M(AON + BON3). (2.38)

1
This shows that M is also a left A-divisor of L. It follows that
L is a g.c.l.A.d. of A and B.

Let Ll and L2 be two g.c.l.A.d. of A and B. Since Ll is a g.c.l.p.d.

and L2 is a left A-divisor we have

Ll = L2U (2.39)
for some A-generalized polynomial matrix U. Analogously
L, = L.,V. (2.40)
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Equations (2.39) and (2.40) give

Ll = le U (2.41)

L2 = L2U \ ' (2.42)

or since Ll and L2 have linearly independent columns

<
c
|

-

(2.43)
Uvs=T>I. (2.44)

Consequently U and V are both square and A-unimodular.

It has thus been shown that the g.c.l.A.d is unique up to multipli-
cation from the right by a A-unimodular matrix. Since there is
one g.c.l.A.d with r columns which can be expressed as (2.30) this

is true for every g.c.l.A.d. .

Definition 2.12 A € Rﬁxm[x] and B € Rixk[x] are relatively left

A-prime if the g.c.l.A.d. is A-unimodular.

nxk
A

?xm[x] and R

ively. The following statements are equivalent.

Theorem 2.8 ©Let A and B belong to R [Xx], respect-

(i) A and B are relatively left A-prime.
(ii) The A-Smithform of [A B] is [T O0].

(iii) [A B] has linearly independent rows for every AOEA.

Remark .If A = ¢, i.e. A and B are rational matrices, then (iii)
should be substituted by:

(iii)' [A BJ] has linearly independent rows in the sense of
definition 2.6.

Proof (i) ¢« (ii). By lemma 2.6 there are N and L such that
[A BIN = [L 0]
where N is A~unimodular and I has linearly independent columns.

By the proof of theorem 2.7 L is the g.c.l.A.d of A and B. Let
S be the A-Smithform of IL.. Then [S 0] is the A-Smithform of
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[A B] and this is equal to [I 0] if and only if the A-Smithform
of L is I,i.e. if and only if L is A-unimodular.

The eguivalence between (ii) and (iii) follows from theorem 2.4.
a

2.5 Matrix equations

The treatment of the feedback problem in chapter 6 and 7 leads
to two different kinds of A-generalized polynomial matrix equations.
Variants of the corresponding equations for polynomial matrices
have been studied by many authors, e.g. Mac Duffee (1946), Rosen-
brock (1970), Roth (1952). In this section the results will be

stated in a form suitable for chapter 7 and 8.

Theorem 2.9 Let A, B and C belong to R?xm[kl, Rﬁxk[x] and
RXXQ[A], respectively. There is a solution X € RTXK[A] and
Y € Rﬁxz[x] to the equation

C = AX + BY (2.45)

if and only if the g.c.l.A.d. of A and B is also a left A-divisor
of C.

Proof Let L be the g.c.l.A.d. of A and B. Suppose that L is a
left A-divisor of C so that

C=LC (2.46)

By theorem 2.7 there are XO and YO such that

L = AX + BY . (2.47)
O O

Multiplying (2.47) from the right by Co gives (2.45) with
X =XC and ¥ =Y C_.
o o o o

Conversely suppose that (2.45) has a solution. Since L is the

g.c.l.A.d. of A and B there are AO and Bo such that
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A = LA (2.48 a)
o

W
li

LB (2.48 b)
e}
Insert (2.48) into (2.45)
C = L(AOX + BOY) (2.49)

and L is a left A-divisor of C. o

nxk

Corollary Let A € Rixm[x] and B € R,

[*A] be given. The equation

I = AX + BY (2.50)

kxn
A

has a solution X € R?XH[A] and Y € R

B are relatively left A-prime.

[A] if and only if A and

If the equation (2.45) has a solution then it is interesting to
find all solutions. Since the equation is linear all solutions

mx g kxg
A

X € RA [A] and ¥ € R [Xx] to the homogenous equation

AX + BY = 0 (2.51)

are needed. This problem was solved for polynomial matrices by
Forney (1975) via the introduction of a minimal polynomial basis.
Our problem can be solved analogously. A polynomial basis is
first defined. A comparison with Forney”s definition shows that

every minimal polynomial basis is a polynomial basis.

Definition 2.13 ILet z € R™™(1) have rank r. g € R™ ™), ;¢

a polynomial basis for the nullspace of Z if ZQ = 0 and the Smith-
. T

form of Q is [Im_r 0]".

Remark Forney has shown that there exists a minimal polynomial

nxm

basis for the nullspace of every Z € R (X) . Consequently there

exists a polynomial basis for the nullspace of every 27 € Rnxm(k).

nxm

Theorem 2.10 Let Z € R (A\) have rank r and let Q be a polynomial
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basis for the nullspace of Z. Any solution P € R?xk[h] to

Z P =0 (2.52)

can be written

P=QR (2.53)

(m—r)xk[

for some R in R A

Al

Proof Since the rational matrix Z has m columns and rank r then
the nullspace has dimension m-r. Regard the polynomial matrix Q

as a rational matrix. Q has m-r columns, which are linearly
independent since the Smithform is [Im_r O]? and Q is contained
in the nullspace of Z. Therefore Q is a basis for the nullspace

of Z. Consequently P can be written as (2.53) for some rational
matrix R. It remains to be shown that R is in fact a A-generalized

polynomial matrix.
There are unimodular polynomial matrices M and N such that

M QN = [g}. (2.54)

Introduction of (2.54) into (2.53) gives

I
P =M l{ ]N lR

0
N1 ool
¢ M P = R
0 1]i0
N 0 R
= 0 I MP = 0 (2.55)

Since the left member of (2.55) is a A-generalized polynomial

matrix this is also true for R. o

This theorem can now be used to compute all solutions to the
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equation (2.45).

Theorem 2.11 Let A, B and C belong to Rnxm[k], RHXk[A] and
A A

Rixl[k], respectively and suppose that the equation

C = AX + BY (2.56)

. _ mx 2 _ kx4 P
has a solution X = XO € RA [»] and Y = YO € RA fr)l. Let [QJ

be a polynomial basis for the nullspace of [A B]. Then any

solution X in RTXQ[A] and Y in Rixz[x] can be written
X = XO + P R (2.57 a)
Y = Yo + O R (2.57 b)

qx L

for some R in RA

[n BI].

[x], where g = m + k - r and r is the rank of

Proof Any solution to

AX + BY = 0
- [A B]{?] -0 (2.58)

can by theorem 2.10 be written

[,ﬂ = [g} R (2.59)

for some A-generalized polynomial matrix R.

The following linear equation, which resembles the equation (2.45)

is also of interest.
C = AX + ¥B (2.60)
This equation has been studied by Roth (1952) in the case of

polynomial matrices. Roth gives necessary and sufficient conditions

for the existence of a solution. The properties of the polynomials
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that Roth uses in his proof are properties of any principal ideal
domain. Therefore his proof will be valid for matrices with entries
in any principal ideal domain. We state the theorem for matrices

with entries in the ring of A-generalized pblynomials.

Theorem 2.12 Let A, B and C belong to Rixm[k], Rﬁxz[x] and
Rixz[x], respectively. The equation
C = AX + Y¥YB (2.61)

mx £

has a solution X € RA [A] and Y € Rﬁxk[x] if and only if the

matrices

A C) apng (B O (2.62)
O B O B
are A-equivalent.

2.6 Duality

The dual forms of the definitions, lemmas och theorems in this
chapter are easily obtained by applying them to the transposed
matrices. L is for instance a greatest common right A-divisor
(g.c.r.A.d) to A and B if and only if LT is a g.c.1l.A.d to AT

and BT. The equation C = XA + ¥YB has a solution if and only if

A
the equation CT = ATXT + BTYT has a solution. A is a right

A
A=-structure matrix of A if and only if AT is a left A-structure
matrix of AT. Other dual forms are obtained analogously and will

not be listed here.
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3. THE SYSTEM DESCRIPTION

Consider the system S, represented by the block diagram in

figure 3.1.
_e—. ___Y___.
o, O |z
—P —>

Figure 3.1 The system to be controlled.

The system is multivariable with two input vectors u and e and
two output vectors y and z. The components of u are the control
variables and the components of e are the disturbances that act
on the system. It is in general supposed that the disturbance
vector e can not be measured. The output vector y contains all
variables to be controlled and z all variables that are measured.

The vectors y and z may have some components in common.

The system S is assumed to be a linear, time invariant, finite
dimensional, causal system. Furthermore, the system is supposed
to be stabilizable from u, detectable from z and have no direct
feedthrough from u to z. The controller R for the system is
required to be a linear, time invariant, finite dimensional,
causal controller that stabilizes the system. It will be con-
nected to the system according to figure 3.2, where u, is the

command input.
u : :
— Ty R U S 2

Figure 3.2 The closed loop system.

The assumptions on the system will be discussed in this chapter.
A mathematical description of the system will be presented and
the assumptions will be stated in algebraic terms. Furthermore,
two kinds of structure matrices will be defined for the system

S. The left and right structure matrices for a generalized
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polynomial matrix were defined in chapter 2. These definitions
are used to define the two structure matrices for a dynamical
system. The left structure matrix for a system is associated
with the signal transmission from u to y, while the right struc-
ture matrix is associated with the transmission from e to z.

The structure matrices turn out to be important tools for design.
They contain all the relevant information about the nonminimum
phase properties of the system. In the discrete time case they
also contain information about the time delay structure of the
system. In the continuous time case the structure matrix contains
the corresponding information, which may be called the structure

of inherent integrations c.f. Sain, Massey (1969).

3.1 An input-output description of the system

The closed loop system in figure 3.2 is supposed to work over an
infinite time interval and the transient behaviour right after
startup is not considered important. Since the closed loop system
is required to be stable the effect of initial conditions will
vanish quickly. There is therefore no need 'to include the initial
conditions in the system description. Observe that this view-
point does not imply that the design is made for a steady state
situation. The disturbance e and the command input u,. may vary

arbitrarily.

As pointed out previously the system S is assumed to be stabil-
izable from u and detectable from z. These assumptions must be
satisfied, because otherwise it is not possible to achieve a
stable closed loop system. Introduce the total input vector v

and the total output vector n as

v = 0 = (3.1)

The part of the system S that is not controllable from v is by
the stabilizability assumption stable. The corresponding variables

will quickly go to zero and the uncontrollable part of the system




180

does not have to be included in the system description. The part
of the system S that is not observable from n is by the detect-
ability assumption stable. The corresponding variables will be
bounded and do not affect y. The unobservable part of the system

therefore does not have to be included in the system description.

To summerize, we have concluded that the linear, time invariant,
finite dimensionél system S, with input v and output n , is
appropriately described by its controllable and observable part.
Furthermore the initial conditions can be assumed to be zero. It
is well known that such a system can be described by a rational

transfer operator.

Let the transfer operator from v to n be denoted G*(u). Then
G*{(p) is a matrix with entries that are rational functions. In
the continuous time case p is the differential operator, defined

through

- dx
px = . (3.2)

In the discrete time case u is the forward shift operator g,
defined through

gx(t) = x{(t + 1). (3.3)

The problem of defining a suitable class of time functions for
G*(u) to operate on will not be treated here. A detailed dis-
cussion of appropriate function classes for discrete time systems
is given in part 1 of this thesis. Here it is merely supposed
that such a class is already defined and that the usual isomor-=
fism between the transfer operators and transfer functions, i.e.
the corresponding matrices of a complex variable, is valid.
Addition and multiplication of transfer functions correspond

to addition and composition of transfer operators. Because of
this isomorfism G*(u) will sometimes be regarded as a transfer
operator and sometimes as a transfer function. Consequently u

is sometimes regarded as an operator and sometimes as a complex
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number. No notational difference will be made between these

two interpretations of p and G*(p).

3.2 Stability and causality

Usually a continuous time transfer function G*(p) is said to
be stable if it has no poles in the closed right half plane.
Analogously a discrete time transfer function G*(g) is said
to be stable if it has no poles outside the unit disc. In
general we can define an unstable region A*¥ and say that a
transfer function G* (u) is stable if it has no poles in A*.
The unstable region A* will be allowed to be a quite general
region in-which it is undesirable for the transfer function
to have poles. Two examples for continuous time systems are
given in figure 3.3. The corresponding regions for discrete

time are shown in figure 3.4.

/‘yr

N
\>¥
N

\\\\\\

7,
277/ 7

Figure 3.3. Possible choices of unstable regions A* for a

continuous time system.

7
7

Figure 3.4. Possible choices of unstable regions A* for a

%‘P

X

discrete time system.
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A system can not always be appropriately described by its
transfer function but has to be described in polynomial matrix
form, Rosenbrock (1970), Wolovich (1974). In such a case not

only the poles of its transfer function, but also its decoupling
zeros, i.e. uncontrollable or unobservable modes, have to be
outside A* for the system to be stable. We have concluded that
our system S and our controller cah be described by their trans-
fer functions, but this is not sufficient for the closed loop
system. The reason is that some variables may become uncontrollable
or unobservable when the system and controller are connected.
The closed loop system thus has to be described in polynomial

matrix form.

Causality means that the output does not depend on future values

of the input. For discrete time systems causality is then obviously
equivalent to &;g G* (u) being finite. With some abuse of language
we will also say that a continuous time system is causal if

&ig G*(u) is finite. This means that the output of a causal system

does not depend on the derivatives of the input.

Causality is obviously a necessary requirement on any transfer
function, that describes a physically realizable discrete time
system. It is also a necessary requirement on any transfer func-
tion, that describes a physically realizable continuous time

system because pure differentiators do not exist in practice.

A system is thus said to be causal of %ig G*(u) if finite. In
other words the system is causal if G*(u) has no pole at infin-
ity. On the other hand a system, which can be described by its
transfer function, is said to be stable if G*(u) has no poles

in A*. Let the "infinity point" belong to A*. It is then possible
to treat stability and causality simultaneously - by saying that

a system is stable and causal if G*(u) has no poles in A*.

The unstable region A* is required to fulfil the following

conditions:

+ A* is symmetric with respect to the real axis. (3.4)
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« There is at least one point on the real axis, that does not
belong to A*. (3.5)

« A* contains the "infinity point". (3.6)

Condition (3.4) is required because the pole and zero configura-
tion of a rational function with real coefficients, like the
transfer function, is symmetric with respect to the real axis.
Condition (3.5) ensures that also systems with an odd number of
poles can be stable, because such a system must have at least
one real pole. Finally, (3.6) implies that a system with no

poles in A* is both stable and causal.

It would be desirable to use the theory for A-generalized poly-~
nomial matrices to treat stable and causal transfer functions.
There is, however, one problem. The region A is, in chapter 2
required to be a subset of C. It is thus not allowed to include
the "infinity point". The theory in chapter 2 can be changed
so that A includes the "infinity point". This would, however,
make the theory more complicated. Furthermore, there would be
no ordinary polynomials included in the set of A-generalized
polynomials for such a A. This would be a great disadvantage,
because the ordinary polynomials are more practical to work
with. In section 2.3 the structure matrix is for instance defined
as a polynomial matrix. The region A will therefore not be
allowed to include the "infinity point". The problem will
instead be solved in the following way. The region A* is

mapped onto a region, which does not include the "infinity

point".

Let a be a point on the real axis in the complement of A* and

define the mapping

A= £(w) = T-a (3.7)
Let C be the complex plane C extended with the "infinity point".
Then £ is a bijective mapping from C to C. It maps the "infinity
- point" to the origin and a to the "infinity point". Define A

through
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A = £(0A*) (3.8)

Then A has the following properties.

« It is symmetric with respect to the real axis. (3.9)
- It does not contain the "infinity point". (3.10)
» It contains the origin. (3.11)

These properties follow directly from (3.4)-(3.6) and the defini-
tion of £ in (3.7).

Define G(A) through
G(x) = G*(u), (3.12)

where X and u are connected through (3.7). Then G(X) has no
poles in A if and only if G*(u) has no poles in A*, In other
words the system is causal and stable if and only if G()) is

a A—generalized polynomial matrix. We will in the rest of this
thesis work with G(A) rather than G*(u). The great advantage

is that stability and causality can be treated with an unstable
region A which does not contain the "infinity point". The

theory in chapter 2 is thus directly applicable.

The region A corresponding to A* in figure 3.3 and 3.4 are

shown in figure 3.5 and 3.6.

Alm 4 |m

Figure 3.5. The regions A corresponding to A* in figure 3.3

with a = -1 and b = _%u
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Figure 3.6. The regions A corresponding to A* in figure 3.4
with a = 0.

In most practical cases a will be chosen as an inner point of
the complement of A*. Then A will be bounded as it is in

figure 3.5 and 3.6.

G(X) will be called the transfer function for the system. Of
course G(A) depends on a, but a is a stable point and we will
show that our results are in fact independent of the choice

of a.

The mapping (3.7) maps the "infinity point" to the origin
independently of a. A system is therefore causal if and only
if G(0) is finite and this condition is independent of a. A
system, described by its transfer function G()), will be said

to be A-stable if G(A) has no poles in A.

3.3 Fractional representations.

Let G(X) be the transfer function, defined through (3.12) and

(3.7) with same real a, for the system S. Then we have
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n = G(A)v. (3.13)

It is shown e.g. in Rosenbrock (1970) that G(A) can be fac- f
torized as G(A) = T—l(x) U(A), where T(X) and U(A) are relatively

left prime polynomial matrices and T(A) is square with nonzero
determinant. Furthermore the zeros of det T(A) are the poles of

G(A). Because G(A) is causal it follows that
det T(0) # O (3.14)

If the function spaces for v and n are defined properly (3.13)

is equivalent to

T(A)n = U(X)v. (3.15)
This is discussed in detail for discrete time systems in part 1
of this thesis. The representation (3.15) is unique up to multi-
plication from the left by unimodular matrices. Now, instead
of a in (3.7), choose another real number a outside A*.

Define
yo= L (3.16)
u—a
and let G(i) be the corresponding transfer function. Then
3 = A (3.17)
1 - x(a-a)
and
G(X) = G(}) (3.18)

In analogy with (3.15) we have
T(M)n = U(X)v, (3.19)

where E(X) and G(X) fulfil the same conditions as T(X) and
U(A). We will show how the representations (3.15) and (3.19)
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are related. For this we need the following lemma.

Lemma 3.1 Let A be a subset of C and let A belong to Rixr[x]
and have nonzero determinant. Let B belong to Rixk[k] and
suppose that A and B are relatively left A-prime. Furthermore,

let Al and Bl fulfil the same conditions and assume that

A "B = A_."B (3.20)

Then there is a A-unimodular matrix Q € Rixr[x], such that

Ay =0A (3.21 a)
B, = QB. (3.21 b)
Proof By the corollary of theorem 2.9 there are X € Rixr[k]
kxr

and Y € RA [»], such that

I = AX + BY

oA T =x+2a1By
-1 -1
A" =X+ A BY
_l—
@ AJATT = AJX + BY (3.22)
Define
-1
Q = AlA (3.23)

It follows from (3.22) that Q € Rrxr[x]. Analogously we have

A
that Q 1. A A l,E Rrxr[x]. Therefore Q is A-unimodular and

1 A
from (3.23)

Al = Q A, (3.24)

which is (3.21 a). Introduce (3.24) into (3.20)

Al = A_lQ—lBl
-1
# B =0 "By
- Bl = QB, (3.25)
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which is (3.21 b). o

Theorem 3.1 Consider the two representations (3.15) and (3.19).

There is a A-~unimodular matrix Q, such that.

H1
o
i

Q(A)T (X) (3.26 a)

i
—_
>
S
1l

Q(A)U(N), (3.26 b)

where X is given by .

I S
1-A (a~a)

>
]

(3.27)

Proof Since T(A) and U(A) are relatively left prime the matrix
[T(AO) U(Ao)] has linearly independent rows for all XOEEC. It

then follows by theorem 2.8 ((iii) = (i)) that they are relatively
left A-prime.

From (3.27) it follows that X, as a function of X, has a pole

at A, = ;%g . This A, does not belong to A, by (3.7) and (3.8),

since a does not belong to A*. Define

T (A) =T (2 ) (3.28 a)
© \l-A(E—a)/

U (A) =0 <ﬂ—~iﬂ———> (3.28 b)
° 1-x (a-a)

Then TO(A) and UO(A) are A-generalized polynomial matrices since

they are rational matrices and their only pole is outside A.

Let AZ be an arbitrary element in A and define Xz through (3.27)
with » = Ay- Then A, is finite and [?Ofxz) Uofxg)] = [T(Az) U(AZ)]
has linearly independent rows since T(A)Y and U(A) are relatively

left prime. It follows that TO(A) and UO(A) are relatively left

A—prime.

By (3.18) we have that
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-1 -1
T (A)UO(A) =T “(X)U(A) ) (3.29)

It now follows by lemma 3.1 that there is a A-unimodular Q(A)
such that

TO(A)

U, ()

Il

Q(A)T () X (3.30 a)

Q(AM)U(X) (3.30 Db)
But (3.30) is equivalent to (3.26).

Theorem 3.1 gives the desired connection between two representa-
tions of the type (3.15), corresponding to the same A*, but

different a.

The representation (3.15) is called a fractional representation

of G(X) and there is a dual form of it.

P(A)E = v (3.31 a)

n = V(x)g (3.31 Db)

Here P(A) and V(A) are relatively right prime polynomial matrices
and P(X) is sgquare and has a nonzero determinant. The zeros of
P()\) are the poles of G(A). The dual form of theorem 3.1 is of

course valid. In other words let

P(M)E = v (3.32 a)

be another polynomial fractional representation of the same
system with the same A* but with another a-value, say a. Then

there is a A-unimodular Z(A), such that

el
—
>
N
1l

P(A)Z(N) (3.33 a)

<
—
>1
-
il

V(A)Z () (3.33 b)

with 1 given by (3.27).
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Finally we will show how the two different types of fractional
representations (3.15) and (3.31), corresponding to the same
system, A* and a, are related. This problem is solved in Rosen-
~ brock (1970). The system matrices are strictly system equivalent
(s.s.e.) i.e. there are polynomial matrices M(X), N(A), X(X)

and Y(A), where M(A) and N(A) are unimodular, such that

I o I o I o I o

k-x | M 0 k-s | N Y

0 P, I|= 0 T | U (3.34)
———————— X I - = = = = = = 0O I

0 -V 7 0 0 -I | O
for some k > n, where n = deg det T()) = det det P()). Here r

and s are the dimensions of P and T, respectively.

3.4 Assumptions on the system to be controlled

It has already been stated that the system S as well as its
controllers are supposed to be linear, time invariant, finite
dimensional, causal systems. It has also been concluded that
they are adequately described by their transfer function matrices.
Let G(A), where XA is given by (3.7), be the transfer function
for S or any controller. Then consequently the elements of G(2)

are supposed to be rationel functions with constant coefficients.

Furthermore, by the causality requirement, G(A) has no poles

at the origin.

In addition to these general assumptions the system S, but not

its controllers, is supposed to fulfil the following three

assumptions.

« There is no direct feedthrough from u to z. (3.35)
+ The system is A-stabilizable from u. (3.36)
+ The system is A-detectable from z. (3.37)

The condition (3.35) is not necessary, but on the other hand it
is considered as no serious restriction. The assumption (3.35)
prevents algebraic loops when feedback is applied from z to u.

The conditions (3.36) and (3.37) are necessary because the
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controlled system is required to be A-stable.

The conditions (3.35)-(3.37) will now be made more precise.

Let the transfer function G(A), where A = (u-a) 1 and u is

p of g, be partitioned as

(3.38)

Definition 3.1 The system S has no direct feedthrough from u

to z if

Guz(O) =0 (3.39)

Remark Let the transfer function G*(u), where u is p or g, be

partitioned in the same way. Then (3.39) is equivalent to

. * -
lim Guz(u) 0, (3.40)

U= oo

which is independent of a. Therefore (3.39) is independent of

a.

As pointed out in section 3.3 the following two fractional
representations will be used to represent the transfer func-
tion G(A).

A{(Mn = B(Mu + C(A\) e (3.41)
and

D(M)E = v (3.42 a)

y = E()A) g (3.42 b)

z = F()N)E (3.42 ¢)

Furthermore the corresponding fractional representations with
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other a-values will be used.

In (3.41) A(x) and [B(A) C(A)] are relatively left prime poly-
nomial matrices with A(A) square and nonsingular. It was shown
in section 3.3 that all representations of the type (3.41),

with the same a-value, can_be obtained by multiplication of
(3.41) from the left by unimodular matrices. In particular there

is a representation with A()) upper block triangular.
Al(l) A3(X) Y Bl(k) Cl(l)

= u + e (3.43)
0 A2(>\)J Z B. (A) C2(>\)

Theorem 3.2 Let the system S be represented by (3.43). The

system has no direct feedthrough from u to z if and only if

B2(O) =0 (3.44)
This condition is independent of the a-value used in (3.43).
Proof From (3.43) it follows that

() =2, B, ) (3.45)

uz 2 2
Since the system is causal it follows from (3.14) that

det A2(O) # 0. (3.46)
Therefore A;l(O) exists and is nonsingular and (3.45) shows
that (3.44) is eguivalent to (3.39). Furthermore (3.39) has

been shown to be independent of a.

The dual form of theorem 3.2 is obtained from the representa-
tion (3.42).

The two fractional representations (3.41) and (3.42) are both

special cases of the polynomial matrix representation
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T(\)E = Ul(A)u + UZ(A)e (3.47 a)
z = V,(\)¢ , (3.47 c)

Here T(A) is square and nonsingular. Furthermore T(X) and
[Ul(x) UZ(A)] are relatively left prime and T(X) and [Vf(k)

Vg(k)]T are relatively right prime.

Definition 3.2 Let L(A) be the g.c.l.d of T(A) and Ul(x). The
system 8§ is A-stabilizable from u if det L(A) has no zeros in
A

Remark The definition means that all modes, that are uncon-
trollable from u, are A-stable if the system is A-stabilizable
from u. This is discussed in detail for discrete time systems

in part 1 of this thesis.

It has to be shown that the property of A-stabilizability is
well defined, i.e. that it does not depend on which of the two
representations (3.41) and (3.42) and which a-value that is

used.

As pointed out previously all representations of the type (3.41)
with the same a-value are obtained by multiplication of (3.41)
from the left by unimodular matrices. This clearly does not
affect the zeros of the determinant of the g.c.l.d. and there-

fore it does not affect the property of A-stabilizability.

The following lemma gives an alternative way to characterize

the property of A-stabilizability.

Lemma 3.2 Consider the representation (3.47). The system S is
A-stabilizable from u if and only if [T(AO) Ul(xo)] has linearly

independent rows for all AO € A.

Proof Let TO(A) and UO(A) be relatively left prime polynomial
matrices such that T(A) = L(A)TO(A) and Ul(A) = L(A)UO(A), where

|
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L(X) is the g.c.l.d of T()) and Ul(A). The result follows from

[T()) Ul(x)] = L(A)[TO(A) UO(A)] ' (3.48)

since [TO(AO) UO(AO)] has linearly independent rows for all

ko € C by theorem 2.8 applied to polynomial matrices. g

Theorem 3.3 The representation (3.42) is A-stabilizable from

u if and only if (3.41) is.

Proof By (3.34) it follows that
I N Y

D Q] = M [A B] , (3.49)

0 0 I

L

where 2 is the dimension of u and Yl is the ¢ first columns

of Y. The result now follows from lemma 3.2.

The following theorem shows that the property of A-stabiliza-
bility is independent of a.

Theorem 3.4 The representation (3.15) is A-stabilizable if

and only if (3.19) is A-stabilizable, where A is the corresponding

unstable region for (3.19).

Proof By theorem 3.1 there is a A-unimodular matrix Q()), such
that

[T() T, 01 =oMITG) U3 ()] (3.50)
where
= —2A (3.51)
1-Xx (a-a)

Then (3.51) is a bijection between A and A .. The matrix Q(AO) is
by definition nonsingular for all Ao € A. Therefore it follows
from (3.50) that [T(XO) Ul(xo)] has linearly independent rows
for all A, € A if and only if [T(AO) Ul(ko)] has linearly
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independent rows for all Xo € A. The theorem now follows by
lemma 3.2. o
Theorem 3.3 and 3.4 show that the property of A-stabilizability
is independent of which fractional representation and which

a-value we use in representing the system.

A-detectability is a concept dual to the concept of A-stabiliza-
bility.

Definition 3.3 Let L(A) be the g.c.r.d of T(A) and VZ(A) in

the representation (3.47). The system is A-detectable from =z

if det L(A) has no zeros in A.
It follows by duality that the property of A-detectability is

independent of which fractional representation and which a-value

that is used to represent the system.

3.5. The structure matrices

In this section the left and right A-structure matrices for a
system S will be defined and it will be shown that they are
essentially unique. The definitions are based on the definitions
of left and right A-structure matrices for a A-generalized poly-
nomial matrix in section 2.3. The structure matrices will turn
out to be key concepts in the solutions of the design problems

in the following chapters.

The left A-structure matrix shows how well the output y can be
controlled in the servo sense, using a stable and causal
precompensator. This situation will be treated in chapter 5.
The right A-structure matrix shows how well the disturbance

e can be reconstructed from measurements of the output z using
a stable and causal reconstructor. This will be used in the

solution of the feedback realization problem in chapter 7.

In section 3.3 it was shown that the system S can be represented
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by a polynomial matrix fractional representation of the type

A(M)n = B(Mu + C(A)e, A =§%—é-. (3.52)
Here A(A), B(A) and C()) are polynomial matrices. A()A) is square
and nonsingular. A(A) and [B(A) C())] are relatively left prime.
It was pointed out in section 3.4 that a representation with
A()) upper block triangular always can be obtained by multiplica-

tion of (3.52) from the left by a unimodular matrix.

Ay (V) Ay (2) y By (M) c; ()

= u+ e (3.53)
0 AZ(A) z BZ(A) Cz(k)

By theorem 2 6 (the dual form) C (A) can be factorized as

C (x) = C(A)C(A) If CZ(A) has dlmension pxg and rank k, then
C(A) belongs to Rk
factors are in A. C(A) belongs to REXk[A] and is left A-invertible.

A
The matrix C(A) is unique up to multiplication from the left

q[>\] and all the zeros of its invariant

by unimodular polynomial matrices. It is easy to show that

C(Ax) is a polynomial matrix since c, (A) and C(A) are.

A
Definition 3.3 The matrix C()A) is a right A-structure matrix

for the system S.

It will be shown that é(x) is essentially unique. It was pointed
out above that for a given representation (3.53) it follows

from theorem 2.6 that é(k) is unique up to multiplication from
the left by unimodular polynomial matrices. It remains to be
shown how structure matrices, defined from other representations
of the form (3.53) with the same a and with different a, are

related.

Lemma 3.3 Let P, R and Q be square, nonsingular, rational

matrices such that

P=QR (3.54)
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If P and R are block traingular

' (3.55)

where P, and R, are square matrices of the same dimension, then

1 1
Q is also block triangular
Q Q
o =| 1 3, (3.56)
0 Q2

where Ql is square of the same dimension as Pl and Rl.

The trivial proof is omitted.

Theorem 3.5 Let

T T ) (v ) (o) (00
0 TZ(A) z UZ(A) YZ(A)

be another representation of the type (3.53) for the same
A

~—

e (3.57)

system S and with the same a. Let Y()A) be the right A-structure

matrix obtained from (3.57). Then

A A
Y(A) = N(A)C()) (3.58)
A
where N(A) is a unimodular polynomial matrix and C()A) is the

right A-structure matrix obtained from (3.53).

Proof The representation (3.57) can be obtained by multiplying
(3.53) from the left by a unimodular polynomial matrix Q(A).
It follows from lemma 3.3 that Q(A) can be partitioned as

Q(x) =

Q. (X)) Q. (x)
{ 1 3 J (3.59)

0 Q, (1)




198

It follows that Ql(A) and Qz(x) both are unimodular. We have

YZ(A) = QZ(A)CZ(A). | (3.60)
Consequently

~ A ~ A

Y(DY () = 9,(0CMIC(H), (3.61)

where ?(k) and E(x) are left A-invertible. It follows that

also QZ(A)E(A) is left A-invertible. Therefore the left and
right members of (3.61) are both factorizations of the type
considered in theorem 2.6. The equality (3.58) then follows

from theorem 2.6. a

Theorem 3.6 Let

T (X)) T, (X) y U, (1) Y, ()
1 3 = A e (3.62)
0 T, ()| |z u, () Y, (1)

be a representation of the type (3.53) for the same system S,

but with a instead of a and with

T = — (3.63)

l-A(a-a)

A - -
Let Y(A) be the right A-structure matrix obtained from (3.62),

where A is the corresponding unstable region for (3.62). Then
A - A
Y(A) = N(A)C(A), (3.64)

A
where N(A) is A-unimodular and C(A) is the right A-structure

matrix obtained from (3.53).

Proof It follows from theorem 3.1 that (3.62) can be obtained
by multiplying (3.53) from the left by a A-unimodular matrix
Q(A). By lemma 3.3 Q()A) can be partitioned as

9, (0 0,(1)
oy = |t 300, (3.65)
0 QZ(A)
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It follows that Ql(A) and QZ(A) are A-unimodular and that

Y, (0) = 0, (A)C, (). (3.66)
Consegquently

~ e A - ~ A

Y(MY@) =o,0cmcm, (3.67)

where ?(A) is left A-invertible and C(A) is left A-invertible.
Since Qz(x) is A-unimodular then Q2(A)C(A) is left A—-invertible.
Therefore the right member of (3.67) is a factorization of the

type considered in theorem 2.5 (the dual form of it).

Define
Z(A) = Y () (3.68 a)
A VA
Z(A) = Y (), (3.68 b)

where A and A are connected through (3.63). The mapping (3.63)
is a bijection between A and A. ?(K) has by theorem 2.4 (the
dual form of (i) = (iii)) linearly independent columns for all
A in A. Therefore E(A) has linearly independent columns for

all A in A. By theorem 2.4 (the dual form of (iii) = (i)) Z (1)
is left A-invertible. Since (3.63) has no pole in A it follows
that both E(A) and Q(A) are A-generalized polynomial matrices.
Consequently E(A)Q(A) is a factorization of the type considered

in theorem 2.5. Introduce (3.68) into (3.67), then

~ A ~ A

Z(X)Z(x) = (QZ(A)C(A)>C(A), 3.69)
where both members have been shown to be factorizations of the
type considered in theorem 2.5. It then follows by theorem 2.5
that there is a A-unimodular N(A) such that

Z(A) = N(A)C(N) (3.70)

This together with (3.68 b) gives (3.64).
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Theorem 3.5 and 3.6 show that the structure matrix is essentially
unique. For A-stable systems there is a close relationship bet-

ween the transfer function and the right A-structure matrix.

Consider a A-stable system with transfer function G(A) partitioned

as

G(y) = . (3.71)

Since G{(A) is A-stable it has no poles in A and is therefore a
A-generalized polynomial matrix. Therefore GeZ(A) can be factorized

according to theorem 2.6 (the dual form) as

~ A
G,,(A) = G(NG(A), (3.72)

~ A
where G(A) is left A-invertible and G{(A) is a polynomial matrix

with all zeros of its invariant factors in A.

A
Theorem 3.7. Consider a A-stable system. The matrix G(A), defined

in (3.72) is a right A-structure matrix for the system.

Proof Consider the fractional representation (3.53) of the
A-stable transfer function G(A). The right A-structure matrix

A

C(A) is defined from a factorization of cz(x) according to theorem
2.6.

c, (1) = C)CM) (3.73)

From (3.53) we obtain

-1

GeZ(A) = A2 (A)CZ(A). (3.74)
or by (3.73)
-1 ~ A
G __(A)y =A,7(n)c(an)c(r). (3.75)

ez 2
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Since G(A) is A-stable it follows that det AZ(A) has no zeros
i?lA. Eherefore A;l(k) is A—unimodular; This implies that

A2 (M)C(A) is left A-invertible since C()) is. The right member
of (3.75) is thus a factorization of the type considered in
theorem 2.6. Since (3.72) is another such factorization it
follows by theorem 2.6 that there is a unimodular polynomial

matrix N(A) such that
A A
G(A) = N(X)C(r). (3.76)

R .
Therefore G(A) is a right A-structure matrix for the system.
a

The left A-structure matrix is defined from a fractional repre-

sentation of the type (3.31). In analogy with (3.53) we have

D. (1) D, (A) £ I 0
1 3 1 = u + e (3.77 a)
0 DZ(K) 52 0 T
E 3\
y = (El(x) EZ(A)> ! (3.77 D)
2
)
2 = (Fl(x) Fz(x)) ( al (3.77 <)
2

Let the polynomial matrix El(A) be factorized according to
theorem 2.6 as

A

E.(A) = E(V)E(N) (3.78)

1 ¢

A ~ A
where both E(X) and E(A) are polynomial matrices. E(A) has

linearly independent columns and the zeros of its invariant

factors all belong to A. E(A) is right A-invertible.

A
Definition 3.5 The matrix E(A) is the left A-structure matrix

for the system S.
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In analogy with theorem 3.5 it can be shown that all left
A-structure matrices obtained from representations of the type
(3.77), corresponding to the same a, are related via multiplica-

tion from the right by unimodular polynomial matrices.

Let g(x) be a left A-structure matrix obtained from (3.77).
Consider another representation of the type (3.77) but with
another a, say a, and the corresponding unstable region A.
Let A be given by

= (3.79)

1-X (a-a)
[} - A by
which is a bijection between A and A. Let K(A) be the left
A-structure matrix obtained from this representation. As in

theorem 3.6 it is shown that there is a A-unimodular N (A) such
that

A - A
K(x) = E(A)N(A). (3.80)
If the system is A-stable then the left A-structure matrix for

the A-generalized polynomial matrix Guy(X) is a left A-structure

matrix for the system S.
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4, THE CLOSED LOOP SYSTEM

It is assumed that the system S is controlled by a linear,
time invariant, finite dimensional, causal controller R, as

is shown in the block diagram in figure 4.1.

e > _y’
u

4 >

Figure 4.1 - The control configuration.

The block diagram can be written as is shown in figure 4.2.

Ur v - ;

Figure 4.2 - An equivalent representation of the control
configuration.

The two controller structures are equivalent in the sense
that every controller, that can be represented as in figure
4.1, can also be represented as in figure 4.2 and vice versa.
It turns out in the following chapters that the structure in

figure 4.2 is more convenient to use.

The controllers Rff and be should be determined such that

the closed loop system in figure 4.2 fulfils certain require-
ments. One requirement is that the closed loop system should
be stable in some sense. In the previous chapter A-stability
was defined for a system that is described by its transfer
function. In section 4.1 A-stability will be defined for the
more general case when a system is described by a set of

difference or differential equations. This definition applies
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to the closed loop system in figure 4.2. In section 4.2 it
is shown that there always exists a feedback controller that
makes the closed loop system A-stable and in section 4.3

other requirements on the closed loop system are discussed.

4.1 Stability

In section 3.2 a system, described by its transfer function
G*(u), was defined to be stable if G*(Q) has no poles in a
given subset Ag = A*~{w} of the complex plane. If the trans-
fer function is expressed in the operator A as G(A), then the
system is said to be A-stable if G(A) has no poles in the
region A, given by (3.8). A A-stable system is always causal
because of (3.11).

The closed loop system in figure 4.2 is not completely described
by its transfer function. The reason is that some variables

may become uncontrollable or unobservable when the system and
the controllers are connected or equivalently that there will

be cancellations when the transfer function for the closed

loop system is formed. Therefore the definitions in section 3.2

do not apply.

The controller Rff is assumed to be a minimal realization of
its transfer function and the definitions in section 3.2 there-
fore apply to Rff. Consider the rest of the system, which is
described by the block diagram in figure 4.3.

_e y—1 Y,

Figure 4.3 - The feedback loop.

Both S and be are linear, finite dimensional, time invariant

systems. Each of them is therefore described by a set of linear
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difference or differential equations. The total set of differ-
ence or differential equations then describes the closed loop
system completely. It therefore also describes the stability
properties. In this section stability for the closed loop
system will be expressed as a condition on the fractional

representations in the operator A.

The difference or differential equations, describing the
system S, are represented by the equations (3.53) or (3.77).
Assume for simplicity of notation that they are represented
by (3.53), i.e.

AL (M) Ay y By (1) o

= u o+ e. (4.1)
0 Az(x) z BZ(A) CZ(A)

The design procedures, which will be described in the following
chapters, lead to a controller be, which can be represented

as

T(ME =U(MN)z + Y(\)v (4.2 a)
u = V(nE. (4.2 Db)

Here T(A), U(X), Y(A) and V()) are polynomial matrices. T(})

is square, nonsingular and det T(0) # O.

The relation between the polynomial matrices in (4.1) and (4.2)
and the difference or differential equations, describing S
and be, will now be established in order to define stability

for the closed loop system in figure 4.3.

Let G*(u) be the transfer function for S, expressed in the
operator u. Recall that p is the difference operator g for
discrete time systems and the differential operator p for
continuous time systems. It is shown in Rosenbrock (1%70) that
a least order system of difference or differential equations

with transfer function G*(u) is given by

A*(u)n = B¥(u)u + C*(n)e. (4.3)
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Here A*(u) and [B*(u) C*(u)] are relatively left prime poly-

nomial matrices. A*(u) is square and nonsingular.

The relation between u and A is given by

1
A= E:E (4.4 a)
o = li%E , (4.4 Db)

where a is a real number outside the unstable region A*. Let A

be given by (3.8) and define
Ao = A~N{0}. (4.5)
Write (4.1) as

A(A)n = B(A)u + C(A)e. (4.6)

Lemma 4.1 There is a Ao—unimodular matrix Q(A), such that

A*¥(u) = Q(A)A(X) (4.7 a)
B*(p) = Q(A)B(A) (4.7 b)
C*¥(u) = Q(N)C(n), (4.7 c)

where p and 2 are related through (4.4).

Proof Since A(Xx) and [B(A) C(A)] are relatively left prime
the matrix [A(AO) B(Ao) C(AO)] has linearly independent rows
for all AO € C. It then follows from theorem 2.8 that they

are relatively left Ao—prime.

Define the matrices

A(n) = axfif2a) (4.8 a)

NN

B(n) = B*(lika) (4.8 b)

|
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C(r) = C*\"-—)\——/. (4.8 c)

The matrix [A(A) B(A) C(A)1is a Ao-generalized polynomial
matrix and has linearly independent rows for all A € C ~ {0}
since [A*(u) B*(u) C*(u)] has linearly independent rows for
all y € C. Therefore A(A) and [B()A) C(A)] are relatively left
Ao—prime. Since (4.3) and (4.6) have the same transfer func-
tion it follows from lemma 3.1 that there is a Ao—unimodular
Q(A) such that

A(A) = Q(A)A(A) (4.9 a)

[B(A) C(A)T = (M) [B(r) C(A)]. (4.9 Db)
This is equivalent to (4.7).

The difference or differential equations for the controller

(4.2) are obtained in the following way.

Insert (4.4 a) into (4.2) and determine diagonal matrices
Nl(u) and Ml(u), where the diagonal entries are suitable

powers of u—a, such that the matrices

T (n) = Nl(u)T<E%g) My (n) | (4.10 a)

Uy (w) = Nl(u)U<H%5> (4.10 b)

vy =y oy() (4.10 o)

v () = V(E%E) My () (4.10 4)
become polynomial matrices. The matrices N (Ltra)

and M, (A) = M (Ltara) th A _—~unimod 1ai(z)—=eié§a§iz/d
5 W) are en A i u -9 e

polynomial matrices.
Consider the system

T, e = U Wz + Y (w)v (4.11 a)
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u = Vl(u)El. (4.11

If this system has any decoupling zeros at the point a these

can be removed as is shown in Rosenbrock (1970). The resulting

system is

T*(u)g*=U*(w)z + Y*(u)v (4.12

u = V*(u)g*, (4.12

which is in polynomial form and has no decoupling zeros at

the point a. Furthermore

T* (n) = N3(u)Tl(u)M3(u) (4.13
U*(u) = N3(u)Ul(u) (4.13
YH(u) = Ny ()Y (n) (4.13

V* () = Vl(u)M3 (n),

where N3(u) and M3(u) are square, nonsingular, rational
matrices with poles only at the point a and det N3(u) and
det M3(u) are both negative powers of p—a. The matrices

_ . (1+ra _ o [1+2ra) .
N4(A) = N3\—K*— and M4(A) = M3\ X ) are then Ao unimodular.

It follows from (4.10) and (4.13) that the matrices in (4.2)

and in (4.12) are related as

T*(n) = N(A)T(A)M(A) (4.14
U* (u) = N(A)U(r) (4.14
Y*(u) = N(A)Y(X) (4.14
VE(u) = V(A M), (4.14

b)

a)
b)

c)

a)
b)
c)

d)

where N(A) and M(X) are Ao—unimodular Ao—generalized polynomial

matrices. The equations (4.2) and (4.12) both give the same

transfer function.

It was pointed out previously that the design procedures of
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the following chapters will result in a controller of the
form (4.2). This result should be interpreted as the differ-

ence or differential equations (4.12).

Consequently the closed loop system is described by the

eguations
a*w Aty -BY () 0 ‘ c¥(w) 0
1 2H 1 Y 1 (
AW aj0 -BYGw o0 z ¢l (u) 0
= e + . v,
0 -U* (u) 0 T (n) u 0 ¥ (n)
| 0 0 I -v* (1) g™ 0 o |
(4.15)

where (4.3) has been partitioned.

The solutions to this system of equations are of the type

pl(t)e“lt, p2(t)eu2t,... ;, in the continuous time case, and
pl(t)uit, p2(t)u2t, <.+ , in the discrete time case. In both
cases {pi(t)} are polynomials in the time t and {ui} are the
Zzeros of the determinant of the matrix in the left member of
(4.15). The closed loop system is thus stable if this deter-

minant has no zeros in the unstable region A; = 1% N {w .

The representations (4.1) and (4.2) can be written

rAlm A3 (0 =By (1)) o ) [y (e, (V) 0
0 A,(A) -B,(}) 0 z c, () 0
= e + v
0 —U(}) 0 T (2) u 0 Y (})
0 0 T -V (X) £ 0 0

(4.16)
From (4.7) and (4.14) it follows that




sk X E 3 _ % - \
Al Ay -BIG) 0 0,0 9,00 0 o
AZ(w)  Aj(w)  -BJ(w) 0 ;) 9, 0 0
0 U () 0 ™| | o 0 NG 0]
0 0 I -v* (u) 0 0 0 I
A (0 By(0) =B (M) 0 St 0 0 0
0 A,(x) =B, (X) 0 0 I 0 0
. 2 2 . , (4.17 a)
0 ~U (1) 0 T (1) 0 0 T 0
L0 0 I ~V(2) 0 0 0 M)

where Q(A) has been partitioned. Let the equality (4.17 a)
be written

K¥ () = NOOK()M(A), (4.17 b)

which defines the matrices K*(u), N(A), K(\) and M()A). Notice
that ﬁ(x) and ﬁ(k) are Ao—unimodular.~Then following theorem now
follows from (4.17) and (4.4).

Theorem 4.1 The polynomial det K(A) has no zeros in Ao if

and only if det K*(u) has no zeros in A; = 2%~ {e}.
Lemma 4.2 With K(A) given by (4.17) it. follows that det K(0) # 0.

Proof It follows from theorem 3.2 that B2(O) = 0 since there

is no direct feedthrough from u to z. Furthermore it follows
from (3.14) that det Al(O) # 0 and det AZ(O) # 0. It was pointed
out after (4.2) that det T(0) # 0. All this implies that

det K(0) * 0.

It follows from lemma 4.2 that the transfer function, calculated
from (4.16), from e or v to any of y, 2z or u has no poles at
the origin, i.e. is causal. This means that the facts that 8

and be’are causal and that S has no direct feedthrough from
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u to z imply that all the internal variables y, z and u of
the closed loop system depend causally on the inputs e and

V.

Definition 4.1 Let K(X) be defined by (4.17). The closed loop
system in figure 4.3 is A-stable if det K(A) has no zeros in
h.

The closed loop system is thus A-stable if and only if the
system of difference on differential equations (4.15) is

stable with respect to A* ~ {w}.

The property of A-stability is invariant under the following

transformation on (4.16).

Add one row of (4.16) multiplied from the left by a polynomial

matrix, to another row. (4.18)

This corresponds to multiplication of (4.16) from the left
by a unimodular polynomial matrix and does therefore not
affect the property of A-stability. In fact, multiplication
of (4.16) from the left by any A-unimodular matrix preserves

the property of A-stability.

In this section the representation (4.1) has been used to
describe the system S. If the representation (3.77) is used
then

(D, (A) Dy (A) 0 -I 0 g, 1 (o) [0
0 D, (A) 0 0 0 £, I 0

—Eﬂk) —FZ(A) I 0 0 z | =] 0 |e + 0 v (4.19 a).
0 0 ~U(A) 0 T(A)|| u 0 Y (1)

. 0 0 0 I -V(M Lok 0 | 0

y = El(A)El + EZ(A)E2 (4.19 b)
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is obtained instead of (4.16). It follows from (3.34) that
there are polynomial matrices M(A), N(A), X(A) and Y(A),

where M(X) and N()) are unimodular, such that

¢

I 0 0 Lo 0 0
!
] -
0 Al A3 | 0 Bl 0
0 0 A, i 0 -B, o
0 0 -I I 0 0
|
0 0 0 1 -U o T
|
. O 0 0 1 0 I -~V
I 0 0 1 0 0 0
I
| -
0 Dy Dyl 0 I 0
M OJ 0 0 Dy, | O 0 0 [N Y]
e —_—
X I 0 Fl F2 l I 0 0 0 I
0 0 0 1 -U 0 T
!
0 0 0 1 0 I -V
(4.20)

Lemma 4.3 Let R(A) be the matrix in the left member of
(4.19 a). Then

det R(A) = k det K(a) (4.21)

for some nonzero real number k.

Proof det R(A) is equal to the determinant of the second

matrix in the right member of (4.20) and det K()x) 1is equal
to the determinant of the left member of (4.20). Therefore
the lemma follows from the fact that M(A) and N(\) are uni-

modular. o

The lemma shows that the closed loop system in fiqure 4.3

is A-stable if and only if det R(A) has no zeros in A. The
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following theorem has thus been shown.

Theorem 4.2 The property of A-stability does not depend on

the choice of representation for the system' S.
Analogously it can be shown that the property of A-stability

is invariant under strict system equivalence transformations
(see Rosenbrock (1970)) of the controller (4.2).

4.2 Stabilizing feedback controllers

It will now be shown that there always exists a controller

be, that makes the closed loop system in figure 4.3 A-stable.

Let the closed loop system be described by (4.16) and choose
U(A) = I. Add the third row, multiplied by Aé(x) and the fourth

row, multiplied by Bz(x), to the second row. This gives

Al A3 -Bl 0 y Cl 0
0 0 0 A T-B.V z C A.Y
2" 72 - 2 le+ | 2y (4.22)
0 -T 0 T u 0 Y
0 0 T -V £ 0 | 0

Let K(A) be the matrix in the left member of (4.22). Then

det K(A)

det Al(x) det(Az(A)T(A) - BZ(A)V(A)>. (4.23)

It follows from the fact that the system S is A-detectable

from z that det Al(x) has no zeros in A.

Let L(XA) be the g.c.l.d. of AZ(A) and BZ(A). Then det L(X)
has no zeros in A since 8 is A-stabilizable from u. Therefore

it is possible to choose T(A) and V(A), such that

L(x) = Az(A)T(A) - BZ(A)V(A). (4.24)
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With this choice det K(A)

loop system is A-stable.

has no zeros in A and the closed

It remains to be shown that

det T(0) + 0 to ensure that the controller is causal.

B

It follows from theorem 3.2 that B2(O) since there is

=O,

no direct feedthrough from u to z. Therefore (4.24) gives

L(0) = A2(O)T(O). (4.25)
It follows from (3.14) that det A2(0) # 0. This implies that

det L(0) * 0 since L(A)
quently it follows from (4.25)

is a left divisor to AZ(A). Conse-

that det T(0) * 0.
The result is summerized in the following theorem.
Theorem 4.3

There always exists a causal controller R such

fb’
that the closed loop system in figure 4.3 is A-stable.

4.3 The control problem

Consider the closed loop system in figure 4.4.

e y

——»
Y | :| S
,be U y4

Figure 4.4 - The closed loop system.

Res

It is assumed that the problem is to determine Rff and be

such that both the servo and the regulator problems are solved

in a satisfactory way.

The servo requirements are supposed to be stated in the

following general way:

The transfer function from u. to y should satisfy given

specifications.
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An example of a specification is that the transfer function

from u. to y should be diagonal.

The regulator requirements are assumed to be stated in the

following general way:

The transfer function from e to y should satisfy given

specifications. (4.27)

An example of a specification is that the transfer function
from e to y should have all its poles within a certain subset
of the complex plane. Another example is that it is such that
it does not transmit certain kinds of disturbances, for in-

stance steps or ramps.
The class of available controllers is defined as follows:

The transfer function for Rff must be A-stable and be must

be causal and such that the closed loop system is A-stable. (4.28)
It follows from theorem 4.3 that this class is not empty.

The servo and regulator problems are solved in the following
sense. The class H of transfer functions from u. to y and the
class F of transfer functions from e to v, that can be obtained
with controllers satisfying (4.28), are characterized. It is
shown that an H(A)€ H and F(A)€ F can be obtained independently
of each other. This leads to a separation of the servo problem
from the regulator problem. Furthermore necessary and sufficient
conditions for the existence of certain types of transfer func-
tions in H and F are given. A method to calculate the controllers

Rff and be for given H(A)€ H and F(A)€ F is also presented.

The control problem will be solved in the following steps.
In chapter 5 the class HO of transfer functions from u. to vy,
that can be obtained with a fixed controller be, is determined.

In chapter 6 it is shown how the input v to R should be chosen

fb
in order to maximize HO. This maximal class is called H and is
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in fact independent of the feedback controller be. This fact
implies that the servo problem can be separated from the
regulator problem. In chapter 7 the class D of transfer func- E
tions, that can be obtained from e to u, is characterized.
This class is called the class of feedback realizable transfer

functions. In chapter 8 the characterization of the class D

is used to determined the class F of transfer functions from

e to y.

In this and the previous chapter the different matrix arguments
U, A and A were used. In the following chapters only the
argument A will be used. It can therefore be omitted and

the matrix G(A) will for instance be written G.
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5. THE SERVO PROBLEM

In this chapter it is assumed that a feedback controller Reps
which makes the closed loop system A-stable, has been determined.
The servo problem will be solved for this fixed feedback

controller.

e Y
—Oo R [ S| .

Rep

Figure 5.1 The control configuration.

Let GO be the transfer function from v to y. Then GO is a
fixed, A-stable transfer function. Let K be the transfer func-
tion for Rff and let H be the transfer from u_ to y, then

GoK = H. (5.1)
The transfer function K is by (4.28) required to be A-stable.

The servo problem will be solved in the following sense. The
class HO of transfer functions H, that can be obtained with
A-stable K for a given Go’ will be characterized. Furthermore,
a method to compute a A-stable K, if H € HO is given, will be

presented.

Another method to compute a stable and causal K for a given

H is shown in Bengtsson, Wonham (1976). They use a geometric
state space approach rather than the polynomial matrix approach
that will be used here. Another version of the same problem

is solved in Wang, Davison (1973 a). They give a method to

find a causal controller K of least possible order. The con-

troller will not necessarily be stable.
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The equation (5.1) occurs in many control problems. In Wang,
Davison (1973 b) it is shown that the dynamic observer problem
can be formulated as (5.1). The disturbance localization
problem (see Wonham, Morse (1970)), with e measured, can g
also be formulated as (5.1). A generalization of this problem
will be solved in chapter 8. The dynamic decoupling problem
is solved in Bengtsson, Wonham (1976). A slightly different
version of this problem is solved in this chapter, where

also the connection to the concept of right invertibility

(see Morse, Wonham (1971)) is given.

5.1 The class of transfer functions from the command input

to the controlled output.

Let GO be the transfer function from v to y in figure 5.1.
Since the feedback controller be is supposed to stabilize

the system S it follows that GO is A-stable. A transfer func-
tion is A-stable if and only if it is a A-generalized poly-
nomial matrix. The problem is thus to characterize all trans-
fer functions H in (5.1) that can be obtained with a A-general-

ized polynomial matrix K when Go is fixed.

Since both GO and K are A-generalized polynomial matrices then
so is H. Therefore both GO and H can be factorized, according

to theorem 2.6, as

G =& G (5.2)

A ~
H=HH (5.3)

A A ~ ~
where G and H are left A-structure matrices and G and H are

right A-invertible.

Theorem 5.1 Equation (5.1) has a stable and causal solution

A A
K if and only if G is a left divisor of H.

A A
Proof Suppose that G is a left divisor of H. Then there is

a polynomial matrix F, such that
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and (5.1) can be written
A~ A ~
GGEK-=GF H. (5.5)

Since G is right A-invertible there is a A-generalized poly-

nomial matrix G+, such that

cct =1 (5.6)
The matrix

K=G FH (5.7)

is then a A-generalized polynomial matrix that is a solution
to (5.5).

Conversely suppose that there is a A-generalized polynomial
matrix K such that (5.1) is valid. Then

A o~

G G K = H. (5.8)

~

The A-generalized polynomial matrix G K can be factorized

as
~ A~
G K =K K, (5.9)

/\ ~J
where K is a left A-structure matrix and K is right A-invertible.
Insert (5.9) into (5.8)

A A~
G K K = H. (5.10)
A A
Both G and K have linearly independent columns for all A
A A
outside A. Therefore G K too has linearly independent columns
A A

for all X outside A. Consequently G K is a polynomial matrix
with all zeros of its invariant factors in A. This, together
A

~ A
with the fact that K is right A-invertible, implies that G K
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is a left A-structure matrix of H. By theorem 2.6 there is

a unimodular polynomial matrix N, such that
A A A
H =G K N. ' (5.11)

A
Since G by definition has linearly independent columns, it

A A
follows from (5.11) that G is a left divisor of H.

Corollory 1. There is a stable and causal solution K to (5.1)

if and only if there exists a A-generalized polynomial matrix
M, such that

A
H=G M. (5.12)

Corollary 2. There is a stable and causal solution K to (5.1)

A
with H = I if and only if G is unimodular.

Definition 5.1 Define HO as
A K]
H ={ H=GM |M is a A-generalized polynomial matrix}.

It follows from corollary 1 that HO is the class of all trans-
fer functions H, such that there is a stable and causal solution
K to (5.1) for a given GO. The left A-structure matrix 8 con-
tains the zeros of GO in the unstable region of the complex
plane. Corollary 1 shows that every H must contain those zeros.
They can not be cancelled by a stable K. In the discrete time
case 8 also contains the time delays between v and y. These

time delays can not be annihilated by a causal K. The analogue
interpretation is valid for the continuous time case. Finally
the rank of é is eqgual to the rank of Go' Therefore (5.12)

shows that the rank of H can not be larger than the rank of

GO.
It has thus been shown that the class HO of transfer functions
from u. to vy, in fi%ure 5.1, is characterized by the left
A-structure matrix G of Go' The problem is that GO depends

on the feedback be. However, in chapter 6 it will be shown
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how v should be inserted into be in order to maximize Ho'
This maximal class is called H and is characterized by the
left A-structure matrix of the system S. Consequently H does

not depend on the feedback controller be.'

Example 5.1 Consider the system

y = va, (5.13)
where
1 2
p+l p+3
G; _ . (5.14)
I
p+1l pt+1l

This system is in Rosenbrock (1966) shown to be difficult to

control because of the non minimum phase effects.

Let unstable region.ﬁ be the closed right half plane and

define ) as

-

A= (5.15)

N}

p+

The region A, given by (3.8), is then the closed disc in

figure 5.2.

7R,
"

\-plane

TOIT|;,
AN
NN

p..

Figure 5.2 - The choice of unstable regions.
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The transfer function Go’ expressed in A, is obtained from
(5.14) and (5.15)

A 2X
1-X 1+x
Go = (5.16)
A A
1-2 1-2
The left A-structure matrix of GO can now be computed by
factorizing GO according to theorem 2.6.
1
A 22 (1-x) T=x 0
AN
e} 1 o0
A A(1+X)) 0 1= (1+0)

where Eo is aAriqht A-invertible A-generalized polynomial
matrix. That GO is the left A-structure matrix is seen in
the following way. Add column one, multiplied by 2(x-1), to
column two. This is obtained by multiplication of éo from

the right by a unimodular matrix.

1 2(x—1) 1 0
= A . (5.18)
0 1 1 3A-1

A A [x 21 (1-2)
G =

A A(1+2)

A
The matrix G has linearly independent columns and the zeros
of the invariant factors are A1 = 0 and Az = %, which both
A A
belong to A. Therefore G (and GO) is a left A-structure matrix

of G .
o)

Assume that the transfer function H* is given by

pt+10 0
g = 1 . (5.19)
0 p+ld

Introduction of (5.15) into (5.19) gives
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T+8 % 0 A 0 T+8x 0
H = . A = . \ . 1 . (5.20)
1+82x 1+8)
The left A-structure matrix ﬁ of H is then
§ = ! ° 5.21
H= A 0 1 . (5. )

A A
The matrix G is not a left divisor of H. Therefore there is

no K(i1), satisfying (5.1), for GO and H given by (5.17) and
(5.20). o

Example 5.2. The following system is examined in Wang, Davison
(1973 a).

1 ____pt3 p (p+3)
. pt+2 (p+1) (p+2) (p+1l) (p+2)
GO = (5.22)
1 p 0
ptl p+l

Introduce i, given by (5.15), then

\ A(LEA) (1-2)) (1+2)
-2 1-2
G, = . (5.23)
) 1-2)
% I-x 0

Theorem 2.4 ((iii) = (i)) can be used to show that G5 is right

A-invertible. The entries (1,3) and (2,2) in G, are nonzero

for all A in A, except A = %. Therefore the rows of G are
linearly independent for all X € A, except possibly A = %.
Insertion of A = % into (5.23) gives
12
(LY _ |2 3
Co\2) = , (5.34)
1 0 0

which has linear independent rows. Therefore the rows of Go
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are linearly independent for all A € A and G, is right
A
A-invertible. Consequently the left A-structure matrix G |

is given by

N>
il

0 1

1 0
. (5.25)

Therefore any A-stable H belongs to HO for this system. In

particular, there is a A-stable K, satisfying (5.1) for

1 0
o= . (5.26)

and GO given by (5.23).

o
Example 5.3 The following system is investigated in Mac
Farlane, Postlethwaite (1977).
p-1 P
* 1
c¥ = 5.27
o = Tptl) (p+2) (5.27)
-6 p—2
Let A be given by (5.15). Then
1-3x 1-2x
_ A
GO = 1% . (5.28)
-6 1-4x
Factorize GO as
1-32 1-2X
A 0 1-2 1-2 A A~
GO = - G G (5.29)
0 A ~6 1-42
1-x 1-x

~

The matrix G is a A-generalized polynomial matrix. Furthermore

~ _ 2
det & = 7719 + 123 (5.30)

(1-2) 2
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has no zeros in A. Therefore G is A-unimodular. In particular

G is right A-invertible. Consequently

A l O !
G = ) (5.31)

0 1
is the left A~structure matrix of GO.
A A
This G is a left divisor of H, given by (5.21). Therefore
there is a A-stable K, satisfying (5.1), with GO and H

given by (5.28) and (5.20).

Example 5.4 Consider the system

L i

. P+l p+3
G, = . (5.32)

1 p+l

p+2 (P+2) (p+3)

Let X be given by (5.15). Then

1 1
1-x 14
GO = A L 1-2 (5.33)
1+
Let GO be factorized as
1
G, = A . =
1-x 1-x 0 T+n
1
1 T=x 0
= A (1 1) =
1
1-a Ten
A
_ 1 1 AAN
LA (1-2)
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~ A
where G is right A-invertible and G is the left A-structure

matrix of G _.
o}
A A .
The matrix G is not a left divisor of H, given by (5.21).

Therefore there is no A-stable K, satisfying (5.1), with
GO and H, given by (5.33) and (5.20).

5.2 Invertibility

The property of left invertibility for a dynamical system is
defined in Morse, Wonham (1971). It is equivalent to the
property left invertibility of the transfer matrix, regarded
as a rational matrix. Right invertibility is defined as the
dual concept. In Rosenbrock (1970) the concept of functional
controllability is defined. It is equivalent to right inverti-

bility. The following equivalent definition will be used here.

Definition 5.2 A system is right invertible if its transfer

function has linearly independent rows.

In figure 5.1, consider the subsystem that has v as input and
y as output. Let this system be called SO and let its transfer
be GO. The system SO is thus right invertible if and only if

there is a rational matrix K such that
G K =T1I. (5.35)
o)

Even if So is right invertible there may not be any A-stable
(i.e. stable and causal) solution K to (5.35). Necessary and
sufficient conditions for the existence of a A-stable solution

to (5.35) is given by corollary 2 of theorem 5.1.

This does not mean that the concept of right invertibility
is uninteresting. It will be shown that the dynamic decoupling
problem, defined below, can be solved if and only if the system

So is right invertible.
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The following theorem shows how the concept of right invertibility
for a A-stable system can be expressed in terms of the left
A-structure matrix of its transfer function.

i

Theorem 5.1 Let GO be the transfer function for a stable

system and let G be the left A-structure matrlx of G . The

system is right invertible if and only if G is square.

Proof Let G have n rows and rank r. Then the system is right
invertible 1f and only if n = r. By theorem 2.6, G has n rows

and r columns. o

5.3 Dynamic decoupling

Consider the system in figure 5.1. The class HO of possible
transfer functions from the command input u.. to the controlled
output y is characterized in definition 5.1. Let H be a transfer
function in this class. It is often desirable to choose H as
simple as possible. In many cases it is desirable that every
component of U should influence only one of the components

of y. This is the dynamic decoupling problem, which more
precisely is formulated as follows. Let GO be the transfer
function from v to y in figure 5.1. Find necessary and suf-

ficient conditions on GO for the existence of a diagonal H in
H.

Different versions of the dynamic decoupling problem have been
treated by many authors. Bengtsson, Wonham (1976) require for
instance H to be block diagonal. The dyanmic decoupling problem

is solved by the following theorem.

Theorem 5.3 There exists a diagonal H € H with nonzero diagonal

elements if and only if the left A- structure matrix G of G is

square.
Proof By definition 5.1 every H in HO can be written

A
H=GM (5.36)
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A
where M is some A-generalized polynomial matrix. G has by
A
definition linearly independent columns. Therefore G must be

square if H is square and has full rank.
A
Conversely suppose that G is square and let S be the Smith-
A
form of G. Then there are unimodular polynomial matrices N
and L such that

A
S =NGTL (5.37)

Furthermore S = dlag(d ces 4 d ), where all d are nonzero

since G has linearly 1ndependent columns. Deflne

~ d
di=a-~IE i=1, ..., m. (5.38)
i

All di are polynomials because of the division property of the

invariant factors. Let D be given by
D = diag(dl, cee dm), (5.39)
then
SD=4d71. (5.40)
m
Furthermore define

M=1LDN (5.41)

and introduce this into (5.36)

Then
A — —
H=GLDN-=nN s "% p N =
=N1s pw = N g TN = a1, (5.42)

which means that H is diagonal.
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The theorem shows that the dynamic decoupling problem can be
solved if and only if the system, with transfer function GO,
is right invertible. One way to choose a diagonal H in Ho is
given by (5.42). In some cases it is possible to choose some
of the polynomials in the diagonal of lower degree than in
(5.42).

Introduce A, given by (3.7), into dm(A). Then d;(u) is obtained.
Since dm is a polynomial, then d; is a causal rational function
with all its poles at the point a. These poles can be shifted
to any points in the stable region by modification of M in
(5.36).

It follows from theorem 5.3 that there exists no A-stable K
and H, with H diagonal, such that

G K =H (5.43)
O

for the system in example 5.4. For the systems in examples 5.2
and 5.3 it has been shown that H, given by (5.20) belongs to
the class HO. This is not true for the system in example 5.1,
but it follows from theorem 5.3 that there exist diagonal H

in Ho'
Example 5.5 Consider the system in example 5.1. It was shown
that

A transfer function H belongs by definition 5.1 to HO if and

only if there is a A-stable M, such that
A
H = G M. (5.45)

The choice
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3x-1 0
M =

gives

3x-1 0
H= ) . (5.46)

0 3x-1

Insert (5.15) into (5.46), then

—p+12 0
" (p+2)
H = . (5.47)
0 -p+1l
(p+2)2
In fact, every Q* given by
p-1 0
" a (ptb) (p+c)
Q = ' (5.48)
0 p-l

(pte) (p+f)

where b, ¢, e and f belong to the open left half of the complex
plane, has (5.46) as its left A-structure matrix. Therefore

there always exists a causal and stable K* such that
G K =9, (5.49)
where G° is given by (5.14).

The transfer function Q* has a zero in the right half plane

for both loops. This corresponds to the factor 3A-1 in (5.46).
A

In G this factor is present in only one loop. Instead there

is a coupling between the loops.

The only way to remove the coupling from (5.44) is to introduce
the factor 33\ -1 into the other loop as well. Observe that it

is not possible to remove the factor 3x -1 from (5.44) because
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that would imply an M that is not A-stable.

Suppose that it is more important to control the first out-
put than the second. Then maybe the coupling is not a disad-
vantage. It is more important not to introduce the factor
3x-1 into the first loop.

Choose M = I and insert (5.15) into (5.45). Then

1
" p+2 0
H = . (5.50)
1 -pt+l
D+
p+2 (p+2) 2

In fact every Q*, given by

a_
p+b
Q= ’ (5.51)
a . p-1
p+b (pt+d) (pte)

where b, d and e belong to the open left half plane, has (5.44)

as its left A-structure matrix.

This Q* has a nicer response in the first loop than (5.48),

but the second loop is not decoupled from the first.

If it is more important to control the second output, then

choose M in (5.45) as

(1-3)» 1
(5.52)

1 0

This gives

1-3) 1
H =2 { ] (5.53)
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or

p-1
x _ | (p+2)? ,

1
0 pt+2

3
+|-
[\

(5.54)

Now the second loop gives a nice response, but not the first.
=]

5.4 A method to compute the feedforward controller.

The class HO of possible transfer functions between u. and vy
in figure 5.1 was characterized in section 5.1. Suppose that
an H € HO is given and let GO be the A-stable transfer func-
tion from v to y. In this section a method to calculate a
A-stable K, such that

GK = H, (5.55)
will be given.

One way to find such a K is given by (5.7) in the proof of
theorem 5.1. The construction includes calculations with
A-generalized polynomial matrices. The method given in this
section includes mainly operations on polynomial matrices
and is therefore more suitable for computer calculations.
Furthermore this method makes it possible to calculate the
complete set of solutions to (5.55). It will also be shown
that there is a fixed set of poles common to all solutions
K. The method is inspired by Forney (1975).

Let GO and H € Ho have dimensions mx¢ and mxn and let the
matrix [GO -H] have rank r. Furthermore let [YT XT]T,where
Y € Rlxk[x], X € Rnxk[x] and k = ¢ + n - r, be a polynomial
basis, according to definition 2.13, for the nullspace of
[GO -H]}. Then

Y

(G, -HI

Il
O

(5.56)
X
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Apply lemma 2.6, with A = C, to X instead of [A BJ]. It
follows that there is a unimodular polynomial matrix M,
such that

xM=[p 0], (5.57)

where D has linearly independent columns. Define the poly-

nomial matrices N and L through

N L
. (5.58)

The right member of (5.58) is then also a polynomial basis

for the nullspace of [GO ~-H].

Theorem 5.4 The polynomial matrix D is square and nonsingular

and any A-stable solution K to (5.55) can be written

K =g p T, (5.59)
where

P=DR (5.60 a)

Q=NR+ L . (5.60 b)

Here R and Z are polynomial matrices. R is square and nonsingular
and det R has no zeros in A. Conversely any K, given by (5.59)-
(5.60), is a A-stable solution to (5.55).

Proof Let K be an arbitrary A-stable solution to (5.55). Such

a solution exists by theorem 5.1. Then K can be written

K=9QP 7, (5.61)

nxn

where P € R [x] and Q € szn[x]. P is nonsingular and det P

has no zeros in A. Introduction of (5.61) into (5.55) gives
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o pt
[G =H] = 0. (5.62)
o]
I
This is equivalent to
Q
[G -H] = 0. (5.63)
o p ;

Therefore [QT PT]Tis a polynomial matrix in the nullspace of
[GO -H]. It follows from theorem 2.10, with A = C, that there

are polynomial matrices R and Z such that

Q N L R
= (5.64)
P D 0 Z
or
Q=NR+L Z (5.65 a)
P =D R. (5.65 b)

Since P is square and nonsingular and D has linearly independent
columns it follows that both D and R must be square and non-
singular. Therefore

det P = det D det R. (5.66)

Neither det D nor det R can have zeros in A since det P does

not.

Conversely suppose that K is given by (5.59) and (5.60). Then
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Furthermore K is A-stable since it has been shown that det D
has no zeros in A. -
Remark 1 The theorem gives a characterization of all A-stable
solutions to (5.55).

Remark 2 This method to determine all A-stable solutions to
(5.55) is suitable for computer calculations. The only thing
that is needed is an algorithm to calculate M and D in (5.57).
Such an algorithm is described in Pernebo (1978), where it is
shown that this algorithm also can be used to calculate the

polynomial basis in (5.56).

Corollary Every A-stable solution K to (5.55) contains the
zeros of det D among its poles.

Loosely speaking the zeros of det D are those poles of H that
are not poles of GO and those zeros of G, that are not zeros

of H. This is a generalization of a result in Bengtsson (1974),
where it is shown that any right inverse of Gy has the zeros of

G, among its poles.

Choose R I in (5.60) then the zeros of det D are the only
poles of K. Let the transfer function K be expressed in the
H

operator through

K* (1) = K(n), (5.68)

where

Aia (5.69)

and a is an arbitrary point on the real axis outside A'. The
relation between A and A* is given by (3.8). The transfer
function K* has a set of poles outside A% corresponding to
the poles of XK, but K" may also have some poles at the point
a because of (5.69). Therefore the parameter a is a design

parameter.
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The poles at a may disappear for a suitable choice of R and
Z. Other poles at the zeros of det R will then appear (c.f.
example 5.6). A general method to choose R and 7 so that the

order of K* is minimized is not yet known to the author.

Example 5.6 Consider the system in example 5.2.

N A(1+2) (1=-22) (1+x)
1-x 1-x
GO = (5.70)
A 1-22 0
1-2 1-x
Choose
1 0
H = . (5.71)
0 1

It was shown in example 5.2 that there exist a A-stable K,

satisfying
G K = H. (5.72)
e}

Theorem 5.4 shows how all such K can be computed. A polynomial

basis for the nullspace of (Go -H) is given by
(1 0 ~A+1
v 0
= 1 A-1 0 . (5.73)
X ____________
22+1 2A2+A—l —A2+x
1 0 A

It can be computed with the method in Pernebo (1978) .
Elementary column operations can now be performed on (5.73)
in order to bring it to the form (5.58) . The polynomial

matrices D, N and L in (5.58) are found to be

3 9
D = (5.74)
0 3
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42+ 4n - 3 8x - 1

N = 2X2 + 3 4% + 3
2%+ 3 + 3 —2) + 9 (5.75)
43 - 3+ 1

L = 2%3 + A - A
-3+ - (5.76)

All A-stable K, which satisfy (5.72), can now be obtained from
(5.59) and (5.60).

Since det D has no zeros, there are no fixed poles in K. If

R =1 and Z = 0 are chosen in (5.60) then K is given by

K=ND ' (5.77)
which has no poles. Insert (5.15) into K to obtain K*. Then
K* has all its poles at -2. These poles can be shifted by a

proper choice of R and Z.

Choose for instance
-A + 1 A — 3
R = (5.78 a)

7 = (1 ~-1). (5.78 Db)

Then it follows from (5.60) that

-3x + 3 122
b = (5.79)
0 3x + 3
4% - 2 -5x + 7 1
Q = 22X -2 + 3 (5.80)

-A + 3 22
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and K is obtained from (5.59). Insert (5.15) into this K

to obtain K*. Then K* has one pole at -1 and one at -3, but
no pole at -2.
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6. COMBINATION OF SERVO AND REGULATOR DESIGN

In chapter 5 it was shown that the class H +of possible trans-
fer functions from u to y, in flgure 6.1, is characterized

by the left A~ structure matrix G to the transfer function G
from v to y.

Res Rep w2 | 2

Figure 6.1 - The control configuration.

The transfer function G » and therefore also the class H ’
depends on the feedback controller be. There is, however,

a freedom to insert v into be in many different ways. In
this chapter it is shown that if this freedom is utilized
then the class H of all possible transfer functions from u
to y does not depend on the feedback controller be as long
as this is stabilizing. The class H is in fact characterized
by the left A-structure matrix of the system S itself. This
result implies that the servo and regulator requirements on

the closed loop system can be specified independently.

6.1 The choice of input to the feedback controller

Let the equation
Tu = Uz + Yv (6.1)

be a polynomial fractional representation of the feedback

controller be in figure 6.1. It is assumed that be stabil-

izes the system S.

In chapter 5 it was shown that the class Ho of transfer
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functions from u. to y is given by é. Here é is the left
A-structure matrix of the transfer function Go’ from v to
y. In this section it will be shown how G depends on the
choice of the polynomial matrix Y in (6.1). Observe that Y

does not affect the stability of the closed loop system.

It was shown in section 3.5 that the system S can be described

by the fractional representation (see (3.77))

D D £ I 0
[ 1 3 [ l] - [ ]u + [ ]e (6.2 a)
0 D2 52 0 I
&1
y = [El EZJ (6.2 Db)
2
£q)
zZ = {Fl FZJ . (6.2 )
£
Factorize El as
E. = B B (6.3)

1

A

where E is the left A-structure matrix of the polynomial matrix
A

El' By definition 3.5 E is the left A-structure matrix for

the system S.

The transfer function Gb can be computed from (6.1) and (6.2).

Inserting u, given by (6.2 a), and z, given by (6.2 c), into

(6.1) gives
/T D, - UF, g, + (T D, - UF E4 = Y Ve (6.4)
\" "1 1/°1 " " 73 2)°2

The system of eqguations (6.1)-(6.2) is therefore equivalent

to the following system of equations.
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T D - U F T D - U F 3 Y 0
1 1 3 2 1 = v + { ] e (6.5 a)
0 D, £ 10 T
y By Ey :
S I F 71 (6.5 b)
1 2
)
u D1 D3

Here the polynomial matrices T and U are supposed to be chosen
so that (6.5) becomes A-stable. Furthermore T must be such
that det T(0) * 0 for (6.1) to be causal. It follows from

theorem 4.2 that such T and U always exist.

Let (6.1) be any feedback controller, such that the closed
loop system (6.5) is A-stable. The transfer function GO from

v to y can be calculated from (6.5) as

G =E ~1y. (6.6)

o) l(T D

- UF

1 l)

It is then a A-generalized polynomial matrix.

Theorem 6.1 The left A-structure matrix ﬁ of the system 8
is a left divisor of the left A-structure matrix é of GO for
all causal and A-stabilizing controllers (6.1). If Y = T
then ﬁ and é are equal up to multiplication from the right

by a unimodular matrix.

Proof From (6.3) and (6.6) it follows

A -1
Go = E E(T Dl - U Fl) Y. (6.7)

Factorize E(T Dl - U Fl)_lY according to theorem 2.6 as

1

~ - A
E(T D, - U Fl) Y = X

=i
)
co

1

Insert (6.8) into (6.7). Then
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A A~
G, = E X X. (6.9)

Both % and % have linearly independent columns for all A
outside A. Therefore ﬁ % too has linearly independent columns
for all X outside A. Consequently ﬁ § is a polynomial matrix
with all zeros of its invariant factors in A. Since § is
right A-invertible it follows that ﬁ % is a left A-structure
matrix of Go' By theorem 2.6 there is a unimodular polynomial

matrix N, such that
A A A
G =E X N. (6.10)

A
Since E has linearly independent columns it is a left divisor
of G.

With ¥ = I (6.7) becomes

1

AN~ -
G =EE (T D, - U Fl) . (6.11)

o 1
Since det (T Dl - U Fl) has no zeros in A it follows that
_1 —

(T Dl U Fl) 1 U Fl)
is right A-invertible. By theorem 2.6 there is a unimodular

is A-unimodular. Therefore E(T D 1

polynomial matrix Q, such that
A A
G =E Q. (6.12)

Definition 6.1 Define H as

H=1{H=E8M

M 1is a A-generalized polynomial matrix},:
A
where E is the left A-structure matrix of the system S.

The following theorem is a direct consequence of theorem 4.3,
5.1 and 6.1.

£f and be in

figure 6.1, such that the closed loop system is A-stable and

Theorem 6.2 There exist causal controllers R

has the transfer function H from u,. to y 1f and only if H € Hf.
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The class H is thus equal to the class of transfer functions
that ca? be achieved from u to y. The left A-structure

matrix E of the system S containes the zeros, which belong

to the unstable region of the complex plane and are asso-
ciated with the transmission from u to y. Theorem 6.2 shows
that these zeros will always be present in the transfer func-
tion H from u. to y. They can not be altered by a feedback
controller be or cancelled by i stable feedforward controller
Rff. In the discrete time case E contains the time delays
between u and y. These time delays must be present in the
transmission from u. to y if the controllers are causal. The
analogue result is valid for the continuocus time case. Further-
more the rank of ﬁ is eqgual to the rank of the transfer func-
tion from u to y. The rank of H can not be larger than this

rank.

6.2 Separation

The control problem was formulated in chapter 4. The con-
trollers Rff and be have to be chosen from the class of

admissible controllers (4.28). Furthermore, it is assumed
that the controllers should fulfil Servo requirements of

the type (4.26) and regulator requirements of the type (4.27).

The feedforward controller Rff does not influence the trans-
fer function from e to y in figure 6.1. Neither does the
matrix Y in (6.1) influence this transfer function and the
A-stability of the closed loop system must be achieved by

a proper choice of the matrices T and U in the feedback
controller (6.1).

On the other hand it follows from theorem 5.1 and 6.1 that
for any choice of T and U there is a matrix Y in (6.1) and

a controller R such that any H € H can be obtained as a

££’
transfer function from U to vy in figure 6.1. Therefore the
choice of T and U does not influence the possibilities to

achieve the servo requirements (4.26).




244

It has thus been shown that the servo requirements (4.26)
and the regulator requirements (4.27) can be stated inde-
pendently and that the control problem can be separated in

the following way.

First determine T and U in the feedback controller (6.1) so

that the regulator requirements (4.27) are fulfilled and the
closed loop system is A-stable. Then choose Y = I in (6.1).

Finally determine a A-stable R
ments (4.26) are fulfilled.

The problem to determine Rff was solved in chapter 5. The

problem to determine T and U in be will be solved in chapter
7 and 8.

£ such that the servo require-
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/. FEEDBACK REALIZATIONS

In this and the next chapter the problem to determine

the feedback controller R in figure 7.1 will be considered.

b

_e Y
e Y P

Figure 7.1 - The system with a feedback controller.

The feedback controller R must belong to the class (4.28)

£b
of admissible controllers and should be determined so that
it fulfils regulator requirements of the type (4.27). When
be has been determined it should be included in the total

control system as is shown in section 6.2.

The regulator requirements in (4.27) are requirements on the
transfer function F from e to y in the closed loop system in
figure 7.1. Therefore, it is of interest to characterize the

class F of all transfer functions from e to y that can be ob-
tained with feedback controllers in the class (4.28) of admiss-
ible controllers. In this chapter it will be shown how feedback
realizable transfer functions can be used to descrilbe the class F.
It will also be shown that the right A-structure matrix of the
system S can be used to characterize the class of feedback realiz-

able transfer functions.

7.1 Feedback realizable transfer functions

Let the system S be given and consider the control configuration
in figure 7.1.
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Definition 7.1 The class 0 of feedback realizable transfer

functions for the system S is equal to the class of all trans-
fer functions from e to u that can be obtained by admissible

feedback controllers in figure 7.1.

Recall that an admissible feedback controller, by (4.28), is
a causal controller be that makes the closed loop system A-
stable. The following class of transfer functions is of interest
since the regulator requirements are requirements on the transfer

function from e to y in the configuration in figure 7.1.

Definition 7.2 Let F be the class of all transfer functions

from e to y that can be obtained by admissible feedback controll-

ers in figure 7.1.

Partition the transfer function for the system S as

y G, G, u
- Y Y (7.1)
Z G e
uz ez
The following theorem is a direct consequence of definitions
7.1 and 7.2,
Theorem 7.1 Any transfer function FEF can be written
F=G_D+G (7.2)
uy ey

for some D€D.. Conversely, for any DED the relation (7.2)

gives an F in the class F.

The theorem says that the class F can be generated by (7.2)

with D in the class of feedback realizable transfer functions.

It was shown in section 3.5 that the system S can be described
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by the fractional representation

= u + e, ' (7.3)

It follows from the fact that S is assumed to be A-detectable

that det A1 has no zeros in A. Let C be the right A-structure

matrix for the system S. Then C2 can be factorized as

C2 = CC, (7.4)
where 6 is a left A-invertible polynomial matrix.
Let D be a transfer function and define

Z=G__ D+ G__, (7.5)
where Guz and GeZ are given by (7.1). If D is the transfer
function from e to u in figure 7.1, then Z is the transfer

function from e to z.

The following theorem gives a characterization of the class 0

of feedback realizable transfer functions.

Theorem 7.2 The transfer function D belongs to the class D

of feedback realizable transfer functions if and only if the

following two conditions are satisfied.
D is a A-generalized polynomial matrix and C is a right di-
visor of D, where D is the right A-structure matrix of D. (7.6)
2 = GuzD + Gez is a A-generalized polynomial matrix and

C is a right divisor of Z, where 7 is the right A-structure

matrix of Z. (7.7)
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Proof

Necessity of (7.6) and (7.7)

Suppose that D€ D. By definition 7.1 there is an admissible

controller be, such that the transfer function from e to u
in figure 7.1 is D. Let this be be described by the fractional
representation
PE = 2z (7.8 a)
u = RE- (7.8 b)

Insert (7.8) into (7.3). Then

A1 ABP - B1R

0 AZP - B2R

y
3

a. (7.9)

Cy

The insertion is an equivalence transformation of the type
(4.18).

The closed loop system is thus described by (7.8) and (7.9).

It is A-stable because det A1 has no zeros in A and P and R

are such that det(AzP - B2R) has no zeros in A. The transfer

function D 1s given by

D = R(A,P - BZR)—1CC (7.10)

The transfer function %, defined by (7.5), is obtained from

the second row of (7.3) as

_ a1 -1
2 = A2 B2D + A2 C2. (7.11)

With D as in (7.10) this gives

“lec + ccl = P(A.P - B R)_1CC. (7.12)

_ a1 _
7 = A2 [BZR(A p B.R) 9 9

2 2
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It follows from (7.10) and (7.12) that both D and Z are
A-generalized polynomial matrices. That 8 is a right divi-
sor of both B and 2 follows from (7.10) and (7.12) as in the
first half of the proof of theorem 6.1. Therefore, both (7.6)

and (7.7) are satisfied.

Sufficiency of (7.6) and (7.7)

Conversely, suppose that D is given, such that (7.6) and (7.7)

are satisfied. A feedback controller R will be constructed,

fb
such that the closed loop system in figure 7.1 is A-stable and

has a transfer function from e to u that is equal to D.

Step 1: Construction of R

fb
It follows from (7.6) that D can be written as

e, (7.13)

D = VT
where T and V are relatively right prime polynomial matrices
and det T has no zeros in A. Define the polynomial matrix Q

through

Q = B,V + CT, (7.14)
where C is given by (7.4). The transfer function Z is given by
(7.11) . With D as in (7.13) this gives

=1 14 -1 -1

Z = 5 B2VT c + A2 C2 = A2 (B2V + CT)T

1 =14

C = A;1QT c, (7.15)
where (7.4) and (7.14) have been used.

Let L be the g.c.l.d. of AZ and Q. Then there are relatively

left prime polynomial matrices AO and Qo, such that

A2 = LAO; (7.16 a)

Q = LQO. (7.16 b)
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The equality (7.15) then gives

_ a1 -1
Z = AO QOT C. | (7.17)
It follows from (7.7) that A(TQOT_1 is a A-generalized poly-
nomial matrix. Since AO and QO are relatively left prime

det A has no zeros in A.

Define the matrices T, V and Q through

T 0
T = ] (7.18 a)
0 T
1
V = (v v.) (7.18 b
Q = (0, 9,). (7.18 ¢)

The polynomial matrices T1, V1 and Q1 will be defined below.

Let (S O)T be the Smithform of C. Then det S is nonzero and
has no zeros in A, since C is left A-invertible. There are
unimodular polynomial matrices N and M, such that

S

C =N M. (7.19)

0

Define C and c, as

(s o)(u o)
) (7.20)
0 Ijl0 T

Then det C is nonzero and has no zeros in A
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Let L1 be the g.c.l.d. of L and B2. Then L1 is also a left

divisor to A2 because of (7.16a). Since L1 is a left divisor

of both A2 and B2 it follows that det L1 has no zeros in A,

because the system is A-stabilizable from u.

It is shown e.g. in Rosenbrock (1970) that there are relative-
ly right prime polynomial matrices T1 and Y such that

L, C_ =YT, . (7.21)

Here det 'I'1 divides det L1. Therefore det T1 has no zeros in

A. It follows that det T, in (7.18a), has no zeros in A.

Determine Q1 and V such that

1!
L,Y = IL.Q, - B,V,. (7.22)

This is possible because L, is the g.c.l.d. of L and B,. (See

1 2

theorem 2.9 applied to polynomial matrices). The matrices T1,
V1 and Q1 in (7.18) are now determined.

Introduce (7.21) into (7.22), then

COT1 = LQ1 - B2V1. (7.23)

From (7.14) and (7.16b) it follows that

CT = LQO -~ BZV' (7.24)
Using (7.18) and (7.20) the equalities (7.23) and (7.24) can
be written

CT=10 - BZ'\?. (7.25)
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It follows by theorem 3.2 that B2(O) = 0 since the system S

has no direct feedthrough from u to z.
Therefore

C(0)T(0) = L(0)Q(0). (7.26)
It has been shown that neither det T nor det C has any zero

in A. Therefore det T(0) # 0 and det C(0) % 0 and it follows
from (7.26) that

det Q(0) % 0. (7.27)

Choose the feedback controller be in figure 7.1 as the system

0t = Az (7.28 a)
u = Ve. (7.28 b)

This is a well defined system since det Q is nonzero by (7.27).

1

The system is causal since the transfer function V Q A_ from

z to u has no poles at the origin because of (7.27).

Step 2: Check of conditions

It remains to be shown that the closed loop system in figure 7.1

is A-stable and that the transfer function from e to u is D.

The closed loop system is described by the equations (7.3) and
(7.28) . Introduce (7.16a) into (7.3), which becomes

Ay + A

] z = B.u + C.,e (7.29 a)

3 1 1

LAOZ = B,u + C.e. (7.29 b)

2 2
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The following operations on the closed loop system are all
equivalence transformations of the type (4.18). Add (7.28a),
multiplied from the left by L, and (7.28b), multiplied from
the left by B2, to (7.29b). This gives '

LQg = B,VE + Cge. (7.30)

Use (7.25) to rewrite (7.30) as

C Tg = C,e. (7.31)
Add (7.28b), multiplied from the left by B1, to (7.29a).
This gives

A1y + A3z - B1V£ = C1e. (7.32)

The closed loop system in figure 7.1 is thus equivalently
described by (7.28), (7.31) and (7.32). These equations can

be written as

A, Ay -B.V) [y c,
0 a, -0 z| =10 | e (7.33 a)
0 0 C T| |& c,

u = Ve (7.33 Db)

This system is A-stable because det A det AO, det C and

—]I
det T have all been shown to have no zero in A.

The transfer function X from e to u is obtained from (7.33) as

= ==1=—1

X=vT C C (7.34)
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From the left equality in (7.20) it follows that

-1, 7.3
I1=Clwc c). (7.33)
o
The first block column of (7.35) gives
o= e, (7.36)
0
Use (7.4), (7.13) and (7.18) to rewrite (7.34).
=121 N T
X=VT C C,=(V V,) C CcC
2 1 -1
0 T
1
1 -1, [ a -1
= (VT V., T, ) C=VT C=0D (7.37)
171 [
0
a
Remark The transfer function Z = GuzD + Gez is in (7.7) re-

quired to be a A-generalized polynomial matrix. Observe that

this does not prevent GuZ and Gez from having poles in A.

The followingheuristic argument gives an explanation of the

conditions (7.6) and (7.7) of theorem 7.2.

The right A-structure matrix E of the system S contains the
zeros, which belong to the unstable region of the complex

plane, associated with the transmission from e to z. These

zeros cannot be cancelled by the controller be, since such a
cancellation would introduce unstable and uncontrollable modes.
In the discrete time case E also contains the time delays from

e to z. These time delays cannot be annihilated by a causal
controller be. The analogge result holds in the continuous time
case. Finally the rank of C is equal to the rank of the transfer
function from e to z. Intuitively speaking, this rank cannot be

increased by any controller R In other words, the rank of the

fb*
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~

transfer function from e to u cannot be larger than rank C.

The implication of all this is that an admissible controller
be cannot reconstruct the disturbance e itself, but only Ce.
The input u can then be formed by letting Ce pass through some

A-stable transfer function D.

This argument leads to the conclusion that the transfer func-
tion from e to u should be of the form 68. This is exactly the
condition (7.6). The condition (7.7) says that this transfer
function from e to u must not excite any unstable modes in the
system S.

The theorem can be simplified if the system S is A-stable.

Corollary TIf the system S is A-stable, then D belongs to the
class D of feedback realizable transfer functions if and only

if D can be written

D = D.C, (7.38)
where DO is a A-generalized polynomial matrix and C is the

right A-structure matrix of the system S.

Proof The transfer functions Gez and Guz are given by (7.1).
They are both A-generalized polynomial matrices since S is
A-stable. It follows from theorem 3.7 that there is a A-general-
ized polynomial matrix é such that

~A

G = GC. (7.39)
ez

Suppose that (7.38) is satisfied. Then (7.6) is satisfied. The

transfer function 7 is given by

= G G = . .
Z oz + uuZD (G + GuzDo)C (7.40)
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Here (G + GuZDO) is a A-generalized polynomial matrix.
Therefore (7.7) is satisfied. It follows from theorem 7.2 E
that DED.

Conversely, if DE€D then (7.38) is valid by theorem 7.2.

Remark The special case of theorem 7.2 when z is the state
vector has been shown in Bengtsson (1977b). Observe that the
state vector cannot be reconstructed by a Luenberger observer

since the disturbance e cannot be measured.

Example 7.1 Let the system S be described by the transfer

function

p—-2 2
y p-1 p+1 u
= (7.41)
z 1 p-1| (e
p-1 pt+1 “
and let the unstable region A* be the closed right half of
the complex plane. Introduce
\ = 1 (7.42)
p+1°’ :

Then the corresponding unstable region A becomes the closed

disc with radius % and centre at %-

A fractional representation for (7.41) is given by

1 T ) 1
0 1-2A A

The right A-structure matrix C is

y

z (1=-2x)?

1
e (7.43)

8 = (1-2))°2 (7.44)
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Observe that theorem 3.7 cannot be used to calculate C
because the system is unstable. The right A-structure matrix

for the transfer function from e to z is (1-2)) #* C.

A transfer function D must satisfy conditions (7.6) and (7.7)

to be feedback realizable. First consider

D1 = (1=-2X1)%. (7.45)

The transfer function D1 satisfies (7.6). The transfer function

Z in condition (7.7) can be obtained from (7.43) as

- 2
2= A g o, (1=20)7

1=-22) 1 (1=2X) (A+1) (1=27), (7.46)

~

which is A-stable. The right A-structure matrix Z of Z is

Z =1 = 2A. (7.47)
It follows that C is not a right division of Z. Therefore con-
dition (7.7) is not satisfied and D1 is not feedback realizable.

Now consider

D2 = =2(1 - 2))%. (7.48)
The transfer function D2 satisfies (7.6) and Z can be computed
as in (7.46). Then

_ A (1=2X1)2 _
2= Pyt Oy T

(1-2X)72, (7.49)

which satisfies (7.7). Therefore D, is feedback realizable.

2

A feedback realization of D2 can be obtained with the method in

the proof of theorem 7.2.
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Let D2 be written as in (7.13), then

T =1 and V = -2 (7.

The matrix Q in (7.14) is given by
Q= x(-2) +1 -1 =1- 2Ax. (7

The matrices L, AO and Qo in (7.16) then become

L = (1-2)), AO = 1 and QO = 1 (7.

The matrix CO in (7.20) vanishes since C = 1 is square. It
then follows that

T =T, V=Vand Q = Qg (7

in (7.18). The feedback realization is obtained from (7.28) as
u = -2z. (7

The closed loop system is described by (7.43) and (7.54). This

can be written

y
z

{—u

1 1 1
0 1-2x A2
0 -2 1

0

The closed loop system is A-stable since the determinant of the
matrix in the left member of (7.55) is equal to 1. The transfer

function from e to u can be computed from (7.55) as

u = =2(1 - 2\)%e, (7.

which is equal to D2 as desired.

1
= [(1—2%)2] e. (7.

50)

.51)

52)

.53)

.54)

55)

56)
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Example 7.2 Consider the discrete time system

Az = Bu + Ce (7.57)
with

1-0.2X =0.4Ax
' (7.58)

1-0.9A 0.5A
, B

0.5x 1-0.2) 0.2 1-0.8A

where A = q_1, the backward shift operator, and A is the closed
unit disc with centre at the origin. It is assumed that the con-
trolled output y is equal to the measured output z. The system

is unstable because det A has a zero in A.

In example 8.2 of the next chapter the following feedforward con-

troller is computed.

u = De, (7.59)
where
D= (-0.82 - 0.042Xx 0.66 - 0.084x). (7.60)

A feedback realization of (7.59) will be computed. With the

notation used in the proof of theorem 7.2 it follows that
C =1 c=2cC (7.61 a)
T =1 V = D. (7.61 b)

Condition (7.6) of theorem 7.2 is thus satisfied. The matrix Q

in (7.14) is given by
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A
Q = [ ] (-0.82 - 0.042x 0.66 - 0.084Xx) +

0

[1=0.2) -0.42
0.2X 1-0.8A

[1 - 1.02)x - 0.042)2 0.26) - 0.084A2J

0.2A 1 - 0.8X

1T - 0.9 0.5X T - 0.12X -0.24)
_ . (7.62)
0.5X 1 - 0.2) -0.3Xx 1T - 0.6A
The matrices I, AO and Qo in (7.16) become
T - 0.12X -0.24)
L = A A =1 Q = N (7.63)
© © -0.3A 1 - 0.6)
It follows from (7.17) that % becomes
7 = Q . (7-64)

Therefore also condition (7.7) of theorem 7.2 is satisfied and
the controller (7.59) - (7.60) is feedback realizable.

As in example 7.1 it follows that

T=T, V=Vand Q = Q- (7.65)
A feedback realization of (7.59) - (7.60) is now obtained from
(7.28) as
1 - 0.12x ~0.24) £, (zl
= (7.66 a)
-0.3X 1T - 0.6A)1&, lzz

€1
u = (-0.82 - 0.042x 0.66 - 0.084A){ }. (7.66 Db)
&2
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The closed loop system is described by (7.57) and (7.66).

This can be written

1-0.9%  0.5A A 0 0 )(z:)
0.5A 1-0.2)x O 0 0 Z,
-1 0 0 1-0.12X ~0.24) -u| =
0 -1 0 ~0.3) 1-0.6A £,

L O 0 1 -0.82-0.042) 0.66-0.084X}&,

1-0.2x =0.4x
0.2X 1-0.8)
1€
{ ] (7.67)

The determinant of the matrix in the left member is

0.24)X% - X + 1, which has the zeros A; = % and A, = %. The
closed loop system is thus A-stable. A calculation confirms
that the transfer function from e to u is D. The transfer func-

tion from e to z becomes

ZI] 1-0.12%  =0.24)) (e,
= , (7.68)

ZzJ -0.3\ 1-0.6X e-

which is the desired result in example 8.2 of the next chapter.

m}

7.2 Measured disturbances

Assume that the disturbance vector can be partitioned as
e = (ET ST)T, where € can be measured, but 6§ not. The control
configuration in figure 7.1 will then be replaced by the one in

figure 7.2.
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) 9] , y »
" S
Rep :

Figure 7.2 - The control configuration when a part of the

disturbance vector can be measured.

Let the system S be described by the fractional representation

A, A,)(y (B (c, C €
T3 = | 1w+ P T2 } i (7.69)
0] A2 b4 B2' C3 C4 §
Introduce the system S given by
A, Ay 0] [y B, v{c1 c, {8
0 Az 0 Z = B2 u +- C3 C4‘{6J . (7.70)
0 0 I € 0 I 0
The vector z = (zT eT)T is the measured output vector. The block

diagram in figure 7.2 is then equivalent to the block diagram in
figure 7.3.

wnl
NI

Rep

Figure 7.3. An equivalent control configuration when a part

of the disturbance vector can be measured.
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Definition 7.3 The class D of feedback realizable transfer

functions for the system S, where & can be measured, is defined
as the class of all transfer functions from e to u that can be

obtained with admissible feedback controllers in figure 7.2.

The class D is thus equal to the class of feedback realizable
transfer functions, given by definition 7.1, for the system S.
Let the class F be given by definition 7.2, but with figure 7.2
substituted for figure 7.1. Then theorem 7.1 is valid also in

the case where ¢ is measured.

Let C4 be the right A-structure matrix for the matrix C4. Then

(7.71)

is the right A-structure matrix for the system S.

A characterization of the class 0 can now be obtained by applica-
tion of theorem 7.2 to the system S. The special case when the
whole disturbance vector e can be measured is given below. Let
Gez and Guz be given by (7.1).

Theorem 7.3 Assume that the disturbance vector e can be measured.
Then D € D if and only if both D and GuzD + Gez are A-generalized

polynomial matrices.

Proof The right A-structure matrix for S is I. The matrix Z in

theorem 7.2 is substituted by

GuZD + GeZ

!
Il

(7.72)
I

when S is substituted by S,

The matrix Z is a A-generalized polynomial matrix if and only if

ez _

G + GuzD is. The theorem now follows from theorem 7.2, applied
to S. |

u}
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Example 7.3 Consider the system in example 7.1, i.e.
A [ |
— u + e, (7.73)

1 1
[o 1—2xhz A L (1-221)°

but assume that the disturbance e can be measured. The feedfor-

ward controller
u = D1e (7.74 a)
D1 = (1 - 2)1)° (7.74 Db)

was, in example 7.1, shown to be not feedback realizable if

€ cannot be measured.

The transfer function D1 is A-stable and from (7.47) it follows
that

GuzD1 + GeZ = (A+1) (1-22) (7.75)

is A-stable. Therefore theorem 7.3 shows that D

1 is feedback

realizable if e can be measured.
Observe that the system cannot be controlled by the feedforward
controller (7.74) because (7.73) is unstable. A feedback realiza-

tion is therefore necessary.

Introduce the system S as
0 1-2x 0 Z|=|Aju+ (1-20)2%| e. (7.76)

A feedback realization of (7.74) for the system S is obtained
in the following way. With the notation of the proof of theorem
7.2 it follows that




The

The

The

The

The

(1

0>
I
N
(@
I
—_——

<
Il

(1-2X)2 T = .

matrix Q in (7.14) is

A (1-2X1)7%} (1+Xx) (1=-2)) 72
Q = (1-2))% + = .
0 1 1

matrices 1, Ao and Qo in (7.16) are

O

[1—2A OJ [1 o} [(1+x)(1—2x)]
L = A = , Q = }

)

g.c.1l.d. L1 of L and B2 is L1 = I. Then (7.21) gives
1]

Y = T, = 1
0 1

equation (7.22) becomes

o,
Clo )
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(7.77 a)

(7.77 b)

(7.78)

(7.79)

(7.80)

(7.81)

(7.82)

(7.83)
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From (7.18) it follows that

v

li

((1=2Xx)2 -2) (7.84 a)

0
Il

(7.84 b)

(1+X1) (1-2X) 1]

1 0

A feedback realization is now obtained from (7.28).

@ u = -2z + 3(1-2))e. (7.85)

The closed loop system is described by (7.73) and (7.85). It

can be written

1 1 1 N 1
0 1-2x A z | = [ (1-2)\)% |e (7.86)
0 -2 1 ! =3(1=-2X)

The determinant of the matrix in the left member of (7.86) is
equal to 1. Therefore the closed loop system is A-stable. The
transfer function from e to u is given by

u = (1-2)1)2%e, (7.87)

which is the same as (7.74) as desired.
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3. THE REGULATOR PROBLEM

The reqgulator problem was formulated in chapter 4. An admissible
feedback controller Rey should be determined so that the trans-
fer function from e to y in the closed loop system in figure 8.1

satisfies given specifications.

—Rib

Figure 8.1 -The system with a feedback controller.

An admissible feedback controller is by (4.28) causal and such

that the closed loop system is A-stable.

In this chapter the class F of all transfer functions that can

be obtained from e to y, with admissible feedback controllers

in figure 8.1, will be characterized. Necessary and sufficient
conditions for certain types of transfer functions to belong to

F will be given. The types, that are examined, are those with
poles within a specified region of the complex plane or those,
which do not transmit certain kinds of disturbances. A generaliza-
tion of the minimum variance controller in Astrdm (1970) will

also be given.

8.1 A characterization of the class of transfer functions

from the disturbance to the controlled output

In this section the class F, given by definition 7.2, will be

characterized.

Let the system S be described by the fractional representation

= Bu + Ce, (8.1)
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where A and (B C) are relatively left prime polynomial matrices.

Furthermore, let the transfer function for S be partitioned as

G G u '
uy €y J ) (8.2)

G
uz ez
It follows from theorem 7.1 that the class F can be obtained

as all transfer functions F that are given by

F=G.D+G (8.3)
uy e

yl

where D belongs to the class D of feedback realizable transfer
functions. In theorem 7.2 it was shown that D € D if and only
if D and

Z =G__D+ G (8.4)
uz ez

satisfy conditions (7.6) and (7.7).

The equalities (8.3) and (8.4) can be written

P 'Gu G,
Y| p + Y (8.5)
Z G G
uz ez
Use (8.1) to rewrite (8.5) as
\F -1 -1
= A BD + A C, (8.6)
Z
which is equivalent to
F
A = BD + C. (8.7)
Z

If A is partitioned as

A = (A1 A2) : (8.8)
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then (8.7) can be written

D

C = (B A,) + A,F. ( (8.9)

Z

Let C be the right A-structure matrix of the system S. It
follows from theorem 7.2 that D € D if and only if there is

a A-generalized polynomial matrix Y, such that

D A
= YC. (8.10)

Insert (8.10) into (8.9), then

C = (-B AZ)YC + A1F. (8.11)

It has then been shown that F € F if and only if F satisfies

(8.11) for some A-generalized polynomial matrix Y.

Let K be the left A-structure matrix of the polynomial matrix

(-B AZ)' Then there is a right A-invertible matrix K, such
that

KK = (-B A2). (8.12)
The matrix K is in fact a polynomial matrix by lemma 2.5. The
equality (8.11) can be written

C = KKYC + A1F. (8.13)
There is a A-generalized polynomial matrix K, such that

KK = I. (8.14)

Define X as

X = KY. (8.15)
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Lemma 8.1 There is a A-generalized polynomial matrix Y satis-
fying (8.13) if and only if there is a A-generalized polynomial
matrix X satisfying

AN

C = KXC + A1F. (8.16)

Proof If Y is a A-generalized polynomial matrix satisfying
(8.13), then X, given by (8.15) is a A-generalized polynomial
matrix satisfying (8.16). Conversely, if X is a A-generalized

polynomial matrix satisfying (8.16), then
Y = KX (8.17)
is a A-generalized polynomial matrix satisfying (8.13).
The following theorem has now been shown.
Theorem 8.1 Let A be partitioned as (8.8) and let % be the

left A-structure matrix of the matrix (-B A2). Then F € F if

and only if there is a A-generalized polynomial matrix X, such
that

AN

C = KXC + A1F. (8.18)
Corollary Assume that the whole disturbance vector e can be
measured, the F € F if and only if there is a A-generalized poly-

nomial matrix X, such that

C = KX + A1F. (8.19)

Theorem 8.1 can be used in the following way to check if a
given transfer fungtion FO belongs to F. Compute the matrix
c - A1F. Check if K is a left Q—divis@r ofAC - A1F. If so,
compute R such that C - A_F = KR. Check if C is a right A-di-

1
visor of R. If so, FO belongs to F otherwise it does not.

The only algorithm, that is needed to do this, is an algorithm
to check if a given left A-structure matrix is a left A-divisor

of a given A-generalized polynomial matrix.
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If F = 0 then the disturbance e does not affect vy at all.
It follows from theorem 8.1 that F = 0 belongs to F if and

only if C can be written

Ao

C = KXC (8
for some A-generalized polynomial matrix X. In fact, it follows
from lemma 2.5 that if there is such a A-generalized polynomial

matrix X, then X must be polynomial.

The problem to check if F = 0 can be obtained by state feedback

was formulated and solved in Wonham, Morse (1970). Theorem 8.1
generalizes this result to an arbitrary vector z of measured
outputs. The problem was in Wonham, Morse (1970) called the dis-

turbance localization problem.

If the disturbance e can be measured it follows from (8.19) that
F = 0 belongs to F if and only if K is a left A-divisor of C.
This problem is discussed in Bengtsson, Wonham (1976) in the

special case when the state vector can be measured.

In the following sections it will be shown how theorem 8.1 can

be used to solve certain design problems.

8.2. Pole placement

The closed loop system is by (4.28) required to be A-stable.
This implies that all F € F are A~-stable. In other words F has
all its poles in the complement of A. In addition it might be
required that the poles of F lie in a subset of the complement
of A.

Let @ be a subset of C, such that it fulfils (3.9) - (3.11l) and
2 > A. Assume that F is required to have all its poles in the
complement of @, i.e. F is required to be Q-stable. The closed

loop system is still only required to be A-stable.

.20)
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The problem to find necessary and sufficient conditions for
the existence of an i-stable F € F can be solved in the follow-

ing way.

It follows from theorem 8.1 that the problem is to find a
A-generalized polynomial matrix X and an {Q~generalized poly-
nomial matrix F, that satisfy (8.18). Observe that the set of
fi-generalized polynomials is a subset of the set of A-generalized

polynomials.

The following lemma is a straightforward generalization of
lemma 2.5. It can be proved analogously. Therefore the proof is

omitted here.

Lemma 8.2 Suppose that A < Q. Let K be a left A-structure matrix
and P be an Q-generalized polynomial matrix. If there is a A-gen-

eralized polynomial matrix R, such that

A

KR = P, (8.21)
then R is an Q-generalized polynomial matrix.
Remark The lemma is equivalent to lemma 2.5 if Q = C.
If there exist a A-stable X and an Q-stable F, which satisfy
(8.18), then it follows from lemma 8.2 and its dual version that
X must be Q-stable. Consequently, there exist a A-stable X and
an {i-stable F, satisfying (8.18), if and only if there are Q-stable
R and F, satisfying

C =KR + A F (8.22)

1

and such that R can be written
R = XC (8.23)

for some (-stable X.
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Lemma 8.3 Let L be the g.c.l.d of K and A1. Then L is square
and nonsingular and det L has no zeros in A. Furthermore, there
are {l-stable R and F satisfying (8.22) if and only if det L has

no zeros in Q.

Proof It follows from (8.12) that L is a left divisor of

(-B A2), since i is a polynomial matrix. Therefore L is a left
divisor . of A and B. Since A is square and nonsingular and L is

a left divisor of A it follows that also L is square and nonsing-
ular. Furthermore det L has no zeros in A since the system is

assumed to be A-stabilizable.

Suppose that det L has no zeros in Q. It follows from theorem 2.7
that there are polynomial matrices RO and FO, such that
L = KRO + A

1For (8.24)

Multiply (8.24) by L~ 'C from the right. This gives

c =KL 'c+arF1i . (8.25)
o 170

Then R = R L_1C and F = F L
o) o)

(8.22).

1C are both Q-stable and satisfy

Conversely, suppose that R and F are Q-stable and satisfy (8.22).
Let KO and AO be polynomial matrices, such that

=

= LK (8.26 a)
o

= LA . (8.26 Db)
o

i

1
Then it follows from (8.22) and {(8.26) that

= -1, _
Cc = L(KOR + AOF) =« L C = KOR + AOF. (8.27)

Consequently L_1

C is (-stable. If the polynomial matrices L and
C are relatively left prime, then it follows that det L has no

zexros in Q.
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Suppose Lo is a common left divisor of L and C. Then Lo is

also a common left divisor of A and (B C) since it has been
shown that L is a common left division of A and B. The polynomial
matrices A and (B C) are, however, relativeiy left prime since
8.1 is a fractional representation. Therefore Lo is unimodular

and L and C are relatively left prime.

Suppose that (R,F) is an (-stable solution to (8.22). All solu-
tions to (8.22) can then be obtained using theorem 2.11. Let
(PT QT)T be a polynomial basis for the nullspace of (K A1).

Then any Q-stable solution(R,F)can be written

R

R + PN (8.28 a)

el
I

F + ON, (8.28 b)

for some Q-stable N. It is required by (8.23) that R can be
written R = XC for some Q-stable X. Insert this into (8.28 a)

A

XC = R + PN R = -PN + XC. (8.29)

A

Here R, P and C are given and (8.29) should be solved for -stable
N and X.

It follows from theorem 2.12 that an Q-stable solution (N,X) to

(8.29) exists if and only if the two Q-generalized polynomial

matrices
P R P 0
~ and ~ (8.30)
0 ¢C 0 C

are {{—equivalent.
The results are summarized in the following theorem.

Theorem 8.2 Let A be partitioned as in (8.8) and let K be the
left A-structure matrix of (-B A

2). Furthermore let L be the
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and let (PT QT)T be a polynomial basis

g.c.l.d. of K and A1
for the nullspace of (K A1). Then there is an Q-stable F € F

if and only if the following two conditions are satisfied.
+ The polynomial det L has no zeros in Q. (8.31)

Any {-stable solution (R,F) to C = KR + A1F is such that

are {-equivalent. (8.32)

Remark 1 Observe that condition (8.31) implies, by lemma 8.3,

that an Q-stable solution (R,F) in condition (8.32) exists.

Remark 2 Observe that if the condition (8.32) is satisfied for

one solution (R,F), then it is satisfied for all solutions since
P R P R+PNA
- and ~
0 C 0 C

are {i—equivalent for all Q-stable N.

If follows from the corollary of theorem 8.1 that the case, when
the disturbance e can be measured, is obtained if 6 is substituted
by I. In this case condition (8.32) is always satisfied. Therefore
condition (8.31) is necessary and sufficient for the existence of
an {i-stable F € F in the case when e can be measured. If e cannot
be measured, then the required information about e has to be ob-
tained from the measured output z. Condition (8.32) is necessary

and sufficient for this to be possible.

Example 8.1 Consider a discrete time system. The operator A is

then given by

y = (8.33)

1
g-a’
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where g is the forward shift operator. Choose a = 0, then A

becomes equal to the backward shift operator q—1.

¢ Tx(t) = x(t-1) ' (8.34)

Let A be the closed unit disc and  the whole complex plane.
The closed loop system is thus required to be asymptotically
stable in the sense of Lyapunov and the transfer function from

e to y is required to be a polynomial matrix in q_1.

Consider the following systen

A—2 (A=2) (=2X+3) | |y A{A=2) 1
= u + e (8.35)
0 -2 z A 1
For u = 0 this system gives
-2A% + - 4 4g? - T7qg + 2
y - TR T e = 4 = e. (8.36)
49 - 29

A feedback controller from z to u will be determined such that

the transfer function from e to y becomes (-stable (i.e. a poly-

nomial in A).

“A(A=2)  (A=2) (~-2X+3) A (A=2)  =A+3) (1 1 ] ,
(-B Az) = = S
- A -2 -2 1 0 x-zJ
A ~~
= KK (8.37)

The matrix K and A1 are relatively left prime. Therefore condition
(8.31) is satisfied. Since C = 1, also condition (8.32) is satis-
fied. An Q-stable solution to C = KR + A1F is given by

0
R = { } and F = 1. (8.38)
1
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A A-stable (D,z) and Q-stable F, which solves

D F
C = (-B A4,) +AF¢=>AJ=BD+C, (8.39)
2 1
Z Z ;
is given by
(-2
D ~ 1 A2
=K R = and F = 1. (8.40)
Z A
-2

‘.A

u = De = - e (8.41

>
1
[\]

thus gives
y = Fe = e. (8.42)

A feedback realization of (8.41) can be computed with the method

in the proof of theorem 7.2. This gives
u = -z. (8.43)

Insert (8.43) into (8.35), then

J-[)

[x—z (x-2)(-x+31

0 A—2

which is equivalent to

) -7

This system is A-stable and the transfer function from e to y

0}

(8.45)

is equal to 1.
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8.3. Shortest correlation regulators for discrete time systems

The results of the previous section will be specialized in the
following way. The system is supposed to be a discrete time
system. This means that the operator u is qual to the forward

shift operator g, defined through
ax(t) = x(t+1). (8.46)

The operator ) is in chapter 3 defined through

A= (8.47)
u—a
Choose a = 0, then A becomes the backward shift operator q-1,

which has the property
a Tx(t) = x(t-1). (8.48)

The unstable region A is chosen as the closed unit disc and Q

is chosen as the whole complex plane. This means that the closed
loop system is required to be asymptotically stable in the sense
of Lyapanov and that the transfer function F from e to y is re-
quired to be a polynomial matrix in q_1.

The measured output vector z is supposed to be equal to the con-
trolled output vector y. Therefore the system S can be described
by the fractional representation

Ay = Bu + Ce (8.49)

The disturbance e is supposed to be a sequence of uncorrelated
stochastic variables with zero mean value. Furthermore C is sup-
posed to be square and nonsingular and det C has no zeros inside
the closed unit disc. This implies that the right A-structure
matrix 6 of the system S is equal to I. The question of the valid-
ity of the assumptions on the C matrix is a guestion of how a
stochastic disturbance on the output y can be modelled. If such

a disturbance can be represented as white noise, filtered through
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a square, nonsingular, stable and non-minimum phase transfer
function, then the assumptions on C are valid for stable sys-
tems S. This question will not be further discussed here. In

the scalar case it is discussed in Astrdm (1970).

Since z = y the development in section 8.1 can be simplified
in the following way. Let D belong to D and F be the desired-

transfer function from e to y. Then

1 1

F=2A 'BD+A 'C#®C = -BD + AF. (8.50)
F is the transfer function from e to y, but also from e to z,

since z = y. It must therefore be both A-stable and Q-stable,

i.e. polynomial. However, if F is polynomial, then it is also
A-stable. Since C = I it is only required that D is A-stable

for it to be feedback realizable.

Let é be the left A-structure matrix of B. It follows from
lemma 8.1 and 8.2 that there is a A-stable D and a polynomial
F, satisfying (8.50) if and only if there are polynomial X and
F, satisfying

C =§X+AF. (8.51)

From lemma 8.3 it follows that (8.51) has a polynomial solution

~

(X,F) if and only if B and A are relatively left prime.

T,T

Let (PT Q)" be a polynomial basis for the nullspace of (B A)

and let Xor F be a polynomial solution to (8.51). It follows
from theorem 2.11 that any polynomial solution (X,F) to (8.51) can

be written

X = X_ 4+ PN (8.52 a)

F=F_ + ON (8.52 b)

for some polynomial matrix N.
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The results are summarized in the following theorem.

Theorem 8.3 Let B be the left A-structure matrix of B and
let (pT

QT)T be a polynomial basis for the nullspace of
(B A). Then there exists a polynomial matrix F € F if and
only if B and A are relatively left prime. Let Fo € F be poly-

nomial. Then any polynomial matrix F € F can be written as
F=F_ + QN (8.53)
for some polynomial matrix N.

The expression (8.53) can be used to compute an F € F with desir-
able properties. Three types of "shortest correlation regulators"”

will be given. The computations will only be briefly sketched.

Type 1. The concepts of column degree and column properness
are defined in part 1 of this thesis. It is possible to find
an F, which has lowest possible column degree in each column,

in the following way.

Suppose that Q is column proper. This is no restriction because

it can always be achieved by multiplication from the right by a
unimodular matrix. Let fi be column i in Fo' If fi does not have
lowest possible degree then a linear combination (by polynomials)
of those columns in Q, which do not have higher degree than fi, is
subtracted from fi so that its degree decreases. This is repeated
until it is no longer possible to decrease the degree of fi. Then

it can be shown that fi has lowest possible degree. The same scheme
is applied to the other columns of Fo. As a result a polynomial
matrix F1 € F is obtained and every column of F1 has lowest possible

degree.

If fi is column i in F1 and ey is component i in e, then

y = F1e = f + f2e2 + ... + £f,e, . (8.54)

1€ xSk
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Let di be the column degree of fi, then fiei is a moving aver-
age of length di+1. This means that y(t) and ei(t—T) are un-
correlated if 1 > di+1. (The different components of e are sup-
posed to be uncorrelated). Furthermore this is the shortest cor-
relation between y and e that can be obtained by any controller,
since di is the lowest possible degree of column i.

o
Type 2. The columns of Q can be shown to be linearly independent
because ﬁ has linearly independent columns. Suppose that Q is
lower left triangular in the sense that the first nonzero entry
in any column and the entries above it has only entries, that
are zero, to the right. This is no restriction since it can be
achieved by multiplication from the right by a unimodular matrix.
Let di be the degree of the first nonzero entry in column i and

let m, be the number of the corresponding row.

Let F_ be a polynomial matrix in F. The first m1—1 rows of FJ

are not affected if multiples of the columns of Q are added to

the columns of FO, since the first m1—1 rows of Q are zero. Add
multiples (by polynomials) of the first column in Q to the columns
in Fo so that all entries in row m, of FO get a degree less than
d1. Repeat the procedure with the second column in Q to get a de-

gree less than d2 in row m, of Fo. This does not affect the first

2
m2—1 rows of Fo. Repeat the procedure with all the columns of Q.

The result is a matrix F1 € F which has lowest possible degree of
any row j, provided that the degree of the rows above it have been

minimized sequentially.

Consequently this controller gives a shortest possible correlation
between Y1 and e. It gives a shortest possible correlation between
Y5 and e, provided that the correlation between Y4 and e has been

minimized, and so on. Clearly this controller favours the first
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components of y. Therefore it is supposed that the components
of y are ordered so that Y1 is most important, then Y5 and so

on. m}

The controllers of types 1 and 2 can be seen as generali--
zations of the minimum variance controller for single input
single output systems in Astrom (1970). If further restrictions
are applied to the system, then a controller, which minimizes

the variance of the output y, can be obtained. Assume that

B = g %1, (8.55)

for some positive integer k. This is a severe restriction on

the system, because it means that the time delay in every path
through the system S, from any input to any output, is the same
and equal to k. Furthermore it implies that the system is minimum
phase and has at least as many inputs as outputs.

Type 3. Suppose that B = q *1. Then B and A are relatively left
prime and a polynomial Fo in F exists. Furthermore, it is easy

to see that P and Q in (8.52) are given by

P = -A , (8.56)

Q =g TI. (8.57)
Any polynomial F in F can by (8.53) be written

F=F_ + g N. (8.58)

Consequently N can be chosen such that all entries of F have a
degree less than k. This controller is in Borisson (1975) shown
to minimize the variance of yTMy, for any positively definite

constant matrix M.
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Example 8.2 Consider the system in example 7.2, i.e.

Ay = Bu + Ce (8.59)
with

1-0.2x -~0.4)
_ |

o’ ° T L o.2x  1-0.82) 800

1-0.9% 0.5A
’ B

0.5A4 1-0.2X

The system is unstable because det A has a zero inside A, but

it is A-stabilizable from u. Furthermore, det C has no zeros

in A.

For this system B = B and the matrices B and A are relatively

left prime. Therefore it follows from theorem 8.3 that there exists

a polynomial F € F. A polynomial solution to (8.51) is given by

X, = (1.1-0.2661-0.01962 -0.58~0.0041-0.005612) (8.61 a)
1-0.4A+0.05612 -0.32)+0.016A2

F_ = (8.61 b)
-0.3140.1422 1-0.6A+0.04)2

T

A polynomial basis (PT Q )T

for the nullspace of (B A) is

P =1-1.1x-0.07)%. (8.62)

-A+0.2)2
0.5)\2

A shortest correlation regulator of type 1 can be constructed in

the following way.

Add -0.28 times Q to the first column of Fo and -0.08 times Q to

the second column of Fo‘ This corresponds to a matrix
N = (-0.28 -0.08) : {(8.63)

in (8.52) and gives




284

1-0.12X -0.24)

F1 = FO + QN = (8.64 a)
-0.3A 1-0.6A

X1 = X, + PN = (0.82 + 0.042) -0.66 + 0.084)). (8.64 b)

It is not possible to further decrease the column degrees of F1.

Therefore a controller of type 1 gives F., as the transfer func-

1
tion from e to y in the closed loop system.

Furthermore, the row degrees of F1 cannot be decreased by addition
of a multiple of Q. Therefore, also a controller of type 2 will
give F1 as a transfer function from e to y.

It follows from (8.50) and (8.51) that

D = —X1, (8.65)

o>
1l

since B. Therefore a feedback realization of

u = —X1e (8.66)

is a controller of type 1 (and of type 2) for the system (8.60).
Such a feedback realization was computed in example 7.2, where
it also was confirmed that the transfer function from e to y
becomes F.. o

8.4. Disturbance rejection

Suppose that the disturbance e can be represented as the impulse

response of a dynamical system, i.e.
e = T6, (8.67)
where § is an impulse and T a rational transfer function. Disturb-

ances like steps, ramps and sinusoids can be represented in this

way. In this section a regulator, which prevents such disturbances
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from being transmitted to y, will be given. The configuration

is shown in figure 8.2.

Figure 8.2 - The closed loop system with a disturbance
generator.

The transfer function T can be written as
T =R 'M, (8.68)

where R and M are relatively left prime polynomial matrices.
Let Q@ be a subset of C, such that it fulfils (3.9) - (3.11) and
A = Q. The disturbance rejection problem is formulated as follows.

Find a causal controller R such that the transfer functions

’
from § to y and from e to ;bin figure 8.2 both are Q-stable and
such that the closed loop system in figure 8.1 is A-stable. Ob-
serve that it is not required that the total system in figure 8.2
is A-stable. The transfer function T might not be A-stable and

the controller be can do nothing to change that.

It follows from theorem 8.1 that F € F if and only if there is a
A-stable X such that

KXC + A1F, (8.69)

@]
Il

N

where K and A1 are given by (8.12) and (8.8). Let E be the trans-

fer function from § to y. Then E is given by

E = FR M (8.70)

It is required that both E and F are (-stable. This implies that

Y = FrR™| | (8.71)
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must be Q-stable, since R and M are relatively left prime. It
follows that E and F are Q-stable if and only if F can be written

as
F = YR (8.72)

for some Q-stable Y. Introducing (8.72) into (8.69) gives

AN

C = KXC + A1YR. (8.73)
It follows from (8.73) that if Y is Q-stable then ﬁxé must be
{i-stable. Lemma 8.2 and its dual version then imply that X must
be Q-stable. Consequently the disturbance rejection problem has
a solution if and only if there are Q-stable X and Y that satis-
fy (8.73).

Equation (8.73) can be rewritten if the Kronecker product is used.
Let ¢, x and y be the column vectors consisting of the column vec-

tors of C, X and Y. Then equation (8.73) can be written

A ~ X
cT ek R Al J = ¢, (8.74)
y
where & denotes the Kronecker product. Let ﬁ be the left Q-struct=-
ure matrix of [ClmR RTEA1]. Then there is a right Q-invertible
matrix i, such that
IL = [ akK R aal. (8.75)

It can be shown as in lemma 8.1 that there are Q-stable x and vy,

satisfying 8.51 if and only if there is an Q-stable m, satisfying
Im = c,. (8.76)

It follows from lemma 2.5 that if there is an Q~-stable m, satis-

fying (8.76), then m is a polynomial vector.

The results are summarized in the following theorem.
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Theorem 8.4 Let the disturbance e be the impulse response of
1M and let A be partitioned

a system with transfer function T = R
as in (8.8). Furthermore, let % be the left A-structure matrix of
(-B AZ) and let £ be the left Q-structure matrix of (aTmﬁ RTEA1).
Finally, let c be the column vector of columns in C. Then the dis-
turbance rejection problem has a solution if and only if one of

the following two equivalent conditions is satisfied.

(1) There exist Q-stable X and Y satisfying

FaSVAN

C = KXC + A1YR. (8.77)

(ii) There exists a polynomial vector m, satisfying
Im = c, (8.78)
i.e. L is a left divisor of c.

It was pointed out previously that the controller be in figure

8.2 does not (-stabilize the system T. It only makes the unstable
modes of T unobservable from y. This is done in the following way.
If, for instance, e is a ramp, then the controller be generates

a ramp, which annihilates the effect of the ramp e. In other words,

the controller be contains a model of the system T, that generates

the disturbance. In Bengtsson (1977a) it is shown that such an intern-

al model must always be present in order to annihilate the effect

of the disturbance.

Example 8.3 Consider the discrete time system

1 1 ) (y 1 1
= u + e, (8.79)
0 1T+20) {2z A (1=-2X)*

where )\ = q—1, the backward shift operator, and let A and { both

be the closed unit disc.
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The system is unstable and has a non-minimum phase behaviour in
the transmission from e to z. Assume that it is required that a
feedback from z to u should be determined such that step disturb-

1

ances are not transmitted from e to y.
A step disturbance can be described as

: j1, t = 0
e = —— §, § = A (8.80)
%o,t¢o

With the notation of this section it is found that

R = (1-}) M =1 C = (1-2))2 (8.81 a)
1 ( 1
A1 = A2 = (8.81 b)
0 [1+2x
-1 1 ~
(-B A2) = = K. (8.81 c)
-x 1422
Equation (8.77) becomes
B -1 1 X, 1
= (1=-2))% + Y(1=X), (8.82)
(1-2))2 - A 1+2X0 X2 0
which is equivalent to
1 —(1-20)2 (=202 1=a)1%9
= X2 . (8.83)
1 - 1+2X 0 v

This equation has the following solution

X1 1=2A
Xyl = [1-2 . (8.84)
Y 1+4)2
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It follows from (8.9) and (8.77) that the feedforward controller

u = De (8.85)
is given by

D = X16 = (1-2))° (8.86)

since K = (-B Az).

A feedback realization of (8.85) - (8.86) is given by

u = z (8.87)

e (1-2)u = (1-2))z. (8.88)
The closed loop system is described by equations (8.79) and
(8.88), which can be written

1 1 1 1 I

0 T+2A A z = | (1=-2))% |e. (8.89)

0 1-2A 1-2J |=-uf 0

The determinant of the matrix in the left member of (8.89) is

equal to 1. Therefore the closed loop system is A-stable.
The transfer function from e to y is
y = (1+4X%) (1=-M)e. (8.90)

This transfer function makes the step disturbance unobservable
from y. Insert (8.80) into (8.90), then

y = (1+4)?)8. (8.91)

The feedback controller (8.87) thus has the desired properties.
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Observe that the controller (8.87) includes an integrator and
that it is an integrator that generates the disturbance in
(8.80). The controller thus includes a model of the system, that
generates the disturbance. This "internal model" creates an input,
which annihilates the effect of the disturbance on the output y.

m}

8.5. Decoupling

In this section necessary and sufficient conditions for the existence
of a diagonal F € F will be given. The problem is solved only in

the case when either the disturbance or the state can be measured.

If e can be measured then 8 = I and if the measured output z is

the state of the system then 6 = AI. In both cases eguation (8.18)

can be written

C = RX + AF, (8.92)
where

R = K (8.93)
if 6 = I and

R = AK (8.94)
if 6 = AI. In both cases ﬁ is a left A-structure matrix.

Assume that F is diagonal
F = diag (f1, .eny fk). (8.95)

Let c. X.
i’ i

be written

and a; be column i in C, X and A1. Then (8.92) can

c, = in + aifi, i=1, ..., k. (8.96)
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Consequently the decoupling problem has a solution if and only

if there are A-stable X and fi satisfying (8.96) for i =1,..., k.
Let Ri be the left A-structure matrix of (R’ ai). Then it can be
shown as in section 8.4 that there are A-stable solutions Xy fi

to (8.96) if and only if there are polynomial vectors m; satis-

fying

Q
1t
o
=
"
1l

1, «.., k. (8.97)

The following theorem has been shown.

Theorem 8.? Let a; and <y be the i:th column vectors of A1 and
C and let 5 beAthe left A-structure matrix of (-B AZ)' Eurthfr—
more, let R = K, if the disturbance can be measured, or R = JK,

if the state caE be measured. Finally, let ﬁi be the left A-struct-
ure matrix of (R ai). Then there exists a diagonal F € F if and

only if there are polynomial vectors {mi}, satisfying

¢y = Rimi’ i=1, «.., k, (8.98)

where k is the number of components in e (and in y).
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S. A DESIGN EXAMPLE

The design method described in chapters 5 - 8 will be applied

to a continuous time system S characterized by

y = G*(p)w, (9.1)
where
1 2
p+1 p+3
G*(p) = . (9.2)
1 1
p+1 p+1
This system was, in Rosenbrock (1966), taken as an example of

a system that presents control difficulties due to non-minimum
phase behaviour. The system has a zero in the right half of the
complex plane. In examples 5.1 and 5.5 the left A-structure

matrix for this system was calculated and it was shown what can

be done with feedforward control.

9.1. The control requirements

The controlled output y is equal to the measured output z and
it is assumed that a nonmeasurable disturbance e is added to

the input. The control configuration is shown in figure 9.1.

Y R |

Figure 9.1. The control configuration.

The control problem is to find linear controllers R and R

fb ££7

such that the following requirements are fulfilled.
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The transfer function from ur to y should be diagonal. (9.3)

A step disturbance e should give no steady state error in
- the output y. ' (9.4)

The closed loop system should be asymptotically stable in

the sense of Lyapunov. (9.5)

Requirement (9.5) implies that the unstable region A* should
be chosen as the closed right half of the complex plane. Choose

A as

_ 1
A= o+ - (9.6)

This gives an unstable region A, which is the closed disc with

radius % and centre at % (see example 5.1). Furthermore Q = A.

A fractional representation for the system S is given by

Ay = Bu + Ce, (9.7)
where
1=22 0 T+A 2=2A
A = and B =C = A . (9.8)
0 1=X 1 1

The right A-structure matrix C of the system is equal to C.

The determinant of C is A? (3A-1), which has a zero at A = %.
This means that the disturbance e itself cannot be obtained from
measurements of y. Only e, filtered through a non-minimum phase

system, can be obtained.
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9.2. The feedback controller

The step disturbance e can be described as an integrated

¢

impulse, i.e.

e = R_1M6, (9.10)

where

1=-2x 0
R = ' M =

0 1-2X

A 0
(9.11)

and § is a dirac pulse.

Let F be the transfer function from e to y and D the transfer

function from e to u in the closed loop system. Then
AF = BD + C. (9.12)

It follows from theorem 7.2 that D is feedback realizable if

and only if there are A-stable X and Y1, such that
D = XC (9.13)
F = Y1C. (9.14)

It was shown in section 8.4 that the requirement (9.4) can be

fulfilled if and only if there is a A-stable Y2, such that

2R. (9.15)

Since R commutes with any matrix the requirements (9.14) and
(9.15) are fulfilled if and only if there is a A-stable Yo’ such
that

F = Y _RC. (9.16)




295

Insert (9.13) and (9.16) into (9.12). Then

C = -BXC + AYORC, (9.17)
which is equivalent to

I = -BX + AYOR (9.18)
because C = C and C has linearly independent rows. There are
A-stable X and Yo’ satisfying (9.18), if and only if there are
A-stable X and Y satisfying

I = -BX + RY, (9.19)

since R commutes with any matrix and det A has no zeros in A.

A solution to (9.19) is given by

-7+6X 6-4) 1 -4\
and Y = . (9.20)

4.5+3% =5=2) -4.5) 1+3X

A feedback realization of (9.13) is obtained as in the proof

of theorem 7.2, i.e.

RYE = Ay (9.21 a)

u = XE. (9.21 b)

According to theorem 6.1 the input v should be determined so
that the left A-structure matrix of the system is preserved.

A general method is given in theorem 6.1. It is shown below that
the left A-structure matrix is preserved, in this case, if v is

applied in the following way.

RYZ = Ay + v (9.22 a)

u = Xg&, (9.22 b)
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The transfer function from v to y in the closed loop system

then becomes

. '
Gyy = A BX. (9.23)

The right A-structure matrix of GVy is equal to the right

A-structure matrix of

G = a g, (9.24)

since det X has no zeros in A. Consequently, the right

A-structure matrix is preserved if v is applied as in (9.22).

A state space representation of (9.22) is given by

0 0 0 0 1 0 1 0
0 1 0 0 0 4 0 4
Xx=]0 14 -4 0 -12| x + | 17 =24 y + [18  =20| v (9.25 a)
0 0 0 0 1 0 1 0 1
0 4.5 0 0 -5 4.5 -4 4.5 =3
-8 =7 0 8 6 -7 6 -7 6]
u = X + y + V. (9.25 b)
8 2.5 0 -12 -5 2.5 =5 2.5 —5J

9.3. The feedforward controller

It was shown in example 5.5 that diagonal transfer functions

from u, to y of the form

a p-1 0
. m(p)
H* = (9.26)
p-1
0 b n(p)

can be obtained. Here m(p) and n(p) are polynomials of degree 2
and with zeros in the open left half plane.
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Two choices of H* will be examined. The first choice is

—p+1

% p? +p+1 0 i
H1 = . (9.27)
-p+1
0 p? +p+1

The diagonal entries both have a steady state gain equal to 1

and a pole-zero configuration as is shown in figure 9.2.

Alm

N
e

Figure 9.2. The pole-zero configuration of the diagonal
entries of H?.

The corresponding transfer function, expressed in A, is given

~-1+3)

T=33+30.2 0
H, = i (9.28)
0 ~1+3)
T=33+3°

The equation

K (9.29)

Gvy 1 = H

1l
where GVy is given by (9.23), has a unique solution K since
G is square and has full rank. The solution is

vy

K. = DN

1 1 71! (9.30)
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where
_ _ 24 |2 4-8X
D, = (1=3A+X )[O —10412) (9.31)
_ | (1=x%) (1=3%) 0
Ny = [(1—x2)(-2.25+4.sx) 1-2 (9.32)
A state space representation of (9.30) is given by
[0 1 0 0 0 0 ) -0.090  0.240)
0 1 0 0 0 -0.578 =0.392
% = -2 -3 =3 1.6 1.6 1.6 < + 0.562 0.114 u, (9.33 a)
0 0 1 0 0.495 =-0.320
0 1 -0.621 -0.044
0 0 0 -0.8 -1.8 -1.8 0.047 0.335 |
_ {17 0 0 0 0 O 0.05 0.2
V=0 0 0 1 0 o]x * [0.225 ~0.1) % (9.33 b)
The second choice of H*-matrix is
3(=p+1) 0
* (p+1) (p+3)
H, = . 3 (=p+1) . (9.34)

(p+1) (p+3)

The diagonal entries have a steady state gain equal to 1. The
* *
fact that H2 has the same poles as the transfer function Gvy

from v to y makes it possible to find a feedforward controller

of lower order.

The corresponding transfer function, expressed in ), is given by

3(-1+3)) 0
1~-22

Hy =2 . 3(=1+3)) | (9.35)

1-x2

[ |



The solution K2

is
where

_ (2
Dy = [o

N2 = 3

A state space fepresentation of (9.37) is given by

g

-2.4

(3 0 o
Vo= [o 3 o]x

to

4-82

1-3A
-2

1 X +
-3.8

0.15
* [0.675

9.4, Simulations

The system S has the following state space representation

(1+A)(—10+12A)J

0
(1+1) (=2.25+4.5)) 1}

-0.240
-0.180
0.144

0.6
—O.3Jur‘

OO =
D=2 O

-0.360
-0.020
-0.084

}w

299

(9.36)

(9.37)

(9.38)

(9.39)

(9.40 a)

(9.40 b)

(9.41 a)

(9.41 b)




1.

0.

3.

g.

3.

-6,

Viiy
>0&

~
:\/ .

The closed loop system in figure 9.1 was simulated with (9.25)
as be and (9.33) as Rff. Figure 9.3 shows the output y and
control input u when a unit step in U is applied at time

t = 0 and a unit step in u_., is applied at t = 10. The disturb-

r2
ance e is zero.

Yy

0. 3, 10. 13, 20.

Figure 9.3. The output y and control input u, corresponding
to step changes in the reference input u_. R
. . r ff
is given by (9.33).

The system is completely decoupled. The non-minimum phase be-

haviour is due to the unavoidable zero at the point 1.

Figure 9.4 shows the corresponding responses with the feedforward

controller Rff given by (9.40).
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1,

0.

L L] L ] ] | ] g L

0. J. 10. 15, 20,

Figure 9.4. The output y and control input u, corresponding
to step changes in the reference input u_. R
, . r ff
is given by (9.40).

Even in this case the decoupling is complete. There is no over-
shoot, but the undershoot is larger. This feedforward controller

is probably preferable because of its simplicity.

In figure 9.5 the output y and control input u are shown when a

unit step in the disturbance e, is applied at t = 0 and a unit

1

step in e, at t = 10. The reference input u,. is zero.
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1t
0- \.::_-;:-—»yz d &C_’;:YZ;—'
9.
e._\(r Y
-30 . :
0. ' 3. ' 10, 19, ' 20,

Figure 9.5. The output y and control input u, corresponding
to step changes in the disturbance e.

There is no steady state error in y and the deviation from zero

is small.

9.5. Robustness

The sensitivity to parameter changes in the system S was tested

in the following way. The system (9.41) was substituted by the

system
=-0.5 0 0 1.5 0
X = 0 -2 0] x + 0 1.1 w (9.42 a)
0 0 -6 2.3

_ |1 0 1
y = {1 1 OJX' (9.42 b)
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As in section 9.4 the closed loop system was simulated with a
unit step in u,.q at t=0 and in u_, at t=10. The disturbance e
was zero. The result when the controller Rff is given by (9.33)

is shown in figure 9.6.

1o

0.

0. 3. 10, 19, 20.

Figure 9.6. The output y and control input u, corresponding
to step changes in the reference input u,. Rff
is given by (9.33).

The corresponding result when the feedforward controller Reg is
given by (9.40) is shown in figure 9.7.
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' 8 )
) y.
g. !
‘10 o
3.
o Uy
0. _
"3.
N u
-6, | g
0. ' 3. T 0, ' 19, ' 20,

Figure 9.7. The output y and control input u, corresponding
to step changes in the reference input u_. R
: . r ff
is given by (9.40).

The system is no longer completely decoupled, but in steady state

it is decoupled for both feedforward controllers.

In figure 9.8 a unit step is applied in the disturbance e, at

1
t = 0 and in e, at t = 10. The reference input u,. is zero.
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o

0. 2 -
\& — S

T = T | | ' ¥

0. 3. 10. 18, 20.

Figure 9.8. The output y and control input u, corresponding
to step changes in the disturbance e.

Even in this case there is no steady state error in the output y

and the deviation from zero is small.
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