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Preface

Preface

Machines that perform hard or boring work have interested me ever
since I was a boy and had to help my parents on our farm. I was more
interested in mathematics physics, and machines. During the end -70’s,
I got acquainted with computers and control. That opened a new and
very interesting world for me. When I finished my studies for a master’s
degree in mechanical engineering, I was still very interested in helpful
(intelligent) machines. It was therefore an easy choice where to apply for
a job: ASEA Robotics.

When I came to ASEA (later ABB) in 1982, Robotics was a new and
progressive division which was managed more like a small company. At
that time, the demands on profitability were not severe. The primary goal
was to make good robot systems. Market share and company size therefore
grew rapidly. For me it was six years of stimulating control engineering
together with very good friends/colleagues.

The control engineering work ranged from tuning of joint servos
to overall system design. When more than thousand, instead of a few
hundreds, of robots were manufactured, profitability and cost efficiency for
present major applications were getting increasingly important. That was
of course a correct policy, but customers with good but unforeseen ideas
about how to use robots, too often could not accomplish the control. To start
with I was most interested in feedback control theory, but later it became
clear to me that the structure of the control system was of key importance
for the development of intelligent machines. Published research results
were, however, not quite useful because important industrial aspects were
overlooked. To do research in this direction, we moved back to Lund where
I got the opportunity to do a PhD at the Department of Automatic Control.

Research within automatic control almost always treats well defined
problems well suited for formal methods. It has therefore not been easy
to tackle a problem that does not fit into this pattern. I hope control re-
searchers do not get too disappointed when they do not find their favorite
equations in this thesis. My work has been problem oriented. The subject
and the developed solutions are closely related to computer science and
production engineering, but the interplay between robot programming and
feedback control is of key importance.

It is now a great pleasure for me to complete this thesis, and I very
much hope that ideas presented here will contribute to systems that better
can perform work that is unfriendly to humans.
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About the thesis
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to 8 present the contributions which also have been published according
to next page.
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The software architecture proposed in Chapter 4 and two of the
application examples presented in Chapter 8 have been presented in

K. NILSSON AND L. NIELSEN. “An architecture for application ori-
ented robot programming.” In IEEE International Conference on
Robotics and Automation, Nice, France, 1992.

Part of Chapter 5 treats software techniques for special purpose hardware.
This was presented in

K. NILSSON. “Object oriented DSP programming.” In Proceedings
of The Fourth International Conference on Signal Processing Ap-
plications & Technology, DSP Associates, Santa Clara, CA, 1993.

which was judged as one of the best papers, and therefore also published
in a condensed form in

K. NILSSON. “DSPs moving up to object-oriented programs.” Elec-
tronic Engineering Times, September, 1993.

Real-time and control aspects of such hardware are also mentioned in
Chapter 5 and presented in

K. NILSSON. “Software for embedded DSPs.” In Proceedings from
The American Control Conference, 1994. Invited Paper.

The ideas about how open embedded control (Chapter 7) can be utilized
in robot programming were presented in

K. NILSSON AND L. NIELSEN. “On the programming and control of
industrial robots.” In International Workshop on Mechatronical
Computer Systems for Perception and Action, Halmstad, Sweden,
1993.

whereas the thorough description of the software technique, as presented
in Chapter 7, hopefully will appear in

K. NILSSON, A. BLOMDELL, AND O. LAURIN. “Open embedded con-
trol.” Submitted to: Real-Time Systems – The international jour-
nal of time critical computing, 1996.

Apart from the control structure part of Chapter 6 which would benefit
from a more thorough control analysis, remaining parts of the thesis
should be ready to be written and presented as scientific papers. Most
important is Chapter 3 about end-user robot programming, but also the
robot reconfiguration part of Chapter 5 and the control engineering part
of Chapter 6 contain novel ideas. These contributions have not yet been
submitted for publication.
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Introduction

Making machines programmable has been very beneficial in industrial
production systems. The programmability is normally achieved by con-
trolling the equipment from a computer which also provides a user in-
terface for operation, configuration, and programming. Typical examples
are NC machines, industrial robots, fixtures, transporting equipment, etc.
The use of computer control to achieve flexibility implies that software is-
sues for embedded control systems are central for the applicability and
utilization of the equipment.

Industrial robots are distinguished from other types of machinery
mainly on the basis of their programmability and adaptability to dif-
ferent tasks. Robots are therefore probably the most demanding type of
equipment concerning the software and control aspects. This thesis treats
software issues for embedded robot control systems, with the aim to im-
prove applicability of industrial robots and hopefully also for other types
of manufacturing equipment. There is also a desire to handle more com-
plex situations since it is likely that future applications will demand even
more flexible systems. Apart from flexibility there is also a strong de-
mand for efficiency since performance of the robot system is often related
to productivity.

Improved performance has been the primary goal in the still very
active research field of robot control. Despite many advanced algorithms
that have been developed [59, 193, 109, 45, 136], only relatively simple so-
lutions have been successfully used in real industrial products and appli-
cations [59, 136]. There are several reasons for this. Problems concerning
the numerical properties, the computing efficiency, and the need to tailor
text-book algorithms for practical use is well known [140, 29, 71, 163].
However, less attention has been paid to the interplay between the algo-
rithm and the system, particularly considering real-time implementation
and industrial aspects of end-user programming.
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Chapter 1. Introduction

To simplify robot programming, a common approach is to increase
the level of abstraction. In today’s standard applications this is done to a
limited extent to reduce the (expensive) programming of the robot [181].
A typical research aim is fully automatic robot programming or task level
programming, see for instance [59] and any robot conference. However,
also in this case very few research results have been applied in practice.
The complexity of the problem, especially when confronted with industrial
constraints, is the main reason for this.

The development towards improved performance and ease of use will
be further pursued in this thesis, considering that superior manufacturing
practices require appropriate possibilities for man-machine interaction.
Motivated by the presence of feedback in manufacturing systems, the
approach taken is influenced by principles of automatic control. As for
many other types of dynamic systems, robustness and performance can be
improved by introducing new (local) feedback loops. Two types of feedback
are of special interest:

• The factory floor operator observing the actual production result
should be able to adjust robot programs in an appropriate way. The
purpose is improved factory floor operation.

• New (application specific) control loops should be possible to introduce
in the motion control system, considering typical industrial demands.
The purpose is to improve applicability and/or performance.

To achieve the main goals, a number of related problems concerning design
and implementation of embedded control systems have been encountered.

• Structuring and implementation principles for control algorithms.

• Real-time programming of open, layered, and embedded systems.

• Control engineering of distributed embedded systems.

These problems are also major topics, and they are likely to be useful also
for other types of embedded control systems.

This thesis takes a problem oriented approach. It includes a discus-
sion of real industrial problems. Solutions to these problems are the major
topics, but the problem formulations are in some cases (like the industrial
application examples) contributions in themselves. There is also emphasis
on a software architecture, called the Open Robot Control (ORC) archi-
tecture. The purpose of a software architecture is usually to organize the
software in such a way that the implementors of the system can cope with
the complexity and reuse of software [81, 188, 186, 13, 133, 168, 70]. The
design of ORC [150], on the other hand, is based on user views (related
to use cases [96]). The primary purpose is to support different types of
programmers and operators by providing suitable layers of programming.

2



Outline of the thesis

Chapter 2 about manufacturing systems will give a more extensive intro-
duction and put the aim of the research into a broader perspective. Robot
programming on a standard user level is then treated in Chapter 3. A
fundamental idea is to view robot programming as a control problem. The
process output is the production result and that is influenced by modifi-
cations of the robot programs. The proposed solution includes a revised
handling of world models [135, 81, 59] (related to the blocks world within
artificial intelligence [166]). Furthermore, the proposed representation of
robot programs uses syntax trees in an extended way as compared to com-
piler technology [12]. This exemplifies how control system technology can
gain from computer science and software technology, which has been a
source of inspiration for technical solutions throughout this work.

Relations to so called intelligent robots and task level programming
is treated in Chapter 4. A basic idea is that high level planning systems
should deal with robust unit operations created by experienced robot pro-
grammers. This means that low level effects such as friction and toler-
ances are taken care of in these unit operations. That simplifies the high
level planning problem.

An experimental platform has been developed to verify the proposed
solutions. Chapter 5 presents the platform. It is built around commer-
cially available robots. The original control systems have been replaced
by new open controllers. Implementation of embedded controllers on mul-
tiprocessor hardware, with severe demands on efficiency, require special
solutions which are presented in Chapter 6. Making use of those princi-
ples, design and implementation of robot motion control are then treated
in Chapter 7. The proposed control implementation is layered and open.

Examples in Chapter 8 show some demanding applications which can
be better solved using alternative low-level motion primitives. It should
be possible for an advanced user to introduce such new primitives in the
embedded control system. How to do this, and how the applications can be
solved, are major topics in Chapter 8. Some conclusions and a summary
of the contributions are finally presented in Chapter 9.

3



2

Preliminaries

Problems within manufacturing and production systems span a wide
range from servo control of individual machine tool motors and up to
overall control of large scale production facilities. Solving such problems
often requires competence from quite different fields ranging from feed-
back control theory to management and personnel policy. Depending on
background and circumstances, engineers consider different problems and
solutions important and relevant.

This thesis treats problems related to programming and control of
very flexible production devices, such as industrial robots. The purpose
of this chapter is to give an industrial perspective, and to describe some
important problems in control and software technology with relevance to
manufacturing systems. We try to merge two points of view; manufactur-
ing systems in general, and control system aspects that are fundamental
to the thesis.

2.1 The importance of manufacturing systems

Meerkov [128] clearly described the importance of manufacturing. One of
the conclusions is that “To live well the nation should manufacture well”.
The background is that wealth could be either grown, mined, or manu-
factured. Growing and mining can not alone provide sufficient wealth for
industrialized west world economies. That implies that manufacturing is
important.

Experiences from last decades show that manufacturing has been
much more successful in Japan than in Europe and Northern America.
This is sometimes explained by “lack of automation” outside Japan. Sev-
eral facts indicates, however, that this is not the explanation. For example,
the “Lowest in automation Japanese plant is 70% more efficient than the
most automated plant in the world”. Still, many facts show that automa-
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2.2 Industrial robots

tion is very important, but case studies show that it has to be done in a
proper way, and to a suitable extent.

In addition to a suitable degree of automation, products should be
designed for production in general and for automation in particular. Even
if the product design is very important for the productivity, it can be copied
more easily than production systems involving humans with certain skills
and cultural background. Trying to explain the Japanese success, this
instead indicates the importance of good factory practices.

The term “factory practices” means rules and habits of manufactur-
ing process operation and control. A striking example is the electronics
industry. The three most successful new products of the last 20 years are
the video cassette recorder, the fax, and the CD-player. They were all in-
vented and designed in the West. Today, except for one Philips factory
in Austria, all are produced in the Far East. The explanation is superior
manufacturing practices.

Another term for factory practices is control of manufacturing pro-
cesses. Control is here in the sense of process operation, which indicates
the need for research on the large scale aspects of manufacturing, using
system-theoretical and other approaches. There is, however, also another
interpretation which is the basis for this thesis. There are a number of
demands from the production system on the manufacturing equipment,
concerning flexibility, efficiency, etc. Furthermore, in order to achieve su-
perior factory practices, it is necessary that workers, operators, and engi-
neers can interact with the equipment in an efficient way.

2.2 Industrial robots

An industrial robot as such is basically not dedicated for a particular task
or application (even if some types of robots are preferably used in certain
applications). That distinguishes robots from other types of machinery.
Originally, however, the individual joints of a robot were commanded
and controlled as for any other multi-axes servo-controlled machine. This
means that motions were specified numerically by sequences of simple
motion commands. Interpretation of these commands results in calls to
move-procedures provided by an interface to the servo control algorithm,
which controls the physical system via sensors and actuators, as shown
in Figure 2.1. This means that rudimentary robot control is similar to
standard servo control, and is easily incorporated into any of today’s
programmable control systems.

To make robots more useful, the development during the last 20 years
has resulted in more sophisticated specification of motions, both in terms
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Chapter 2. Preliminaries

Interface

Control

ActuatorsSensors

Motion specification

Physical system

Figure 2.1 Basic components of motion control.

of how motions and computations are specified/programmed, and in terms
of the tools used for the programming. For example, the abstraction level
and ease of use of the system were increased by having a kinematic model
of the robot built into the control system, and special programming tools
and languages were developed to aid the robot programmer [41]. Robot
programming was still manipulator oriented, i.e. the manipulator motions
were specified rather than the task to be performed.

A recent trend has been to include more knowledge about the physical
system into the controller. For the control algorithms, this means that dy-
namic models are utilized in order to improve performance. Performance
demands come from required utilization of the relatively expensive me-
chanical part of the system. The interface (see Figure 2.1) models the
physical environment on some level, just like a reference signal to a sim-
ple control loop can be viewed as a model of the controlled output. The
development for the interface and for the motion description has aimed
at an increased level of abstraction to make robots easier to use.

One example is motion commands specified as relations to the objects
being manipulated [81, 181]. Another example is application specific task-
level programming, allowing the programmer to specify motions (or on-
line adjustments of motions) in terms of production data that he/she is
used to, like arc-welding parameters [49] etc.

Clearly, the development of advanced robot control systems has made
them quite different from, and in practice incompatible with, PLC systems
and NC machine controllers.

2.3 Large-scale versus small-scale pr oduction

Hierarchical decomposition into smaller subsystems are used in large pro-
duction facilities to make the plant more manageable. Such decomposition

6



2.3 Large-scale versus small-scale production

should be made in such a way that the subsystems are as independently
operational as possible to provide robustness, but at the same time to-
tal cost efficiency must be achieved. The aim for independent subsystems
leads to large-sized buffers for materials and components, and to machines
that are not shared between different products. Aiming at cost efficiency
typically means the opposite. To make proper trade-offs between these
contradictory demands is called “production planning and management”.
This is not explicitly treated here, but we will see how the manufacturing
organization influences the desired properties of the local equipment.

Figure 2.2 shows an example of a hierarchical organization for a
larger manufacturing system. Such a facility has (not shown in the figure)
central engineering departments for product design, production planning,
and production operation. Computer networks are widely used to connect
machines, work cells, and the central engineering facilities. Now, consider
the local robot equipment. It should be clear that a powerful host computer
interface for both programming and supervision is essential to achieve
Computer Integrated Manufacturing (CIM). On the other hand, perhaps
a too centralized approach is not the best solution.

Painting shop Machining shop

Milling

Assembly shop

Factory

Drilling Grinding

ConveyerInput buffer Milling machine Robot

Figure 2.2 Hierarchical levels in a large scale production facility.

If we look at a sample small mechanical workshop, there will be
other demands on the (local) equipment. The production planning and
operation is probably not computerized, and a machine such as a robot is
typically used as a stand-alone system which is programmed and operated
directly on the workshop floor. Furthermore, the local operator has a good
overview of the production, and he/she knows how to adjust the equipment
to obtain the desired production result. This means that there will be a
very short turn-around time from a detected production problem until it
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Chapter 2. Preliminaries

is taken care of. Such an approach has turned out to be very beneficial
also in larger production facilities. Figure 2.3 exemplifies that, but the
situation shown in the picture is also typical for smaller workshops.

Figure 2.3 Robot operator/programmer at Volvo, Sweden, doing on-line
changes of robot motions for gear-box assembly, using ABB Irb-3000 robot
systems. (With permission from ABB and Volvo.)

In the small workshop case, it turns out that the preferable robot
operator interface is quite different from the one mentioned above for
central engineering in the large-scale case. It is of course desirable to
combine the benefits of small-scale and large-scale production systems.
For instance, rapid adjustment of the production process should not dete-
riorate the consistency between the local robot program and the central
engineering databases. It should be clear to the reader that such a combi-
nation puts some not easily combined requirements on the robot system.
One reason for this is the differences in preferable programming method-
ology depending on application, type of user, etc. A new approach based
on multiple representations of robot programs will therefore be developed
in the next chapter.

8



2.4 Robot programs

2.4 Robot programs

So far we have only dealt with (different types of) end-user programming
of robots, but what does robot programs look like? To clarify that for the
reader not exposed to robot programming, a few comments will be given
in this section. Since a robot program contains the specifications how the
robot should move, procedures for motion control will of course be used
(i.e., the ‘interface’ in Figure 2.1 will be accessed). Such procedures have
been implemented as part of the system programming, typically done by
the robot manufacturer. A high level of abstraction is often preferable
in end-user programming, but a low level of abstraction is used here for
clarity. Abstract actions will be converted to concrete ones anyway.

The pieces of robot program code appearing in this chapter are sup-
posed to be written by an ordinary robot programmer. The code is then
executed in the robot controller, typically by an interpreter. The require-
ments on the compiled procedure called by the interpreter is the topic
in the examples. Early languages used in simple applications resembled
BASIC. To deal with more complex situations, more structured (Pascal-
like) languages were introduced. The first such language appears to be
AL [135], in which computations are programmed in a Pascal-like syntax,
but motions are requested with ‘move’ statements. Rather than having a
procedure MOVE with formal parameters, MOVE (and other types of motion
instructions) is a reserved identifier and parameters are specified with
predefined attributes belonging to the MOVE instruction. For example, a
grinding motion may be expressed as (identifiers written with capitals
are reserved names):

MOVE grinder TO right_edge

WITH SPEED=0.15*mps

WITH FORCE=MyForce1

Thus, programs for simple tasks with no or little computing involved are
quite readable, also for the user with limited experience from computer
programming. The syntax of the language used is of minor importance
in the thesis. A syntax similar to the most common robot programming
languages [41, 118, 6] is therefore used.

Sensor inputs affect robot motions in four different ways [118]:
1. Initiating and terminating motions.

2. Choosing among alternative actions.

3. Obtaining the identity and position of objects and features of objects.

4. Complying to external constraints.

The first three of these are simpler to handle because they map well
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on conventional programming of computers and process control systems.
The fourth type of sensory interaction is used when motions are contin-
uously adjusted based on sensor inputs. Opposed to Items 1 to 3 which
more have to do with event handling and reactive systems [76], Item 4
requires feedback control [29, 193] Typical examples are combined posi-
tion/force control using a force/torque sensor mounted on the robot wrist,
or seam-tracking during arc-welding using a laser scanner. A straightfor-
ward solution would of course be to specify the application-specific motion
control strategy directly on the end-user level. However, there are effi-
ciency, complexity/simplicity, and safety reasons for not doing so. Instead,
implementation of such sensor based motion control strategies used to be
completely done by the system programmer [118]. Therefore, such appli-
cations put special demands on the control system.

2.5 Special applications

Contemporary systems usually allow customer specific sensors to be in-
stalled, either direct via standard IO ports, or by installing a device driver
for more advanced sensors. So called open control systems [150] may even
allow replacement of specific control modules [70], but is that enough? The
following example shows that the answer is no.

Industrial example – Deburring of castings

Figure 2.4 shows a typical example of a casting. Consider the upper
circular edge in the figure, i.e., it should be circular but remaining burrs
from the sand-casting process make it look different. Those burrs have
to be removed, either by machining or manually using a grinding tool.
Figure 2.5 shows the profile in more detail.

Removal of the burrs, so called deburring or cleaning of the casting,
is a task that is preferably performed by flexible machines such as in-
dustrial robots. That is because the task is monotonous, and there are
unhealthy vibrations and air pollution. However, automatic deburring is
feasible only in simple cases today. Specific problems are to make the
robot recognize where additional grinding is required and, if so, to pro-
gram suitable deburring motions. More specifically, we can think of the
following strategies:

• The burrs can be cut off. Such a process is, however, often too slow
and the position of the profile to clean must be known rather precisely.
That is typically not the case due to casting tolerances.
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Figure 2.4 Valve housing from Flygt, Sweden, with burrs remaining from
the sand casting. The height of the piece is approximately 170 mm.

• A grinding tool can be moved with position control along a nominal
profile, and with force control in a direction normal to the path. The
force control entails a compliant motion [193] which avoids problems
with casting tolerances, but exceptional places with much material
may remain, for example due to the large bulge shown in Figure 2.5.

• Sensors like cameras and laser scanners can be used to overcome the
problems with the two previous alternatives. Still, there are problems
with sensor technology and feature detection, cost, complexity, and
with programming of the grinding strategy.

The first two alternatives make use of the third type of sensing accord-
ing to the previous section. Considering needs for production speed and
efficiency, type 4 sensing and ’continuous’ (in a practical sense) feedback
control during the grinding process would be attractive. That is to adjust
grinding speed etc. during operation to obtain optimal productivity and
quality. Vision systems are hard to use because the grinding equipment
will be part of the picture and it will partly hide the work piece. Special
purpose sensing is therefore needed.
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Figure 2.5 The profile of an edge on a casting. The contour to be grinded is
marked with a solid line.

External sensors are sometimes necessary, but they have drawbacks
since they cost, fail, complicate the installation, etc. A basic idea in this
work is to have a system that makes it possible and convenient to use
information already existing in the system, which, however, is not possible
in today’s commercially available motion control systems. This can often
eliminate the need for additional sensors, i.e., a variable in the software
comprises the sensor signal. In this case the position error in the force
control direction would be very useful since that will contain a recording
of the actual contour after grinding.

Assuming that we can solve the sensing problem so we get informa-
tion about (remaining) burr size etc., we could utilize knowledge about
the grinding process [137] to plan and compute suitable grinding motions.
But how should that be achieved, and how should it appear to the ordinary
robot programmer?

One approach is to program some strategy on the user level of the
robot controller, i.e., in the robot programming language used. Considering
the fact that the detection of the remaining burr and the further grinding
of it is quite involved with the motion control, a better approach is to
extend the basic MOVE primitive of the system with a special version for
deburring. A part of the user level program can then look like:

GRINDMOVE grinder ALONG burrpath1

WITH DEBURRING = burrpars1

WITH VELOCITY = 100mm/s

WITH ...

where the meaning of GRINDMOVE and DEBURRING has been added at a level
below the user level of robot programming, i.e., tightly connected with
the motion control. Such application features should on the other hand
be encapsulated and separated from the general purpose motion control
system. Finding an appropriate blend between efficiency/safety on one
hand and flexibility on the other, as well as real-time software solutions
to achieve it, is a non-trivial problem that will be tackled in this thesis.
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A benchmark/toy problem

Some characteristics have been identified in special applications like the
deburring one above.

• Some initial control strategy is required before the desired move-
ment can start. For example, a grinder tool must be started and a
certain initial contact force between the grinder and the work piece
must be achieved.

• A sequence of initial control actions may be needed. The robot must
first be properly positioned, etc.

• Normal operation entails cyclic execution of a feedback control al-
gorithms, which can be derived from dynamic models and/or from
heuristics. Control of path speed depending on burr size is one exam-
ple.

• There are some online supervision of control states to detect if the
process enters a prohibited region. For instance, a too slow path speed
(depending on exceptional burr size) may cause overheating of the
tool or of the work-piece. Special control must then be switched in to
handle the exception.

• Control of mechanical systems is typically non-linear, but can
often be controlled locally using (piecewise) linear controllers.

• Special control may be required to gracefully finish the operation. A
smooth edge may be required also where grinding finishes.

• High sampling frequencies are sometimes required, and the real-time
demands on the control may be severe.

• The special application specific control is preferably encapsulated in
a new customized statement, like the GRINDMOVE above.

It is also characteristic that a lot of equipment and installation is required
to run a real industrial application. That makes setups in different robot
laboratories difficult and expensive. Still, it would be valuable to have
a benchmark problem that can easily be setup, and that could be a test
how well a system can be used for ‘special applications’. Such a suitable
benchmark problem has been found to be control of an inverted pendulum
held by a robot hand.

Control of a pendulum [27, 192] illustrates that many different con-
trol principles have to be used to accomplish a given task. Specific control
problems include

• Initial control to a well defined initial state to prepare for special
swing-up strategies.
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• Swinging up from a well defined initial state, possibly via several
control modes.

• Control of the pendulum in upright position using feedback control
algorithms. Normal operation is close to the equilibrium.

• Online supervision, typically model based, to detect if external forces
have brought the pendulum away from normal operation, i.e., far
away from the equilibrium.

Thus, it is complicated enough to capture the aspects of industrial applica-
tions and yet so simple that experiments can be set up with a reasonable
effort. The control can also be tested initially using pendulums that are
readily available in many laboratories.

Note the difficulty imposed by manufacturing constraints. It is not
only the specific pendulum control including its mode switches etc. It
should be achievable in an embedded robot control system using indus-
trially useful programming principles. That means simple and restricted
end-user programming using for instance a PENDULUM statement, while the
pendulum control should be implemented by a control engineer without
using inside information about the built-in motion control system.

2.6 About this r esearch

This chapter has so far motivated a closer look at end-user programming
and integration of principles that may improve manufacturing practices.
Use of techniques available from the field of computer science is probably a
good idea. That also applies to the problem of finding a proper architecture
for robot control systems. Another important topic is support for special
applications, which implies a need for intermediate level programming in
which the experienced user can implement new low-level features. That
will then require use of principles from real-time systems and control
theory, as in the second half of this thesis. Finally, a powerful experimental
platform based on industrially used robots with state-of-the-art mechanics
and motors needs to be developed.

Specific robots and user interfaces for industrial applications should
be developed within the robotics industry in close collaboration with sales,
customer support, and with the robot users. It is therefore not covered
here. There are of also many interesting and challenging theoretical prob-
lems within robotics and control, but that is subject to extensive research
in many universities. This research is an attempt to bridge the gap
between standard industrial usage of robots and research results
from programming and control.
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Misconceptions

Tackling problems that do not have an established definition can create
some confusion. Depending on the reader’s background and previous ex-
periences (e.g., from some existing system), different parts of the solutions
presented can lead to some confusion concerning approach, importance,
novelty, etc. Based on reactions to viewpoints presented in technical dis-
cussions and earlier work [144], the following remarks are made in order
to point at some standard misconceptions.

The purpose of a software architecture Software architectures have
received much attention within robotics research [56, 13, 127]. One reason
is that when robot controllers (e.g., for space applications) become more
and more complex, abstractions and software structures are introduced
to cope with complexity. In other words, the purpose of the architecture
is to make the implementation of the system feasible.

In industrial robotics the software is complex and various functions
must be tightly coupled to achieve efficiency. However, the implementa-
tion complexity is not worse than it can be handled by proper software
engineering methods, like an object-oriented design. But the variety of
user interactions in flexible manufacturing systems indicates that user
views of the system should be the basis for the architecture. This is a
completely different approach that should not be confused with imple-
mentation architectures.

“We can do that in our system” When suggesting a new embedded
control system, there will always be alternative ways to do it. Take, for
instance, some advanced process control systems. First, such a system can
of course be used to control a robot, but will the desired performance, cost
efficiency, programmability, and flexibility be achieved? Secondly, when
doing servo control using process control systems, will use of a specific
system and its special language etc. be appropriate for interfacing to
stand-alone servos? In conclusion, almost anything feasible can be im-
plemented in any system, but specific application demands as considered
in this thesis are typically not taken into consideration.

“Layered systems are not useful without a detailed specification”
Layered systems are perhaps most common within computer communi-
cation. Refer for example to the OSI model [90], and to the even more
specific MAP standard [156]. Within computer and telecommunication
applications, it is crucial that the specification of the layers is complete
in all its details. It must be possible to interleave component and layers
from different vendors, and the layers reflect the implementation.
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In this work, the layers reflect user views of the system. Detailed
internal interfaces could of course also be developed, but that needs to
be made in collaboration with major vendors and/or standardization or-
ganizations. Otherwise, the industrial impact would be too small. On the
other hand, we claim that earlier and ongoing standardization of robot
interfaces on high [130], intermediate [212, 91], and low levels [169] are
not appropriate. Just like this work is not devoted to some new program-
ming language, it does not depend on a detailed standard. It is usage
of the principles proposed that yields the benefits. Standards come with
maturity!

“A robot controller is just another PLC block” Process control sys-
tems and PLCs (Programmable Logic Controllers) often control motions,
usually via dedicated servo controllers containing the drive electronics
and the low level feedback control. Process controllers are typically pro-
grammed by combining and connecting PLC blocks into a block diagram
defining the control program. A servo controller can then be encapsulated
in such a block. What is then a robot controller? In simple and less de-
manding cases, a robot control system is just a multi-axes programmable
servo controller. For the reader with experience mainly from such appli-
cations, it could be hard to understand why robot control should be such
a big issue; it is just another PLC-block. However, investigating demand-
ing use of industrial robots, the needs for motion descriptions, operator
interactions, nonlinear and variable structure control, and computing effi-
ciency clearly show that robot control requires its own control techniques.
It is still desirable to combine process control (for manufacturing) and
advanced robot control, but that is outside the scope of this thesis.

“We already have an open system” A system that is open allows the
user or system manager to change or add certain internal components of
the system. In practice, systems are a mixture of open and closed parts
[70]. The open parts can also be open in many ways. As an example,
consider a robot control system with a replaceable trajectory generator.
Such a system can be claimed to be open. However, the interfaces to
the software component (the trajectory generator in this case) could be
so rigid that only the algorithm can be replaced. In other words, struc-
tural changes involving, for example, new types of interaction with the
servo control are often not possible. Therefore, an open system should
be reviewed concerning the type of changes possible, and what degree of
flexibility that implies. Still, one should keep in mind that there can be
safety and proprietary reasons to keep parts of the system closed.
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“Our customers have not required that feature” Industrial devel-
opment has to focus on customer requirements. Sometimes, however, new
features that let customers explore new possibilities simply have to be
offered. Proposal of new features for application or customer support en-
gineers, sometimes results in a comment that “our customers have not
required that feature”.

This research is inspired by real industrial problems, but specific solu-
tions can very well be questioned in the light of short term requirements.
The reader should in those cases, however, not forget the fundamental
long-term benefits.

“The problem is on-line teach-in programming” Different ways to
program robots are preferable for different situations/applications. If we
use the robot system for the programming, we call it on-line programming.
Combined with definition of coordinates by manually commanding/moving
the robot, we have on-line teach-in programming (OLTP). Such program-
ming has turned out to be very useful in many (or even most) industrial
applications. Within robotics research and for some advanced applications,
use of OLTP is often considered to be a problem because the off-line sys-
tems can not fully cope with on-line changes of the programs, and because
the robot control system does not provide sufficient support for advanced
applications. This is how it happens to be, but do not confuse the possible
benefits of OLTP with the disadvantages of today’s systems. This topic
will be returned to in the next chapter.

“A new type of motion is just another procedure” Principles for
incorporation of application features have not received the same attention
as other software aspects in robotics like high-level planning, or low-level
explicit joint control. It has been neglected by statements of the type
“just implement a procedure” or “implement another robot function”. On
the other hand, robot manufacturers spend major efforts in designing
and implementing such robot functions. Even so, it is well known that
it may be difficult or impossible to slightly modify a function, to change
an application feature, or to include a new type of sensor in existing
systems. The reason is of course that the software is complex with many
coupled functions that are based on mutual primitives, include timing and
so on. The seemingly harmless task to include a new robot function may
represent a major effort. Applications mature over time and it is natural
that more and more special features need to be implemented. If this can
be done efficiently using the principles proposed in this thesis, then the
implications for production speed and efficiency are obvious.
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Concluding remark

Throughout the thesis we take issue with the misconceptions quoted. In
conclusion, it is believed that more generally applicable robots is a key
issue in providing flexible components for manufacturing systems, even
if it is realized that control of specific machines is not the most impor-
tant aspect of efficient manufacturing. The approach taken here, how-
ever, is related to the manufacturing practice aspect in the sense that
the equipment should be designed in such a way that man-machine inter-
actions supporting superior manufacturing practices should be allowed.
The key motivation for this research is that the problems have been de-
ficiently observed/solved elsewhere. Note that there is usually no contra-
diction between principles presented here and other established research
approaches; one aim here is to ease practical use of available and
future research results by proposing a suitable framework that
also considers typical industrial demands, and by providing an
experimental platform for verification of these ideas.
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End-User Programming

An industrial robot is a programmable industrial manipulator. A robot
program is expressed in some kind of robot programming language (RPL),
as described in Section 2.4. In this chapter we assume availability of a con-
trol system providing a set of motion primitives, including those possibly
required in special applications according to Section 2.5. In other words,
we specifically focus on possible improvements of end-user programming.

Proposals how to deal with this problem can be found in (almost)
any robotics conference. A common approach is to increase the level of
abstraction aiming at so called task-level programming [112, 106, 59]
(an early reference appears to be [203]). Some approaches include the
physical layout in the design of robot tasks [155, 52]. In any case, an
embedded control system is used for feedback control of manipulator
motions. Such robot controllers [118, 59, 46] also provide manipulator-
level programming and operator interaction [164]. These features are
carefully designed to meet the requirements of standard applications, but
has until now not been fully exploited when combined with high-level
(fully computerized) methods of programming. So, instead of trying to
find the ultimate solution (like special languages, databases, etc.), the
aim is to better combine and integrate such methods that are
promising or successfully used for industrial applications.

A small introductory example to be used throughout this chapter will
be defined in Section 3.1, followed by some comments on different ways to
do the programming today in Section 3.2. With the presented example and
the interpretation of available methods in mind, the following problems
will be tackled:

• In Section 3.3, which first describes the approach towards integrated
robot programming, the misconception concerning on-line program-
ming mentioned on Page 17 is treated.

• The desire to combine the benefits of small-scale and large-scale pro-
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duction as explained in the previous chapter will then in Section 3.4
be interpreted as a feedback control problem.

• In Section 3.5 we look at internal states of robot programs. Needs to
maintain some world model data also in on-line programming reveal
a context sensitivity problem that until now have been overlooked.

• A solution to the context sensitivity problem will then be proposed in
Section 3.6. This is a key issue to accomplish the desired integrated
end-user programming.

• An implementation of a full prototype is described in Section 3.7.

3.1 Small introductory example

To focus interest on some important robot programming aspects, a sim-
plified robot welding task will now be defined. The standard “peg-in-hole”
problem [67, 59] is another such test-case for assembly applications. The
following welding application does, however, better represent such appli-
cations that are of primary interest in this thesis.

Consider an arc-welding task. For simplicity we study only a single
weld-joint. The task is to weld a piece of flat iron bar on a base plate
mounted on a fixture. See Figure 3.1. Before welding is to be started, the
robot is supposed to move the weld-gun to a location clean where cleaning
of the tool takes place. Welding should start on a location start pose and
proceed along a straight line to location end pose, also on the base plate.
After welding is completed, the robot should move to a position home where
it waits until next task starts.
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Figure 3.1 A simplified robot welding task.
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Note that the locations clean and home are expressed relative to
a fixed world coordinate system, whereas the locations start pose and
end pose should be expressed relative to a frame base plate defining the
location of the base plate on the fixture. That is to permit an alternative
mounting on the fixture without changing the welding sequence.

3.2 Review and classification of current approaches

Many preferences by robot programmers for one or the other robot pro-
gramming method stem from the way different methods are combined in
systems today. For example, some programmers prefer off-line program-
ming (explained below) because some important feature is not supported
by the teach-in interface they have access to. Others prefer on-line pro-
gramming because their system provides an easy to use programming in-
terface for on-line programming. Even major books in robot programming
like [41] and [59] have such preferences, but some factory floor aspects
(mostly to the favor of on-line programming) deserve some comments.
This section reviews current robot programming concepts in four differ-
ent ways to prepare for a treatment of some basic underlying problems.

On-line or off-line programming

Let use of mechanical robot be the basis for our classification. Off-line pro-
gramming means that the mechanical robot and other production equip-
ment is not occupied during programming, which instead takes place on
a host computer. On-line programming means that the physical robot is
occupied during the programming. These two alternatives for where the
programming takes place are standard [41, 59] and used in different sit-
uations.

Off-line programming has the advantage that a production cell can
be designed, programmed, and its operation may be simulated before the
cell is actually built. The result of the simulation can be which type of
robot that should be used, or how the equipment in the cell should be
arranged. To this purpose, advanced modeling and 3D graphics are used.
As an example, Figure 3.2 shows the above application example modeled
in an industrially widely used off-line system. Several advanced off-line
systems provide a general purpose RPL, and code generators for specific
robot controllers. A uniform style of programming for robots of different
brands can thereby be achieved [59]. However, each off-line system has
its own ‘general purpose’ language. Hence, independency of robot systems
instead results in dependency on the off-line system.
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One problem in off-line programming is that generation of programs
for embedded controllers often can not be done in a way that preserves the
program and data structure of the robot program. This is due to limita-
tions of the RPL used by the embedded controller. Translating programs
written in SIL [184] to ARLA [4] for example, is comparable to trans-
lating Lisp to Basic, which clearly is hard to do if the structure of the
program should be preserved. Other problems are that off-line program-
ming tends to be unsuitably abstract for certain programming situations,
and the robot program may be inaccurate as a (approximate) computer
representation of the robot and its environment is used.

The computer representation of the robot and its environment is
called a world model. An example of a world model for the above example
is shown in Figure 3.3. Each object in the world model contains frames (as

Figure 3.2 The simple welding application, using an ABB IRB-2000 robot,
modeled in IGRIP [65].
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flat_barAffixment by welding

Figure 3.3 World model objects for the simplified example.

coordinate systems are designated within robotics) defining the position,
orientation, and geometry of the corresponding physical object. Other
attributes may describe the graphical view of the object in the case when a
graphical user interface is used. Structured objects containing a number
of sub-objects may also contain kinematics and affixments. Affixments
are used for temporary rigid connection between objects, like when a
simulated robot picks up a simulated workpiece [59].

Increase in
computer
programming
skills

Increase in
shop-floor skills

lead-through

pendant teaching

textual programming
languages

off-line programming

Figure 3.4 Computer programming versus shop-floor skills, considering hu-
man factors in robot programming [164].

On-line programming does occupy the production equipment, but an
advantage is that it is tangible, i.e., abstract world modeling and computer
simulation are not needed. The programmed motions will also be accurate
since locations and frames can be defined via teach-in referring to the true
frames. On the other hand, complex motions along mathematically well
defined paths (for example on airplane wings, turbine shovels, etc.) can
be very hard to program by teach-in. Such motions are better directly
described based on data from CAD systems.

Generally, a tradeoff between simplicity and programmability ap-
pears to be necessary for a specific programming environment. On-line
programming systems naturally tends to focus on simplicity, whereas off-
line systems tends to focus on programmability. See Figure 3.4. The con-
clusion is that both on-line and off-line programming are needed in various
situations. Thus, we want a system combining the two.
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Level of “physical abstraction”

The way we describe physical operations (like robot motions), or the way
we refer to physical objects, will now be used to classify the level of
programming. Let us introduce the term physical abstraction for robot
program abstraction based on (a model of) the physical properties of
operations and objects. The reason to introduce this term is to avoid the
usual confusion in the literature with the degree of abstraction for the
programming language itself, which is called programming abstraction
below. Concerning the physical abstraction, we have what is usually called
the degree of abstraction according to the following levels [41, 59, 118]:
Task-level programming is the highest level and it is a research field

of its own. The goal is to allow the programmer to specify what to do
in a declarative manner, and the system figures out how to perform
the task. This level, though not a main subject in this thesis, will be
commented in Chapter 4.

Object-level programming also utilizes a model of the environment,
i.e., the world model, but normally not including all obstacles etc.
Motions are programmed by specifying relations between objects, but
the planning is mainly done by the human operator. Implementation
of object-level programming can be done on top of a database [181].

Manipulator-level programming focuses on the definition of manipu-
lator motions rather than on the objects that are manipulated. In-
structions can still refer to objects in the working space, but the
objects are simply named frames and no full world model is main-
tained. Motions and constraints in joint space [60] can also be dealt
with more easily.

As mentioned, the typical research approach to robot programming has
been to increase the level of robot programming to make robots easier to
use. However, the following example (modified from [43]) indicates that
this is not necessarily true. A task-level program for the small example
above may look like:

ARCWELD flat_bar ON base_plate

which implies that the system should figure out how to place the flat bar

on the base plate. This looks very simple, but the required knowledge
about the objects, rules how to do the welding, planning of motions, etc.
hinders use of such programming in two ways: Such systems and planning
algorithms have not been fully developed yet, and in most applications it
is easier for the programmer to do the planning and enter an explicit
program then it is to enter all data required by the planner. A more
explicit, but still on an object level, program would be
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PLACE flat_bar ON base_plate SUCH THAT

flat_bar.side IS PERPENDICULAR AND

flat_bar.end CONTACTS base_plate.weld_line

ARCWELD flat_bar.end AND base_plate ALONG CONTACT

which perhaps still looks like a simpler and more elegant way of describing
the task than teach-in programming would be. It should be clear, however,
that also for a quite simple task a quite extensive and accurate description
is required.

Object-level programming supported by graphical programming tools
[188, 181] have turned out to be quite useful in circuit board assembly
applications. In such applications, component data are available in data
bases and the planar geometry of the task maps well on the (also pla-
nar) computer screen. On the other hand, in many other applications,
manipulator-level programming is more natural for the operator with-
out extensive programming knowledge; a sequence of motion commands
directly reflects the way a human worker would perform the task.

The conclusion is that all the different levels of physical abstraction
are suitable in different programming situations. That implies that the
programming system should be layered in such a way that higher levels
of abstraction can be added on top of the basic manipulator-level program-
ming.

Level of programming abstraction

Robot programs consist of statements for motions and for information
processing. Either motion statements are built into the language, or they
are achieved by use of a robot software library. In the former case we have
a special manipulator language, e.g., languages like ARLA [4], AL [135],
or AML [204].

It has turned out that major parts of typical robot programs consist
of information processing, i.e., robot programs resemble computer pro-
grams. This implies that robot programming includes all the aspects and
problems of computer programming, plus some additional ones. This is
also the reason why recently introduced robot programming languages
either belongs to existing computer programming languages (with a robot
library), or are a new general purpose programming languages with some
special robot programming support (types, syntax, etc.). Examples of the
former are RCCL [81], PASRO [41], and HAL [134], whereas Karel [72]
and RAPID [6] are examples of the latter.

In conclusion, the similarities to computer programs indicate that the
same abstractions and paradigms (abstract data types, object orientation,
etc.) should be used for robot programs. However, the difference is that
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robot programming should be possible to do in a way that supports “su-
perior manufacturing practices” as mentioned on Page 5. Thus, the level
of programming abstraction should be selected depending on application
and type of production system. This is typically related to the level of
physical abstraction, but does not need to be.

User interface

Robot programming and operation can be performed via a user interface
including one or several of the following alternatives:

• Free text edit input in a usual computer programming style.

• A structured editor or programming tool supporting the RPL.

• A graphical user interface, possibly with 3D visualization.

A well designed system may use all three alternatives if appropriate.
Fancy graphics is not always the best alternative. Use of the physical
world can, for instance, be more beneficial than a graphical view of it in
some cases. One such case is when on-line programming using a hand-
held terminal is preferred.

Figure 3.5 Panel layout of ABB hand-held robot programming terminal
(first S4 version). Joy-stick, emergency stop button, and ‘dead-mans-handle’
located beside the panel are not shown.

26



3.2 Review and classification of current approaches

Hand-held terminals are popular in robot programming because they
allow the programmer to move freely during the programming and stay
close to the pieces of interest. Practically all robot systems are equipped
with some kind of teach-pendant, allowing the operator to manually move
the robot and request storage of the current coordinates. When a teach-
pendant provides a complete robot operation and programming environ-
ment, we call it a hand-held terminal. The first, and most successful sys-
tem on the market, providing a complete programming environment via
a hand-held terminal was ARLA [4] developed at ABB Robotics. Both
ARLA and its recently introduced successor RAPID [6] robot program-
ming/operation interface can be characterized by the following:

• Programming can be completely carried out via a hand-held terminal
which is called “programming unit”. The programmer can stay close
to the workpieces of interest during the programming.

• The programming unit has a joystick for manual control of the robot,
and for manual control of other equipment if feasible. Some fixed
buttons for manual operation are available, e.g., open/close gripper,
coordinate system selection, and a few more. Access to most features
are via function buttons, or via pull-down menus in the new system.

• Programming and editing is performed in a syntax-based style using
the same type of interface as for manual operation, i.e., all instruc-
tions and attributes are easily selected in the menus. Only syntacti-
cally correct programs can be written this way.

• Special application support can be defined in a way uniform to the
standard interface, i.e., using menus etc. Such functions may even
affect the motions during program execution. For example, a spot-
weld position may be adjusted without interrupting the robot motion.

In essence, it is a careful design of the user interface in combination with
a suitable programming language and style of operation that makes this
type of robot programming preferable in a wide range of applications. A
picture of the new programming unit is shown in Figure 3.5. The previous
version can be seen in use in Figure 2.3 (p. 8).

Future designs of such a terminal could provide a pen- or pocket-
computer like interface, voice input, 6 DOF joystick [94], wireless com-
munication with the robot controller, built-in gyro for maintaining joy-
stick coordinates relative to the world coordinates, force feedback to the
joystick for programming of force controlled motions. New types of hand-
controllers developed for telerobot control [164] may also be useful in the
future.
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Computer-based interfaces are preferably combined with off-line pro-
gramming. Availability of 3D graphical models of the robot and its en-
vironment then makes programming much easier [59] (pp. 418–419).
Several such system are available on a commercial basis, e.g., CimSta-
tion [183] and IGRIP [65]. It would of course be desirable to combine
such systems and the more on-line oriented systems mentioned earlier.
That will be returned to, but an interesting (already solved) special case
when on-line and off-line programming can use the same kind of user
interface can be found in many circuit-board assembly applications. The
“planar world” in these applications can be well mapped onto a computer
screen that can be located close to the equipment, and powerful systems
like the SMALL system [188] and the AIM system [181] have emerged.

3.3 An approach to integrated programming

Software support for demanding robot applications, requiring dextrous
motions and on-line tuning to deal with the manufacturing process and
its uncertainties, are the focus in this thesis. Appropriate choices of pro-
gramming principles and tools are probably most crucial in such appli-
cations. A development towards off-line task-level abstract programming
only, utilizing modern computer graphics, can be questioned in the light
of the following quote [200]:

The use of the best available interface techniques does not assure
the production of a good interface; a good menu system cannot
make up for a poor task analysis. Success in interface design
comes when an interface properly addresses the semantics of its
users’ tasks and domains.

In other words, programming principles should be decided according to
the production situation, not the other way around. This motivates further
work in the following directions:

1. Dedicated program packages for specific applications should be de-
veloped in close interaction with the application developers and in-
dustrial users.

2. Design of robot control systems and robot programming principles
supporting application specific programming.

3. Planning and scheduling of manufacturing activities should be done
in such a way that hands-on adjustments of the task are taken into
consideration.

Whereas Item 2 merits our further attention, Item 1 is best solved in an
industrial environment in close interaction with customer support. It is
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therefore not treated here. Though planning and scheduling of manufac-
turing have been subject to extensive research, the need to actually deal
with on-line changes has only more recently been considered [58].

Benefits of on-line programming

Advanced robot programmers often consider on-line programming to be a
problem. One reason is that when their favorite off-line system is used to
create and down-load programs to the embedded controller, on-line mod-
ifications then make the programs differ from the version maintained in
the central database. (Compare with the large-scale system on Page 7.)
The usual research approach is not to use (or even allow) on-line modifi-
cations. The approach here will be the opposite.

Another problem with on-line programming of advanced applications
has been that the programming language/tools (available on the hand-
held terminal) have been too limited. Use of a very simple teach-pendant
is probably the reason for statements like the following about a sample
application including palletizing ([59], p. 396): “It should be clear that
the definition of such a process through ‘teach by showing’ techniques
is probably not feasibly”. However, such an application can be very well
solved by available built-in functions in the ARLA system [4] from ABB
Robotics. The new RAPID system [6] even (potentially at least) allows
the advanced user to introduce certain application specific functions in a
way that supports on-line usage [46].

A third type of problem in on-line programming is due to limited
availability of computing and control tools in embedded systems. Although
not explicitly found in the literature, it is a straight forward step to extend
the networking principles used in manufacturing to also allow use of
host computer software from the embedded system. This has also been
implemented in our lab [191] where we used Matlab [124] as a compute
server for the embedded system.

In conclusion, we should not neglect, as typically done in university-
based research, the benefits of on-line programming. Note, however, that
this is not to say that on-line programming suits all situations. In a car
production line, for instance, off-line programming is very useful as a way
to make the production stop as short time as possible when reprogram-
ming for new car models is to be done.

3.4 Local operation entails local feedback

We are now ready to analyze the misconception “The problem is on-line
teach-in programming” from Page 17. Consider a large-scale production
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facility with a central engineering department. Let us study the program-
ming and operation of an industrial robot in that production system. As-
sume that we allow/support interaction with the robot controller in two
different ways:

1. New or modified robot programs can be down-loaded from the central
engineering computer system.

2. Robot programs can be edited by the local operator on the factory
floor.

Feedback control: The flow of information (physical signals, data, or
issued operations) in the described situation is viewed in a block-diagram
style in Figure 3.6. As shown in the figure, our two types of interaction
with the controller result in a cascade control structure; an inner loop for
the local operation and an outer loop for the overall control.

interface
2) on-line

interface
1) off-line

Process and product status

Robot programs
Motion

Edit/Adjust Observations

Program/Teach

Report

Data

1

2

Order

Local
operator

Moni-
toring

system
Robot

process
Manufacturing

Process
tracking

Production
engineeringDesign

Product

Figure 3.6 Local feedback by local manufacturing operation.

In control engineering, the principle of local feedback is very well
known. It is a way of taking care of process variations locally, avoiding
effects on the total more complex system that would be harder to control.
Local feedback has been of great use ever since Black [40] invented it as
a way to make electronic amplifiers insensitive to component variations.
That was in the beginning of this century. Successful cascaded feedback
typically relies on the inner loop being faster. What about that in this
case?

The local operator is typically able to adjust the robot program in a
matter of minutes. Operator feedback is applied in the sense that the op-
erator observes the controlled process while adjusting it. The feedback in
the outer loop, however, is considerably slower. A problem is typically first
detected on the shop floor and reported to the central control. Adjustment
then either uses observations from the local operator, or from some type
of supervision system. Clearly, the outer loop is anyhow slower than the
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inner one. This means that the structure necessary for successful cascade
control appears to be fulfilled. But what are the benefits of each loop?

The outer loop is required for management and control of the complete
facility. The “production engineering” also includes off-line programming
when major changes are imposed from the Order and Design input, see
Figure 3.6. This is for instance the case in car production as mentioned
above. In control terms, set-point changes need to be formed in a way that
the operation of the systems does not deteriorate.

The inner loop is required for robustness and performance during
every-day operation. Efficiency as practically obtained in small-scale pro-
duction is the key motivation for this; it is desirable to have the benefits of
small-scale production also in larger facilities. Specifically, the Report path
in Figure 3.6 should not need to be used for changes already expressed
in the robot program. Instead, such information should be propagated to
the “Production engineering” (backwards) via the Robot programs path.
In control terms, this is outer loop tracking due to inner loop saturation
or manual operation.

Flexible manufacturing systems (FMS): As shown in several case-
studies [24], modular locally manageable cells improve robustness and
flexibility. More specifically, trying to achieve flexibility and efficiency via
computer integration and scheduling does often not work very well in
practice as expressed1 in [24] (p. 170). This clearly motivates an approach
that supports locally operational units.

The most feasible way to implement the production feedback to the
central manufacturing engineering, and to maintain consistency between
the on-line and off-line versions of the robot programs, would be auto-
matic retrieval of the modifications done on the factory floor. Manufac-
turing practice today is, however, less productive. Statements like ([24],
p. 156) local operation “allows an operator at the machine tool to edit” the
program, and the improved program should only be saved so it “allows
an authorized operator to create new production versions”. Furthermore,
when the structure of robot programs is changed on-line, the changes can-
not in general be mapped back to the engineering workstation [59, 183].
This circumstance means that local feedback today actually makes overall
manufacturing control harder.

1 “FMSs promise 50% reductions in lead and manufacturing times using only a hand-
ful of machines and a few operators. Yet flexible manufacturing systems are far
from being irresistible. Many manufacturers, having long considered FMS technol-
ogy, are now opting for something smaller, simpler, and cheaper. They are buying
flexible manufacturing cells and even stand-alone CNC machine tools”.
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3.5 Internal states and external reality

Transfer of robot programs between on-line and off-line systems may look
like an ordinary software translation task. There are known problems
with too restrictive RPLs as explained on Page 22 (see also [59], pp. 431-
433), but let us assume that the on-line language is powerful enough.

A robot program created in an off-line programming system makes
use of the world model, which is an abstraction of the ambient work cell.
In on-line programming, however, the real physical world is there, which
makes some simplifications possible. There are, on the other hand, cases
when data have to be kept and maintained in a way that reflects the
external reality. Such a principle of organization, known as the internal
model principle in control theory [221], therefore appears relevant also for
robot programming. The purpose of this section is to present an (until now
overlooked) on-line programming aspect which requires special treatment
in integration of on-line and off-line programming.

Object views in world modeling

State of the art off-line programming entails object-level programming
using a world model as described earlier. To facilitate transfer of robot
programs later, the attributes of the object in the worlds model will now
be classified. The term object view will be used to refer to a group of
attributes (or methods) that capture a certain aspect of the object. This
is in conformity with views as defined in process control [199, 1], control
engineering [142], and software engineering [44]. It is of course preferable
to have support for views in the programming language. The SIL [184]
RPL provides this feature in connection with multiple inheritance. In
languages without such support, views can be maintained by management
of object attributes.

Object-level robot programming can be viewed as object-oriented
[126] support concerning the physical properties of the objects within the
work cell. This means that objects will have attributes reflecting their ge-
ometry, but are there cases when such objects also should have attributes
corresponding to logical or computational properties? Modeled in a off-line
programming system, we can think of the following object views:

Physical attributes represent physical properties that should be possi-
ble to refer to when specifying robot motions. This of course includes
the geometry of the physical object, but also the dynamic properties
like mass and inertia.

Graphical attributes are needed only for the graphical presentation
during off-line programming.
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3.5 Internal states and external reality

State attributes represent the state of the physical task. This view is
defined for on-line programming purposes.

The state (called soft in the original presentation [144]) view and its use
in the sequel is believed to be new. A related but different classification
of the physical and graphical attributes has been proposed by others (in-
troduction to Chapter 8 in [112]), but for off-line and planning purposes.

As an example, consider a pallet being used in an assembly task (as
in Chapter 12 in [59]). Considering the pallet object and the objects for
the pieces fitting into the pallet, an off-line world model today would have
attributes like:

1. Physical attributes would typically be the frame for one corner loca-
tion of the pallet relative to a base frame, the frame for the diagonally
opposite corner relative to the first corner frame, the grasping posi-
tion of the part relative to its pallet location, and the number of rows
and columns.

2. Graphical attributes for nice 3D animation.
3. State attributes would not be present.

Instead of state attributes, the state of the application (the occupied slots
of the pallet) would be implicitly defined by spatial relations (affixments
etc.) between objects in the world model [112] (p. 451). An off-line robot
program can then directly access the world model and compute the state
of the application whenever needed to determine what move to perform.
Alternatively, robot program variables are declared and used for book-
keeping of the current state of the task (as in the palletizing examples in
[59]).

Having the state of the assembly spread out in variables makes it dif-
ficult to transfer and maintain object properties during on-line program-
ming, which is needed for later retrieval to the off-line system. Recall that
the overall manufacturing control (i.e., the outer loop in Figure 3.6) needs
feedback from performed on-line changes.

The most successful software technique to keep related data to-
gether is object-oriented programming. Object-oriented off-line program-
ming [112, 184, 188] is straight forward. Software objects can encapsulate
or refer to world model objects. It is, however, not clear that object-oriented
on-line programming suits a typical production engineer or robot operator.
The manipulated objects are physically available and sequences of oper-
ations are well expressed in an ordinary imperative language. But even
if object orientation is appropriate for off-line programming and planning
systems, and it might be useful also for on-line programming, we do not
want to resort to a certain paradigm for successful robot programming.
Instead, such states of the assembly that are used to determine motions
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should be stored in the proposed state attributes in the world model. It is
then up to the robot programming interface what paradigm that should
be supported for the end-user programming.

Specification of motions

The general problem of motion specification includes formalisms for rigid
body motions, representations suited for calibration of models according
to measured geometries, combination of force/position specifications, and
handling of compliance. See for example [112, 176, 177, 59] and refer-
ences therein. Even if ongoing research may result in other ways to de-
scribe a desired motion, there are some fundamental aspects of transfer-
ring motion specifications between on-line and off-line programming en-
vironments. Let us approach the problem from the off-line programming
side.

For simplicity, let us assume that motions are defined by simply
specifying the via points and the end point of the motions, i.e., specification
of velocity profiles etc. are neglected for clarity of the discussion. Frames
are represented by 4 × 4 Denavit-Hartenberg transformation matrices as
standard [64, 59]. Their use by motion instructions form what is called
position equations, for instance in RCCL [81]. A position equation for the
above example can look like

ARM * TOOL = fixture * base_plate * start_pose

where the ARM for example includes the kinematics of the IRB-2000 robot
and TOOL models the weld tool used. In RCCL and in powerful off-line
programming systems, the system keeps track of the factors (objects) in
the equation, and the equation is solved with respect to the free variables.
Typically, this means that the ARM transform is computed, and the desired
joint angles are then computed as the solution to the inverse kinematic
problem for the manipulator used.

In an on-line programming environment, the ARM transform is known
by the robot system. The TOOL data is entered by the user according to
the tools actually used. When the programmer using teach-in program-
ming defines a position, he/she defines the right-hand side of the position
equation. It may also be possible for the user to define some intermediate
frame. For instance, the fixture frame may be specified using teach-in.
Successive positions can then be defined relative to that frame.

World model simplifications

When we transfer a desired robot pose from the above off-line description,
to an on-line system, it is in the simplest case only two frames of the
equation that are required on-line, namely the frame TOOL and the frame
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defined by the right hand side product. These frames are called the tool
frame and the goal frame. After down-loading to the robot controller, these
two frames will simply and concretely describe the geometry of the tool
and a position to which the robot should move. Use of the introduced
object views may facilitate the extraction of the geometries in that only
access to the physical view of the world model objects is required. Instead
of single frames, frame sequences modeling a path on the object can be
retained for on-line use. For objects with spatial attributes which depend
on time, path coordinate, or sensor signals, those dependencies must of
course be maintained.

home

world

start_pose end_pose clean

Figure 3.7 Simplified world model for on-line use. Intermediate frames in
Figure 3.3 have been eliminated.

As an extension for advanced on-line programming, the entire physi-
cal and state views of the off-line world model could be transferred to the
embedded system which would only imply a minor increase of required
memory. The complete world model can be useful for the off-line program-
mer calibrating the fixed parts of the world model on-line, and for support
of the off-line programming style on-line, but such features should only be
available under an “advanced feature” button in the on-line user interface
and not used by the ordinary robot programmer.

Translation to an on-line system [59, 65, 183, 41] means that the robot
program expressed in the language of the off-line system is translated to
some other so called native language of the on-line system. Thus, each
equation will define another goal frame that will be used in the translation
to the on-line system. In the on-line system, these frames will define
positions just as if programming would have been carried out by teach-in.
Intermediate frames without explicit access from the robot motions can
be eliminated. Instead, the eliminated frames are represented by the real
physical environment. The resulting simplified world model for our small
example is shown in Figure 3.7. This is supported by systems today [65].

Recall from Section 3.4, however, that we also need to translate the
(changed) program back to the off-line representation to achieve the de-
sired property of local feedback. That is not possible today. To prepare
for a solution, let us consider the syntax tree [12] for our example task.
For simplicity of the discussion, we will only consider the motions, i.e.,
that the control of the welding equipment is omitted. Figure 3.8 shows
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an abstract syntax tree for the sequence of four motions. Each motion
statement will refer to the world model as shown in the figure.

prog

move move move move

end_posestart_posehome clean

world

Figure 3.8 Abstract syntax tree (upper part) and simplified world model
(lower part) for the four motions program. The world model is turned up-
side-down as compared to Figure 3.7 for better visualization of connections.

In the case that the robot program is first created on-line, the ordinary
robot programmer will define a sequence of positions which are used in
the robot program. These locations can then be utilized by the off-line
programmer in the definition of the off-line world model. Uploading of
coordinates is possible today but, as mentioned, not upload of complete
programs. The major reason is that today’s on-line languages are too
limited (as already explained). But even with a richer language like
RAPID [6], translation of robot programs includes some special aspects
due to differences in preferred programming style (different requirements
for the inner versus outer loop in Figure 3.6). The following treatment of
intermediate frames will illustrate the problem.

On-line frames

There is one exception to the simplifications of the world model above. It
is sometimes desirable even in on-line programming to be able to specify
that taught positions should be relative to some frame. For example,
the location where to weld in the example in Section 3.1 is preferably
defined relative to the location of the base plate. Then, if the mounting on
the fixture is changed, only the frame describing the base-plate location
needs to be changed. Programming of the welding would then include the
definition of the base frame of the part, and by specifying that subsequent
positions should be stored with values relative to the base frame of the
part to be welded. Most robot systems provide such a feature. Having the
robot controller to store this structural information actually means that
we keep an intermediate frame of the world model to support work-piece
relocation, i.e., to support flexibility. We will call such an intermediate
frame an on-line frame in the sequel.
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When a robot program is created off-line, after defining the actual
world model, the programming system in practice imposes robot motions
to be specified relative to the manipulated physical objects. See for in-
stance [65] for a further description of the methodology. Furthermore,
robot motions will refer to the frames actually defining (the model of) the
environment. Therefore, moving the base plate in the example above will
automatically update the description of the robot motions.

In the on-line programming case, however, the on-line frames do in-
fluence the robot motions but an incorrect on-line frame may be hard to
discover before the motion is performed. To prevent damaging or dan-
gerous motions, it is therefore crucial that the on-line frame is properly
maintained according to the states of the physical objects. Note that even
if this aspect of on-line programming is possible to simulate in a system
like CimStation [183] (using a world model feature called proxies [185]),
we are here concerned with the actual transfer of program to embedded
systems. The following example further explains the problem.

Context sensitivity

The term context, within computer science, denotes a set of bindings
to the environment or surrounding scope [38]. A problem within robot
programming is that robot program execution changes the state of the
environment (for instance when two pieces are welded together), and the
influences on the environment are sometimes hard to reflect or know in
the robot program (the success of an operation may depend on unknown
disturbances). We therefore have a context sensitivity problem to deal
with [59] (p. 409).

It is of course important, in both computer and robot programming,
to provide good methods to cope with context sensitivity. Sometimes we
may need external sensors to detect if an operation has been successful
or not. That is a standard and explicit way to handle uncertainties in the
environment. Here, we instead look at such context sensitivity problems
that are due to operator interactions. This aspect of the problem has, as
far as known, not been treated elsewhere.

Assume that the flat bar in our small example turns out not to be
quite straight. Also assume that the operator decides to adjust the welding
path by inserting a via-point between the start pose and the end pose.
We will now compare different ways to modify the program:

In the off-line programming case we modify the model of the flat bar.
We then insert an intermediate position in the weld path. The in-
termediate position will refer to the updated flat-bar object. If the
base plate is relocated on the fixture, the complete (simulated) weld
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path is relocated by the system.

In the on-line teach-in programming case we first locate where in
the program the additional statement is to be inserted. That can be
done in two ways:

1. We can load and run the existing program, stop it when the
robot approaches the welding task to be modified, and then issue
stepwise execution (typically without welding) until the robot
has reached position start pose. That move statement will then
be the active one, and an additional ‘via-move’ can be inserted
after the current statement.

2. Instead of letting the robot execute the program until we are at
the right place, we may use the on-line editor to make the same
statement as item 1 to the current statement. This is quicker if
the operator knows the program.

The difference between these two cases is that in case 1 we activate
the on-line frame by running the program, while in case 2 we man-
ually have to do that activation since the activation statement was
not executed. If the programmer forgets to do the manual ac-
tivation, or in any of the cases forgets to refer to the on-line frame
in the move-statement inserted after the current one, there will be a
severe problem. The inserted via-point will be expressed in the wrong
coordinate system, the result will be a completely wrong (and
possibly also damaging or hazardous) motion. This will show
up either directly or after relocation of the base plate. Analysis of
the problem in general, and of special cases in special systems, could
go on for another page but is not very interesting. The conclusion
is that systems more (see [144] referring to [4]) or less (as in [6])
unnecessarily require that the programmer does the right thing.

From this simple example we can see that although on-line programming
is in principle a tangible and user-friendly method, we may encounter
problems when we want to utilize structural information about the en-
vironment. In other words, when an otherwise superior on-line program-
ming method makes assumptions about ‘object’ properties, there will be
problems if the state of the software objects have not been properly main-
tained during manual operation.

In computer programming, such problems are avoided by the sequen-
tial execution model, scope rules, and the absence of externally maintained
states. The problem here is that we manually have to maintain variables
(or object attributes if an object-oriented framework would be used) cor-
responding to states in the real physical environment. This can be called
“physical context sensitivity” due to operations on physical objects. An-
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other such case can be definition of frames describing the tool; when the
robot changes tool, the frame describing it must also be changed.

Note that even if the “internal model versus external reality” prob-
lem as such is mentioned in the literature [59], we are here concerned
with how the on-line programming language and system can support the
programmer, and how such support can be translated to/from the off-line
programming system.

Further examples of physical context sensitivity are software con-
trolled setup of external equipment for welding, grinding or gluing. This
implies that it is not enough with fixed specific support for on-line frames
in the robot system. We need a mechanism that permits the developer of
application packages to introduce application specific scopes in the lan-
guage. This must be part of the syntax so that the syntax-based editing
gives the ordinary user the desired support.

3.6 Integrating on-line and off-line programming

The following solution to the problem defined in the previous section is
inspired by syntax-based programming tools. One example of such a pro-
gramming tool is the ABB interface described in Section 3.2. That system
is built on a predefined programming language and operator interface.
Another more dynamic, but experimental, system has been developed in
the Mjølner project [107]. That system has been used here for prototype
implementations [152]. The key idea is to map objects and accesses thereof
to blocks and scopes of the on-line programming language.

Figure 3.8 shows the simplest situation when the on-line program
refers to positions without any on-line frames. The program according to
that figure can either be written on line using teach-in programming, or it
my be down-loaded from the off-line system utilizing the simplified world
model in Figure 3.7. The same program, but using an on-line frame, is vi-
sualized to the left in Figure 3.9. Then, we want to insert the intermediate
move statement. Figure 3.9 (right) shows the desired situation after in-
sertion. So far everything is correct. However, inserting the intermediate
position in the on-line system easily results a robot program according to
Figure 3.10. This is due to the deficient handling of the context sensitiv-
ity problem as described in the previous section. The figure clearly shows
that the inserted location refers to some earlier defined old base instead
of the correct base plate, but this is hard to expose to the programmer. In
some existing systems, the on-line frame is activated by a separate state-
ment in the program [144]. The programming fault can then only be seen
indirectly on coordinates attached to the motion statements. A better ap-
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Figure 3.9 Positions referring to an on-line frame fixture (left), and a
correctly inserted intermediate via point (right).

proach is always to display the frame list in each move statement. That
approach does, however, not scale very well in complexity. Hierarchical
use of on-line frames, or longer motion sequences using the same on-line
frame, clutters the program in a way that is undesirable for hand-held
terminals.
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Figure 3.10 Inserted move instruction referring to an incorrect on-line
frame. To the upper right, the teach pendant shown in Figure 3.5 illustrates
manual operation. The old base is the most recently used on-line frame,
which may be from an other task in an other part of the working range of the
robot.

The following claim is fundamental here: The location of the base
plate is in reality part of the physical scope for the motion to be performed.
Expressing the welding path in a robot program should then utilize scope
rules as in computer programming using standard imperative languages.
The same applies to control of welding equipment etc., which entails that
the description of the welding path should be expressed in a surrounding
scope including the actual on-line frame. This implies that the concept of
on-line frames should be part of the syntax for the RPL, which provides
new possibilities to support the robot programmer by syntax-sensitive
editing.
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  MOVELIN start_pose
  ARCWELD \I:=10 \U:=60

FRAME base_plate

  ! Welding is off here.
ENDFRAME

MOVELIN home
  FRAME base_plate
MOVELIN clean

  MOVELIN mid_pose
  MOVELIN end_pose
ENDARCWELD ! => stopweld

ARCWELD \I:=10 \U:=60
  ! startweld 10,60;
  ! implicitly done here.
  ! Motions performed in
  ! frame/welding context:

Figure 3.11 Utilization of RPL extensions in syntax-based editing. When
a block is opened the system ensures proper initialization of system settings
reflecting the physical context. Deactivation, like turning of the welding before
moving to some other task, can in this way also be ensured by the system.

Another approach would be always to keep the geometrical descrip-
tion in a separate data structure. That would correspond to maintaining
an explicit world model (typically much reduced as compared to the off-
line version) in the control system. Editing that world model would, how-
ever, put the same demands on the system as when we give the motion
coordinates directly in the motion statement.

Considering also the control of the welding, we need to specify a cur-
rent and a voltage. Start and stop of the welding have to be expressed
in the program together with the welding motions. Using separate state-
ments/procedures for start and stop of the welding, as indicated in Fig-
ure 3.5, again resorts to proper management of the physical context (in
this case the state of the welding equipment). If we extend the syntax and
semantics of the RAPID language, our small example may look as shown
in Figure 3.11 after zooming and modification.

Note that when the frame block is opened, the on-line frame as-
sociated with the base plate object is automatically activated. That is
achieved by semantic rules for this syntactic production. Of course the
programmer can still explicitly use some other frame if desirable, but the
default behavior (obtained by the non-expert robot programmer) does not
result in an unexpected/undesired motion as before.

3.7 Implementation

Having realized that the robot programming languages used in on-line
and off-line programming in many cases need to be different, it is appar-
ent that automatic translation between these languages is needed. It now
remains to show how the desired bijective mapping between the represen-
tations can be achieved. A full prototype is currently under evaluation.
The implementation represents a considerable effort, which was possible
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by initiating and guiding the work presented in [152].
Two major industrial products were selected to represent the off-line

and on-line programming systems. The off-line system is the IGRIP [65]
from Deneb, Inc. The off-line model for our example task was shown in Fig-
ure 3.2 (p. 22). The recently released S4 control system from ABB Robotics
was selected as target (on-line) system. The RAPID language interpreter
of that system was not available for experimental purposes, so we im-
plemented our own RAPID to C compiler. By utilizing the architecture
that is presented in Chapter 4 together with the robot system presented
in Chapter 5, and using software techniques presented in Chapter 7, we
emulated the front end of the ABB system. Thus, the program transfor-
mations involved are those shown in Figure 3.14. (An on-line connection
between IGRIP and the experimental robot controller was also developed,
but that is for other purposes as will be described in Chapter 8 about
advanced applications.)

The structure of the IGRIP system is shown in Figure 3.12. The
input/output marked UNIX files in the figure is used to import and export
robot programs. The programs were written in the internal language GSL.
Programs were, however, exported as Karel [72] programs. Karel is very
similar to GSL but the format of the Karel files were more suitable for
our translation purposes.

Translation of Karel to RAPID, and RAPID to Karel, was achieved
by using the Application Language Laboratory (APPLAB)[190] software.
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Figure 3.12 Software modules and interfaces of the IGRIP system.
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Figure 3.13 User interface of the Application Language Laboratory [190]
used for prototyping robot programming extensions.

A very important feature in APPLAB is the interactive and incremental
definition of grammars and its automatic generation of syntax based ed-
itors for the specified language [107, 82]. To achieve that, the tool uses
a special internal data structure, but that also makes it more difficult
to parse programs expressed in ordinary text form. An important exten-
sion which was developed in connection with this implementation is a
dynamic parser [39] which was used for the parsing of robot program
into the language laboratory. Target language output is a special case of

GSL Karel Rapid C m68k
Applab

Applab

ApplabIGRIP

IGRIP
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ine language
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‘High-level asse
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Figure 3.14 Implemented translations of robot programs. The C and m68k
representations emulate the ABB system (according to ABB specifications
or according to the proposed extensions depending on Applab grammars).
The gcc, etc. denotes the cross compiler and our tools for dynamic binding
(explained in Chapter 7).
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code generation. Figure 3.13 shows the user interface of APPLAB when
developing the grammars.

There are of course many semantic details that need to be worked
out before the system can be used industrially used, but the approach
to integrated robot programming as presented here appears to be quite
promising.

Operator safety

Trying to integrate on-line and off-line programming for more efficient
manufacturing control is clearly being more complicated due to the pro-
posed management of context sensitivity in the on-line system. It is there-
fore natural to question the dedicated support for on-line operation, but
the following indicates that this is important

An unexpected/undesired erroneous motion can of course result in
damage of equipment. But more importantly, unintended motions can be
hazardous to the robot programmer. According to the rules, the robot
programmer are not allowed to enter the robot work-space when the robot
is in operation. In practice, however, “insufficient planning of the running
work process resulted in workers having to interfere while the installation
was in operation, e.g. in order to readjust some robot component, program
the machine or remove remains of cast metal from the workpiece” [164] (p.
250).

There are of course many types of possible incident types, and many
other aspects may be more common/important. This is on the other hand
hard to know because “only a few original reports on accidents, critical
incidents and abnormal stoppage cases have been reported up to now. Au-
thors often rely on second-hand information and on the reinterpretation of
available statistics” [164] (p. 249). Nevertheless, wrong motion has been
noticed as a primary risk: “In order to execute and check exact adjustments,
the programming as well as a trial run is usually undertaken in the direct
vicinity of the robot. Thus possible dangers in the course of this activity
are: the programmer might enter a wrong direction, thereby causing the
robot to move towards him/her;” [164] (p. 245). These observations, and
the trend towards more advanced applications (more complex and nested
contexts), therefore motivate the proposed support for shop-floor opera-
tion/programming.

3.8 Summary

A review of different robot programming methods shows that a variety of
methods are beneficial in different programming situations. As to support
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manufacturing practices, it should be possible to provide the end-user pro-
grammer with proper programming tools, programming language, level
of abstraction, and use of the robot. The crucial point is then how these
techniques can be integrated. After presentation of a small example and
a review of techniques for robot programming, the following contributions
formed a new approach to end-user programming:

• Some benefits, like easy-to-use features for quick adjustment of the
manufacturing process, of on-line programming were pointed out in
Section 3.3. These benefits are fundamental to the approach taken,
but they have until now been deficiently observed in academic re-
search.

• An interpretation of robot programming and operation in control
terms, as done in Section 3.4, further motivated on-line operation as a
way to introduce local feedback. The formulation of the programming
process in terms of feedback control appears to be new despite its
similarities with other interactive uses of computers. The control
interpretation clarifies the need for back-propagation of local changes
of robot programs (that is, automatic translation both ways between
the on-line to the off-line system is highly desirable).

• To facilitate translation of robot programs, three object views were
suggested for world-model objects (Section 3.5). A new way to illus-
trate robot programs, with the syntax tree connected to the world-
model tree was also introduced. A key observation, not found in the
literature, is that context sensitivity in the on-line programming case
is related to states that today have to be manually maintained by the
operator.

• A new way to manage the context sensitivity in on-line programming
was then proposed in Section 3.6. The key idea is to make use of scope
rules also for the (application specific) system states. Utilizing the
block structure of the programming language implies that tailoring
the system to a certain application may require extension of the
syntax of the on-line language. That makes it possible for the syntax-
based editor to maintain important system states.

• The “Application Language Laboratory” software tool applied to im-
plement the proposed ideas forms a system with unique robot pro-
gramming properties; “meta grammars” and “incremental semantic
analysis” make it possible to incrementally during robot program-
ming extend the syntax of the language as required in previous item.

In conclusion, a new approach to end-user programming has been pro-
posed.
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4

Architectures

The term architecture may generally denote structure or style of structure
with various—and sometimes not very precise—meaning. For the purpose
of industrial robot control systems, and for this thesis, an architecture de-
notes the concepts and techniques that characterize the structure
of the system. Then, there is the question about what should be consid-
ered to be the characteristic properties. The approach adopted here is to
base that on the usage of the system, rather than on the internal design.

The purpose of defining a system architecture normally is to support
understanding and implementation by coping with the complexity of the
system. That also improves modularity and reuse of software components.
Here, aiming at improved manufacturing support, application aspects will
be the main objective. This is approached in the following way:

• Taking a broader intelligent machines perspective, a review and clas-
sification of architectures found in the literature will be presented in
Section 4.1, where also a concept of user views will be introduced.

• Section 4.2 treats architectures and abstractions used for so called
intelligent robots. That is to draw some conclusions about the special
case when robots are operating in more well defined environments,
like in the manufacturing case.

• Finally, in this chapter we propose an architecture well suited for
programming of industrial robots.

From an intelligent systems perspective, overall control of fully intelligent
or autonomous robots is outside the scope of this thesis. Instead, the
aims are to find proper abstractions for industrial robot systems, to make
such systems fit into more complex autonomous systems, and to facilitate
autonomous robot operation for well defined applications [98, 49].
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4.1 Role of Software Architectures

There is no way the designer of the system can foresee all application
demands. For the motion control in particular, we realize that the motion
control properties must be possible to modify in advanced applications.
Secondly, to provide sufficient scope for task-level programming it is de-
sirable to preclude unnecessary interference or obstruction deriving from
software architectures. This is a problem that has been overlooked within
robotics research. One reason is that research systems can be completely
open and they do not have to cope with a lot of special (customer) re-
quirements. Development of specific control functions have therefore been
neglected by statements like “just implement another procedure”, a mis-
conception that has already been commented on Page 17.

From an industrial perspective, development towards more advanced
industrial equipment should start from cost efficient, basic, but open, con-
trol systems. Robot systems for instance, can then gradually increase in
complexity wherever appropriate. This approach minimizes the techni-
cal risks and allows machine development to go along with the (some-
times slower) evolution of manufacturing practices. Solving the problems
of high-volume applications first gives experience and pay-off at the same
time.

Such a basis for the architecture appears to reflect one of the fun-
damental problems of control system design. The “NASA/NBS Standard
Reference Model for Telerobot Control System Architecture (NASREM)”
[13] is one of the most well known architectures for robots. This candidate
for robot software architecture has also been directly supported by some
experimental control systems [196].

The NASA architecture for telerobots

The general structure of the architecture is shown in Figure 4.1. Each
of the six layers has a horizontal partitioning into sensory processing,
world modeling, and task decomposition. On the lowest level for instance
[69], sensory processing (G1) means reading and filtering the internal
sensors, world modeling (M1) contains the kinematic and dynamic model
of the robot, and the task decomposition ( H1) includes the control algo-
rithm itself. The second level, called Primitive, equips the motion control
with functions like gain scheduling, adaptivity, i.e., functions that run
less frequently than the servo level algorithms. The frequency hierar-
chy is the dominant type of abstraction in NASREM. The E-Move level
handles pieces of robot programs for elementary operations. One such op-
eration can be “pick bolt from pallet”, assuming that the robot is properly
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positioned somewhere close to the target objects. In an industrial situa-
tion, composition of such (parameterized) unit operations are also used
for flexible manual programming of assembly tasks [95].
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Figure 4.1 The NASREM control system architecture for telerobots

Application of the NASREM architecture has been suggested both to
autonomous and industrial robots [56, 127]. However, both directions can
be criticized, indicating that NASREM is not the solution to our prob-
lems. A closer look from two points of view—robots acting in uncontrolled
environments and intelligent industrial robots—reveals a number of prob-
lems. Such analysis, however, requires some basic distinctions as to the
functionality and to this end we present some fundamental concepts.

Fundamental concepts

The following list is an attempt to classify different architectures.

Hardware: While the computing power of microprocessors still was the
major limiting factor for advanced robot control, the main purpose
of an architecture was to define a hardware structure that provided
the required real-time computing power. Descriptions of several such
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architectures have been published [209, 20, 19, 206, 113]. The hard-
ware structure is still important. Experimental systems should be
modular in such a way that a variety of interfaces, sensors, special
computers, etc. should be possible to easily add or replace. This is
of course desirable also for industrial systems, but low cost (at least
for the basic system without options) is usually even more impor-
tant. Chapter 5 contains an example of an appropriate experimental
hardware configuration for the purposes of this research.

Control: The manipulator dynamic control problem as such, especially
considering integrated position/force control, is a challenging problem
that has inspired to a lot of research efforts [59, 193, 109, 136, 100].
A scheme that solves the control problem can be seen as an architec-
ture. It typically involves several interacting control modules. From
a control theoretical point of view, other aspects of the system design
are often considered to be just a matter of implementation. More
experiment-oriented research, on the other hand, often defines the
control and the physical architecture jointly [209, 15, 165]. While
others explicitly talk about a control architecture [110], we will use
terms like control structure and block diagrams.

Task specification: Systems and methods designed for convenient de-
scription of the task that the robot should perform, is another source
for control system architectures. This is the topic of end-user robot
programming (sometimes related to principles used in process control
systems for the cell and factory control levels). Solutions range from
explicit manipulator programming [188] and up to systems where the
system automatically generates or links robot programs. No general
purpose system for automatic robot programming has yet been de-
veloped. Systems have been designed, however, for supporting some
particular aspects of task-level programming [210, 117], or for specific
applications [181, 115, 95, 49], or using special algorithmic concepts
[67, 92, 170]. An appropriate control system architecture should of
course be compliant with such approaches. They may turn out to be
useful in future robot programming systems. In this work, a software
layer for task-level programming will be specified concerning its re-
lations to other parts of the system, but selection of specific methods
are subject to other ongoing and future research projects.

Abstractions: Robots operating in an unstructured and mainly unknown
environment must make excessive use of external sensors, and they
must perform dynamic world modeling and real-time planning. Such
systems are more complex than the control systems for robots in
manufacturing. Two questions deserve further investigation:
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• It would be preferable to be able to use standard industrial robots
as components/modules in more complex autonomous systems.
What kind of demands does this put on the industrial robot
controller?

• Can principles from intelligent robot control systems be benefi-
cial also for industrial manufacturing robots?

These questions are treated below in Section 4.2.

User views: From the perspectives of various categories of programmers
that need to configure or program industrial robot systems, several
programming situations may be identified. When solving a specific
application problem, we may need to modify the system in several
ways (control laws, operator interfaces, etc.) requiring different types
of competence. Assume that we have one user type for each type of
required competence, each user type viewing the control system in a
certain way. Unless the system is carefully designed, any particular
one such view will be unnecessarily complex (involving a variety of
computers, programming environments, special restrictions on use of
software interfaces, etc.).

If we instead base the architecture on properly selected user
views, it is more likely that programming can be done more conve-
niently. This approach differs from before in the way that the external
view, rather than the internal implementation, is the primary mat-
ter. A view may map well onto internal modules based on some of the
above principles, but it need not to be the case. If we focus on the
software design for one specific view, the use-case driven approach by
Jacobson [96] would be the object oriented design method correspond-
ing to the user views of the system. Looking at objects, rather than on
the entire system, related view-based solutions have been proposed
in process control [199] and in computer aided control engineering
[142].

In conclusion, control system design can be viewed in several (rele-
vant and equally important) ways. Motivated by the wide variety of
users/engineers of manufacturing systems, and by the importance of man-
ufacturing practices, this thesis tries to forward the concept of user views
as the fundamental principle for industrial robot control systems.

A specific implementation will, of course, be based on a certain hard-
ware and control architecture, and means of task specification for the
end-user will be provided. Chapters 3, 5, and 6 each present examples of
such implementations (without calling it architectures).

Defining appropriate user views for manufacturing operation will, of
course, not solve complexity problems encountered for so called intelligent
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robots working in uncontrolled environments. For such robots, the author
acknowledges that architectures according to the abstractions item above
are more appropriate. The aim is, however, that robots for manufacturing
should be useful as modules in fully autonomous systems. Furthermore,
suitable abstractions are important also for task-level robot programming
and autonomous operation in some manufacturing situations. The follow-
ing treatment is therefore of interest.

4.2 Intelligent r obots

We will now study how different forms of abstractions have been used to
define architectures for so called intelligent robots. We will then see how
these principles can be used for more conventional industrial robots, and
how industrial robots can fit into so called intelligent systems.

Abstraction beats complexity

The purpose of abstractions is to cope with complexity. When a complex
system is divided into smaller manageable parts, those parts can be given
a new simplified interface, and aspects of the internal behavior is omit-
ted or simplified in some sense. We find this principle in organizations,
industrial production (Figure 2.2 on Page 7), control theory (cascade con-
trol for instance), and in software engineering (abstract data types etc.).
The abstraction then allows more powerful hierarchies to be built, using
more abstract interfaces on higher levels of the hierarchy.

An interesting question about any control system architecture is what
type of abstractions or hierarchies it is built upon. Consider a multi-
layered real-time control system for fully autonomous robots. Such a sys-
tem will contain both hard real-time software and artificial intelligence
(AI) related features (planning). The detailed implementation of such a
system would of course make use of data abstraction and other software
paradigms, but some kind of high level abstraction is needed to build hi-
erarchies to cope with the complexity [127]. Several such hierarchies have
been proposed by different researchers as presented by Schoppers [173]
according to the following:
Frequency hierarchies [13, 202] are based on the standard real-time

principle that the real-time processes in a lower layer run more fre-
quently than those in the next higher layer of the system.

Data abstraction hierarchies [111] are closely related to the data ab-
straction ideas—e.g., in object-oriented programming. A lower soft-
ware layer provides an abstract machine for the adjacent higher layer.
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Representational abstraction hierarchies [13, 202] is normally used
by AI people as the method of building an abstraction by suppressing
or ignoring information.

Deresolution hierarchies [131, 119] is often used in motion planning.
Two layers can do functionally the same computations, but with a
higher resolution on the lower level. Deresolution is related to the
previous hierarchies, but is not the same.

Subsystem hierarchies [111, 13] are based on grouping the control
of subsystems—e.g., control of individual joints—to control of the
composed system—e.g., the arm driven by the joints. This approach
is often combined with data abstraction.

Competence hierarchies [50] are built by composing simple behaviors
of lower layers into more competent behaviors on a higher level of
the system. For example, vibrations in a robot gripper caused by a
simplified control, can be utilized on a higher level for an advanced
“non-stiction” assembly operation.

Temporal extent hierarchies [108, 202] are designed so that higher
levels manage behaviors of longer duration. Note that higher-level
computations associated to actions over a longer period of time may
require updating and re-computation more frequently than lower lev-
els do.

An attempt to a uniform approach for the design of software architectures
is behavior abstraction [173] which is not about the software modules
themselves. Instead, the definition’s focus is on the behavior being gener-
ated, i.e., the effects the modules have on the hardware being controlled.
The idea to let the architecture specify external properties instead of the
internal design is in common with the approach in this work. Topics about
behaviors and behavior control, however, are subject to prolonged discus-
sions [56] and outside the scope of this thesis. Let us therefore continue
with aspects related to industrial robots.

Uncontrolled environments

As mentioned earlier, a major problem for robots in space, and for au-
tonomous robots and vehicles in general, is to maintain a model of the
dynamically changing environment and to replan the motions according
to environmental changes. A large number of sensors is then required,
as well as advanced sensory processing and world model updating. Spe-
cial manipulators can also be required to position sensors in places where
the unknown parts of the environment is best observed. An architecture
should of course aid in the development of such systems.
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From an AI point of view, an upper layer plans and sends down
detailed actions to the next lower layer, keeping the abstract plan in
the higher layer. Unless some more sophisticated management of the
interplay between the layers is introduced, the lower layer cannot cope
with changes of goal or environment and will be stuck dealing with the
originally expected situation. Such a modification appears to be very hard
to combine with hard real-time requirements. A more promising approach
would be to also supply more abstract actions and replanning functions
along with the detailed orders, a problem which is still a research subject.
Though the selection of suitable abstractions and associated architectures
is still a topic for ongoing research [222, 180, 80] and discussions [127],
a promising prototype implementation of high level concepts for robots in
space is underway [175, 174].

From an embedded control point of view, when it comes to full imple-
mentations of autonomous robot control, it is of course very desirable to
use “off-the-shelf” manipulator control systems already widely used in in-
dustrial applications. That would decrease the development effort and/or
increase reliability. To meet the special demands like special interfaces to
the planning levels, a very open manipulator controller would, however,
be required. Development of intelligent industrial robots can hopefully
lead to this. Another reason would be to support a bottom-up approach
(build the system upon principles that have turned out to really work).

The top-down approach dominating the intelligent robot research
seems to be a major problem. It appears to the author that there are
too many possible solutions that are subject to investigation prior to im-
plementation (if that is ever done). A bottom-up approach would therefore
be more appropriate, as pointed out also by Harmon [79]. That means us-
ing open and flexible industrial robots (tailored to the high-level require-
ments) as modules for full implementation of specific intelligent robot
control tasks. Experiences from many such prototypes may likely influ-
ence the definition of a suitable architecture for fully autonomous robots.

Intelligent i ndustrial robots

A standpoint declared in this thesis is that open control systems provide
robot systems with flexibility and wider scope of application. Now we turn
to the question whether the NASREM architecture is suitable for such
flexibility.

Figure 4.1 shows that there is a global database and an operator
interface connected to all levels of the system. This is good in the sense
that information from lower levels can be useful on higher levels, and the
operator may need to change or monitor the low level algorithm during
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for example new advanced robot tasks. However, our desire to have a lean
and efficient system rather means the opposite—i.e., that control signals,
sensor values, parameters, etc. should be kept as locally as possible in the
system [34]. The standpoint in this work has been that data flows between
the different software layers, required for certain tasks, should be created
on demand. This has been hard to achieve in embedded systems without
changing the software on the lower level.

Another observation in NASREM is that sensor signals only enter
the system at its lowest level. This reflects the frequency hierarchy; the
most frequent use of sensor signals is in the lowest layer where the highest
sampling frequencies are used. However, sensor-based functions on higher
levels may very well need fast enactment, as the deburring and welding
applications in Chapter 8 will show. Furthermore, sensors used only on
higher levels leads to unnecessarily high data flow through lower layers.
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Figure 4.2 Structure of hierarchical intelligent robot control system (from
[210] referring to [171]).

Looking for something more dedicated to industrial robots, an ar-
chitecture that is often referred to is exemplified in Figure 4.2. As with
NASREM, this is a way of organizing the control system internally. How-
ever, for the industrial robot controllers, an object-oriented design and
implementation would be sufficient to cope with the internal complexity.
A structure according to the figure can then very well be used, but should
that be specified by the architecture? As mentioned above, the proposed
architecture will be based on user views supporting convenient factory
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floor operation. Techniques allowing the system to be open will also be in-
troduced, still maintaining the desired efficiency. Concerning the link to
high level planning, the following approach is believed to be well suited
for industrial operation.

Hand crafted agents

Considering the issue how an architecture can support planning and task-
level programming, one of the few systems that have proved to work is
considered. The AI laboratory at University of Edinburgh has developed
a complete assembly system called SOMASS [123, 77]. The system plans
and executes assemblies in a special artificial block-type world, namely
the Soma world. SOMASS has been demonstrated to work well despite a
number of possible sources of failure. The uncertainties that may cause
assembly failure include part tolerance, physical characteristics such as
friction or stiction and the like. The following quote from [77] is central
for the purposes of the thesis:

The interesting point about SOMASS, for our purposes, is that it
takes a particular, and somewhat unusual, approach to the ac-
tivity orchestration problem. The conventional view in assembly
robotics has tended to be that the planning component of the sys-
tem should anticipate and deal with various possible reasons for
assembly failure. This has, in practice, proved computationally
and intellectually intractable. SOMASS, on the other hand, takes
the position that the planner should concentrate on those aspects
of the problem that can tractablely be expressed in symbolic form,
leaving the execution agent to cope with the specifically manip-
ulative difficulties of the assembly problem. Since the agent is
hand-crafted, most of the consequences of the uncertainties in the
parts and their manipulation are dealt with by the human pro-
grammer who has years of experience of object manipulation to
call on when diagnosing and repairing failures in the tacit skills
of the executive agent.

The fundamental standpoint in this quote is shared. However, the main
interest here is not planning or activity orchestration, but rather the ex-
ecutive agent and the supporting software layers for application program-
ming. The “hand-crafted executive agent” embodies the skill of the human
operator and describes his knowledge of the physical situation and its un-
certainties. The research goal here is this type of programming, to struc-
ture it and thus to improve efficiency. This also illustrates how research
in structures for physical robot functions provide a link to higher-level
control approaches such as planning.
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4.3 The proposed Open Robot Control architecture

We are now ready to present the new Open Robot Control (ORC) archi-
tecture, which may be characterized by the following key properties:

• The layers are more dedicated to specific programming cases requir-
ing a certain type of competence.

• The motion control has been split up for control engineering reasons.

• The intermediate level has a specific layer for application specific
motion control, admitting more general and advanced control features
than other systems do.

• The system programming level of other systems is mainly covered by
the executive layer in ORC. That layer also serves as an holder of the
robot programming language, which is fixed in other systems.

• There are both an on-line and an off-line programming layer. These
are uniquely integrated on an equal level basis as explained in Chap-
ter 3.
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Figure 4.3 Users and properties of software layers/views in the ORC archi-
tecture.

56



4.3 The proposed Open Robot Control architecture

• Task-level features are today usually implemented on top of off-line
systems. Such features also defines a higher-level user interface or
programming environment. Therefore, task-level programming has
it’s own software layer in ORC.

The layers and typical users are shown in Figure 4.3 whereas the hierar-
chy of layers is shown in Figure 4.4. Please relate the on-line and off-line
layers in that figure with the robot system interfaces in Figure 3.6 on
Page 30.
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Figure 4.4 The Open Robot Control (ORC) architecture.

System level programming

From computer systems, we are used to system level programming and
configuration. That includes writing new device drivers and installing
them into the system [139]. Development of certain software libraries and
tools can also be considered as system programming from a user point of
view.

Robot programming shares the properties of computer programming.
Additional aspects have to do with the control of the physical world. Let
us define the meaning of system programming in three stages:
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1. Implementation of (robot and process independent) libraries, and
conventional implementation of drivers for IO devices and sensors.

2. Implementation of robot specific libraries, robot programming tools,
and robot programming languages.

3. Implementation of application specific motion control as mentioned
above.

We will regard the type 1 as just a matter of programming appearing on
any level of the system. Just like the selection of (computer) programming
language, it is not critical for the design of the system, and it is therefore
not further treated.

From an engineering point of view, we note that tailoring the motion
control (type 3) requires control engineering competence, while the (type
2) application support does not. It is therefore reasonable and appropriate
to define two different layers for these two types of programming. The
lower layer for application specific motion control is called the application
layer, and the upper layer for tailoring of the programming interface is
called the executive layer [150]. These two intermediate programming
layers form the system level in Figure 4.4.

End-user programming

The aim that standard industrial robots should be possible to use as com-
ponents for so called intelligent robot control implies that task-level pro-
gramming principles should be put on top of explicit robot programming
tools. Task-level programming facilities can of course be accessible di-
rectly from an on-line programming tool, but its software should rely on
off-line programming. The reason is that off-line and task-level program-
ming have the same need for abstract world modeling. On-line program-
ming on the other hand, deserved a separate approach as described in
Section 3.5.

Another conclusion from Chapters 2 and 3 was that robot programs
needed to be represented in different ways in the on-line and off-line
cases. Furthermore, factory floor and engineering department program-
ming should be integrated on an equal level basis. This implies the need
for transformation of robot programs according to Chapter 3, a need re-
lated to different programming views and manufacturing practices and,
thus, to the proposed architecture.

Figure 4.5 shows these adjacent software views. Adding task-level
programming on top of off-line programming results in the upper part
of Figure 4.4. Note that even if task-level and off-line programming are
based on the same tool (IGRIP [65] in this case), our architecture specifies
that the task-level features should expose a uniform view to the user.
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Figure 4.5 Integration of on-line and off-line programming required trans-
formation of the robot programs according to Chapter 3. These transforma-
tions are denoted f and f−1 here.

Servo level programming

On the level of servo programming, a persistent feature is that software
and hardware modules exhibit a very close relationship. Hardware and
software design, at least for the motor control, are done as integrated ac-
tivities to facilitate price/performance optimization. The software there-
fore naturally takes on a structure that reflects the hardware structure,
whereas programming is performed by the implementors of the system.
This implies that the user views of the architecture maps well onto an
object-oriented design of the motion control system, which in turn reflects
the structure of the physical objects. This is shown in Figure 4.6. Having
realized the meaning of that figure, it is straight forward to define the
servo control part of the architecture, that is, the three lower layers in
Figure 4.4.

Discussion

As pointed out several times, application specific motion control is very
important to provide flexibility and wider scope of application of industrial
robots systems. Industrial manipulators are characterized by a strong in-
terplay between user level commands, which often look robot independent,
a good (but not perfect) world model, motion control services, and external
signals from, say, a welding or grinding tool. This interplay is crucial to
obtain flexibility and performance, but also to avoid the cost of otherwise
necessary external sensors.

59



Chapter 4. Architectures

J
1 . . .J

2
J
3

J
4

. . . J
n

 J
n+l

 J
n+2

J
k

Arm dynamics

Total motion dynamics

P
h

ys
ic

a
l w

o
rl
d

Arm control

Motion control

Application

Application dynamics

C
o

n
tr

o
l s

ys
te

m
Motor control

Figure 4.6 The structure of the control layers mirrors the physical environ-
ment having the corresponding dynamic properties. For a manipulator with n
joints, the Motor control for joints J1 to Jn (controlling the joint drives J

1 to J
n )

is handled by the Arm control. Joints Jn+1 to Jk control external (application
or task specific) devices, which is handled directly from the Motion control.
Thus, multivariable control laws are kept within the Arm control.

Robot operations, or executive agents, are preferably expressed on a
simple end-user programming level of the system. However, as examples
in Chapter 8 show, performance and efficiency demands sometimes make
it necessary to modify the motion control system.

The motion control system provides a set of robot functions. Seen
from the outside it consists of data and procedures. Programmers often
regards it as a set of device drivers. One could consider the possibility of
trying to find a complete set of well-defined procedures—i.e., some form of
generic set of robot functions. These functions could then form a hard shell
(no reason to get inside) library, where the internal implementation is
hidden and optimized. We can then consider the robot as an abstract data
type [215], and it can even be nicely incorporated in an object-oriented
framework [133]. There are proprietary and safety reasons for having a
closed system, and they are also easier to implement than open systems
are. This explains why several of the currently available robot control
systems seem to have such a closed structure. This is a major reason
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Figure 4.7 Application know-how gets expressed in robot programs.
Presently (left) however, it also affects the built-in motion control. The pro-
posed system (right) contains a software layer for application specific (cus-
tomized) motion control.

for the difficulties to slightly modify the motion control, to include a new
sensor etc. This leads to a situation when it is no longer possible for the
robot manufacturer to do the required modifications. Thus, the flexibility
or performance unnecessarily gets limited. It is therefore central for the
purposes of this thesis, that application know-how can be added on top of
the built-in motion control as shown in Figure 4.7. Note that application
specific motion control only in simple cases can be achieved by changing
available control parameters. More often, new control strategies need to
be added. This puts special demands on the implementation (which will
be returned to).

4.4 Software paradigms

Robot control systems are typically heterogeneous, both in terms of hard-
ware and required real-time properties. Concerning the (internal) imple-
mentation of the system, it was mentioned above that object orientation
could be useful, but other software paradigms may also be appropriate. A
review of some possibly useful techniques for the implementation of the
proposed architecture is presented in this section. A complete investiga-
tion would be a topic of its own, but some alternative paradigms have
been studied. Note that the end-user programming (within the top three
layers in Figure 4.3) is not the subject in this section. Instead, we are
concerned with programming within, and implementation of, the other
(lower) layers.

Functional programming There are several potential benefits (like
formal verification and easy mapping to parallel hardware) of using
functional programming [38, 8]. We may then use stream-oriented pro-
gramming [8] to implement low-level data-processing/control blocks. Us-
ing functional programming for implementation of the stream operations
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would limit ‘side-effects’ and increase reliability, which is sometimes hard
when traditional programming methods are used.

A particularly interesting development in this direction, including
both the functional real-time programming language H and special pur-
pose hardware, has been done by Carlstedt Research [208]. That approach
would, for instance, be well suited for implementation and programming
of the computer nodes in our system (Figure 5.4, p. 74). For instance,
our data streams are time stamped, which fits the IO model in the H
language. On the other hand, as far as known to the author, no func-
tional approach has yet fully proven its applicability to embedded control
problems of realistic size and complexity.

Imperative languages For almost all programming in industry, im-
perative languages are used, i.e., it is explicitly stated in the program
(statement by statement in order as written) the operations that should
be performed by the computer. Assignments to variable/memory (and for
instance in the C [104] language also pointer arithmetics and bit manip-
ulations) is almost arbitrarily permitted, thereby giving the programmer
(too?) much freedom. The opportunity to tune the software to hardware
and for efficiency, without resorting on advanced compilers, are major rea-
sons for the success of the C language, and later also C+ + [198]. With the
aim to implement industrially relevant robot control systems, such prac-
tical aspects have been considered also in this work (at some expense of
programming style/elegance). As for any language or paradigm, we need
appropriate abstractions to cope with software complexity [8].

Compared to traditional structured procedural programming, object
orientation offers a powerful way of packaging data together with related
functions manipulating that data. The object-oriented paradigm [126] is
based on objects having internal attributes/states that can be manipu-
lated by methods that are available via a type/class declaration. This
means that object orientation resorts on side effects, at least in a func-
tional programming sense. So even if the data being manipulated is well
encapsulated within classes and objects, we can in a way consider object
orientation as the opposite of functional programming. One could there-
fore suspect that object-oriented implementation of complex systems leads
to unpredictable behaviors and complicated faults [217], particularly if we
use active objects (i.e., objects with internal threads of execution [93]). The
problem is, however, not the object oriented paradigm. Instead of rejecting
object orientation, we need a proper separation between the description of
data flows in one mode of operation, and the transitions between different
such modes.
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Declarative and formal methods Declarative languages, such as Pro-
log [57], have been designed to make the programmers task easier by
admitting programs to specify what should be done (instead of how to
do it as when imperative languages are used). The problem is that a
declarative language well suited for one type of problem, like logical re-
lations between objects in the Prolog case, in practice turns out to be less
appropriate for other applications. An interesting approach for embed-
ded systems is the Erlang language, which also shares some properties
of functional languages [25]. The simplicity of Erlang, in combination
with built-in support for concurrency (among other features), makes it
very powerful for systems containing a large (and dynamically changing)
number of concurrent processes, but we found it to less suitable for motion
control systems.

Another declarative approach is the synchronous one [36, 76], which
offers a uniform approach and some formal verification tools concerning
the logical and temporal properties of the software. It is being applied
to robot control [186]. Synchronous languages provide a programming
interface for (correct) specification of software interconnections. However,
each software component has to be implemented in a traditional way, for
instance using the C language. Thus, this is not a complete solution, but
it may in the future, for instance, be useful for safe programming within
the application layer.

A pragmatic approach There are no general agreement on the cri-
terias for a “good” paradigm. We may strive for code reuse, efficiency,
maintainability, ensured correctness, or for programs that are easy to un-
derstand. The most appropriate language or paradigm may depend on
system level, application, actual hardware, price/performance demands,
etc. In fact, a blend of techniques is believed to be appropriate.

Use of techniques that still are in a research stage, like the syn-
chronous and functional approaches, would put the implementation efforts
of this project at risk. A well structured and widely accepted paradigm is
object orientation (for analysis, design, and programming). At a hardware
related level of the system, however, it was not thoroughly investigated
at the time when implementation of the lowest part or the ORC archi-
tecture was carried out. Therefore, this was part of the research as will
be described in the final part of Section 5.3 (p. 83). For other parts of
the system, my attitude has been to use or combine whatever paradigm
that suits the actual situation. The notion of function objects [198], for in-
stance, is a way of combining functional (or data flow) programming with
object-oriented programming. The ORC architecture does not prescribe
any particular software paradigm.
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4.5 Summary

Abstractions are used to cope with complexity, a property which applies
to mathematics, to computer science, and also to robot control systems.
The aim of this chapter was to find abstractions suitable for industrial
robots used in manufacturing. For such robots, complexity issues deal
with the programming/operation of the robot rather than the internal de-
sign. The reason is that robots in manufacturing operates in fairly well
known environments, so there are less demands on knowledge represen-
tation, automatic world modeling, reasoning, planning, etc. Instead, the
most important thing is to support manufacturing practices by having
well defined interfaces for different programming situations. However, to
permit more complex situations in the future, the control system should be
structured in such a way that ‘machine intelligence’ can be added on top
of the traditional functionality. This approach and the new architecture
result from the following contributions:

• In Section 4.1, the fundamental concept of available architectures
were reviewed, and the new user-view concept was introduced.

• Abstractions used for so called intelligent robots were studied in
Section 4.2. Experiences from real experiments indicated that low
level effects should be explicitly dealt with by the application expert
programmer. Thus, it is a good solution to have a low-level (on-line)
programming interface, and to add higher (planning) levels on top of
that.

• Some typical programming situations were identified in Section 4.3,
and the ORC architecture was proposed based on those situations.
From bottom to top, the proposed architecture supports modular im-
plementation of the built-in motion control (three layers), implemen-
tation of application specific motion control, tailoring of embedded
system primitives, and end-user programming (three layers). Our
desire to have appropriate programming interfaces without imposing
any global database or hierarchical data-flow structure, which was
observed as a problem with existing architectures, is believed to be
achieved with the proposed ORC.

A major contribution of the thesis is the combination/integration of the
overall architecture (as defined in this chapter), and technical solutions
(presented in other chapters) making the ORC architecture possible and
efficient. Requirements on These ideas can of course also be applied to
other types of machines. To have a unified approach is particularly useful
when designing complicated manufacturing systems.
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Experimental Platform

Experimental verification is very important in applied research. It is to
advantage for robotics research that robots are feasible to have in an
ordinary laboratory, and many different control subjects can be put in
a robotics context. Several different robot systems have therefore been
built for experimental purposes within research and teaching. However,
available systems were all found to belong to the following categories:

• The experimental system is built on top of an industrially available
system [133]. This is a way of reducing the necessary engineering
effort, but the limitations of the original system remain.

• The control computer hardware has in several cases been replaced by
external computers allowing complete replacement of the control soft-
ware [206, 197, 37]. That is, however, done for older types of robots,
typically with interfaces to DC-motor drives and angular encoders.

• Complete robot systems have been designed and built, sometimes
including special mechanical solutions [88], but more often just with
simplified mechanics (to reduce cost and/or to make very specific
experiments possible) like direct drive robots.

In applied robot control research, it is in most cases important to use robot
manipulators that are relevant for industrial use. Simplified or special
purpose research robots do not have realistic dynamic properties. The me-
chanical design done by major robot manufacturers has been worked out
considering many application, quality, and maintenance demands. Thus,
control of such robots are industrially more relevant. As an example, direct
drive (rigid) robots are (today) appropriate only in special applications.

The experimental robot control system developed is unique in the
sense that it is based on modern robots commonly used in the industry,
still maintaining important safety functions of the original system, but
allowing the researcher full access to control and programming functions.
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A complete framework for reconfiguration of ABB industrial robots
will first be presented. The framework supports reuse of hardware mod-
ules for recent (S3 and S4) versions of ABB system. Specific designs for
the two systems in our laboratory will then be described, followed by
some computing hardware considerations. Finally in this chapter, a re-
mark about industrial aspects of experimental control is given.

5.1 Experimental control using ABB robots

Reconfiguration of robots has been limited to those from ABB Robotics.
These robots are widely used in industry, and detailed information was
available to the author. The main goal of the reconfiguration is to make
possible experiments in control, where the experiments can be done on
several levels ranging from basic servo experiments to overall program-
ming of the robot functions.

Control system generations

The first ASEA/ABB robot was introduced on the market in 1974. The
control system was called S1. Two types of mechanical robots were avail-
able, the Irb-6 and the Irb-60. The next system, called S2, was introduced
in 1982, together with the spot welding robot Irb-90 and later also the as-
sembly robot Irb-1000. These types of robots are not available with control
systems later than S2.

The control system S3 [3] was released in 1986 together with the still
quite modern Irb-2000. S3 systems from the years 1986 to 1991 having
the measurement electronics placed on in the control cabinet are called
S3a below. Later S3 systems having the measurement electronics on the
robot are called S3b. Systems S3b and later all have digital-to-analog
conversions taking place in the robot and serial communication with the
control cabinet. That is to reduce cost and increase reliability.

During 1994, the S4 control system was introduced. S4 systems from
1995 and 1996 having the same type of IO interface and drive units as
in S3b are called S4a. The next generation still under development is the
S4b, which will have a quite different IO and drive system interface. That
future system has already been studied, and a new version of the robot
interfaces is planned. A wide range of mechanical robots are available
with the S3 and S4 systems.

Hardware modules

In order to fill a general need for realistic but affordable (used) robots,
any generation of ABB robot system should be possible to use. (S1 and
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S2 systems are not quite relevant for servo control purposes, but may
be useful for evaluation of other control solutions also requiring access
to the low level interface.) It is therefore important to have modular
hardware and software allowing reuse of modules for different systems
and research purposes. Looking at the hardware, there is the hardware
from the original ABB systems, and the added hardware modules which
are called LTH modules in the sequel. The ABB hardware can be divided
into modules according to the following (abbreviations are given within
parenthesis for use in the table below):

Robot (Irb): The mechanical robot, including its motors and sensors, is
regarded as one unit. Circuit boards mounted on or inside the robot
may, however, be subject to replacement if they comprise a subsystem
that is replaced. So far that applies to measurement electronics.

Measurement electronics (AME): All ABB robots are equipped with
resolvers for measuring the angular motor positions (opposed to the
angular encoders used on most other brands). The resolvers, and the
tachometers in older systems, are not replaced whereas the electron-
ics providing digital sensor values is.

Drive electronics (ADE): The power electronics for driving the motors
forms one module which is never replaced.

Control cabinet (ACC): The cabinet including main power transformer,
rectifier, cabling, etc. is here called control cabinet. It also contains
systems supervision hardware. The drive electronics is (so far) located
in the cabinet, but that is a separate module.

Computing hardware (ACH): The microprocessors, mounted on one or
several boards, of the original system form the computing hardware.
The reconfiguration means that it is removed, disconnected, or con-
nected differently in the control cabinet.

It is the AME and ACH modules that are subject to replacement. The
others are still used. The following LTH modules have been designed to
replace or interface the ABB modules above:

Measurement electronics (LME): Completely new measurement elec-
tronics was developed because the original one was too involved with
other system functions. Our solution is slightly more expensive than
the cost optimized ABB one. On the other hand, we get a lower noise
level.

System adapter (LSA): Additional interface needed for S3a systems to
use the LME of S3b systems. This module has not been completed
yet. It is therefore unclear what noise level there will be for position
signals of S3a systems equipped with tachometers.
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Control cable (LCC): A new version of the control cable between the
robot and the control cabinet is required for S3b and S4a systems.
That is because the original system uses asynchronous communica-
tion, while our communication is synchronous.

Embedded computer (LEC): We use VME-based board computer sys-
tems placed beside and connected to the ABB control cabinet. Other
types of computer hardware could just as well be used; the interfaces
fit ordinary off-the-shelf IO boards.

Drive system interface (LDS): This is to get access to drive current
references internally in the ABB controller. Early systems (S1 and S2)
have DC motors which means that the current reference can be used
as a torque signal. Later systems (S3 and later) are equipped with
AC motors, requiring torque/commutation control to be performed in
software.

ABB bus interface (LAB): Modern control systems have less of fixed
logic (relays etc.) for supervision and maneuvering purposes. Instead,
a safety/system board takes care of this. That board is important to
use (to protect the robot from damage) also for experimental control,
but it is accessed via the internal ABB IO bus. A special LTH/ABB
bus interface was therefore developed. This also gives that advantage
that the ABB IO boards and customer IO connections can be accessed
from our external controller.

The LME module replaces the AME one in the cabinet or on the robot
depending on system generation. A serial communication interface has
also been developed, but it is here viewed as a part of the LME module.

Hardware configurations

In S4 systems, which have an internal VME-bus, there is a possibility to
make use of the ABB motion control software. Excluding that possibility,
the possible hardware configurations are shown in Table 1.

Most effort has been put into the Irb-2000/S3b system that is avail-
able in our laboratory. That system, and the additional computer hard-
ware we are using, will be described in more detail below. In addition
to our modifications, an S3a system only requires the quite simple LSA
module which is only connections to the measurement electronics that is
placed in the control cabinet instead of on the robot. The S4a2 system

2 The reconfiguration of S4a according to this chapter, including a second revision
of our S3 interfaces, is currently being completed by Norberto Pires at Coimbra
University in Portugal.
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Sys. Remove Disconnect Add Comment
S1 See [143]
S2 AME, ACH LME2, LDS2 See [47]
S3a AME, ACH LME3, LDS3, LSA, LAB Not tested
S3b AME, ACH LME3, LDS3, LCC, LAB Sec. 5.2
S4a AME, ACH LME3, LDS4, LCC, LAB (Coimbra)
S4b AME, ACH LME3, LDS4b, LAB4 Planned

Table 1 Overview of reconfigurations of ABB robots. A number x appended
to an added module name denotes a specific version of the hardware first
developed for the ABB controller Sx.

interface is also quite similar to the S3b system. Thus, the next section
almost covers newer systems too. The systems we have built are based on
mechanical robots of type Irb-6 and Irb-2000 respectively, but it should
be possible to do the same also for other robots using the same type of
control system.

Reconfiguration of S1 systems

Due to its limited complexity and lack of supervision functions, S1 systems
are quite simple to open up. One sensor interface is described in [120].
The resolvers are approximately the same as in the later S2 systems. It
could therefore be a good idea to use the resolver interface from [47] to
improve the quality of the sensor signals. That might, however require
some additional wires between the resolvers and the Resolver-to-Digital
Converter (RDC).

The analog speed control of the original system can still be used
simply by using the drive unit input as a control signal. Direct access to
the torque can be achieved by cutting the speed control loop and using
the current reference as control signal as was done by the author in an
earlier work [143].

Reconfiguring an Irb-6/S2 robot system

The modification of the robot system was approached with the goal to keep
the mechanics and the power electronics, and also as much as possible of
the existing safety system, and only add parts necessary to create general
interfaces to our own computers. That is to get an industrially relevant
system, and it is no limitation for our research purposes. The documen-
tation and drawings of the modifications included in [47], together with
manuals available from ABB Robotics, form a complete description on how
to accomplish the reconfiguration.
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Figure 5.1 Overview of S2 modifications. There is one Resolver-to-Digital
converter (RDC) module for each joint, but only one axis is shown for clarity.
The analog control signal inputs are also located at the RDC modules, where
analog signals for joint speed and position are available, mainly for test
purposes. The joint signals are normally accessed via the Data I/O module,
which comprises a 16 bit (plus address and control signals) parallel resolver
data bus. An interface for a laser distance sensor has also been included.

An overview of the resulting design can be seen in Figure 5.1. The
original control computer is retained to make it easy to change the system
back to its original shape, and to keep the changes in the safety system
small. However, the original functions to take care of the measurement are
not used. Instead, we have built our own sensor interface (LME2), and we
have done it in a way that makes it possible to keep the sensors and cables
already available inside the robot. The sensor system for measurements
of robot joint angles is based on resolvers. Our solution principle is to
drive and read the resolvers from hardware based on existing commercial
chips for resolver-to-digital (R/D) conversion [14]. The solution principle
can be seen as part of Figure 5.1, which also shows the solution principle
for driving the motors (LDS2). The user can select to use the original
analog PI-speed-control available on the drive units by selecting the PI
mode shown in the expanded part of Figure 5.1.
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5.2 An experimental Irb-2000 r obot system

The Irb-6 robot which has been reconfigured according to the previous sec-
tion is sufficient for research concerning the computer scientific problems
in the current research. When it comes to implementation of the control
software layers, a more modern industrial robot with six degrees of free-
dom, like the Irb-2000, is a better testbed. The added computers are also
included in this presentation to give the reader a better understanding of
the complete system.

System overview

Both the Irb-6 and the Irb-2000 robot are controlled from VME-based em-
bedded computers. Sun workstations are used for software development
and control engineering, as well as for robot operator interaction. Fig-
ure 5.2 shows the Irb-2000 part of the laboratory (Cameras and a video
interface mounted in one of the workstations are not shown for clarity).
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Signals from the internal sensors of the robot to the VME system go via
the sensor interface to the DSP board connected to the VME bus.

The master computer in the VME computer is based on a M68040
microprocessor. Supervision and safety functions are implemented on a
M68030 board, well separated from the rest of the system to prevent
damage of the robot. Digital Signal Processors (DSP) are used for low-
level control and filtering of sensor signals. Sensors requiring very high
data bandwidths are connected directly to the DSP boards. An additionally
DSP board belongs to the force-torque sensor [101]. A six DOF joystick
[94] can be connected to a serial port of the M68030 supervision computer
for data transfer to memory accessible from the VME bus.
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Figure 5.3 Placement of hardware added to the Irb-2000 system.
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5.2 An experimental Irb-2000 robot system

Basic design

The Irb-2000 is equipped with AC motors, and because we want to be able
to implement all of the control layers, the interfacing to the S3 control
system used has to be at a lower level compared to the Irb-6 interface. The
system is simply cut at the drive unit interface, which means that also
the AC motor current references must be computed in such a way that
the desired torque is achieved. The AC motor control should be computed
with a rate of at least 1 kHz (preferably 2 kHz). Otherwise the torque
control will not be good enough, particularly for high speeds. This means
that the requirements on computing power are quite severe. Our solution
is to use Digital Signal Processors (DSP) as described below.

The same type of resolver-to-digital conversion as for the Irb-6 in-
terface is used, but with the accuracy of 14 bits per motor revolution
and 8 revolution counting bits in hardware. Both hardware and software
are prepared for a resolution of 16 bits per motor turn. Thus, joint an-
gles are provided as absolute 24 bit values. Using commercially available
R/D converters [14] with an internal analog velocity signal and a phase-
locked loop makes it possible to get proper anti-alias filtering by tuning
that loop. This is hardly possible with optical encoders or with other types
of resolver measurement principles (a higher sampling frequency and the
roll-off of the process then have to be used instead). The 24 bit position
data for the motors can simply be differentiated to get the speed; that
signal has been filtered in the analog phase locked loop. The sampling
period will then, however, be quite crucial. The next generation of the
sensor interface will therefore also provide the speed value from the RDC
chip. The R/D conversion hardware is located on the robot which reduces
the required length of the wires for analog signals to a minimum.

The current references for each motor are output from the computer
hardware as two 12 bit values for two of the phases of the motor (the
third phase is generated in the drive units). D/A conversion provides the
current references that can be connected to the original drive units. The
two 12 bit current references are transferred together as a 24 bit word
from the computing hardware, i.e., the same number of bits as for the
resolver data.

Communication with sensors and actuators

Reduced cost for cables, reduced noise level, and increased reliability are
advantages obtained by placing sensors, actuators, and necessary elec-
tronics close to the motors on the mechanical robot. That was experienced
more than 10 years ago using optical connections [153], and this approach
is also used in the S3 control system, although not optical. It is also be-
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lieved to permit more modular (and thereby more flexible and reusable)
machine designs within mechatronics in general [207]. Such a modular
approach, however, has not had much industrial impact yet.

The serial communication line of the original ABB S3 system was for
our purposes too dedicated and involved with the rest of the hardware. It
was therefore realized that new communication hardware and software
needed to be developed. Such an interface between sensors, actuators, and
control modules was designed and built with two purposes in mind:

1. To connect the Irb-2000 robot and its reconfigured control system in
a simple and efficient way allowing sampling rates of 4 kHz for the
motion control.

2. To serve as a testbed for research within decentralized control and
real-time systems.

This has so far been successful. An early description of the design was
given in [144]. The system has been used in a case study on distributed
real-time control [207], and it has been referred to [220] as a platform for
verification of timing problems in decentralized real-time control [219].
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Computer
node
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Motor unit n

Actuator
node n

Serial communication

Figure 5.4 The used principle for connecting the joint servos of the robot to
the control system. A sensor (input) and actuator (output) node sharing the
same address can be viewed as a motor node from the control side.

Using physically distributed, i.e., decentralized, hardware means that
the control system (including its sensors and actuators) contains a number
of so called nodes. A node may constitute a sensor, an actuator, or a
processor. A node can, of course, physically include several such elements,
but they should conceptually be separated. Several types of so called
field buses [156] are today used in process control. Specific designs are,
however, often done for specific machines. Our type of bus, which we
named the SA-bus (Sensor Actuator bus), is one such example. This bus
has three types of nodes as shown in Figure 5.4. More specifically, some
properties/features of the modified system are:

• The robot system communicates via synchronous serial communica-
tion. A bit transfer rate of 1.5 Mbit/s makes it possible to transfer 32
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Figure 5.5 Servo hardware in the modified S3 system. Please compare with
Figure 5.3 to see the physical placement.

bits of data with a sampling frequency of 8 kHz for each joint, if six
joints are used. The communication protocol fits directly to the serial
ports of most DSP types.

• The serial communication signals between the computer system (i.e.,
the computers that replace those of the original system) and the
interface hardware, as well as between the interface hardware and
the robot, are connected via IEEE-422 line drivers.

• Our SA-bus protocol specifies that data are transferred in 32 bit
words. A word going out to the robot system contains the current
references, the address of the joint, a “current references to be used”
bit, a “read the resolver for the addressed joint” bit, and parity. An
addressed resolver sends a word containing the 24 bits position data
back to the computer interface on the return communication line.

• Computer nodes do not have addresses themselves. They are just
processing elements connected in a data-flow oriented [8] style. The
motor node number is attached as an address to each data message.
Time stamping is implicitly achieved by using synchronous commu-
nication in combination with explicit time delay messages after tem-
porary faults.
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• Additional control and status bits for the drive units are connected
directly to standard IO boards on the VME bus. Those signals are
used by the master computer for initialization and fault detection.
The planned version for S4b systems will (according to the new ABB
design) use the serial bus instead.

Even if the nodes are conceptually separated seen from the computer
side, they were actually built in clusters as already shown in Figure 5.3.
That was to simplify the hardware considering the design of the original
system. This means that the physical LME and LDS modules mentioned
on Page 69 relate to the six motor units as shown in Figure 5.5. Note,
however, that the motor control conceptually agrees with the motor control
layer of the ORC architecture on Page 57.

System supervision

Development of software for the supervisory computer board (M68030 in
Figure 5.2) was initially done for two reasons: 1) An overheated motor
should cause the robot to stop for sure. 2) Pushing the RUN button on
the cabinet should turn on the main power to the drives. The mechanical
design of the robot should normally permit end-stops to be hit with max-
imum torque, at least a few times. Supervision speed and position limits
etc. was therefore postponed to some later stage of the project. Both needs,
1 and 2, required access to the ABB safety board (called system board in
later systems) via an internal ABB bus. An Interface to internal ABB bus
was designed and built as shown in Figure 5.2. That board, together with
an available digital I/O board and flat cables, formed an VME/ABB bus
connection.

An interface to the ABB supervisory control of the drive units was also
included. That interface is used to reset the drives at startup and to get
information about errors (like unacceptable current references, which for
example occurs when control gains are set too high or the excitation during
system identification is too persistent). This means that the interface
board physically replaces the ABB robot computer.

Supervision functions may not be disabled by any experimental con-
trol software. For example, increasing the order of the control algorithm
which perhaps run with maximum priority, may not cause a motor burn-
up when motions are too demanding. That could be the case if the control
activity, instead of the supervision functions, occupies the CPU. This is
avoided by using a separate CPU-board for the supervision. Furthermore,
the software process with the lowest priority must trigger a mono flip-flop
at least each 20 ms. Otherwise, the drive power is shut off. That detects
if the supervision system is stopped.
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5.2 An experimental Irb-2000 robot system

Supervision of control states like joint positions and velocities (as
done in the original system) is also necessary. Unfortunately, these func-
tions were not implemented to start with because we were short of time
and eager to do control experiments. These supervision functions were
implemented first after an accident during the experiments [129]. Servo
control of a single joint was done with a sampling frequency of 24 kHz.
The torque control then works for much faster commutation (motor speed)
than possible in the original system. The robot was therefore able to move
past an extra mechanical stop, past the standard mechanical stop, and
continuing outside the working range damaging cables inside the robot.
The final extensions also included supervision of the cyclic execution of
the control tasks. After that, the system works very well.

The software modules shown in Figure 5.6 form three layers. At the
lowest level, the physical connections to signals in the control cabinet are
encapsulated. The mid levels contain the actual supervision, which reflect
internal details of the ABB hardware. Proper error recovery further in-
creased the complexity of this part. The top layers contain speed, position,
torque, sampling, and jam supervision. The latter means detection of high
torque without motion. Additional functions can easily be added.
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Opposed to the layers of the ORC architecture (Page 57), these lay-
ers reflect the implementation (just like the OSI-layers does for a network
connection). In other words, some functionality provided might be viewed
as a system service available in a user view, but the layered implementa-
tion of the supervision system is only exposed on a system programming
level.

5.3 Low level control – Signal processing

Robot motion control can be divided into servo control of individual mo-
tors and control of the complete arm. The motor control including drive
electronics and measurement system can be implemented close to the mo-
tor, or distributed elsewhere in the system as described in the previous
section. The arm control is typically a multivariable controller that is
implemented on top of the motor control. Required sampling periods, i.e.,
cyclic execution rates, for a typical industrial manipulator are for example
(according to the author’s experience)

• 20 Hz (for trajectory generation,
• 100 Hz for position control using an inner velocity control,
• 500-2000 Hz for velocity control (depending on friction etc.),
• 2000 Hz for torque control using inner phase-current control,

where the first two items applies to the multivariable part, and the latter
two applies to the motor control. Considering that there are six joints to
control, and that a timely response on each sampling instant is important
for the performance of the robot, we see that the real-time implementation
for the low-level motor control has to be carefully designed.

DSP hardware

A digital signal processor (DSP) is optimized for repeated operations
of the type a = b + c ∗ d, which are frequently used in convolutions
and matrix operations, which are the standard computations in signal
processing and control algorithms. This was the most promising type of
processor for control implementation at the time when hardware was
selected for this project. The processor DSP32C from AT&T [31] was
selected mainly for the reasons of simple low level programming (C-like
assembly language and data directed programming [114]), compatible
performance, and because a VME board and required software tools was
provided by a single source (AT&T).

It would be natural to use DSPs dedicated to each motor/joint con-
trol. But the connections with the robot, and the desire to efficiently use
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commercially available hardware, resulted in use of the same processing
elements for all joints. The VME board with six floating point DSPs of
type DSP32C is shown in more detail in Figure 5.7. Four of these DSPs
are involved, in a serial fashion, with the motor control. The other two
are available for additional sensors and actuators that need to be handled
by the motor control (see Figure 6.2 and Figure 6.2 on Page 90).

Real-time control

Academic research often tries to solve the computing power requirements
for robot control by massive parallelism [35]. Special compilers and run-
time systems should then take care of the multi-processing. That is the
aim also in many other fields, but this type of parallel processing has
not had much impact on systems that are actually being used. Successful
industrial robot control systems, for instance, use several but few proces-
sors. These are typically of different types and connected in a cost and
execution efficient way.

In our system, microprocessors of type Motorola 680x0 are used for
high level control, while the DSPs are used for the low level control and fil-
tering. A real-time kernel developed within the department is used for the
Motorola 680x0 boards [17]. No specific concurrency model is prescribed,
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and real-time primitives are built on top of coroutine and interrupt routine
facilities. Sampling rates currently supported range up to 1 kHz for the
M680x0 boards. Programming languages currently supported are Modula-
2, C, and C+ + . Even if this part of the real-time environment is rather
standard, it is public domain in terms of source code, etc. That has allowed
implementation of new real-time software techniques [122] in connection
with this project [145, 121].

Looking at the special control hardware like the DSPs, it is quite clear
that more dedicated real-time solutions are needed. We know from the
description above that we have to maintain a data flow of control signals
with a rate of 6⋅8 = 48 kHz data packets per second. For each DSP32C this
implies that there are 260 CPU cycles available to process each sample.
In fact the main DSPs (#0 and #3 in Figure 5.7) are presently only run
at a 24 kHz rate, which gives us 520 CPU cycles per sample. (When
fully utilized, each cycle consists of one floating point multiplication, one
floating point addition, two pointer modifications, and memory accesses.)
It is natural to connect the control algorithm to interrupts, and to let the
‘background’ process handle online parameter updates, supervision, and
logging of control signals.

Context switching The real-time demands for DSPs are contradictory,
particularly for floating point DSPs because of their highly pipelined
architecture. DSP32C serves interrupts in a quick interrupt fashion. This
means that the floating point registers, the four stage pipeline, and some
other states in the DSP, are automatically stored in shadow registers
during a single machine cycle (80 ns). This allows very quick interrupt
routines performing for instance sensor input and buffering in less then
0.2 µs, including overhead. Clock interrupt handling resulting in no task
switch will also be very rapid. The problem is, however, how to make
a context switch including the floating point registers. The only shadow
register accessible is that for the program counter, so the only possibility is
to modify the code that will be executed after returning from the interrupt,
in such a way that the pipeline is emptied before the context switch. There
are two problems with such an approach; programs in ROM, and latency
effects when branching due to the pipelining (one or more instructions
after the branch instruction are executed before the branch occurs). Due
to these drawbacks, static scheduling into interrupt driven procedures is
used.

A review of other hardware solutions for context switching has also
been done. On one hand, it is desirable to have a quick interrupt facility
to serve short interrupts without breaking the pipeline of the DSP. This
means that the floating point context (registers and pipeline status) needs
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to be saved in shadow registers. On the other hand, preemptive context
switches are typically required in demanding control applications. That
would then require that shadow registers could be saved in memory.
Examining the four major brands of floating point DSPs, one sees that
none of them have an interrupt architecture very suitable for control
applications [148].

Motorola (DSP96002) has adopted a concept of fast interrupts that
do not perform any stack operations, and long interrupts that do. A long
interrupt can be formed from a fast interrupt. However, the fast inter-
rupt is too limited to be used for operations such as a clock interrupt
routine. Analog Devices (ADSP-21020) has a special status stack, but the
floating point pipeline is aborted when servicing an interrupt (as with
Motorola’s long interrupt). Texas Instruments (TMS320C30) also aborts
the FP pipeline, and only uses the ordinary stack for saving the context.
AT&T (DSP32C) has an interesting quick interrupt facility, in which the
entire floating point context is saved in one instruction cycle. However,
that context can not be accessed; it can only be restored as mentioned
above. That means that the only way (that the author has found) to do
a preemptive context switch is to replace the next instruction of the in-
terrupted program with a call to a context switch subroutine. That is,
however, not a good solution since it would then not be allowed to inter-
rupt code that has been optimized utilizing latency effects.

The DSP32C works well in our application because the background
process is only preempted by interrupt routines. In more general con-
trol applications, a combination of features from the different vendors
would form the most powerful hardware. Considering the software part,
it would be desirable to have means for limiting the size of the context for
frequently executed low-level control tasks. A DSP real-time kernel with
such a feature is commercially available [213], but the fast processes must
be coded in assembly language since there is no support from today’s high
level programming languages.

Concurrency We now have a process interface via the SA-bus, a num-
ber of processing elements, and an interrupt driven execution model. In-
terrupts are caused by availability of sampled data on input ports. The
control actions will then be synchronized with the sampling. Interrupts
either trigger control actions, while others are needed just to handle data
transfers to/from other processors.

The real-time schedule of control actions is defined statically by tables
containing joint numbers and execution control data. Schedules are loaded
from the VME bus via IO-ports (Figure 5.7) and DMA into the on-chip
memory of the DSP. The schedule can be changed on line if carefully done.
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Static scheduling is a research topic of its own [194, 195, 54]. Here, it has
so far been done by hand.

To conclude the presentation of the hardware, we will now follow the
motor control loop around the hardware nodes. We start in DSP #2 (see
Figure 5.7) with current references available for the next scheduled joint.

1. Upon interrupt for output buffer (current references to the SA bus)
empty, DSP #2 looks up the next joint number in the static schedule.
Most recent output data (phase-current references in this case) are
looked up and an output message is composed and sent.

2. The actuator node for the addressed joint catches the data, and the
sensor node later replaces the data with the sensor value. These
actions are done without delaying the message.

3. A new sensor value causes an interrupt on DSP #1. The interrupt
routine unpacks the message data (extracting angle data and joint
number), performs some error checking, and stores a valid sample in
a buffer. The background process for this DSP reads the buffer and
performs digital filtering from 8 kHz to a possible lower sampling
rate used in the control. The filtered value is sent to DSP #0 when
the serial output buffer is empty.

4. The new sample interrupts DSP #0, which then gets the joint number
from the input message, looks up sensor and actuator (software)
objects, and converts the data according to those objects. For AC
motor control this means that the data stream is split up into two
paths:

• The sensor value is passed to the actuator object which computes
the commutation angle of the rotor of the motor. An actuator out-
put message is then prepared (in the actuator object) to permit
rapid response when a new torque reference gets available.

• The sensor value is also converted to floating point and SI units.
It is then put in a ‘shared array’ in the DRAM memory. An
interrupt in then generated to DSP #3.

The background process for DSP #0 performs parameter updating
and data logging for master computers (M68040) on the VME bus.

5. External sensors for motor control, in our case an accelerometer is
available, are read by DSP #4 and sent to DSP #3. The serial input
port of DSP #3 is configured to transfer data into the internal memory
by DMA. The overhead for the program is therefore only due to cycle
stealing, which is less than 0.1µ s per sample.

6. The background process for DSP #3 does the same as in DSP #0,
but for the motion control instead of for the actuator control. Sensor
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values are available in the DRAM for the motion regulator which is
triggered by the interrupt from DSP #0. The computed control signal
is put into the DRAM. In addition, a state vector is exported via the
DRAM to the M68040 master control board. The master also supplies
references and slow control signal corrections because integral action
and windup protection are done by the master. A DSP implementation
of this part would waste computing power since logics and mode
switches do not fit well into the highly pipelined architecture.

7. The control signal (torque reference) is then passed to the actuator
object that one or a few samples earlier (according to the static
schedule) computed the commutation angle. That object limits the
control signal and composes a torque request message that is put in
the serial output buffer. This was done at the end of the interrupt
service for the sensor data.

8. The torque request message is transferred via the serial connection
and via DMA into a buffer in the on-chip memory of DSP #2. The
background process then unpacks the joint number, the commutation
angle, an the requested torque. A function that computes the cur-
rent references is then called. (This function is written in assembly
language, all others are written in C+ + as described below.) The ref-
erences are put in an array for the output interrupt routine. Thus,
we are back to item 1, and the loop is closed.

This makes more than 10 parallel processes totally. Absence of debug-
ging tools, and presence of both hardware and compiler faults, made the
implementation a very time consuming task. An industrial implementa-
tion would involve hardware and software development using professional
tools. So why implement the control this way?

Even if a commercially available board is used, it provides several
hardware features that are configured and controlled from the software.
That, in a way, corresponds to the custom made circuits that interface the
CPUs in modern embedded controllers. With a background in assembly
programming of such systems, it was as part of this research to investigate
how high level software techniques could simplify programming of this
type of embedded systems.

Low-level object-oriented programming Data processing blocks (or
filters) are naturally represented by software objects. Control often also
includes sequences, mode changes, etc., but such control is better put
on top of pure functional blocks (as most often done in process control
systems). We can therefore reason about the control in terms of block
diagrams.
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In an object-oriented framework, we may have methods (member
functions in C+ + notation) that implements the signal processing of the
(control) block. Such control objects are sometimes called function ob-
jects [198]. Additionally, there may be other member functions for mode
changes etc. For the implementation, we want to use available compilers
and a language that allows efficient manipulation of the hardware.

In practice, the only language available for (almost) all new types of
hardware, including our DSPs, is the C language. It is of course desirable
to use the same programming language for DSP programming as for
programming of the rest of the system, where C+ + [198] was available.
The C+ + compiler Cfront [30] used on the Sun workstations was therefore
adapted to produce C code for the DSP, making it possible to use the
object-oriented paradigm also on the lowest levels of the system. Real-
time primitives have been developed and encapsulated in C+ + , making
it possible to connect C+ + functions to hardware interrupts for example.

Critical parts of the algorithms sometimes have to be implemented
in the C-like assembly language of DSP32C to fully utilize the computing
power of the DSP [53]. Therefore, the C+ + compiler was extended to per-
mit easy and structured interfacing of inline assembly code. This feature
has also been useful for implementation of new real-time primitives.

The developed real-time primitives, and several features for hardware
utilization, have been encapsulated in C+ + classes providing a high-
level interface. Hidden for the ordinary system programmer, the member
functions accessing the hardware features were implemented as assembly
macros. Call of such a member function results in inlining of the code on
an assembly level, allowing the inlining to depend on actual allocation of
the data. For example, if data is already loaded into a register due to the
assembly code from the C compiler, that register can be used directly. This
feature in C+ + relies on extensions of the underlying AT&T C compiler
[32]. Using this concept, superior efficiency was achieved in combination
with object-oriented programming. Part of the software handling object
interactions was, however, implemented in a procedural (C) style (but
still written in C+ +) for efficiency reasons also observed by others [211].

Another attractive property of object-oriented programming is that
hardware dependencies could be nicely encapsulated in classes. More
specifically, we have multiple CPUs that differs in type, representation
of floating point numbers, address spaces, sizes of pointers, byte order-
ing, and they have different real-time properties. A drawback of C+ +
compared with most other languages is that more programming skill is
required since it is a very rich language. However, many of the features
– operator overloading, conversions, class dependent memory allocation
etc. – were found to be very useful.
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5.4 Concluding remark

The employment of a high level software technique for very low-level
programming is a contribution [147, 146] related to this thesis, but a
further description is left out here for brevity.3

5.4 Concluding remark

Robot systems are normally used as intended by the robot system de-
signer. That gives reliability, and permits full support for repair and main-
tenance. If customers would start to rebuild some robot systems for special
applications according to our drawings, and then use the system for full
production, could that cause problems? It is quite understandable if the
robot manufacturer believes that the answer is yes, being worried about
reputation and customer support. We claim, however, that the answer is
no.

Our experimental system can very well be used in real industrial
applications, but only for experimental purposes. The reasons are:

• The warranty for new robots would hardly apply.

• The original system provides a lot of special features, developed ac-
cording to specific requirements from the customers. One example
is automatic restart of robot programs (and motions) after a power
failure. Many man-years are put into development of such features.
They will not be supported for the experimental system.

• Supervision and self-test functions are much more extensive in the
original system. Even if the system can be changed back to its original
shape (to run the ABB self-test software) in less than an hour, that
is too long for most production systems.

• There are less support for repair and maintenance, as mentioned
above.

A system like the one described in this chapter will therefore not be useful
for full-scale every-day production. It can, on the other hand, be used
in real applications for rapid prototyping and evaluation purposes. That
should be of interest also to the robot manufacturer. Thus, an R&D version
of a robot control system would fill a need not only in academic research
within control and programming, but also in industrial feasibility studies
for possible new robot applications.

3 More details and examples are given in [147]. That paper was judged as one of “the
best technical presentations” (Page 2 in [146]), which resulted in publication of a
condensed version[146], reaching a large engineering community.
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6

Motion Control Structure

The primary purpose of the motion control system is to read signals from
internal sensors of the robot system, to compute control signals in such a
way that position and force control as requested from higher levels of the
system are achieved, and to output the control signals to the hardware.
Superior performance and robustness of the control is important for pro-
ductivity and utilization of the equipment, and possibly also to allow less
expensive mechanical design in the future. The ongoing research within
control theory to improve on these points is therefore very important.

A perhaps even more important problem today, given all the algo-
rithms that have been proposed so far, is to facilitate use and evaluation
of available control solutions on realistic robot systems. The hardware
platform presented in Chapter 5 constitutes a system well suited for this
purpose. Implementation of the control will be treated in this chapter.
Still focusing on the robot programming subject of this thesis, now on a
system/control level, the topics are software engineering and control engi-
neering, and how that can be supported by a proper design of the system.
More specifically, we want to find answers to the following questions:

• What is the rationale of the control part of the ORC architecture
concerning management of control complexity, hardware structure,
and system development?

• Given the basic design of the architecture, what functions should the
layer interfaces contain, and what functionality is needed internally
in the software layers?

• Our approach to split up the built-in motion control in the layers, will
that make it hard to apply modern control techniques?

• Advanced planning/optimization of motions/trajectories often needs
to be performed in advance (in an off-line manner). On the other
hand, motions depending on sensor values must be computed in real
time. Therefore, such motions cannot be optimized in systems today.
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6.1 Basic design

Could the management of motion commands and sensors be designed
in such a way that the distinction today between plan-time and run-
time can be relaxed?

• Is a fixed definition of control interfaces (in terms of libraries or con-
trol blocks as in process control systems) appropriate for our purposes
(flexibility and efficiency), or do we need techniques to “get inside”
control modules?

• Each layer in the proposed ORC architecture defines a view for pro-
gramming/engineering. Considering the low-level motion control, how
can industrially relevant hardware (like the experimental platform in
Chapter 5) and engineering tools be utilized to obtain both real-time
computing efficiency and flexible control engineering?

These issues will now be treated in one section each (in order as men-
tioned). The problems are approached in two stages. The first (descriptive)
stage contains a basic design (Section 6.1) in accordance with the ORC ar-
chitecture, and a specification (Section 6.2) of the functionality required in
each software layer. This first part presents relevant requirements on the
robot system. Section 6.3 then states two open issues associated with the
specified structure. These issues/problems are then treated in one section
each. Finally, an implementation of the motor control layer is presented.

6.1 Basic design

A coarse modularization of the application independent part of the motion
control system was made in Section 4.3. That was done as part of the
definition of the complete architecture. The proposed ORC architecture is
based on user views. On the servo level of the system, a need to support
three types of users was identified as shown in Figure 4.3 (p. 56). Thus, we
have three different software layers named Motion control, Arm control
and Motor control, each defined for a certain type of control engineering.
Some further arguments for this design now follow.

Considering a specific implementation, the motion control for all
joints of a robot can of course be viewed as a single multi-variable con-
troller. The standpoint taken here is that this is not a suitable formulation
of the problem, at least not for industrial development. We claim that the
choice of control structure and engineering tools is not entirely free due
to demands on modularity. The proposed software layer is an attempt to
impose such a modular structure. The reasons are the following:
Control complexity: A single non-linear multi-variable controller gets

unsuitably complex when dealing with all control constraints and
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Chapter 6. Motion Control Structure

physical effects. Examples:
• There are constraints on speed, torque, and torque derivative to

protect the mechanical system.
• Run-time supervision and start-up diagnostics (to detect run-

away motion, malfunctioning sensors, etc.) are easier to get reli-
able when implemented together with a control structure that in
a simple way reflects the hardware and the states of the physical
system.

• Many control difficulties due to non-linear and/or unmodeled
dynamics are because of the physical properties of individual
joints. Typical examples are torque ripple, motor friction and
gear-box play. Dealing with locally appearing phenomena by local
(inner) control loops is a fruitful approach within control design.

One could claim that this is just a matter of judicious choice of con-
trol engineering tools. But according to industrial experience of con-
trol development, demands on reliable system operation/supervision
indicate the need for architectural support.

Hardware structure: The architecture should support a control struc-
ture that promotes efficient hardware solutions. This motivates in-
troduction of the Motor control layer.

System development: The structure of the control system should sup-
port modular development in projects focusing on well defined prob-
lems like multivariable arm control. In other words, user views (as
defined in Chapter 4) are appropriate also for structuring the (low-
level) motion control system. The scenario expressed in Figure 4.3
includes:

• Control of individual motors, perhaps using less expensive hard-
ware.

• Control of the manipulator/robot arm, perhaps to achieve im-
proved decoupling of joint motions.

• Incorporation of external motions, i.e., control of other work-cell
motions like servo-controlled welding fixtures.

Note that even if external motions typically were application specific,
indicating that such control should be included in the application con-
trol layer, support for integrated external motions affects the design
of the embedded system to a larger extent. Therefore, this is part of
the motion control layer, whereas configuration and control param-
eters are selected from the application layer. Control of integrated
external joints is today dealt with by the robot manufacturer.

The object oriented paradigm [96, 126, 44] appears to be well suited for
design and implementation of the control systems. Classes will then en-
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6.2 Desired properties of the software layers

capsulate features of physical objects, real-time and multiprocessor as-
pects will be encapsulated, and computational entities are collected into
package-like or module-like classes. Some of the class interfaces model
the interface to a software layer in the system.

6.2 Desired properties of the software layers

As an outline of a functional specification, a coarse description of the
involved software layers and interfaces are described in this section.

The motor control layer

The design of the multi-variable arm controller is complex if the complete
dynamics including compliance, friction, backlash, torque ripple, unknown
pay-load, and external forces on the end-effector is considered. This is a
major reason why, for instance, computed torque is not used in commer-
cial robots today. The design should instead be divided into joint-wise
controllers (implemented in the motor control layer) and a multi-variable
part (implemented in the arm control layer). Therefore, the purpose of the
motor control layer is to support controller implementation in two ways:

• A complex multi-variable arm controller can be better modularized if
axis-specific features are put in separate modules, as mentioned in
the previous section.

• The motor control software can be decentralized to each individual
joint, and possibly be put in hardware together with the drive units
and the internal sensor measurement system. Such hardware mod-
ules can be relocated away from the control computer to improve
flexibility of the system and reduce cabling and hardware cost.

A suitable structure for the motor control will now be described. The con-
trol blocks as such are well known [29]. Interface aspects due to hardware
distribution or multiprocessing are ignored for simplicity.

Assume the arm control has been designed for a rigid robot, but some
of the joints on the robot have gears with backlash. It then seems like a
sensible engineering principle to cope with the backlash effects, which are
joint-wise, in the joint-wise control, i.e., in the motor control layer. The
arm control layer software (and layers above) can then be the same as
for the high cost version (without backlash) of the same type of robot,
possibly with decreased performance.

A general control structure of an axis controller in the motor con-
trol layer is shown in Figure 6.1. Figure 6.2 exemplifies the structure
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with a simple controller of the type commonly used today. Torque limita-
tion is not shown for clarity, and all signals are shown as if they where
continuous time signals. Major parts of the observer and controller are
normally implemented digitally, but A/D conversion is then considered to
be included in the state observer, as having part of it implemented with
analog circuits (e.g., together with an anti-aliasing filter) sometimes is
a good way of achieving high bandwidth disturbance rejection. The D/A
conversion can also be put in different ways, depending on how much of
the controller that is analog, and depending on the drive system which
can be purely digital or purely analog.
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Figure 6.2 Motor control of a type commonly used today with a P-type
position control and a PI-type velocity control. The notation of signals are
standard for robot control, or please refer to [59].

Both standard sensor signals and optional ones are connected to the
state observer, which also includes filters etc. An optional sensor for motor
control may be an acceleration [73] or torque sensor [214] used for high
performance joint control. Some of the states in that block are output,
i.e., −x̂, to be used by the feedback control after the reference xm has
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6.2 Desired properties of the software layers

been added. Only the part of xm that is of importance for the arm control
can be given reference values from that layer. The same applies to the
motion control layer if the joint is an external axis. Parameters are also
divided into one changeable and one fixed part. The additional control
signal allows a combination of the motor control and the arm control,
or an alternative control strategy can do all the control in the upper
layer, possibly based on external sensor signals not available in the motor
control layer.

The optional internal sensors, see Figure 6.1, are statically defined
in the system. Parameters from the layer above can, however, affect how,
or if, the internal optional sensors are utilized in the control. The sensor
signals can as an alternative be filtered and sent up to higher layers for
further processing. The reason for such a solution would be to simplify the
hardware by using the ports for internal sensors also for external motion
control sensors.

The application layer – motion control layer interface

The services available to the programs outside the general motion control,
i.e., to the application layer software in this case, can be divided into two
types:

1. Services for performing motions.
2. Services for acquisition of motion properties.

Systems today are designed for type 1, while the second type of services
is not supported, at least not by commercially available systems. Such
acquisition services can be to return information about:

• Control parameters for a certain motion.
• Predefined kinematic parameters and inverse kinematic solutions.
• Dynamic performance in certain locations.
• Simulation of a sequence of motions.

The acquisition services can be utilized in the robot control programs on
upper levels (i.e., in the application layer, executive layer, or on the user
programming level) of the system to improve performance, functionality,
and flexibility of the robot and its programming environment. The need
for such knowledge has also been noticed both from the field of off-line
programming, and from development of high performance motions and
application packages.

In the off-line programming case, the reason is that robot manufactur-
ers do not want to reveal their control solutions and software models for
the robot due to proprietary reasons and software maintenance reasons
(improving the control system should not impose updating of software
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tools distributed all over the world). The situation will be the same with
future open robot control systems admitting external (to the robot manu-
facturer) advanced users to implement control strategies. A key idea for
the implementation of these services is therefore that the same executable
code should be used as for the proprietary motion control of the robot. This
is preferably handled in the following two different ways, depending on if
it is for simulation purposes or not:

1. Simulation of the robot system is proposed to be achieved by instan-
tiating a motion control object that controls a dynamic model of the
robot instead of the real robot. In C+ + notation, an extra argument
to an overloaded MotionLayer constructor implies that the motion
control object controls a virtual robot instead of a real robot with its
drive power electronics etc.

2. Acquisition of dynamic and kinematic properties, utilizing models in-
ternal to the motion controller, for motion planning and optimization
purposes is preferably supported via special functions. In this way, the
same interface for both simulated and real robot motions is achieved.

The idea to let the robot manufacturer supply compiled code for their
(secret) dynamic models and controllers is quite natural. Exactly for this
purpose, the Realistic Robot Simulation (RRS) specification [169] was
developed as a joint effort between designers of robot control systems and
of off-line programming systems. (The RRS interface can be considered as
an interface to the “Simulation engine” in Figure 3.12, p. 42.) The claim
here is that the RRS approach can be questioned along the following lines:

• The support for application specific motion primitives and so called
sensor-based motions is too limited. It is possible to subscribe to
events that are generated when the value of time or position passes
a certain threshold. This should be extended according to the ideas
on open control as described in Section 6.6.

• A black-box model of the robot arm and its control is difficult to
combine with simulation of equipment mounted on the robot arm.
Instead, an object oriented modeling and simulation technique should
be used [21, 158] for the mechanical part of the system.

• Properties of control utilizing dedicated hardware, like finite word-
length computations coded in assembly language, get hard or ineffi-
cient to resemble in a general purpose software package.

Realistic simulation should therefore instead be achieved by having a
simulation version of the robot controller connected to an object oriented
simulator of the mechanical robot. Alternatively, an available robot con-
troller could be used. The interface is anyway the same as for the motion
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6.2 Desired properties of the software layers

control as mentioned above.

Encapsulated arm control

The arm control layer was introduced to separate the optimized arm con-
trol algorithms, and the fixed and efficient implementation of them, from
the general purpose motion control and from the local control of indi-
vidual joints. The arm control actually contains what is normally meant
by robot control. Algorithms like “computed torque” and “hybrid force-
position control” are still not much used in real industrial applications.
Having a specific software layer for this type of control will hopefully ease
the implementation of such algorithms.

The purpose of the application layer is to keep the basic motion con-
trol clean from application specific ‘fixes’. However, for major applications
it may still be a good idea for the robot manufacturer to develop special
built-in control solutions. The reason may be that access restrictions and
inappropriate data flows prevent an efficient implementation in the ap-
plication layer. The only example found, so far, is short arm motions for
spot-welding robots. The characteristics of this example are:

• The robot dynamics can be assumed to be constant during the motion.
The load is also constant and well known.

• Performance of the motion is limited by torque, torque derivative,
and resonance excitation. Speed is not a limiting factor.

• The performance of the short moves, which typically take less than
0.5s, are crucial for productivity. Shorter sampling periods may be
needed to increase the time resolution of trajectory generation and
for position control.

Note that less CPU time is needed due to the first two points, whereas
the last point implies a higher CPU load. We can therefore consider
the need for special arm control as a way of improving performance by
better hardware utilization. Let us name the special short-move function
ShortMove. That function will be referred to later in Section 8.2 treating
spot welding.

The motion control – arm control interface

The following features are useful for the built-in control of the robot arm,
but also as services provided for the motion control layer:

• Kinematics and inverse kinematics for the robot arm,

• Dynamic parameters for the robot arm.

• Setting of control parameters and modes.
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• On-line trajectory time scaling for torque limited path following [61]
should be provided. The nominal trajectories are then modified with
respect to the actual torque. The modified trajectories are called ac-
tual trajectories.

• Nominal trajectories can be passed to the arm control, either as gener-
ated trajectories passed incrementally point by point, or as complete
trajectories parameterized in some predefined way to be generated in
the arm control.

• Acquiring of control data used in the arm control. For example:
○ Actual generated trajectories for a motion.
○ Internal sensor signals.
○ Control errors for position, velocity, and force (for force control)

can be read (and preset in special modes) by the motion control
layer.

• Feed forward signals to torque and velocity references can be set. For
example, signals that are added to the torque reference for the joint
drives can be useful when implementing force control strategies not
supported by the arm control layer itself.

This list should probably be extended if, for instance, integrated force
control of multiple arms should be supported. The arm control software
layer can for instance be encapsulated in a class.

6.3 Remaining problems

Each specified feature so far is based on known techniques. In other words,
the individual features as such are known; it is the organization of the
control software that is new. It is then natural to question whether the
imposed structure hinders employment of control algorithms.

There are by definition no problems concerning the motor control
layer. Only control that can be performed joint-wise is included in the
motor control. It is the encapsulation of the arm control that we should
be concerned with.

Both the desire to have the arm control encapsulated and to have
added external joint control integrated with the arm control may be a
problem. The algorithm should to be formulated in a way that makes it
modular with respect to the individual external joints. It is not clear if
this is generally possible. To prepare for a treatment of this problem in
Section 6.4, an introduction to path velocity control is included finally in
this section.
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6.3 Remaining problems

Another observed problem is about real-time performance of motion
planning. Lower layers of the system must be designed for efficient real-
time execution in micro processors and signal processors. Robot motion
algorithms have therefore traditionally been split into two types. One
type includes algorithms that can be used at run-time and thereby also
for motions which depend on sensor inputs, whereas the second type is
algorithms that require substantial CPU-time (before motion can start).
Such algorithms have only been possible to use in an off-line manner for
motions that are known in advance. It would of course be desirable to ad-
mit such algorithms also for sensor-based motions that are only slightly
adjusted at run-time. This means that the motion control layer should in-
clude management of precomputed motions. A special issue is how sensor
objects should behave since the actual sensor signals are available at run-
time but not at plan-time. The problem of finding a software design that
combines simulated motions, precomputed motions, sensor-based motions,
and incorporation of sensors is the subject in Section 6.5.

Introduction to on-line trajectory time scaling

The aim of the on-line (i.e., at run time) trajectory scaling [62, 61] is to
change the time scale of the motion along a specified path, in such a way
that required torques for the motion are within admissible limits. This fits
very well into the proposed system structure, since the precomputations
mentioned then do not need to (or cannot) take the actual torque into ac-
count, which would lead to an unfeasible data flow. The torque available
for the motion varies because dynamic effects like friction (in the robot
or to the work-piece) varies. Some spot welding robots, for instance, must
be exercised several minutes after maintenance before they can continue
performing optimized motions. Instead, the control system should auto-
matically rescale the trajectories to cope with the time varying friction.

The time scale of the nominal trajectory is changed at run time by
the path velocity controller shown in Figure 6.3, in such a way that the
required torque matches the torque limits. If no joint exceeds its torque
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Figure 6.3 Path following according to [61].
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limit for the nominal trajectory, the actual trajectory will be the same as
the nominal. If one or several joints need more torque than allowed, the
motion is slowed down but the desired path is followed. The basic idea
behind the algorithm is to parameterize the standard robot controller
in a new path coordinate s. It is assumed that the path is specified as
a vector-valued function f (s), the nominal trajectories being specified as
two scalar functions v1(s) = ṡ and v2(s) = s̈ specifying the velocity and the
acceleration along the path. The path velocity controller then executes
the path and velocity specifications by sending the path coordinate s
and its first and second time derivatives ṡ and s̈ to the standard robot
controller in such a way that the required torque τ is kept within the
limits. To do so, the controller is written on the form τ = b1s̈ + b2, and b1

and b2 are fed back to the path velocity controller [61, 62]. Figure 6.3 is
adapted from [61], but the data flow for the path specification is explicitly
shown.

6.4 Arm control – external control interplay

Some restructuring will now be made in order to make the path velocity
control fit into the system, still maintaining the same basic algorithm.
First an explicit time scale is introduced with the motion specification. In
[61], the time scale is implicitly given by the functions v1 and v2 which are
derivatives of the path coordinates s. This means that when the functions
are integrated up to the final value of s, round-off errors will be integrated
and the motion will not last exactly as long as might be specified in the call
to Move. A time correction term can easily be added to the path velocity
controller, and a small percentage of over-speed can be allowed to let the
controller catch up with the specified time.

The second modification is that the motion specification (including
the nominal trajectories) is not any more considered as a precomputed
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Figure 6.4 Path following as in Figure 6.3, but with proper signals (i.e.,
depending on time) and an interface for external axes.
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matrix with columns s, v1, v2 and f , and with rows corresponding to steps
along the path. A time column t was introduced above, and the nominal
trajectories and the path can just as well be generated at run time based
on e.g. external sensors. The columns therefore form a time signal Σ. The
reason for having a dashed line for the path information in Figure 6.3 was
that the motion specification was considered to be preplanned nonlinear
functions [61]. The signal Σ on the other hand is a proper signal as
shown in Figure 6.4. Precomputations are still allowed according to earlier
sections, but the controller should work with signals giving a more or less
constant real-time data flow permitting higher utilization of the hardware.

A third modification can now be introduced to solve the external axes
control problem we were looking at. Additional motion reference signals
Σ i are supplied to each axis i. Σ i is a vector signal consisting of the same
values of t and s as sent to the arm controller, but also of the scalars
v1, v2 and fi specifying the nominal motion for axis i. Exactly the same
values of the path coordinate reference σ and its derivatives that go to
the arm controller also go to each external axis controller. Each external
axis controller then computes the allowed range for σ̈ according to [61],
but in stages as shown in Figure 6.5. The time lag ∆ is also computed as
the maximum of the input ∆ and the time lag for the axis itself.
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Figure 6.5 Proposed “bit-slice” style for incorporation of external axes.

These modifications illustrate how one algorithm can be modularized
to fit into a structure suitable for industrial use with external servos
connected to the robot controller. It should even be straight forward to
incorporate multiple arm synchronized with the same path coordinate s.
It is believed that many other algorithms can be modularized in the same
way, but when not possible, other features in the system (like motion in
function space) will always make it possible to program and perform a
motion, although a larger user or application programming effort will be
needed.
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6.5 Pipelining and caching sensor-based motions

As mentioned above, advanced algorithms for optimization of motions
sometimes take so much computing time that it may delay the motion
more than improved performance can speed it up. However, much of the
computations can often be performed in advance, that is, when the motion
specification is known but before the motion may start. The standard ap-
proach is then to do all precomputations in a robot program as an interme-
diate stage after the user program is written, but before execution starts.
The problem is that robot motion instructions are often interleaved with
conditional expressions which depend on sensor input. Positions may also
be taught in or modified by the robot operator after the program execution
has started. The implication is that run-time support for precomputations
is necessary for optimum time algorithms and the like.

Temporal properties

A trivial approach to pre-plan motions would be to let the motion con-
trol interface contain explicit functions to obtain computed motion data
without performing the motion (as mentioned in the description of the
interface between the arm control and motion control layers). Such a fea-
ture may be useful for simulation and high level planning, but for ordinary
usage we want something simpler.

Another too limited approach would then be to request “suspended
motion”. That is, motion data should be computed but transfer to the
motion control should be suspended until it is released from the caller.
This approach would, however, not permit a specific motion to be reused
later (next cycle of the task), and computing in advance would make the
robot program unnecessarily complex.

Instead, the idea here is to use software solutions resembling princi-
ples used for similar problems in modern computer hardware (like pipelin-
ing, paging, and cache memories). This means that we want the system
(the motion layer in this case) to internally manage the performance im-
proving features. Analogous to the computer hardware case [75], the sys-
tem should be able to

• fetch motion instructions in advance, start processing them, and put
results in a buffer (from which set-points to the feedback control
easily can be determined),

• save key data that have required substantial computing time in tem-
porary storage,

• reuse computed data if available in the temporary storage.
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The first of these items, which we may call a motion pipeline, is being
done in systems today. The other two items, which we may call a motion
cache, has not been seen elsewhere.

Also in analogy with the hardware case, we need means to specify
how a specific instruction should be handled. That is when we want to
influence the caching based on knowledge about the application. There-
fore, in addition to internal functionality, the motion commands/functions
available to the application layer should, among other arguments, take an
argument that specifies the desired temporal property of the motion. Con-
sidering time, there are in principle only three cases; past, present, and
future. So, to each move-procedure there should be a predefined parame-
ter with an enumeration type consisting of the following three values:
during: Computations and motion are performed in the same call. The

motion starts as soon as possible, and remaining computation are
performed during the motion.

save: As much as possible of the computations for the motion are made
in advance, and the result is stored in the motion cache.

done: The motion can start immediately using data that have already
been stored in the motion cache.

Computed motions stored in the cache can be referred to by an identifica-
tion number which we call move descriptor (compare with file descriptors
in UNIX). Use of the wrong move descriptor for a motion, or if the descrip-
tor points to data that have been overwritten by a more recent call of Move,
must not result in disaster. Start and target positions for the motion are
therefore checked to be the same (as those of the corresponding Move of
type save) before parameters of type done are used. In case of mismatch,
the during case is simply imposed, which means that the motion must be
fully specified also when it refers to already computed and stored data.
A verification of this principle was obtained by guiding and supporting
an implementation [191] using Matlab on the host computer as an RPC
server for computing optimized trajectories.

Specification of sensor dependency

Motions, as specified in the call of the Move function, to some extent depend
on sensor inputs. A motion that does not depend on any external sensors
is known in advance, and the precomputation of motions described above
can be directly applied. If, on the other hand, the desired motion is com-
pletely determined by sensor signals, its trajectories cannot be computed
in advance. Possible performance improvements depend on the degree of
sensor dependency in some (complicated) way, but for the management of
sensor readings and motion pipelining we only need a logical specification
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of how the system should handle the motion request. Each case needs to
be explicitly considered internally in the motion control layer. It is there-
fore desirable to have few alternatives to simplify the implementation. On
the other hand, having only one or two cases (depending or not depending
on external sensors) as in available systems is not enough. In the ORC
architecture, the application layer program passes the information about
the degree of sensor dependency by supplying an additional enumeration
parameter (in a way similar to the temporal specification above). This
enumeration type is proposed to consist of the following four elements:
completely: A completely known motion does not depend on sensors

at all. All services available from the motion control (like optimal
trajectory planning in advance) can therefore be used.

almost: An almost known motion may be subject to modifications based
on sensor information, but only to such a limited extent that motion
planning is still appropriate. One example may be gluing along al-
most known paths that are followed using a path tracking sensor. To
leave control authority for the sensor-based adjustments, the nomi-
nal motion may be planned with some margin according to supplied
parameters.

partly: A partly known motion basically depends on sensor information,
but some nominal path exists. It is however, not useful to plan or
optimize this type of motion. For instance, a path tracking sensor
can be used to track an almost unspecified path. Specifying a nominal
path can be good for:

- Influencing the path tracking to search in preferred directions
when the path is lost.

- Specification of a motion termination condition. A motion from
one location to the same location in a specified time will for
instance result in a specified time for the path tracking motion.

- Having both a specified and an actual motion provides data that
can be used for supervision purposes.

A partly known motion is otherwise treated as a not known motion.
not: A not known motion is entirely specified by sensor signals. One

such case is manual move of the robot arm using a joystick. None of
the optimal trajectory planning schemes, like minimum time, can be
used. Instead, trajectory planning and generation schemes useful at
run-time must be used. Note that this also applies to a situation like
the one shown in Figure 6.6.

Solutions to the run-time trajectory planning and generation problem
[116] are unusual in the literature. (Do not confuse this with, for example,
the solutions in [59] where the trajectory generation is done at run-time,
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Start position

Sensor input

Goal case 1Goal case 2

Figure 6.6 Path and trajectories not known in advance. The goal position
depends on the input from a sensor.

but not the trajectory planning.) Such trajectory generation is, however,
necessary in practical applications, and at least one major robot manufac-
turer therefore has considerable competence within this field. Technically,
motion increment buffers for a distance at least as long as the distance
required to stop is maintained. The buffers are then scanned through and
used together with a reference model of the robot. Joint synchronization
algorithms including extensive heuristics are applied.

Deduced properties of sensor objects

We have so far considered the fact that motions may depend on external
sensor signals, but how should sensors be managed in the control system
software? Some principles and specifications for a sensor interface will be
given in this section, considering the following aspects:

• Object-oriented modeling of sensors, using an object-oriented lan-
guage, is a good way to provide language support for management
of sensors.

• Application-specific or task-specific control implying that the filtering
of sensor signals should be possible to change from higher levels of
the system.

• External sensors should be possible to combine with the proposed
motion pipelining.

• The simulation support should apply also for sensor-based motions.
It is quite natural to model sensors with a general base class, and then
create derived subclasses for each special type of sensor. The idea here is
that the base class should specify the following three behaviors to support
motion pipelining and simulation:
○ Real sampling is the normal case. The data is read from a sensor

interface for external sensors. Some hardware handlers may be pre-
defined, but scaling and possible transformation have to be imple-
mented by the sensor engineer.
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○ Dummy sampling must be provided so that precomputation (compu-
tation of minimum time trajectories for instance) of almost known
motions can be carried out exactly the same way as for completely
known motions. The dummy sampling typically returns a worst case
value (possibly depending on time, position etc.) for the sensor signal
that will affect the motion.

○ Simulated sampling must be defined to allow sensor based control of
purely simulated motions, i.e., virtual sensors should be possible to
use with the virtual robot arm. Using the software techniques that
will be described in Chapter 7, the behavior of each sensor (given by
the application or task) can be defined, compiled, and passed to the
sensor object in the motion control layer.

Note that dummy sampling must be possible also in the simulated case,
and that real sampling, dummy sampling, simulated real sampling, and
simulated dummy sampling might be executed simultaneously in differ-
ent real-time processes (with priorities in the order mentioned). From
the sensor engineering point of view, it is required that all behaviors for a
certain type of sensor are specified in one subclass (to simplify incorpora-
tion of new types of sensors) and the system has to automatically ensure
that all required objects are instantiated. This required functionality can
be conveniently expressed in a base class. Further implementation de-
tails were presented in [144], but this presentation concentrates on the
principles.

6.6 Open motion control

In order to make a layered system flexible, the interfaces between the
layers must be open in a suitable way. Considering the interface between
the motion control system and higher levels, we need some means to
send down motion specifications that are general enough for advanced
robot applications, and some means to obtain motion data for use on
higher levels of the system. The interface specifications outlined in Section
6.2 are believed to be state-of-the-art, but not enough. Considering the
real-time properties of the system, this section first describes how more
general motion specifications can be handled without incorporating the
world management into the motion control system. Secondly, benefits of
application specific access to internal control signals will be described.
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6.6 Open motion control

Motions determined by world model relations

The motion specification issue is by itself a research topic, particularly if
compliance and force control should be supported [177]. Even if we limit
the discussion to ordinary position specifications, the situation may be
quite complex. Consider for example object-level programming (described
in Chapter 3) for objects that are varying with time or moving around in
a way not known in advance. External sensors must of course be used to
obtain information about the environment at run-time. To handle cases
like this, the position equations in RCCL [81] may contain frames that
depend on sensor signals. The frames are also part of the world model.
The development towards more flexible/intelligent robots has therefore
implied a tighter integration between the world modeling and the motion
control.

Opposed to such an integrated approach, the proposed layered ORC
architecture specifies that the feedback control part of the system should
be separated from the world modeling and the high-level programming
system. That is to achieve the proposed user views. Another reason is to
make it possible to have a simpler embedded system for applications not
requiring the advanced features. A more attractive approach is therefore
to have a fixed hierarchy with a few predefined frames that can be effi-
ciently handled in the embedded system as in the new system from ABB
[2], and then (as a proposed extension) allow these frames to be eval-
uated according to functions supplied from the application layer. Those
functions can then, for instance, make accesses via an additional CPU
board to obtain world model information in the most advanced cases.
This was presented as motions in function space in [144] where also some
more details were given, but a further analysis and a full implementation
remain to be done.

Software sensors

Industrial robots are mechanically rather precise machines driven by
servo controlled motors. They are not as precise and rigid as NC machines,
so desired motions are not quite precisely achieved. The same applies
when compliant motions are used on not quite known work-pieces (like
the casting in Figure 2.5, p. 12). In many cases, the actual motion or
production result therefore needs to be measured in order to compensate
for deviations and errors.

The problem with adding external sensors is that the hardware gets
more expensive, and it decreases the MTBF (Mean Time Between Fail-
ure). However, to meet the performance requirements on the motion con-
trol, the dynamics of the robot is reflected in the control system (by state
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Figure 6.7 Simplified servo control.

observers, linearizing feedback, etc.). Therefore, states of importance for
the robot task exist within the control system. This is known in princi-
ple by control engineers, but using such (internal) information to solve
robot application problems has not, as far as known, been suggested un-
til now. Furthermore, it is usually not clear to application engineers that
such useful information exists. The following simple example further illus-
trates this idea of utilizing internal control information instead of external
sensors.

Consider one link of a robot, i.e., a single servo. Assume we use a
quite simple control strategy with a PI type velocity controller, and a P
type position controller. This is shown in Figure 6.7. It is basically this
type of control that is used for the joint-wise control of most commercial
robots available today. The system can be given desired compliance and
damping by only using two P regulators (i.e., Ki = 0), but the I-part
is introduced to take care of unknown disturbance forces. The output of
the inner regulator can be interpreted as an acceleration reference to the
controlled system if we have Ki = 0 or if we have no disturbance forces.
With disturbance forces and with a properly tuned Ki, the output from
the control system is a torque (or force) reference to the servo drive unit.

The following examples illustrate how the control signals can be
useful. The first example is the most important one; that principle will be
used to solve the deburring application problem.

• Recording of the signals ep and θ during motion over a surface will
give the profile of the surface along the path. The deviation of the
profile from the nominal one is simply ep as a function of θ .

○ The τ̂ signal is an estimate of the Columb friction in the joint during
slow motion with constant speed and no contact with the environ-
ment.

○ The friction coefficient of an object, or the existence of an object, can
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be computed from the τ̂ signal, as for previous case and with the
internal friction already estimated according to the previous item.

○ The signal ω during acceleration and deceleration contains informa-
tion about the inertia of the joint, which will give the inertia of the
load if the inertia of the robot itself is known.

In a complete servo for all joints in a real robot it gets more complicated
to identify or compute signals of interest, but the information is in the
system, the problem is to extract it. Signals depending on friction or
external forces can of course be practically hard to estimate accurately, but
can still be feasible in some heavy applications. Note, however, that the
first example using the position error during force control is not sensitive
to friction effects.

From the user programming point of view it makes no difference, if
a procedure called to get sensor data samples the signal from an exter-
nal device, or if data acquisition is performed internally in the system.
Therefore, the treatment of sensors in the previous section also applies to
software sensors. Implementation techniques will be developed in Chap-
ter 7.

6.7 Implementation

From the user programming level, the motion control system can be
seen as a driver for the manipulator device. Such a driver can then be
implemented in an ordinary operating system manner [81], it can simply
be viewed as an abstract data type [215], or it can be encapsulated by
a class in an object oriented framework[133]. However, the needs for
openness in advanced manufacturing applications indicates that a more
general type of interface is appropriate. The operating system driver
model can of course be kept in principle, but the generality of the services
(the io-controls in a UNIX framework) would not be well expressed to the
programmer. Instead, an object oriented framework extended with the
principles of open embedded systems presented in Chapter 7 is suitable
for the motion control interface.

Considering robot programming within the layers for built-in motion
control, this is the control engineering topic. In this field, good tools for
identification, modeling, synthesis, and code generation have emerged
in recent years. The aim in this work has been to connect such (host
computer based) tools to the embedded robot control system.
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Motor control implementation

The motor control was mapped to the hardware in such a way that
the DSPs were utilized for the high-frequency properties of the control,
and the master M68040 CPU was used for the low frequency part. The
reason is that the DSPs execute pure filter algorithms very efficiently,
but integrating action and the necessary wind-up protection contains logic
that breaks the floating point pipeline in a very undesirable way. High
sampling frequencies are also possible because the control is interrupt
driven without the overhead of a full real-time kernel. The M68040 CPU
on the other hand is better suited for general control tasks [53]. Currently,
using our department’s real-time kernel [18], the sampling frequency
cannot exceed 1 kHz, which is slow compared to the 24 kHz currently
used for the DSPs.

Slave part of Motor control
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Figure 6.8 Motor control implementation on the DSP hardware level. Only
DSP#0 and DSP#3 are shown. Connections to the other DSPs and to the
controlled robot are shown in Figure 5.7 (p. 79) and Figure 5.2 (p. 71)

Figure 6.8 shows the data flow for the DSP part of the control. The
DRAM memory (see also Figure 5.7, p. 79) is central for the multipro-
cessor implementation. Control parameters and references are written by
the master processor to the DRAM, the two DSPs shown in the figure
exchange control data via the DRAM, observed states are updated by the
DSPs and it is then used both by the master part of the control and by the
supervision part (Figure 5.6, p. 77). The programs were written in C+ +
for the DSPs as explained in Section 5.3. The filters Hy(z), Hv(z), and
Hp(z), however, were available as highly optimized assembly code from
the application library for the DSPs.
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Figure 6.9 Master part of the motor control implementation.

The master control part was mainly written in Modula-2, but since
the Modula-2 programs were translated to C before cross compilation,
data structures in common only needed to be declared once. Special care
was taken to handle the differences in address spaces, real-time primi-
tives, floating point representation, and byte numbering as described in
Section 5.3. Data logging services are not shown for clarity.

The master control part running on the M68040 board is shown in
Figure 6.9. It contains a fixed implementation of an I regulator which
can integrate speed or position error according to parameters set at run
time. The I-part takes care of the low frequency behavior of the control,
whereas the HF-control takes care of the high-frequency part. Advanced
motor control like active damping typically takes place in a mid-frequency
range [83]. The maximum sampling frequency of 1 kHz for the master
control is enough for this, given the HF-control part. To rapidly prototype
new control principles, code generation from block diagram descriptions
on the host computer form a valuable tool. That brings us into the next
subject.

Engineering tools

Embedded (robot control) systems should be as small and efficient as pos-
sible. For engineering workstations, it is more important to have good user
interfaces and plenty of computing power. That is to save costs for pro-
duction equipment and engineering time. The approach in this work has
been to have the real-time control part well separated from the engineer-
ing tools running on the host computer. A network connection between
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the two is of course slower than using bus-to-bus adaptors, but it corre-
sponds well to the situation for manufacturing systems. A factory network
connects embedded control systems to the central manufacturing control
and to the engineering workstations, possibly located on a remote site.
Without going into details, the following software tools were developed:

• Using available low-level networking primitives and UNIX sockets,
processes in the embedded system were connected to Matlab running
on the host computer. Opposed to ordinary pipes and streams which
work on a byte level, the developed connection is typed in the sense
that it works with matrices which fit well with Matlab.

• Data-logging modules were developed for the embedded system (both
for the M68k and for the DSPs), and a Matlab-based front end was
written.

• Development of services in the embedded system for excitation signals
was initiated and guided. That facilitates the experimental part of
system identification.

• An embedded system server for control parameters was specified, and
the implementation was initiated and guided. A powerful user inter-
face was implemented by the author using the Matlab graphics. The
parameter interface is layered in such a way that parameters can
be accessed on five levels; the embedded level, the network level,
the Matlab script level, the Matlab graphical level, and the Mat-
lab script/graphical level. The script/graphical level means that the
graphical user interface is run and updated from a script.

• An operator interface for manual control and robot program execution
was implemented using Matlab graphical objects. The reason to use
Matlab is to make it simple to include the ‘manual’ operation in
scripts expressing control experiments.

• Using the embedded dynamic linkage according to Chapter 7, it was
made possible to change at run-time the cross-compiled programs
from Simulink/Real-Time-Workshop [125]. See Figure 6.9.

Thus, a tool like Matlab with the possibility to link in external (network-
ing) functions is very useful. It is of course also important to make use of
other available tools whenever appropriate. Evaluation of one such tool
[172] is therefore currently going on. Another system developed within
our department [66] provides high level description of control blocks, code
generation, and reconfiguration of control blocks during run-time. These
tools are well suited for development of the arm control and the motion
control, whereas the more limited Matlab-based tools are suitable for the
single-joint control.
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The reason for focusing on the engineering tools, instead of on new
algorithms, is that improved control performance is more a matter of
employing known control principles in an efficient/convenient way than
finding some new theory. On the other hand, improved algorithms for con-
trol synthesis is needed to reduce the engineering effort, for instance to
adopt to changes in the mechanics. The developed system will hopefully
be used for such research. Experience from our own tools so far is that in-
teractive operation of the controlled process connected to a control design
environment greatly facilitates the control engineering work.

Experiments and discussion

The presented implementation was developed in connection with student
and master thesis projects [129, 84], in which successful experiments also
were carried out. Experiments on individual joints have been made with
sampling frequencies ranging up to 24 kHz for position and velocity con-
trol, and up to 48 kHz for torque control. The present standard sampling
frequency when all six joints are used is 4 kHz. The hardware interfaces
are built for 8 kHz (i.e., 48 kHz for all joints together), but we preferred to
use a well structured and flexible C+ + implementation using only half the
rate. Controlling all joints which the rate of 4 kHz implies that the order
of the position/velocity controller should be less than ten. The Simulink
generated controllers, running on the master M68040 board, can usually
not be run in more than 500 Hz.

As an example of a measurement on joint one of the Irb-2000, Figure
6.10 shows the position output when the input torque was a logarith-
mically swept sine-wave with constant amplitude. Estimation of transfer
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Figure 6.10 Measurement performed on the fist joint [129] using the de-
veloped experimental environment. To both excite resonances and capture a
wide frequency range in a single experiment, 35000 samples were recorded
over a time period of 70 seconds (500 Hz sampling frequency in this case).
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functions from this type of data is straight forward [99]. Doing the exper-
iments interactively, or via Matlab scripts that also serves as documenta-
tion, has proven to be very convenient. The main 380V drive power can
also be turned on and off from the host workstation. Note that we do not
use any intermediate storage in files; measurement data is directly sent
from the embedded controller via the network to the Matlab workspace.

Experiences so far indicate that the layered architecture is quite con-
venient to work with. We have, on the other hand, not used the layers
rigidly because the interface design has been part of the work. It would of
course be desirable to have detailed specifications of the interfaces. That
would permit independent development of complete software layers or
modules. Such a standardization should, however, wait until more experi-
ence of open, layered, and efficient implementations is available. For in-
stance, available implementations [133] are appropriate for the situations
they are designed for, but they are not directly applicable in an industrial
manufacturing context. The requirements on multi-layered programming
and run-time efficiency are hardly fulfilled, and defined interfaces [133]
are not general enough. As pointed out on Page 15, standards most often
come with maturity.

The question about interaction between the arm control and the con-
trol of external motions, as stated earlier in this chapter, is partly left
open. The study of the path velocity control did not reveal any major re-
strictions due to the imposed control layers. Further evaluation of state-of-
the-art robot control algorithms, both with respect to the software struc-
ture and the control properties, is in progress.

6.8 Summary

The design of the standard, i.e., application independent, part of the mo-
tion control system has been developed in this chapter. The aim was to
support control engineering in a framework considering industrial de-
mands, and to make it possible to add high-level control on top of the
built-in control. To achieve this, the following new principles were pro-
posed:

• The motion control software should be divided into motor control,
arm control, and overall motion control. That is to manage control
complexity, hardware structure, and system development.

• It was described what services the motion control system needs to
provide for higher levels of control. The client/server design combines
encapsulation of control solutions with support for advanced high-
level control.
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• The need to structure the control for incorporation of external joints
was pointed out, and an example how that can be done was given.

• A concept to allow use of more CPU-time consuming algorithms for
embedded control was proposed. This includes a straight forward way
to save and refer to computed motions. It also contains an important
classification of sensor dependency.

• Sensors (software) objects of course include information about phys-
ical input channel, sampling, filtering, etc. Additionally, to facilitate
the two previous items, sensor objects should have methods for real,
dummy, and simulated sampling. This is a key idea for advanced use
of sensor based motions.

• The possibility to use control signals as sensors was pointed out. This
is typically not realized among application engineers.

• A structure for motor control was described, and software tools for
motion control engineering were developed.

The contribution of this chapter is a motion control structure with unique
support for: Encapsulation of control properties, appropriate programming
views and tools for control engineers, flexible tailoring to application spe-
cific demands, and management of (sensor-based) motions to achieve ef-
ficiency without complicated programming. Major parts of the structure
have been implemented for control engineering purposes.
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7

Open Embedded Control

Embedded control devices today usually allow parameter changes, and
possibly activation of different pre-implemented algorithms. Full repro-
gramming using the complete source code is not allowed for safety, effi-
ciency, and proprietary reasons. For these reasons, embedded regulators
are quite rigid and closed concerning the control structure.

In several applications, like industrial robots, there is a need to tailor
the low level control to meet specific application demands. In order to
meet the efficiency and safety demands, a way of building more generic
and open regulators has been developed. The key idea is to use pieces of
compiled executable code as functional operators which in the simplest
case may appear as ordinary control parameters. In an object oriented
framework, this means that new methods can be added to controller
objects after implementation of the basic control, and even while the
controller is running.

The implementation was carried out in industrially well accepted
languages such as C and C+ + . The dynamic binding at run-time differs
from ordinary dynamic linking in that only a subset of the symbols can
be used. This subset is defined by the fixed part of the system. The safety
demands can therefore still be fulfilled. Encouraged by results from some
fully implemented test cases, we believe that extensive use of this concept
will admit more open, still efficient, embedded systems to be developed.4

7.1 Introduction

Making machines programmable has added flexibility to manufacturing
equipments. Typical examples are industrial robots and NC-machines.

4 A slightly different version of this chapter has been submitted for publication[149]
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They can be reprogrammed for applications that were not defined at the
time the equipment was developed. Improved functionality/performance
and cost efficiency are other major driving forces for use of computer
control, for instance in vehicles. Re-programmability is very desirable
also in this case, which means that the lifetime of the product can be
prolonged without having to exchange the components when new (e.g.,
environmental) demands are imposed.

In mechatronics and process control, demands on safety, efficiency
and simplicity are often contradictory to flexibility. Products providing
features for end-user programming, such as industrial robots, are there-
fore preferably layered in such a way that the ordinary user can do the
application programming in a simple and safe way, and the expert pro-
grammer can tailor the system to fulfill unforeseen requirements from
new applications. The same also applies to many mechatronic products
that do not provide end-user programming. For example, the multivari-
able engine control in a car should be possible to update by the car man-
ufacturer. Furthermore, within mechatronics it is in general desirable to
use components that can satisfy the needs of many applications and prod-
ucts. That will contribute to cost reduction. This means that we have the
same situation as for the robot control; open components are needed.

A system that allows such low-level reconfiguration to meet require-
ments that it was not specifically designed for, is called an open system.
Most machine controllers used in industry today are closed. The reason
is that they have been specifically designed to provide an easy to use,
cost efficient, and safely performing control for today’s standard applica-
tions. In present and future more advanced applications, however, cus-
tomization of closed systems becomes time consuming and thereby costly.
Development towards more open control systems are therefore going on,
see [144, 151, 70] and references therein. Still, there are proprietary, ef-
ficiency, and safety reasons for not having a completely open system. The
key issue is to find the right tradeoffs between an open and a closed de-
sign of a system. The best possible solution will, of course, depend on the
available software mechanisms. We include both (partly) open systems
and components in the term open embedded control. The term control
is used since the purpose of behaviors subject to change are typically to
control the system, or parts of it.

The trend towards more open systems has been going on for some
time within operating systems, computer networks, interactive software,
and graphical user interfaces. This development has resulted in software
techniques that have inspired our approach to open embedded systems.
We do, however, not want to impose the use of standard (heavy) operat-
ing systems and process communication principles on an otherwise lean
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design of a cost-sensitive mechatronic product.
The desire to create software mechanisms that support simple im-

plementation of open embedded control can now be formulated as: Given
appropriate hardware, how should the software be organized to allow effi-
cient extension (in terms of improved functionality, performance, etc.) by
changing open parts of the software only, while some parts of the system
may remain closed. As the examples in the next section will show, only
allowing parameter changes and use of pre-implemented algorithms does
not provide enough flexibility.

One approach, used in PLC systems, is to down-load new code for
interpretation to each hardware unit. In many applications, full utilization
of the computer hardware is required, and executable code (cross-compiled
to the specific hardware) is therefore preferred, and also used in a modern
process control system like SattLine [97]. Use of compiled libraries admits
the implementation of certain components to be hidden, but often we need
closed subsystems with open ‘slots’. Recall, however, that we want to keep
part of the software closed. The question is then how to obtain a suitable
border between the open and closed parts. This chapter presents a solution
to this problem, without requiring any special language or run-time model.
We therefore believe that the proposed way of building open real-time
control systems is an innovative simplification compared to more general
concepts (like [87, 154, 132, 23, 201, 178]) for open systems.

7.2 Applications

Some typical situations when an embedded system needs to be open are
presented in this section. These examples are all in the area of manu-
facturing systems, but they also capture typical properties of many other
types of embedded systems.

Feedback control

The most common type of feedback controller in industry is the PID-
regulator [28]. In most process control applications, PID-controllers give
sufficient performance and there are simple rules and schemes for how to
do the tuning without requiring extensive knowledge about the process
dynamics. Although the basic PID algorithm is very simple, industrial
application demands have resulted in enhancements like gain-scheduling,
auto-tuning, and adaptivity. Such features have been built into more
advanced PID regulators.

Within mechatronics and machine control, ability to compensate for
known nonlinearities is often more important for performance than the
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ability to handle unknown changes in process dynamics (called adaptivity
above). Compensation of nonlinearities in the process typically results in
nonlinear control functions. Such functions are normally specific for the
application. Nevertheless, like in the process control case, it is desirable
to use standard control blocks in terms of hardware and software. That
is usually not possible within mechatronics today, but such flexibility
concerning the embedded control functions could reduce the cost of the
controller in many cases. Furthermore, the sampling frequencies required
in mechatronics are typically much higher than those used in process
control. Special care has to be taken in order to achieve the flexibility in
an efficient way.
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Figure 7.1 Block diagram of a P-controller allowing the gain to be re-
placed (at run-time) by a nonlinear function. The puzzle pieces illustrate
type-checking during dynamic binding.

As a simple example of industrial motion control, assume we want
to control the motor angle in a mechanical servo system. Further as-
sume that we do not accept any overshoot when the desired angle r is
approached, and that an inner analog velocity controller is used together
with drive electronics that controls the motor torque within a certain
range. This means that we have a servo process (see Figure 7.1) with an
inner nonlinearity due to the limited torque available. Only the P-part of
the PID controller is used in this case.

With some basic knowledge in physics and control, one can easily
see that the nonlinearity can be almost fully compensated for using the
function g(x) shown in Figure 7.1. The trick is to use the square-root
function to compensate that the required braking energy is proportional
to the square of the speed. For stability reasons, the function g contains a
linear part for small arguments. This type of nonlinearity is used in some
industrial drive systems, but implemented as a built-in special purpose
feature.
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If we instead make an embedded PID-controller in which the pro-
portional gain constant can be exchanged by an external function, much
greater flexibility is achieved. These functions need not be known when
the controller is shipped. They can be written and inserted when the con-
troller is to be used. In the next section, we will return to how this can
be achieved, but it means that we can use the same embedded controller
as a building block for controlling very different processes. Type checking
ensures that only a conformant function can be inserted. The type of the
functions is illustrated in Figure 7.1 by the shape of the pieces.

It is common within mechatronic applications to make use of a dy-
namic model of the controlled system to achieve the best possible per-
formance. Control techniques like state feedback, state observers, opti-
mal control, linearizing control, etc., are used for this purpose. Control of
manufacturing equipment and many military control problems are typical
applications for such control strategies. In such systems, like industrial
robots, it is even more valuable to have software slots admitting the be-
havior of the machine to be tailored to different needs.

As an example, assume we have a well functioning embedded regula-
tor comprising state feedback control. For brevity, only two states x1 and
x2 are used in the sequel. State feedback means that we compute the (in
this example scalar) control signal u as the negative scalar product of a
gain vector L and the state vector x = [x1 x2]T , i.e., the control signal u
is defined as u(t) = −L ⋅ x(t). The state feedback can in a simple applica-
tion be used to control a servo, as in the simple control case above. The
following example of exact linearization is from [105], which also contains
more advanced applications where this type of control is useful.

Consider the pendulum equation

θ̈ = −a sinθ − bθ̇ + cτ

where a = g/l, b = d/m, c = 1/ml2, θ is the angle subtended by the rod
and the vertical axis, and τ is the torque applied to the pendulum. Here
l denotes the length of the pendulum, d the viscous friction, m the mass,
and g is the gravity constant. View the torque as the control input and
suppose we want to stabilize the pendulum at an angle θ = δ . This can
be achieved by the control law

τ =
a
c

[sin(x1 + δ ) − sinδ ] + k1x1 + k2x2

where the first term takes care of the nonlinearity, and the rest is a linear
state feedback that is used to place the closed loop poles using the gains
k1 and k2 from the measured states position and velocity respectively.
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It would be desirable to allow an efficient implementation of this
control using a standard embedded state feedback regulator. This means
that the regulator by default should provide linear feedback, but the gains
should be possible to replace by nonlinear functions. There should be no
significant overhead due to such a feature. Furthermore, in more complex
applications, it should be allowed to have selected parts of an algorithm
hidden. The hidden (pre-implemented) part could then conceptually be-
long to the actual mechatronic device or component.

Supervisory control

A distributed control system is composed of separate local controllers and
at least one supervisory controller. In such a system it is preferable to have
a vendor independent interface to the local units. It is also important to
minimize data flow and reduce the computational load on the supervi-
sory controller. However, standard controllers for local use have different
signals available. At construction time of a controller it is impossible to
know which signals might be desirable to use, since this depends on the
specific application. In other words, distributed control systems today are
sometimes burdened with more communication and computations than
necessary.

An attractive solution would be to have a slot in the local controllers
for additional computation. This could be in the form of algorithms on a
smartcard supplied by the vendor or executable code loaded over a local
network. With this approach standard controllers could be customized to
fit different environments, and the computational load on the supervisory
controller could be reduced.

This type of functionality partially exists in todays process control
systems, but requires that the local controller is integrated with the
supervisory control which either sends down new code for interpretation,
or restarts the local controller with new compiled code. Dynamic binding
of functions would be a more attractive solution. These functions should
not need to be defined in a special process control language defined by the
supervisory system. Using a standard computer programming language
instead means that the local embedded controller more easily can be
integrated into quite different control systems.

In terms of PLC programming [89], we want to use a vendor inde-
pendent method to change function blocks, or parts thereof, at run-time.
Such a principle seems to be compatible with the evolving standard [89]
for PLC and control system programming. (The standard does allow use
of externally defined functions and we have not found any requirement
on static binding of such functions.)
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Intelligent low-l evel sensing

Intelligent sensors are equipped with electronics and data processing
capabilities so that data can be processed locally, thus requiring less data
transfer and computations for the main control. Performance can also be
improved by using intelligent sensors. Filtering algorithms in the sensor
signal processing unit may run at a higher sampling rate, and operate on
data that has not been delayed by data transfers.

High volume production of sensors like accelerometers and laser sen-
sors have resulted in very low cost for the sensor. Field busses and in-
terface electronics for connection of sensors are also becoming affordable.
Such sensors today may provide a protocol for changing filter parameters
and threshold levels. For a sensor to be considered intelligent, we also re-
quire that more general nonlinear and application specific algorithms can
be performed in the sensor. There are, however, also parts of the filtering
that are specific for the sensor technology, and should not be exposed to
the user. This means that we want to have a hidden part of the filtering
hardware/software, and an open part where application specific software
should be possible to plug in. Such algorithms sometimes need to change
over time, depending on the type of information needed by the high level
control (like task planning etc.).

As a simple test case, consider an accelerometer mounted on a robot
arm. Normal robot motions result in smooth changes in acceleration. More
rapid changes result if the robot hits an obstacle. We then want this event
to be detected by the sensor and reported to the main control computer. If
more information about the collision is requested, the sensor should also
be able to reply with a recording of the signal during the collision. Such
information can be provided by a special purpose intelligent sensor, or by
an off-the-shelf intelligent open sensor.

7.3 Embedded dynamic binding

We will now investigate how to bind functions at run-time to software al-
ready running in the embedded system, considering demands on efficiency
and predictability for typical mechatronic applications.

Alternatives

The problem we are facing can be described in terms of a client and a
server. The server is the embedded software already implemented, and
possibly running. The basic service is first of all to perform the control,
but also to service requests to change the control behavior. It is the

118



7.3 Embedded dynamic binding

latter aspect that is treated here. The client acts on a higher hierarchical
level, which means that it contains more application specific knowledge.
Depending on what is appropriate to solve the particular application, the
client requests the lower level control (i.e., the server) to use different new
control functions. We then need some means of expressing these functions
and to dynamically let the server evaluate them. As throughout this work,
we try to apply well proven software techniques, but in the context of
mechatronics and embedded control. Some of the alternatives we have
considered for the implementation and dynamic binding are:

Remote Procedure Calls (RPC) are widely used and understood, but
since the input/output arguments of the procedure have to be trans-
ferred to/from the computer that executes the procedure, the result-
ing data flows and communication delays can be substantial. Unpre-
dictable timing would also be a problem, for instance when Ethernet
connections are used.

Interpreted languages make it straightforward to pass functions to
some target software containing an interpreter. Some languages to
consider are:
Lisp is a flexible and powerful alternative, but tends to be one or two
orders of magnitude slower than compiled languages unless the Lisp
code is compiled. Its dependency on garbage collection also makes it
hard to use for real-time tasks.
Forth is powerful and relatively efficient, but hard to debug and
maintain due to its lack of structure. A solution useful for our needs
could probably use Forth as an intermediate language, but with no
apparent advantages.
Erlang [25] is an interpreted parallel language developed for tele-
communication systems. It compiles to reasonably fast intermediate
code that can be passes between processes running in different ad-
dress spaces or on different CPUs, but as Lisp it relies on garbage
collection, and we therefore decided against using it in our prototype
implementation.
Java is a relatively new language with support for object-orientation,
threads, and their relationship [141]. It is compiled into efficient byte-
code, but the drawbacks of Erlang remains.

Compiled functions written in a widely used language like C would
be an attractive solution. The problem of binding the used symbols
to the external environment then has to be solved. If this can be
done, we will hopefully achieve almost the same flexibility as the
other alternatives, and almost the same performance as for builtin
functions.
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Another drawback with the interpreted languages is that the system
must always contain the (compiled) implementation of the interpreter,
even when no additional software are used. The Compiled functions
alternative, on the other hand, gives a wide range of language choices
since almost any cross compiler can be used. In the sequel, the term
action will be used for such a compiled function that is to be dynamically
bound in the embedded system. This is the solution we have chosen for
our project, and in the following sections we will investigate two different
implementations of actions.

Function-based actions

Function-based actions are a chunk of code that has been compiled as
position independent code (PIC). All interaction with the control system
is done via an environment pointer that is passed as a parameter to the
down-loaded function. The following implementation of a small example
based on the application shown in Figure 7.1 further illustrates this ap-
proach. The header file environment.h contains the following C declara-
tion of the environment:

typedef struct {

float r, y, gain; /* Names according to figure. */

float (*sqrt)(float);

/* more math functions here.. */

} Environment;

The following lines are then part of the standard implementation of the
regulator:

#include <environment.h>

float defaultK(Environment *env) { return env->gain; }

float (*K)(Environment *) = defaultK; /* <- Action type. */

void Pcontrol() {

Environment env;

MakeDownloadable(K, "K"); /* <- Action slot. */

env.sqrt = sqrt;

for (;;) {

env.r = GetRef();

env.y = Sample();

P = K(&env) * (env.r - env.y); /* <- Control law. */

SetOutput( P );

}
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}

where, as C-programmers know, the action declaration specifies that K

is a pointer to a function that as its argument takes a pointer to the
Environment specified above, and returns a float.

Since automatic code generation of control algorithms nowadays is
an important control engineering tool, it is of course important not to
impose special requirements on the way control laws are expressed. The
fact that we use the structure env makes the control law (only the one
line above in this simple example) different from the text-book version
P=K*(r-y) in two minor ways: First, accesses of variables that are part of
the environment are preceded by ‘env.’. That can for example be handled
by preprocessor directives in C and C+ + , or by use of WITH in Modula-2.
Secondly, the number K is represented by the function taking the address
of the environment as an argument. (The “(&env)” can be avoided by using
C+ + operator overloading, but here we will be explicit and not confuse
the reader by any syntactic sugar.)

Now the target system is prepared for a new function K to be down-
loaded. Let us replace the defaultK with a separately compiled nonlinear
gain function. Since the control law is the nonlinear gain times the control
error, we have to divide the function g in Figure 7.1 by the control error.
This means that the implementation of the action will be:

#include <environment.h>

float sqrtK(Environment *env) {

float e = env->r - env->y;

float a = 1 / (env->gain * env->gain);

if (e > a) { return 1.0 / env->sqrt( e); }

else if (e < -a) { return -1.0 / env->sqrt(-e); }

else { return env->gain; }

}

Further improvements concerning the control are possible, but outside the
scope of this paper. Considering the software aspects the solution seems
to be everything we need, but there are a few catches:

• The compiler must be capable to generate PIC code. On some plat-
forms this can be prohibitively expensive in terms of execution speed
or code size. It may also be the case that a certain compiler cannot
generate PIC code.

• It is hard to make changes to the environment structure since all
elements has to be in the same place, and no checks are done when
the code gets down-loaded. Environment mismatches will result in
runtime errors.
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• Some language constructs need access to global data or global func-
tions (e.g., operators new and delete in C+ +), which is not easily
implemented in this scheme. This problem can be solved by a smarter
compiler, but such a modification is probably not worthwhile.

In practice, this means that actions implemented this way are restricted
to be single functions. This type of actions are therefore called function-
based actions. Despite the problems, successful experiments have been
carried out, as will be described in Section 7.4.

Dynamically linked actions

We will now introduce a linker to overcome the limitations with the
function-based actions. Conceptually this seems more complicated, but
in practice one can often use an existing linker and with minor effort
generate a small file that contains the symbols that are needed to link
with the control system. In our prototype system the linking is done with
the GNU linker [55] and a small Perl [216] script (300 lines) on the host
system, and a few small procedures in the control system (400 lines + 1
line per symbol). The action client performs the following algorithm (by
running the Perl script on the host computer):

1. The script requests all available interface symbols of a specific action
slot from the control system.

2. A preliminary linking with these symbols is done to check that all
references can be resolved. If any undefined symbols remain, linking
is aborted.

3. Using the resulting code-size from step 2, the control system is in-
structed to allocate a chunk of memory with the appropriate size, and
its start address is sent back to the client.

4. The final linking is done and the address of the entry point of the
action is retrieved.

5. The finished code is sent to the control system along with the address
of the entry point, see the function install below.

The implementation is straightforward.
To make it possible to have multiple actions in the same code seg-

ment we will also change the way actions are installed in the example
application. The following is the same example as above but somewhat
modified, starting with the file environment.h:

typedef struct {

float r, y, gain;

} Environment;
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extern float sqrt(float);

/* more math functions here.. */

extern float (*K)(Environment *);

The following lines are part of the embedded control software:

#include <environment.h>

float defaultK(Environment *env) { return env->gain; }

float (*K)(Environment *) = defaultK;

void SendSymbols() {

SendSymbol("sqrt", &sqrt);

SendSymbol("K", &K);

}

void Pcontrol() {

Environment env;

MakeLoader(SendSymbols);

for (;;) {

env.r = GetRef();

env.y = Sample();

P = K(&env) * (env.r - env.y); /* <- Control law. */

SetOutput( P );

}

}

As we can see, the things that have changed are:

• The sqrt function is no longer part of the environment structure,
it is instead declared as an external function. By doing it this way,
it is easy to add new functions to the interface, and the removal
of old functions that are used by old actions will give diagnostic
messages when down-loading is attempted. In the C+ + case we can
also detect signature changes since the parameter types are encoded
in the function names (name mangling). When Modula-2 is used,
module time-stamp mismatches are detected in the same way.

• The action pointer is made visible to the down-loaded action. The
reason is that the down-loaded action is now responsible for the
installation, a fact that makes it possible to replace multiple actions
simultaneously. This also makes it straightforward to add static C+ +
objects to a code segment.
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Note that even if we could have placed all variables of the Environment

outside the structure (as done with the math functions), the controller
specific variables are kept in the Environment to allow several instances
of a regulator to use the same action.

The clients implementation of the down-loadable action is slightly
changed, and an install function is added.

#include <environment.h>

float sqrtK(Environment *env) {

float e = env->r - env->y;

float a = 1 / (env->gain * env->gain);

if (e > a) { return 1.0 / sqrt(e); }

else if (e < -a) { return -1.0 / sqrt(-e); }

else { return env->gain; }

}

void install() { K = sqrtK; }

In this case install() only connects the loaded action by assigning the
address of the action to the action pointer. In more complex applications,
install would probably take a number of arguments to be used for ini-
tialization of the loaded action segment. Such initialization may include
calls of C+ + constructors.

Experience

For each one of the two ways of implementing the dynamic binding, there
are some advantages and drawbacks. First, the following benefits and
problems with the function-based approach have been experienced:

+ Easy to understand and implement

+ Code gets reentrant automatically, since all persistent data have to
be kept in a pointer block. This means that the same code can be
used at many places without any additional work.

+ Code blocks can be moved in memory after down-loading (compare
Macintosh code resources [22]). This is a favorable property if memory
compaction is needed.

− Global data can not be used.

− There are certain demands on the compiler; with GNU cc we had
problems with non-optimized code and floating-point constants.

− On some architectures PIC-code is more expensive in terms of space
and execution time.

124



7.4 Experiments

− All calls to interface procedures have to be done by constant offsets
into a jump-table; this makes it virtually impossible to remove any-
thing from the interface (because old code would down-load correctly
but use the old offsets which are incorrect for procedures located after
the removed one).

− C+ + devotees: Dynamic objects are hard to use as operator new and
delete have to be global functions.

There are also some benefits and problems with the dynamic linking
approach:

+ Any compiler can be used since all special work is done during linking.

+ Errors can be better detected when the interface is changed. In the
C+ + case signature changes are detected, and in the Modula-2 case
time-stamp changes are detected.

+ The same programming model as in ordinary programs can be used.
Global data and procedures are available, and even static C+ + objects
can be used.

− Special care has to be taken to write reentrant code. This is the same
problem as in ordinary programs.

− The implementation in the target system is somewhat more complex.

− Code cannot be moved in memory since it is linked by the client to a
specific address. This may lead to fragmentation problems.

We will now discuss the use of these techniques on the applications
that were presented in Section 2.

7.4 Experiments

The two principles presented in Section 7.3 have been fully implemented.
Full implementations of the application examples have also been done.
Some features of these implementations will be presented in this section.
The presentation is hardware oriented, using the experimental environ-
ment presented in Chapter 5.

Distributed systems

The use of actions to solve the supervisory control application exemplifies
the benefits of actions in systems with distributed hardware connected
via a computer network. An embedded control signal logging tool was
developed in C+ + , and connected to the well known program Matlab
running on the host workstation. A Matlab script was written and the

125



Chapter 7. Open Embedded Control

graphics handling was tweaked for real-time performance (Figure 7.3 on
Page 130 was created using this tool). The implementation showed that
the use of actions is a good solution, but also the drawbacks mentioned
in Section 7.3 were experienced. To avoid unnecessary details, we will
now describe how the action concept can be conveniently handled in an
object-oriented framework.

The client side communicates with the server that receives and exe-
cutes the down-loaded actions. Under such circumstances, the supervisory
control system running on a host workstation sends down actions to the
server that executes the actions, thus computing the variables that are to
be supervised. The software can be divided into the following five parts.

1. The client’s compilation and linking strategy according to Section 7.3.

2. The transfer of the action from the client to the server. This part
is standard computer communication and is therefore not further
described.

3. The embedded software implementing allocation, initialization, stor-
age, call, and deallocation of actions. This part corresponds to a
generic holder of actions.

4. An interface part defining the environment (data and operations) that
is available for actions. This defines the actual openness of the control
object.

5. The specific application or control code executing the actions. Except
for the initialization part, the control source code does not need to
reflect that actions are allowed.

This means that we want to do an implementation for the embedded
system of items 3, 4, and 5. An object oriented design and implementation
using the C+ + language was found to be well suited for this.

FloatAction

ActionSlotActionLoader Action

SockActLoader

ThisFloatAction

Socket

ThisEnv

Host UNIX syst. Has [0-*]

Instance of

(type unsafe)

Ethernet

Has 1

Inherits

Has [0-1]

VoidAction

Uses Uses

Inherits

Int..

InheritsInheritsInherits

Figure 7.2 Classes for simple use of actions. The (type unsafe) inheritance
from ActionSlot is part of the system, whereas the resulting action slot
(ThisFloatAction in this case) is strongly typed.
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Figure 7.2 shows our object design. The class ActionLoader is in-
dependent of the way actions are transferred to the computer. This is
instead encapsulated in the SockActLoader which uses some communi-
cation class, denoted Socket in the figure. The ActionSlot is a holder of
a generic action. A number of type-safe classes derived from ActionSlot
were written, one for each built-in type. These derived classes provide in-
line type-conversion operators for convenient use of actions in algorithms.
For instance, the FloatAction contains an operator float.

Shared memory systems

Motion control systems often use multiple processors on a common bus. In
less demanding applications when only one CPU working in one address
space is used, a fixed linking and use of function pointers can provide
the required flexibility. When using multiple CPUs that share memory
via a bus, like the VME bus in Figure 5.2, we have to cope with different
address spaces. Assume this is the case in our simple control example,
and we want to use dynamically linked actions.

Using dynamically linked actions in a stand-alone system, as motion
control systems often are, may seem to require the linker to be ported
to the target architecture. Note, however, that the required functionality
is very limited. It does not need to depend on file systems and operating
systems, command line decoding can be omitted, only a few options are
needed, etc. Hence, such a linker is easy to write.

Source code for the simple control application has been presented in
Section 7.3. The &env in the control law P=K(&env)*(r-y); is possible
to omit by using overloaded operators in C+ + . In our case it was done
by declaring K as a FloatAction (see Figure 7.2), which in C+ + contains
public: inline operator float();. This means that the action can be
used wherever a float can be used, and the control law can be written as
P=K*(r-y);, exactly as in C without actions. Standard tools for generation
of control code can therefore still be used.

More advanced control problems can be solved in a similar manner.
We can then keep the control law without any changes due to the use of
actions. A perhaps better solution is to change our view of the elements
of the feedback vector from being constants that are multiplied by the
corresponding state, to being functions that take a state variable as an
argument and by default returns the product of the state and the gain
factor. The nonlinear pendulum control can then be achieved by using the
following feedback gain functions:

l1(x) = a [sin(x1 + δ ) − sinδ ] /c + k1x1

l2(x) = k2x2
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where k1 and k2 could get their values from a standard parameter in-
terface, or whatever was used for the constant L vector values. An even
more flexible solution would be to let a feedback vector L be a function
of the state vector and the time, i.e. L(x, t) = ... That would for instance
allow a non-stationary LQ-controller [29] to be used.

Dedicated hardware systems

The following implementation of the low-level sensing illustrates the use
of actions for special purpose hardware. As shown in Figure 5.2, an ac-
celerometer connected via an AD-converter to a DSP is available. For
brevity, we will only use a simple action detecting an acceleration level.
The following design tries to show how actions can be supported with a
minimum of support from the embedded sensor software.

To reflect typical properties of intelligent sensors, our hardware was
used as follows: 1) There is a memory area (called action storage) re-
served for loaded actions. 2) The action storage is accessed by using the
built-in DMA capabilities of DSP32C. This means that no support from
the DSP program is needed; access of action storage from outside only
imposes some cycle stealing controlled by the hardware. 3) The address
and the length of action storage must be known by the action client.
In our setup, we simply get this information from the symbol table of the
linked sensor code. 4) The loaded action must obey any restrictions on the
use of resources like CPU-time and memory. We used the DSP simulator
(on the host computer) to check the execution time and use of memory.

We will now use function-based actions to catch collisions and plot
the recorded signal in a host computer tool. Since they do not require any
addresses of internal symbols (recall that the pointer to the environment
is passed as a function argument at run-time), and the management of
the action storage is done by the master, the following C+ + code is
sufficient. First the header file included by both the action client (the
master) and the action server (the sensor unit):

struct Environment {

struct Signals {

float time, acc;

} *this_sample;

enum status {pending, recording, transferring, waiting};

status trig_state;

};

typedef int (*PlotAction)(Environment*);

As C-programmers know, the final typedef-line specifies that PlotAction
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is a pointer to a function that as its argument takes a pointer to the
Environment specified above, and returns an integer. The basic sensor
software then contains
int DefaultAction( register Environment *env ) {

// Default behavior implemented here.

}

long action_storage[0x400]; // Size hard-coded for brevity.

PlotAction plot_action = DefaultAction;

The return value of the action tells whether sensor data output should be
supplied or not. Our built-in data-supply object of type AccPlot contains
the following member function:
int AccPlot::PutSample( float signals[] ) {

// <Checking conditions that has to be fulfilled..>

// <..16 lines omitted here..>

// Space available, check trig condition.

environment.this_sample = (Environment::Signals*)signals;

if ((*plot_action)(&environment)) { // <- CALL OF ACTION.

// Put data and let HW convert to IEEE output format.

// <Some work done here.>

return 1;

} else { // <Seven final lines omitted ..>

where the line containing (*plot_action)(&environment) shows how the
action is called. As the reader with experience from the C language knows,
this statement means that the function pointed to by plot_action is
called, passing a pointer to the environment data structure as an argu-
ment. The following function was written and compiled, and then position
independence, execution time, and memory usage was checked. This was
done on the host workstation.
int AccPlotAction( register Environment *env ) {

int ilevel = 25; float level;

switch (env->trig_state) {

case Environment::pending:

level = float(ilevel);

if (env->this_sample->acc > level) {

env->trig_state = Environment::recording;

} else { return 0; };

case Environment::recording: return 1;

default: return 0;

};

};
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The threshold value, which in this example is fixed to 25m/s2, should in a
real case get its value from some kind of parameter interface. The simple
> test on the level can of course be replaced by more complex conditions,
using for example filtering functions (provided via the Environment) from
the application library of the DSP. The size of the compiled code for the
AccPlotAction function is 212 bytes, and worst case execution time is
3.4µ s. It was loaded into the DSP memory using DMA, and it was acti-
vated by assigning the address of the loaded action to the plot action

variable (done as one atomic operation using the DMA facility). With a
sampling rate of 8 kHz, a recording of the transient when a slow down-
ward robot motion touches a cover plate made of metal was requested.
For proper assembly, there should be a gasket applied on the plate. The
intelligent sensor catches the contact transient and sends the captured
data to the host computer. The rigidity/compliance of the surface affects
the response quite significantly as shown in Figure 7.3. It is therefore a
trivial task for the high level control to decide if the gasket is missing or
not.
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Figure 7.3 Acceleration [m/s2] versus time [s] after contact event. The solid
line shows the desired response with the gasket applied, and the dashed line
shows the metal contact when the gasket is missing.

There are, however, also problems with the above solution. As the
observant reader has noticed, the threshold level in the AccPlotAction

function is first given an integer value 25 which is then converted to a
float. It would of course be better to declare floating point values directly,
but the standard DSP32C C-compiler does then not produce position
independent code. This is typical for RISC architectures, which uses a
fixed instruction length. In this case, the instruction length is 32 bits.
That is also the length of a float (and also of a long), whereas an
integer occupies 24 bits. The C-compiler therefore includes the constant
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integer values in the instructions in the code-section. A float, on the
other hand, will be put in the data section, thus requiring linkage to the
executable code. The same problem occurs, as mentioned in Section 7.3,
when auxiliary functions are included in the action.

Even if the problem is due to the compiler, it is still relevant since
compilers generally work in this way, and actions are preferably written in
a high-level language. Special languages and/or compilers are sometimes
used for safety critical systems to get deterministic execution properties.
Such a special compiler could provide position independence also for the
above function. It is also easy to achieve that using assembly language.
Despite the problems, we therefore think that function-based actions can
be a useful alternative in some applications. But for portability and exe-
cution efficiency reasons, the dynamic linking version is probably the best
alternative in most cases.

7.5 Safety and predictable real-time performance

The proposed mechanism is a powerful way to add flexibility to embed-
ded systems, but how are safety and predictability affected? The following
investigation is made with some typical properties of hard real-time sys-
tems in mind. The reader may think of the Spring Kernel [194] and the
Synchronous approach [187] as relevant examples.

Since we have the same requirements on safe programming of ac-
tions as for implementation of the standard part of the system, some way
to ensure that safety has to be devised. If a language as C is used to
implement the actions, the system has to protect itself from invalid mem-
ory accesses that otherwise could compromise the entire system. Proper
programming of the MMU can prevent illegal memory accesses but that
is an expensive solution, especially concerning worst case execution time
for dynamically linked actions. A more convenient (for the programmer)
and efficient (for the computer) approach is to use a language (like Java
[141]) where memory accesses can be checked a priori.

To ensure that deadlines in the system are met, the timing of individ-
ual actions is of paramount interest. If the system is statically scheduled,
the schedule has to take into account the extra time actions are allowed to
take. The timing constraints is then a property of the action slot, and the
constraints have to checked when actions are installed. In dynamically
scheduled systems, rescheduling has to be done when actions are loaded.
In both cases, the execution time of the action has to be determined.

In some cases, as in our DSP system, execution times can be deter-
mined by the client, and the action loader can check that timing con-
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straints are fulfilled. Thus, no additional functionality/software for tim-
ing analysis is needed on the target side. In other more general cases, for
instance when the action may be down-loaded to differently configured
hardware (but with compatible instruction sets), it is more suitable to
perform timing evaluation of the action in the target system. To determine
the actual timing of the action, it either has to be statically analyzable
like in Real-Time Java [141], or the timing has to be checked at runtime
by measuring the actual time taken for some appropriately chosen test
runs of the action. Assume that each action contains a function that calls
the loaded function with special parameters to get the maximum execu-
tion time. It is not appropriate to just let the install function (see the
code example on Page 124) call the MaxTime function and then compare
with the bounds by calling some evaluation function defined in the ac-
tion’s environment. This is because timing analysis may also require the
hardware (interrupts, caches, etc.) to be setup in the same way as when
the action has been installed. Therefore, we propose that action slots in
statically scheduled systems require actions to have a MaxTime entry (and
MinTime, etc.), and that the server calls it before the install function.
This is a minor and straightforward extension of our present implemen-
tation. Of course, the program must have a properly scheduled time slot
for the timing evaluation, but that slot can serve all actions managed by
that CPU.

When new code has been properly installed, it can be useful to mon-
itor signals emanating from the the action to make sure that it fulfills
predefined control constraints. That was proposed in the Simplex Ar-
chitecture [179], which has been developed to support online upgrade
of hardware and software components. The action mechanism facilitates
also such a feature; actions can of course be removed (fully implemented
but description omitted) when conditions of activation are not fulfilled.

In conclusion, we claim that the proposed mechanism is very useful
both for improving flexibility to existing hard real-time systems, and for
development of new open embedded systems.

7.6 Conclusions

A development towards more open computer systems is motivated by
increased demands on flexibility, i.e., that the system should be possible
to tailor to meet new customer demands. The need for open systems
also within mechatronics and embedded control was illustrated by some
application examples. To permit feedback control based on information
from external sensors, and for the design of reactive systems in general,
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open control systems are needed. Special demands on efficiency, safety, etc.
motivated use of dedicated software techniques for this type of systems.

The most basic way to allow changes is by providing parameters that
the user can tune for his/her purposes. Such parameters have been re-
stricted to data, but the demands on flexibility often require the program
to be changed. Our idea is to use pieces of compiled executable code as
functional operators. Such operators may in the simplest case be a lin-
ear function, which combined with operators provided by the program-
ming language may appear as an ordinary numerical control parameter.
In more complex situations, even if encountered after implementation of
the basic system, we may introduce a function with additional arguments
(states, time, etc.), or even a ‘function’ with internal states. A new pa-
rameterization of the control is then obtained. (Our implementation even
supports parameterization of the parameterization, that is, action param-
eters supplied at plug-in-time defined the actual parameterization used
during run-time.) In an object-oriented framework, this means that new
methods can be added to controller objects after implementation of the
basic control, and even while the controller is running. Two ways to do
the required dynamic binding of functions and objects were introduced
and discussed.

A major effort was put into full implementation of the test cases.
The results were encouraging; it was possible to achieve flexibility and
efficiency, and to combine open and closed system designs. In other words,
an embedded may indeed be open, thus justifying the title of this chapter.
The application examples, the proposed principles for open embedded
control, and the implementations verifying the performance are the main
contributions.

In conclusion, we propose a way to build open and efficient em-
bedded systems using industrially accepted software techniques. It was
also described how other research results, concerning for example pre-
dictability and static scheduling [194, 195], can benefit from the proposed
mechanism. We think that a major advantage of the concept is its sim-
plicity (concerning programming and operating system requirements) and
the possibility to combine it with other solutions within mechatronics and
real-time systems. Since flexibility is likely to be even more important
in the future, for example in manufacturing systems, we hope that the
proposed software technique will contribute to that.
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Applications

We are now ready to further investigate special applications that are non-
trivial to handle with current systems. A short introduction to such ap-
plications was given in Section 2.5 (p. 10), where one industrial and one
benchmark problem were presented. This chapter contains a further treat-
ment of those examples, and more industrial examples are also presented.
These application examples are today, in many cases, handled by modify-
ing the basic motion control of the robot. This can normally only be done
by the robot manufacturer, and requires a substantial engineering effort.

The approach taken here is as explained previously; the robot control
systems should be open for the experienced user on a fairly low level
tightly connected to the motion control system. Actions, as defined in
Chapter 7, will be used to accomplish such a tight connection. The term
robot skill will be used as a short term denoting actions loaded into the
application layer for the purpose of extending the capabilities of the robot.
The experimental platform presented in Chapter 5 is instrumental to
obtain the results reported.

The first application example, which is deburring of castings, illus-
trates the aspects of open robot control very well. The second example
treats high performance motion control for spot-welding. There is one ex-
ample about object identification for materials handling. Two examples
in the section about assembly, describe how creative use of the applica-
tion layer can improve the performance of assembly operations without
additional sensors or hardware. The final industrial example is about arc
welding, focusing on support for special control of the welding process,
and on the use of such control from a task-level programming system.
The ongoing implementation of the pendulum benchmark problem is then
presented. Finally, we will look at some related industrial development in
recent years and put the development of application specific control into
an industrial context.
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8.1 Deburring of castings

As already pointed out on Page 10, we want deburring to be accom-
plished by moving the grinding tool with position control along a nom-
inal path, and with force control in a direction normal to the path. By
appropriate tuning of speed etc., the tool will make the surface smooth.
In the ideal situation when the variation in burr size is small, and when
the grinding path is well known, successful grinding has been achieved
[205, 85, 103, 160, 137]. Even in the case of more unknown burr sizes,
successful experiments have been made using special tooling and external
control [159]. The special tooling includes passive compliance in well de-
fined directions relative to the grinding forces, and the tools is equipped
with sensors for accurate position and force measurements. Such very
special end-effectors [161] are needed because the robot controller cannot
be tailored to accomplish the desired grinding control.

The situation is even more difficult in the general case when the lo-
cation of the work-piece is not accurately known, and when remaining
bulges remain due to exceptional burr sizes. This is the case that has to
be solved before robotized grinding gets industrially useful. Major robot
vendors are aware that current systems cannot handle this type of appli-
cation, and many potential customers have therefore not been offered any
technical solution [33]. Thus, robots capable of handle realistic deburring
applications are industrially very tractable.

Even if the long-term goal of this research is to develop a system for
real industrial use, such a complete implementation is beyond the scope
of this thesis. Instead, let us look at unsolved specific problems. As men-
tioned above, deburring along well known paths with small variations in
burr size has been accomplished in other laboratories by well designed
end-effectors and well tuned feedback control. The major unsolved diffi-
culty is to make the robot recognize when and where additional grinding
is required and, if so, to determine additional grinding motions, like the
ones a human worker would have performed.

Desired behavior

Considering our example from Chapter 2 (Figure 2.5, p. 2.5), we have
the profiles according to Figure 8.1. Note that the following solution will
not require any additional sensors to measure the deviation from the
nominal path. Instead, that can be computed from the position errors
during deburring. Such (internal control) data are normally not possible
to use in robot programs. Here, it is possible due to the open control
architecture as described in earlier chapters.
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A simple grinding strategy to handle exceptional burr sizes would be
to apply a grinding force that is proportional to the deviation from the
nominal (i.e., programmed) path, or to regulate the grinding speed along
the path. However, to avoid work-piece-burns [137] such control can only
be used to a limited extent. A more general solution is to:

1. Perform some initial grinding to estimate the actual location of the
work-piece [68] and adjust the nominal path to get a new desired
path. That compensates for misalignments of the work-piece. Thereby
we permit larger tolerances for work-pieces and fixtures without re-
quiring special fixtures (which easily cost around 20000USD [51]).
The adjusted path is the Desired profile in Figure 8.1.

2. The desired profile will define the set-points to the motion control.
During the first grinding the Cartesian position error in the force-
controlled direction is to be computed based on the joint position
errors. That gives the difference between the After first grinding and
the Desired Profile in Figure 8.1. When this difference exceeds a
certain threshold, a remaining bulge has been detected.

Assume that a remaining bulge can be characterized by the start and stop
path coordinates s0 and s1 and the height h as shown in Figure 8.1. The
detection and recording of the bulge is to be implemented in an action
(as defined in Chapter 7) by the deburring expert programmer, possibly
after measurements from human demonstration of the task [182]. The
maximum deviation between the modified path end the actual path equals
h. After some checking that s0, s1 and h are within reasonable limits,
an additional grinding strategy can easily be computed since the entire
profile of the bulge is known from internal sensor signals. Note that such

0s
1s

Valve housing

Additional grinding needed

h

Desired profile

Raw profile

After first grinding

Figure 8.1 Part of work-piece and contours for the deburring example.
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computation in the application layer is done while the underlying motion
control moves the robot. At a path coordinate s2 (close to s1), the nominal
motion is interrupted, and the bulge is ground down by moving the tool
back and forth over the bulge (like a human worker would have done).
Grinding can then be resumed at s2.

Interruption of the normal grinding to perform the additionally re-
quired grinding means that a minimum of time is wasted on moving the
grinder (or the work-piece in the case that is held by the robot) back to
remaining bulges. Path planning problems (obstacle avoidance, avoidance
of singularities, and proper selection of arm configurations) are thereby
avoided. Another alternative that also avoids the path planning problem
is to first complete the first grinding, and then (using measurements from
the first run) compute an additional grinding program with iterated (and
possibly increased) grinding forces at the remains. Successive runs can
then be made until the desired profile is achieved. This alternative so-
lution, using a standard robot systems and an advanced grinding tool
which also performs the sensing, has recently been implemented by Per-
soons and Van Brussel in Leuven, Belgium [160]. The solution suggested
here5, utilizing the adequate support offered by our proposed software
organization, should be more productive because less external hardware
is needed and the required feedback is accomplished more locally in the
system.

Status of implementation

Our treatment of the deburring application has so far resulted in a de-
scription of the problem, an analysis of possible approaches, review of
available research results, and a description of a desired behavior that
we want to implement. Research efforts towards a full implementation
are suggested to be done in the following stages:

1. Attainment of knowledge about the deburring process, and implemen-
tation of preliminary grinding. This includes design of the deburring
control loop.

2. Integration of the grinding control and the robot motion control is
desirable to obtain (cost and performance) efficiency. It must be in-
vestigated if application specific requirements concerning data flows
and programmability are fulfilled.

5 The proposed solution was presented internationally in 1992 [150]. That paper (and
[144]) also includes some source code and further implementation details that have
been omitted here for brevity.
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3. Incorporation of the grinding control (according to item 1) in the robot
control system (according to item 2). Improvements of the control
and end-effector design may be necessary to obtain full experimental
grinding.

Item 1 has, as described above, been solved in other laboratories, giving
valuable know-how about the deburring application. Here, with the limi-
tations of current industrial systems in mind, we want to investigate if our
software architecture supports implementation of the deburring specific
control. This is Item 2 which will be treated below.

Item 3 requires grinders and fixtures that are currently not available
within our laboratory. An important subproblem that, on the other hand,
is being pursued is integrated position/force control. In particular, the
transient behavior when the grinder gets in contact with the work-piece
is important. The experimental platform therefore includes a force sensor
for an ongoing implementation based on the impedance approach [100].
The developed interface for experimental control of ABB robots is also
being used for hybrid position/force control at the University of Coimbra,
Portugal [162]. To examine the applicability of the ORC architecture,
without having the grinding tool and force control available, we found
the following contour tracking experiment to be relevant.

The gripper mounted on the Irb-6 in our laboratory is equipped with
a laser distance sensor [157]. The sensor emits a laser beam and senses
the reflection. The distance is obtained (internally in the sensor) by tri-
angularization. The accuracy is better than 0.1 mm. The sensor output is
connected to the control computer via an analog interface (marked Laser
IO in Figure 5.1, p. 70). Instead of defining a GRINDMOVE primitive, we
will implement a TRACKMOVE primitive. This will of course be much sim-
pler concerning the force control and its interaction with the grinding
process, but the characteristics of the compensation of possible misalign-
ments and the handling of exceptional bulges can be tested. Therefore,
the test is relevant for evaluation of the proposed ORC architecture.

Configuration of software layers The ORC programming layers were
configured/utilized as follows:

• The top layers for task-level, off-line, and on-line programming were
omitted for simplicity since they are not subject to evaluation here
(that was done in Chapter 3). This means that the robot was pro-
grammed very much like a computer.

• The executive layer was configured for robot programming in Modula-
2. This was straight forward using the action concept proposed in
Chapter 7.
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• The application layer was extended with a module/package for the
contour following. This was also implemented in Modula-2 using ac-
tions. It was done in such a way that the trackmove primitive could be
installed and removed while the robot was performing (but of course
not when the primitive was in use). For safety reasons (the laser
beam is harmful for the eyes), the orientation of the sensor was fixed
and only vertical (Z) on-line adjustments were allowed.

• The motion control was done joint-wise, and no external joints were
supported. The motion control layer was therefore not used, and the
arm control layer only included an arm-specific trajectory generator.
Whereas the basic motion control and the application specific control
was done in the same (M68040) CPU and in the same address space,
callback procedures were used for simplicity instead of full actions to
pass the contour following algorithm to the arm control.

Programming To admit both robot programs (i.e., the task description)
and skills (i.e., the tracking behavior) to be changed at run-time, skills
loaded into the application layer are registered in a table (internally in the
application layer). Each slot in the table includes a pointer to the “Symbols

function” (corresponding to the SendSymbols function in the example on
Page 123) of the skill. That function returns the symbols (functions and
data) that can be accessed from the executive layer. This is used when
the robot controller is tailored to this specific application, which was done
in the following steps [16]:

1. The robot skill was written and compiled referring to static informa-
tion (modules or header-files describing types and functions) on the
host computer. Type checking and generation of time stamps for the
compiled code is done at this stage.

2. The contour tracking skill was installed as an action in the application
layer. This includes checking that only allowed symbols are referred
to by the compiled code, and the time stamps are used to check
that all interfaces (used by the action) within the embedded system
were defined before the action was compiled. We made the socket
interface to the network available to robot skills, admitting contact
with engineering tools on the host computer to be established at run-
time.

The installed skill (dynamically) exports the symbols that should
be possible to access from the user-program. This is done by call-
ing a function in the built-in part of the application layer. Thereby,
the Symbols function of the loaded skill is registered in the table
mentioned above. The call performing this registration is done from
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the dynamically loaded code but in the context of the DynamicLinker
server process (visualized in Figure 6.9 where actions defined from
SimuLink were loaded) not to disturb the execution of ongoing con-
trol.

3. The robot program, including the task description (path coordinated
etc.), was compiled in the same way as in item 1. The interface to the
skill is statically available, and assumed to be available also in the
embedded system.

4. The robot program was loaded as an action into the robot controller,
similar to item 2. The only special extension is references to symbols
that are defined by dynamically loaded skills. Those symbols are
retrieved by the executive layer (from the application layer) by calling
a generic function that calls every Symbols-function that have been
registered in the table mentioned above. The assumption from the
previous item can therefore be checked. If not fulfilled, the loading
of the robot program is aborted. If the robot program is accepted,
the execution of it started as a new software process. An execution
control interface with a Matlab-based graphical front-end was also
implemented [16], but for brevity that is not described here.

Thus, both type checking and time-stamp checking (detecting references
to old interfaces) of dynamically loaded robot skills were done. Further-
more, well designed software modules and ‘makefiles’ take care of the
internal complexity; the user only needs to know a few simple commands.

Experiences and ongoing work Several practical difficulties were en-
countered during the implementation and test. This had to do with an
unfortunate combination of sensor and work-piece. (The problems were
not due to the hardware or software organization.)

One difficulty encountered was to program the circular motion so
that the laser always senses the top of the 1-2 mm wide burr. The laser
beam is between 0.45 mm and 0.9 mm wide depending on distance and
orientation, and it is not visible which makes the programming hard. This
difficulty would not be present if a grinder were used. This problem was
solved by writing a program that made the robot move twice (in different
direction) over the casting with the sensor activated. The sensor data
and end-effector coordinates were captured via the software installed in
the application layer, and the data were sent to Matlab. Then we wrote
a Matlab script which read the data from the robot and computed the
location of the work-piece. That is, the desired edge was assumed to be
circular and the burrs were assumed to be perpendicular to the desired
edge, and the coordinates for the circle were computed. Those coordinates
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Figure 8.2 Part of casting edge as detected by the robot using a laser sensor.
The plotted height (in mm above the ground) versus path coordinate (in mm
along the path from start) catches the main part of the bulge. The deficient
quality is due to irregular reflection of the laser beam on ragged edge.

were then transferred to the robot controller and used for the tracking
motion.

Data were logged also during the final run around the edge of the
casting. The contour data used to detect the exceptional bulge was sensed
and sent to Matlab for documentation purposes, see Figure 8.2. Two
additional problems were then observed. First, the ragged edge of burr
did not reflect the laser beam as required. Secondly, the top of the largest
burr was leaning outside the assumed circle. The latter of these problems
could of course easily be fixed, but being disappointed concerning the
laser sensor, we did not think it was worthwhile. Instead, we decided to
try compliant control and let the robot be in contact with the work-piece.
At the moment of writing, the practical arrangements are going on. The
contour detection and computation will be the same as in the contour
following (and in the deburring) case. This key feature was accomplished
in the following way.

The action (the callback routine in this case) passed from the loaded
skill to the arm control layer was allowed to modify the derivative of the
path coordinate (always computed by our trajectory generator) during
the motion. Changing the sign of this derivative therefore results in a
motion backwards along the path. The desired behavior for additional
grinding motions can thereby simply be computed in terms of a trajectories
for additional motions as functions of the grinding path derivative. In
conclusion, programming at different levels could be done conveniently in
the proposed architecture, but practical issues remain to be solved.
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8.2 Spot welding

Spot welding is a task well suited for industrial robots. As the application
has become mature, the performance demands have become clearer. Com-
petition and benchmark tests (made by major car manufacturer) are fur-
ther reasons. Customers make performance evaluations because the time
needed to weld a spot, including the move to the spot and the closing of
the weld-gun, is of major importance for the applicability and economical
pay-off.

The need to tightly connect the motion control system with the timing
of the control of the welding equipment, as described below, became clear
to the author already around 1984 at ABB Robotics. An important car
manufacturer (SAAB) required that motions between weld-spots may not
take more than 0.4 seconds, including the time needed to control the weld-
gun and the time to start and stop the welding. At that time we had to
extend the built-in motion control system with special features.

Such an experience naturally inspires a more structured approach, as
was proposed by the author in 1992 [144, 150]. The SpotWare package [7]
developed since then within ABB Robotics very well agrees with the pro-
posed principles. Technically, the new S4 system fulfills the requirements
for this application; the added application-specific control can subscribe
on time events from the built-in trajectory generator (as specified in the
RRS interface [169]).

The problem

Consider welding of some part of a car. The spots to weld are typically
equally spaced and placed in a row along the edges of the sheet-metal
parts that are to be joined. A typical distance between the weld-spots is
around 50 mm, and a typical time for the motion is (today) around 0.3
seconds, which still is significant compared to the welding time.

Assume that welding of one spot is almost completed. Upon comple-
tion, the robot should, as quickly as possible, open the weld-gun, move
to the next spot, and start welding. Let us call this new location spotx.
Hence, the statement WELDMOVE WeldGun TO spotx is to be executed. The
WELDMOVE statement on the user level will be interpreted and a compiled
function will be called. What are the requirements on this function?

We may call the function WeldMove. It has to be built on existing
motion primitives. It needs to use information from the basic servo loops,
to handle signals from the tool, and to include other types of application
knowledge. Some of the typical characteristics will now be given, and it
should be easy to imagine that it would be a tricky task to implement the
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feature by modifying the basic motion control system. The desirable user
level primitives are on the other hand not designed for this type of fast
timing, which motivates implementation in the intermediate level of the
system.

The solution

The short distance between the weldings usually result in short motions
for each joint. In this application this means that the major limiting fac-
tors are the maximum jerk and the maximum acceleration. The joints will
not get close to their velocity limits, and the manipulator dynamics can
be considered constant with respect to the joint angles during the motion.
Motion control optimized for this type of short motions may further im-
prove performance. Assume that there is a ShortMove function available
in the arm control layer as described on Page 93. We will then make use
of this function whenever the motion to a new welding position is “short”
(in joint space).

timeThe gun closes

Close gun ordered

Motion complete

Motion soon ok

Figure 8.3 Timing for stop of motion and start of welding.

Open gun ordered

Motion requested

Welding is ready

     
 and turned off

Welding soon ok

The gun opens

End−effector

     
 motion starts

time

Figure 8.4 Timing for stop of welding and start of motion.

The timing of the events must also be considered. When the move has
been completed, then the robot controller orders the weld-gun to close by
asserting some signal to the welding equipment. After the weld-gun is
closed, the welding itself is controlled by the welding equipment [167].
Since some time passes, after the signal has been set, until the weld-
gun is almost closed (that is, until the motion has to be completed), it is
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Figure 8.5 Grafcet [63] description of timing for high performance
spot-welding.

desirable to signal “close-and-weld” some specified time before the motion
is completed, as shown in Figure 8.3.

Similar methods can also be applied at the start of the motion, where
it is required that the welding equipment generates a “welding OK” signal
a certain specified time before the welding is estimated to be complete
[167]. (Welding is event driven and depends on the welding current and
other signals monitored by the welding equipment.) In Figure 8.4 the
estimated ”welding OK” event is denoted Welding soon ok, and the Open
gun ordered and the Motion requested events are scheduled so that the
last three events in the figure occurs as close to each other as possible.
Omitting the timing in Figure 8.3 for brevity, Figure 8.5 further explains
the sequencing and timing that must be handled by the control software
[86].
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8.3 Materials handling

Robots used in so called pick-and-place applications often need to identify
the presence of objects or what kind of object that is present. Also other
applications may include sorting of pieces, thus also requiring this func-
tionality. In some cases beam sensors can be used [52]. A more general
but costly solution is to use vision systems. Another promising alternative
is ultrasonic sensors [189]. In some cases, however, there are reasons to
believe that external sensors can be avoided by utilizing internal control
information.

Desired behavior

Estimation of dynamic properties using measured data is a common and
important technique within automatic control. Several algorithms and
methods have been developed for this purpose [99]. Such system identifi-
cation techniques have also been used to estimate robot arm inertias for
control design purposes. It is then natural to ask: Why not use system
identification also as a way to avoid external sensors. This, of course, ap-
plies to the case when the motions to grasp the objects do not depend on
the type of object. That may be the case when the objects are of similar
shape, when they only differ in weight due to different materials, or when
we want to check if an object of fixed type has been grasped or not. The
problem today is that signals required for system/object identification, are
not possible to access from any user level of the system.

Thus, the desired behavior is that the robot after grasping an object
should be able to identify the object, if any, only using internal (built-in
sensors). This feature should of course be well encapsulated and easy to
use for the ordinary robot programmer, whereas the algorithms should be
implemented by the control engineer in the application layer. The end-
user program may contain the following lines:

MOVE gripper TO GripPosition

WITH ...

Gripper.Close

IDENTMOVE gripper TO DropPositions[ Id ]

VIA TopPos

WITH Id = IDENT(pars, possible_parts)

CASE Id OF

NoObject : ...

where IDENTMOVE and IDENT are application specific features of the system.
The parameters pars for the system identification algorithms include
data like length and magnitude of the excitation signal. Note that the
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destination in the IDENTMOVE instruction is not known when execution of
it starts. However, when the via-point is passed, the identity of the object
should be known, and motion continues to the corresponding element of
the position vector DropPositions[].

Prototype implementations

The proposed principle was first presented in [144]. A full implementation,
proving the applicability of the concept, has more recently been carried out
by others [138]. In our laboratory, system identification experiments for
control purposes have been carried out [129] using the developed exper-
imental platform. An excitation and data logging tool (developed within
our laboratory), with a Matlab-based graphical front-end, was used for
these experiments. The tool was, however, connected directly between the
motion control and the engineering workstation, and not to the user pro-
gramming layers. On the other hand, successful uses of actions and ex-
perience from the system identification experiments show that excitation
and data logging can be conveniently controlled from outside the motion
control system.

Object identification controlled from the user level has been imple-
mented also in our laboratory. This was done as a two weeks project by
four students (with guidance from the author) within a course in adaptive
control [218]. The Irb-6 robot was used, including its original analog speed
control (PI-mode selected, see Figure 5.1 on p. 70). The accuracy of the
inertia estimation was not very good due to unmodeled dynamics (within
the harmonic-drive gear boxes) and due to interference with the analog
speed control, but the robot was able to sort pieces depending on material
(steel or aluminum). The added instructions were made compatible with
the old ABB programming language ARLA [4]. The syntax and semantics
of the instructions exposed to the end-user were therefore much simpler
than proposed above.

Another prototype experiment, illustrating that intelligent external
sensors can be used for ‘quick’ object identification, was described on Page
130. With experiences from these three experiments, it is very likely that
the proposed architecture facilitates the employment of system identi-
fication as a means to avoid (unnecessary) sensor hardware for object
identification, and also that necessary sensors can be efficiently used.

8.4 Assembly

Assembly cycle time is the key measure of the performance for an assem-
bly robot. It is often too long a cycle time that is the reason for using fixed
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Figure 8.6 Example of an assembly work cell, from [74] with permission
from IVF.

automation or manual work instead of robots, resulting in less flexibil-
ity and manual work that is monotonous. The first example deals with
the peak performance cycle time (i.e., reduction of the time required to
mount one piece or component), whereas the next one deals with the con-
tinuous performance cycle time (usually over half a minute or longer time
periods).

Peak performance

In many industrial assembly applications, the part of the cycle time that
is spent in excess to the theoretical minimum time is mainly due to slow
approach of precise positions (due to fixed servo tuning). The work cell
is typically designed with the assembly taking place in the middle of the
working area, and parts are picked up from feeders and magazines in the
periphery of the area, see Figure 8.6. Motions among stations in the work
cell are performed at maximum speed. Before a position can be reached
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accurately, the robot either has to make a smooth deceleration, or make a
fast deceleration and, then, a slow approaching motion. Dynamic effects
from the high speed motion will otherwise make the accuracy deficient.
Today, it is not practically possible to have the servo so accurately tuned
that a fast motion can end directly at the desired final point. Such a tuning
would be dependent on pay-load, actuator and gear temperature (which
in turn depend on the task, time, ambient temp.), etc.

Control problems with time-varying unknown parameters are some-
times approached with adaptive control [102]. This means, however, that
the servo parameters will vary during motion, and depend on recent mo-
tions. Hence, adaptive control for industrial robots requires special care,
as repetitive accuracy is very crucial. Another approach is to apply auto
tuning [102] of the servo in one or a few critical locations of the workspace.
The request for auto tuning should be issued from the user program, typi-
cally when the robot is idle, waiting for new work pieces. Request for such
tuning in the end-user program may look like the following few lines:
Gripper1.Close -- Holding bolt now

MOVE gripper1 TO AssemblyPos

BoltTuning = AUTOTUNE(ShakyPath)

where the AUTOTUNE primitive should be implemented in the applica-
tion layer (by the control engineer). The computed control parameters
BoltTuning may then be utilized in move instructions like:
MOVE gripper1 TO InsertBoltPos

WITH SPEED=Vmax

WITH TUNING=BoltTuning

There will of course be several tunings for the different work pieces and
for the different locations. User access to auto tuning and use of the task
specific control parameters should be supported by the control system
software.

Overall performance

Time optimized assembly operations sometimes have a problem: The ther-
mal load of the motors gets too high. The problem is that “time optimal”,
i.e., torque demanding, motions sometimes need energy saving modifica-
tions. The nominal torque demanding motion can be developed with for-
mal methods [42], or interactively by an experienced robot programmer,
as well as the modifications can. Assume that we can detect for which
joints there is a risk for overload, and that we program modified motions
for those cases. How should then the proper motion be selected during
execution of the robot program? The temperatures of the actuators are
needed in the program to select the right motion. Adding thermal sensors

148



8.4 Assembly

on the actuators can be difficult and expensive. Built-in sensors used for
protection of the motors are typically of on-off type. In our experimental
Irb-2000 system we can access the output of these sensors, but that is
normally not possible. Furthermore, for safety reasons, the robot is emer-
gency stopped when overheat is detected, so the outputs from the built-in
sensors only supplies information when it is too late.

It would on the other hand be quite easy to reconstruct the motor
temperature from the torque reference, if the software architecture al-
lows proper access to the signals required. Experience from the ABB S2
system, which uses analog simulation built into the drives to simulate
the motor temperature, shows that this can be quite accurate if the am-
bient temperature is known. The dynamic model is basically a first order
low pass filtering of the difference between the environmental tempera-
ture and the square root of the integral of the squared torque signal. The
model can easily be calibrated by running the robot to emergency stop
caused by thermal overload. The executive layer must make it possible
to use the thermal load estimate in a convenient way on the user level,
e.g., by simply supplying a predefined variable or procedure as for any
sensor. If the built-in motion control does not contain motor temperature
estimation, it should be possible to add from the application layer of the
system.

Suggested approach

Our desire to apply explicitly requested auto-tuning to improve peak
performance is a straight forward extension of the principles used in the
materials handling application. Specifically:

• The same control signals are needed. Access to those signals was
shown, in previous application, not to be any problem.

• Computation of control parameters from measured data is a pure al-
gorithmic problem. Deficient availability of CPU resources and servo
control parameters may impose some restrictions, but implementa-
tion only has to deal with algorithms within the application layer.
Thus, there are no restrictions imposed by the proposed architecture.

• Features admitting the end-user to obtain and use several sets of
tuned parameters can be implemented in several ways. One simple
alternative has been successfully implemented [218].

• The built-in motion control must support on-line change of control
parameters as specified on Page 93. This is standard, using our multi-
layered parameter interface mentioned on Page 108. Such parameter
changes are even possible in the Adept system [9].
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The system requirements for the overall performance problem is a spe-
cial case of the peak performance problem; only the torque signals are
needed, estimation is a simple function, and the obtained information
only needs to be propagated to higher levels. Therefore, the proposed lay-
ered architecture appears to be well suited for special application support
as desired.

8.5 Arc welding

There are several needs for intermediate level programming within arc-
welding applications. The following situations have been studied:

Basic functionality: A basic application package for arc welding in-
cludes control and programming features for waving motions and
control of the welding equipment and interfaces to common types of
welding equipments. The ArcWare package [5] developed within ABB
Robotics is an example of well designed software for this purpose.

Path tracking: Available industrial systems most often also support
weld-seam-tracking using a laser-scanner sensor. The sensor is then
integrated with the motion control system, but this can so far only
be done by the robot manufacturer (because available systems do not
provide an open application layer). The path tracking control prob-
lem includes estimation of the weld seam based on (often very noisy)
data from the laser scanner, and control of robot motion in such a way
that the seam is tracked. The stochastic nature of the problem, and
the desire to perform high-speed welding of thin-sheet metal without
loosing track of the seam, motivates a minimum risk approach [78].
The path-tracking problem was also described by the author in [144].

Welding specific functionality: Arc-welding is a quite complex elec-
trical, mechanical, and chemical process which can be influenced by
voltages, currents, and weld-tool motions. For special materials, or
for welding with special demands on qualities or productivity, special
welding principles have been developed [11]. Sensing and control (of
voltages, currents, weld-joint geometry, etc.), and a close interaction
with the robot motion control are of key importance.

Task level programming: Even if on-line programming in this thesis
is claimed to be superior concerning operator adjustments (Chapter
3), it is also realized that the initial programming of, for instance,
advanced arc-welding programs are often better done off-line. That is
because CAD data for the work-pieces can be used for the definition
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of welding paths and end-effector orientations. The off-line program-
ming system also provides a platform for task-level programming us-
ing knowledge-based techniques. So far this does not imply any need
for intermediate level control, but our desire to use “hand-crafted
agents” (as described in Chapter 4) does. Special welding techniques
according to the previous item should be possible to load and refer to
from the task-level system.

There are no known indications that the proposed control system design
should not suit the needed basic functionality and path tracking, but no
implementation has been done and these aspects are therefore omitted
here. Furthermore, industrially available systems can handle these items.
Instead, let us focus on the desired “Welding specific functionality” and
on the “Task-level programming”.

Thus, we want a system admitting incorporation of welding control at
an intermediate level (here, in the application layer), and an on-line con-
nection to a task-level programming system. The welding control should
be possible to define and install from the task-level system, and it should
be possible for motion commands from the task-level system to utilize the
loaded welding skill.

Implementation status

Efforts to support advanced arc-welding was inspired by the welding ex-
perts within the next-door laboratory at the Department of Production
Engineering. Implementations were done in close collaboration. This ac-
tivity is ongoing. At the moment of writing, the status is the following.

Techniques for control of special welding has been developed and ex-
perimentally verified within the Department of Production engineering
[11]. Because available systems are not open enough, such research adds
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Figure 8.7 Block scheme interpretation of welding control according to [11].
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Figure 8.8 User interface to off-line robot simulation (at the Department of
Production Engineering) with on-line connection to the physical robot (at the
Department of Automatic Control). The robot (located 100m away) is observed
via a video interface (available on a Sun close to the robot and connected back
to the X-server on the SGI running IGRIP). The robot can also be manually
controlled and tuned using our Matlab-based interface shown to the right (and
mentioned on Page 108).

controllers external to the robot controller. The solutions have been stud-
ied to obtain requirements on open robot control systems. The feedback
control nature of the welding control is visualized in Figure 8.7. Clearly,
implementation of the welding control at the end-user level of the sys-
tem would be very inefficient. (Many additional function calls and data
transfers for each sample.) Instead, we want to implement this within
the application layer. The observers may require additional hardware to
be plugged in (on the VME-bus in our case), which is a standard thing to
do, but principles for the application layer programming would be similar
to what has been described above for the deburring control. Installation
of a special welding controller will return an identification number to the
host (actually the index in the skill table as described in the deburring
application).

Implementation of task-level programming for arc-welding is being
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done based on the IGRIP [65] off-line programming system. Results so far
are presented in [48]. An on-line connection between the task-level system
and the robot was needed. Using the features of the ORC architecture and
our experimental robot control system, this was accomplished as follows:

• The SHLIB in IGRIP was extended with functions that during robot
simulation transmitted the robot joint trajectories to the Hardware
interface, see Figure 3.12 (p. 42). The actual hardware interface was
located 100 meters away in our laboratory. The IGRIP part of the
interface is based on UNIX sockets connected to Internet.

• A server running on a workstation in our laboratory was developed.
This server connects the off-line system to the embedded control
system whenever these clients are available and responding properly.

• All control engineering tools and operator interfaces running on our
Sun workstations could be used directly also on the SGI workstation,
as shown to the right in Figure 8.8. This is thanks to UNIX and the
X-windows.

• An IGRIP server for the embedded controller was developed. This
server is installed at run-time into the executive layer. The server ac-
cepts trajectories from IGRIP as robot commands. Call of embedded
system primitives from the IGRIP system is accomplished by escape
codes (negative numbers) in the time column of a supplied trajectory.
One such code is used to refer to robot skills loaded into the applica-
tion layer. (The identity of the skill is supplied as the second number
of the trajectory sample.)

• Video cameras, a frame grabber in the Sun workstation, and the
SunVideo software were used to remotely observe the robot motions.

Though Internet-based teleoperation of the robot is possible, it is hard to
rely on dynamic feedback information transmitted through the network
due to the often quite limited data rate (bandwidth). Actually, to speed
up the video interface, a dedicated 10 Mbit/s connection was purchased.
The simpler Irb-6 robot has been used for the initial tests, see Figure 8.8,
but the Irb-2000 is to be used in the future. Experience from initial tests
indicate that the ORC architecture and the experimental system form a
very good platform for task-level programming.

8.6 The inverted pendulum benchmark problem

Motivated by our study of principles, robot skill has been used as a
qualitative term in this chapter. It is of course desirable to also put
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some kind of measure on the skill. Such a measure will, however, very
much depend on the specific application. Furthermore, we primarily want
to measure how well a robot control system supports incorporation of
application specific control. For this purpose it is interesting to consider a
well defined control problem capturing important properties of industrial
applications. For this purpose, the inverted pendulum benchmark problem
was suggested on Page 13.

For some defined magnitude of disturbances, and with the require-
ment that the pendulum control should be possible to add without chang-
ing the built-in motion control, the minimum length of a balanced pendu-
lum will be a measure of the performance that application engineers can
achieve. A system not permitting external loops to be closed tightly to-
gether with the built-in motion control will be less useful; sampling rates,
response times, and high data flows will limit the performance (if the
hardware has not been oversized).

Pendulum control has been carried out within our department [26].
Implementation of the control using the experimental Irb-2000 system is
currently going on. We decided to build a pendulum that can be grasped
by the robot using an ordinary gripper. At the moment of writing, manu-
facturing of both the pendulum and the gripper are about to be completed.

8.7 Industrial d evelopment

Most robot applications today are programmed on top of a fixed and closed
motion control system, possibly using sensors to determine what motion to
do (as described in Section 2.4). In recent years, however, there has been
some industrial development towards open systems. This development
will now be shortly described, and then we will put the development of
application specific motion control into an industrial context.

Systems

Our approach to let the advanced user introduce application specific feed-
back control may, of course, be achieved by using a completely open sys-
tem. But, for reasons explained in Chapter 4, let us use an industrially
compatible approach here. Ideally, an industrially available system would
admit us to introduce the required control in an efficient way. Two of the
most promising systems used in industry today are available from ABB
Robotics and from Adept Inc. These systems are programmed in RAPID
[6] and in AIM/V+ [181, 10, 9] respectively.

The Adept system is flexible in several ways. The control system can
be reconfigured for different mechanical manipulators, and parameters
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for the built-in motion control can be changed. Using the built-in motion
control, new motion primitives can be composed by programming in the
V+ language, and new features can be given a nice graphical presentation
to the end-user. The control structure is, however, fixed and control signals
(like joint torque) are (as far as known from the manuals) not possible to
access. Thus, the system is open but mainly on an executive level.

The ABB S4 system [2] is another so called open system. The software
design of the system is object oriented, and the implementation is object
based (that is, inheritance and polymorphism are not used). The basic
design of that system was made independently of, and in parallel with,
the development of the fundamental ideas in this work [144]. After 1992,
there has been some exchange of information. It turned out that many
basic ideas are in common, which makes the system an excellent platform
for further extensions in the direction proposed here.

In conclusion, future support for advanced applications using indus-
trially available systems appears to be feasible. Actually, implementation
and packetizing of the spot-welding features (Section 8.2) has been done
recently at ABB through in-house development. Still, the application prob-
lems presented in this chapter, and the approaches proposed to solve these
problems, are contributions that deserve more attention within robotics
research.
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Industrial development of application primitives

Development and modification of robot programs were given a control
interpretation is Section 3.4, where robot programs only utilized standard
motion primitives in the control system. The application examples in this
chapter, on the other hand, are all preferably solved by introducing control
loops (or processing of control signals) in tight connection with the built-
in motion control. How does this relate to the situation shown in Figure
3.6 (p. 30)?

Needs for new application specific control result from production en-
gineering. Alternative solutions may be do develop special machines, or
special end-effectors for standard robots. Development of special motion
control of course requires a control engineering activity. Here, that results
in control solutions that make the robot more skilled for the particular
application or task. The approach has been to let the advanced user accom-
plish this by developing new application primitives. Figure 8.9 illustrates
the development process, which now also includes control engineering. In
the ORC architecture, it is the application layer (Figure 4.4, p. 57) that
provides the programming interface for such application specific control.

8.8 Summary

Some case-studies of typical industrial applications have been carried out
in this chapter. This was done with the focus on possible benefits of a close
interaction between robot programming and robot motion control. From
the results obtained, we can with some confidence conclude the following:

• Limitations in industrially available robot control systems today re-
strict the applicability of industrial robots.

• A control system may technically provide the features required to
solve an application problem, like spot welding, but lack of well de-
fined programming interfaces (user views) and supporting tools re-
strict development to take place in-house (that is, still done by the
robot manufacturer). By contrast, the proposed ORC architecture
seems to provide appropriate features and programming views. Of
course, it is far from being a product.

• Further development, in directions proposed here, of the new S4
system from ABB appears to be feasible.

• An open and powerful experimental system, like the one presented in
Chapter 5, is of key importance for prototyping of application specific
control.
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Several of the application demands presented are to some extent known
by engineers in industry. Nevertheless, these aspects have most often
been overlooked within robot programming research. We can therefore
summarize the contributions of this chapter as:

• The problem formulations concerning application specific motion con-
trol are contributions in themselves.

• It was shown how the ORC architecture supports implementation of
such control.

• It was described how use of control signals in the built-in motion
control can be utilized to avoid external equipment and sensors, and
thereby also achieving tighter external control loops.

• It was described how system identification, auto-tuning, and adaptive
control should be handled to obtain performance, functionality, and
programmability of the robot.

• A connection of a task-level/off-line programming system to a robot
system was done. The unique property is that new application prim-
itives can be installed from the engineering workstation (via a sep-
arate network connection) into the embedded robot controller, thus
extending the capabilities of the task-level system.

• The development of application specific motion control was put into
an industrial perspective.

Thus, open multi-layered robot control systems with well defined program-
ming interfaces are of key importance for the applicability of industrial
robots.
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Conclusions

We can now sum up the contributions of this thesis, and propose directions
for further research. But first, the background, motivation, and approach
of the work is recalled for the reader using this chapter as a summary of
the thesis.

Summary of topics and industrial relevance

Industrial robots play a key role in flexible manufacturing systems. The
software in a robot control system contains a software level for simple
end-user (re)programming, and a software level for efficient computation
of the low-level control. It turns out that application programming of
many applications implies the need for an intermediate software level
linking these two levels. Such an intermediate level must handle aspects
such as dynamic effects, sensor integration, timing between the robot,
its equipment, and external equipment, and so on. These robot functions
are favorably hand crafted due to effects like dynamics, part tolerance,
physical characteristics such as friction or stiction, and the like.

Also on the end-user programming level, there are problems that hin-
der improvements of manufacturing practices. Such a problem is deficient
integration of engineering style (off-line) programming and production
style (on-line) robot programming. Another problem is lack of program-
ming language support for special applications.

High performance low-level servo control is important for productiv-
ity and high utilization of the equipment. This has inspired extensive
research within robot motion control. Even if more remains to be done,
many research results have been presented. Industrial usage has, how-
ever, been limited. First, it is hard for the robot manufacturer to in-
troduce new concepts in a controller that is highly optimized for current
main applications. Secondly, such motion controllers form closed systems,
i.e., new control solutions based on feedback from external sensors (or
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internal states) cannot be externally defined. Third, suitable experimen-
tal systems based on modern and commonly used industrial manipulators
have not been available to the academic research, and industrial demands
on programmability, efficiency and a partly closed structure have not been
observed until now.

With a background from industrial robot development, the purpose of
this thesis project was to tackle the above problems concerning the control
principles, the structure of the system, and the programming methods.
That would hopefully lead to more applicable robots and less repetitive
and monotonous manual work. Note, however, that the purpose is not
to replace all manual task by fully automated manufacturing plants. In-
stead, the desire is to have machines that allow human friendly industrial
work.

Contributions

In order as presented, the contributions of the thesis are:

• The analysis and the control interpretation of end-user robot pro-
gramming. Integrated on-line and off-line programming allows an
efficient cascade control type of production control.

• The proposed technique for transformation of robot programs, using
incremental tools from computer science, is novel in this context.

• The problem of physical context sensitivity and the need for support
from the on-line programming language were identified. An approach
and a system for full implementation were developed.

• Existing control system architectures were investigated, and the new
Open Robot Control (ORC) architecture was proposed. ORC defines
user/programmer views of the system.

• A unique experimental platform based on widely used industrial
robots has been developed. This makes it easy to perform control
experiments using a modern and industrially relevant robot dynam-
ics. It has also been connected to a test-level programming system for
arc welding, thus making that research possible.

• Improvements and extensive verification of the used public domain
real-time platform developed within the department, makes the ex-
perimental environment even more attractive for research and teach-
ing. New tools for parameter handling and control signal logging were
also developed.

• The employment of high-level principles for special purpose hard-
ware, and for its interaction with other types of CPUs, was tested. A
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special object design and compiling strategy were fully implemented
and successfully used.

• The performed multi-processor implementation of robot motion con-
trol illustrates how heterogeneous real-time software and hardware
can be combined to efficiently execute different parts of the control
algorithms.

• To accomplish an appropriate blend between efficiency and flexibility
in embedded control systems, a concept called actions was introduced.
The associated operator here means a piece of compiled code that is
sent as an executable control function between different parts of the
controller, typically using different address spaces and CPU types.

• Based on the use of actions and an appropriate software design, an
open motion controller was proposed. Built-in control algorithms can
still be mainly closed. It is, however, open in the sense that the low-
level servo control can be tailored to special application demands, and
external control loops can be tightly connected to it.

• Some industrial applications that can benefit from application specific
motion control were presented. The way such applications can be
solved using the proposed principles is a major contribution.

Apart from being directly applicable to robot control systems, several of
these contributions are also useful for other type of control or embedded
systems.

Reflections

The physical characteristics of industrial manipulators, which are rather
precise but not perfect, influence many of the design choices. If industrial
robots were almost perfect, like NC machines, a fixed servo system with
a robot independent motion description system or planning system on top
of it would suffice. Such a system structure is, however, currently used
for industrial robots, despite certain drawbacks that were discussed in
the thesis.

The other extreme case is autonomous mobile robots dealing with a
very uncertain environment, e.g. in space applications. Such robots must
be careful and therefore also slow. They rely heavily on external sensors
and maintenance of a world-model data base. The software architectures
are designed to support high level (often AI related) software concepts,
and with no special coupling to the low level control.

Industrial robots, however, typically operate in a well known, but not
completely known, environment. External sensors and internal control
signals reflect external states that often need to be known at both high

160



and low levels of the control system. A typical situation is when a robot is
used for welding or grinding. Software for industrial manipulators must
therefore provide for a strong interplay between user level commands,
sensor signals, and low level control. This interplay is crucial to obtain
flexibility and performance, but also to avoid the cost of otherwise neces-
sary external sensors. The software architecture suggested in the thesis
pays careful attention to these issues.

Future work

Further research and development should preferably start by making
a more product-like experimental system. A second generation circuit
boards including some improvements would promote general usage. A
software module containing the latest generation software from ABB
Robotics, extended by some RPC servers to make it more open, would
be valuable. Such a system would allow full industrial evaluation of the
proposed control system and programming principles.

Furthermore, formal abstraction and specification methods of the
structuring principles encountered may prove fruitful both for mathe-
matical capacity analysis (in the section of discrete-event systems and
feedback control systems) and for standardization purposes.

Further development of control algorithms and control engineering
tools is, of course, very important. First, the robot and its external axes
need improved performance and simplified tuning. Secondly, combined
position/force control, including programming and tuning, needs further
enhancements to be generally applicable. These problems are the subject
to ongoing control research, but its incorporation into an industrially
useful system should perhaps be more emphasised. Such control strategies
would ease full implementation of new strategies for deburring, welding,
etc.

Thus, the contributions and some further development in this direc-
tion will hopefully lead to more flexible and efficient industrial robots,
making human-friendly industrial work possible as desired.
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