LUND UNIVERSITY

Computer Aided Tools for Control System Design

Astrém, Karl Johan

1989

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Astrom, K. J. (1989). Computer Aided Tools for Control System Design. (Research Reports TFRT-3207).
Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/17a97752-eae7-4e39-9dc3-dc21e8e012e6

CODEN: LUTFD2/(TFRT-3207)/1—40/(1989)

Computer Aided Tools for
Control System Design

K.J. Astrém

Department of Automatic Control
Lund Institute of Technology
December 1989

Document name

Department of Automatic Control FINAL REPORT

Lund Institute of Technology Date of issue
P.O. Box 118 December 1989
S5-221 00 Lund Sweden Document Number
CODEN: LUTFD2/(TFRT-3207)/1-40/(1989)
Author{s) Superviser
K. J. Astrém

Spensoring organisation

Title and subtitle
Computer-Aided Tools for Control System Design

Abstract

The paper describes experiences of development and use of interactive software for computer aided design of
control systems. The experiences are drawn from a comprehensive set of packages for modeling, identification,
analysis, simulation and design, which have been in use for about a decade. Problems associated with
structuring, portability, maintainability, and extensibility are discussed. Experiences from uses of the packages
in teaching and industrial environments are discussed. Views on future development of CAD for control
systems are also given.

The paper is published in M. Jamshidi and C. J. Herget, Computer Aided Conirol Systems Engineering,
North-Holland 1985, pages 3-40.

Key words

Classification system andfor index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
Language Number of pages Recipient's notes
English 40

Sccurity classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Telex: 33248 lubbis lund.

COMPUTER AIDED TOOLS

FOR CONTROL. SYSTEM DESIGINT

K.J. Astrdm

Department of Automatic Control
Lund Institute of Technology
Lund, Sweden

The paper describes experiences of development and use of
interactive software for computer aided design of control
systems. The experiences are drawn from a comprehensive set of
packages for modeling, identification, analysis, simulation and
design, which have been in use for about a decade. Problems
associated with structuring, portability, maintainability, and
extensibility are discussed. Experiences from uses of the
packages in teaching and {ndustrial environments are dlscussed.
Views on future development of CAD for control systems are also
given.

1. INTRODUCTION

Thirty years ago pencil, paper, slide rules and analog computers were the major tools for
analysis and synthesis of control systems. The methods and the tools were so simple that
an engineer could master both problems and tools. Many new methods for analysis and
design of control systems have emerged during the last 30 years. These methods differ
from the classical techniques. They are more sophisticated analytically and their use
require extensive calculations. An extensive subroutine library is required to apply
these methods to a practical problem. Even if such a library is available it is a major
effort to write the software necessary to solve a particular problem. This means that
modern control theory is costly to use. Another drawback is that the problem solver
Interacts with his tools (the computer) via intermediaries (programmers). This easily
leads to confusion and mistakes. The intensive interaction between problem formulation

and solution is also lost,

Based on experience from industrial application of modern control theory in the early
sixties {t was clear to me that modern controlrtheory could be used very successfully in a
research laboratory or at a university. It was, however, equally clear that the methods
would not be widely used in normal engineering practice unless the proper tools were
developed. A number of projects were therefore carried out in order to efficiently
develop the proper tools for using control theory cost. This paper summarizes some of the

software developed in the project and experiences from its use.

Published in M. Jamshidi and C. J. Herget, Computer Aided Control Systems Engineering, North-Holland
1985, pages 3-40.

computers. We are currently using a DEC Vax-11/780 with 2 Mbyte of fast memory and a
600 Mbyte disc for most of the work. Our sponsoring agency (STU) alsc introduced
constraints by insisting that the programs should be portable and useful to industry. Gne

way to achieve this was to use standard Fortran.

The projects have resulted in a comprehensive set of program packages for modeling,
identification, analysis, simulation and design of control systems., We have several years
experience of using these packages in diiferent university and industrial environments.
Ideas on the use of graphics and interactive computing in future systems have also been

developed.

3. INTERACTION PRINCIPLES

When designing a system for man-machine interaction it is important to realize that there
is a wide range of users, from novices to experis, with different abilities and demands.
For a novice who needs a lot of guidance it is natural to have a system where the
computer has the initiative and the user iz gently led towards a solution of his problem.
For an expert user it is much better to have a system where the user keeps the initiative
and where he gets advice and and help on request only. Attempts of guidance and control
by the computer can easily lead to frustration and inefficiency. It is highly desirable to
design a system so that it will accomodate a wide range of users. This makes it more
universal. It also makes it possible to grow with the system and to gradually shift the
initiative from the computer to the user as he becomes more proficient. Many aspects on

interaction principles and their implementation are found in Barstow et al. {1984),

To obtain an efficient man-machine interface it is desirable to have hardware with a high
communication rate and a communication language with a good expression power. When our
projects were started we were limited to a teletype and a storage oscilloscope, There
were also limited experiences of design of man-machine interfaces. The predominant

approach was a question~and-answer dialeg, see e.g. Rosenbrock (1974,

In our projects it was discovered at an early stage that the simple question-and-answer
dialog was too rigid and very frustrating for an experienced user. The main disadvantage
is that the computer is in command of the work rather than the user. This was even more

pronounced because of the slow input-output device (teletype) which was used initially.

Our primary design goal was to develop tools for the expert. A secondary goal was to
make the tools useful alse for a novice. To make sure that the initiative would remain
with the user {t was decided to make the interaction command oriented. This was also
inspired by experiences from programming in APL. Use of a command dialog also had the

unexpected effect that it was easy to create new user defined commands. The packages

Increment

II
Start fimeH Stoptime

File name

sl

Figure 1
Syntax diagram for the command SIMU.

computes the optimal feedback gain L and the solution S to the steady state Riccati
equation for the system SYS and the loss function LOSS.

Short form commands and default values

in a command dialog it is highly desirable to have simple commands. This is in conflict
with the requirement that commands should be explicit and that it may sometimes be
desirable to have variants of the commands. These opposite requirements may be resolved
by allowing short forms of the commands. The standard form for the simulation command
is SIMU. If no other command starts with the letter S it is, however, sufficienti to type S
alone. Another interesting possibility is to correlate a given command with the command
list and to choose the command from the list which is closest to the given one. This
automatically gives short form commands. The scheme will also be insensitive to spelling
errors, It is, however, also dangercus because totally unexpected commands will be
obtained. It is also useful to have a simple way of renaming the commands. Such
mechanisms are now available in many systems. We have experimented with short form
commands, command correlation, and renaming mechanisms, These functions are, however,

not implemented in our standard packages.

Similar mechanisms may be used for commands with arguments by introducing a default
mechanism so that previous values of the arguments are used unless new values are

specified explicitly. The concept is illustirated by an example.

The syntax diagram for the command SIMU is shown in Fig. 1. The diagram implies that
any form of the command which is obtained by traversing the graph in the directions of

the arrows is allowed. For example the command
SIMU O 100

simulates a system from time 0 to time 100. If we want to repeat the simulation a second

time with different parameters it suffices to write
SIMU

The arguments ¢ and 100 are then taken as the previously used values.

g“ Intrac T T ‘!
! Initiafize
Normal
¥ </—- Keyboard
Read command [
Macro
| Data base
Decode command
J A _ — ——
Command SIMU Command STOP
*sas
I J
Figure 2

Skeleton flow chart for a command driven program.

command decoding, file handling and plotting. Intrac alsc coniains facilities for creating
macros and user defined functions. Macros may have formal arguments, local and global
variables, They permit conditiona! and repeated execution of commands as well as nested
use of macros. There are read and write commands, which can be used to implement menu
dialogs. It is possible to mix command mode and question mode, since the execution of a
macro may be suspended and resumed later. A description of Intrac is given in Wieslander
and Elmqvist (1978) and Wieslander (1980a). The commands available in Intrac are listed in
Appendix F.

To bulld a package using Intrac it is necessary to write the action routines i.e. the
subroutines that performs the desired tasks. The commands are then entered in the
command table of the command decoder. It is also easy to add a command to a package, to
move commands between packages and to create special purpose packages. Intrac may
thus be viewed as a tool for converting a collection of Foriran subroutines into an
interactive package. Intrac has also been used to implement other packages by other

groups.

The structure with a common user interface for all packages is advantageous for the user
because the interaction and the macro commands are the same in all packages. This
simplifies learning and use of the packages. The advantages of interactive computing
environments for problem solving are now widely recognized. They are built into systems
like Basic, Apl, Lisp and Smalltalk. There are also several systems, which provide
interactive features in static computing environments. Speakeasy, CTS are typical

examples which are similar to Intrac.

Descriptions of control systems problems require flexible data structures. Many problems
may be characterized in terms of arrays only. Arrays will go a long way to describe
linear systems in state space form and to describe signals. Many problems can be solved
X’ Walker et
al. (1982), CTRL-C, Little et al. (1984}, or Impact, Rimvall and Cellier (1984). It is,

using a matrix language like MATLAB, Moler (1981) or its derivatives Matrix

however, clear that it is not sufficient to only have matrices. A detailed discussion of
this is found in Astrdm (1984).

For simple systems with only one data type, like matrices, all data may be stored in a
stack or in a simple array. A more sophisticated data structure was used in the Lund
packages. Our experiences indicate that it would be very useful to have a more flexible
system. It is probably a good idea to build a system around some general database
system. The need for multiple descriptions of a system is one special problem which is
conveniently solved using databases. A typical example is when a system is represented
both as a transfer function and as a state equation. Small systems are not much of a
problem because it is easy to transform from one form to ancther. Such computations may
however be extensive for large systems. To obtain a reasonable efficiency it is then
necessary to store the different descriptions. It may also be desirable to have models of
different complexily for the same physical object as well as linearized models for
different operating conditions. Since it is very difficult to visualize all possible
combinations a priori, it is a useful to have a database system which admits modifications

of the structure of the data,

System descriptions

Since dynamical systems is a fundamental notion, its representation becomes a key issus.
Many different representations of systems are used in control theory. The ordinary
differential equation model
dx
dt
y = gix,u, ty

= f(x,u, t)
(1)

where & is the state vector, u the input vector and y the output vector, is a common case.
Often the fundamental form of the equations is not (1), where the derivative is solved

explicitly but rather

dx _
F dt’x’u’t] = 0 (2
G(x,y,u, t) = 0

The following discussion is restricted to systems of type (1), Other issues arise when
operating with models of type (2). This is treated in depth in Elmqvist (1978, 1979a,
1979b). Partial differential equations and differential equations with time delay are also

Series

=1 Sy

The basic system interconnections.

11

Paraile!

_"SA

-

Sg

Figure 3

Feedback

SA

For more complex systems it is desirable to have appropriéte

interconnected hierarchical systems. These notations should be such that detalls of the

subsystem can be hidden and that signals and variables at the lower levels can be

accessed In a well controlled fashion.

The system description introduced by Elmqvist (1977 in the simulation language Simnon

has been very easy to operate with and very easy to teach. Elmqvist introduced the

classes of continuous and discrete time systems defined as follows.

CONTINUOUS SYSTEH

[INPUT
[OUTPUT
[STATE
[DER
[TIME

[INITIAL

<gimple
<simple
<gimple
<gimple
<gimple

Computation of

{Computation of
[Computation of
[Computation of
[Parameter assignment]

(Initial value assignmentl

END

DISCRETE SYSTEM

EINPUT
[OUTPUT
ESTATE
[NEW
{TIME
TSAMP

INITIAL

<gimple
<gimple
<gimple
<gimple
<simple
<gimple

{Computation of
{Computation of
[Computation of

SORT

variable>¥*]
variable>x]
variable>#1
variable>x]
variable>x]

<gystem identifier>

initial values for state variables]

auxiliary variables]

output variables]

derivatives]

<gystem identifier>

variable>#]
variable>x]
variable>#]
variable>x]
variable>#]
variable>%]

initial values for gtate variablesal

initial values for output variablesl
initial values for the TSAMP-variablel

13

situations it is desirable to have access to all varfables. This can be achieved by using

EXPORT ALL or some similar construction.

Since system Interconnections are often visualized graphically there should be facilities
for representing and manipulating system interconnections graphically as well as

textually. Interesting ideas in this direction have been proposed by Elmqgvist (1982).

It would also be desirable to have the notion of system type and facilities for creating
instances of the type. This would give a simple way of generating special classes of

systems. Linear systems can then be defined as

type LINEAR_STATE_SPACE_SYSTEN

INPUT wu: vector
OUTPUT y: vector
STATE x: vector
DERIVATIVE dux: vector
A BCD : matrix

v = C#*x + D*y
dx = A¥x + B#u
END

A similar construction can be used for linear polynomial systems. Instance of linear

systems can then be created by

S: LINEAR_STATE_SPACE_SYSTEM
The parameters can be accessed as

S.A = matrix (1 2 ; 3 4)

It is a nontrivial design issue to decide when and how dimension compatibility should be
checked. This has to do with how arrays are implemented. From the user point of view it
would, however, be desirable to define a linear system as was done above without a need

for specifying the dimensions.

In some cases it is also desirable to be able to hide a system description so that a user of
the sysiem can only make operations like simulation. An example from teaching is in
courses on system identification, where it is desirable for students to find the properties
of an unknown system, or in courses on adaptive control, when it is desirable to check
that an algorithm works on an unknown system. The possibility to hide details of a system
description would alsc be a possibility to get controlled access to industrial models. This
can be achleved by using the mechanisms introduced in Ada, where the declarations and a

body of a procedure are separated, see DOD (1983).

System operations

Apart from interconnections there are many other operations that are desirable to

perform on systems, e.g. computation of equilibrium values, simulation, linearization,

15

methods. It was, however, discovered that almost all methods could be obtained by
comblinations of correlation analysis, spectral analysis, least squares and maximum
likelihood estimation. Commands were thus constructed to give primitives for these
operations and the special! methods were then implemented as macros which used the
primitive commands. This approach is also a pedagogical way to structure the problem

area.

Idpac can be viewed as a convenient way of packaging the research in systems
Identification that has been done at our department for a period of 15 years. Idpac has
gone through several steps of development. It grew out of the software described in
Astrém et al. (1965). The latest version is described in Wiestander (1980b). The paper
Astrdm (1980) gives the relevant theory for the parametric identification methods. It also
contains a comprehensive set of examples of using Idpac. A summary of the commands are
given in Appendix A. Descriptions of some of the Idpac macros are given in Gustavsson

(1979). Typical examples of using Idpac are given in Gustavsson and Nilsson (1979).

Modpac

There are many ways to describe a control system. Nonparametric methods in the time
and frequency domain can be used. Parametric descriptions like state equations, rational
transfer functions and fractions of matrix polynomials may also be used. There are also
many ways in which state equations can be transformed. For digital control it is
negessary o go between continuous time and discrete time representations. All these
problems can be handled by Modpac. The package also has facilities for finding the
Kalman decomposition of a system and for calculating observers. Modpac is described in

Wieslander (1980c). A list of the commands in Modpac is given in Appendix B.

Simnon

Simnon {s a package for interactive simulation of nonlinear continuous time systems with
discrete time regulators, The package alsc includes noise generators, time-delays, a

facility for using data files from Idpéc as inputs to the system and an optimizer,

Simnon allows a system to be described as an interconnection of subsystems. There are
two types of subsystems, continuous time systems and discrete time systems. These were
described in detail! in Section 4. This makes Simnon well suited for simulation of digital
control systems. Simnon has two abstract datatypes continuous system and discrete
systems to describe the subsystems and a third type connecting system to describe the

interconnenctions. The characteristics of Simnon are iilustrated by an example.

Listing 1 gives a description of a feedback loop consisting of a continuous time process
called PROC and a digital PI regulator called REG. The process is an integrator with

input saturation. The interconnectiions are described by the connecting system CON.

17

1.5
3., AN
*g ’ N
o)
[
g 05
I
Q.

0 i 1 L ! 1 | |

0 10 20 30 40
Q2
,8 0.1
|
N
E 0 r N
S
[

-01
{ | i i 1 i]
0 10 20 30 40
Time
Figure 4

Results of simulation of process with a Pl regulator.
Thin lines show results with ordinary regulator and thick
lines show results for regulator with anti-windup.

The following annotated dialog illustrates how Simnon is used.

Command Action
SYST PRCC REG CON Activate the systems.
AXESHO100V -11 Draw axes.
PLOT yr ylprocl ulregl Determine variables to be plotted.
STORE yr ylprocl ufregl Select variable to be stored.
SIMU 0 100 Simulate.
SPLIT 2 1 Form two screen windows.
ASHOW v Draw y with auto.matic
scaling and yr with the
SHOW yr s ;
same scales in first window.
ASHCW u Draw u with automatic

scaling in second window,

The result is shown by the curves in thin lines shown in Fig. 4. These curves show that
there Is a considerable overshoot due to integral windup. The regulator REG has
anti-windup. The state of the regulator is reset when its output is equal to ulow or uhigh.
The limits were set to ulow = -1 and uhigh = 1 in the simulations shown with thin lines in
Fig. 4. These values are so large that the integral is never reset, The simulation, shows
in thin lines in Fig. 4, thus correspond to a regulator without wind-up. The actual

actuator limitations correspond to ulow = -0.1 and uhigh = 0.1. The commands

19

1: MACRO DESIGN ALPHA

2: ALTER @1 3 3 ALPHA
3: FOR H = 0.5 TO 5 STEP 0.5
41 SAMP DSYS €« CSYS H
S TRANS @ DSYS « CSYS H
61 TRANS R DSYS ¢ CSYS H

H OPTFB L €« DSYS
8: KALFI K <« DSYS
9: CONNECT CLSYS <« DSYS K L
10: SIMU Y X ¢ CLSYS UREF
11: PLOT X(1) X(7} X(8) XE{(1) U
12: NEXT H

13: END {MACRO}

Line numbers have been introduced only to be able to describe the algorithm. A macro
with the name DESIGN and the parameter ALPHA is defined on line 1. The macro definition
ends on line 13. The 3,3 element of the matrix Q! is assigned the value ALPHA on line 2.
Line 3 is a repetition statement which repeats the commands 4 through 11 for sampling
periods 0.5 to 5 with an increment of 0.5. The system description is sampled on line 4 and
the criterion and the covariances are transformed on lines 5 and 6. The command on line 7
computes the optimal state feedba_ck matrix L and the command on line 8 computes the
Kalman filter gain. The command on line 9 forms a closed loop system composed of the
original system the Kalman filter and the state feedback. The command on line 10
simulates the closed loop system with a reference input UREF. The command on line 11
plots state variables 1, 7 and 8, the estimate of the first state and the control signal. The
following dialog illustrates how the macro may be used

EDIT FILE CSYS

INPUT UREF « STEP

DESIGN 3

DESIGHN 8
The system file is first edited. A step is generated as a command signal and the macro

design is executed with parameters 3 and 8.

The example illustrates some Synpac commands. It also shows how a macro may be used to

create a special purpose command.

Synpac was Lhe first package that was implemented. It was based on the Fortran programs
described in Astrém (1963). A test version was made as an MS project. The current
version is described in Wieslander (1980d). An introduction is presented in Gutman et al.

{1984). A list of the commands in Synpac is given in Appendix D.

Polpac

Polpac is a polynomial oriented design package for multi-output single-input systems. It
includes algorithms for pole placement, minimum variance control, and LQG control. The
package allows classical design using root loci and Bode plots. Root loci may be drawn
with respect to arbitrary parameters. A list of the commands in Polpac is given in

Appendix E.

21

hierarchical system was therefore developed, see Elmqvist (1978, 1979a,b). Experimental
software, which operates on the basic system description and generates simulation
programs e.g. in Simnon, and linearized system equations have also been developed. We
believe that this is an important step towards effective methods for dealing with large

systems.

7. EXPERIENCES OF USING THE PACKAGES

The packages have been used at our department, at other universities, and in industry.
The early use of the packages provided very good feedback to their development. There
has been a continuous dialog between users and impiementors at all stages of the
development. Very valuable input was provided by visitors to the department and from

industrial use of the packages. They often had different ideas on how to use the programs.

All staff members of the department and a large number of the students who have done MS
or PhD dissertations have used the-packages. The programs have been used in some of our
advanced courses and in courses for industrial audiences. They are now being introduced
also in elementary courses. The bottleneck for this has been the availability of a
sufficient number of graphic terminals. By using the packages it has been possible to
focus on concepts and ideas in the lectures and to work with realistic examples with

considerable detall in exercises and projects.

The simulation language Simnon is used as a standard language for documenting models.
The availability of a library of realistic models of different complexity is of course very
beneficial in teaching. Simnon has been used in an interesting way in a recent bock on
computer control, Astrém and Wittenmark (1984}, which makes extensive use of simulation.
All simulation results are implemented as Macros in Simnon which are accessable from the
student terminals. This means that the students may conveniently check the results and
also look Into effects of variailions of data. Simnon has also been used in many applied
projects at the institute. A typical example is a study on modeling and simulation of a

wind turbine, Bergman et al. {1983).

We have found Idpac to be a very good tool to teach system identification. It is possible
for the students to gain a lot of experience by working with real data. Idpac has also
been used in many industrial projects. Typical examples are given in Astrom and
Killstrom (1976) and Killstrém and Astrém (1981), Trouble shooting in the paper industry
has e.g. been another interesting application area, see Lundqvist and Nordstrdm (1980)

and Johansson et al. (1980).

Similarly we have found that Synpac is an excellent tool for teaching LQG design. The

students can work with realistic problems with reasonable effort. Synpac has also been

23

The personal computers which are projected to appear within a few years have
specifications like: a primary memory of 2 Mbytes, a secondary memory 100 Mbytes, a
computing speed of one megaflop/s and a price less than 20k$, see Dertouzos and Moses
{1980). These computers are also expected to have a high resolution bit mapped color
graphics display. With computers like this il is possible to have single user work-stations
with packages which are much more sophisticated than all our current packages. The
existence of computers like Apollo, Lisa, Mackintosh, Sun, and Iris make the predictions

quite credible.

There has been a drastic development of the computer output devices. A teletype is
capable of writing at a speed of 10 ch/s (110 Baud). A regular terminal connected to a 19.2
kBaud channel can write a screen i.e. 80 x 24 ch in a second. A good wvector graphics
terminal can refresh up to 100 000 long vectors or a million short vectors per second. A
high resolution bit mapped display may refresh 312 x 512 pixel frames at rates of 60
frames/s (15 Mbit/s).

The inpui devices have unfortunately not developed at the same rate. We still have
ordinary keybeoards, see Montgomery (1982). A very good typist may type at a rate of 8
ch/s. A normal engineer types considerably siower. Pointing devices like roll balls,
mouses and touch panels have been invented., These devices may perhaps be used to
increase the input rate indirectly by combining the rapid output rate with feedback via
the picking device (dynamic menus). Speech input is another possibility. There are,

however, no indications of a more drastic increase in the input rate.

The renaissance of gqraphics

Graphics has played a major role in engineering. The first books used in engineering
education were books of drawings of machines by Leonarde da Vineci. Graphical
representations have been used extensively ever since. Graphics in the forms of Bode
diagrams, Nichols charts, root loci, block diagrams and signal f{low diagrams are
important tools in classical control theory. Modern control theory has, however, not been
much influenced by graphics. This can partly be explained by lack of proper tools for
graphics. The situation may change drastically in the future because good graphics

hardware will be available at a reascnable cost.

The man-machine interface

A high bandwidth information transmission is required for an efficlent man-machine
communication. This implies a high rate of transmission of symbols and a high information
content in each symbol. The user interfaces in our packages were designed for teletypes
combined with graphic terminals having storage screens and data rates of 4800 Baud.

These were the only tools available at reasonable cost when our design was frozen. A

25

code for realization of the control laws. Symbolic calculations were not used in our
packages because of the limited computing facilities available. It is, however, feasible in

future packages.

When transfering our packages we have noticed that their power increases considerably if
an experienced user is around. The possibilities of providing the packages with a rule
based experi system or an advisory system, Barr and Feigenbaum (1982), is therefore
very appealing. It is an interesting research problem to find out if expert knowledge in
identification, analysis and design of control systems can be incorporated in the

packages.

Implementation languages

The source code for the smallest package described in this paper is about 30 000 lines of
‘source code. A future package may be an order of magnitude larger. A good programming
environment and efficlent software tools are necessary to develop and maintain such
systems. Fortran was used in our packages to make them portable. It is however unlikely

that future systems will be written only in Fortran.

Fortran libraries like Efspack, Linpack, (hopefully also a control package), and some
graphics package will probably be used. Although Intrac was written in Fortran it is not
convenient to do so. Pascal would be much more convenient, particularly if we want to
include formula manipulation and the other features that we may expect in a future
system. An expression parser is needed. Macros and user defined procedures are very
useful in order to increase the efficiency of the man-machine dialog. More flexible control
structures and more powerful commands than those used in Inirac would be desirable. One
possible extension is the system Delight which is based on the language RATTLE
developed by Nye et al (1981). Other possibilities are to replace Intrac by languages with
an interactive implementation like Apl, Lisp or Logo or an interpretive threaded language
like Forth, see Winston and Horn (1981), Abelson, (1982) and Kogge, {1982). Systems based
on Lisp will be extendable automatically, symbolic manipulations are also easy to
implement. There are good programming environments for Lisp which have been used to
implement very large systems. Natural language interfaces and expert systems are also

often written in Lisp.

Programs like Idpac and Delight, which handle the interpretations of the commands and
the man-machine interaction, have many features in common with operating systems like
UNIX, Kernighan and Pike (1983). They may be viewed as an interpretative programming
language whose data types are files. Such programs can be implemented as extensions to
an operating system. The software Honey-X developed by Honeywell is such a system
which Is based on Multies, see Anon. (1982), The advantage of such an approach is that the

major part of the code is the ordinary operating system. Only a small portion has to be

27

9. CONCLUSIONS

Interactive computing is a powerful tool for problem solving. An engineer can come to the
work station with a problem and he can leave with a complete solution after a few hours.
The resuits are well documented in terms of listings, text and graphs. The problem solver
cen obtain the solution by himself without relying on programmers as intermediaries, Our
projects have shown that the productivity in analysing and designing control systems can
be increased substantially by using these tools. We believe that interactive computer

aided design tools is one possibility to make modern control theory cost effective.

Computer aided design of control systems is still in its infancy. A small number of
systems have been implemented in a few places. There are many possible future
developments which are mainly driven by the computer development. Packages of the
type we have been experimenting with can easily be fitted into the personal computers or
work stations that will be available in a few years iime. The bit mapped high resolution
color displays that will be available on these computers offer new possibilities for an
efficient man-machine dialog. With the drastic increase in computer capacity, that is
forth coming, it is alsc possible to make much more ambitious projects. Applications of
computer aided design also appear in many other branches of engineering. Cross

fertilization between the fields will most likely lead to a rapid development.

10, ACKNOWLEDGEMENTS

The work reported in this paper has been supported by the Swedish Board of Technical
Development for many vyears. This support is gratefully acknowledged. The projects,
which the paper draws upon, have been true team efforts. Many members of the
department have contributed to discussions of command structures, implementation,
testing and evaluation. Particular thanks are due io Johan Wieslander and Hilding
Elmqvist, who generated many of the important ideas, and to Tommy Essebo and Thomas

Schdnthal, who did a major part of the programming of the packages.

29

Dertouzos, M L, and Moses, J (1980): The Computer Age: A twenty year view. MIT Press,
Cambridge, Mass.

DOD (1983): Reference Manual for the Ada Programming Language. ANSI/MIL-STD-1815A-
-1983, United States Department of Defense, Washington, DC.

Dongarra, J J, Moler, C B, Bunch, J R, and Stewart, G W (1979): LINPACK - Users’ guide,
SIAM, Philadelphia.

Edgar, T F (1981): New results and the status of computer-aided process contrel system
design in North America. Engineering Foundation Conference on Chemical Process
Control-1I, Sea Island, Georgia.

Edmunds, J M (1979): Cambridge linear analysis and design programs. IFAC Symposium on
Computer Alded Design of Control Systems, Zurich, 253-258,

Elmqgvist, H (1975): SIMNON, an interactive simulation program for nonlinear systems.
Dept of Automatic Control, Lund Institute of Technology, Lund, Sweden, Report
CODEN: LUTFD2/(TFRT-7502).

Elmqgvist, H, Tysse, A, and Wieslander, J (l976): Scandinavian control library.
Programming. Dept of Automatic Control, Lund Institute of Technology, Lund, Sweden,
Report CODEN: LUTFD2/(TFRT-3139)/(1976).

Elmqgvist, H (1977): SIMNON - An Interactive Simulation Program for Nonlinear Systems.
Simulation *77, Montreux, Switzeriand, June 1977.

Elmgvist, H (1978): A Structured Model Language for Large Continuous Systems. Ph.D.
Thesis. Dept of Automatic Control, Lund Institute of Technology, Lund, Sweden, Report
CODEN: LUTFD2/(TFRT-1015)/1-226/(1978).

Elmgvist, H (1979a): Dymola - A Structured Model Language for Large Continuous Systems.
Summer Computer Simulation Conference, Toronto, Canada, July 1979,

Elmgvist, H (1978b): Manipulation of Continuous Models Based on Equations to Assignment
Statements. Simulation of Systems '79. Sorrento, Italy, September 1979.

Elmqvist, H (1982): A graphical approach to documentation and implementation of control
systems. Proc 3rd IFAC/IFIP Symposium on Software for Computer Control, SOCOCO
82, Madrid, Spain.

Folkesson K, Elgcrona, P O, and Haglund, R (1980): Design and experience with a low-cost
digital fly-by-wire system in the SAAB JA37 Viggen A/C. Proc 13th International
Council of the Aeronautical Sciences, Seattie, WA.

Foley, J D, and van Dam, A (1983): Fundamentals of interactive computer graphics.
Addison Wesley, Reading, Mass.

Frederick, D K (1982a): Computer packages for the simulation and design of control
systems. Lecture notes, Arab school on science and technology.

Frederick, D K (1982b): Simnon reference manual. Automation and Control Laboratory,
Corporate Research and Development, General Electric Company, Schenectedy, New
York.

Furuta, K, and Kajiwara, H (1979): CAD system for control system design. J of the Society
of Instrument and Control Engineers, Japan, 18 (9). (In Japanese).

Gale, W A, and Pregibon, D (1983): Using expert systems for developing statistical
strategy. Proc Joint Statistical Meetings, Toronto.

31

for the computer-aided design of control systems. In Bensoussan and Lions (Eds.):
Analysis and Optimization of Systems. Springer Lecture Notes in Control and
Information Sciences, Springer, Berlin.

Lundqvist, S O, and Nordsir8m, H (1980): The development of a control system for a pulp
washing plant through the use of dynamic simulation. Preprints IFAC Conf. on
Instrumentation and automation in the paper, rubber, plastics and polymerisation
industries. Gent, Belgium.

Mansour, M editor (1979): Preprints first IFAC Symposium on CAD of Control systems,
Zurich. Pergamon Press.

Moler, C B (1981): MATLAB user’s guide. Report Department of Computer Science,
“University of New Mexico.

Montgomery, E B (1982): New keyboard concepts. IEEE Computer 15:3, 11-18.

Munro, N {1979): The UMIST control system design and synthesis suites. IFAC Symposium
on Computer Alded Design of Conirol Systems, Zurich, 343-348.

Newman, W M, and Sproull, R F {(1979): Principles of interactive computer graphics.
McGraw-Hill, New York.

Nye, W, Polak, E, Sangiovanni-Vincentilli, A, and Tits, A (1981): An optimization-based
computer-alded-design system. Proc ISCAS, April 24-27.

Perry, T, Truxal, C, and Wallich, P (1982): Video games: the electronic big bang. IEEE
Spectrum 19:12, 20-33.

Polak, E (1981): Interactive software for computer—aided-design of contro! systems via
optimization. Proc. 20th IEEE Conf. on Decision and Control, San Diego, CA, December
16-18, pp 408-412.

Rimvall, M, and Cellier, F (1984): IMPACT Interactive mathematical program for automatic
control theory. In Bensoussan and Lions {(Eds.): Analysis and Optimization of Systems.
Springer Lecture Notes in Control and Information Sciences, Springer, Berlin.

Rosenbrock, H H (1974): Computer-aided control system design. Academic Press, New
York.

Ryder, B G (1975): The Pfort verifier: User's guide. CS Tech. Rept. 12, Bell Labs.
Schank, R C (1975): Conceptual Information Processing. North Holiand. Amsterdam.

Schank, R C, and Abelson, R P (1977): Scripts, plans, goals and understanding. Lawrence
Erlbaum Associates, Hillsdale NJ.

Smith, B T, et al, (1976): Matrix eigensystem routines - Eispack guide. 2nd ed., Lecture
Notes in Computer Science, Vol. 6, Springer-Verlag, New York.

Spang, H A, III, and Gerhart, L (Eds.) (1981); Preprints GE-RPI, Workshop on control
design, Schenectady, N.Y.

Suleyman, C (1981): Interactive system for education and research in control system
design. IEEE International Conference on Cybernetics and Society, Atlanta, Georgia.

Tysse, A (1979): CYPROS: Cybernetic program packages. IFAC Symposium on Computer
Aided Design of Control Systems, Zurich, 383-389.

Tysse, A (1981): New results and the status of computer aided process control systems
design in Europe. Engineering Foundation Conference on Chemical Process Control-II,

33

APPENDIX A - IDPAC COMMANDS

1. Utilities

CONV — Conversion of data to internal standard format
DELET - Delete a file

EDIT - Edit system description

FHEAD - Inspect and change file parameters

FORMAT -~ Conversion of data to symbolic external form
FTEST - Check existence of a file

LIST - List files

MOVE - Move data in database

TURN - Change program switches

2. Graphic output

BODE - Plot Bode diagrams

HCOPY - Make hard copy

PLMAG - Magnify pilot and aliow changes of data

PLOT - Plot curves with linear scales

3. Time series operations

ACOF - Compute autocorrelation function
CCOF - Compute cross correlation function
CONC - Concatenate time series

cuT —~ Extract a part of a time series

INSI - Generate time series

PICK — Pick equidistant time points

SCLOP - Do scalar operations on a time series
SLIDE ~ Introduce relative delays between time series
STAT ~ Compute statistical characteristics
TREND - Remove a trend

VECOP -~ Do vector operations on a time series

4, Frequency response operations

ASPEC - Compute an auto spectrum

CSPEC - Compute a cross specirum

DFT - Discrete Fourier Transform

FROP ~ Operate on frequency responses
IDFT - Inverse Discrete Fourler Transform

5. Simulation and model analysis

DETER - Deterministic Simulation

DSIM - Simulation with neise

FILT - Compute a filter system

RANPA - Pick parameters from a random dlstribution

RESID - Compute residuals with statistical test

SPTRF - Compute the frequency response of a transfer function

6. Identification

LS ~ Least Squares identification
ML ~ Maximum Likelihood identification
SQR - Least Squares data reduction

STRUC - Least Squares structure definition

35

APPENDIX C - SIMNON COMMANDS

1. Utilities

EDIT ~ Edit system description

GET - Get parameters and initial values

LIST - List files

PRINT — Print files

SAVE ~ Save parameter values and initial values in a file
STOP - Stop

2. Graphlc output

AREA - Select window on screen

ASHOW ~ Plot stored variables with automatic scaling
AXES - Draw axes

HCOPY -~ Make hard copy

SHOW - Plot stored variables

SPLIT - Split screen into windows

TEXT ~ Transfer text string to graph

3. Simulation Commands

ALGOR - Select integration algorithm

DISP - Display parameters

ERROR ~ Choose error bound for integration routine
INIT - Change initial wvalues of state variables
PAR - Change parameters

PLOT - Choose variables to be plotted

SIMU - Simulate a system

STORE - Choose variables to be stored

SYST ~ Activate systems

37

APPENDIX E - COMMANDS IN POLPAC

1. Uiilities

CONV - Conversion of data to internal standard format
DELET - Delete a file

EDOT - Edit system description

FHEAD - Inspect and change file parameters

FORMAT - Conversion of data to symbolic external form
FTEST - Check existence of a file

LIST - List files

MOVE - Move data in database

TURN - Change program switches

2. Graphics

BODE ~ Plot Bode diagrams

HCOPY -~ Make hard copy

LOCPLOT - Plot root locus diagrams

NIC - Plot Nichols diagrams

NYQ - Plot Nyquist diagrams

PLEV - Plot eigenvalues and allow editing

PLOT - Plot curves with linear scales

3. System and polynomial operations

INSI - Generate a data file

POLOP - Evaluate algebraic polynomial expressions
POLSYS - Create a system file or a polynomial file

POLY - Generate or edit a polynomial

POLZ ~ Compute and plot the zeros of a polynomial
SIMU ~ Simulate a system

SYSOP ~ Build a system from subsystems

4, Analysis

PROP - Compute bandwidth, rise time, error coefficients
ROTLOC - Compule the root locus

ROUTH - Compute and display Routh’s tableau

TRFFR - Compute frequency response of a transfer function

TRFSIM -~ Simulate

5. Synthesis

DEADBE - Compute dead-beat strategy
MIVRE - Compute minimum variance control
POLFLA - Make a pole placement design

