
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Jitterbug - Reference Manual

Cervin, Anton; Lincoln, Bo

2003

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Cervin, A., & Lincoln, B. (2003). Jitterbug - Reference Manual. (Technical Reports TFRT-7604). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f55d2972-54e0-415a-9bba-3276b75683d4

ISSN 0280–5316
ISRN LUTFD2/TFRT--7604--SE

Jitterbug Reference Manual

Anton Cervin
Bo Lincoln

Department of Automatic Control
Lund Institute of Technology

January 2003

Department of Automatic Control
Lund Institute of Technology
Box 118
SE-221 00 Lund Sweden

Document name
INTERNAL REPORT

Date of issue
January 2003

Document Number
ISRN LUTFD2/TFRT--7604--SE

Author(s)

Anton Cervin, Bo Lincoln
Supervisor

Sponsoring organisation

Title and subtitle
Jitterbug Reference Manual

Abstract

The manual describes the use of Jitterbug, a Matlab toolbox for real-time control performance analysis.
The tool facilitates the computation of a quadratic performance index for a linear control system under
various timing conditions.

Key words

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title
0280–5316

ISBN

Language
English

Number of pages
37

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through:
University Library 2, Box 3, SE-221 00 Lund, Sweden
Fax +46 46 222 44 22 E-mail ub2@ub2.lu.se

Contents

1. Introduction . 2

2. System Description . 2

2.1 Signal Model . 2

2.2 Timing Model . 4

3. Internal Workings . 6

3.1 Sampling the System 6

3.2 Timing Representation 7

3.3 Calculating Variance and Cost 8

3.4 Calculating Spectral Densities 9

4. Examples . 9

4.1 Distributed Control System 9

4.2 Notch Filter . 13

4.3 Multirate Controller . 16

4.4 Spectral Density Calculation 19

4.5 Overrun Handling Methods 21

5. Command Reference . 24

initjitterbug . 25

addtimingnode . 26

addcontsys . 27

adddiscsys . 29

adddiscexec . 31

adddisctimedep . 32

calcdynamics . 33

calccost . 34

lqgdesign . 35

6. References . 37

1. Introduction

JITTERBUG [Lincoln and Cervin, 2002] is a MATLAB-based toolbox that allows
the computation of a quadratic performance criterion for a linear control
system under various timing conditions. Using the toolbox, one can easily
and quickly assert how sensitive a control system is to delay, jitter, lost
samples, etc., without resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating controllers, aperiodic
controllers, and multi-rate controllers. As an additional feature, it is also
possible to compute the spectral density of the signals in the control system.
The main contribution of the toolbox, which is built on well-known theory
(LQG theory and jump linear systems), is to make it easy to apply this
type of stochastic analysis to a wide range of problems.

2. System Description

In JITTERBUG, a control system is described by two parallel models: a signal
model and a timing model. The signal model is given by a number of con-
nected, linear, continuous- and discrete-time systems. The timing model
consists of a number of timing nodes and describes when the different
discrete-time systems should be updated during the control period.

An example of a JITTERBUG model is shown in Figure 1, where a computer-
controlled system is modeled by four blocks. The plant is described by the
continuous-time system G, and the controller is described by the three
discrete-time systems H1, H2, and H3. The system H1 could represent a
periodic sampler, H2 could represent the computation of the control signal,
and H3 could represent the actuator. The associated timing model says
that, at the beginning of each period, H1 should first be executed (updated).
Then there is a random delay τ1 until H2 is executed, and another random
delay τ2 until H3 is executed. The delays could model computational delays,
scheduling delays, or network transmission delays.

2.1 Signal Model
The signal model consists of a number of inter-connected continuous-time
and discrete-time linear systems driven by white noise. The cost is specified
as a stationary, continuous-time quadratic cost function.

H1(z)
H1(z)

H2(z)
H2(z)

H3(z)

H3(z)

G(s)
yu

v
1

2

3

τ1

τ2

(a) (b)

Figure 1 A simple JITTERBUG model of a computer-controlled system: (a) signal
model and (b) timing model.

2

Continuous-Time Systems A continuous-time system is described by

ẋc(t) = Axc(t) + Bu(t) + vc(t)
y0(t) = Cxc(t) (continuous output)
y(tk) = y0(tk) + ed(tk) (measured discrete output)

where A, B, and C are constant matrices, and vc is a continuous-time
white-noise process with zero mean and covariance matrix R1 (strictly
speaking, vc has the spectral density φ(ω) = 1

2π R1), and ed is a discrete-
time white-noise process with zero mean and covariance matrix R2. Note
that direct terms are not allowed (i.e., the system must be strictly proper).
Also note that there is no continuous-time output noise. The ability to spec-
ify discrete-time measurement noise in connection with the plant is only
offered as a convenience. The discrete-time output noise will be translated
to input noise at any connected discrete-time system(s).

The cost of the system is specified as

Jc = lim
T→∞

1
T

∫ T

0

 xc(t)
u(t)

T

Qc

 xc(t)
u(t)

 dt

where Qc is a positive semi-definite matrix.

The system may also be specified in transfer-function form (see the de-
scription of addcontsys on page 27).

Discrete-Time Systems A discrete-time system is described by

xd(tk+1) = Φxd(tk) + Γu(tk) + vd(tk)
y0(tk) = Cxd(tk) + Du(tk) (discrete output)
y(tk) = y0(tk) + ed(tk) (measured discrete output)

where Φ, Γ, C, and D are possibly time-varying matrices (see below). The
covariance of the discrete-time white noise processes vd and ed is given by

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The update instants tk are determined by the timing model and are not
necessarily equidistant in time. The input signal u is sampled when the
system is updated, and the state xd and the output signal y0 are held
between updates.

The cost of the system is specified as

Jd = lim
T→∞

1
T

∫ T

0


xd(t)
y0(t)
u(t)


T

Qd


xd(t)
y0(t)
u(t)

 dt

where Qd is a positive semi-definite matrix. Note that xd(t) and y0(t) are
piecewise constant signals, while u(t) may be a continuous signal.

The system may also be specified in transfer-function form (see the de-
scription of adddiscsys on page 29).

3

Connecting Systems The total system is formed by appropriately con-
necting the inputs and outputs of a number of continuous-time and discrete-
time systems. Throughout, MIMO formulations are allowed, and a system
may collect its inputs from a number of other systems. The total cost to be
evaluated is summed over all continuous-time and discrete-time systems:

J =
∑

Jc +
∑

Jd (1)

It’s important to understand how cost and noise are handled when sys-
tems are interconnected. Three principal cases can be distinguished (see
Figure 2):

(a) The interconnection of two continuous-time systems. Note that any
discrete-time output noise ed will be ignored.

(b) The interconnection of two discrete-time systems. No surprises here.

(c) The interconnection of a continuous-time and a discrete-time system.
Note that the discrete-time output noise ed will not be included in
the input cost of the discrete-time system.

2.2 Timing Model
The timing model consists of a number of timing nodes. Each node can
be associated with zero or more discrete-time systems in the signal model,
which should be updated when the node becomes active. At time zero, the
first node is activated. The first node can also be declared to be periodic
(indicated by an extra circle in the illustrations), which means that the ex-
ecution will restart at this node every h seconds. This is useful for modeling
periodic controllers and also greatly simplifies the cost calculations.

Each node is associated with a time delay τ , which must elapse before the
next node can become active. (If unspecified, the delay is assumed to be
zero.) The delay can be used to model computational delay, transmission
delay in a network, etc. A delay is described by a discrete-time probability
density function

Pτ = [Pτ (0) Pτ (1) Pτ (2) . . .] ,

where Pτ (k) represents the probability of a delay of kδ seconds. The time
grain δ is a constant that is specified for the whole model.

In periodic systems, the execution is preempted if the total delay
∑

τ in the
system exceeds the period h. Any remaining timing nodes will be skipped.
This models a real-time system where hard deadlines (equal to the period)
are enforced and the control task is aborted at the deadline.

An aperiodic system can be used to model a real-time system where the
task periods are allowed to drift if there are overruns. It could also be used
to model a controller that samples “as fast as possible” instead of waiting
for the next period.

4

++

Continuous−time system Continuous−time system

++ ++

Discrete−time systemDiscrete−time system

+ ++ +

Continuous−time system Discrete−time system

(a)

(b)

(c)

u

u u

u u

vc

vc vc

vd

vd vd

ed ed

ed ed

G1(s) G2(s)

H1(z) H2(z)

G(s) H(z)

J J

J J

J J

y

y y

y0y0

y0 y0

y0 y0

Figure 2 Possible interconnections of continuous-time and discrete-time systems.

Node- and Time-Dependent Execution The same discrete-time sys-
tem may be updated in several timing nodes. It is possible to specify differ-
ent update equations (i.e., different Φ, Γ, C and D matrices) in the various
cases. This can be used to model a filter where the update equations look
different depending on whether or not a measurement value is available.
An example of this type is given later.

It is also possible to make the update equations depend on the time since
the first node became active. This can be used to model jitter-compensating
controllers for example.

Alternative Execution Paths For some systems, it is desirable to spec-
ify alternative execution paths (and thereby multiple next nodes). In JIT-
TERBUG, two such cases can be modeled (see Figure 3):

(a) A vector n of next nodes can be specified with a probability vector
p. After the delay, execution node n(i) will be activated with proba-

5

11

22

3

3

4

τ1τ1

τ2∑
τ < t

∑
τ ≥ t

p(2) p(3)

(a) (b)

Figure 3 Alternative execution paths in a JITTERBUG execution model: (a) ran-
dom choice of path and (b) choice of path depending on the total delay from the
first node.

bility p(i). This can be used to model a sample being lost with some
probability.

(b) A vector n of next nodes can be specified with a timevector t. If the
total delay in the system since the node exceeds t(i), node n(i) will
be activated next. This can be used to model time-outs and various
compensation schemes.

3. Internal Workings

Inside JITTERBUG, the states and the cost are considered in continuous
time. The inherently discrete-time states, e.g. in discrete-time controllers
or filters, are treated as continuous-time states with zero dynamics. This
means that the total system can be written as

ẋ(t) = Ax(t) +w(t) (2)

where x collects all the states in the system, and w is continuous-time
white noise process with covariance R̃. To model the discrete-time changes
of some states as a timing node n is activated, the state is instantaneously
transformed by

x(t+) = Enx(t) + en(t)
where en is a discrete-time white noise process with covariance Wn.

The total cost (1) for the system can be written as

J = lim
T→∞

1
T

∫ T

0
xT(t)Q̃x(t) dt (3)

where Q̃ is a positive semidefinite matrix.

3.1 Sampling the System
JITTERBUG relies on discretized time to calculate the variance of the states
and the cost. No approximations are involved, however. Sampling the sys-
tem (2) with a period of δ (the time-grain in the delay distributions) gives

x(kδ + δ) = Φx(kδ) + v(kδ) (4)

6

where the covariance of v is R, and the cost (3) becomes

J = lim
N→∞

1
Nδ

N−1∑
k=0

(
xT(kδ)Qx(kδ) + q

)
The matrices Φ, R, Q, and q are calculated as

Φ = eAδ

R =
∫ δ

0
eA(δ−τ)R̃eAT (δ−τ) dτ

Q =
∫ δ

0
eAT tQ̃eAt dt

q= tr
(

Q̃
∫ δ

0

∫ δ

0
eA(t−τ)R̃eAT(t−τ) dτ dt

)
or, equivalently, from P11 P12

P21 P22

= exp
(−AT Q̃

0 A

δ
)

and 
M11 M12 M13

M21 M22 M23

M31 M32 M33

= exp


−A I 0

0 −A R̃T

0 0 AT

δ


so that

Φ = P22

Q = PT
22P12

R = MT
33M23

q= tr
(
QMT

33 M13
)

3.2 Timing Representation
As time is discretized, we can transform the system description into a jump
linear system, where the Markov state represents the current timing state
of the system. Each timing node is represented by one Markov node. In
between timing nodes additional Markov nodes representing the delay are
inserted as illustrated in Figure 4.

Consider following one path in the Markov chain. For each node which
is not a timing node, only the continuous states of the system change.
In each time-step, they evolve as in (4), and thus the state covariance
P(kδ) = E

{
x(kδ)xT(kδ)} evolves as

P(kδ + δ) = ΦP(kδ)ΦT + R

At each timing node n, the system is additionally transformed as in (3),

P(kδ +) = EnP(kδ)ET
n + Wn

7

τ = [0 0.1 0.2 0.3 0.4]

0.4 0.3 0.2 0.1

111

1

1 2

2

Figure 4 A random delay (above) modeled as a jump linear system (below),
where the delay is represented by additional Markov nodes in between the timing
nodes.

21

Continuous dynamics

+ discrete dynamics

Figure 5 The continuous-time dynamics is active between all Markov nodes,
whereas the discrete-time dynamics is activated only before a timing node.

where Wn is the covariance of the discrete-time noise en(kδ) in node n. See
Figure 5 for an illustration. Combining the above, we define Φn as

Φn =
{

Φ if n is not a timing node

EnΦ if n is a timing node

and similarly Rn as

Rn =
{

R if n is not a timing node

EnRET
n +Wn if n is a timing node

3.3 Calculating Variance and Cost
Now consider all possible Markov states simultaneously. Let πn(kδ) be
the probability of being in Markov state n at time kδ , and let Pn(kδ) be
the covariance of the state if the system is in Markov state n at time kδ .
Furthermore, let the transition matrix of the Markov chain be σ , such that

π (kδ + δ) = σπ (kδ)

The state covariance then evolves as

Pn(kδ + δ) =
∑

i

σ niπ i(kδ)
(

ΦnPi(kδ)ΦT
n + Rn

)
(5)

and the immediate cost at time kδ is calculated as

1
δ
∑

n

πn(kδ)
(

tr
(
Pn(kδ)Q) + q

)
For systems without a periodic node, equation (5)must be iterated until the
cost and variance converge. For periodic systems, the Markov state always

8

returns to the periodic timing node every h/δ time steps. As equation (5) is
affine in P, we can find the stationary covariance P1(∞) in the periodic node
by solving a linear system of equations. The total cost is then calculated
over the timesteps in one period. The toolbox returns the cost J =∞ if the
system is not mean-square stable.

3.4 Calculating Spectral Densities
For periodic systems, the toolbox also computes the discrete-time spectral
densities of all outputs as observed in the periodic timing node. The spectral
density of an output y is defined as

φ y(ω) = 1
2π

∞∑
k=−∞

ry(k)e−ikω

The covariance function ry(k) is given by

ry(k) = E
{

y(t)yT(t+ kh)
}
= E

{
Cx(t)xT(t+ kh)CT

}
= E

{
CΦ̄hkhx(t)xT(t)CT} = CΦ̄hkhP1(∞)CT

where Φ̄ is the average transition matrix over a period, and P1(∞) is the
stationary covariance in the periodic node. The spectral density is returned
as a discrete-time linear system F(z) such that φ y(ω) = F(eiω).

4. Examples

In this section, various examples that illustrate the use of JITTERBUG are
given.

4.1 Distributed Control System
In the example, we will study the distributed control system shown in Fig-
ure 6. The setup is taken from [Nilsson, 1998]. In the control loop, the sen-

Actuator
node Process Sensor

node

Controller
node

Network

h

τ1τ2

u(t) y(t)

Figure 6 Distributed control system with communication delays τ1 and τ2.

sor, the actuator, and the controller are distributed among different nodes
in a network. The sensor node is assumed to be time-driven, whereas the
controller and actuator nodes are assumed to be event-driven. At a fixed

9

period h, the sensor samples the process and sends the measurement sam-
ple over the network to the controller node. There the controller computes
a control signal and sends it over the network to the actuator node, where
it is subsequently actuated.

The JITTERBUG model of the system was shown in Figure 1 on page 2. The
DC servo process is given by the continuous-time system

G(s) = 1000
s(s+ 1) .

The process is driven by white continuous-time input noise. There is as-
sumed to be no measurement noise.

The process is sampled periodically with the interval h. The sampler and
the actuator are described by the trivial discrete-time systems

H1(z) = H3(z) = 1,

and the discrete-time PD controller is implemented as

H2(z) = −K
(

1+ Td

h
z− 1

z

)
,

where the controller parameters are chosen as K = 1.5 and Td = 0.035. (A
real implementation would include a low-pass filter in the derivative part,
but that is ignored here.)

The delays in the computer system are modeled by the two random vari-
ables τ1 and τ2. The total delay from sampling to actuation is given by
τ tot = τ1 + τ2. It is assumed that the total delay never exceeds the sam-
pling period (otherwise JITTERBUG would skip the remaining updates).

As a cost function, we choose the sum of the squared process input and the
squared process output:

J = lim
T→∞

1
T

∫ T

0

(
y2(t) + u2(t)) dt. (6)

Sampling Period and Constant Delay A control system can typi-
cally give satisfactory performance over a range of sampling periods. In
textbooks on digital control, rules of thumb for sampling period selection
are often given. One such rule suggests that the sampling interval h should
be chosen such that

0.2 < ω bh < 0.6,

where ω b is the bandwidth of the closed-loop system. In our case, a continuous-
time PD controller with the given parameters would give a bandwidth of
about ω b = 80 rad/s. This would imply a sampling period of between 2.5
and 7.5 ms. The effect of computational delay is typically not considered
in such rules of thumb, however. Using JITTERBUG, the combined effect of
sampling period and computational delay can be easily investigated. In
Figure 7, the cost function (6) for the networked control system has been

10

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Maximum delay (in % of h)Sampling period h

C
os

t
J

Figure 7 The cost as a function of sampling period and constant delay in the
distributed control system example.

evaluated for different sampling periods in the interval 1 to 10 millisec-
onds, and for constant total delay ranging from 0 to 100% of the sampling
interval. As can be seen, a one-sample delay gives negligible performance
degradation when h = 1 ms. When h = 10 ms, a one-sample delay makes
the system unstable (i.e., the cost J goes to infinity).

Random Delays and Jitter Compensation If system resources are
very limited (as they often are in embedded control applications), the con-
trol engineer may have to live with long sampling intervals. Delay in the
control loop then becomes a serious issue. Ideally, the delay should be ac-
counted for in the control design. In many practical cases, however, even the
mean value of the delay will be unknown at design time. The actual delay
at run-time will vary from sample to sample due to real-time scheduling,
the load of the system, etc. A simple approach is to use gain scheduling—
the actual delay is measured in each sample and the controller parameters
are adjusted according to precalculated values that have been stored in a
table. Since JITTERBUG allows time-dependent controller parameters, such
delay compensation schemes can also be analyzed using the tool.

In the JITTERBUG model of the networked control system, we now assume
that the delays τ1 and τ2 are uniformly distributed random variables be-
tween 0 and τ max/2, where τ max denotes the maximum round-trip delay in
the loop. A range of PD controller parameters (ranging from K = 1.5 and
Td = 0.035 for zero delay to K = 0.78 and Td = 0.052 for 7.5 ms delay)
are derived and stored in a table. When a sample arrives at the controller
node, only the delay τ1 from sensor to controller is known, however, so the
remaining delay is predicted by its expected value of τ max/4.

In Figure 8, the cost function (6) for the networked control system has been
evaluated for different sampling periods in the interval 1 to 10 milliseconds,
and for maximum total delay ranging from 0 to 100% of the sampling
interval. Compared to Fig 7, the cost is considerably lower.

11

0
20

40
60

80
100

0.001

0.005

0.010
1

1.5

2

2.5

3

Maximum delay (in % of h)Sampling period h

C
os

t
J

Figure 8 The cost as a function of sampling period and maximum delay with
jitter compensation in the distributed control system example.

The Matlab script for the computations is given below:

% Jitterbug example: distributed.m
% ================================
% Calculate the performance of a distributed control system with
% delays/jitter

scenario = 1; % 1 = constant delay, 2 = random delay,
% 3 = random delay + jitter compensation

s = tf(’s’);
G = 1000/(s^2+s); % The process
R1 = 1; % Input noise
R2 = 0; % Output noise
Q = diag([1 1]); % J = E(y^2 + u^2)

% Default PD parameters
K = 1.5;
Td = 0.035;

% Gain(delay)-scheduled PD parameters
tauv = [0 0.0035 0.0045 0.0055 0.0065 0.0075];
Kv = [1.5 1.2 1.1 0.98 0.86 0.78];
Tdv = [0.035 0.04 0.042 0.046 0.049 0.052];

hvec = 0.001:0.0005:0.010;
Jmat = [];
for h = hvec
dt = h/40;
taumaxvec = 0:2*dt:h;
for taumax=taumaxvec

Ptau = zeros(1,round(h/dt)+1);
if scenario == 1
Ptau(round(taumax/2/dt)+1) = 1; % constant delay

else
Ptau(1:round(taumax/2/dt)+1) = 1; % random delay

12

end
Ptau = Ptau/sum(Ptau);

H1 = 1; % Sampler
H2 = ss(0,1,K*Td/h,-K*(Td/h+1),-1); % Controller
H3 = 1; % Actuator

N = initjitterbug(dt,h); % Initialize Jitterbug

N = addtimingnode(N,1,Ptau,2); % Add node 1
N = addtimingnode(N,2,Ptau,3); % Add node 2
N = addtimingnode(N,3); % Add node 3

N = addcontsys(N,1,G,4,Q,R1,R2); % Add sys 1 (G)
N = adddiscsys(N,2,H1,1,1); % Add sys 2 (H1) to node 1
N = adddiscsys(N,3,H2,2,2); % Add sys 3 (H2) to node 2
N = adddiscsys(N,4,H3,3,3); % Add sys 4 (H3) to node 3

if scenario == 3 % jitter compensation
for k=1:round(taumax/2/dt)

tau1 = dt*k; % known delay
tau2 = taumax/4; % predicted remaining delay
t = tau1 + tau2;
Kt = interp1(tauv,Kv,t,’linear’,’extrap’);
Tdt = interp1(tauv,Tdv,t,’linear’,’extrap’);
H2 = ss(0,1,Kt*Tdt/h,-Kt*(Tdt/h+1),-1);
N = adddisctimedep(N,3,H2,k); % Make sys 3 (H2) time-dependent

end
end

N = calcdynamics(N); % Calculate the internal dynamics
J = calccost(N) % Calculate the cost
Jmat(find(h==hvec),find(taumax==taumaxvec)) = J;

end
end

Jmat=Jmat/Jmat(1,1); % scale plot to 1 in (0,0)
figure
surf(0:5:100,hvec,Jmat)
axis([0 100 hvec(1) hvec(end) 1 3])
caxis([0.7 3])
xlabel(’Maximum Delay (in % of h)’)
ylabel(’Sampling Period h’)
zlabel(’Cost J’)

4.2 Notch Filter
Cleaning signals from disturbances using e.g. notch filters is important in
many applications. In some cases these filters are very sensitive to lost
samples due to the very narrow-band characteristics, and in real-time sys-
tems lost samples are sometimes inevitable. In this example JITTERBUG is
used to evaluate the effects of this problem on different filters.

The setup is as follows. A good signal x (modeled as low-pass filtered noise)
is to be cleaned from an additive disturbance e (modeled as band-pass
filtered noise). An estimate x̂ of the good signal should be found by applying

13

v1

v2

e

x

x̂ x̃
G1(s)

G2(s)

Samp

Samp

Diff

Diff

Delay

Delay

Filter(i)

1

2

34

5

1−p

p

Filter(1)Filter(2)

(a)

(b)

Figure 9 JITTERBUG model of the notch filter: (a) signal model and (b) timing
model.

a digital notch filter with the sampling interval h = 0.1 to the measured
signal x + e. Unfortunately, a fraction p of the measurements are lost.

A JITTERBUG model of the system is shown in Figure 9. The signals x and
e are generated by white noise being filtered through the continuous-time
systems G1 and G2. The digital filter is represented as two discrete-time
systems: Samp and Filter. The good signal is buffered in the system Delay
and is compared to the filtered estimate in the system Diff. In the timing
model, there is a probability p that the Samp system will not be updated.
In that case, it is possible to execute an alternate version, Filter(2), of the
filter dynamics.

Two different filters are compared. The first filter is an ordinary second-
order notch filter with two zeros on the unit circle. The same update equa-
tions are used regardless if a sample is available or not. The second filter
is a second-order Kalman filter based on a simple model of the signal dy-
namics. In the case of lost samples, only prediction is performed in the
filter.

The spectral density of the estimation error x̃ = x − x̂ in the two filter
cases is shown in Figure 10. It has been assumed that p = 10% of the
samples are lost. It is seen that the ordinary notch filter performs well
around the disturbance frequency while the lost samples introduce a large
error at lower frequencies. The time-varying Kalman filter is less sensitive
towards lost samples and has a more even error spectrum. Overall, the
variance of the estimation error is about 40% lower in the Kalman filter
case.

14

Frequency (rad/sec)

M
ag

ni
tu

de
 (

dB
)

10
−1

10
0

10
1

−5

0

5

10

15

20

25

30

Figure 10 The spectral density of the error output x̃ when 10% of the samples
are lost, using a notch filter (full) or a time-varying Kalman filter (dashed).

The Matlab script for the computations is given below:

% Jitterbug example: notch.m
% ==========================
% Calculate the performance of a notch filter with lost samples.

scenario = 1; % 1=no filter, 2=notch filter, 3=Kalman filter
p = 0.1; % Probability of lost sample

s = tf(’s’);
z = tf(’z’);

h = 0.1; % Sampling period

% System generating the good signal
G1 = 100/(s+1)^2;
R1 = 2*pi; % Input noise variance

% System generating the disturbance
omega = 20; % Resonance frequency
zeta = 0.001; % Damping
G2 = 50/(s^2+2*zeta*omega*s+omega^2);
R2 = 2*pi; % Input noise variance

Samp = [1 1]; % Discrete-time system that samples x + e
Diff = [1 -1]; % Discrete-time system that computes x - xhat

switch scenario,
case 1,
% No filter
Filter1 = 1;
Filter2 = []; % same dynamics (i.e., none)
Delay = 1;

case 2,
% Zero-phase notch filter
a = -0.5/cos(omega*h);
Filter1 = ss(tf([a 1 a],[1 0 0],h));
Filter1 = Filter1/dcgain(Filter1);

15

Filter2 = []; % same dynamics
Delay = 1/z; % The notch filter has a delay of one sample

case 3,
% Kalman filter based on simple model of G1 (integrator)
[a1,g1,c1] = ssdata(ss(-0.00001,15,1,0));
[a2,g2,c2] = ssdata(G2);
a = blkdiag(a1,a2);
g = eye(size(a,1));
c = [c1 c2];
r1 = blkdiag(g1*g1’,g2*g2’);
r2 = 0;
phi = ssdata(c2d(ss(a,g,c,0),h));
kf = lqed(a,g,c,r1/h,r2,h);
k = phi*kf;
phio = (phi-k*c);
gammao = k;
co = [c1 0*c2]*(eye(size(a,1))-kf*c);
do = [c1 0*c2]*kf;
Filter1 = ss(phio,gammao,co,do,h); % Prediction and correction
Filter2 = ss(phi,zeros(size(a,1),1),[c1 0*c2],0,-1); % Prediction only
Delay = 1;

end

delta = h; % Time-grain = sampling interval
Ptau = [1]; % Zero delay between timing nodes
Q = diag([1 0 0]); % J = xtilde^2

N = initjitterbug(delta,h); % Initialize Jitterbug

N = addtimingnode(N,1,Ptau,[2 4],[1-p p]); % Add node 1
N = addtimingnode(N,2,Ptau,3); % Add node 2
N = addtimingnode(N,3,Ptau,5); % Add node 3
N = addtimingnode(N,4,Ptau,5); % Add node 4
N = addtimingnode(N,5); % Add node 5

N = addcontsys(N,1,G1,0,[],R1); % Add sys 1 (G1)
N = addcontsys(N,2,G2,0,[],R2); % Add sys 2 (G2)
N = adddiscsys(N,3,Samp,[1 2],2); % Add sys 3 (Samp) to node 2
N = adddiscsys(N,4,Filter1,3,3); % Add sys 4 (Filter) to node 3
N = adddiscexec(N,4,Filter2,3,4); % Add execution of sys 4 to node 4
N = adddiscsys(N,5,Delay,1,1); % Add sys 5 (Delay) to node 1
N = adddiscsys(N,6,Diff,[5 4],5,Q); % Add sys 6 (Diff) to node 5

N = calcdynamics(N); % Calculate internal dynamics
[J,P,F] = calccost(N); % Calculate cost and spectral densities
J

figure
bodemag(F{1},F{2},F{4},F{6}) % Plot spectra of outputs 1,2,4,6
axis([0.1 pi/h -20 100]);
legend(’Good Signal’,’Disturbance’,’Filter Output’,’Error’);
title(’Spectral Densities’)

4.3 Multirate Controller
In this example we will show how to compute the performance of a multi-

16

PID1 PID2 Gφ (s) Gx(s)

v

φ x
Σ

Figure 11 The ball & beam cascaded controller.

rate controller. This is illustrated on a cascade controller for the ball and
beam process, see Figure 11. In this control structure, the inner controller,
PID2, is responsible for controlling the beam dynamics,

Gφ (s) = 4.4
s

,

while the outer controller, PID1, controls the ball on beam dynamics,

Gx(s) = −9.0
s2 .

Since the inner loop is typically designed to be much faster than the outer
loop, it can be a good idea to execute the inner loop at a higher frequency,
especially if CPU resources are scarce. We will compare the performance of
an ordinary cascade controller with a multirate cascade controller where
the inner controller executes at twice the frequency of the outer controller.

The JITTERBUG timing model in the multirate case is shown in Figure 12.
The sampling interval of the outer controller is denoted h. The sampling
interval of the inner controller is thus h/2. The execution time of the control
algorithm is ignored in this simple model. At the beginning of each period,
PID1 is executed, immediately followed by PID2, which uses the control
signal produced by PID1 as a reference value. Then, half a period later,
the PID2 is executed again, using the same reference value as in the first
invocation but a new measurement value.

Assume that the process is disturbed by white input noise v with unit
variance, and that the performance is measured by the cost function

J = lim
T→∞

1
T

∫ T

0

(
φ2(t) + x2(t)) dt

PID1

PID2

PID2

1

2

3

0

h/2

Figure 12 Timing model for the multirate ball & beam controller.

17

Assuming certain PID parameters, the performance in the different cases
becomes

Jordinary = 3.40, Jmultirate = 1.99.

(Running both controllers at the fast rate gives J = 1.93, i.e. only a small
further improvement.)
The Matlab script comparing the two cases is shown below:

% Jitterbug example: multirate.m
% ==============================
% Calculate the performance of ordinary/multirate ball & beam controller

s = tf(’s’);

Gphi = 4.4/s;
Gx = -9.0/s^2;

Q = diag([1 0]);
R1 = 1;
R2 = 0;

h = 0.1;
delta = h/2;

K1 = -0.2;
Ti = 10;
Td = 1;
N = 10;
PID1c = -K1*(1+1/Ti/s+s*Td/(1+s*Td/N)); % PID controller
PID1 = c2d(PID1c,h,’matched’);

K2 = 4;
PID2 = K2*[1 -1]; % P controller

%% Case 1: ordinary cascade controller
N = initjitterbug(delta,h);
N = addtimingnode(N,1,[1],2); % Add node 1
N = addtimingnode(N,2); % Add node 2
N = addcontsys(N,1,Gphi,4,Q,R1); % Add sys 1 (Gphi)
N = addcontsys(N,2,Gx,1,Q); % Add sys 2 (Gx)
N = adddiscsys(N,3,PID1,2,1); % Add sys 3 (PID1) to node 1
N = adddiscsys(N,4,PID2,[3 1],2); % Add sys 4 (PID2) to node 2
N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost

%% Case 2: multirate cascade controller
N = initjitterbug(delta,h);
N = addtimingnode(N,1,[1],2); % Add node 1
N = addtimingnode(N,2,[0 1],3); % Add node 2
N = addtimingnode(N,3); % Add node 3
N = addcontsys(N,1,Gphi,4,Q,R1); % Add sys 1 (Gphi)
N = addcontsys(N,2,Gx,1,Q); % Add sys 2 (Gx)
N = adddiscsys(N,3,PID1,2,1); % Add sys 3 (PID1) to node 1
N = adddiscsys(N,4,PID2,[3 1],2); % Add sys 4 (PID2) to node 2
N = adddiscexec(N,4,[],[3 1],3); % Add exec of sys 4 (PID2) to node 3

18

C(z) G(s) Samp

ed

y

−1

Σ

Figure 13 The signal model to calculate the sensitivity spectral density (i.e., the
spectral density of y when ed is white noise).

C(z)

Samp1

2

τ

Figure 14 The timing model of the spectral density example.

N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost

4.4 Spectral Density Calculation
The following example computes the influence of jitter on the sensitivity
function for a control system. The sensitivity function for a control system
with a plant G and a controller C is defined as S = 1

1+CG . For a randomly
time-varying system, though, this definition cannot be used.

The idea in this example is to form a system which is driven by white noise
ed at the output of the process G (see Figure 13). The spectral density of
the output y may then be interpreted as a kind of sensitivity function for
the stochastic system.

The example system is a continuous G(s) = 1
s2 which is controlled by a

LQG-designed controller C(z). The process is sampled periodically, but
there is a random delay τ between the process and the controller (see Fig-
ure 14). The delay is uniformly distributed between zero and τmax. The sen-
sitivity spectral density for τmax between zero and h (for different amounts
of jitter) is plotted in Figure 15.

The Matlab script for the computations is given below:

% Jitterbug example: spectdens.m
% ==============================
% Compute the sensitivity power spectral density with jitter

s = tf(’s’);
G = 1/s^2; % The process is a double integrator

h = 0.25;
delta = h/10;

19

−2
−1

0
1

2

0

0.5

1
−25

−20

−15

−10

−5

0

Log frequency

Sensitivity power spectral density with jitter

Maximum delay in % of h

P
S

D
 o

f s
en

si
tib

ity
 o

ut
pu

t [
dB

]

Figure 15 The sensitivity spectral density from the example.

Mvec = [];
delays = (1:round(h/delta))/round(h/delta);
for delay = delays
Ptau1 = ones(1,delay*round(h/delta)+1); % Uniform delay
Ptau1 = Ptau1/sum(Ptau1);

Q = diag([1 1]);
R1 = 1;
R2 = 1;

Samp = 1; % Sampler system
C = lqgdesign(G,Q,R1,R2,h,h*delay/2); % Design an LQG controller

N = initjitterbug(delta,h); % Initialize Jitterbug
N = addtimingnode(N,1,Ptau1,2); % Add node 1
N = addtimingnode(N,2); % Add node 2
N = addcontsys(N,1,G,3,Q,[],1); % Add sys 1 (G) with output noise
N = adddiscsys(N,2,Samp,1,1); % Add sys 2 (Samp) to node 1
N = adddiscsys(N,3,C,2,2); % Add sys 3 (C) to node 2

N = calcdynamics(N); % Calculate internal dynamics
[J,P,F] = calccost(N); % Calculate spectral densities
H = F{2}; % y is the second output (sys 2)
w = logspace(-2,log10(pi/h),50);
M = bode(H,w);
M = squeeze(M);
Mvec = [Mvec M];

end
figure
surfl(log10(w),delays,10*log10(Mvec)’)
title(’Sensitivity power spectral density with jitter’);
xlabel(’Log frequency’);
ylabel(’Maximum delay in % of \ith’);
zlabel(’PSD of sensitibity output [dB]’)

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
1.5

2

2.5

3

3.5

4

Maximum delay relative to h

C
os

t

Skip sample
Update controller without sample
Extend period

Figure 16 The costs in the overrun example.

4.5 Overrun Handling Methods
This example presentes (a rather long) script that compares three ways
of handling long delays in a control system. The problem is what to do if
the controller does not get a process sample in time. Three approaches are
tested:

a) Do not update the controller, and use the old control signal.

b) Update the controller state and control signal based on no input. This
is not done by feeding zeros to the observer, but rather by disconnect-
ing the input part of the observer.

c) Extend the sample period until the sample does arrive. This creates
an aperiodic system, and an iterative solver has to be used.

This kind of problem can also be interpreted as a computation time prob-
lem, where the computation of some control signal may take long enough
time to miss a deadline.

The set-up is as follows. A plant G(s) = 1
s(s2+2ζ ω s+ω 2) with ζ = 0.2 and

ω = 1 is to be controlled by an LQG regulator. The controller is calculated
for the mean time delay using the function lqgdesign(). As for the delay,
it is uniformly distributed between 0 and τmax, where τmax is swept from 0
to 2h (i.e. two sample periods).

The three cases are compared in Figure 16. As expected, using the old
control signal gives the worst performance, while extending the control
period until the control signal is produced gives the best results.

The Matlab script for the computations is given below. Note that the itera-
tive solver is very much slower than the algebraic solver, and is only used
when the system is aperiodic.

21

% Jitterbug example: overrun.m
% ============================
% Compare three overrun handling methods for a control system with
% delayed samples. The plant to be controlled is an integrator with a
% resonance (a third order system). The controller is an LQG
% controller, designed for the mean time delay. The delay for the
% sample from the plant is uniformly distributed between 0 and
% tau_max, which varies between 0 and 2h.
%
% When a sample is delayed more than one period,
% the controller will:
% Case 1) Not be updated at all
% Case 2) Let its observer run without input
% Case 3) Extend the period until the sample arrives (aperiodic system).
%
% The last case is very computationally intensive as it requires an
% iterative solver.

s = tf(’s’);

zeta = 0.2;
omega = 1;
G = 1/s/(s^2+2*zeta*omega*s+omega^2); % The process
Samp = 1;

h = 0.25;
delta = h/20;

Q = diag([1 1]);
R1 = 1;
R2 = 0.001;

clf;
hold on;
for mode = 1:3
slots = round(h/delta);
if mode == 1

delays = (0:2*slots)/slots;
else

delays = (slots:2*slots)/slots;
end
Jvec = [];

for delay = delays
% All three modes do the same thing for delay < 1.
if (mode < 2 | delay >= 1)
Ptau = ones(1,round(delay*slots)+1); % Uniform delay
Ptau = Ptau/sum(Ptau);
if (mode == 2)

if (size(Ptau,2) > slots+1)
Ptau = [Ptau(1:slots) sum(Ptau(1,slots+1:end))];

end
end
Pwait = zeros(round(slots*delay)+1,slots+1);
for d = 1:(slots*delay+1)

if (d > slots+1)

22

Pwait(d,1) = 1;
else
Pwait(d,slots-d+2) = 1;

end
end

% Create optimal controller based on mean delay
[C,L,Obs,K,Kbar,Gd] = lqgdesign(G,Q,R1,R2,h,delay*h/2);
% Create optimal controller based on observer with no input
Cnodata = ss(Gd.A-Gd.B*L,Gd.B*0,-L,Gd.D*0,h);

% Add different timing nodes depending on mode.
if (mode == 3)

N = initjitterbug(delta,0); % Aperiodic system
else

N = initjitterbug(delta,h); % Periodic system
end
if (mode == 2)

N = addtimingnode(N,1,Ptau,[2*ones(1,round(h/delta)) 3]);
else

N = addtimingnode(N,1,Ptau,2);
end
if (mode == 3)

N = addtimingnode(N,2,Pwait,1);
else

N = addtimingnode(N,2);
end
if (mode == 2)

N = addtimingnode(N,3);
end

N = addcontsys(N,1,G,3,Q,R1,R2); % Add sys 1 (G)
N = adddiscsys(N,2,Samp,1,1); % Add sys 2 (Samp) to node 1
N = adddiscsys(N,3,C,2,2); % Add sys 3 (C) to node 2
if (mode == 2)

N = adddiscexec(N,3,Cnodata,2,3); % Add exec of sys 3 (C) to node 3
end
N = calcdynamics(N); % Calculate internal dynamics
J = calccost(N) % Calculate cost
Jvec = [Jvec J];
if J == Inf

delays = delays(1:find(delays==delay));
break; % Skip remaining delays

end
end

end
if (mode == 1)

plot(delays,Jvec,’b’);
Jvec1 = Jvec;

elseif (mode == 2)
plot(delays(find(delays >= 1)),Jvec,’g’);
Jvec2 = Jvec;

else
plot(delays(find(delays >= 1)),Jvec,’r’);
Jvec3 = Jvec;

end

23

Jvec = [];
pause(0);

end
hold off;
legend(’Skip sample’, ’Update controller without sample’, ’Extend period’);
xlabel(’Maximum delay relative to h’);
ylabel(’Cost’);
axis([0 2 1.5 4])

5. Command Reference

A summary of the available JITTERBUG commands are given in Table 1.

Command Description

initjitterbug Initialize a new JITTERBUG system.

addtimingnode Add a timing node.

addcontsys Add a continuous-time system.

adddiscsys Add a discrete-time system to a timing node.

adddiscexec Add an execution of a previously defined
discrete-time system.

adddisctimedep Add time-dependence to a previously defined
discrete-time system.

calcdynamics Calculate the internal dynamics of a JITTERBUG

system.

calccost Calculate the total cost of a JITTERBUG system and,
for periodic systems, calculate the spectral densities
of the outputs.

lqgdesign Design a discrete-time LQG controller for a
continuous-time plant with a constant time delay
and a continuous-time cost function.

Table 1 Summary of the JITTERBUG commands.

24

initjitterbug

Purpose
Initialize a new JITTERBUG system.

Syntax
N = initjitterbug(delta,h)

Description
Initialize a new JITTERBUG system with a given time-grain and period.

Arguments

delta The time grain (in seconds). The computations in JITTERBUG

are completely based on this discretization. Computation times
and memory scale inversely proportionally to delta.

h The period of the system (in seconds). Specify 0 if the system
should be aperiodic.

Return Values

N The JITTERBUG system which must be passed to all other functions.

25

addtimingnode

Purpose
Add a timing node to a JITTERBUG system.

Syntax
N = addtimingnode(N,nodeid)
N = addtimingnode(N,nodeid,Ptau,nextnode)
N = addtimingnode(N,nodeid,Ptau,nextnodes,nextprobs)
N = addtimingnode(N,nodeid,Ptau,timedepnextnodes)

Description
Add a timing node to the JITTERBUG system N. The delay in the node is given
by the discrete probability distribution Ptau. The next node to be visited
can be either deterministic, random, or dependent on the total delay since
the first node.

Note 1: The JITTERBUG system must have a node with ID 1. If the system
is periodic, this will be the periodic node.

Note 2: If the total delay exceeds the period, the execution will restart in
the periodic node (if the system is periodic).

Arguments

N The JITTERBUG system to add this timing node to.

nodeid The ID of this timing node (a positive integer).
Ptau The delay probability vector. Ptau(1) is the

probability of a delay of 0*delta seconds, Ptau(2)
is the probability of a delay of 1*delta seconds,
etc. If omitted, the system will stay in this node
until the next period.

nextnode The next node to be visisited, after the delay in
this node has elapsed.

nextnodes A vector of possible next nodes to be visited.

nextprobs A vector specifying the probabilities for each of the
nodes in nextnodes to be visited next.

timedepnextnodes A vector of next nodes to be visited depending on
the total delay since the first node (including the
delay in this node).

26

addcontsys

Purpose
Add a continuous-time system to a JITTERBUG system.

Syntax
N = addcontsys(N,sysid,sys,inputid)
N = addcontsys(N,sysid,sys,inputid,Q,R1,R2)

Description
The continuous-time system can be given in state-space form or in transfer-
function (or zero-pole-gain) form.

In state-space form, the system is described by

ẋ(t) = Ax(t) + Bu(t) + v(t)
y0(t) = Cx(t) (continuous output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where v is a continuous-time white-noise process with zero mean and co-
variance1 R1, and e is a discrete-time white-noise process with zero mean
and covariance R2. The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 x(t)
u(t)

T

Q
 x(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

In transfer-function form, the system is described by

y0(t) = G(p)(u(t) + v(t)) (continuous output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where G(p) is a strictly proper transfer function, v is a continuous-time
white-noise process with zero mean and covariance R1, and e is a discrete-
time white-noise process with zero mean and covariance R2. The cost of
the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

Note that the measured discrete output is only used when the system is
connected to a discrete-time system.

1By this we mean that v has the spectral density φ (ω) = 1
2π R1.

27

Arguments

N The JITTERBUG system to add this continuous-time system to.

sysid A unique ID number for this system (pick any). Used when
referred to from other systems.

sys A strictly proper continuous-time LTI system in state-space,
transfer function, or pole-zero-gain form. Internally, the
system will be converted to state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

Optional Arguments

Q The cost matrix (default is zero).
R1 The state or input noise covariance matrix (default is zero).
R2 The measurement noise covariance matrix (default is zero). Note

that measurement noise will only be added when the system is
sampled by a discrete-time system. The measurement noise will
not be included in the input cost of the connected discrete-time
system. Also, the measurement nosie will not affect any connected
continuous-time systems (see Figure 2).

Any optional arguments can be left as [] for default values.

Limitations
To avoid problems with algebraic loops and infinite variances, continuous-
time systems with direct terms are not supported. Also, continuous-time
output noise is not supported.

28

adddiscsys

Purpose
Add a discrete-time system to a JITTERBUG system.

Syntax
N = adddiscsys(N,sysid,sys,inputid,nodeid)
N = adddiscsys(N,sysid,sys,inputid,nodeid,Q,R)

Description
The discrete-time system can be given in state-space form or in transfer-
function form.

In state-space form, the system is described by

x(tk+1) = Ax(tk) + Bu(tk) + v(tk)
y0(tk) = Cx(tk) + Du(tk) (discrete output)
y(tk) = y0(tk) + e(tk) (measured discrete output)

where v and e are discrete-time white-noise processs with zero mean and
covariance

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0


x(t)
y0(t)
u(t)


T

Q


x(t)
y0(t)
u(t)

 dt

where Q is a positive semi-definite matrix. Note that x(t) and y0(t) are
piecewise constant signals, while u(t) may be a continuous signal.

In transfer-function form, the system is described by

y0(tk) = H(q)(u(tk) + v(tk)
) (discrete output)

y(tk) = y0(tk) + e(tk) (measured discrete output)
where H(q) is a proper transfer function, and v and e are discrete-time
white-noise processs with zero mean and covariance

R = E
 v(tk)

e(tk)

 v(tk)
e(tk)

T

.

The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix. Again, note that y0(t) is a
piecewise constant signal, while u(t) may be a continuous signal.

29

Arguments

N The JITTERBUG system to add this discrete-time system to.

sysid A unique ID number of this system (pick any). Used when
referred to from other systems.

sys A discrete-time LTI system in state-space or transfer
function form, or a double/matrix (interpreted as a static
gain transfer function). Internally, the system will be
converted to state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

nodeid The timing node where this discrete-time system should be
executed. If you want the same system to be executed in
further nodes, use adddiscexec.

Optional Arguments

Q The cost matrix (default is zero).
R The noise covariance matrix (default is zero). Added each time the

system is updated. Note that noise may also enter the system from
the output nose of another system.

Any optional arguments can be left as [] for default values.

Remark
The input cost is really defined on whatever signal is used as input. If
the input signal is continuous, the continuous cost (not sampled) will be
calculated. If you really want the sampled cost, insert a sampling discrete-
time system in between.

See Also
adddiscexec, adddisctimedep

30

adddiscexec

Purpose
Add an execution of a previously defined discrete-time system.

Syntax
N = adddiscexec(N,sysid,sys,inputid,nodeid)

Arguments

N The JITTERBUG system.

sysid The ID of the discrete-time system.

sys A discrete-time LTI system or [] for the same dynamics as
before. To ensure that the same state vector is used
internally, both this and the original system should be given
in state-space form.

inputid A vector of system IDs. The outputs of the corresponding
systems will be used as inputs to this system. The number of
inputs in this system must equal the total number of
outputs in the input systems. A negative input ID specifies
that the corresponding system’s state should be used instead
of its output. An input ID of zero specifies that the input
should be taken from the null system (which has a scalar
output equal to zero).

nodeid The ID of the timing node where this discrete-time system
should be executed again.

Remark
It is not possible to change the cost or the noise of the system.

See Also
adddiscsys, adddisctimedep

31

adddisctimedep

Purpose
Add time-dependence to a previously defined discrete-time system.

Syntax
N = adddisctimedep(N,sysid,sys,timestep)

Description
Makes the dynamics of the discrete-time system with ID sysid time-dependent.
The system model sys will be used for all delays greater than or equal to
timestep*delta seconds since the first timing node (unless another defi-
nition overrides for longer delays).

Arguments

N The JITTERBUG system.

sysid The ID of the discrete-time system.

sys A discrete-time LTI system describing the new dynamics.
To ensure that the same state vector is used internally,
both this and the original system should be given in
state-space form.

timestep The system model sys will be used for all delays greater
than or equal to timestep*delta seconds since the first
timing node.

Remark
It is not possible to change the cost or the noise of the system.

See Also
adddiscexec, adddiscsys

32

calcdynamics

Purpose
Calculate the internal dynamics of a JITTERBUG system.

Syntax
N = calcdynamics(N)

Description
Calculate the total system dynamics for the JITTERBUG system N. The
continuous-time noise, the continuous-time cost functions, and the continuous-
time systems are sampled with the time grain delta. The resulting system
description is stored in N.nodes.

This function must be called before calccost.

Arguments

N The JITTERBUG system.

See Also
calccost

33

calccost

Purpose
Calculate stationary variance, cost, and output spectral densities of a JIT-
TERBUG system.

Syntax
[J,P,F] = calccost(N)
[J,P,F] = calccost(N,options)

Description
Calculate the stationary variance and cost of the JITTERBUG system N. For
periodic systems, also compute the (discrete-time) spectral densities of all
outputs in the periodic node.

If the system is periodic, the solution is calculated algebraically, by solving
a linear system of equations. If the system is aperiodic, an iterative solver
is used.

This function must be called after calcdynamics.

Arguments

N The JITTERBUG system.

options For aperiodic systems, options is a struct with any of the
following fields:
accuracy The iterative solver will quit whenever the rel-

ative cost change for one time step is less than
this. Default is 1e-7.

horizon The horizon over which the cost is averaged. May
be Inf. Default is the maximum system period.

print Enable printouts. Default is 1 (on).

Return Values
J The cost (Inf if unstable).
P The stationary variance in the periodic node (Inf if unstable).
F The spectral densities of the outputs (in the order they were

defined). The spectral density of each output is returned as a
discrete-time system F(z) such that φ(ω) = F(eiω h). Use e.g.
bodemag(F{1}) to plot the spectral density of the output of the first
defined system.

See Also
calcdynamics

34

lqgdesign

Purpose
Design a discrete-time LQG controller for a continuous-time plant with a
constant time delay and a continuous-time cost function.

Syntax
[ctrl,L,obs,K,Kf,sysd] = lqgdesign(sys,Q,R1,R2,h,tau)

Description
Design a discrete-time LQG controller with direct term for the continuous-
time system sys assuming a constant sampling interval h and a constant
time delay tau. The system can be given in state-space form or in transfer-
function (or zero-pole-gain) form.

In state-space form, the system is described by

ẋ(t) = Ax(t) + Bu(t− τ) + v(t)
y(tk) = Cx(tk) + e(tk)

where τ is a constant time delay, v is a continuous-time Gaussian white-
noise process with zero mean and covariance R1, and e is a discrete-time
Gaussian white-noise process with zero mean and covariance R2. The noise
processes v and e are assumed to be independent. The sampling instants
are given by tk = kh. The cost function to be minimized by the controller
is specified as

J = lim
T→∞

1
T

∫ T

0

 x(t)
u(t)

T

Q
 x(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

In transfer-function form, the system is described by

y0(t) = G(p)(u(t−τ) + v(t))
y(tk) = y0(tk) + e(tk)

where τ is a constant time delay, G(p) is a strictly proper transfer function,
v is a continuous-time white-noise process with zero mean and covariance
R1, and e is a discrete-time white-noise process with zero mean and co-
variance R2. The cost of the system is specified as

J = lim
T→∞

1
T

∫ T

0

 y0(t)
u(t)

T

Q
 y0(t)

u(t)

 dt

where Q is a positive semi-definite matrix.

The resulting controller has the form

u(k) = −Lx̂e(k h k)
x̂e(k h k) = x̂e(k h k− 1) + Kf

(
y(k) − Ce x̂e(k h k− 1))

x̂e(k+ 1 h k) = Φe x̂e(k h k− 1) + Γe u(k) + K
(

y(k) − Ce x̂e(k h k− 1))
35

where x̂e(k) =
 x̂(k)

u(k− 1)

.

Arguments

sys A strictly proper continuous-time LTI system in state-space,
transfer function, or pole-zero-gain form. Any delay specified in
this system will be ignored. Use the tau argument instead.

Q The cost matrix.

R1 The state or input noise covariance matrix.

R2 The measurement noise covariance matrix.

h The sampling period of the controller (in seconds).
tau The time delay (in seconds), 0 ≤ tau ≤ h.

Return Values
ctrl The complete LQG controller as a discrete-time LTI system.

L The state feedback gain vector.

obs The observer as a discrete-time LTI system.

K, Kf The observer gains.

sysd The sampled delayed plant, sysd = ss(Phie,Gammae,Ce,0,h).

36

6. References

Lincoln, B. and A. Cervin (2002): “Jitterbug: A tool for analysis of real-time
control performance.” In Proceedings of the 41st IEEE Conference on
Decision and Control.

Nilsson, J. (1998): Real-Time Control Systems with Delays. PhD thesis
ISRN LUTFD2/TFRT--1049--SE, Department of Automatic Control,
Lund Institute of Technology, Sweden.

37

