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Preface

This thesis is a symbiosis between the field of automatic control and power Sys-
tem engineering. Since the areas are non trivial the key to the problem have
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courses in automatic control at Lund Institute of Technology and power sys-
tem courses at Denmark Institute of Technology in Lyngby to form a platform
for the thesis work. Power systems are probably the most complicated system
created by mankind, so the area can be a gold-mine for those who are inter-
ested in complicated problems. Anyhow, this thesis will show the flavours of
different problems in multivariable power systems and hopefully get the reader
interested in the combination power system and automatic control.
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1. Introduction

This thesis focuses on a control problem in electric power systems called
steady-state-stability. The following chapter gives an introduction to the prob-
lem and ends up with the objective of this thesis.

1.1 Power system stability

A power system consists of the power grid and the generating units. The
power grid makes it possible to transfer the power from the production sites
to the consumers. Today the power systems are large interconnected systems.
The construction of the power grid is based upon a combination of technical,
economical and environmental factors. Advantages offered by an electric power
grid can be summerized as (Elgerd, 1983):

e It permits construction of larger and more economical generating units
and the transmission of large blocks of energy from the generating sources
to major load centers.

e It permits reduced reserve requirements by sharing of capacity between
areas.

e It permits capacity savings from time zone and random diversity.
e It facilitates transmission of off-peak energy.
e It provides the flexibility to meet unforeseen emergency demands.

On the other hand, the main disadvantage is that large power systems
are complex to analyse. But altogether the advantages are overwhelming and
there are strong technical and economical motives for a power grid which

connects generating units and loads into a large power system.

Two basic requirements can be posed on a power system (Anderson and
Fouad, 1977):

¢ Quality demands on voltage and frequency.
e Maintain the integrity of the power system.

The quality demands are that voltage and frequency must be held within
close tolerances of nominal values so that the consumers equipment may oper-
ate satisfactorily. Disturbances of various types can perturb the power system
and this should not jeopardize the operation. The disturbances can be sep-
arated according to their time scale and magnitude. Typical disturbances
are:

e Overvoltage caused by lightning, which is a very fast phenomenon with
time scale with range from microseconds to milliseconds.

e Short circuits which can appear with duration of tens of a second.
e Loss of line or generating unit.
o Change in loads which is taking place all the time.

For all disturbances the system should maintain the integrity. This means
that we have to analyse the behaviour of the power system for all possible situ-
ations. It is convenient to decompose the analysis in different parts depending
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on time scale and magnitude of the disturbances. One basic separation is to
separate fast phenomenon like lightning, which demands electric field theory,
from problems where we can assume that all quantities are sinusoidal. The
latter problem class can be separated into four subclasses

e Long-term stability considers the time horizon of several minutes and the
main issue is the balance between supply and demand of active power.

¢ Voltage stability is a recently discovered problem, which appears as severe
and instantaneous voltage drop (Petersson, 1984). The reason is believed
to be lack of reactive power in combination with unfavourable performance
of voltage control. Voltage stability is not a fully understood phenomenon
and is subject to research.

e Transient stability or Large Disturbance Stability (LDS) is the ability
of the generators to remain synchronized when exposed to severe distur-
bances as large short circuits.

e Small disturbance stability (SDS), or steady-state stability, concerns smaller

disturbances than LDS. Both LDS and SDS treat stability, in power system

often called synchronous stability, the major difference is that SDS, per defi-
nition, uses linear theory and LDS has to use nonlinear theory.

Figure 1.1 gives an overview over different problem areas in power system.

Large
disturbance
Lightnin A Transient ,
ghtning stability Long term stability
r==r=1 r===1 |
] ] i 1 1 I
I i ¥ 1
] i i 1 h
] 1 d 1 i 1
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Figure 1.1 Examples of different problems in power systems. The x-axis shows

the time scale and y-axis the magnitude of typical disturbances for each class of
problems.

To fulfil the requirements on a power system each of these problems has
to be solved. In the subsequent part of the thesis we will concentrate on the
steady-state stability problem.

1.2  Steady-state stability

Steady-state instabilities result in self-excited power oscillations with low or
negative damping. Since the oscillations are self-excited, start spontaneously
and are not due to elements with highly nonlinear characteristics, the problem



is classified as SDS. Low frequency oscillations (0.1-0.8 Hz) in power systems
are a well known phenomenon which has caused considerable problems. The
Nordic network (Nordel), which connects Sweden, Norway, Finland and a part
of Denmark, has had some serious incidents (Lysfjord et al 1982, 1984). As a
consequence the capacity of some tielines ( ~ network connections ) is limited
due to stability problems at heavy load. The problem is familiar all over the
world, see for instance Yuan-Yih et al (1987).

Eigenvalues

Spontaneous power oscillations can be viewed as small perturbations around
a stationary operation point. The analysis can therefore be handled by lin-
ear theory, see for example Anderson and Fouad (1977). Eigenvalues associ-
ated with self-excited power oscillations are poorly damped and are named
electromechanical oscillations modes (EOM). The negative real part of the
eigenvalues comes from resistance in load, network and damper windings on
machines.

Usually EOM-eigenvalues are separated in three kinds (Larsen and Swann,
1981) according to frequency and how the machines participate in the oscilla-
tions

o Intertie (System wide, in range 0.1-0.8 Hz)
¢ Local (Single machine, in range 0.8-2 Hz)
o Interplant (Close units, in range 2-3 Hz)

The correspondence between type of mode and frequency range is not
always true. In Sweden, for example, there exists remote hydro stations which
oscillate as single machine modes in the lowest frequency band. Larsen and
Swann point out that the most important modes are the system wide modes
which should be given special attention when applying stabilizers.

Causes for power oscillations

The power oscillations are usually caused by a combination of
e High reactance on tielines
e High gains in automatic voltage regulators (AVR).

Heavy loading, e.g. large load angles.

Unfavourable load characteristics.

Historically the gain in the AVR has been increased from low values to
improve the transient stability. The drawback is that eigenvalues associated
with the EOM, tend to become less damped with increasing AVR gain, which
can cause instability (Larsen and Swann, 1981). A number of ways to improve
stability can be found in Petterson (1984). One simple and effective way is to
decrease tie-line reactance by building a parallel line. However this is a very
expensive solution.




Solid:Voltage, Dashed:Elec.Power

1.3 Normal control structure

Open Loop

Each generator has two inputs which can be manipulated and at least two
outputs on which there are requirements. Inputs are field voltage (Uy) and
mechanical power (Py,), outputs are terminal voltage (V;) and electric power
(Pe). If we just consider one small generator, without any regulators and
connected to a strong grid, typical responses to small steps look like Figure
1.2

4)10-3 Small step in field voltage (Uf) ) 6)10-3 Small step in mechanical power (Pm)
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Figure 1.2 Simulated step responses for one generator without any regulators.
The simulation was done with a linearised model according to Chapter 2.

Step responses show that U; mainly influences V; and that P, mainly
influences P.. The normal way to close the loops is to use U t to control V;
and P, to control P.. However, we also see that there is a weak dynamic
interaction between Uy and P.. The input variable P,, is considered to be an
expensive control variable since change in mechanic power implies a change
in energy flows and rotating masses which causes stress on mechanical parts.
Therefore P, is often used to control slow variations in P, steady-state values.
In contrast, new static exciters usually have fast dynamics which implies that
field voltage Uy is a cheap and fast control signal as long as saturation not
occurs.

Voltage regulation

The traditional control structure for voltage regulation is shown in Figure 1.3a.
If the AVR gain is large the generator becomes sensitive to disturbances such
as load changes, which can cause power oscillations as in Figure 1.3b.

Power system stabilizers

One way to improve steady-state-stability is to use power system stabilizers
(PSS), which increase stability by adding a signal on the machine excitation
system. In this way we use the dynamic interaction between Us and P, to
damp out power oscillations. The control structure and response with PSS
can be seen in Figure 1.4.
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Figure 1.4 Control structure (a) and typical power oscillation (b) for a generator
with PSS

As pointed out by DeMello in the discussion of Larsen and Swann (1981)
the PSS often improves the transient stability as well. The hardware for the
PSS is cheap, but to apply and tune the PSS demands more understanding of
control theory.

Other signals than electric power can be used as input to the PSS, for
example machine speed, frequency or field current (Larsen and Swann, 1981).
All signals correspond to local states in the machine and the signals can be
used to improve the stabilizer action. In Sweden it is common to use only
electric power as input to the PSS and to estimate the speed by filtering the
electric power. Omne reason is that electric power is easier to measure than
speed. Another reason is the relatively simple relation between power and
speed, which make it possible to accurately estimate the machine speed from
power measurement.

1.4 The control problem

The evolution of the analysis and synthesis of the associated control prob-
lem, to apply and tune PSS, started in the early fifties by Heffron and Phillips
(1952) who developed a basic single machine model. This model was general-
ized by Vournas and Flemming (1978) to the multimachine case. A classical
paper was written by DeMello and Concordia (1969) where they showed that
high AVR gain on a single machine can, under unfavourable circumstances,
cause undamped power oscillations. A summary of the ideas established in
the seventies can be found in Larsen and Swann (1981). In the eighties the
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attention has been driven towards a multi-input-multi-output (MIMO) prob-
lem restricted to local control (Wilson and Aplevich, 1986; Arnatovic, 1987;
Huang et al, 1988). Adaptive approaches have been taken in Chang, Malik
and Hope (1988).

The synchronous machine is constructed with an electric arrangement,
called damper windings, which should damp out deviations from the syn-
chronous speed. For oscillations with frequencies over 1 Hz the damper wind-
ings work quite well and damp power oscillations. In larger power systems
there are often system wide oscillations with lower frequencies than 1 Haz.
Hence, these oscillations cannot be damped by the damper windings and some
other precautions must be taken. To solve this problem the power system
stabilizers were introduced to complement the damper windings at low fre-
quencies.

Much of the earlier work used single machine models, where the PSS-
loop should give a torque component with right phase shift to damp power
oscillations. In later work the emphasize has shifted over to multimachine
models. However, a problem has always been the lack of models, which could
be easily used. Anderson and Fouad (1977) and Vournas and Flemming (1978)
have presented the equations, but not showed any implemented multimachine
model, which they have used for design. The field of power system engineering
has not exploited the benefits of a mathematical understanding of the model
used to the same extent as other fields in engineering. Later years progress in
computer science and numerical algebra has open the possibility to implement
flexible multimachine models easily. Together with modern control software it
is possible to explore the control problem and use multivariable control theory.
A good control design must treat the problem as a multimachine problem. For
example, we do not want to view the PSS as only a complement to the damper
windings.

1.5 The objective of this thesis

With consideration to the comments above this thesis will focus on the follow-

ing issues:
e Low frequency power oscillations is a MIMO problem and therefore must
be approached by appropriate MIMO-theory. The first step is to have an

adequate model, which exploits the possibilities of simplification given by
the problem.

e Design methods proposed in literature seem to have a bias to eigenval-
ues/sensitivity methods. Often there is an implicit assumption about
linearity between parameters and eigenvalues without considering the lim-
itations. This thesis would like to balance this bias with some alternative
methods.

e Linear Quadratic (LQ) regulator design is one of the best design methods
for multivariable systems and can successfully be applied on this problem.

e To improve the stability margins against power oscillations it is important
to damp both absolute deviation from the linearisation point and speed
deviations relative to other machines.

e Point out the opportunity to transmit important signals, which can be

used to improve steady-state stability. This can also be investigated by
LQ-design.



e In the literature all analysis has been done on the open loop system. It
seems better, or at least a good complement, to make a good global state
feedback and to use this to analyse system properties.

e There are several ways to approximate a global control law to apply to
practical constraints. All methods need some fiddling before giving satis-
factory results and the approximations are of minor importance compared
to the primary design they try to approximate.

1.6 Outline of the thesis

This report is divided into 8 chapters. Chapter 2 presents a multimachine
model which is used in the subsequent chapters. Chapter 3 motivates, by
criticism of publish methods, why we want to find new methods for the PSS
design. The linear quadratic (LQ) regulator design method is presented in
Chapter 4, where the importance of the loss matrices is emphasized. The
design problem is separated into two parts. Chapter 5 treats the selection of
a feedback structure and Chapter 6 the tuning of a parameterized controller.
Finally, all loose ends will be put together in Chapter 7 which illustrates,
by a large design example, how to use the ideas from Chapters 4, 5 and 6.
The design is tested against the simulation package Simpow (Adielson, 1982).
Chapter 8 contains the conclusions.
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2. A Multimachine Model
for Design

To make a design which takes into account the multimachine dynamics for a
power system, it is essential to have a multimachine model. The goal of this
chapter is to make a simplified linear multimachine model, which is accurate
enough for design. This requires some calculations, which can appear to be a
bit tedious for those who have a minor interest in power systems. To follow
this chapter the reader ought to be acquainted with Parks transformation (An-
derson and Fouad, 1977) and the jw-method. Comparison with a commercial
simulation program shows that the model is suitable for design purposes.

2.1 Why another multimachine model?

This section motivates why we make a multimachine model and do not take
one from the literature.

Why not use a multimachine model from a textbook?

Since the theory for the synchronous generator and electric components is well
known, one can argue that it would be simple to write down a multimachine
model. Multimachine models are not a standard subject in textbooks (Bergen,
1986; Elgerd, 1983). However, the theory for a multimachine model has been
shown in Lindahl (1971) and in Anderson and Fouad (1977). From those two
references we can also draw the conclusion that even a linearised multimachine
model with simplifying assumptions becomes very complex. Because of the
model complexity and heavy calculations it has been necessary to implement
the models on a computer. This is a time consuming task if all programming
has to be done in Fortran or Pascal. Therefore only large power companies
with resources like Asea Brown Boveri have developed simulation packages
with multimachine models. In the academic world in Scandinavia there have
up to 1986, to the author’s knowledge, not existed any linearised multimachine
models in a form suitable for design. From the reports by Lysfjord et al (1982
and 1984) we also see that all design in the Scandinavian power grid has been
done using linearised single machine models. The conclusion becomes that it
is a considerable effort to get a linearised multimachine model implemented
on a computer and this needs much more work than just to copy the equations
from a textbook.

What is new with the proposed multimachine model?

What published articles have shown, for example Vournas and Flemming
(1978), is the possibility and theory to make a multimachine model. However,
there has been a major gap between the theory for multimachine models and
the single machine models used by the power companies for PSS design, see
Lysfjord et al(1982, 1984). The new idea is to make a multimachine model,
which can be easily used and therefore bridges the gap between theoretical
multimachine models and practically usable multimachine models. The im-
plementation of the model in the interactive state-of-the-art matrix calculus
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program Matlab is supposed to be new. Matlab is an interactive program for
matrix calculations with a very good user interface, see Moler et al (1987).
The program allows the user to specify own functions and to use Matlab as a
high level programming language. With a reasonable effort, it is possible to
implement a multimachine model as a function in Matlab. In this way we can
really use the model as a tool for design purposes and explore the problem.
We can easily change parameters, load conditions, network configuration and
number of machines and see how this influences the design.

2.2 Models for power systems

A power system can roughly be decomposed into three different parts
e Synchronous generators
e Loads

e The grid, or network, which connects generators and loads.

The complex system models are a set of nonlinear differential equations with
algebraic constraints. To capture the steady-state-stability problem a lin-
earised model is satisfactory. In our time scale, 0.1 - 2 Hz, we can assume that
all quantities are sinusoidal with the net frequency (50 or 60 Hz) and use the
jw-method in the calculations. Figure 2.1 shows an outline of a power system.

Generators Loads
Grid

Figure 2.1 Principal outline of a power system. Generators and loads are con-
nected by the grid.

Figure 2.2 shows a generating unit consisting of a synchronous generator driven
by a turbine.

Steam or
hydro

Voltage
Exciter Voltage 9

requlator reference
€ Uft
+ -
Turbi Generator
urbine — P

4
Pm
Pe,
=7}

e 0 ¢
To grid

Figure 2.2 Principal drawing of a generating unit. Adopted from Elgerd (1983).
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Figure 2.3 Principal drawing of a three phase synchronous generator without
damper windings.

A brief description of Park’s transformation and the d-q-system

Each synchronous generator looks like Figure 2.3. The rotating part is called
the rotor and consists of magnetic material and the field winding. When
the field winding is connected to a voltage source the current in the winding
will give a magnetic flux ¢ which will rotate with the rotor speed w. This
rotating flux will induce a voltage with alternating polarity in the three fixed
coils, called stator windings, and we have a three phase generator. When
load is connected to the generator, current will float in the three fixed coils.
This current will give a flux which will interfere with the field flux. Park’s
transformation is used to refer all fluxes and other quantities to a d-q-reference
system which rotate with the field winding. The q-axis is orthogonal to the flux
from the field winding and the d-axis is often oriented opposite the field flux.
The transformation simplifies the calculations of the resulting flux and induced
voltages in the stator windings. In this coordinate system the equations are
time-invariant (time independent coefficients).

2.3 Assumptions in our model

Our model describes a power system with a number of synchronous generators
with impedance loads. Equations for the synchronous machine are derived
using the same assumptions as the Heffron-Phillips model (Anderson Fouad,
1977). These assumptions are

e Damper windings are not modelled explicitly.

e Small resistances are neglected in the phasor diagram.

e Balanced conditions are assumed and saturation is neglected.
e The deviation from synchronous speed is small.

o Some small terms in the voltage equations are neglected.

A list of all notations and units can be found in Appendix A.1.

Synchronous machine

There exists a number of candidate models for a synchronous machine de-
pending on the degree of exactness (Heffron and Phillips, 1952; Vournas and
Flemming, 1978; Hill and Bhatti, 1987; Andersson and Fouad, 1977; Yu, 1983).
The model complexity needed depends very much what the model should be
used for. A two state generator model is the lowest model order for open loop
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analysis of generator motion. If we also want to model the influence from the
field winding we need one more state. Therefore we need at least three states
per generator in a design model. For our design purpose a three state model
gives enough accuracy (Malik Hope, 1988; deMello comments to Abdalla et
al, 1984).

When we do simulations to check the design we can use a more detailed
model. In the model we neglect the fast dynamics of the exciters (time
constantx 0.02 seconds) . The damper windings are modelled by a speed
damping term D. We assume that the turbine governors are slow and there-
fore not active in the damping of power oscillations. This implies that the
mechanic power is constant in our model.

Network

Our network, or grid, consists of impedances. We assume that our generators
give sinusoidal voltage, e.g u(t) = @sin(wt + 6). It is a well known fact that in
steady-state the currents in a linear impedance network driven by sinusoidal
voltage sources will also have sinusoidal form. The time to reach the steady-
state is determined by the ratios of resistances and reactances in the network.
For power systems this time is very short compared to the time scale of the
power oscillations and we neglect the short time before steady-state is reached.
The network is then described by a set of algebraic relations between voltages
and currents. If the algebraic relations are linearised around an operating
point we see the coupling between the generators.

Loads

In general, the power consumption in a load is an arbitrary function of fre-
quency (f) and voltage (v). A usual choice is to model the load to have a
polynomial dependence of frequency and voltage, e.g.

P~ oyl (2.1)

Here loads are modelled as impedances which corresponds to k£ = 0 and i =
2. The advantage with impedance loads is that all nodes without injection

of current can be collapsed into an equivalent impedance matrix (Anderson
Fouad, 1977).

The resulting model

The resulting multimachine model has 3n states, where n is the number of
machines. If we set all speed dampings D = 0, we get two zero eigenvalues,
which are not observable in electric power (P.) or terminal voltage (V4). They
can be transformed away leaving 3n—2 states. If we have some speed damping
D not equal zero, which is the normal case, we only get one eigenvalue at zero.
This corresponds to the fact that absolute values of angles cannot be observed
in P, and V;. This is quite natural since electric power and voltage depend on
differences in angles, not their absolute value. To control the absolute values
of angles we need to control the rigid body motion of the power system and
that is not the purpose with this design.
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2.4 The equations

In this section the equations for the model are given. All calculations are done
in the d-q-system given by Parks transformation.

The synchronous machine equations

Each generator is governed by two differential equations, the swing equation
describing the mechanical rotation of the rotor and one for the induced voltage
E,. From energy balance at steady-state we get the linearised swing equation
for generator %

2H;d*; D;ds;

—+ 2P _P. 2.2
wg di? wg di i & ( )
Here H is a machine time constant, D machine damping, § the angle from
reference to the machine q-axis. The influence on E} from the exciter and the
d-component of the current is given by

, dEg
0~ gt

= Ufi - Et;. - (Xdi - Xcli.')Idi (23)

where the d-q-system is chosen so the g-axis lags the exciter flux by 90° and
the d-axis lags the g-axis by 90°. This indicates that I; is positive under
inductive load. The active power from each generator is given by

Pe; =1y, Vise08(¢i) = Lo, Va, + 10, Vo, = Ia(Xg,1y) + Io.( By — X3, 1u;)

2.4
‘_"Id;Iq.'(an - Xz'i;) + IQn'Et’Ii ( )

where I;, V; and ¢ are generator current, voltage and angle from current to
voltage respectively for machine i. The terminal voltage is given by

Vi = V3 + V2 = \[(XaLo)? + (B}, — X1y (25)

The network

When many machines are connected in a power system they have a mutual
influence of varying magnitude. The currents I; and I, which are part of each
generator’s equations, are determined by other machines states and the net-
work topology. If we assume that all loads in the network can be described by
impedances, then the network yields the algebraic relation I; = YV,. Where
It, Vi and Y are vectors of generator currents, voltages and the network ad-
mittance matrix respectively. By expanding, linearising and rearranging, the
dependence of I and I, can be expressed in § and E; for small perturbations
around an equilibrium point.

Algebraic relations

Consider a network with n connected generators. The currents in the network
are governed by

I, =YV, (2.6)
where T
It = ( jt; < jt,., ]
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and r
Vi= (Vo - V)
By substituting V; with

Vi=Vy+ Va= E, — jXiI; - jX,I,

where E('I, 14, I, are vectors of length n and X and X, are diagonal matrices
of order n X n with elements from the generators, we get

I = Y(E} - §X414 - jX,1,) (2.7)

By dividing I; in d-q-components and dividing ¥ in real and imaginary-parts
we get

(la+ 1) = (G + ]B)(E; — §Xgls - 3 Xqly) (2.8)

Rearra:qging gives
(I-BX;+jGX)) I+ (I - BX, + JIGX)I, = (B + G)E, (2.9)
where I has been used for a unit matrix of order n x n.
I4, Iy, E} are vectors with complex elements which can be written as

Iy =e(6-/2)| ]
I, :ej6|Iq|
E; =% | E)

where |I| = (IId1l7 |Id2|a lIdsl)t ) |I¢1|a IE{;l in analog.
Introduce the notations
e = diag ( e ... ebn ]

= diag [cos&l cos&n] + j - diag [sin51 sin5n)
= cos(8) + j - sin(6)

and e¥6=7/2) = _j . cos(8) + sin(6)

This together with rearranging yields
((I ~ BX})siné + GXjcos§ + j(GXysind + (BX} — I) cos 5)) |1
+ <(I ~ BXy)cos§ — GX siné + j(G’Xq cos§ 4 (I — BX,) sin5)> | 7|

= ((Gc055 - Bsin&) + j(B cos § + G’sin&))|E(’1]

(2.10)
By equating real and imaginary part we get two relations
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fi :((I — BX}) sind + GX} cos 5> |1,
+((I _ BXq) cos§ — GX, sin6> || (2.11)
—<Gcos§ — Bsin6)|E;] =0
and
Iz :(GXésinE + (BX}— I)cos 5) | 74|
-I—(GXq cos§ + (I — BX,) sin6) | I (2.12)
—-(B cos§ + Gsin&)]E‘ﬂ =0

Linearising algebraic relations

Linearising f; gives

Oh _ a11 = (I — BX})sin o + GXjcos &,
0|14
Oh = a1z = (I — BX,)cos 6o — GX,siny
0|1
0f .
3|_E,§T = by3 = ~Gcos §y + Bsin by
%—];1- = b = <(I— BX})cos§p — GX) sino'o) diag(|I4,|)

+ ((BXq — I)sin§o — GX,cos 5(,) diag(|T4,1)

+ (G’ sindo + B cos 50> diag(| B, |)

Linearising f» gives

ﬁ]fz__ =ay = GX}sinby + (BX)) - TI) cos 8
0|14
% = az2 = GXjcos b + (I — BX,)sin by
0|1,
0fa _ .
m——bz]-— BCOS&O“GSIHJQ
7]
—6—{;1 = byz = (GX& cos 6o + (I — BX}) sin50> diag(|Ig,|)

+ <—GXq sinbg + (I — BX,) cos 5()) diag(|Zy,|)

+ (B sinép — G cos 60> diag(| E,,|)
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Which leads to

a11AId + a12AIq -|— bllAE; + b12A6 =0
aglAId + angIq + bzlAEé + bng& =0

Which gives the matrix identity

[an 412] [Afd]z_[bn b12] [AEé]
a1 Az Al bar b2 AS
If A is invertible we get

[AId] _ [an ¢l12]n1 [bn b12] [AE('I]

AIq az1 Q22 ba1 by AS
This can finally be stated as
[ AId] | Frey, Fig [ AE] ] (2.13)
AIq - FIqE.’, qu5 Ab '

Linearised state space description

The equations for a generator with index i can be written as

dé; o
dt
dw; D; YR
T = amt o (P = Pa)
dE'. (2.14)
2L (o - o X))
Pe‘- :Idini(Xq,' - X{i,) + IQ!"E;i

Ve =\/(Xada)? + (B, — X} Is)?

Linearising and eliminating I; and I, give the linearised state space description

d Aé 0 I 0 Ab
;i—t Aw = Ays A AwE; Aw
AE] Aps 0 Apg ) \AB
0 0 ) (4
+ 0 B.p, us (2.15)
AP,
Bgu, 0 )

AY)
[AVt] [Cm Sl I DV
AP, ) Cps O Cp,E

+J | AE!

where A§, Aw, Aug, AP, , AV;, AP, are vectors of order nx 1 and the blocks
in the matrices are of order n X n.
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The matrix blocks in A are

wpr OP,;
2H 01y,

wgr OP,,;
2H; 01,

Ays = — diag ) Fr5 —

)Frs

Ay =— diag(—-—

OP,,
)FI E! + dlag(

Auvpy = (d g( aI =) Fr,z, +d1ag( E, %) (2.16)

q

8I

. BE )
AE{,& :dlag( 61;’ )F[dg

a1y, W,

. 1 .
Agp g, = — diag( TI;) + diag(

The matrix blocks in B are

(2.17)
BEI = dlag(

i

The matrix blocks in C are

. L OVL. ., 0V,
Cv,s =dlag(5_}h)FId5 + dlag( )FI 5

BIq‘

CWE' _dlag(aI )FIdE' + d1ag(—-——)FI B, + dlag(aE, )

(2.18)

Fe: YF1,5

Cpeg ::diag( aI;' )FId6‘ + diag( £y
i i

. 8P, . 0P, . 0P
CPGE('I :_dlag( aIdi )FIdEé + dlag( an; )FIqE('I + dlag( BE{]')

Where the matrices Fys, Fqu, FIdE' FI B, in general have off diagonal ele-
ments and the other matrices are dlagonal
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The partial derivatives in (2.17) — (2.19) are

8P,

0Id.‘ =Iq0i(Xd.' - Xxlii)

AP,

FY3 - :IdO,-(Xq; - Xc’i‘) + E;O,'
qi

oP,,

BE;,

8E;, (X4 - X.)

81y, = Téo.- (2.19)

th,- —_— (EQO; - Xc’i.'Idoi)Xé.'

6Id.’ WO.’

OV _ Xg T

Ol Vio;

th.’ _ (Eéo; - thi,-IdOi)

aE{l' B ‘/t();

Algebraic constraint in outputs from linearised model

The linearised model will contain an algebraic constraint due to power balance.
Since no power can be stored in the grid or in the loads there must be balance
between electric generation from the generators (Pe;) and load consumption
(Pioad;) (included with network losses). This gives

E Pe,' = Z Pload.' (220)
i 1

After linearising the voltage dependence of the loads we have
Pioad; = aVy, (2.21)

where a is a linearising constant. Then we can write an algebraic constraint
due to the power balance as

h
[Pel i Py Vi e th] gl =0 (2.22)

2.5 Matlab implementation

A model of the described type with 3n states has been implemented as a
user defined function in Matlab (Moler, Little and Bangert, 1987) and has
been compared to the commercial computer package Simpow (Adielsson, 1982;
Lindqvist, 1985). The user specifies parameters for generators, network data
and initial conditions in the function. The program automatically calculates
a state space description of the multimachine model. See Appendix A.2.

The user supplies the program the following data
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1 General data
— Number of machines.
— The synchronous frequency ( e.g. 50 or 60 Hz).

2 Machine data
— Machine Rating: S,
— Parameters: Xy, X, X, H, D, T},
— Initial values: V3o, Po, Qo, 6o (angle from ref to Vio)
3 Network data Z;; the complex impedance between nod i and -

4 Load data Py, ;, Qo,,,,

The program calculates

1 For each machine
- o, E;o, Ta0, Iy
2 For each load Z,.pzes

3 For the network

— Admittance matrix Y

— Susceptance matrix B

— Conductance matrix G
4 From the linearised relations

- Fi,m, Fim, Frs, Fis
5 Calculates for the linearised state space description

— Partial derivatives

— A-matrix

— B-matrix

— C-matrix

2.6 Case study to check model

This section describes a multimachine case study. The purpose was to compare
the linearised multimachine model, implemented in Matlab, with Asea Brown
Boveri’s simulation package Simpow. Simpow has been used by Asea Brown
Boveri engineers for several years as a design tool to analyse dynamic behaviour
of power systems. Therefore there are good reasons to believe that Simpow
gives accurate results. A generator model without damper windings were used
in Simpow and the loads were modelled as impedances. See Appendix A.3 for
more details.

Organization of case study
The case study was done in the following steps. (Optpow and Transta are
parts of the simulation package Simpow.)

1 Specify input data to loadflow calculations.

2 Loadflow calculations in Optpow.

3 Simulation in Transta with small changes in voltage references.

4 Do postprocessing and editing to get time series for input (Ug) and the
two outputs, voltage (V;) and electric power (P,), so they all can be read
into Matlab.
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5 Prepare the linearised Matlab model with parameters, initial data, load
and network data.

6 Calculate linearised model in Matlab.

7 Read P, V4, and Uy from Simpow into Matlab.

8 Give same input Uy to the linearised model and simulate P. and V;.

9 Compare results output P, and V; from linearised model and from Simpow.
The control signals, generator voltages and powers are shown in Figure 2.5,
2.6 and 2.7 respectively

Field voltage -UKF- in p.u
0.08

.06

0.04

0.02

-0.02

~-0.04

—0-085 o.8 1 1.2 1.4

Solid=CGenl, Dashed=Cien2, Dotted=Gen3

0.6 1.6

Figure 2.4 Uy - Field Voltage for Generator 1-3 in p.u.
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Solid=SMPOW, Dashed=Mathah

070405 B T 171515 18
Solid=STMPOW, Dashed=Matlib

T Y ) S N W O R
Sold=SIMPOW, Dashed=Mitlab

Figure 2.5 Vi, Vi,, Vi, - Terminal Voltage for Generator 1-3 in p.u.

The electric powers from the generators are shown in Figure 2.6.

2.7 Conclusions

Ocular inspection of the simulation results gives

e Terminal voltage V; and electric power P, correspond very well to the
Simpow model.

e Both oscillation frequencies and phase correspond good.
e Damping corresponds to Simpow.

The primary goal of the design is to achieve good damping on power
oscillations. Since the power oscillations in the model and Simpow correspond
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Figure 2.6 P.,, P.,, P., - Electric Power for Generator 1-3 in p.u.
very good we can say that we have a model which can serve our design purpose.
The model is of low order and captures the multimachine characteristics with

a high degree of exactness and it is possible to do mathematical analysis with
the model. In summary, we have an excellent model for our purposes.
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3. Review of Today’s Design
Methods

The goal of this chapter is to point out drawbacks, or unfavourable character-
istics, of design methods which have been published during recent years. The
chapter should also serve as a motivation for new methods.

3.1 Design objectives

There is a need for a reliable technique to tune and find structure for PSS
equipment together with determination of AVR gains. This technique must
capture the multimachine characteristics and should also take into account
the trade off between high AVR-gain and extra PSS-signals. In Wilson and
Aplevich (1986) the following criteria for a good design procedure can be found

¢ The method should include important system dynamics for a multima-
chine power system.

e The method should be a co-ordinated design of stabilizers.

e The method should specify system performance in system variables.

I would like to add

e The design should be robust in the sense that stability properties should
be preserved when
o Load level changes.
o Production dispatch changes.
o Grid configuration changes.
o The model has uncertainty.

3.2 In the literature proposed design methods

In this section various design methods are discussed.

Modal theory

In recent papers design methods based on eigenvalues and eigenvectors have
become popular, so called modal theory (Arcidiacono et al, 1980). The eigen-
vectors which correspond to the EOM contain information about system prop-
erties. Magnitude and sign of the right eigenvector components can be used
to characterize a mode. We can see which and how the machines in the power
system swing for each mode. The eigenvector-eigenvalue technique can be re-
fined by also using left eigenvectors. Left eigenvectors tell how initial states
excite a mode. Together, right and left eigenvectors can be used to get direct
information of how eigenvalues are influenced by a change in a matrix element
(Wilkinson, 1965). This can be extended to eigenvalue sensitivity to stabilizer
parameters (Vournas Papadias, 1987) to decide where to place stabilizers (de
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Mello Nolan et al, 1980; Castro et al, 1988) and to iteratively tune stabi-
lizers by tracking eigenvalues (Lefbere, 1983). The eigenvalues - eigenvector
technique has even been used to do model reduction (Geeves, 1988).

Direct methods

A direct way to see where to place stabilizers is to add on a damping term at
the different generators, one at the time, and see how the eigenvalues move.
De Mello and Nolan (1980) use logarithmic increment as a measure of effect
and Abdalla, Hassan and Tweig (1984) use normalized real part (NRP) as a
measure. An interesting comment is made in DeMello, Nolan et al (1980) who
point out that result from direct methods can differ compared to eigenvector
methods, but do not explain why.

Root locus

One way to get a criterion for PSS siting and tuning is to calculate the initial
derivative of root locus and to use this to place and tune stabilizers (Larsen
and Swann, 1981; Arcidiancano, 1980).

Pole placement

Pole placement restricted to local control is a well known control problem
(Konigorski, 1987). Applications to power systems have been done by Lim
Eng et al (1985), Lim and Elangovan (1985) and Padiyar et al (1980).

3.3 Drawbacks of today’s design methods

The drawbacks can be summarized as

No co-ordination between AVR. and PSS

There is no co-ordination between high AVR-gain and PSS. The design meth-
ods above have the drawback to first accept as a rule of thumb high AVR-gain
which causes steady-state problem, and then install PSS-equipment to cor-
rect the problem. A better way would be to do a co-ordinated design, which
considers both the objectives of fast voltage control and preventing steady-
state-problem.

Do not consider input energy

Another common drawback is that input energy is seldom or never taken
into account when determining where to place and how to tune stabilizers.
Unnecessarily large control signals can cause saturation.

Assume linearity between parameters and eigenvalues

A fundamental difficulty is that there is no linearity between feedback pa-
rameters and eigenvalues. Each parameter K;;, in state feedback u = —K z,
appears linearly in the coefficients of the characteristic polynominal p(s) for
A — BK. However, this definitively does not imply linearity between param-
eters and the eigenvalues \; which fulfil p(X;) = 0. Then it is very doubtful
if sequential methods, where one parameter at the time is tuned, will give
accurate results. Because linearity does not hold, we cannot in general super-
pose results from changing one parameter at a time to multiparameter tuning.
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There is usually an implicit assumption that we can linearise the eigenvalue
dependence of parameters for small changes.

Discontinuities in eigenvalue sensitivity

The sensitivity of eigenvalues with respect to parameters can be discontinuous
when the characteristic polynomial p(s) has multiple roots. Hence, if two
eigenvalue trajectories (root locus) cross each other, eigenvalue methods can
provide useless and misleading information close to this point. This will be
illuminated with two examples.

ExaMPLE 3.1—Complex poles become real
Consider the second order system (3.1) with a small ¢.

de -24¢& -1 1
with the control law
U=~k 21+ Uy

This gives totally different %’,} for arbitrarily small ¢ and k£ = 0. If we set

€ = 0.01 we get two complex eigenvalues A; 5 = —0.9950+0.0999;. Eigenvalue
sensitivity with respect to k gives

dA1,2 :
=~ = —0. 4,
o 0.500  4.981j
If we instead set ¢ = —0.01 we get two real eigenvalues \; = —1.1051 and

Az = —0.9049. Eigenvalue sensitivity gives

dA;

Friaie 5.5187
dAz

T5 =4.5187

The results with € = 0.01 and ¢ = —0.01 are totally different and will be so for
an arbitrarily small ¢ ! This indicates that we sometimes can get misleading
results from eigenvalue sensitivity. Can we get the same type of results for
complex modes? The answer is yes. O

ExampLE 3.2— Complex double poles
Consider the fourth order system (3.2) with a small €.

-2 -3 -2 —-1+¢ 1
dz 1 0 0 0 0
@ fo 1 0 o |*T|o|™ (32)
0 0 1 0 0
with the control law
u=k-z4+ Uref
Totally different % are obtained for arbitrarily small e. If we set ¢ = —0.1

and k =0 all g—i‘- become complex numbers with dominating imaginary part.
If we instead set ¢ = 0.1 and k& = 0 all gk’\— become complex numbers with
dominating real part. In this case ‘—j—% give useless information and cannot be
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Root Locus, 0 <k < 0.2
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Figure 3.1 Root locus for system (3.2) with ¢ = —0.1 and feedback z = k - z4
and 0 < k < 0.2 The four eigenvalues are solid, dashed, dotted, dash-dotted
respectively and start to move parallel with the imaginary axis.

used for design purposes. The reason becomes obvious if we draw a root locus
for system (3.2) with e = —0.1 when 0 < k& < 0.2.

The direction of the root locus, which is equal to %, changes abruptly after
the double pole. First, it moves parallel with the imaginary axis which gives an
imaginary 57'}, after the double poles it moves parallel with the real axis which
gives a real 5%. Hence, all methods, which use derivatives or differentiation of

type %2— to find good stabilizer siting, can be dubious if two poles are close,
or two root locus cross each other during tuning. i

Relevance for power systems? From the two examples we can only draw
the conclusion that we sometimes can have discontinuities in eigenvalue sen-
sitivity. Whether this can happen in power systems is hard to tell. Until the
contrary is proved, we can not neglect this problem in power systems. When
we have, say 200 machines, with 199 complex modes it seems likely that at
least some branches of the root locus will cross each other during tuning.

Co-ordination of inputs

A serious drawback of all methods is that they do not treat the problem as a
multivariable problem. All methods are suitable for questions of the type,

e Given one input signal and a parametrized control law, how will small
variations in one parameter influence each eigenvalue?

Both direct methods, root locus and modal theory consider one input at
a time and from this try to draw conclusions how we should use the inputs in
a multivariable design. The power oscillation problem is due to the fact that
many machines swing together or against each other. To success in damping
of oscillations we must co-ordinate the input signals. A relevant question is
therefore instead

e Given a number of input signals, how shall they be used in a co-ordinated
way to damp power oscillations?

Methods presented in this chapter have not answered the latter question but
hopefully the following chapters will do better.
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4. Linear Quadratic Regulator
Design

The goal of this chapter is to show that Linear Quadratic (LQ) regulator
design can be used successfully on the power oscillation problem. Suitable
references are Anderson and Moore (1971) and Friedland (1986).

4.1 Presentation of the LQ method

This section presents the LQ design method. Consider the system (4.1) where
A € R™™ and B € R™*P

2(t) = Az(t) + Bu(t) (4.1)
with initial conditions £(0) = zo # 0 and the control law
u(t) = —Kz(t) (4.2)

Our problem is to find the optimal K in the sense that it minimizes the
quadratic loss function J defined by

J = / 2T (t)Qz(t) + uT (t) Ru(t) dt (4.3)

for all zo. The matrix @ is the loss matrix for states and should be positive
semi-definite to guarantee stability and the loss matrix for control signals, R,
should be positive definite to prevent infinite gains. The solution K which
is time independent is called the steady-state solution. If the system (4.1) is
controllable there will exist such a solution. The solution K is given by solving
S from the algebraic Riccati equation

0=SA+ATS+Q—-SBR'BTS (4.4)

and calculating K from
K =R1BTS (4.5)

Furthermore, the minimal loss Jy becomes
Jo = 2L Sz, (4.6)
In most control design software packages there are fast routines, which solve

K from (4.4) and (4.5). This reduces the design problem to the choice of loss
matrices @ and R.
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4.2 Application of LQ to power system problems

LQ techniques have been discussed as a candidate in Arnoutivic (1987), Lefe-
bere (1983), Wilson and Aplevich (1986) and have many good features but
unfortunately also drawbacks. Application of LQ has been done in Wilson
Aplevich (1986) who used identification technique to make a single machine
model] that should capture the multimachine dynamics. Arnatovic (1987) uses
the LQ design to find a good location for the closed loop poles and then applies
projective control to come as close as possible to the desired spectra. A recent
approach can be found in Huang et al (1988) who use parametric LQ to find
a good feedback structure.

4.3 Credits and drawbacks of LQ control

Opinions about LQ design are divided and the argumentation can briefly be
summarized as

Credits of LQ control

+ Is based on solid theory (e.g. Anderson and Moore, 1971) and is a standard
subject in control textbooks (Astrom and Wittenmark, 1984; Astrom,
1970; Friedland, 1986).

+ Does trade off between input energy and pole placement.
+ Does trade off between feedback gains, in our case AVR-gains and PSS
equipment.

+ Guarantees stable closed loop.
Drawbacks of LQ control

— LQ regulator design results in a global state feedback and to implement
this we need all states available or a high order observer.

— The design method will not provide insight into the system properties.
— The user choice of weight matrices in the quadratic loss function is hard.
— Robustness is not explicit.

4.4 Loss matrices

To do LQ-design we need to choose the loss function J. In (4.3) we have to
choose Q and R. The design method itself is then automatic, e.g. when we have
chosen our loss matrices @ and R we just have to run a software package to
get the optimal control law. This converts the design problem to specification
of loss matrices which capture the design objectives. LQ design is an iterative
design method where Q and R are the knobs to turn. The choice of loss
matrices seems to be the most important issue to get a good control law. In
the published papers about LQ-design in power system, only diagonal loss
matrices have been considered (Wilson and Aplevich, 1986; Arnatovic, 1987,
Huang et al, 1988). Since the choice of loss matrices is a very critical step in
the design, this section will be dedicated to finding some alternative problem
formulations, which result in not necessarily diagonal loss matrices.

29




Dimension free units in the model

To be able to compare states and control signals it is important to normalize
the quantities. In our model all control signals and outputs are normalized in
p-u. of nominal values. States which correspond to angles or their derivatives
all have the unit electric rad or rad/s, which implies that the same type of
states can be compared on different generators.

Transformation of states

When we do the design the objectives usually concern the output variables,
like power and voltage. Furthermore the resulting control law ought to be
feedback from physical outputs. Then it is convenient to transform our model
so the variables we are interested in become states. This can be done if we
have a minimal state model and choose as many linearly independent outputs
as states in the model. In our case we have to remove one state in the model
and choose 3n — 1 independent output variables. We can for example choose
all generator voltages and speeds and all generator powers, but one. The
excluded electric power is a linear combination of the other state variables.

Diagonal Elements

The easiest way to choose loss matrices is to choose diagonal matrices and
this have been done in the published articles Wilson and Aplevich (1986),
Arnatovic (1987), Huang et al (1988). The following rules of thumb can be
given for the diagonal elements in loss matrices.

¢ The magnitude of ;; should be chosen according to the tolerated squared
deviation of the states (Astrém and Wittenmark, 1984).

e Punishment on states which are associated with speed have main influence
on damping of oscillatory modes.

e The ratio \/Q;;/R;; is an estimation of the resulting regulator gain if z;
and u; are normalized so z;/u; & 1 in steady state.

We will illuminate the rules by an example.

EXAMPLE 4.1—Diagonal loss matrices

Consider the power system in Figure 4.1 with parameters and load conditions
as in Appendix B.1.

P=0.7 p.u. P=0.44 p.u. P=0.7 p.u.

gen 1 gen 2 gen 3
oA L
P=0.1 p.u. P=1.6 p.u. P=0.1 p.u.

Figure 4.1 A three machine power system.

A linearised state space model for the power system, according to Chapter 2,
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will have the eigenvalues

A1,2 = — 0.103 £ 7.37; (¢ = 0.014)
Asq = — 0.095 £ 4.02] (¢ = 0.024)

Az = — 0.479 (@7)
e = —0.234 '
A7 =~ 0.163
Ag = — 0.076
and the state vector is after transformation
2T = ( Vo Vi, iz, Py Pey w1 wy ws ] (4.8)

and P,, is
P, = (017 339 017 —1.00 -1.07 0 0 0)z  (49)

Our objective is to get voltage regulation with gain ~ 30 and good damping
of power oscillations. The gain specification gives that the ratio between the
coefficients for Vi-terms and Uy-terms should be 302 ~ 1000. Damping of
oscillations corresponds to punishment of speed terms. We choose the loss
function

J= / (100V2 + 100V + 100V + w? 4 w2 4 w2
0

(4.10)
+0.1U% +0.1U3, + 0.1U%, )dt
which corresponds to the loss matrices
Q =diag (100 100 100 0 0 1 1 1]
(4.11)

R =diag [0.1 0.1 0.1]

We can estimate the resulting AVR gain to % ~ 32 and estimate the
relative deviation between V; and w to 4/ 1%9- = 10. Calculation of the optimal
control law u = — Kz gives

293 -81 -1.3 13.20 -3.00 -2.01 0.31 0.58

K=|-241 509 -271 060 842 -1.33 -241 —1.30
115 328 312 -123 -157 048 033 —2.00
(4.12)

and the eigenvalues of A — BK are

Asqa=—1.06+4155 (¢ =0.25)

Xs6=—3.82+2.835 (¢ =0.80) (4.13)
Ar = —3.86
As =—3.51

where ( = —Re(A)/|A|. The response of an impulse at input number 1 with

our linearised model looks like Figure 4.2. The simulation in Figure 4.2 shows
that
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Figure 4.2 Simulated response to an impulse at input 1 with LQ-design (4.12).
The simulation has been done in Matlab with the linearised model from Chapter
2. Solid=Genl, Dashed=Gen2, Dotted=Gen3.

¢ Terminal voltages are well damped.

Electric powers are mediocre damped.

e Machine speeds are poorly damped and swing against the linearisation
point. See Figure 4.2

Field voltages have, except for the impulse at number one, moderate am-
plitudes. ]

Off Diagonal Elements

In Kailath (1980) it is said, "It is more art than science to choose loss matri-
ces”. This reflects the difficulty to give general rules for loss matrices. The
choice is normally an iterative procedure which demands interactive software.
One way to use the off diagonal elements in the loss matrix Q is to emphasize
a certain mode. As mentioned, the speed components of the corresponding
eigenvector tell how machines swing for this mode. To damp this mode we
should punish this specific swing structure. Another way would be to punish
relative speed. If speed terms are named w;, we should choose loss terms of

the form (w; — w;)? for all 4,7. An example illustrates this choice.
EXAMPLE 4.2— Loss matrices to punish relative speed

Consider the power system in Example 4.1. In this example we want to punish
speed deviations relative other machines rather than speed deviations against
the linearisation point. The only thing we change is the speed terms in loss
function (4.10). We substitute the w;-terms in (4.10) with (w; — w;)?, i # j
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and we get

J = /(100th + 100Vt§ + 100Vt§ + (w1 — wy)? + (w1 — wa)? + (wg — w3)?
0

+0.1U7, + 0.1U}, + 0.1U3, )dt

(4.14)
which corresponds to the block diagonal loss matrix Q
Q = diag ( Qv, Qr. Qu ] (4.15)
with
(100 0 0
Qvi=] 0 100 0O
L 0 0 100
(0 0
= 4.1
ar.= (g o ] (416)
(2 -1 -1
Qu=1|-1 2 -1
(-1 -1 2
Calculation of the optimal control law u = — Kz gives
29.00 -24.72 -196 212 -1.15 -2.80 0.86 1.93
K=1-07 102 -0.75 1.71 244 1.04 —-2.47 147
2.42 38.0 321 -19.1 -204 1.58 0.91 -2.51
(4.17)

and the eigenvalues of A — BK are

A2 =—3.78+£7.94j (¢ =0.43)
Az =—1.87+4.245 (¢ =0.40)

A5 =—-5.556

4.18
As = - 3.01 ( )
A7 =—2.08
Ag =—0.09

Simulation of an impulse at input number 1 with our linearised model
looks like Figure 4.3. The simulation in Figure 4.3 shows that

e Terminal voltages are well damped and the responses are similar to those
in Figure 4.2.

e Electric powers are considerably better damped than in Figure 4.2, After 2
seconds the power oscillations in Figure 4.3 have nearly vanished compared
to Figure 4.2 where the power oscillation still is observable.

e Machine speeds are now better damped than in Figure 4.2. It is very
interesting to note that the oscillations in Figure 4.3 is not against the
linearisation point, as in Figure 4.2, but rather against a slowly declining
trajectory given by Ag in (4.18).

o Field voltages have, except for the impulse at number one, moderate am-
plitudes and no significant difference compared to Figure 4.2.

O
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Figure 4.3 Simulated response to an impulse at input 1 with LQ-design (4.17)
with off-diagonal loss matrices with damping of relative speed (wi — w,-)z. The
simulations have been done in Matlab with the linearised model from Chapter 2.
Solid=Genl, Dashed=Gen2, Dotted=Gen3.

4.5 Comments on the results

The results from the two examples show that the LQ design is very dependent
on loss matrices. When we choose to punish speed deviation between ma-
chines the damping on the critical eigenvalue Az,4 nearly increase by a factor
2. Both the specification of the loss function and the simulation shows that
the control signal is influenced very little when the damping is increased. A
major improvement to a very low cost!

Another interesting result is the speed behavior. In Example 4.2 when
we only punish deviation relative other machines, the speed seems to settle
down to another steady state point. The speed does not settle down, instead
it will slowly decay with the time constant given by the eigenvalue Ag. The
eigenvalue Ag is mainly associated with the rigid body motion of all machines.
In the latter example we only try to damp oscillations between machines and
we do not change the eigenvalue associated with the rigid body motion of the
system. One can say that in Example 4.2 we really specify a loss function that
reflect what we want, namely to damp oscillations between machines. Since
the loss function in Example 4.1, together with damping of oscillations, also
tries to damp movements relative the operation point we use input energy on
something else than the design objective. Therefore we can not achieve as
good damping as in Example 4.2. An analog to a mechanical system can help
the intuition.

Mechanical analog to a multimachine power system

A mechanical analog can be used as an aid in achieving a better feeling for
the behavior of the electric system. This gives a nice interpretation of the two
different loss functions and the resulting control laws.
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Linearisation point

Figure 4.4 Mechanical analog to a multimachine power system with control
design from Example 4.1.

Interpretation of Ezample 4.1 Consider Figure 4.4.

Figure 4.4 shows an interpretation of the loss function in Example 4.1.
where we punish deviation from the linearisation point. The mechanical
quantities speed v and mass m are analog to power system quantities gen-
erator speed w, and inertia constant H respectively. The springs are analog
to tielines. A spring stretched by a force corresponds to a tie line which trans-
mits power. The positions of the cars determine the car which is pulling, in
analog to load angels which determine the power flow in a power system, The
design objective is to add damping towards the linearisation point. This is
represented by the dampers connection between the cars and the linearisation

point in Figure 4.4. When the system is perturbed the oscillations will be
damped against the linearisation point.

Interpretation of Exzample 4.2 Consider now Figure 4.5.

Linearisation point

Figure 4.5 Mechanical analog to a multimachine power system with control
design from Example 4.2

Figure 4.5 shows an interpretation of the loss function in Example 4.2.
where we punish deviation relative other machines. The design objective is
then only to add damping between the machines, not towards the linearisation
point. This should be represented by the dampers connection between the cars
in Figure 4.5. When the system is perturbed the oscillations between the cars
will be damped, but not towards the linearisation point,
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4.6 Conclusion about using LQ design methods

The LQ design method is a very good method to do a preliminary design.
With preliminary we mean that we do not have to implement exactly the LQ
controller, Instead the optimal LQ controller provides a control law that can be
analysed and approximated to fulfil practical constraints like a sparse feedback
structure. Furthermore it can be used to do analysis concerning what signals
are important for a good design. It can give insight in what is possible to
achieve in the best case. From the two examples we see that loss matrices are
important. If our design objective is to damp the electromechanical oscillations
modes (EOM) it seems better to choose a loss function which punish movement
relative other machines rather than movement relative the linearisation point.
Le it is necessary to consider off diagonal loss matrices in (4.3).
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5. Choice of Feedback Structure

The goal of this chapter is to present analysis tools to find a good feedback
structure. We want to get deeper knowledge about the system properties that
are important for the design. First we start to point out the problems and
why we do not use proposed methods from the literature. Then we present a
two step procedure to find the feedback structure. The first step determines
the inputs which are important and the second step determines the feedback
elements which are important for each input.

5.1 Control Structure

The special characteristics of a power system is that generators can be a
long distance from eachother. Therefore the feedback at one machine has
traditionally been restricted to local measurements. With novel technique it
is possible to transmit signals over long distances in a reasonable short time.
The time delay caused by the transmission can be neglected compared to the
slow dynamics of the power oscillations. This opens new opportunities to add
extra signals to PSS equipment if they have significance influence on damping.

The question arises, is it necessary to have all signals? Are there for
each machine signals that are more important for stability than other? A first
guess could be that the machine itself and its big neighbour machines are more
important than small machines situated in remote areas.

From a control point of view the problem can be decomposed into two
steps.

e Select a good feedback structure.
e Tune the feedback parameters.

In this chapter we concentrate on the first issue. A survey of problems
for large scale systems with decentralized control can be found in Sandell et
al (1978). The conclusion of this survey became ”..the question of what struc-
tures are desirable for control of large scale systems has not been addressed
in a truly scientific fashion”. This also explains the lack of clean easy solu-
tions. Katzberg and Johnson (1981) based on Katzberg (1977 ) has proposed
one method, Brown and Vetter (1972) another. Both methods need heavy
calculations which restrict them to small problem.

Because of the complexity of the problem it is more relevant to regard
the methods below as guidelines to select a good feedback structure. This in
combination with physical knowledge about the system will give the feedback
structure. When we search for a good feedback structure we here assume static
output feedback and look for important inputs.

5.2 Direct LQ-methods

One way to determine the feedback structure is to see how much the loss
J (4.3) used in the LQ-design is changed by setting each feedback element
Ki; = 0. This have been used in Huang et al (1988). The drawback is
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that we should either take away or use a feedback element. This implies
that derivatives, which are valid for small changes, are no good indicators.
As in Huang et al (1988) we have to do numerical minimization of the loss
function J for every possible combination of feedback signals, to draw the
right conclusions what signals are important. In the same article the authors
propose a simplification to overcome the combinatoric problem. Instead of
trying all possible combinations of taking out p feedback signals of m possible,
they assume that we could use the signal we have used when we picked out
p—1 from m signals. This give the algorithm; start to take 1 signal from m and
then include this signal when choosing 2 signals and then include this 2 signals
when choosing 3 and so on. Because of the complex nonlinear relation between
J and the feedback parameters K;; we cannot say anything quantitative about
how this simplification influences the final choice of feedback structure. Take
for example the system

Uy

dz (0 0 101
Ft'"[o 1]”[0 1 1] 2 (5.1)

Ug

with the quadratic loss J = [27Qz + u"Rudt where Q = I and R =
0

diag(1 1 10'°). By inspecting the system we see that if we should only use
one input signal, the best choice is obvious the expensive signal us since this
is the only input which makes the system controllable. This could, with the
above simplification, lead to the conclusion that us should be included when
we choose two input signals. But the best choice of two signals is u; and u, be-
cause together they make the system controllable and are much cheaper signals
than uz. If power engineers read ”apply PSS to machine number” instead of
"using input number” the message becomes more apparent - superpositioning
of results is in general not valid.

Why not sensitivity analysis?

The reason why we want to derive an alternative method to sensitivity analysis
can be found in Chapter 2. Some of the reasons are

e It is uncertain to use derivatives, which are valid for small changes, on the
open loop as a criterion for design. How a Root-Locus, as function of one
parameter, moves initially seems to give very little information to decide
a feedback structure from.

e Sensitivity analysis does not give an answer to how we should use the
inputs in a co-ordinated way.

5.3 Which inputs are important?

This section presents a new method to find inputs which are important for
a good design. The new method provides an analytical way to select the
inputs which are critical in a good control design. No extensive calculations
are needed. The basic calculation is only calculations of the eigenvalues and
the eigenvectors of the system, which is a known relatively simple standard
numerical problem.
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Input energy as a guide to find important inputs

The idea is to use input energy as a measure how important each input is.
When we have done the LQ design, an optimal trade off has been done between
input energy and performance according to our loss function. An input, which
uses large amounts of energy must be an important input for the design. The
finesse is to use this information to find the important inputs in a feedback
structure which is sparse but maintain much of the features of the optimal
controller.

Because the final design should, in some sense, be closer to the optimal
design than the open loop, it seems better to use the optimal design when
investigating controller properties as the feedback structure. Note that this
method starts with the global optimal design in contrast to other methods
which start with the open system. We know that a good design uses certain
inputs more than others. Open loop methods in contrast know that partial
derivatives of parameters, in a fixed control law, at certain inputs are large
and hope that there will be a correlation between this and important inputs
in a working controller with tuned parameters.

We can express "the energy from input number i as function of zg ”
E;(zo), as

]

Bifeo) = [uw(uar= [(3 as(ki(Y es(t)kis) e

=1

00 o0
- / kio(t)a(t)TkT dt = b / 2(8)o ()7 dekT (5.2)
0 [¢]
=k,~,/e‘itmom£{e‘lﬁt dtkg‘
0

Where A = A~ BK,z € C*!, k; € R™!, and k; is the i’th row in the
feedback matrix K. The notation T stands for transpose and H for hermit
transpose. If we denote zg - zg = P we get

E; =k; / At ped™t gy T (5.3)
0

© .
The integral Z = [ e4tPeA™t gt can be solved from the Lyapunov equation
0

AZ +ZA% 1 P =0 (5.4)

for which there are good numerical solvers. However, we will for our purpose
use another simpler way to calculate the input energy.

It is hard to choose just one initial condition @9, which gives an E; that
accurate summarizes all system properties. We must be sure that the initial
condition excite all eigenvalues in the system. By choosing different initial
conditions, which excite just one eigenvalue at the time we can study how the
inputs are used to damp each eigenvalue.
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Input Energy for the closed loop with Optimal Controler (IEOC)

A good thing to investigate is the properties of the optimal feedback. If we
choose the initial conditions so we excite one eigenvalue at the time we can see
what inputs are active in damping out a certain mode. We need some sort of
normalization to compare different modes. If we denote right eigenvectors of
A with v; and left eigenvectors of A with wj the state vector can be expressed

z(t) = Z e)‘itvjwfz(O) (5.5)

If we normalize ||2(0)||z = 1 and ||wj||s = 1, which also determines [|vjl|2, the
worst initial state for mode A; is £(0) = w; which make wfz(O) = 1. Also
assume that all eigenvalues are different, e.g. A; # Aj, i # j. The contribution
to z(t) from this mode is

zx;(t) = eMty; (5.6)

The contribution from mode A;j to input energy from u; can be expressed as

o0
/ “t?,\,- dt
0

k;.

0\8 °\8 0\8

zx; ()25 (8) dt kT

k,'_ e“itv_.,-vJI-{eAHt dt ktT

(5.7)

At H AH T
ki | eMvjuiie’i Tdt kg

Il

o0
4 AH
=k,—_vjv§{kg_1/e)‘1te>‘: tdt
0

-1
=k; voHpT _——
3% . JRe(Ay)

The last equality is obtained from the fact that A is asymptotic stable which
implies that ReA; < 0.

In the calculation of (5.7) we have to calculate eigenvalues-eigenvectors
and do some matrix multiplication which is easily done with numerical soft-
ware.

ExamrLE 5.1—IEOC for control law in Example 4.2
Consider the control law (4.17) from Example 4.2. We calculate the input
energy FE;; for the three inputs u; if we excite the two EOM to A — BK and
form Table 5.1. The calculations have been done in Matlab (Moler et al, 1987 ).
Appendix C shows an implementation of a function in Matlab which calculates
IEOC.

The table shows that input uy, is active in damping A1,2 and the inputs
Uf; , Ug, are very active in damping Az 4. Since A3 4 is the dominant and critical
eigenvalue we draw the conclusion that input uy, and uy, are important for a
good design. a
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Table 5.1 Input Energy for Optimal Controler (IEOC) from Example 4.2

IEOC A2 = —3.78 £ 7.935 Az e = —1.8744.245
Uz 8.8 187.4
Uuf, b8.5 2.2
uy, 7.0 162.6

The next step is then to examine these two inputs more and see if it is
sufficient with feedback from local variables or if we have to transmit signals
between the generators.

5.4 Important feedback elements for an input

What we have so far is a method to find out important inputs. This section
will give a method to pick out important feedback elements for each of these
inputs. Steady-state stability problems are caused by unfavourable interaction
between machines which results in oscillation of power. A good control law
must contain components, which can prevent the oscillations. By investigating
how a sinusoidal signal at one input influence the speed on other machines we
can get information about the undesired interaction. Problem occur in general
when one machine’s input (field voltage) has large impact on another machine’s
speed and specially when the influence has nearly 180° phase shift compared
to the own machines speed. Influence with 180° phase shift will force the two
machines in different direction and is a potential danger for power oscillations
between the two machines. To find the important feedback terms we will
for each important input, at the important frequencies, search for interaction
between the machine’s own speed term and other machines speed terms. This
will be done by inspection a selected column in G(jw), were G(s) is the transfer
function from field voltages to speed terms and w is the oscillation frequency
of the critical EOM. In each selected column we look for complex numbers
with large magnitude and 180° phase shift compared to the speed term with
same index as the input (the diagonal element in G(jw)).

Interaction analysis

We calculate the transfer function from uy; to w;
Gij(s) = Cu(sI — A)_IB (5.8)

for s = j - Im(Ag) for the EOM and we get a complex matrix. Each column
in the matrix shows the influence of a selected input. The complex elements
in the column give magnification and phase shift on speed (in steady state) if
a sinusoidal input is applied at the selected input. By plotting the interesting
columns in the complex plane we can see the direction and amplitude of the
influence of the selected input. We illustrate with an example.

ExAMPLE 5.2—Feedback elements for control law in Example 4.2
Consider the control law from Example 4.2. From Example 5.1 we know that
input uy, and uy, are important to damp the critical EOM A3,a.
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We calculate the matrix

0.97+0.455  0.47+0.155 —0.76 — 0.42j
G(j424)= | 0.2440.05; —0.05+0.02j 0.08 — 0.03;
~0.75 - 0.407 0.13—0.06;  0.78 + 0.36;

We then plot the first and third column in the matrix which corresponds to
the influence from uy, and uy,. We get Figure 5.1 and 5.2.
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Figure 5.1 Influence from input number 1 to machine speed at the frequency
4.24 rad/s. Solid=Genl, Dashed=Gen2, Dotted=Gen3.
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Figure 5.2 Influence from input number 3 to machine speed at the frequency
4.24 rad/s. Solid=Genl, Dashed=Gen2, Dotted=Gen3.

Figure 5.1 shows that input number 1 will have main influence on wy and
w3 since the amplitudes are large. The direction tells us that uy, will influence
w; and wy in totally different directions. For input number 3, in Figure 5.2, we
draw the same type of conclusion. Since the power oscillations are due to the
fact that machines swing against each other it seems important to have both
feedback terms from generator 1 and generator 3 at these machines. Machine
number 2 seems to be less important and we can use only local variables in the
control law. A good control structure would then be to transmit information
about speed (w) and power (P.) between generator 1 and 3 and use local
measurements for voltage control. If we need a PSS at generator 2 we can
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use local variables since this machine is less important. We have now for this
simple example the feedback structure u = — Ky, with

V= (Vo Vo Voo Pu Py Py @1 @ ws)  (59)

and

K=10 ky 0 0 kg 0 0 kg 0 (5.10)

5.5 The procedure to find a feedback structure

We sum up and have the following procedure to find a good feedback structure.

Step 1 - LQ design. Do a LQ-design, which results in an optimal full state
feedback, u = —K=.

Step 2 - Find important inputs. Use the Input-Energy-Optimal-Controler

(IEOC) criterion to find the important inputs u; for each critical low frequency
EOM.

Step 3 - Feedback elements for important inputs. For each important
input wu;, see if there is(are) large interaction(s) with phase shift near 180°
between own machine’s speed term w; and some other machines speed term
wj , j # i. If so, use communication between machine 7 and j, otherwise local
PSS on machine 1.

What we have got now is a method to choose a feedback structure, which
captures the important parts for a good design and in the next chapter some
tuning methods will be presented.
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6. Tuning of an Incomplete
State Feedback Controller

In this chapter we will concentrate on the question of tuning the controller.
We know the elements k;; in the feedback u = — Kz which have to be zero
and those elements we are allowed to tune. Two different tuning methods will
be presented. The first is based on iterative numerical minimization of the LQ
problem and the second uses least square approximation of a global feedback.
Both methods have advantages and drawbacks and the use of each method is
exemplified. Furthermore we exemplify how to combine the methods to use
the best features of each.

6.1 Existing tuning methods

All tuning methods for incomplete state feedback is based on some type of
approximation. The main difference between the published methods is the
criterion they try to approximate. For example, Bengtsson and Lindahl (1974)
try to approximate the subspace spanned by the eigenvectors to the full state
feedback. Another approximation is presented in Konigorski (1987) where it
is tried to approximate the characteristic polynomial for the incomplete state
feedback so this should be close to the characteristic polynomial for the full
state feedback. Both methods are iterative since there are some weights we
have to fiddle with to achieve satisfactory results. Neither of the methods
guarantees stability and this must be checked after the approximation. The
best features of both methods are that they are easy to use and do not require
extensive calculations.

6.2 TIterative solution of the reduced state feedback
problem

This section presents a tuning method which uses iterative numerical mini-
mization of the loss function in the LQ design. The reduced state feedback
problem with a fixed structure is often called parametric LQ (PLQ).

Optimizing with fixed K-structure

With fixed K-structure we mean that the choice of measurement signals is
fixed and that the regulator should be a static linear combination of those
measurements. After having decided the structure of the feedback matrix
K we can improve the reduced LQ-design by optimizing. The criterion to
optimize is (4.3) for a system (4.1) with initial conditions z(0) = z¢ # 0. The
control law is still u = — Kz but here K is a matrix with some elements fixed
to zero. When we have global feedback the resulting feedback minimizes the
loss for all initial conditions. With incomplete state information we will not
have the same result.
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Solution by Gradient Method

The problem to find the optimal feedback has been treated by Martensson
(1970) who gave equations for the derivatives to the loss function and proposed
a numerical minimization algorithm.

A more efficient way to calculate the derivatives can be found in Geromel
and Bernussou (1979). To get the gradient matrix we then have to solve 21X}

oK
from the equations (6.1) — (6.3).
(A-BE)'P4+ P(A-BK)+Q+ KTRK =0 (6.1)
(A-BE)L+ L(A-BK)T + V=0 (6.2)
8J(K) T
=5 = 2(RK ~ BTP)L (6.3)

for those K such that A— BK is an asymptotically stable matrix. It is assumed
that the initial state vector z¢ is a random variable and Vy = E {mgwg}.

In order to obtain the gradient matrix for a given K, one has to solve two
Lyapunov equations, which is a reasonable task even for large scale systems.

Features of parametric LQ

What are the drawbacks respectively strengths with parametric LQ? The three
main drawbacks are

e Upper limit on system size. Even if the calculations are a reasonable task
there is an upper limit on the system size due to computation time. For
large systems the method does not become efficient since the computation
time is proportional to the cube of the system size and the resulting tuning
takes a lot of computer time.

e Can not incorporate the algebraic relation in the method. Since we have to
exclude one electric power from the state vector we can not get a feedback
term from this electric power. To exclude one P, from the feedback can
cause unsymmetry in the control law if we really need feedback from all
electric powers.

e The dependence of the solution on initial conditions. There is an arbi-
traryness in the choice of initial conditions o which influences the final
control law. The approach of Geromel and Bernusson (1979) considers the
initial state as a random variable and then minimizes the average value of
the performance index. Two cases have been considered

* zg is uniformly distributed over the n dimensional unit sphere; so
Vo = E{zozl} = (1/n)I

* zo is Gaussian distributed with mean values o and covariance Xo.
Hence Vo = E{:co:cg'} = Xo + ﬁoig‘

If these two cases are the most relevant for power systems is hard to tell.
The mean value Z and covariance X, can after some consideration represent
initial conditions after typical disturbances. If we want to tune the PSS for
a certain mode we must be sure to choose initial conditions that excite this
specific mode.

The strength of the method is that it will decrease the loss function in
each iteration step.
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Implementation in Matlab

An implementation of PLQ has been done in Matlab. The implemented nu-
merical algorithm uses Davidon-Fletcher-Powell’s method (Luenberger, 1984)
to do minimization of the loss function. The method converges reasonable fast
and the computation time on a VAX 11/780 can be seen in Table 6.1.

Table 6.1 Computation time for numerical minimization on VAX 11/780

Number of machines  Model order ~ Computation time in minutes

3 8 5
6 17 44
12 35 480

Probably could the calculation times be cut considerably since no effort
has been put into speeding up the calculations. We illustrate the use of the
approximation method with an example

EXAMPLE 6.1—Parametric LQ

Consider the system from Example 4.2 with loss function (4.14). In Chapter
5 we found out that a good feedback structure will have local voltage control,
local PSS on machine 2 and that the PSS on machine 1 and 3 need to com-
municate with each other. We also found out from the IEQC criterion that
machine number 2 was less important than the two others to damp the low fre-
quency EOM. Because of this we leave the electric power for machine number
2 out of the state vector. Hence, our state vector is after transformation

T = ( Va Vo Vi P P, w wp ws ] (6.4)
Then K in the control law u = — Kz will have the structure
ki1 0 0 kys kis kig 0 kg
K=|0 ks 0 0 0 0 kg O (6.5)
