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Introduction

1.1 Motivation

Embedded micro-computers are increasingly being deployed in mod-
ern engineering applications, and real-time control systems constitute
an important subclass of these embedded systems. Modern automo-
tive systems, e.g., contain several embedded ECUs (electronic control
units) used for various feedback control tasks, such as engine per-
formance control, anti-lock braking, active stability control, exhaust
emission reduction, and cruise control.

Real-time control systems have traditionally been relatively static
systems operating in closed environments under well-defined load con-
ditions. However, this situation is changing rapidly. The complexity of
the control systems is increasing, and the design process of these sys-
tem often involves many conflicting objectives, including cost, perfor-
mance, reliability, and safety.

Market requirements, such as reduced time-to-market and lower
development costs, often is the decisive factor in the process. Hence,
as a result of economic considerations, many embedded control sys-
tems are subject to resource constraints, manifesting itself by limited
CPU speed, memory, and network bandwidth of the target platform. In
addition, a strong trend within industry today is to use commercially
available IT technology and commercial-off-the-shelf (COTS) compo-
nents deeper and deeper in the real-time control systems.



Introduction

Limited resources combined with non-optimized hardware and soft-
ware components introduce nondeterminism in the real-time system.
For control systems this is of particular concern. Timing variations in
sampling periods and latencies degrade the control performance and
may in extreme cases lead to instability. Further adding to the non-
determinism is the fact that most embedded control systems are im-
plemented using distributed architectures, where the sensor, actuator
and control functionality is located on different nodes connected by a
communication network.

In highly safety-critical applications, such as nuclear power plants
and fly-by-wire systems, the main objective in the software design is
to maximize the determinism in order to guarantee predictable behav-
ior. This requires static design methodologies, including scheduling by
static, cyclic executives [Locke, 1992], and time-triggered architectures,
such as TTA [Kopetz, 1997].

For the majority of control systems, however, the drawbacks of us-
ing a static design vastly outweigh the benefits. While the static tech-
niques increase the predictability and allow for off-line guarantees,
they also reduce the flexibility and limit the possibilities for dynamic
modifications. Instead less rigid approaches are called for, including
dynamic task scheduling, communication protocols, and memory man-
agement. The projected advantages of using this approach include:
more efficient use of the available resources thereby allowing the use
of cheaper hardware, the possibility to dynamically adapt to changing
load conditions, and higher obtainable control performance under the
given resource constraints.

The key in obtaining flexibility is co-design of the control system
and the real-time system. Integrating control theory and real-time
scheduling theory [Cervin, 2003], it is possible to take the constraints
of the target platform into consideration in the controller design, and
to develop scheduling schemes specially tailored towards control tasks.

One promising approach is dynamic run-time flexibility by the in-
troduction of feedback in the real-time system. Treating the control
performance as a quality-of-service parameter that should be maxi-
mized, resources may be dynamically allocated to the controller tasks
based on measurements of actual resource consumption. A method for
manipulating execution times in order to maximize performance for
model predictive controllers is presented in this thesis.

10



1.2 Outline and Related Publications

To aid in the development process, computer-based tools for simula-
tion, analysis, and synthesis of real-time control systems are needed. A
simulator that allows complete simulation of the interaction between
real-time tasks, network transmissions, and continuous-time plant dy-
namics, is another topic of this thesis.

1.2 Outline and Related Publications

This section contains the outline of the rest of the thesis, together with
references to related publications.

Chapter 2: Background

This chapter gives a short overview of computer-based control and
real-time scheduling and their interaction. This includes control loop
timing issues, control and scheduling co-design, and a summary of
existing simulation tools for real-time control systems.

Chapter 3: Feedback Scheduling

The chapter deals with dynamic run-time scheduling techniques for
real-time control systems. A general feedback scheduling structure is
detailed and possible sensors and actuators are identified. Schedul-
ing techniques specially tailored for certain control algorithms are de-
scribed.

Publications

Arzén, K.-E., A. Cervin, and D. Henriksson (2003): “Resource-
constrained embedded control systems: Possibilities and research
issues.” In Proceedings of CERTS03— Co-design of Embedded Real-
Time Systems Workshop. Porto, Portugal.

Chapter 4: Flexible Implementation of Model Predictive Control

This chapter describes a flexible implementation and scheduling ap-
proach for model predictive controllers (MPCs). The control signal of
an MPC is computed by on-line optimization of a cost function in ev-
ery sample. The iterative nature of the control algorithm allows for a
trade-off between computational delay and the quality of the obtained

11
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control signal. The trade-off is quantified by a delay-dependent ter-
mination criterion rendering a sub-optimal, yet stabilizing, MPC for-
mulation. Unlike traditional MPC, the effects of computational delay
is taken into consideration in the optimization. A dynamic scheduling
policy based on the MPC cost functions is also described.

Publications

Henriksson, D., J. Akesson, and K.-E. Arzén (2004): “Flexible real-
time implementation of model predictive control using sub-optimal
solutions.” Submitted to the 2004 American Control Conference,
Boston, MA.

Preliminary simulation studies were presented in

Henriksson, D., A. Cervin, J. Akesson, and K.-E. Arzén (2002): “Feed-
back scheduling of model predictive controllers.” In Proceedings of
the 8th IEEE Real Time and Embedded Technology and Applica-
tions Symposium. San Jose, CA.

Henriksson, D., A. Cervin, J. Akesson, and K.-E. Arzén (2002): “On
dynamic real-time scheduling of model predictive controllers.” In
Proceedings of the 41st IEEE Conference on Decision and Control.
Las Vegas, NV.

The work in this chapter represents joint work with Johan Akesson.
Akesson provided the tools used for implementation and analysis of
the MPC controller. Henriksson conducted the real-time simulations,
using the TrueTime simulator. The delay compensation and dynamic
scheduling schemes were developed in close collaboration between the
authors.

Chapter 5: The TrueTime Simulator

In this chapter the simulation tool TrueTime is presented. The simu-
lator is based on MATLAB/Simulink and allows for co-simulation of
controller task execution in real-time kernels, network communication,
and continuous-time plant dynamics. A general description of the sim-
ulator is given and the event-based kernel implementation is detailed.

12



1.2 Outline and Related Publications

Publications

Henriksson, D., A. Cervin, and K.-E. Arzén (2002): “TrueTime: Sim-
ulation of control loops under shared computer resources.” In Pro-
ceedings of the 15th IFAC World Congress on Automatic Control.
Barcelona, Spain.

Cervin, A., D. Henriksson, B. Lincoln, J. Eker, and K.-E. Arzén (2003):
“How does control timing affect performance?” IEEE Control Sys-
tems Magazine, 23:3, pp. 16-30.

Henriksson, D. and A. Cervin (2003): “TrueTime 1.1—Reference man-
ual.” Technical Report ISRN LUTFD2/TFRT--7605--SE. Depart-
ment of Automatic Control, Lund Institute of Technology, Sweden.

Henriksson, D., A. Cervin, and K.-E. Arzén (2003): “TrueTime: Real-
time control system simulation with MATLAB/Simulink.” In Pro-
ceedings of the Nordic MATLAB Conference. Copenhagen, Den-
mark.

The simulator work represents joint work with Anton Cervin, who
also implemented the first prototype of TrueTime together with Johan
Eker. Cervin has implemented the major parts of the network block,
whereas Henriksson has implemented the TrueTime kernel block. The
publications have been written in close collaboration between the au-
thors.

Chapter 6: Simulation Case Studies

This chapter contains two simulation case studies performed using the
TrueTime simulator. The first case study simulates networked control
of a robot system. It is shown how transport layer network protocols
such as TCP may be implemented on top of the MAC layer protocols
provided by the TrueTime network block. The second case study uses
TrueTime to simulate a web server application. A feedback scheduling
scheme based on schedulability results for aperiodic tasks is used to
control the delays of individual connections to the server. The perfor-
mance of the scheme is evaluated using the simulator.

13
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Publications

Henriksson, D., Y. Lu, and T. Abdelzaher (2004): “Improved prediction
for web server delay control.” Submitted to the 16th Euromicro
Conference on Real-Time Systems, Catania, Sicily, Italy.

Chapter 7: Conclusions

The thesis concludes with a summary and suggestions for future work
in the field.

14
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Background

2.1 Introduction

The advances in micro-electronics, and the increasing speed of micro-
processors during the last 30 years, has led to a situation where today
almost all control algorithms are realized by computers. The design of
real-time control systems, therefore, requires inter-disciplinary knowl-
edge of both control engineering and computer science and especially
their inter-relations.

In the early days of computer control, implementation issues re-
lated to the computing hardware were well-known problems among
control engineers [Hanselmann, 1987]. However, as the computing pow-
er has increased and is continuing to increase, implementation issues
such as, e.g., real-time scheduling are often dismissed as non-problems.
While this might be true for desktop computers, the situation is differ-
ent when it comes to embedded systems and embedded control systems
in particular.

Embedded control systems are most often subject to limited com-
puter resources as a result of economic considerations. This combined
with the trend of having more and more functionality being realized
in software, make resource scheduling and its effect on control per-
formance a relevant issue. However, traditionally, there has been a
separation between the control and computer science communities in
their view of real-time control systems.

15



Chapter 2. Background
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Figure 2.1 Schematic diagram of a computer-controlled system.

In the control community timing effects caused by the hardware
platform are generally not taken into account in the controller de-
sign. Instead, computer-based control theory is based on assumptions
of equidistant sampling instants and a zero or constant delay between
sampling of the measurements and actuation of the control signal.

Real-time scheduling theory, on the other hand, is concerned with
providing hard timing guarantees, and often use control tasks as their
prime example of a hard real-time system. The objective is to make
sure that no deadlines are missed, and the actual impact of the schedul-
ing on the timing performance of the application is seldom considered.

Given this, it should come as no surprise that large improvements
in control performance can be achieved by considering the control de-
sign and the real-time scheduling design at the same time. This way it
is possible to make maximum use of limited computing resources and
to optimize the control performance.

This chapter recaptures basic concepts of computer-based control
and implementation of real-time control systems. This includes tim-
ing variations and their effect on the control system performance and
stability, traditional real-time scheduling design, and a section on in-
tegrated approaches to real-time control and scheduling. The chap-
ter concludes with a summary and comparison of available simulation
tools for real-time control system co-design.

16



2.2 Computer-Based Control and Implementation

2.2 Computer-Based Control and Implementation

The basic structure of a computer-based control system is shown in Fig-
ure 2.1. The continuous process output is sampled at regular time in-
tervals and converted to digital form by an A/D-converter. The control
algorithm reads the sampled process output and computes a control
signal that is converted back to analog form by a D/A-converter. The
D/A-conversion is usually performed by keeping the output constant
between conversions, so called zero-order-hold.

The standard implementation of a periodic control loop is given by
the pseudo code in Listing 2.1. The control algorithm is often designed
using sampled-data control methods, see, e.g., [Astrﬁm and Witten-
mark, 1997|. Normally, the reading of inputs and writing of output
signals correspond to direct calls to external A/D and D/A conversion
interfaces. However, it is also possible to have the sampling and actu-
ation being performed by dedicated tasks, in which case buffers often
are used to communicate the values between the tasks. In the case
of a networked control system the reading and writing of signals also
involve communication with other nodes in the network.

To minimize the input-output delay, the control algorithm is often
divided into two parts, where the first part computes the control signal
based on current measurements and previous states. The second part
then updates the internal states of the controller for the next sample.

Listing 2.1 A standard implementation of a periodic control loop.

t = currentTime();
LOOP
Read Inputs;
Control Calculation;
Write Outputs;
Update Internal States;

t =t + h;
waitUntil(t)
END

17
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Figure 2.2 Controller timing.

2.3 Controller Timing

Computer-based control theory is based on idealized assumptions about
perfect sampling periodicity and constant or negligible control delays.
This can, however, seldom be achieved by the practical implementation
in a resource-constrained system.

Within individual computer nodes, e.g., tasks interfere with each
other through preemption and blocking when waiting for common re-
sources. The execution times of the control tasks may be data-depend-
ent or vary due to hardware features such as caches. On the distributed
level, the communication gives rise to delays that can be more or less
deterministic depending on the communication protocol.

The resulting timing properties between the reading of the inputs
and the generation of the outputs is a crucial factor for the perfor-
mance of the controlled system. The timing variations introduced by
the computer system may lead to substantial performance degrada-
tion, and even instability. The basic timing variations experienced by
control tasks are depicted in Figure 2.2.

Input-Output Latency

The delay between the sampling of the measurement signal and the
output of the control signal is called the input-output latency, denoted
L;,. This delay has the same effect on the closed-loop system as a
process input delay, and may compromise the overall system stability
if not handled properly.

Input-output latency is primarily caused by preemption from higher-
priority tasks, and by the execution time of the control algorithm itself.

18
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2.3 Controller Timing

The traditional way to minimize input-output latency is by sep-
aration of the control algorithm into calculate and update parts, as
shown in Listing 2.1. Input-output latency can also be reduced by us-
ing non-preemptive scheduling. With the increasing speed of modern
computers it can be argued that the relative execution times of differ-
ent tasks will become smaller and smaller, thus making this approach
realistic also from a schedulability point-of-view.

Jitter

The periodic task that implements the control algorithm is released at
equidistant time intervals given by r, = hk, where A is the sampling
interval of the controller. However, the scheduling may cause the actual
start of the task to be delayed some time. This time is known as the
sampling latency of the task, denoted L. Variation in the sampling
latency is called sampling jitter. Sampling jitter will also cause jitter
in the actual sampling period.

Another source of jitter is variations in the input-output latency,
called input-output jitter. This is often caused by variations in the
execution time of the control algorithm. For simple controllers such
as PID-controllers these variations are negligible, whereas more ad-
vanced algorithms may have very large execution time variations. One
example is model predictive controllers (further treated in Chapter 4),
where a constrained quadratic programming problem is solved on-line
in every sample. The effects of varying delays are often very difficult
to analyze. [Lincoln, 2003] treats methods for analyzing stability prop-
erties of systems with varying delays. Dynamic compensation schemes
are also presented.

One way to remove the sampling jitter altogether is by performing
the sampling operation in a dedicated high-priority task. This way the
sampling is always performed at the right time instants. However,
while this technique removes the sampling jitter it instead increases
the input-output latency.

Using this approach, the input-output jitter can also be eliminated
by always delaying the output to the end of the period, thus introduc-
ing a constant one-sample delay in the system. This delay may then
be compensated for in the controller design. However, as shown in
[Cervin, 2003], the compensation may only recover a part of the loss
introduced by the added input-output latency. Therefore, for controllers

19



Chapter 2. Background

with highly varying execution times, designing and compensating for
the worst-case execution time is not a viable option.

2.4 Real-Time Scheduling

Real-time scheduling theory is concerned with the problem of, given a
set of tasks, finding an execution order that guarantees that all tasks
meet their timing constraints. Real-time scheduling algorithms fall in
two basic categories; static and dynamic scheduling.

Static scheduling is an off-line approach, where an optimized execu-
tion order is determined once and for all before the system is commis-
sioned. This execution order is then repeated cyclically at run-time.
The main benefit of this approach is that it is easy to analyze and
thereby guarantee all timing requirements. The main drawback is that
the cyclic schedules may be very long and difficult to obtain. They also
need to be re-calculated every time changes are made to the real-time
system.

In dynamic scheduling schemes, the decision of which task to run
is taken at run-time. The standard and still most commonly used dy-
namic scheduling schemes were presented in the seminal paper [Liu
and Layland, 1973]. The schedulability theory is based on a task model
where all tasks are periodic and where each task, i, is characterized
by the following parameters

e a fixed period, T,
¢ a hard deadline, D;,

¢ and a fixed and known worst-case execution time (WCET), C;.

Fixed-Priority Scheduling

Fixed-priority scheduling is the most common scheduling mechanism
and is supported by all major commercial real-time operating systems.
Using this approach, each task is assigned a fixed priority value. Dur-
ing run-time, the ready task with the highest priority gets access to
the CPU. If a task with a lower priority is currently running, this task
is preempted by the higher priority task.

20



2.4 Real-Time Scheduling

For control tasks it is natural to assume that the relative deadlines,
D;, of the tasks are equal to their periods, T;. In this case the most
common priority assignment is the rate-monotonic assignment, where
the priorities are set according to the periods of the tasks. The shorter
the period, the higher the priority.

It is shown in [Liu and Layland, 1973] that this is an optimal
scheduling policy, i.e., if the task set is not schedulable using rate-
monotonic assignment it is not schedulable using any other fixed-
priority assignment either.

Assuming a set of n tasks, a sufficient condition for schedulability
using the rate-monotonic priority assignment is that the utilization
factor

n Ci .
U :Zﬁ <n(2Y"—1) (2.1)
i=1

In the more general case where D; < T;, deadline-monotonic priority
assignment is optimal [Liu and Layland, 1973]. Here the priorities are
assigned according to the relative deadlines of the tasks.

For any fixed priority scheduling assignment, an exact schedulabil-
ity analysis may be performed by computing the worst-case response
times, R;, for each task, see [Joseph and Pandya, 1986].

Earliest-Deadline-First Scheduling

Using fixed-priority assignment the priorities of the tasks are static
and not changed during run-time. An alternative approach is earliest-
deadline-first (EDF) scheduling which exploits dynamic priority as-
signment based on the absolute deadlines of the tasks. At any point
in time, the task with the shortest remaining time to its deadline will
get access to the CPU.

EDF is more resource-effective than rate-monotonic scheduling and
a necessary and sufficient condition for schedulability (given D; = T;)
is that the utilization factor is below one:

n Ci
Uu=>" TS 1 (2.2)
i=1

A benefit of deadline-based scheduling over priority-based scheduling
is that it is usually more intuitive to assign deadlines to tasks than

21



Chapter 2. Background

to assign priorities. To assign priorities, global information about the
relative importance of all tasks in the system is needed, which is not
required to assign deadlines.

The main drawback with EDF is that it offers no guarantees at
all during overload. In that case all tasks will miss their deadlines,
which is known as the domino effect [Stankovic et al, 1998]. For hard
real-time systems this may be fatal. However, the result during over-
load under EDF, is that the effective periods of the tasks will be scaled
in such a way that the utilization of the system is still 100 per cent
[Cervin et al, 2002]. Under reasonable overload, this fair distribution
of resources will for most control systems still give reasonable perfor-
mance for all loops.

Scheduling of Aperiodic Tasks

In many applications, the assumption of purely periodic tasks does not
hold. An important example is web server systems, which handle large
volumes of aperiodically arriving requests. With individual requests
are often associated specific quality-of-service (QoS) requirements re-
lated to their deadlines. Motivated by this, schedulability bounds for
aperiodic tasks has been an active research area during recent years.
Schedulability bounds for aperiodic tasks were presented in [Abdelza-
her and Lu, 2001].

The bounds are based on a measure called synthetic utilization,
U¢(t), defined as

Uy = > % (2.3)

iEVE(2)

where V¢ (t) is the set of current tasks at time ¢, i.e., tasks that have
arrived but whose deadlines have yet to expire.

It can be proven that deadline-monotonic scheduling is an optimal
policy for aperiodic tasks. Using this assignment all tasks will meet
their deadlines if, V¢

1 1
4 4=
U(t)<2+2n, forn <3
24
US(t) < 1 , forn>3 (24)
1+4/3(1—74)

n—1
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2.5 Integrated Control and Real-Time Scheduling

2.5 Integrated Control and Real-Time Scheduling

Many of the assumptions made in the control and real-time scheduling
communities are either too restrictive or too idealized to describe the
actual behavior of real-time control loops.

E.g., the standard hard real-time task model used in the real-time
scheduling community does not capture the special requirements of
control tasks. While it is true that most hard real-time systems are
control systems, most control systems are not hard real-time systems.
For almost all controllers, single missed deadlines are not critical for
the system performance or system stability.

On the other hand, the assumptions made in computer-based con-
trol theory do not consider the effects of the actual implementation of
the controller as a task in a real-time system. The timing variations
introduced by the computer system are crucial for the performance of
the control system and must be taken into account at design time.

Consequently, we realize that design of real-time control systems
is essentially a co-design problem. For optimal use of limited comput-
ing resources and for optimal control performance, the controller de-
sign and the software design need to go hand in hand. Two promising
approaches to control and scheduling co-design are reservation-based
scheduling and feedback scheduling. For more on integrated control
and real-time scheduling, see [Cervin, 2003].

Reservation-Based Scheduling

The concept of server-based scheduling has recently gained much inter-
est in the real-time scheduling community. In the constant bandwidth
server (CBS) [Abeni and Buttazzo, 1998], e.g., the CPU is conceptu-
ally divided into a number of virtual sub-CPUs with given capacities,
U;. The CBS then guarantees that tasks running in the virtual CPUs
never consume more than the alloted capacity.

The control server, an extension of CBS tailored for control tasks,
is presented in [Cervin, 2003; Cervin and Eker, 2004]. A control server
creates the abstraction of a control task with a specified period and a
fixed input-output latency shorter than the period. The control server
model is well suited for co-design in that the single parameter linking
the scheduling design and the controller design is the task utilization
factor.

23



Chapter 2. Background

Feedback Scheduling

Feedback scheduling is an approach to achieve flexibility in the run-
time scheduling of control tasks. The objective is to optimize the control
performance for control loops under resource constraints. In feedback
scheduling, the available resources are scheduled dynamically based on
measurements of actual timing variations and control performance. An
elaborate discussion of feedback scheduling will be given in Chapter 3.

2.6 Simulation Tools

To aid in the development process, new, computer-based tools for real-
time and control system co-design are needed. However, the separation
between the control community and the real-time scheduling commu-
nity is also apparent when it comes to existing simulation tools for this
type of systems.

The main simulation tool used for control system design and sim-
ulation is MATLAB/Simulink [The Mathworks, 2001b]. Also, during
recent years, Modelica [Tiller, 2001] has emerged as a strong alterna-
tive to MATLAB/Simulink when it comes to physical modeling and
simulation. However, neither of these simulation environments have
sufficient support for simulation of real-time implementation issues.
Real-Time Workshop [The Mathworks, 2001a] allows prototyping and
implementation of real-time control systems, but has very limited sup-
port for simulation of shared CPU resources and no support for simu-
lation of networks.

On the other hand, several tools exist for simulation of real-time
scheduling. Examples include STRESS [Audsley et al., 1994] and PERT-
S/DRTSS [Storch and Liu, 1996]. These tools are typically used to
prove feasibility of task sets and to perform co-simulation of task ex-
ecution and hardware architecture and kernels. The simulations do
not capture the effects of the scheduling on the performance of the
application implemented by the various tasks.

So, while numerous tools exist that support either simulation of
control systems or simulation of real-time scheduling, very few tools
support co-simulation of control systems and real-time scheduling.
However, during the last years a few co-simulation tools have emerged.
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2.6 Simulation Tools

The TrueTime simulator, which will be described thoroughly in
Chapter 5, is a complete co-simulation tool based on MATLAB/Simu-
link. In its current version it supports task scheduling by arbitrary
scheduling policies, network simulation by standard MAC layer pro-
tocols, and a variety of real-time primitives used for experimentation
with flexible scheduling and compensation schemes.

An early, tick-based version of TrueTime was presented in [Eker
and Cervin, 1999]. The event-based C++ implementation of the cur-
rent version has decreased simulation times by orders of magnitude.
This early version had no support for interrupt handling and being
tick-based it could not handle fine-grained simulation details. Also,
there was no support for simulation of networks.

The RTSIM real-time scheduling simulator (a stand-alone C++
program) has recently been extended with a numerical module (based
on the Octave library) that supports simulation of continuous dynam-
ics, see [Palopoli et al, 2000]. However, it lacks a graphical plant mod-
eling environment, and so far its network capabilities are limited.

The Ptolemy system developed at Berkeley, has recently added sup-
port for timed multi-tasking [Liu and Lee, 2003]. This makes it possi-
ble to model fixed-priority scheduling of tasks with constant execution
times.

Another tool similar to TrueTime is the XILO toolset presented in
[El-khoury and Toérngren, 2001]. This tool is entirely graphical and
currently limited to a number of pre-defined scheduling policies and
network protocols provided in the tool libraries.

25



Chapter 2. Background

26



3

Feedback Scheduling

3.1 Introduction

The objective of feedback scheduling is to increase flexibility and to
master uncertainty with respect to resource scheduling. A general feed-
back scheduling structure is shown in Figure 3.1. The idea is to feed
back the actual use of critical resources to the scheduler and to contin-
uously adjust the tasks’ demands of resources according to the current
situation. The reactive feedback may also be combined with pro-active
feedforward actions, such as, e.g., task admission control schemes.

The feedback scheduled resources may be any computer resource,
such as CPU time, network bandwidth, or memory allocation. E.g.,
an approach to achieve adaptive garbage collection and incorporate
GC scheduling into a general feedback scheduling framework was pre-
sented in [Gestegard Robertz, 2003]. However, here we will focus on
the scheduling of CPU time for real-time controller tasks.

The main motivation for the introduction of feedback-based schedul-
ing for control tasks is the highly varying execution time characteris-
tics associated with many control algorithms. Examples include model
predictive controllers, controllers using vision-based sensor informa-
tion, and hybrid controllers switching between different modes. For
these control schemes, the execution time variations are inherent in
the algorithms. Other sources to the variations may be external, such
as changing environments or load conditions.
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l

—®| Feedback
scheduler

Feedforward

— Tasks — Resources

Feedback

Figure 3.1 A general feedback scheduling system. The scheduler adjusts the
tasks’ demands based on feedback from the current use of critical resources.
The tasks may also inform the scheduler that they are about to consume more
resources (feedforward).

The varying execution times make traditional task scheduling as
described in the previous chapter infeasible. Algorithms such as rate-
monotonic and earliest-deadline-first are both open-loop scheduling al-
gorithms, in the sense that the schedulability results are obtained off-
line, assuming complete knowledge of the tasks and their constraints.

Since the execution time may vary significantly, the main limitation
lies in the assumption of known worst-case execution time bounds for
all tasks. A design based on worst-case bounds will likely become far
too pessimistic, and lead to severe underutilization of the computer
resources. In reality these bounds are also very difficult to obtain.

A feedback-based approach for task scheduling is presented in [Lu
et al., 2002], where control theory is used to provide performance guar-
antees for dynamically changing real-time systems. The guarantees
are, however, related to deadline miss-ratios and utilization levels, and
have no direct connection to the actual application performance.

For control systems, the decisive factor should be the control per-
formance, and to distribute the resources in a way that optimizes the
global control performance. For control tasks, there are two main ways
to control the CPU demand: by manipulating the task periods, or by
manipulating the execution times. The feedback should contain infor-
mation related to the timing behavior and control performance of the
controlled system.
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3.2 Task Period Rescaling

The most commonly explored way to dynamically adjust CPU utiliza-
tion for control tasks is by changing sampling periods. The classical
rule-of-thumb, see, e.g., [Astrbm and Wittenmark, 1997|, for selection
of sampling interval in a digital control system is that

w.h = 02— 0.6, (3.1)

where . is the bandwidth of the closed-loop system. This means that a
computer-based control system may operate according to specifications
also using another sampling interval than originally designed for.

Dynamic resource allocation by means of task period rescaling has
been explored in several papers. An adaptive rate control mechanism
based on an elastic task model is presented in [Buttazzo et al., 1998].
The task period adjustment is based on elasticity coefficients, e;, re-
lated to the utilization factors of the tasks.

[Beccari et al., 1999] considers modulation of sampling rates for
robot systems. A range of admissible rates is identified for each task,
and different rate-monotonic schemes are presented and evaluated.

[Shin and Meissner, 1999] studies resource adaptation in multipro-
cessor systems. Reallocation of control tasks and on-line adjustment
of sampling rates is used to optimize a quadratic performance index
related to the global control performance.

A feedback scheduled system manipulating sampling intervals can
be viewed as a special case of a hybrid control system. An interesting
example is given in [Schinkel et al, 2002], which considers switching
between two LQ-controllers designed with different sampling intervals.
Although both closed-loop systems are stable, it is shown that a special
switching sequence between the systems will lead to instability.

Optimization-Based Approaches

An optimal strategy for rescaling sampling periods for LQ-controllers
was presented in [Eker et al., 2000; Cervin, 2003|. Here it was shown
that simple linear

Jh)=a+yh (3.2)
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or quadratic
J(h) = a + Bh® (3.3)

cost functions are good approximations of how the actual control per-
formance depends on the sampling interval. The sampling interval is
denoted by ~ and &, B, and ¥ are constants.

Based on these functions an optimal feedback scheduling strategy
was developed that minimized the global cost while meeting certain
utilization set-points. The utilization was computed on-line based on
execution time measurements.

The resulting optimal feedback scheduling scheme consisted of a
simple rescaling of the nominal sampling periods, where all periods
were changed by the same factor. This is a nice property, since it is fast
and easy to implement. It also preserves the rate-monotonic ordering
among the control tasks, and thus avoids priority changes of the tasks.

However, the cost functions only concern the sampling periods and
not the actual input-output latencies. The feedback should ideally also
contain feedback from the actual control performance and not only ex-
ecution time measurements. Another problem arises when scheduling
tasks that are described by both linear and quadratic cost functions.
In this case the optimization becomes harder, and the linear rescaling
property would be lost.

Mode Changes

In certain applications it is possible to combine the feedback scheduling
with feedforward. In these schemes, the tasks themselves inform the
scheduler that they are about to consume more resources. In [Cervin
et al., 2002], a case study with hybrid controllers is presented, where
the sampling rates are adjusted to avoid CPU overloads. The controller
changed between ordinary PID control and an optimal control mode
with very different execution times. In this scheme, the controller tasks
notified the scheduler when they were about to change mode.

From a schedulability aspect, mode changes may cause transient
overloads, i.e., a system that is schedulable both before and after the
mode change may still miss deadlines during the transient phase. This
mode changing problem is treated in [Buttazzo et al, 1998; Tindell
et al., 1992].
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3.3 Scheduling of Imprecise Computations

Figure 3.2 Scheduling of imprecise computations are based on a task model
where each task can be divided into two parts; a mandatory part and an optional
part. The optional part may be aborted to meet scheduling constraints or to
optimize performance.

3.3 Scheduling of Imprecise Computations

For certain classes of control algorithms an alternative to sampling
time adjustments is manipulation of the actual execution time of the
control signal computation. These types of algorithms are generally re-
ferred to as anytime algorithms or imprecise computation algorithms.

The main characteristic of anytime algorithms is that they always
generate a result, but with a quality level that increases with the
execution time. This means that there is a trade-off to consider between
the computational time and the result generated by the algorithm.

The basic task model for scheduling of imprecise computations [Liu
et al, 1991; Liu et al, 1994] assumes that all tasks can be divided
into two subtasks; a mandatory subtask and an optional subtask, see
Figure 3.2. An imprecise result may be returned by the algorithm as
long as the mandatory subtask has completed.

In [Liu et al, 1991], imprecise calculation methods are categorized
into three main types; sieve function methods, multiple version meth-
ods, and milestone methods.

Sieve functions constitute optional computation steps that may be
skipped to save processing time. Obvious examples of sieve functions
for control algorithms include the updating of the estimated parame-
ters in an adaptive controller, or the observer step in an LQG-controller.
Multiple version methods exploit several versions of the algorithm,
with different processing times and result quality.
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/| QP-iteration

Figure 3.3 Imprecise computation model for model predictive control tasks.
The mandatory part (M) consists of finding a feasible starting solution and
iterating the QP-solver until the stability requirement is fulfilled. The additional
QP-iterations constitute the optional part and may be skipped.

Milestone methods are based on monotone algorithms, ensuring
that the quality of intermediate results increases monotonically with
time. This type of algorithms can be found in many application areas,
including numerical optimization, estimation, and prediction. Schedul-
ing of monotone imprecise tasks is treated in [Chung et al, 1990]. In
this scheme, each mandatory subtask is scheduled to complete before
the deadline of the task, and the optional parts refine the results to
minimize the total error. Both average error between consecutive jobs,
and cumulative errors are considered.

Application to Model Predictive Control

An example of a control methodology that fits the milestone method
very well, is model predictive control (MPC), which is the topic of
Chapter 4. This control strategy is based on on-line minimization in
every sample of a quadratic cost function subject to constraints on
control signals and controlled variables. In the MPC formulation used
in Chapter 4, the optimization problem is solved by an iterative QP-
solver that guarantees that the value of the cost function is reduced
by each step in the algorithm.

The mandatory part of the control algorithm consists of finding a
starting solution that fulfills the constraints of the QP-problem, and
to iterate the solver until the solution guarantees closed-loop stability.
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The optional part consists of the remaining QP-iterations that further
reduce the value of the cost function. These iterations may be skipped
if computing time is scarce.

Figure 3.3 illustrates a situation of two MPC tasks running concur-
rently. A dynamic scheduling strategy schedules the mandatory parts
using distinct high priorities and the optional parts of the tasks using
the cost functions as dynamic task priorities. By constantly executing
the task with the highest cost we aim at achieving as low global cost
as possible before the optional parts are terminated. Dynamic resource
allocation for MPC tasks will be treated in detail in Chapter 4.

3.4 Direct Feedback Scheduling

A drawback with many dynamic resource allocation schemes is that
the control performance is only affected indirectly by adjusting task
parameters and assuring certain timing properties. The true effect
on the control performance is often not easily determined from these
parameters. Another approach is direct feedback scheduling, where
scheduling decision are made based on instantaneous cost measures
related to the control performance.

E.g., the previously described MPC approach with scheduling based
on cost functions can be seen as a direct feedback scheduling strategy. A
general direct feedback scheduling approach would typically be based
on an instantaneous cost related to the control error. This includes
derivatives and the integral of the control error, and quadratic cost
terms of the error and control signal.

Just like in the imprecise task model, an implementation of a task
used in a direct feedback scheduling context, would consist of two parts.
The first part should contain the sampling of the process and evalua-
tion of the instantaneous cost. The second part should then be optional
and scheduled based on the value of the cost measure.

The resulting control system will run in open loop between invoca-
tions of the optional part, see Figure 3.4. A new control action is applied
when the instantaneous cost causes the control task to be scheduled
and not periodically as in traditional computer-based control.

The problem with the resulting control system is thus that it will be
event-triggered and will therefore not follow the traditional model of
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Figure 3.4 Direct feedback scheduling where scheduling decisions are made
based on instantaneous cost measures for each controller tasks. The system runs
in open loop between scheduling points and the resulting controlled system is
event-triggered.

equidistant sampling instants for which the theory is well developed.
Although many systems, including combustion engines and satellite
control by thrusters, are naturally treated using an event-based ap-
proach, very little theory exist in the area. Event-based control systems
have been explored in, e.g. [Astrbm and Bernhardsson, 1999; Arzén,
1999].

3.5 Quality-of-Service

Feedback scheduling is closely related to quality-of-service (QoS) ap-
proaches. Quality-of-service techniques for soft real-time activities, such
as multimedia applications, have been an active research area during
recent years.

For control systems it would be desirable to also treat the con-
trol performance as a quality-of-service parameter, or quality-of-control
(QoC). This means that it would be necessary to specify reasonable
ranges for the performance metrics, including, e.g., rise times, over-
shoots, and steady-state variances. The on-line resource negotiation
could then, e.g., be specified using contracts [Eker and Blomdell, 2000]
relating the control performance to the available resources.
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One example is [Abdelzaher et al., 2000], which considers quality-
of-service negotiation in flight control systems. Here task periods and
deadlines are treated as negotiable parameters between tasks in the
system, allowing graceful QoS degradation under conditions where tra-
ditional schedulability analysis fails.

The use of feedback control theory has also recently emerged as a
promising foundation for performance control in large, complex soft-
ware applications. One prominent example is contemporary web serv-
ers, which typically operate under very unpredictable and poorly mod-
eled load conditions. Managing this uncertainty by means of control
theory has proven successful in order to provide quality-of-service guar-
antees for these systems [Abdelzaher et al., 2003; Robertsson et al.,
2003].

3.6 Summary

This chapter has treated feedback-based approaches for scheduling of
real-time controller tasks. The potential benefits of feedback schedul-
ing are, e.g.,

e the possibility to relax the requirements on known worst-case
execution time bounds,

¢ increased flexibility,
¢ higher resource utilization, and

¢ better control performance under the given resource constraints.
Feedback scheduling approaches that use task period rescaling, ex-
ecution time manipulation, and scheduling based on instantaneous cost

functions were treated. Quality-of-service based methods for control
systems were also discussed.
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4

Flexible Implementation of
Model Predictive Control

4.1 Introduction

Model predictive control (MPC), see, e.g., [Garcia et al., 1989; Richalet,
1993; Qin and Badgwell, 2003], is a control methodology that has been
widely accepted industrially during recent years, mainly because of its
ability to handle constraints explicitly and the natural way in which
it can be applied to multi-variable processes.

The computational requirements of MPC, where typically a quad-
ratic optimization problem is solved on-line in every sample, have pre-
viously prohibited its application in areas where fast sampling is re-
quired. Therefore MPC has traditionally only been applied to slow pro-
cesses, mainly in the chemical industry. However, the advent of faster
computers and the development of more efficient optimization algo-
rithms, see, e.g., [Cannon et al., 2001], has recently led to applications
of MPC also to processes governed by faster dynamics. Some recent
examples include [Dunbar et al., 2002; Dunbar and Murray, 2002].

Still, from a real-time implementation perspective the execution
time characteristics associated with MPC tasks poses many interest-
ing challenges. Execution time measurements show that the compu-
tation time of an MPC controller varies significantly from sample to
sample. The variations are due to, e.g., reference changes and exter-
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nal disturbances. To cope with this, an increased level of flexibility is
required in the real-time implementation. Because of the variations,
a static compensation for the worst-case execution time would be too
pessimistic and lead to unnecessary reduction of the obtainable control
performance.

As described in the previous chapter, the MPC algorithm is of any-
time nature, and fits nicely into the general framework of scheduling
of imprecise computations. The milestone characteristics of the opti-
mization algorithm makes it possible to abort the optimization before it
has reached the optimum, and still fulfill the stability conditions. The
key observation is that computational delay may significantly degrade
control performance, and premature termination of the optimization
algorithm may be advantageous over actually finding the optimum.

Stability of model predictive control algorithms has been the topic
of much research in the field. For linear systems, the stability issue
is well understood, and also for nonlinear systems there are results
ensuring stability under mild conditions. For an excellent review of
the topic, see [Mayne et al, 2000]. In summary, there are two main
ingredients in most stabilizing MPC schemes; terminal penalty and
terminal constraint. These two tools has been used separately or in
combination to prove stability for many existing MPC algorithms. It is
also well known that feasibility, rather than optimality, is sufficient to
guarantee stability, see, e.g., [Scokaert et al., 1999]

In this chapter, the trade-off between computational delay and op-
timization is quantified by the introduction of a delay-dependent cost
index. The index is based on a parameterization of the cost function in
the MPC formulation. The objective of the optimization is then to min-
imize the cost index instead of the original cost function. This results
in a delay-aware MPC formulation. The cost index is also applied in a
real-time scheduling context.

The chapter concludes with two simulation case studies, where the
suggested approaches are evaluated on a double-integrator process.
The first simulation treats the trade-off between computational delay
and optimization of a single MPC task. The second simulation consid-
ers scheduling of two MPC tasks concurrently on the same CPU.
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Figure 4.1 The basic principle of model predictive control.

4.2 MPC Formulation

The MPC formulation is based on [Maciejowski, 2002] and assumes a
discrete linear process model on the form
x(k+ 1) = Px(k) + Tu(k)
y(k) = Cyx(k) (4.1)
z(k) = C,x(k) + D,u(k)
where y(k) is the measured output, z(k) the controlled output, x(k)

the state vector, and u(%) the input vector. The function to minimize
at time £ is

H,
J (k. AU, x(E)) = Z 12(k +i|k) — r(k + )3
‘:lHu_l (4.2)
+ > lAd(k + k)%
1=0

where z is the predicted controlled output, r is the current set-
point, & is the predicted control signal, H,, is the prediction horizon,
H, is the control horizon, @ > 0 and R > 0 are weighting matri-
ces, and Au(k) = u(k) —u(k —1). It is assumed that H, < H, and
that a(k+i) = a(k+ H, — 1) for i > H,. See Figure 4.1. AU =
(Aa(k)T...Ad(k+ H, — l)T)T is the solution vector.
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Introducing sequences U and Z equivalently to AU, the state and
control signal constraints may be expressed as

WAU<w FU<f GZ<g (4.3)

This formulation leads to a convex linear-inequality constrained quad-
ratic programming problem (LICQP) to be solved at each sample. The
problem can be written on matrix form as

min V (k) = 0THO - 6"G+C st QO<o. (4.4)

where 8 = AU and the matrices #, G, C, Q, and @ depend on the
process model and the constraints, see [Maciejowski, 2002]. Only the
first element of AU is applied to the process and the optimization is
then repeated in the next sample. This is referred to as the receding
horizon principle.

Feasibility and Optimality

The problem of formulating stabilizing MPC schemes has received
much attention in the last decade. For linear MPC, the conditions
for stability are well understood, and several techniques for ensuring
stability exist including terminal penalty, terminal equality constraint,
and terminal sets, see [Mayne et al., 2000]. For simplicity, we will use
a terminal equality constraint to ensure stability, see, e.g., [Bemporad
et al., 1994].

The following theorem (adopted from [Bemporad et al., 1994|) sum-
marizes the important features of a stabilizing MPC scheme based on
a terminal equality constraint. Without lack of generality we assume
that r(k) is zero.

THEOREM 1

Consider the system (4.1) controlled by the receding horizon controller
based on the cost function (4.2), subject to the constraints (4.3). Let
r(k)=0. Further assume terminal constraints %(k + H, + 1)=0 and
a(k+ H,)=0, Q>0 and R>0 and that (C,Q?, A) is a detectable pair. If
the optimization problem is feasible at time k&, then the origin is stable,
and z(k)T Qz(k) — 0 as k — oo.
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Proof. Let AU;=(Au;(k), Aty (k+1),...,Au;(k + H, — 1)) denote
the optimal control sequence at time k. Obviously, AU1=(Ad;(k +
1),...,Au;(k+ H, — 1), 0) is then feasible at time % + 1. Consider the
function V(k)=dJ(k, AU}, x(k)) with r(k£)=0. Then we have the follow-
ing relations:

Vk+1)=dJ(k+1,AU;, . x(k + 1))

<J(k+1,AUpp1, x(k+ 1))
V(k)—z(k+1)TQz(k + 1)
— Au(k)TRAu(k).

Since V (k) is lower-bounded and decreasing, z(k)TQz(k) — 0 and

Au(k)TRAu(k) — 0 as k — co. Further, using the fact that (C,Qz, A)
is a detectable pair, it follows that ||x(%)|| - C < co as & — oo. O

REMARK 4.1

To prove the stronger result that the origin is asymptotically stable, the
additional assumption that the system (4.1) has no transmission zeros
at ¢ = 1 from u to z could be imposed. Notice also that the sensible
assumption that @ > 0 implies that z(k) — 0 as £ — oo, which is,
however, automatically achieved if the transmission zero condition is
fulfilled. O

The important feature in the proof of this theorem is embedded in equa-
tion (4.5). In order for the stability proof to work, it must be ensured
that V (k) is decreasing, which, however, does not require optimality of
the control sequence AU. See, e.g., [Scokaert et al., 1999] for a thorough
discussion on this topic. Rather, having fulfilled the stability condition
V(k+1) < V(k), the optimization may be aborted prematurely without
losing stability. In the case study in Section 4.5, the terminal constraint
u(k + H,)=0 has been relaxed, in order to increase the feasibility re-
gion of the controller. To remove this complication, the control signal,
u, rather than the control increments, Au, could be included in the cost
function. Notice, however, that the important feature of the stability
proof that will be explored is the inequality (4.5) and that other, more
sophisticated, stabilizing techniques may well be used instead.
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QP-Solver

There are two major families of algorithms for solving LICQPs; ac-
tive set methods [Fletcher, 1991] and primal-dual interior point meth-
ods, e.g., Mehrotra’s predictor-corrector algorithm, [Wright, 1997]. Both
types of methods have advantages and disadvantages when applied
to MPC, as noted in [Bartlett et al, 2000] and [Maciejowski, 2002].
Rather, the key to efficient algorithms lies in exploration of the struc-
ture of the optimization problem generated by the MPC algorithm.

Recent research has also suggested interesting, and fundamentally
different MPC algorithms, see, e.g., [Kouvaritakis et al, 2002] and
[Bemporad et al., 2002], known as explicit MPC. Here, the optimization
problem is solved off-line for all x(%), resulting in an explicit piecewise
affine control law. At run-time, the problem is then transformed into
finding the appropriate (linear) control law, based on the current state
estimation. However, when the complexity of the problem increases, so
does the complexity of the problem of finding the appropriate control
law at each sample.

An MPC algorithm based on the on-line solution of a QP-problem is
used. The value of the cost function at each iteration in the optimiza-
tion algorithm is of importance. Specifically, if the decay of the cost
function is slow, it may be a good choice to terminate the optimiza-
tion algorithm, and use the sub-optimal solution, rather than allowing
the algorithm to continue and thereby introduce additional delay in
the control loop. In the scheduling case, long execution times will also
affect the performance of other control loops.

From this point of view, there is a fundamental difference between
an active set algorithm and a typical primal-dual interior point method.
The active set algorithm explicitly strives to decrease the cost func-
tion in each iteration, whereas a primal-dual interior point algorithm
rather tries to find, simultaneously, a point in the primal-dual space
that fulfills the Karush-Kuhn-Tucker conditions. In the latter case, the
duality gap is explicitly minimized in each iteration, rather than the
cost function. With these arguments, and from our experience using
both types of algorithms, we conclude that an active set algorithm is
preferable for our application.
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4.3 Termination Criterion

To be able to determine when to abort the MPC optimization and out-
put the control signal, it is necessary to quantify the trade-off between
the performance gain resulting from subsequent solutions of the QP-
problem, and the performance loss resulting from the added compu-
tational delay. This will be achieved by the introduction of a delay-
dependent cost index, which is based on a parameterization of the cost
function (4.2).

Assuming a constant time delay, 7 < A, the process model (4.1) can
be augmented (see, e.g., [Astrém and Wittenmark, 1997]) as

y(k) = Cyi(k) (4.6)

where

h—t
To(7) = / e*ds B
0

T
I'i(7) = Al / e**ds B
0

where A and B are the continuous system matrices of the plant. The
matrices H, G, C, Q, and @ in (4.4) all depend on the system matrices
and thus on the delay. Ideally, these matrices should be updated from
sample to sample based on the current computational delay.

However, using the representation (4.6) it is possible to evaluate the
cost function (4.2) assuming a constant computational delay, 7, over the
prediction horizon. The assumption that the delay is constant over the
prediction horizon is in line with the assumptions commonly made in
the standard MPC formulation, e.g., that the current reference values
will be constant over the prediction horizon. Thus, for each iterate,
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Figure 4.2 The solid curve shows the delay-dependent cost index J;, and the
dashed curve shows the original cost function used in the QP-algorithm.

AU;, produced by the optimization algorithm, we compute
Ja(AU;, T) = AUT H(2)AU; — AUT G (1) + C(7) (4.7)

This cost index penalizes not only deviations from the desired reference
trajectory, but also performance degradation due to computational de-
lay. There are two major factors that affect the evolution of /;. On one
hand, an increasing 7, corresponding to an increased computational
delay, may degrade control performance and cause J; to increase. On
the other hand, J; will decrease for successive A€;:s since the quality
of the control signal has improved. Figure 4.2 shows the evolution of
J4 during an optimization run. In the beginning of the optimization,
J4 is decreasing rapidly, but then increases due to computational de-
lay. In this particular example, the delayed control trajectory seems to
achieve a lower cost than the original. This situation may occur since
the cost functions are evaluated for non-optimal control sequences,
except for the last iteration. Notice, however, that for the optimal so-
lution, J; is higher than the original cost. The proposed termination
strategy is then to compare the value of J;(AU;, 7;) with the cost in-
dex computed after the previous iteration, i.e., Jy(AU;_1,7;—1), where
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7; denotes the current computational delay after the ith iteration. If
the cost index has decreased since the last iteration, we conclude that
we gained more by optimization than we lost by the additional delay.
On the other hand, if the cost index has increased, the optimization
is aborted. Notice that the matrices needed to evaluate J; should be
calculated off-line.

In the MPC formulation we are assuming a process model without
delay. Another possible approach would be to include a fixed-sample de-
lay in the process description. However, since the computational delay
is highly varying, compensating for the maximum delay may become
very pessimistic and lead to decreased obtainable performance. We will
also assume that the control signal is actuated as soon as the optimiza-
tion algorithm terminates, not to induce any unnecessary delay.

4.4 Dynamic Real-Time Scheduling of MPCs

The cost index described above, will now be applied in a dynamic real-
time scheduling context. The basic ideas of the dynamic scheduling
scheme were given in Section 3.3.

MPC tasks do not fit the traditional task model very well, mainly
because of their highly varying execution times. On the other hand,
MPC offers two features that distinguish it from ordinary control algo-
rithms from a real-time scheduling perspective. First, as we have seen
in the previous sections, it is possible to abort the computation and
thereby reduce the execution time. Second, the cost index contains rel-
evant information about the state of the controlled process. Thus, the
cost index can be viewed as a real-world quality-of-service measure for
the controller, and be used as a dynamic task priority by the scheduler.
This also enables a tight and natural connection between the control
and the real-time scheduling.

The MPC algorithm can be divided into two parts. The first (manda-
tory) part consists of finding a starting point fulfilling the constraints
in the MPC formulation (constraints on the controlled and control
variables and the terminal equality constraint) and to iterate the QP
optimization algorithm until the stability condition of Theorem 1 is
fulfilled. The second (optional) part consists of the additional QP-
iterations that further reduce the value of the cost function.
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Based on this insight, the MPC algorithm can be cast into the
framework of scheduling of imprecise computations presented in Chap-
ter 3. The mandatory sub-tasks will be given the highest priority,
whereas the optional sub-tasks will be scheduled based on the values
of the MPC cost indices. Listing 4.1 contains pseudo code of a dynamic
scheduling scheme of the optional sub-tasks. The strategy also exploits
the trade-off between optimization and computational delay.

It should be noted that comparing cost indices directly may not
be appropriate when the controllers have different sampling intervals,
prediction horizons, weighting matrices, etc. In those cases, it would
be necessary to scale the cost indices to obtain a fair comparison. The
scheduling could also use feedback from the derivatives of the cost
functions, as well as the relative deadlines of the different controllers.

Listing 4.1 Dynamic scheduling strategy for MPC tasks.

determine MPC sub-task i with highest J_d;
schedule sub-task i for one iterationm;

now = currentTime;

if (optimum_reached_i) {
actuate plant_i;

} else {
delay_i = now - start_i;

if (J_d(u_i,delay_i) > prev J_d) {
abort optimization;
actuate plant_i;

}
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4.5 Case Study

The proposed termination criterion and dynamic real-time scheduling
strategy have been evaluated in simulation using a second order sys-
tem, a double-integrator:

e (2 ) () ,

The plant was discretized using the sampling interval ~ = 0.1 s. In
the simulations, z = x; was set to be the controlled state and the
constraints |u| < 0.3 and |x3| < 0.1 were enforced.

The MPC controller used in the simulations was implemented as
described in Section 4.2, with prediction horizons H, = 50 and H, = 20
and weighting matrices @ = 1 and R = 0.1.

Simulation Environment and Implementation

Real-time MPC control of the double-integrator process was simulated
using the TrueTime toolbox (see Chapter 5). Using TrueTime it is pos-
sible to perform detailed co-simulation of the MPC control task execut-
ing in a real-time kernel and the continuous dynamics of the controlled
process. Using the toolbox it is easy to simulate different implementa-
tion and scheduling strategies and evaluate them from a control per-
formance perspective.

In the standard implementation, the MPC task is released period-
ically and new instances may not start to execute until the previous
instance has completed. This implementation will allow for task over-
runs without aborting the ongoing computations. The control signal is
actuated as soon as the task has completed.

In the dynamic scheduling scheme, the MPC task is divided into
a mandatory and an optional part as described in Section 4.4. The
mandatory part is scheduled with a distinct high priority, whereas the
priority of the optional part is changed depending on the current value
of the cost index compared to other running MPC tasks.
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Figure 4.3 Control performance when the optimization algorithm is allowed to
finish in every sample. The bad performance is a result of considerable delay and
jitter induced by the large variations in execution time. During the transients
the long execution times cause the control task to miss its next invocation,
inducing sampling jitter. The dashed lines in the velocity and control signal
plots show the constraints used in the MPC formulation.

Simulation of One MPC Controller

The first simulations consider the case of a single MPC task imple-
mented according to the standard task model described in the previous
section. Figure 4.3 shows the result of a simulation where the optimiza-
tion is allowed to finish in each sample. Delay and jitter induced by
the large variations in execution time compromise the optimal control
performance. The constraints are shown by the dashed lines in the ve-
locity and control signal plots. As seen in the plots the constraints are
violated at some points. This is due to the computational delay, which
is not accounted for in the MPC formulation.

Figure 4.4 shows a simulation utilizing the termination criterion of
Section 4.3. The cost index (4.7) is evaluated after each iteration, and
if it has increased since the last iteration, the optimization is aborted
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Figure 4.4 Control performance obtained using the proposed sub-optimal ap-
proach where the QP-optimization may be aborted according to the termination
criterion described in Section 4.3. The performance is increased substantially
compared to Figure 4.3.

and the current control signal is actuated. As can be seen from the
simulations, the control performance has increased significantly.

Figure 4.5 shows a comparison of the number of iterations needed
for full optimization (top) and the number of iterations after which the
optimization was aborted due to an increasing value of J; (bottom).
The execution time of each iteration in the simulation was 10 ms. Av-
erage values for computation times and the number of iterations in
the QP optimization algorithm in each sample is summarized in Table
4.1. The number of necessary iterations denotes the number of QP-
iterations needed to fulfill the stability condition. It can be seen that
the total execution time of the MPC task is reduced by 35 percent
by using the proposed termination criterion. The execution time for
the mandatory part of the algorithm is roughly constant for both ap-
proaches. In the full optimization case, the execution time will exceed
the 100 ms sampling period during the transients, causing the control
task to miss deadlines and experience sampling jitter.
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Figure 4.5 Number of iterations for the QP-solver. The top plot shows the
number of iterations to find the optimum. The bottom plot shows the number
of iterations after which the optimization is terminated and the sub-optimal
control is actuated.

Table 4.1 Average timing values per sample for a simulation.

Optimization Full Sub-optimal
Total time [s] 0.1055 0.0692
Mandatory time [s] 0.0302 0.0297
Number of iterations 8.87 5.66
Number of necessary iterations 1.70 1.89

To quantify the simulation results, the performance loss

Tsim
T= [ (leto) = rO1 + lu)) (4.9

was recorded in both cases. The weighting matrices, @ and R, were
the same as those used in the MPC formulation. The performance loss
was scaled with the loss for an ideal simulation. The ideal case was
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Table 4.2 Performance loss comparison in the single MPC case.

Strategy Loss
Ideal case 1.0

Full optimization 1.35
Sub-optimal 1.09

obtained by simulating full optimization and zero execution time in
each sample. The results are given in Table 4.2.

Dynamic Scheduling of Two MPC Tasks

In the following simulations the dynamic scheduling strategy proposed
in Section 4.4 will be compared to ordinary fixed-priority scheduling.
Two MPC controllers are implemented and executed by two different
tasks running concurrently on the same CPU controlling two differ-
ent double-integrator processes. Both MPC controllers are designed
with the same prediction and control horizons, sampling periods, and
weighting matrices in the MPC formulation.

Both controllers were given square-wave reference trajectories, but
with different amplitudes and periods. The reference trajectory for
MPC1 had an amplitude of 0.3 and a period of 10 s. The corresponding
values for MPC2 were 0.4 and 12 s. The different reference trajecto-
ries will cause the relative computational demands of the MPC tasks
to vary over time. Therefore, it is not obvious which controller task to
give the highest priority. Rather, this should be decided on-line based
on the current state of the controlled process.

The simulation results are shown in Figures 4.6-4.8. The first two
simulations show the fixed-priority cases. MPC1 is given the highest
priority in the first simulation, and MPC2 is given the highest priority
in the second simulation. It is seen that we get different control perfor-
mance, depending on how we choose the priorities. By giving MPC2 the
highest priority, the performance in this particular simulation scenario
is considerably better than if the priorities are reversed.

The performance using dynamic scheduling based on the cost index
(4.7) is shown in Figure 4.8, and the performance is improved signifi-
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Figure 4.6 Control performance using fixed-priority scheduling where MPC1
(solid) is given the highest priority. MPC2 (dashed) is constantly preempted by
the higher priority task, consequently degrading its performance.

cantly. Figure 4.9 shows a close-up of the computer schedule during one
sample. After both tasks have completed the mandatory parts of their
algorithms, the execution trace (the dynamic priority assignments) is
determined based on the values of the cost functions of the individual
tasks. These values after each iteration are shown in the figure. The
termination criterion aborts both tasks at time 0.08.

The scaled performance loss (4.9) was recorded for the individual
control loops and added up to obtain a total loss for each of the different
scheduling strategies. The results are summarized in Table 4.6. It can
be seen that the improvement using the dynamic scheduling is less
significant in the case where MPC1 is given the highest priority. This
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Figure 4.7 Control performance using fixed-priority scheduling where MPC2
(dashed) is given the highest priority. Comparing with Figure 4.6 it can be seen
that the performance is worse using this priority assignment.

is, however, due to the particular reference trajectories applied in this
simulation.

Using the proposed dynamic scheduling strategy we arbitrate the
computing resources according to the current situation for the con-
trolled processes, and the varying computational demands caused by
reference changes and other external signals are taken into account
at run-time. It should be noted that the control performance obtained
using the dynamic cost-based scheduling would have been the same
if the reference trajectories for the two controllers had been switched.
As we have shown this would not have been the case using ordinary

fixed-priority scheduling.
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Figure 4.8 Control performance using the dynamic scheduling approach.
Scheduling based on cost functions makes sure that the most urgent task gets
access to the processor, thus increasing the overall performance.

4.6 Summary

This chapter has presented a flexible implementation approach for
model predictive controllers (MPCs). Premature termination of the
optimization algorithm was exploited to improve control performance.
The resulting stabilizing MPC control sequences were sub-optimal from
an optimization point-of-view, but optimal from a control performance
perspective when taking the computational delay into account.

A delay-dependent cost index was presented to quantify the trade-
off between improving control signal quality resulting from successive
iterations in the optimization algorithm and potential control perfor-
mance degradation due to computational delay. The cost index provided
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Figure 4.9 Computer schedule in a sample using the dynamic scheduling
approach (high = running, medium = preempted, low = idle). The figure shows
the completion of the mandatory part, as well as the value of the cost index

after each iteration of the QP-solver.

Table 4.3 Performance loss for the different scheduling strategies.

Strategy Loss
Ideal case 2.0

Fixed priority / MPC1 highest priority 2.47
Fixed priority / MPC2 highest priority 2.79
Dynamic cost-based scheduling 2.43

guidance for when to terminate the optimization algorithm, while pre-
serving the stability properties of the MPC algorithm.

It has also been shown how the cost index can be used in the con-
text of dynamic real-time scheduling. The cost index has been used
to provide the scheduling algorithm with information to be used for
deciding which of two MPC controllers should be allocated execution
time. Using the index for scheduling, it has been shown how the overall
control performance may be significantly improved compared to tradi-

tional fixed-priority scheduling.
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5

The TrueTime Simulator

5.1 Introduction

To achieve good performance of control systems subject to limited com-
puter resources, the constraints of the implementation platform should
be taken into account at design time. The true effects of timing non-
determinism, e.g., delay and jitter, on control performance are, how-
ever, often very hard to investigate analytically. A natural approach is
then to instead use simulation. However, today’s simulation tools make
it difficult to simulate the true temporal behavior of control loops. What
is normally done in, e.g., Simulink, is to introduce time delays in the
control loops representing average- or worst-case delays.

A more detailed simulation can be performed using TrueTime, which
is a MATLAB/Simulink-based toolbox facilitating simulation of the
temporal behavior of a multitasking real-time kernel executing con-
troller tasks. The tasks are controlling processes that are modeled as
ordinary Simulink blocks. TrueTime also makes it possible to sim-
ulate simple models of communication networks and their influence
on networked control loops. Different scheduling policies may be used
(e.g., the priority-based preemptive scheduling and earliest-deadline-
first (EDF') scheduling described in Chapter 2). A comparison between
a TrueTime simulation model and a traditional simulation model of a
distributed control system is shown in Figure 5.1.
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Figure 5.1 Left: Traditional simulation model of a distributed control system.
Computers and network are modeled as simple delays. Right: TrueTime model
where the execution of tasks and the transmission of messages are simulated
in parallel with the plant dynamics.

TrueTime can be used in several ways, e.g., to study compensation
schemes that adjust the control algorithm based on measurements of
actual timing variations (i.e., to treat the temporal uncertainty as a
disturbance and manage it with feed-forward or gain scheduling). It is
also easy to experiment with flexible approaches to real-time schedul-
ing of controllers, such as, e.g., the feedback scheduling approaches
described in Chapter 3.

This chapter contains a general overview of TrueTime and a de-
tailed description of the kernel implementation and event-based sim-
ulation using Simulink. For a detailed description of how to use the
simulator, see [Henriksson and Cervin, 2003].

The TrueTime development has been ongoing since 1998, and an
early version of the simulator was presented in [Eker and Cervin,
1999]. Modifications and extensions to the simulator are being made
regularly and are posted at the TrueTime web page’.

ITrueTime is available for download at http://www.control.lth.se/"dan/truetime
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Figure 5.2 The TrueTime block library. The Schedule and Monitor outputs
display the allocation of common resources (CPU, monitors, network) during
the simulation.

5.2 Simulator Overview

TrueTime consists of a block library with a computer kernel block and
a network block, as shown in Figure 5.2. The kernel block executes
user-defined tasks and interrupt handlers representing, e.g., I/O tasks,
control algorithms, and network interfaces. The scheduling policies of
the individual kernel blocks are arbitrary and decided by the user. The
network block distributes messages between computer nodes according
to a chosen network model.

The level of simulation detail is chosen by the user—it is often nei-
ther necessary nor desirable to simulate code execution on instruction
level or network transmissions on bit level. Execution times of tasks
and transmission times of messages can be modeled as constant, ran-
dom, or data-dependent. Furthermore, TrueTime allows simulation of
context switching and task synchronization using events or monitors.

The block inputs are assumed to be discrete-time signals, except
the signals connected to the A/D converters of the kernel block, which
may be continuous-time signals. All outputs are discrete-time signals.
The Schedule and Monitors outputs display the allocation of common
resources (CPU, monitors, network) during the simulation.
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Both blocks are event-driven, with the execution determined both
by internal and external events. Internal events are time-related and
correspond to events such as “a timer has expired,” “a task has finished
its execution,” or “a message has completed its transmission.” External
events correspond to external interrupts, such as “a message arrived
on the network” or “the crank angle passed zero degrees.”

The blocks are implemented as variable-step, MATLAB S-functions
and are written in C++. The Simulink engine is only used for timing
and for interfacing with the rest of the model (i.e., the continuous dy-
namics). It should thus be easy to port the blocks to other simulation
environments, provided that these environments support event detec-
tion (zero-crossing detection).

5.3 The Kernel Block

The kernel block S-function simulates a computer with a simple but
flexible real-time kernel, A/D and D/A converters, a network inter-
face, and external interrupt channels. Internally, the kernel maintains
several data structures that are commonly found in a real-time kernel:
a ready queue, a time queue, and records for tasks, interrupt handlers,
monitors and timers that have been created for the simulation.

The execution of tasks and interrupt handlers is defined by user-
written code functions. These functions can be written either in C++
(for speed) or as MATLAB m-files (for ease of use). Control algorithms
may also be defined graphically using ordinary discrete Simulink block
diagrams.

Tasks

The task is the main abstraction in the TrueTime simulation environ-
ment. An arbitrary number of tasks can be created to run in the True-
Time kernel. Tasks may also be created dynamically as the simulation
progresses. Tasks are used to simulate both periodic activities, such as
controller and I/0 tasks, and aperiodic activities, such as communica-
tion tasks and event-driven controllers. Aperiodic tasks are executed
by the creation of task instances (jobs). All pending jobs are inserted
in a job queue which is sorted by release time. For periodic task, an
internal timer is set up to periodically create jobs for the task.
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Each task is characterized by a number of static and dynamic at-
tributes. The static attributes of a task include

¢ a relative deadline,

® a priority,

® a worst-case execution time, and
¢ a period (if the task is periodic).

These attributes are kept constant throughout the simulation, unless
explicitly changed from the application code. The worst-case execution
time is only used if an execution-time overrun handler is attached
to the task (see below). Also note that the worst-case execution time
does not determine the actual execution time of the task. Rather, this
is specified by the user in the code function of the task.

In addition to these attributes, each task instance has a number
of dynamic attributes associated with it. These attributes are updated
by the kernel as the simulation progresses, and include

¢ an absolute deadline,
® a release time, and

¢ an execution time budget (by default equal to the worst-case ex-
ecution time at the release of the job).

These attributes may also be changed from the user code during simu-
lation. Depending on the scheduling policy, changing an attribute may
lead to a context switch. E.g., under EDF scheduling, changing the ab-
solute deadline of a task will result in a re-sorting of the ready queue.

In accordance with the Real-Time Specification for Java (RTSJ)
[Bollella et al., 2000], it is furthermore possible to attach two overrun
handlers to each task: a deadline overrun handler (triggered if the task
misses its deadline) and an execution time overrun handler (triggered
if the task executes longer than its worst-case execution time).
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Interrupts and Interrupt Handlers

Interrupts may be generated in two ways: externally or internally.
An external interrupt is associated with one of the external interrupt
channels of the kernel block. The interrupt is triggered when the signal
of the corresponding channel changes value. This type of interrupt
may be used to simulate engine controllers that are sampled against
the rotation of the motor or distributed controllers that execute when
measurements arrive on the network.

Internal interrupts are associated with timers. Both periodic timers
and one-shot timers can be created. The corresponding interrupt is
triggered when the timer expires. Timers are also used internally by
the kernel to implement the overrun handlers that may be associated
with each task.

When an external or internal interrupt occurs, a user-defined inter-
rupt handler is scheduled to serve the interrupt. An interrupt handler
works much the same way as a task, but is scheduled on a higher pri-
ority level. Interrupt handlers will normally perform small, less time-
consuming tasks, such as generating an event or triggering the execu-
tion of a task. An interrupt handler is defined by a name, a priority,
and a code function. External interrupts also have a latency during
which they are insensitive to new invocations.

Priorities and Scheduling

Simulated execution occurs at three distinct priority levels: the inter-
rupt level (highest priority), the kernel level, and the task level (lowest
priority). The execution may be preemptive or non-preemptive; this can
be specified individually for each task and interrupt handler.

At the interrupt level, interrupt handlers are scheduled according
to fixed priorities. At the task level, dynamic-priority scheduling may
be used. At each scheduling point, the priority of a task is given by
a user-defined priority function, which is a function of the task at-
tributes. This makes it easy to simulate different scheduling policies.
For instance, a priority function that returns a priority number implies
fixed-priority scheduling, whereas a priority function that returns the
absolute deadline implies earliest-deadline-first scheduling. Predefined
priority functions exist for rate-monotonic, deadline-monotonic, fixed-
priority, and earliest-deadline-first scheduling.
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Figure 5.3 The execution of the code associated with tasks and interrupt
handlers is modeled by a number of code segments with different execution
times. Execution of user code occurs at the beginning of each code segment.

Code

The code associated with tasks and interrupt handlers is scheduled
and executed by the kernel as the simulation progresses. The code is
normally divided into several segments, as shown in Figure 5.3. The
code can interact with other tasks and with the environment at the
beginning of each code segment. This execution model makes it pos-
sible to model input-output latencies, blocking when accessing shared
resources, etc. The number of segments can be chosen to simulate an
arbitrary time granularity of the code execution. Technically it would,
e.g., be possible to simulate very fine-grained details occurring at the
machine instruction level, such as race conditions. However, that would
require a large number of code segments.

The simulated execution time of each segment is returned by the
code function, and can be modeled as constant, random, or even data-
dependent. The kernel keeps track of the current segment and calls
the code functions with the proper argument during the simulation.
Execution resumes in the next segment when the task has been run-
ning for the time associated with the previous segment. This means
that preemption by higher-priority activities and interrupts may cause
the actual delay between execution of segments to be longer than the
execution time.
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Listing 5.1 Example of a standard code function written in MATLAB code.
The local memory of the controller task is represented by the data structure
data. This stores the controller gain and the control signal between invocations
of different code segments.

function [exectime,data] = myController (segment,data)
switch segment,
case 1,
data.y = ttAnalogIn(1);
data = calculateOutput(data);
exectime = 0.002;
case 2,
ttAnalogOut(1,data.u);
data = updateState(data);
exectime = 0.003;
case 3,
exectime = -1; % finished
end

Listing 5.1 shows an example of a code function corresponding to
the time line in Figure 5.3. The same example implemented as a C
function is shown in Listing 5.2. The function implements a standard
controller with a calculate part and an update part. In the first seg-
ment, the plant is sampled and the control signal is computed. In the
second segment, the control signal is actuated and the controller states
are updated. The third segment indicates the end of execution in this
sample by returning a negative execution time.

The data structure data represents the local memory of the task
and is used to store the control signal and measured variable between
calls to the different segments. A/D and D/A conversion is performed
using the kernel primitives ttAnalogIn and ttAnalogQut.

Note that the input-output latency of this controller will be at least
2 ms (i.e., the execution time of the first segment). However, if there
is preemption from other high-priority tasks, the actual input-output
latency will be longer.
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Listing 5.2 The C implementation of the code example in Listing 5.1.

double myController(int segment, void* data) {
Ctrl_Datax d = (Ctrl_Data*) data;

switch (segment) {

case 1:
d->y = ttAnalogIn(1l);
calculateOutput(d);
return 0.002;

case 2:
ttAnalogOut (1, d->u);
updateState(d) ;
return 0.003;

case 3:
return FINISHED; // end of execution

}

}

Graphical Controller Representation

As an alternative to textual implementation of the controller algo-
rithms, TrueTime also allows for graphical representation of the con-
trollers. Controllers represented using ordinary discrete Simulink
blocks may be called from within the code functions, using the built-in
function ttCallBlockSystem.

A block diagram of an ordinary PI-controller is shown in Figure 5.4.
The block system has two inputs, the reference signal and the process
output, and two outputs, the control signal and the execution time.
The use in a code function is given by Listing 5.3.

Synchronization

Synchronization between tasks is supported by monitors and events.
Monitors are used to guarantee mutual exclusion when accessing com-
mon data. Events can be associated with monitors to represent con-
dition variables. Events may also be free (i.e., not associated with a
monitor). This feature can be used to obtain synchronization between
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Figure 5.4 Controllers represented using ordinary discrete Simulink blocks
may be called from within the code functions. The example above shows a PI
controller.

tasks where no conditions on shared data are involved. The example
in Listing 5.4 shows the use of a free event input_event to simulate
an event-driven controller task. The corresponding ttNotifyAll-call
on the event is typically performed in an interrupt handler associated

Listing 5.3 Example of a code function calling the PI-controller block diagram
in Figure 5.4 to compute the control signal.

function [exectime,data] = PIController (segment,data)
switch segment,

case 1,
inp(1) = ttAnalogIn(1);
inp(2) = ttAnalogIn(2);

outp = ttCallBlockSystem(inp, ’PI_Controller’);
data.u = outp(1);
exectime = outp(2);

case 2,
ttAnalogOut(1,data.u);
exectime = 0.003;

case 3,
exectime = -1; % finished

end
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with an external interrupt port. (An alternative implementation of an
event-based task, using the kernel primitive ttCreateJob, will be given
in Listing 5.5.)

Output Graphs

Depending on the simulation, several different output graphs are gen-
erated by the TrueTime blocks. Each kernel block will produce two
graphs, a computer schedule and a monitor graph, and the network
block will produce a network schedule. The computer schedule will
display the execution trace of each task and interrupt handler during
the course of the simulation. If context switching overhead is simu-
lated, the graph will also display the execution of the kernel.

For an example of such an execution trace, see Figure 5.7. If the
signal is high it means that the task is running. A medium signal in-
dicates that the task is ready but not running (preempted), whereas
a low signal means that the task is idle. In an analogous way, the
network schedule shows the transmission of messages over the net-

Listing 5.4 Example of a code function implementing an event-based con-
troller.

function [exectime,data] = eventController (segment,data)
switch segment,
case 1,
ttWait (’input_event’);
exectime = 0.0;
case 2,
data.y = ttAnalogIn(1);
data = calculateOutput(data);
exectime = 0.002;
case 3,
ttAnalogOut(1,data.u);
data = updateState(data);
exectime = 0.003;
case 4,
ttSetNextSegment (1); % loop back
end
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work, with the states representing sending (high), waiting (medium),
and idle (low). The monitor graph shows which tasks are holding and
waiting on the different monitors during the simulation. Generation of
these execution traces is optional and can be specified individually for
each task, interrupt handler, and monitor.

5.4 The Network Block

The network block is event-driven and executes when messages enter
or leave the network. When a node tries to transmit a message, a trig-
gering signal is sent to the network block on the corresponding input
channel. When the simulated transmission of the message is finished,
the network block sends a new triggering signal on the outport chan-
nel corresponding to the receiving node. The transmitted message is
put in a buffer at the receiving computer node.

A message contains information about the sending and the receiv-
ing computer node, arbitrary user data (typically measurement signals
or control signals), the length of the message, and optional real-time
attributes such as a priority or a deadline.

The network block simulates medium access and packet transmis-
sion in a local area network. Six simple models of networks are cur-
rently supported: CSMA/CD (e.g. Ethernet), CSMA/AMP (e.g. CAN),
Round Robin (e.g. Token Bus), FDMA, TDMA (e.g. TTP), and Switched
Ethernet. The propagation delay is ignored, since it is typically very
small in a local area network. Only packet-level simulation is sup-
ported, i.e., it is assumed that higher protocol levels in the kernel
nodes have divided long messages into packets.

Configuring the network block involves specifying a number of gen-
eral parameters, such as transmission rate, network model, and prob-
ability for packet loss. Protocol-specific parameters that need to be
supplied include, e.g., the time slot and cyclic schedule in the case of
TDMA. For an example of how to configure the individual TrueTime
nodes for network communication, see Listing 5.5.
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Figure 5.5 TrueTime simulation model of the networked control system.

5.5 Example: A Networked Control System

As an example of a simulation in TrueTime, we consider a general sim-
ulation of a distributed control system, wherein the effects of schedul-
ing in the CPUs and simultaneous transmission of messages over the
network can be studied in detail. The TrueTime model of the system
is shown in Figure 5.5.

The model contains four computer nodes connected by one network
block. The time-driven sensor node contains a periodic task, which
periodically samples the process and transmits the sample package to
the controller node. The controller node contains an event-driven task
that is triggered each time a sample arrives over the network from
the sensor node. Upon receiving a sample, the controller computes a
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control signal, which is then sent to the event-driven actuator node,
where it is actuated. The model also contains an interference node with
a periodic task generating random interfering traffic over the network.

Initialization of the Actuator Node

As a complete initialization example, Listing 5.5 shows the code needed
to initialize the actuator node in this particular example. The kernel
block contains one task and one interrupt handler, and their execution
is defined by the code functions actCode and rcvCode, respectively.
The task and interrupt handler are created in the actuator_init ini-
tialization function. The node is “connected” to the network using the
function ttInitNetwork by supplying a node identification number and
the name of the interrupt handler (’rcv_hdl’) to be executed when
a message arrives to the node. In the ttInitKernel function the ker-
nel is initialized by specifying the number of A/D and D/A channels,
the scheduling policy, and the simulated time for a full context switch
(zero in this case). The built-in priority function prioFP specifies fixed-
priority scheduling.

Simulations

In the following simulations, we will assume a CAN-type network
where transmission of simultaneous messages is decided based on
package priorities. The controller node contains a PD-controller task
designed for a 10 ms sampling interval. The sampling interval is en-
forced by the time-driven task in the sensor node sending samples
periodically to the controller node.

The execution time of the controller is 0.5 ms and the ideal trans-
mission time from one node to another is 1.5 ms. The ideal round-trip
delay is thus 3.5 ms. The packages generated by the interference node
have high priority and occupy 50% of the network bandwidth. We fur-
ther assume that an interfering, high-priority task with a 7 ms period
and a 3 ms execution time is executing in the controller node. Colliding
transmissions and preemption in the controller node will thus cause
the round-trip delay to be even longer on average and time-varying.
The resulting degraded control performance can be seen in the simu-
lated step response in the top plots of Figure 5.6. The execution of the
tasks in the controller node and the transmission of messages over the
network can be studied in detail in Figure 5.7.
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Listing 5.5 Complete code for the actuator node in the networked control
system example. Instances of the aperiodic actuator task are created using
ttCreateJob.

%% Code function for the actuator task
function [exectime,data] = actCode(segment,data)
switch segment,
case 1,
data.u = ttGetMsg; ' read from network input buffer
exectime = 0.0005;

case 2,
ttAnalogOut(l, data.u);
exectime = -1;
end

%% Code function for the network interrupt handler
function [exectime,datal] = rcvCode(segment,data)
ttCreateJob(ttCurrentTime, ’act_task’);

exectime = -1;

%% Initialization function
function actuator_init

nbrO0fInputs = 0;
nbrO0fOutputs = 1;
ttInitKernel (nbrOfInputs, nbrOfOutputs, ’prioFP’, 0);

priority = 5;
deadline = 0.010;
ttCreateTask(’act_task’, deadline, priority, ’actCode’);

ttCreateInterruptHandler(’rcv_hdl’, 1, ’rcvCode’);
ttInitNetwork(2, ’rcv_hdl’); % node number 2 in the network

A simple compensation is introduced to cope with the delays. The
packages sent from the sensor node are now time-stamped, which
makes it possible for the controller to determine the actual delay from
sensor to controller. The total delay is estimated by adding the expected
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Figure 5.6 The top plot shows the degraded control performance resulting
from interfering network messages and an interfering task in the controller
node. The bottom plot shows the improved performance resulting from the im-
plementation of delay-compensation in the controller node.

value of the delay from controller to actuator. The control signal is then
calculated based on linear interpolation among a set of controller pa-
rameters pre-calculated for different delays. Using this compensation,
better control performance is obtained, as seen in the bottom plots of
Figure 5.6.
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Figure 5.7 Close-up of schedules showing the allocation of common resources:
network (top) and controller node (bottom). A high signal means sending or
executing, a medium signal means waiting, and a low signal means idle.

5.6 Kernel Implementation Details

This section will give a brief description of the implementation of the
TrueTime kernel. The main data structures will be described as well
as the kernel implementation. It will also be shown how to achieve
event-based simulation in Simulink, using the zero-crossing detection
mechanism.

Kernel Data Structures

The main data structure of the TrueTime kernel is a C++ class called
RTsys. An instance (rtsys) of this class is created in the initialization
step of the kernel S-function. The rtsys object is stored in the UserData
field of the kernel block between simulation steps. Among others, the
RTsys class contains the following attributes:
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class RTsys {

public:

double time; // Current time in simulation
doublex inputs; // Vector of input port values
double* outputs; // Vector of output port values
Task* running; // Currently running task

List* readyQ; // Contains tasks ready for execution
List* timeQ; // Contains tasks and timers

List* taskList; // A list containing all created tasks

List* handlerList;
List* monitorList;
List* eventList;

double (*prioFcn)(Task*); // Priority function
s

The ready queue and time queue are sorted linked list. The elements
in the time queue (tasks and timers) are sorted according to release
times and expiry times. The tasks in the ready queue are sorted accord-
ing to the priority function prioFcn, which is a function that returns
a (possibly dynamic) priority number from a Task instance.

The Task class contains the following basic attributes:

class Task {
public:
char* name;
double wcExecTime;
double deadline;
double assignedPriority;
double priority; // dynamic priority (priority inheritance)
void *data;

double (*codeFcn) (int, voidx*); // Code function written in C++
char* codeFcnMATLAB; // Name of m-file code function

Handler* deadlineORhandler; // deadline overrun handler
Handler* exectimeORhandler; // execution-time overrun handler
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Job* currentJob; // Job currently served
List* jobQ; // List of pending jobs
s

The kernel implements priority inheritance to avoid priority inversion.
Therefore each task has a dynamic priority value that may be raised
while executing inside a monitor. The code function of the task is rep-
resented either as a function pointer in the C++ case or the name of
a MATLAB m-file. The currently running job is given by the pointer
currentJob. Pending jobs are stored in the job queue of the task.

The Job class contains the following basic attributes:

class Job {

public:
double execTime; // remaining execution time of current segment
double lastStart; // last time the job was resumed
double absDeadline; // absolute deadline of job

double release; // release time of job
double budget; // remaining execution time budget
int segment; // current segment of the code function

};

All dynamic attributes of a task are contained in the Job class. The
variable lastStart is used to store successive resume times of the
job. This is used to set up the timers that are used to implement the
execution-time overrun handling (see scheduling hooks below).

The Handler class contains the following basic attributes:

class Handler {
public:
char* name;
double execTime;
double priority;
int segment;
void *data;

double (*codeFcn) (int, void*); // Code function written in C++
char* codeFcnMATLAB; // Name of m-file code function
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Figure 5.8 The various scheduling hooks that can be used to attach arbitrary
functionality to the scheduling algorithm.

Writing a Priority Function

Based on the above data structures it is straight-forward to write pri-
ority functions implementing arbitrary scheduling schemes. E.g., the
priority function implementing standard EDF scheduling is given as

double prioEDF(Task* task) {

return task->currentJob->absDeadline;

}

Scheduling Hooks

To facilitate arbitrary dynamic scheduling mechanisms, it is possible
to attach small pieces of user-defined code (scheduling hooks) to each
task. These hooks are executed at different stages during the simu-
lation of the task, as shown in Figure 5.8. The hooks can, e.g., be
used to monitor different scheduling schemes and keep track of con-
text switches and deadline overruns. By default, the hooks contain code
to trigger the worst-case execution time and deadline overrun handlers
possibly associated with the different tasks. This is summarized below.

e Release hook: If the released task has an associated deadline
overrun handler, a timer is created. The expiry of this timer is
set to the absolute deadline of the task. It may be the case that,
because of previous overruns, the absolute deadline of the task
has already expired when the task instance is released. In this
case the overrun handler is activated immediately.

e Start hook: If the task has an associated execution-time overrun
handler, another timer is created. The expiry of the timer is set
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to the current time plus the remaining execution-time budget.
The start time of the task is recorded.

e Suspend hook: The execution-time budget is decreased based
on the time elapsed since the task last began execution. The
execution-time overrun timer is removed.

e Resume hook: The execution-time overrun timer is created again.
The new start time is recorded.

e Finish hook: The execution-time budget is updated. Both overrun
timers are removed.

The Kernel Function

The TrueTime real-time kernel is implemented in a function runKernel
that is called by the Simulink S-function call-back procedures at ap-
propriate times during the simulation. See next section for timing im-
plementation details.

This function manipulates the basic data structures of the kernel,
such as the ready queue and the time queue. It is also from this func-
tion the code functions for tasks and interrupt handlers are called.
The kernel keeps track of the current segment and updates it when
the time associated with the previous segment has elapsed. The hooks
mentioned above are also called from this function.

A simple model for how the kernel works is given by the pseudo
code in Listing 5.6. Note that interrupt handlers are not treated in the
pseudo code. However, they are handled essentially in the same way
as the tasks.

Simulink Timing Details

The TrueTime blocks are event-driven and support external interrupt
handling. Therefore, the blocks have a continuous sample time, and the
timing of the block is implemented using the Simulink zero-crossing
functionality [The Mathworks, 2001b].
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Listing 5.6 Pseudo-code for the TrueTime kernel function.

double runKernel() {

// Compute time elapsed since last invocation
timeElapsed = currentTime - prevHit;

prevHit = currentTime;

nextHit = 0.0;

while (nextHit == 0.0) {
// Count down execution time for current task instance
// and check if it has finished its execution
if (there exists a running task) {
Decrease remaining exec. time with timeElapsed;
if (remaining execution time == 0.0) {
Execute next segment of the code function;
Update remaining execution time;
Update execution time budget;
if (remaining execution time < 0.0) {
// Negative execution time = Job finished
Remove the task from the ready queue;
Execute finish-hook;
Simulate saving context;
if (there are pending jobs) {
Move the next job to the time queue;

// Go through the time queue
// (sorted after release and expiry)
for (each task) {
if (release time - currentTime == 0.0) {
Move the task from time queue to the ready queue;
Execute release-hook;
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Listing 5.6 (Continued)

}
for (each timer) {
if (expiry time - currentTime == 0.0) {
Activate handler associated with timer;
Remove timer from timer queue;
if (timer is periodic) {
Increase the expiry time with the period;
Insert the timer in the timer queue;

// Dispatching

Make the first task in the ready queue the running task;

if (the task is being started) {
Execute the start-hook for the task;
Simulate restoring context;

} else if (the task is being resumed) {
Execute the resume-hook for the task;
Simulate restoring context;

}

if (another task is suspended) {

Execute suspend-hook of the previous task;
Simulate saving context;

// Determine next invocation of the kernel function
timel = remaining execution time of the current task;
time2 = next release of a task from the time queue;
time3 = next expiry time of a timer;

nextHit = min(timel, time2, time3);

} // loop while nextHit = 0.0
return nextHit;
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As seen in Listing 5.6, the next time the kernel should wake up
(e.g., because a task is to be released from the time queue or a task
has finished its execution) is denoted nextHit. If there is no known
wake-up time, this variable is set to infinity. The basic structure of the
zero-crossing function is

static void mdlZeroCrossings(SimStruct *S) {

Store all inputs;

if (any external interrupt input has changed value) {
nextHit = ssGetT(S);

}

ssGetNonsampledZCs(S) [0] = nextHit - ssGetT(S);

This will ensure that the Simulink call-back function mdl0Outputs
executes every time an internal or external event has occurred. The
kernel function (runKernel) is only called from md10utputs since this
is where the outputs (D/A, schedule, network) can be changed.

Since several kernel and network blocks may be connected in a
circular fashion, direct feedthrough is not allowed. We exploit the fact
that, when an input changes as a step, md10utputs is called, followed by
mdlZeroCrossings. Since direct feedthrough is not allowed, the inputs
may only be checked for changes in md1ZeroCrossings. There, the zero-
crossing function is changed so that the next major step occurs at the
current time.

Commands and Real-Time Primitives

To give an overview of the functionality of TrueTime, a summary of
the available functions and commands is given in Table 5.1. The table
is divided into three sections. The first section contains commands
that are typically used in the initialization script of a simulation. The
second section contains commands for setting and getting task (or job)
attributes. Finally, the third section contains real-time primitives that
may be used in the task code.

Based on the kernel data structures it is easy to extend the True-
Time functionality with new functions. As examples, follows below
the TrueTime implementation of the standard real-time primitives,
sleepUntil, sleep, and setPriority.
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void ttSleepUntil(double time) {

// Set new release time
rtsys—->running->currentJob->release = time;

// Insert into time queue

rtsys->timeQ->insertSorted(new TaskNode(rtsys->running));
// Remove from ready queue (running is first in queue)
rtsys->readyQ->deleteFirst();

rtsys->running = NULL;

void ttSleep(double duration) {
ttSleepUntil(rtsys->time + duration);
}

void ttSetPriority(double prio) {

Task* task = rtsys->running;
if (task->priority - task->assignedPriority < 0.0) {
// Priority inheritance, do not change the priority now
} else {
task->priority = prio;
}
task->assignedPriority = prio;
// Possible reordering of readyQ
TaskNode* tn = rtsys->readyQ->getFirst();
rtsys->readyQ->removeNode (tn) ;
rtsys->readyQ->insertSorted(tn) ;

5.7 Summary

This chapter has described TrueTime, a MATLAB/Simulink toolbox
that facilitates co-simulation of continuous plant dynamics, controller
task execution in real-time kernels, and network transmissions. Arbi-
trary scheduling policies and various network protocols may be eval-
uated from a control performance perspective. The event-based kernel
implementation was detailed.
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Table 5.1 Summary of the TrueTime commands.

Command Description
ttInitKernel Initialize the kernel.
ttInitNetwork Initialize the network interface.

ttCreatePeriodicTask

ttCreateTask

ttCreateInterruptHandler
ttCreateExternalTrigger

Create a task with periodic jobs.
Create a task (but no jobs).
Create an interrupt handler.

Associate an interrupt handler with an external
interrupt channel.

ttCreateMonitor Create a monitor.

ttCreateEvent Create an event variable, possibly associated
with a monitor.

ttCreateMailbox Create a mailbox for inter-task communication.

ttNoSchedule Switch off the schedule output graph for a spe-
cific task or interrupt handler.

ttNonPreemptable Make a task non-preemptable.

ttAttachDLHandler Attach a deadline overrun handler to a task.

ttAttachWCETHandler Attach a worst-case execution time overrun han-
dler to a task.

ttAttachPrioFcn ? Attach an arbitrary task priority function to be
used by the scheduler.

ttAttachHook? Attach a scheduling hook to a task.

ttSetDeadline Set the relative deadline of a task.

ttSetAbsDeadline Set the absolute deadline of a job.

ttSetPriority Set the priority of a task.

ttSetPeriod Set the period of a periodic task.

ttSetBudget Set the execution time budget of a job.

ttSetWCET Set the worst-case execution time of a task.

ttGetRelease Get the release time of a job.

ttGetDeadline Get the relative deadline of a task.

ttGetAbsDeadline Get the absolute deadline of a job.

ttGetPriority Get the priority of a task.

2Available in the C++ API only.
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Table 5.1 (Continued)

Command Description

ttGetPeriod Get the period of a periodic task.
ttGetBudget Get the execution time budget of a job.
ttGetWCET Get the worst-case execution time of a task.
ttCreateJob Create a job with a given release time.
ttKillJob Kill the running job of a task.
ttEnterMonitor Attempt to enter a monitor.

ttExitMonitor Exit a monitor.

ttWait Wait for an event.

ttNotifyAll Notify all tasks waiting for an event.
ttTryFetch Fetch a message from a mailbox.

ttTryPost Post a message to a mailbox.
ttCreateTimer Create a one-shot timer and associate an inter-

ttCreatePeriodicTimer

ttRemoveTimer
ttCurrentTime
ttSleepUntil
ttSleep
ttAnalogln
ttAnalogQOut
ttSetNextSegment

ttInvokingTask

ttCallBlockSystem

ttSendMsg
ttGetMsg

rupt handler with the timer.

Create a periodic timer and associate an inter-
rupt handler with the timer.

Remove a specific timer.

Get the current time in the simulation.

Put a task to sleep until a certain point in time.
Put a task to sleep for a certain duration.

Read the value of an analog input.

Write a value to an analog output.

Set the next segment to be executed in the code
function.

Get the name of the task that invoked an inter-
rupt handler.

Call a Simulink block diagram from within a
code function.

Send a message over the network.

Get a message that has been received over the
network.

83



Chapter 5. The TrueTime Simulator

84



6

Simulation Case Studies

6.1 Introduction

This chapter contains two simulation case studies performed using the
TrueTime simulator. The first case study simulates communication and
control of a three-joint robot system over TCP. The TCP communica-
tion layer is emulated on top of the link-layer protocols provided by
the TrueTime network block. The second case study simulates a web
server application where individual server threads are emulated using
TrueTime tasks.

6.2 Network Communication and Control

This work was performed within the EU FP5 IST project Hard Real-
time CORBA (HRTC). The objective of this project was to provide so-
lutions that allow the distributed object model CORBA [Object Man-
agement Group, 2003] to be applied in hard real-time applications.
The work was focused on replacing the standard communication
protocols used in ordinary CORBA and RT-CORBA with protocols that
provide better temporal determinism. Ordinary CORBA communica-
tion is based on the IIOP (Internet Inter-operable Orb Protocol) which
is layered on top of TCP/IP. Within the project IIOP was replaced by
both TTP/C and by real-time switched Ethernet [Martinsson, 2002].
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The CORBA object interface was restricted to one-way invocations
only, i.e., a CORBA request from a client to a server does not gener-
ate any reply message back from the server to the client. In order to
demonstrate the real-time properties of the different communication
alternatives TrueTime was used. Networked control of a three-joint
robot was used as the main example. In the sequel the experiment
involving ordinary CORBA over IIOP (TCP/IP) is described.

Simulating TCP in TrueTime

The TrueTime network block simulates the basic properties of standard
MAC (media access control) layer protocols. These protocols constitute
the link layer in the Internet protocol stack, and are typically imple-
mented in a network interface card, see [Kurose and Ross, 2001].

It is, however, straight-forward to also implement higher level pro-
tocols using TrueTime. Transport layer protocols, such as TCP and
UDP, are usually implemented in software in the end systems, and
may be emulated directly in the various TrueTime computer nodes
using dedicated tasks or interrupt handlers.

A simple TCP implementation will be outlined below. In the simula-
tion it is possible to specify TCP parameters such as sizes of the buffers
at the receiving and sending ends, receive windows, maximum segment
size (MSS), and acknowledgment time-outs. The receive windows are
used to implement flow control. The window gives an indication of the
free buffer space at the receiving side, and dictates how much data
that can be transmitted on that specific connection. The window size
is constantly updated by the receiving node, as messages are being
read from the application layer. This information is sent back to the
sender with each acknowledgment.

Opening a TCP Connection Since TCP is connection-oriented,
a socket connection must be established before two nodes can start
sending and receiving messages. When a connection is set up, sending
and receiving buffers are created at each end of the connection. Special
TrueTime sending and receiving tasks are also associated with each
connection. Using tasks for the processing of incoming and outgoing
TCP packets, it is possible to simulate overhead in the TCP layer. The
functionality performed by these tasks will be described below.
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Sending a TCP Data Message When sending a message over TCP
it is divided in segments of size MSS which are sent in sequence to
the receiving end, where the message is recreated. In addition to the
data, each TCP data segment includes a header containing fields for
source and destination identifiers, sequence number, acknowledgment
number, and window size. When a segment is transmitted, a timer is
created. If no acknowledgment has been received at the expiry of the
timer, the segment is resent. The sending of a message is summarized
in the following TrueTime pseudo-code

double TCPSend_code(int seg, void *data) {

i= 0;
ready = false;

// Send all segments in send buffer and set up timers
while (!ready) {
// Take next segment from send buffer
segment = sendBuffer->get(i);
// Send if window allows
if (segment->segqNbr <= sendWindow) {
segment->ackNbr = lastRcv;
ttSendMsg (segment->destination, segment, segment->size);
time = ttCurrentTime() + TIMEOUT;
Create timer for resending at t = time;
} else {
// Send window full, can not send
ready = true;

}

// Increase buffer index

i++;

if (i == sendBuffer->currentSize()) {

// No more segments in send buffer
ready = true;
}
}
return i * SND_OVERHEAD_TIME; // task execution time
}
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Receiving a TCP Data Segment When a TCP segment arrives at
a node, it is handled by a receiving task. An incoming TCP segment
may be either a data segment or an acknowledgment of a previously
transmitted segment. In the first case, it is checked if all preceding
segments have been received. In this case the data is put in the receive
buffer, otherwise the segment is discarded. An acknowledgment, with
the latest received sequence number, is sent back to the source node.
When all segments of a message have been received, the application
layer is notified.

In the case that the incoming segment is a first-time acknowledg-
ment, it works as a cumulative acknowledgment of all previous data,
and the corresponding timers are removed. If we get a duplicate ac-
knowledgment, however, this indicates that segments in between have
been lost. In this case a fast re-transmit is performed, before the actual
expiry of the timers of the segments. The implementation is summa-
rized in the following TrueTime pseudo-code

double TCPReceive_code(int seg, void *data) {

// Get segment from data link layer
segment = ttGetMsg();

if (segment contains data) {

if (segment->seqNbr == lastRcv) {
// have got all previous segments, put in buffer
rcvBuffer->put (segment) ;
lastRcv = segment->segNbr + segment->size;
Increase size of receive window;
} else {
// Out-of-order segment, ignore
}
// Send Ack
ack->segNbr = -1;
ack->ackNbr = lastRcv;
ack->window = rcvWindow;
ack->source = segment->destination;
ack->destination = segment->source;
ttSendMsg(ack->destination, ack, ACKSIZE);
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} else {
// We received an acknowledgement segment
sendWindow = segment->window;
if (segment->ackNbr > lastAck) {
// new Ack
lastAck = segment->ackNbr;
Remove timeout timers;
Delete segments from send buffer;
} else {
// same Ack as previously received
Packets was lost, fast re-transmit;
}
}
return RCV_OVERHEAD_TIME; // task execution time
}

Communicating with the Application Layer The sending task
is triggered from the application layer when a user wants to send a
message on the specific connection. Then the message is divided in
segments and stored in the send buffer for subsequent transmission to
the receiver. When the message is later reassembled at the receiving
end the application layer is notified and the message can be read from
the receive buffer.

The following example shows the code function for a controller node
communicating with a sensor and actuator node over TCP.

double ctrl_code(int seg, void *data) {

double *m;
Task_Data* d = (Task_Datax*) data;

switch(seg) {
case 1:
ttTCPReceive(sensConn); // Blocks on sensor connection
// until a message arrives
// Notified from TCP layer
return 0.0;
case 2:
m = (doublex) ttTCPGet(sensConn); // Get TCP message data
// from receive buffer
d->y = *m;
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delete m;

r = ttAnalogIn(1);
// Compute control signal
d->u = d->Kx(r - d->y);

return 0.0005;
case 3:
// Try to send a 4-byte message
if (!ttTCPSend(4)) {
// Send buffer full, can not send
ttSetNextSegment(1); // Loop and wait for new message
}

return 0.0;

case 4:
m = new double;
*m = d->u;

ttTCPPut (actConn, m, 4); // Send 4-byte message to actuator
// Triggers the sending TCP task
ttSetNextSegment(1); // Loop and wait for new message
return 0.0;
}
}

Simulations

The simulation setup included a sensor node, a controller node, and an
actuator node communicating over TCP to control a three-joint robot
system. The dynamics of the robot model was given by the standard
model

M(6)6+C(6,0)0 +G(O) =1 (6.1)
where 6 = (61, 8, 03)7 is the vector of joint angles of the robot, M (0) is
the mass matrix, C(0, ) is the Coriolis matrix, and G(6) is the gravity
matrix. The simulation model also contained a friction term.

The robot was controlled using a computed-torque control law
t=C(6,0)6 + G(0) + M(6)6, 62)
— M(6)Ka(6 — 6,) — M(6)K,(6 — 6,) .

The underlying network protocol used in the simulations was or-
dinary 100 Mbit Ethernet with the CSMA/CD protocol. This protocol
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Figure 6.1 The result of the robot simulation without disturbing network
traffic. Sensor values and control signals are communicated between a sensor
node, controller node, and an actuator node over TCP.

uses exponential back-off in the case of collisions, which may cause
long and unpredictable waiting times. The sampling frequency was 4
kHz, and enforced by the time-triggered task in the sensor node.

The results of the simulation were fed into the virtual robot envi-
ronment presented in [Olsson, 2003] for visualization. The reference
trajectory corresponded to a circle and the result of a simulation is
shown in Figure 6.1.

By introducing disturbing traffic on the network, the effects of the
unpredictability in the network communication can be studied. The
schedule plots in Figure 6.2 and Figure 6.3 show the result of a net-
work burst at time 0.2. As seen in Figure 6.2, the network traffic runs
smoothly prior to the burst with periodic communication between the
nodes. The communication in each period starts with the sensor node
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Figure 6.2 The network traffic just prior to the disturbance burst. Data mes-
sages and acknowledgments are communicated without interference with a sam-
pling frequency of 4 kHz.

sending a data message to the controller node, which responds with
an acknowledgment. The same pattern is seen in the communication
between the controller and actuator nodes.

Figure 6.3 shows the network schedule during and after the burst.
As a result of the collisions and the random waiting times of Ethernet,
considerable jitter and delays are introduced in the communication.
The resulting degraded control performance is shown in Figure 6.4,
and it is seen how the disturbed communication causes deviations from
the reference trajectory.

A communication scheme better suited for real-time traffic is swit-
ched scheduled Ethernet [Martinsson, 2002], which combines the at-
tractive features of Ethernet (fast and inexpensive) with real-time
guarantees. Using switched Ethernet each node has a full duplex con-
nection to the switch, which isolates the collision domains. Still some
non-determinism may be introduced by the switch, mainly caused by
buffering. However, by making certain restrictions on how much traf-
fic each node is allowed to generate, it is possible to compute upper
bounds on the network latency. TrueTime was also used to simulate
this communication strategy, and the effects of the disturbing traffic
were eliminated.
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Figure 6.3 The resulting network traffic during and after a disturbance burst.
Random delays and jitter are introduced by the network communication.
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Figure 6.4 The control performance as a result of disturbing network traffic.
Collisions causes delays that degrade the performance and leads to deviations
from the reference trajectory.
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6.3 A Web Server Application

The simulations described in this section were developed during a re-
cent research visit to Tarek Abdelzaher at the University of Virginia.
The group in Virginia are working on quality-of-service in web servers
[Abdelzaher et al., 2003] and schedulability analysis for aperiodic tasks
[Abdelzaher and Lu, 2001]. This case study shows how these two areas
may be integrated.

The use of control theory to achieve quality-of-service guarantees
in modern web server applications, has been an active research area
during recent years [Robertsson et al, 2003; Sha et al, 2002]. There
are two main ways for the controller to influence the server load; by
manipulating the arrival rate and by manipulating the service rate.
The first approach is the most common, and is typically achieved by
various admission control schemes.

However, in the following we will assume a web server where it is
possible to modify the service rate by changing the CPU clock frequency
and thereby the processing speed of the incoming request. The use
of dynamic voltage scaling as an energy-saving mechanism in high-
performance web servers was first presented in [Bohrer et al., 2002].

The following case study will describe the simulation of a web server
using TrueTime, and the use of feedback scheduling to achieve timing
guarantees of incoming requests. The feedback scheduling scheme is
based on the synthetic utilization concept introduced in Section 2.4.

Simulation in TrueTime

In the simulations, a client application sends web requests to a server
emulating the basic properties of the HTTP/1.1 protocol. Using True-
Time, it is, e.g., possible to experiment with different processing times
and priorities of the requests, different scheduling policies in the server
node, and different control strategies to change the processing speed
of incoming requests.

The Client The client node generates synthetic web requests that
are sent to the server. The inter-arrival times, i.e., the time between
the sending of each request on a connection, follows a bounded Pareto
distribution. The Pareto distribution has been reported to fit measure-
ments of real web traffic well [Crovella and Bestavros, 1997]. When
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Figure 6.5 State diagram visualizing the processing of each web request by
a server thread.

sending the first request on a closed connection (a connection is closed
if no new requests are sent within the HTTP/1.1 TIMEOUT), the client
awaits an acknowledgment from the server before sending new re-
quests. Thereafter, requests are pipe-lined on the connection, i.e., mul-
tiple requests can be made without waiting for each response. Each
request has associated simulated processing times and blocking times
that it will consume on the server side. These are also Pareto dis-
tributed.

The Server The server node contains a number of server threads,
and a high-priority thread that handles incoming requests. All incom-
ing requests are time-stamped, and are then either forwarded to the
socket queue of the server thread serving the connection, or put in a
global request queue if there is no idle server thread available. When
server threads are finished serving their current connection they check
the global input queue for new requests.

Each server thread operates according to the state diagram shown
in Figure 6.5. The times associated with the Running and Blocking
states are Pareto distributed and specified in each request. When the
server thread is finished it waits for a certain amount of time for new
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requests, before closing the connection. The TrueTime code function
implementing each server thread is given below

function [exectime, data] = threadcode(seg, data)
switch seg,

case 1,
request = ttTryFetch(data.socketQ);
if (isempty(request))

% Socket queue empty

ttSetNextSegment (5) ;
exectime = 0.0;
else

% Store request attributes
data.C = request.C;
data.B = request.B;
data.conn = request.conn;
data.arrival = request.arrival;
data.start = ttCurrentTime;
% Simulate processing phase 1
exectime = data.C;
end
case 2,
% Simulate I/0 access (not using CPU)
ttSleep(data.B);
exectime = 0.0;
case 3,
% Processing phase 2
exectime = 0.001;
case 4,
% Request served
ttSetNextSegment(1); % loop back and serve next request
exectime = 0.0;
case 5,
% All requests served, block waiting for more
% requests from the same connection
now = ttCurrentTime;

% Create timer, terminates job on expiry
timeout = now + TIMEOUT;
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Figure 6.6 The synthetic utilization during a busy-period.

ttCreateTimer (data.timer, timeout, data.timeoutHandler);
% Block until new request arrives or timer expires
ttWait(data.reqEvent) ;

exectime = 0.0;

case 6,

% New request arrived before time-out, serve it
ttRemoveTimer (data.timer)

ttSetNextSegment (1) ;
exectime = 0.0;
end

A Feedback Scheduling Scheme

The feedback scheduling scheme is aimed at controlling the average
synthetic utilization around the schedulability bounds given by Equa-
tions (2.3) and (2.4) in Section 2.4. This way it is guaranteed that all
requests meet their deadlines and fulfill their QoS specifications.

A schematic diagram showing the synthetic utilization evolving
over time is shown in Figure 6.6. At each arrival, k£, the synthetic
utilization is increased by g—’;. The absolute deadlines of each request

are denoted ﬁk = Aj, + D;. At the deadline of the request, the syn-
thetic utilization is decreased by the same amount. The instantaneous
synthetic utilization at any point in time, is given by the height of the
shaded area. When the processor becomes idle, the synthetic utiliza-
tion is reset to zero. The time from the first arrival to the time when
the processor again becomes idle, is called a busy-period.

For control purposes we want to obtain a relationship between the
processing speed and the average synthetic utilization, U¢, in the busy-
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period. Since the contribution of each arriving request is £, the area
of each rectangle in Figure 6.6 is exactly C,. To obtain the average
synthetic utilization we sum up the areas and divide with the base
length, i.e., the difference between the largest absolute deadline and
the first arrival time in the busy-period. For the example in the figure,
we get

ve i G
Yy (63)
4 — 411

We will consider a scheme where the control action is changed af-
ter each departed request. Therefore we need to update the average
synthetic utilization between each departure. Assume that n request
have arrived at time, ¢, of the first departure. Denoting the processor
frequency, u, the average synthetic utilization, [jg, at time #; can be
written

1 i=n
N G
Uf = b it (6.4)
max1<l<nD A1

Then assume that m new requests arrive before the next departure
time, t5. The average synthetic utilization, Ug , at time #9 can then be
written

e #(CHGHEIL G) 65
? MaXii<nim Di — A1 .

Combining Equations (6.4) and (6.5) we can write

ﬁgg = Uf (maxl<l<nD Al) + 4 Zz n+1 (6.6)
maxici<pim D, — A1

We thus arrive at a recursive update equation for the synthetic
utilization

US = BuUs_, +wri (6.7)
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Figure 6.7 Average delay for the high-priority class.

where .
By = maxici<, D; — Aq
maxici<pim Di — Aq
Zn+m X
] — 1
Vh = i=n+1 (68)

maxicicpim Di — Ax

up =i €[0.2,1]
He
and n is the number of arrivals up until departure 2 — 1, and m is the
number of new arrivals between departure £ — 1 and k.
The controller then uses the update equation (6.7) to compute the
average synthetic utilization at each invocation. An event-based P-
controller may then be used to control the system

ur = K - (Upouna — Up_1) (6.9)

The processing times, C;, in the above equations will be estimated
on-line using the recursive first-order filter

Ci=ﬂ~Ci_1+(1—ﬂ)'Ci (610)
where c; is the last measured processing time.

Simulations

A simulation with two classes of requests served by two server threads
was run and the results are shown in Figures 6.7 and 6.8. The requests
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Average delay, class 2 (long deadline = low priority)
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Figure 6.8 Average delay for the low-priority class.

for the two classes had different deadlines of 0.02 and 0.04 time units,
respectively.

The average input load during the simulation corresponded to a
300 per cent CPU utilization when running at the lowest speed, ¢ =1,
and 60 per cent utilization running at the highest speed, ¢ = 5. The
server threads processing the requests were scheduled using deadline-
monotonic scheduling based on the request deadlines. Running at a
constant low speed, the low-priority requests are processed at a lower
rate than they arrive and thus the queues accumulate and the delay
increases. However, running constantly at the highest speed, the aver-
age delay for both classes is well below the respective deadlines, and
the system is clearly under-utilized.

The results using the proposed feedback scheduling technique are
shown by the dashed curves, and the deadlines are met for both classes.
The average synthetic utilization and the utilization set-point are
shown in Figure 6.9. The synthetic utilization is reset to zero when
the system becomes idle.

The margin to the deadline is quite large even for the low-priority
class. This is due to the pessimism involved when applying the schedu-
lability results to such a small number of tasks. The results are ex-
pected to provide better guidelines when the number of tasks increase.
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Figure 6.9 Average synthetic utilization and set-point.
6.4 Summary

In the first part of the chapter it was shown how TrueTime could be
used to simulate the basic functionality of TCP. A simulation was de-
scribed, where a robot system was controlled over TCP using ordinary
Ethernet as the under-lying MAC protocol.

The second part described a feedback scheduling scheme used for
web server delay control. The scheme was based on the concept of syn-
thetic utilization for aperiodic tasks. TrueTime was used to simulate
the web server system and evaluate the scheduling strategy.
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Conclusions

7.1 Summary

This thesis has been dealing with flexible approaches in the design of
real-time control systems. Two main contributions were presented: a
flexible implementation scheme for model predictive controllers, and a
simulator for real-time control system co-design. The thesis also con-
tained a general discussion and overview of feedback scheduling tech-
niques for real-time control systems. A summary of the contributions
is given below.

Flexible Implementation of Model Predictive Control

Many control algorithms exhibit large variations in their execution
time characteristics. One prominent example is model predictive con-
trol (MPC) algorithms, where the control signal in each sample is ob-
tained from the on-line solution of a constrained optimization problem.
The execution time of the optimization is often decided by external fac-
tors, such as disturbances and changing reference values.

Since the optimization algorithm is iterative and may be aborted,
there exists a dynamic trade-off between the computational delay and
the quality of the computed control signal. The standard cost function
used in the MPC formulation was modified to also contain effects of
the computational delay. By minimizing the new delay-dependent cost
index, the computational requirement of the algorithm was adjusted
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in a way that significantly improved the control performance.
Another observation is that the cost index can be used in a dynamic
scheduling context. By always scheduling the MPC task with the high-
est value of its cost index, a fair arbitration of the computing resources
is obtained. Given the highly changing computational requirements of
MPC tasks, a standard fixed priority assignment is clearly insufficient.

Simulation with TrueTime

TrueTime is a toolbox for MATLAB/Simulink that extends the tradi-
tional control system simulation facilities with two Simulink blocks; a
kernel block and a network block. The functionality provided by these
blocks allows co-simulation of the continuous process dynamics, the
controllers implemented as tasks in the real-time kernel, and the ef-
fects of network communication.

The flexibility of the kernel allows experimentation with dynamic
compensation and scheduling schemes, while evaluating the result on
the performance of the controlled plants. The evaluation of the MPC
schemes was performed using TrueTime, and the simulator was also
demonstrated in two simulation case studies.

The first case study described a simulation of TCP on top of the
data-link protocols provided by the TrueTime network block. Dedicated
tasks in the various nodes where used to implement the basic TCP
functionality. Networked control of a robot system using TCP on top of
ordinary Ethernet was described.

In the second case study TrueTime was used to simulate the basic
properties of a web server. The web server node contained a number of
server threads used to serve incoming requests. A feedback scheduling
scheme based on schedulability results for aperiodic tasks was used
to schedule the server threads and thereby guarantee that the timing
requirements of individual connections were not violated.
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7.2 Future Work

The work presented in this thesis can be extended in many ways. A
few suggestions of possible extensions are given below.

General Feedback Scheduling Structures

The basic feedback scheduling structure could be extended to also in-
clude more involved combinations of tasks. One example would be to
combine control tasks of anytime nature with ordinary control tasks
where the control performance decreases monotonically with the input-
output latency and sampling interval. In this case it is not trivial how
to assign the computation resources. It could also be possible to directly
control timing parameters such as delays and jitter.

Another possibility includes the direct approach to feedback schedul-
ing, where the scheduling decisions are made based on the current cost
of the different control tasks. What is the best way to design the cost
functions and how should the resulting event-based system be ana-
lyzed?

MPC

The work on scheduling of MPC tasks may be extended in a number
of ways. One question is what happens if the task has not been termi-
nated at the deadline. Is it then better to abort and output the control
signal or to continue the optimization into next sample. Another ex-
treme is when there is no execution time available at all. In this case
it may be possible to use the previous solution sequence shifted one
step. The stability issue of MPC under varying time delays and using
sub-optimal solutions is another interesting area.

Visual Servoing

Algorithms of anytime nature can be found in many other applica-
tion areas than model predictive control. One example is vision-based
control in, e.g., robotics. In tracking-based algorithms there exist an
interesting trade-off between the computational delay of the image
processing algorithm and the resulting quality of the image used for
feedback control.
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TrueTime Extensions

The TrueTime kernel could be extended and be made more realistic.
Currently it is possible to simulate context switch overhead, but the
kernel model could also include interrupt latencies and execution times
associated with the various real-time primitives. One major limitation
with TrueTime is the question of how to assign the execution times
of tasks. One possibility would be to integrate TrueTime with avail-
able compiler/execution time analysis tools. Another obvious extension
would be to include support for more network protocols, e.g., wireless
communication protocols.
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