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Preface
Preface

When I joined the CACE (Computer-Aided Control Engineering) project
in 1986, the main objectives for the project at that time were to explore the
possibilities of using increasingly powerful computers and work stations
with graphical capabilities, to support control engineering. The focus of
the project was soon turned to model representation and model develop-
ment issues, since good models were recognized as essential in many fields
of engineering. An early inspiration was the growing popularity of object-
oriented programming. The idea of using an object-oriented programming
language to represent dynamic systems was introduced in [Astrbm and
Kreutzer, 1986].

Integrated environments of tools for software engineering was an ac-
tive research area in the eighties. One interactive programming envi-
ronment resulting from this research was based on the object-oriented
language Smalltalk [Goldberg, 1983]. Some of the results on interactive
environments are collected in [Barstow et al., I 984)] which inspired the
CACE project to outline a design of an integrated environment of tools
for control engineering [Andersson, 1989a].

Lisp was used in the early prototypes and experiments, but it was
soon realized that a specially designed language for object-oriented model
representation would be useful. Omola was then designed in late 1988
and presented in [Andersson, 1989c, Andersson, 1989b].

Omola was first used in a thesis by Bernt Nilsson [Nilsson, 1989]
to demonstrate the main concepts of an object-oriented modeling method-
ology for chemical process modeling. At that time, there were no tools
implemented that could use Omola for any practical purpose like simu-
lation. The language was used for describing and discussing structured
models.

In the beginning of 1990, a project was launched to implement a
kernel for model representation based on Omola. The first release of the
prototype environment was available for internal tests in the following
year [Andersson et al., 1991 ]. The tool was called OmSim (Omola Simula-
tion Environment). It contained a graphical model editor and a simulator.
Since then, Omola and OmSim have developed successfully and they have
been used in several application projects. Some of them are listed in the
conclusions.

The following thesis is a document of the CACE project, especially of
the parts in which I have been mostly involved. This means, it documents
the design of the language Omola and the implementation OmSim.
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1

Introduction

Models are descriptions of real or imaginary systems. A model formalizes
knowledge about a system for a particular purpose. Models are used for
analysis and design and they communicate knowledge between people and
computers. For that reason, it is essential that models are written in a
language with a well-defined syntax and meaning. It is also important
that the language is readable by humans and allows the models to be
defined in terms that closely relate to the application domain.

Mathematics and logic are languages suitable for representing behav-
ior of models but they are poor on representing structural properties of
large models. On the other hand, computer programming languages, espe-
cially modern object-oriented languages, are well suited for representing
large systems in a structured and modular way, but they are poor on rep-
resenting the behavior of physical processes. This thesis is concerned with
the design of a modeling language that combines the powerful structuring
mechanisms of object-oriented programming languages with a mathemat-
ical and logical behavior representation.

Physical modeling

Models are used in all kinds of engineering and technical problem solving.
A good example of a general model is Newton’s second law [Newton, 1687],
aimed at describing the relation between the force and the motion of a
particle: ,
dp -

mog = f (L.1)
The particle’s mass is m, its position is p, and the force acting on the
particle is f; see Figure 1.1. Newton’s law was a great step forward in
science, since it explained the motion of celestial and terrestrial bodies.
The application of the law as a general model for moving bodies was
revolutionary, because it introduced the concept of an internal variable of

9




Chapter 1. Introduction

Figure 1.1 Simple system modeled by Newton’s second law of motion.

the system, the gravitational force, which cannot be observed directly.

Assume there is a system for which Newton’s equation is a valid
model. The equation can then be used for solving at least the following
practical problems:

¢ The particle’s motion can be computed if the force and the mass are
known. This is the typical simulation problem.

e The force acting on the particle can be calculated from an observa-
tion of the motion, if the particle’s mass is known. The problem of
computing an internal variable from observed quantities is called the
observer problem.

o The necessary force to move the particle in a prescribed way can be
calculated if the particle’s mass is known. This is often called the
servo problem or the robot problem.

o The particle’s mass can be calculated if the force is known and the
motion is observed. This is the parameter estimation problem.

Different numerical algorithms are used for solving the different prob-
lems. In order to use the model for a particular problem, the equation
must be manipulated algebraically and translated into a form required
by the numerical algorithm.

Computers are most often used for solving engineering design and
system analysis problems. Traditional computer tools are constructed to
solve numerical problems and they require the user to translate the model
into a particular problem dependent form. This translation is complicated
and error prone for models of large systems. A fundamental idea is to
represent the models in a general symbolic form and use the computer
for the necessary algebraic manipulations and translations. Some key
concepts in modeling and model representation are illustrated by the
following examples.

Engineering systems are rarely so simple that they can be described

10
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Figure 1.2 A pendulum modeled by Newton’s law and two additional equa-
tions.

solely by a single equation. A particle pendulum is an example of a system
that is slightly more complex than a free particle; see Figure 1.2. Equation
(1.1) is still valid but the difference is that the motion of the pendulum
is constrainted. This can be modeled by an additional equation:

[po —p| =1 (1.2)

where P is the position of the vertex and [ is the constant length of the
pendulum. The particle is also affected by a force:

f=g+f(po—Dp)/l (1.3)

where g is the gravitational force and [ is the absolute value of the
attachment force.

The pendulum model represented by the three equations (1.1), (1.2),
and (1.3) can be regarded as a specialization of the free particle model rep-
resented by equation (1.1) alone. It is very common that new models are
constructed as specializations of existing models. It is a very basic method
in engineering and science to describe systems as special cases of more
general system that are well known or defined elsewhere. Another basic
method is to describe systems as a compositions of simpler subsystems.
For example, a system with two pendulums can be modeled as a com-
position of two particle pendulum models. The system can be described
without explicitly repeating the single pendulum model twice. It is better
to refer to the single pendulum model defined earlier and instead focus on
describing the interaction between the components. Figure 1.3 illustrates

11



Chapter 1. Introduction

Figure 1.3 Examples of different component interactions in systems with
two pendulums. The left figure indicates that the pendulums are connected
by a spring, the middle figure shows one pendulum attached to another one,
while the right figure indicates two pendulums that are sometimes colliding.

some possible configurations of systems consisting of two pendulums. The
systems differ in the way the components interact.
The pendulum examples illustrate three basic principles in system
modeling:
e A model represented in a general form can be used for solving dif-
ferent kinds of problems and as a component of different kinds of
systems.

e Models are related as generalizations and specializations.

e Models are defined as compositions of interacting subsystems. Models
of subsystems are defined separately.

The aim of this thesis is to study what kind of model representation and
what kind of computer tools are needed to support these basic principles.

Object-oriented modeling

Object-oriented programming is a methodology in software engineering
that is suitable for handling large systems. A basic idea in object-oriented
programming is to view a system as a set of interacting objects. An object
encapsulates data, behavior, and structure. Object-oriented program de-
velopment typically starts with a top-down decomposition of the problem
into objects, then the interfaces of the objects are defined, and finally their
internal behavior is specified.

Object-oriented methodology can be applied to modeling of dynamic
systems. Consider the rotating electric drive system in Figure 1.4. The
system consists of an electric DC motor mechanically connected to a
rotating load. The coupling between the rotor of the motor and the load is
flexible in order to avoid strain in the rotating shafts and bearings. The
purpose of the system is to drive the load at a certain prescribed rotating
speed.

12




Figure 1.5 Decomposition diagram of the electric drive model. Interfaces
marked ‘B are electric terminals while the remaining interfaces are rotating
shafts.

It is natural to decompose the electric drive into three main compo-
nents: the motor, the coupling device, and the load. From the physical
structure of the electric drive system, it is realized that interaction oc-
cur between the motor and the coupling and between the coupling and
the load. The interaction is materialized by the rotating shafts. A shaft
propagates a mutual torque and a common rotational speed between the
components.

The complete system also interacts with the environment. In this sim-
ple example, the environment may consist of a controlled power supply
for the DC motor. The electric power is supplied through two electric ter-
minals; each one defined by an electric current and a voltage. A diagram
showing the decomposition of the electric drive model is shown in Fig-
ure 1.5. The interfaces of the components are represented in the diagram
as small squares. There are two types of interfaces: the electric terminals
and the rotating shafts.

Having defined the top level decomposition and the interfaces, it is
time to define the internal descriptions of the components. DC motors
are often modeled by an equivalent electric circuit diagram and a rotat-
ing inertia with a viscous damping. A graphical representation of this
decomposition is shown in Figure 1.6. The diagram contains iconic repre-
sentations of a resistor, an inductor, a rotating inertia, ete. These are basic
electric and mechanical components whose behavior can be described by
simple mathematical relations.

One aspect object-oriented modeling methodology, illustrated by the

13



Chapter 1. Introduction

Figure 1.6 Decomposition diagram of the DC motor model. The left part
of the diagram is a standard electric circuit diagram. The right part of the
diagram represents the mechanical rotor consisting of a torque generator (T,
a rotating inertia (J), and a viscous damping (D).

electric drive model, is that structure and interaction are defined be-
fore the behavior representations of the basic components are considered.
Other aspects of object-oriented modeling discussed in the thesis are con-
cerned with generalization and specialization of models in order to support
reuse.

The need for a new modeling paradigm

Today’s simulation languages are based on standards developed decades
ago [Strauss et al., 1967] when computers were much less powerful
and symbolic formula manipulations and interactive user interfaces were
much less developed. Many ideas were actually derived from analog com-
puter simulation. The need for a more powerful model representation and
better computer tools is obvious when real systems are considered. For
example, an industrial scale chemical process may consist of thousands
of components such as mechanical valves and pumps, chemical reactors
and distillation columns, storage tanks, energy supply and recovery sys-
tems, electronic and computerized control systems, etc. Every component
is normally described by several variables and equations and they are
interacting in a complicated way. Engineering such complex systems is
possible only because parts of the system can be considered in isolation.
Even though relatively simple local models can be used in the design of
many subsystems, models of the complete system are also needed. Global
optimization of the process’s operating conditions is economically signifi-
cant. Recirculation of energy, material, and waste products is important
for the preservation of the environment. This results in systems with very
complicated interaction between the different stages in the process. Sim-

14




ulation is a basic tool for analyzing the behavior of such complex systems.
Simulation is also useful for training operators and engineers.

Hybrid systems

Modeling and simulation of Discrete Event Dynamic Systems (DEDS)
and Continuous Variable Dynamic Systems (CVDS) have developed as
two separate cultures. Models used in automatic control are traditionally
CVDS, based on differential and difference equations. DEDS are often
used in modeling of manufacturing systems. However, real systems are
usually characterized by a combination of continuous time and discrete
event behavior. For this reason, there is a need for a model representation
that combines the two paradigms. Models combining DEDS and CVDS are
called hybrid models.

There is an emerging interest in control of DEDS. A DEDS model of
a controlled process can be viewed as an abstraction of the real, basically
continuous time, process. Methods for formal analysis and synthesis of
DEDS control systems are still poorly developed compared to methods
for CVDS. This makes it even more important to have modeling and
simulation tools that can handle hybrid systems.

Scope of the thesis

This thesis results from a project in Computer Aided Control Engineering
(CACE). One of the goals of the project has been to explore the possibil-
ities to create an integrated architecture of software tools to support an
engineer in the design and analysis of control systems. Models were rec-
ognized as being central at all stages of the engineering design process.
However, it is hard to develop good models, and existing design and anal-
ysis tools provide poor support. Available simulation languages have their
origins in the sixties when computers were much less powerful. Therefore,
the CACE project turned the focus towards better model representations
and more powerful development tools.

Figure 1.7 outlines an environment for computer aided control engi-
neering. The model database is regarded as the central module. A graph-
ical user interface is used for browsing the model database, for displaying
and editing models, and for defining new structured models. Tools for
symbolic manipulations are used for translating the models into repre-
sentations suitable for solving various design problems. Numeric tools are
utilized for design computations. Simulation tools are used for studying
model behavior and for design verification. This thesis is mainly concerned
with the representations used in the model database, the user interface
for supporting model development, and the simulation tools.

15




Chapter 1. Introduction

USER INTERFACE

MODEL
DATABASE

SYMBOLIC
TOOLS

SIMULATION
TOOLS

Figure 1.7 An integrated environment for computer aided control engineer-
ing (from [Andersson, 1990]).

The main topic of this thesis concerns the design of an obj ect-oriented
model reprepresentation and a modeling language for continuous time
and discrete event dynamic systems. The language is called Omola which
can be read out as Object-oriented MOdeling LAnguage. Omola was first
outlined in [Andersson, 1989b, Andersson, 1989a, Andersson, 1989¢] and
described in some more detail in [Andersson, 1990]. The first version of
the language was designed to represent continuous time models only. This
thesis extends Omola to also represent discrete event and mixed models,
thus making it a tool for working with hybrid systems. A more thorough
rationale for the design of the language is also given.

Model representation in Omola is based on hierarchical model decom-
position with structured component interfaces. Model behavior is defined
in a declarative way based on algebraic and differential equations. Dis-
crete behavior is described in terms of time and state events, and event
propagation. A mathematical formalism for representing hybrid models is
defined and used as a semantic basis for Omola models. Model reuse and
database structuring are supported by object-oriented concepts of gener-
alization and inheritance.

This thesis also documents and discusses the implementation of an
environment for model development and simulation based on Omola. The
environment is called OmSim (Omola Simulation Environment). The data
structures used for representing Omola models, and the architecture of
the model manipulation and simulation tools are presented. The symbolic
manipulation methods used for transforming Omola models to efficient
simulation code are also discussed.

16




Thesis outline

The thesis starts by giving a general introduction to physical modeling
and object-oriented model structuring in Chapter 2. It is followed by an-
other introductory chapter which is a guided tour through the OmSim
modeling environment. Chapter 4 defines the basics of Omola as a lan-
guage for representing structured continuous time models. Chapter 5 in-
troduces the concept of discrete event and hybrid systems and gives an
overview of formal representations of such models. It also defines a hybrid
model formalism used as a basis for behavior representation in Omola.
Chapter 6 extends Omola to also represent discrete event and hybrid
models. Chapter 7 presents the architecture of the OmSim simulation en-
vironment. Chapter 8 discusses the symbolic model manipulations and
structure analysis performed in order to prepare for efficient simulation
of hybrid models. Finally, Chapter 9 contains the conclusions of the thesis.

17




2

Modeling of Dynamic
Systems

Models formalize knowledge about systems. Models are needed in most
kinds of engineering and design. They are used as a basis for formal design
methods and for simulation experiments. Rothenberg writes [Rothenberg,
1989}:

A model represents reality for the given purpose; the model is an

abstraction of reality in the sense that it cannot represent all as-

pects of reality. This allows us to deal with the world in a simpli-

fied manner, avoiding the complexity, danger, and irreversibility

of reality.

Modeling is a difficult task and it often requires expertise in the field of
the particular engineering domain. Therefore, it is important that models
are represented in a way that make them reusable for different purposes
and by different people with less expertise in the field.

The first section of this chapter introduces the concept of structured
physical modeling. An approach to model representations used in control
theory called behavioral systems is discussed in the second section. The
final section introduces the main ideas behind object-oriented modeling
and model representation.

2.1 Introduction

Models are constructed for many different purposes. The modeling process
itself is useful because it helps the modeler to structure and organize
fragments of knowledge, so that he or she can get a deeper understanding
of the system. Another important use of models is as a way of documenting
the system and as a vehicle for transferring knowledge from the modeler

18




2.1 Introduction

to other people. In the view of knowledge engineering and expert systems
[Harmon and King, 1985], a model is a deep knowledge representation.

Structure is important in modeling and all kinds of engineering. A
system is divided into parts of convenient sizes where each part can be
analyzed or designed separately. Models should be represented in a way
that reflects the topology of the system.

A drawback of most existing simulation languages is that they do not
represent models on a format that encourages reuse of model components.
They force the modeler to decompose a system, so that it fits in a particu-
lar representation framework dictated by, for example, a particular simu-
lation algorithm. Object-oriented programming and software engineering
tools support a methodology where the structure of the program is defined
before the implementation. This means that conceptually clear module in-
terfaces can be specified independently of the implementation. This is a
desirable property also for a model representation environment.

There are different kinds of models for different purposes. This thesis
is mainly concerned with physical models that can be represented by or-
dinary differential and algebraic equations, and discrete events. Related
types of models are briefly mentioned and the concepts of physical mod-
eling and structured representation are introduced in the following.

Qualitative and quantitative models

Models can be classified in two main groups: qualitative models and quan-
titative models. Qualitative models are made to answer questions about
the qualitative behavior of the system like ‘What happens if the temper-
ature is increased? or ‘What is a possible explanation for the low level in
tank B?. The behavior of a qualitative model is often described in terms
of qualitative variables which take symbolic values like low, medium, and
high. Qualitative physics is a research area within artificial intelligence
(AI) where the goal is to capture common sense and engineering knowl-
edge in qualitative models, so that conclusions about the behavior of a sys-
tem can be inferred [Forbus, 1988]. Reasoning about a qualitative model
is often referred to as qualitative simulation [Kuipers, 1986]. A qualita-
tive simulation often results in a set of possible behaviors that can be
inferred from the model. Examples of applications of qualitative models
are alarm analysis and fault detection [Larsson, 1992].

This thesis is concerned with quantitative models. Quantitative mod-
eling requires more detailed knowledge about the system. The purpose
of a quantitative model is to give numerical answers to questions. Most
variables of a quantitative model have values that are real numbers and
the behavior is represented by real-valued algebraic expressions.

19




Chapter 2. Modeling of Dynamic Systems

Continuous and discrete time models

A continuous time model is based on variables that are continuous func-
tions of time. The variables are defined at every point within the range of
time where the model is valid. These kind of models are sometimes called
Continuous Variable Dynamic Systems (CVDS). A discrete time model is
based on variables that are defined at a finite number of time points
within any time interval. These kind of models are sometimes called Dis-
crete Event Dynamic Systems (DEDS) or sampled data models.

Many real systems are more properly modeled as a combination of
continuous time and discrete event behavior. These kind of models are
called combined models [Cellier, 1979] or hybrid models. Discrete event
and hybrid models are discussed further in Chapter 6.

Continuous time models can be classified i two groups: lumped pa-
rameter models which can be described by ordinary differential equations
(ODEs) and distributed parameter models which are described by partial
differential equations (PDEs). Distributed parameter models are often
approximated by lumped parameter models since they can be analyzed
and simulated more efficiently with standard numerical software. Only
lumped parameter models are discussed in this thesis.

Obtaining and representing models

One way of obtaining models is often referred to as black box modeling.
The system is viewed as a black box where some of the variables can be
affected or measured. Modeling the system consists of selecting a general,
parameterized mathematical representation and then tuning the param-
eters, so that behavior predicted by the model coincides with measure-
ments from the real system. The process is called system identification
and parameter estimation [Johansson, 1993].

Another approach to modeling, which in some sense is the opposite
of black box modeling, is called physical modeling. Physical models are
based on fundamental physical laws obtained from first principles, i.e.,
conservation laws for energy, matter, and momentum, and phenomeno-
logical equations. Physical modeling consists of dividing a system into
fundamental physical mechanisms. The result is a set of equations or a
mechanistic model defined as a network of ideal physical components and
standard building blocks. For example, an electric circuit diagram is a net-
work of ideal electric components like resistors, capacitors, inductors, and
transistors. A mechanical model may be divided into a set of connected
ideal springs, dampers, point masses, etc.

Each component in the mechanistic model is often simple enough to
be represented by just a couple of equations. The network of the model
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Figure 2.1 A mechanical system and its bondgraph representation. The
mass is represented by an inertia element (I), the spring is represented by
a capacitance (C), and the damper is represented by a resistance (R). The
external independent force (F) is represented by an effort generator (Se).
From [Thoma, 1975].

represents basic relations between the variables referred to by each com-
ponent. Flowsheet models, used in process engineering, also fall into the
category of mechanistic models. In this case the building blocks may con-
sist of complex subunits like pumps, chemical reactors, and distillation
columns. The flowsheet network explicitly represents flows of matter, en-
ergy, and control information.

A kind of physical modeling that focuses on the energy flows of the
system is bond graph modeling [Karnop and Rosenberg, 1975]. An ad-
vantage with bond graphs is that they provide a common graphical lan-
guage for modeling in different domains such as electric, mechanical, and
chemical systems. A bond graph is a network of components and bonds. A
bond represents energy interaction and consists of two variables: an effort
variable and a flow variable. In mechanical systems, the effort variable is
normally force and the flow variable is velocity, while in the electric sys-
tems the effort variable is voltage and the flow variable is electric current.
The vertices of a bond graph consist of elements belonging to a small set
of standard element types, and two kinds of junctions. Example of stan-
dard elements are energy dissipation (resistance element), flow storage
(capacitance element), and effort storage (inductance element). The junc-
tion elements are parallel junction where the efforts are equal and the
sum of the flows is zero, and series junction where the flows are equal and
the efforts sum to zero. Figure 2.1 shows a simple mechanical system and
its bond graph representation.
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2.2 Physical modeling of an electric drive system

This section demonstrates by an example how a mathematical represen-
tation of a physical model can be structured in order to get a reusable
model that is easy to understand and modify. The example is based on the
electric drive unit introduced in Chapter 1 and shown in Figure 1.4. The
electric drive is first analyzed and a mathematical model for the complete
system is defined. The model is derived from first principles, i.e., using
fundamental laws of mechanics and electric circuits. The model is then
divided into components and the interfaces are determined.

It should be noted that the normal procedure of object-oriented mod-
eling means that a system is first divided into components down to a level
where each component is simple enough. Then the interfaces are defined
and finally the equations of every primitive model component are defined.
However, in this section, the modeling process starts by obtaining the total
set of equations and the modularization is done afterwards. This is done
in order to demonstrate important aspects of behavior representations
based on general equations.

The first step in creating a model of the electric drive is to identify
which aspects of the system that must be captured by the model. This
mainly consists of selecting a set of relevant variables of the system, that
the model must describe. The selection is guided by the intended use
of the model and by the purpose of the real system. The main use of the
electric drive is to rotate the load at a certain specified velocity. The system
can also be used as a power generator or an electric brake. This means
that quantities like the angular speed of the load and the voltage and
the electric current of the DC motor are fundamentally important in the
model. In this selection process we implicitly choose to neglect the effect
of other quantities and to exclude them from the model. In our example,
the temperatures in the system are not modeled.

The mechanical parts of the system are first considered. They mainly
consist of two rotating masses: the motor armature and the load. In this
first approximation, the coupling unit is assumed to have no inertia, or
rather, that its inertia is included partly in the motor and partly in the
load. Newton’s law for rotating inertias results in the following equations;
the first one for the motor and the second one for the load:

dw

Jl—d—ti =Tm— D1w1 - T1 (2.1)
d

Jg—da-%g = Tl—Dza)z—Tg (2.2)

The variables w; and @, are the angular velocities of the motor and the
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load respectively, 7,, is the torque provided by the electric windings of
the motor, and 77 is the torque transmitted to the load. The torque 73 is
an external torque acting on the load. The constant parameters J/; and
Jo represent the inertias of the motor and the load while D; and Dy are
damping coefficients representing the mechanical energy losses.

The coupling unit is modeled as a linear torsional spring and a damp-
ing proportional to the difference in speed between the motor and the load.
This results in the following equation:

71 = K6 + D(w: — ws) (2.3)

where the variable § represents the torsion, i.e., the difference in angle
between the motor and the load. The spring coefficient K and the damping
coefficient D are constant parameters. The variable § can be regarded as
a state variable of the coupling unit !, defined by the differential equation:

dé
i i (2.4)

The rotating armature of the DC motor can be represented by the
electric circuit diagram in Figure 2.2. The motor is assumed to have a
constant magnetization. The voltage u,, is the total voltage across the
motor’s electric terminals, while the current i,, is the current through the
armature coil. One equation is obtained from the electric circuit:

di .
Up = Knowy + ng;f + Rpim (2.5)
The term K,,w; represents the voltage induced in the rotating armature
coil. The motor torque 7, is proportional to the armature current i,,

according to the equation:
Tm = Kiim (26)

The equations (2.1) to (2.6) constitute a mathematical model of the
electric drive unit. The model contains eight unknown variables and six

1 Instead of using the angular difference § as a state variable, the angles of the mo-
tor and the load shafts could have been used directly. However, since these angles
tend to grow constantly when the shafts are rotating, this representation will even-
tually give numerical problems when the small angle difference is computed. This
consideration is based on good modeling and simulation practice but is irrelevant
to the points illustrated in this chapter.
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Figure 2.2 Equivalent electric diagram of the DC motor armature circuit.

equations. This means that the model itself does not determine any partic-
ular behavior, rather it represents the set of all possible behaviors obeying
the physical laws stated by the model. Mathematically the model is an un-
derdetermined system of equations. Two additional constraints are needed
in order to solve the differential equations, so that a particular behavior
can be observed, given necessary initial conditions. The additional con-
straints are imposed on the system by the environment. In other words,
the electric drive system must be regarded as a part of a larger system,
the environment, with which it is interacting. An important point is that
the model is versatile in the sense that it does not imply exactly how the
system is interacting with the environment. For example, the environ-
ment may impose a particular voltage u,, and a torque 7z. Given suitable
initial values, all the other variables are then determined by the model.
Another possibility is that the environment imposes the current i,, and
the angular velocity @y on the system.

Creating an abstract model

The mathematical model constructed so far is merely a set of equations.
However, they represent an entity that is separated from the environment
and can be regarded as an object. The model is intended to be used
in different environments as a module. A well designed module is an
abstraction of a subsystem. It means that it should be possible to use
the module without knowing it in all details. In order to use a model
as an abstract module it must be provided with an abstract interface.
The interface must allow the user of the model to focus on the important
aspects of how the system interacts with environment and disregard how
the behavior is actually represented.

An abstract interface of a model includes a subset of its variables.
These variables are called external variables or terminals in the following.
The remaining variables are called internal variables. They belong to
the model’s realization, i.e., the internal representation of the behavior.
Variables that influence or are directly influenced by the environment are
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Figure 2.3 Acausal block representing the electric drive model.

chosen as external variables. Internal variables are typically auxiliary
variables, introduced for convenience in the physical modeling process.

In the electric drive example, the variables selected as external vari-
ables are the electric quantities u,, and i, of the motor, and the angular
velocity wy and the external torque 7y of the load. Any of these selected
external variables can potentially be directly determined by the environ-
ment of the system. This is not the case for the internal variables w1, 71,
T, and 8. A graphical picture of the abstract drive unit model is shown
in Figure 2.3.

The difference between the model in Figure 2.3 and a block in a block
diagram representation is that no causality arrows are associated with the
ports. The model is not implying any computational causality. If either
one of the electric quantities and either one of the mechanical quantities
are determined by the environment, then the other two quantities are
determined by the model. There are four possibilities to assign computa-
tional causalities to the ports. It depends on the environment which one
is used to compute the behavior of the system.

Decomposing the model

The model of the electric drive unit contains six equations. The system
consists of three main parts: the motor, the coupling device, and the load.
It is not easy for a user who only sees the equations, to understand how
they are derived or how they can be modified to reflect a change in some
part of the real system. For example, in order to change the model of the
coupling, only two of the equations have to be considered but this fact is
not explicitly reflected in the structure of the model. In fact, the model
lacks internal structure apart from the raw equations.

Tt is desirable to decompose the model into submodels. A natural
decomposition appeared already when the equations were derived from
first principles. Equations (2.1), (2.5), and (2.6) are naturally associated
with the DC motor, equations (2.3) and (2.4) naturally belong to the
coupling device, while the equation (2.2) belongs to the load. Figure 2.4
shows an acausal block diagram of the decomposed model. The total set
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Figure 24 Decomposition of the electric drive model.

of equations are divided into tree groups, one for each submodel:

dw
JIE‘I' =Ty — D11 — 71
s = K01 + Ln 2 4 Ry (motor)
dt
Tm = Kiim
dé
a Wy — w3 . (2.7)
71 = K& + D(w1 — w3) (coupling)
T1 =T3
da)2
7,22 _ 14 Doy —
2 T T (load)
W3 = Wy

Some of the variables considered as internal variables of the complete
electric drive model are now appearing as external variables of the model
components. Two additional variables, 73 and w3, with two trivial equa-
tions, have been introduced. This was not necessary in order to decompose
the model but it created a nice symmetry which is reflected in the dia-
gram. The new variables also made the decomposed model more general
in the sense that the coupling device need not be free of inertia and the
load need not be a stiff shaft, as it is assumed in the original model.
These restrictions can now be relaxed in the submodels without the need
to change the decomposition. The decomposition made it possible to mod-
ify the model by replacing single components. Another way to decompose
the electric drive model is shown in Figure 2.5. This decomposition is
finer than previous three block structure. The graph shows an idealized
physical model representation of the system. It consists of nodes and arcs
where the nodes represent connections and the arcs represent idealized
physical components like resistors, inductors, inertia-free springs, and
viscous dampings (dash pots). This kind of model is sometimes referred
to as a mechanistic model. Each component in the mechanistic model is
described by a few equations. The nodes also have unambiguous interpre-
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Motor Coupling Load

Figure 2.5 Object diagram of an idealized physical model of the electric
drive.

tations as equations, relating the variables of the connected components.
It is a straightforward procedure to translate the mechanistic model in
Figure 2.5 into the equivalent mathematical model (2.7).

Different application domains use different, more or less standard-
ized, mechanistic model representations. Figure 2.5 includes components
from two different domains: electric circuits and one-dimensional rota-
tional mechanics. Electric circuit diagrams are well standardized while
mechanical diagrams are non-standard. The interpretation of the nodes
in the mechanistic model graph is different for the different physical do-
mains. A node in an electric circuit diagram represents an ideal, resis-
tance-free electric wire. Components connected to the node must have the
same electric potential and Kirchhoff’s current law applies, stating that
the sum of all current entering the node is zero. A node in the mechanical
diagram of this example represents a cut in the mechanical system. The
components connected to the node have the same angles and angular ve-
locities, and the sum of the torques acting on each connected component
is zero.

The mechanistic model in Figure 2.5 can be viewed as another level of
decomposition of the three block model in Figure 2.4. The interconnections
between the motor and the coupling, and between the coupling and the
load, are indicated by the dashed vertical lines in Figure 2.5. Note that this
kind of model decomposition is also acausal, i.e., inputs and outputs are
not explicit in the model. Also note that the electric circuit diagram of the
mechanistic model first appeared in Figure 2.2 and was used as a tool for
deriving one of the original model equations. With a model representation
accepting electric diagrams directly, the model developer need not bother
about the actual equations. For electric circuit modeling there are special
purpose simulation environments like SPICE [Nagel, 1975] that allows
the model to be defined in terms of standard components.
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Most mechanistic models consist of a small set of standard compo-
nent types. Each component model contains only a few equations. Within
a particular modeling domain, a handful of standard components are usu-
ally enough to model most systems within the domain. This makes it cost
efficient to have libraries of standard components. Such libraries are easy
to use and reduces the risk for errors compared to when equations are
written directly.

The components of the mechanistic model are proper objects. For ex-
ample, the torsional spring component used in the model of the coupling
unit, contains a definition of its interface, a parameter for the spring coef-
ficient, and a constitutive equation. It may correspond to a real physical
component and it has a graphical representation in the diagram. More de-
tails about the representation of the components of the mechanistic model
are given in Chapter 3.

Obtaining a causal model

Most traditional simulation languages, like ACSL [Mit, 1986], Simnon
[Elmqvist et al., 1990], or Simulink [Mat, 1992], require that each sub-
model is represented on state-space form, where inputs and outputs are
defined explicitly. This means that the equations must be written as:

dx
prIRRACLY) (2.8)
y = g(xu)

where u is a vector of inputs, v is a vector of outputs, and x is a state
vector. We will now see how the electric drive model can be represented
on this form.

It was previously found that the acausal model with four external
variables allows four different input/output configurations. One possibil-
ity is to consider the motor voltage u, and the external torque 73 as
inputs. The motor current i, and the load angular velocity wy are then
outputs from the model. It is now possible to determine the computational
causality for each one of the tree blocks in the decomposition in Figure 2.4.
The resulting causalities are indicated in the block diagram in Figure 2.6.
With this particular choice of inputs it is possible to manipulate the equa-
tions to represent each block on explicit state-space form. The motor model
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Figure 2.6 Block diagram for one particular choice of input terminals.
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Figure 2.7 A Simulink model of the DC motor.

transformed into this representation results in the following equations:

Tm = Kiim
doy 1 Dy 1

dt J1 " J1 J1 (2.9)
din 1 B R, .

dt :L—mum_mel“mlm

where u,, and 71 are inputs while the states w; and i, are directly used
as outputs from the model. Note that the state-space model is not valid if
any of the parameters J; and L,, are zero. This restriction did not apply
to the original model which was valid also for such idealized cases.
Simulink allows a state-space model to be represented in a graphical
form. A diagram of the state-space motor model in Simulink is shown
in Figure 2.7. A graphical representation of a state-space model tends to
show the computational structure of the model rather than the physical
or conceptual structure of the system. While the physical structure of a
subsystem is independent of the environment, this is not the case for the
computational structure. This is demonstrated in the following.
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A problem with the state-space representation appears if a different
causality is chosen for the total model and the motor. If the power supply
for the motor consists of an ideal current source, then i,, must be regarded
as an input to the motor model. As a result, the voltage u,, becomes
an output. However, it is not possible to represent this model on state-
space form since it includes a differentiation of an input. It will then be
necessary to simplify the model by removing the third equation in (2.9)
and to remove the voltage u,, as an output.

Another problem with the modular state-space representation ap-
pears if the coupling unit is changed to a rigid connection between the
two shafts. This is done in the original coupling model, consisting of two
equations in (2.7), by removing the internal variable § and replacing the
first equation by @; = 3. This modification is local to the coupling model
object. However, with the new equation it is no longer possible to have
the causality required by the other modules as indicated in Figure 2.6.
The angular velocities ®; and ws cannot be independent inputs, and the
torques 71 and 73 are not determined by the coupling model alone. Never
the less, the total set of equations are still a valid model. It is easy to
realize that with a stiff coupling, the mechanical part of the electric drive
consists of a single rotating inertia. Therefore, it should be possible to
manipulate the equations and eliminate one state variable, so that the
model can be written on state-space form.

It should be noted that assuming a stiff coupling is not a pathological
idealization of the real system. The assumption may be just as valid as
the assumption that the load subsystem can be modeled by a stiff rotating
shaft. The problem with the model occurred only because of the chosen
decomposition and because of the causal interfaces required by traditional
simulation languages.

A model with changing causality

The electric drive system has so far been modeled as a pure continu-
ous time system. As long as the environment affecting the system are
changing continuously, also the variables in the electric drive model is
changing continuously. Many real systems however, show behavior that
can be regarded as abrupt changes. Such changes are most conveniently
modeled as discrete events. A discrete event occurs at a certain moment
in time and has zero duration. Examples of discrete events are switches
in electric circuits, moving bodies that are reaching contact, a tank that
becomes full, and a valve that is stuck because of high friction that sud-
denly starts moving. In these examples, the discrete events can indicate
a dramatic change in the behavior of the system. This kind of events are

30




2.2 Physical modeling of an electric drive system

often referred to as mode switches. Models of mode switching systems can
be viewed as a set of different continuous time models valid in different
modes. The mode switching events are then representing a switch from
one continuous model to another.

An example of a mode switching model occurs if a backlash is intro-
duced in the coupling between the DC motor and the load in the electric
drive model. It means that the shafts can move freely, independently of
each other, within a small angular difference. It is natural to model the
play as a separate submodel inserted between the motor and the cou-
pling in the structured model in Figure 2.4. The interface of the backlash
model must be similar to the coupling model, i.e., it connects to two ro-
tating shafts each one represented by an angular speed, @, and w;, and
a torque, 7, and 7.

The backlash is modeled with three discrete modes:

Slack mode when the angular difference between the shafts is less then
the constant amount A, and zero torque is transmitted.

Forward mode when the motor shaft is ahead with the constant amount
A, @, = 3, and the torque is positive.

Backward mode when the load side is ahead with the constant amount
A, w, = 0, and the torque is negative.

The internal variable & is introduced to represent the angular difference

between the shafts. It is assumed that the backlash is an idealized mod-

eling element with zero inertia. The model is defined by two fixed and one

mode dependent equation:

do_ Wy — @
dt = Wy b
Ta =T (2.10)
0 | 7q in slack mode
) @, —w, in forward mode and backward mode

The continuous time variables of the model changes discontinuously
with the mode. It is also important to note that the computational causal-
ities depend on the current mode, and therefore, may change over time.
In slack mode, w, and w; are inputs while the torques are outputs. In
forward and backward mode, one of the angular velocities and one of the
torques are inputs, depending on the environment model. This means that
even if the environment of the model is known, it is not possible to rep-
resent this model on explicit input output form. An Omola model for the
backlash will be given in Section 6.7.
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It should be noted that the backlash model only works as long as
it is connected in series with a flexible structure like in the original
coupling model. If the coupling was rigid, a switch from slack mode to
forward or backward mode would physically mean that the speed of the
rotating inertias must change discontinuously. This is non-physical and
in addition, the model equations does not provide an initial value for
the new common angular velocity. Still, the abrupt change in speed may
be a reasonable modeling approximation for a rapid state change. These
kinds of discrete state changes are discussed further in Chapter 5 and
Chapter 6.

Summary

This section has demonstrated a methodology for physical modeling. First,
the relevant variables of the system were identified. Secondly, a set of
equations was determined from the physical laws governing the behavior
of the system. Thirdly, an interface between the system and the envi-
ronment was defined. Fourthly, the system was divided into components,
each one with an abstract interface. This step consisted of dividing the
equations into groups, based on which physical part of the system they
belonged to. In this presentation, the model equations were introduced
at an early stage but it was done only to demonstrate that the funda-
mental physical equations survive a model decomposition almost without
changes. Normally, a system is first decomposed into subsystems and ab-
stract interfaces are defined in several levels. Equations may be intro-
duced at the lowest level of the decomposition, but it is often possible to
use standard library components, thus eliminating the need for writing
equations directly.

It was demonstrated by the example that a modularization and a
decomposition must be done without any a priori assumptions about the
computational causality of the model. Only acausal models are modular
in the sense that they separate a subsystem from its environment and
allow abstract interfaces to be defined at an early stage in the modeling
process. A model of a subsystem on state-space form, with defined inputs
and outputs, is just one particular representation of the model. A minor
change in the assumptions about the environment or about a submodel
may cause a state-space decomposition to collapse.

2.3 Behavioral systems

There is a growing interest in automatic control and systems theory
to use a more general definition of a dynamic system than has been
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used traditionally, i.e., transfer functions, matrix-fraction descriptions,
and state space realizations [Kailath, 1980]. A more general definition
of dynamic system is given in [Willems, 1986]:

DEeFINITION 2.1

A dynamic system % is given by the triple £ := (T, W, B) where T < IR
is the Time set, W is the space of external variables, and B c W7 is the
behavior of the system. O

Usually the time set T' is real for continuous time systems and integer
for discrete time systems. The space of external variables W is often IRY.
The behavior B is the set of all time trajectories, w : T — W, obeying the
behavioral laws of the system.

Definition 2.1 makes a clear distinction between the system as such
and the representation of the behavior. Dynamic systems according to this
definition are often called behavioral systems since they focus on the be-
havior, manifested by the external variables, rather than on the equations
representing the system. An important property of behavioral systems is
that the causality is not given a priori, i.e., the external variables are
not separated into input and output variables. Rather, causality may be
a property of a particular behavior representation.

The behavior of a dynamic system is most often defined by constraint
equations. For a rather general class of dynamic systems the constraint
equations are general equations in the external variables and their time
derivatives, for continuous time systems, or time shifted variables for dis-
crete time systems. Some behavior representations include internal vari-
ables (called auxiliary variables in [Willems, 1986] and latent variables in
[Willems, 1991]). Internal variables are introduced for convenience and
they often appear naturally when the behavior equations are written down
from first principles. For example, internal forces in a mechanical system
and the voltages across and the currents through each branch in an elec-
tric circuit are natural internal variables. A state space representation
is a particular representation for a class of dynamic systems. The state
variables are internal variables of the representation while the inputs and
outputs constitute the external variables.

Interconnected subsystems are common in modeling, analysis, and
synthesis of dynamic systems. In the behavioral approach, interconnected
systems means that some of the external variables are common to several
subsystems. This is equivalent to adding additional constraints to the
system, so that attributes of different subsystems are forced to be equal.
The external variables involved are called interconnection variables. They
correspond to what in Omola is called terminals.
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Linear model representations

An important subclass of dynamic systems consists of linear and time-
invariant systems. Their behavior can be represented by the equation:

R(o)w =0 (2.11)

where R(c) is a polynomial matrix in o which denotes either the back-
ward shift operator or the differential operator. The vector w is a vector of
time trajectories representing the external variables. This representation
is called an autoregressive system (AR-system) [Willems, 1986].

Another generic representation is the pencil representation which can
be written as:

G¢ = F¢ (2.12)
w = HE (2.13)

This representation is of first order and contains internal variables rep-
resented by the vector £. The vector w represents the external variables.
F, G, and H are constant real matrices. Note that this behavior repre-
sentation is acausal and does not distinguish between input and output
variables. The pencil representation and other equivalent first order lin-
ear representations are discussed in [Kuijper, 1994]. Results concerning
equivalence, minimality, and structural invariants of the first order linear
representations are presented in that work.

As an example, the pencil representation of the motor submodel of
the electric drive system is given. With the external variable vector as

w = ( Upm Im T1 W1 ] a pencil representation of the motor becomes:

0 0 0 J; 0 0o 0 -1 -D; 1
0 L, 0 0 0|é=1|1 -R, 0 -K, 0O [¢
0 0 0 0 0 0 kK, 0 0 -1

1000 0

01000

w = £

00100

00010

The pencil representation is obtained by trivial manipulations of the orig-
inal equations. There is no loss of generality in this transformation. It
is also trivial to construct a pencil representations for an interconnected
system when each subsystem is represented by on pencil form.

34




2.3 Behavioral systems

Process

Controller

Figure 2.8 A causal model structure of a feedback control system.

Behavioral control systems

Input/Output representations are commonly used in control systems. A
control system is normally viewed as a feedback system according to Fig-
ure 2.8. The causalities defined a priori in the interaction between the
compensator and the controlled system are convenient because they sim-
plify the analysis of the system. It means that the controller can observe
the controlled system without affecting it and that it is free to affect the
controlled process without being directly affected itself. However, from
a physical point of view, it is impossible to affect a system without be-
ing affected oneself, and it is impossible to measure a quantity without
affecting the observed system. The causal feedback structure is possible
only because actuator and the sensor subsystems are regarded as part of
the controlled system and that the interface between the controller and
controlled system consists of information channels. In terminology of be-
havioral systems, this kind of interaction between dynamic systems is
called compliance free [Willems, 1991]. Control design methods consider
the controlled process as given. The problem is to construct the controller
so that the specifications for the total system are fulfilled. However, it is
not always a good idea to regard the sensors and the actuators as parts
of controlled process. Better performance, or the same performance at a
lower cost, can sometimes be achieved if they are considered as design
parameters, and thus parts of the controller. Figure 2.9 shows two possi-
bilities of structuring the control system. If it is desirable to include actu-
ators and sensors in the design procedure, then the lower configuration is
the natural choice. However, this interconnection between the controlled
system and the controller need not be compliance free and the interaction
causalities cannot be determined a priori. An approach to control design
in a behavioral setting is presented in [Willems, 1993].

As an example of an acausal interconnection between a process and a
controller, let us return to the electric drive system, discussed previously
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Figure 2.9 Examples of causal (upper) and acausal (lower) interconnections
between the controlled and the controlling subsystems.

in this chapter. It is natural to regard the DC-motor and the coupling as
a part of the controller subsystem and to design them together with the
actual regulator. The sensor subsystem is not considered in the original
example but it can likewise be regarded as a part of the controller. It
was previously found, by analysis of the model equations, that if the
coupling device is flexible, then the causality in the interaction between
the coupling and the load is determined. This interaction is compliance
free. On the other hand, if the coupling is rigid, the interaction is not
compliance free and the causality cannot be established a priori.

Summary

The behavioral approach is motivated by the way physical systems are
conceptualized and modeled from first principles. The same ideas motivate
the object-oriented model representation which is the main topic of this
thesis. The common basic principles are summarized in the following
points:

¢ Systems are represented as interconnected subsystems.

e It is the behavior of a system, as it appears through the external

variables, that is important, not the internal representation.

e Interaction causality is a property of the total system and cannot, in
general, be defined for the components.
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2.4 The essence of object-oriented modeling

The notion of object-oriented modeling as a method for structuring mod-
els of continuous time dynamic systems was introduced in [Nilsson,
1989, Nilsson, 1993]. The method is based on object-oriented represen-
tation of models. Omola is designed to provide such a representation and
the language was used by Nilsson.

It is difficult to give a clear definition of what is meant by an object-
oriented model representation but it is possible to characterize it by a list
of properties. The main characteristics of object-oriented model represen-
tation are discussed in the following.

Declarative models

Models are declarative in the sense that they define facts and relations,
rather than being procedures for computing data. For example, the fol-
lowing three models of a resistor are equivalent: RxI = U, R = U/I, and
U/R = I. The equation operator ‘=" 1s a symmetric equivalence operator;
not an assignment as in some programming languages. Acausal physi-
cal models, discussed in the previous section, are examples of declarative
models.

The declarative style is of course not suitable for all kinds of models.
For example, models of information processing, like digital controllers,
may be more convenient to represent as sequential procedures.

Modularity

Modularity is very important in all kinds of engineering. A module is a
group of entities that are in some way related. A submodel in the electric
drive system is an example of a module containing external variables,
internal variables, parameters, and equations defining the relations be-
tween the variables.

A model representation must support modularity on multiple levels.
A model may have submodels which have submodels themselves. This
gives a hierarchical decomposition which can be arbitrarily deep. Fig-
ure 2.10 illustrates the concept. A model which has submodels is called
a composite model or a structured model. Models that are not structured
are called primitive models, since they are defined in terms of primitives
like variables and equations.

A model (or submodel) encapsulates state and behavior in the same
way as an object in object-oriented programming encapsulates data and
procedures. For that reason we can regard models (and submodels) as
objects.
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Figure 2.10 A multilevel hierarchy of submodels.

Models are not the only kind of modules that are of interest in a mod-
eling and simulation environment. In this thesis, we are also considering
a library, which is a set of model definitions, as a module.

Abstract interfaces

Abstraction is closely related to modularity. A module can be regarded as
an abstraction if it can be used without knowing all its details. An ab-
stract module has an interface and an internal description. The interface
isolates the internal description from the environment, so that they can
be considered separately.

Abstraction is the way to conquer the problem of complexity in large
systems. It makes it possible to focus attention to one part or function of
the system at a time. It also makes it possible for individuals in a group
of engineers to become experts on different parts of the system.

Abstraction is an important concept in programming [Abelson and
Sussman, 1985] and in the development of high-level programming lan-
guages. For example, FORTRAN supports only procedural abstraction
while Pascal also supports data abstraction. Modula-2 has in addition
the module as an important abstraction. Object-oriented languages like
Simula and C++ use objects as the main abstraction units.
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Figure 2.11 Example of an abstract model interface where the realization
is hidden.

Abstract model representation makes it possible to use a model, for
example, as a component in a larger model, without knowing all details
about its definition. The interface of the model consists of terminals (exter-
nal variables) and parameters. The rest of the model includes the internal
representation of behavior, sometimes called the realization of the model.
Figure 2.11 shows an example of an abstract representation of a tank
model.

An important property of an abstract interface is the possibility to
group variables that naturally belong together. For example, a pipe con-
nection in a real system may be represented by three variables: the pres-
sure, the temperature, and the flow. This idea is indicated in Figure 2.11.

Abstraction and modularity are closely related to encapsulation and
information hiding [Booch, 1983, Rumbaugh et al., 1991]. By encapsula-
tion is meant that only module attributes belonging to the interface can
be accessed outside the module. Different levels of encapsulation can be
conceived in a model representation. For example, an internal variable of
a submodel may not be accessed from the environment model but it may
be available for observation when the model is simulated. Information
hiding is a stronger form of encapsulation which means that the internal
representation of a module is not visible to the user. Information hiding
prevents the user to make assumptions about the internal representation.
Such assumptions create interdependencies between modules which make
it difficult to modify the system. Information hiding may also be desirable
for proprietary reasons.
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Figure 2.12 Relations in a model (class) and a model instance. The solid
arrows represent component relations,

Classes

The class is an important concept of object-oriented programming. A class
is a description of a group of objects with similar properties [Rumbaugh
et al., 1991]. Every object in an object-oriented program is an instantiation
of a class. The word ‘instance’ is often used instead of ‘object’ to indicate
that it is an object generated from a class. For example, Person is a
class describing objects representing individuals. The class defines that
all persons have attributes like name, age, address, etc. Every instance
of Person have their own set of attribute values.

There are two possibilities of object-oriented model representation: to
regard a model as a class or as an instance. The former one is chosen since
a model and a class are conceptually similar. In other words, models are
represented as classes, rather than instances since a model is normally
regarded as a description of a system type, rather than a representation
of a particular system. For example, a model of a DC motor describes the
properties of a group of DC motor instances. A model defines attributes
like variables and equations while an instance has values for each vari-
able, representing the system at a particular moment in time. A model
instance is needed when the system is simulated.

The difference between a structured model (class) and a model in-
stance is illustrated in Figure 2.12. A robot has two DC motors. In the
robot model, this is represented by two component links to the same DC
motor model. However, an instance of the robot model has components
which are separate instances of the DC motor model.
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Figure 2.13 Example of an model representation inheritance tree. Each box
is a class. The arrows are pointing at the subclasses.

Inheritance

Inheritance is a mechanism for sharing information between classes. A
class can be defined as a subclass of another class, which is called the
super class. The subclass inherits all attributes defined by the superclass.
The subclass can define local additional attributes. This means that the
subclass can be viewed as a refinement of a general concept defined by
the super class. Sometimes we say that a subclass is derived from the
super class which is also called the base class. An important property
is the possibility for a class to override inherited attributes, and replace
them with local definitions. This may be used as an advanced kind of
model parameterization, making it possible to reuse model structure and
replace single components [Nilsson, 1993].

A class can have any number of subclasses. If a class can have only
one super class, the mechanism is called single inheritance. Otherwise it
is called multiple inheritance. If all classes, except one root class, have
exactly one super class, then the classes form an inheritance tree. Fig-
ure 2.13 shows an example of a model representation inheritance tree.
The root of the inheritance tree is the class called Class.

The class nodes in the model representation tree play different roles.
The leaf nodes are classes that can be directly used as components in a
model. This also applies to some non-leaf nodes such as Resistor. Other
nodes represent generalizations. For example, ElectricTwoPole generalizes
the fact that resistors and capacitors are electric two-poles. Resistor and
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Capacitor share a common definition of the terminal interface. Some
class definitions may be empty in the sense that they do not define any
local attributes. They are used to group other class definitions which
conceptually belong together. For example, the class ElectricComponent
may be empty but included in the tree to show that all classes derived
from it are electric component models.

2.5 Object-oriented modeling environments

Omola is a language for object-oriented model representation that sup-
ports the essential properties of object-orientation, discussed in the previ-
ous section. A detailed description of Omola is given in Chapter 4. OmSim
is an implementation of a modeling and simulation environment which is
built around Omola representations. OmSim is presented in Chapter 7. A
brief presentation of some modeling and simulation environments related
to Omola and OmSim is given in the following.

Dymola

An important predecessor to Omola is Dymola [Elmqvist, 1978] which was
an early general modeling language that recognized the importance of
acausal equations and hierarchical submodels. Equation based modeling
was first introduced in Speed-Up, a package for chemical engineering and
design [Sargent and Westerberg, 1964].

Dymola is a symbol manipulating program that accepts an acausal,
structured model and manipulates it into explicit state-space form for sim-
alation in a standard simulation language like Simnon [Elmavist et al.,
1990] or ACSL [Mit, 1986].

Originally Dymola was not object-oriented in the sense that was char-
acterized above. However, it certainly supported hierarchical modulariza-
tion and abstract interfaces. It also supported the concept of model type
making it possible to reuse model definitions. A later, commercial ver-
sion of Dymola has been extended in an object-oriented direction with a
model class concept and inheritance [Elmqvist, 1994]. It is not possible to
override an inherited definition in Dymola.

ASCEND

ASCEND (Advanced Systems for Computations in Engineering Design)
is an object-oriented representation language and an environment for
modeling and analysis [Piela, 1989]. The environment is mainly developed
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to support the need for process modeling in chemical engineering and
process design, but it has a general representation of models.

The language is based on type definitions (classes) with single inher-
itance. Both classes and instances can be directly manipulated in the lan-
guage. Hierarchical decomposition and acausal submodels are supported
but the are no special provisions for defining abstract interfaces.

Not only models but also problems can be specified in ACSEND. The
environment includes tools for defining and browsing models. The main
problem solver focuses on static simulation but also dynamic simulation
is provided.

DYMON

DYMON is an object-oriented environment for modeling and simulation
[Lund, 1992]. DYMON has a language (DYLAN) with properties similar
to Omola. However, DYLAN supports a kind of multiple inheritance.

The environment is designed to support flowsheet modeling in chem-
ical engineering but the aim is more towards dynamic simulation when
compared to ASCEND.

DYMON include tools for interactive manipulation of model equa-
tions. An interesting facility is that versions of manipulated equation sets
can be introduced in a model as new facets. Different facets may contain
versions of the model of different complexity. For example, one facet may
contain a representation manipulated for dynamic simulation, while other
facets have representations appropriate for static calculations or design
optimizations.

DIVA and VeDa

VeDa (Verfahrenstechniches Datenmodell) is a frame based data repre-
sentation for structured process models [Marquardt, 1992]. VeDa supports
the general object-oriented concepts but also several application specific
concepts. It allows models to be structured according to two aspects: a
structural aspect and a phenomenological aspect [Réumschiissel et al.,
1993]. The VeDa model representation is intended to be implemented on
top of an object-oriented database systems or a frame base knowledge
representation system.

Models represented in VeDa can be transformed into simulation
modules, represented by FORTRAN subroutines, for simulation in DIVA
[Kroner et al., 1990]. DIVA is an open architecture for interactive dynamic
simulation of DAE (Differential and Algebraic Equation) systems.
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3

A Guided Tour Through
Omola and OmSim

OmSim is a tool for modeling and simulation of dynamic systems. It is
based on the modeling language Omola which is the main topic of this
thesis. This chapter serves as an introduction to Omola and OmSim and
{llustrates their main facilities by simple examples. It is specially directed
to readers with no previous experience of Omola.

OmSim can be viewed as a collection — an environment — of tools
which can be used more or less independently to define new models,
to inspect and edit existing models, to simulate models, and to display
simulation results. OmSim is window based and mostly controlled by
mouse and menu selections. It is outside the scope of this thesis to describe
all parts in detail but most of them are mentioned here in order to
illustrate different aspects of Omola.

The main advantage of the object-oriented modeling methodology
supported by Omola is that it supports reuse of models in several different
ways. The concepts of reuse are best illustrated for models that are partly
built from library components and for models that are made in several
versions with minor differences. For this reason, the guided tour will start
with an existing model, based on library components. This model is first
examined and then modified and extended in different directions.

The electric drive system introduced in Chapter 2 is used to illustrate
the use of Omola and OmSim. A controller is added to the electric drive,
so that a servo system is created where the rotational speed of the load
is regulated.
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Figure 3.1 The OmSim library browser showing libraries and and their
contents.

3.1 An Omola model of the servo

An Omola model of the electric drive servo systems has already been
prepared for this guided tour. We will start by examining this model to
see how it is structured and how the components are defined.

Starting OmSim
OmSim is started with the Unix command:
omsim servo.om

The command argument is the name of an Omola file containing the servo
model definition. This file is parsed so that the model is initially loaded
into the internal model store of OmSim. When OmSim is started, three
windows appear on the screen. The main OmSim window with the top-
level menu bar and a library browser window are shown in Figure 3.1.
The third window is a log window used by OmSim for printing various
messages to the user.

The library browser shows a list of all model libraries currently known
to OmSim. Each library may contain a number of Omola class definitions.
An Omola class defines a complete model or a component intended to be
used as a building block in a another class. When a library is selected
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Figure 3.2 The top level of the servo model displayed in the graphical editor.

the contained classes are listed in the right part of the browser. It is then
possible to select a particular class definition and to do various operations
on it. Operations are activated from the pull-down menus called Tools and
Display, located in the main OmSim window. Examples of tools are the
graphical model editor and the simulator. The former one is going to be
used next.

In order to examine the servo model it is selected in the library
browser and a tool call MED, which is a graphical model editor, is acti-
vated from the Tools menu. The resulting window is shown in Figure 3.2.
The servo model consists of three components: the drive unit, the con-
troller, and a block representing a constant reference value for the con-
troller. The constant reference value is included in this example only to
make the model immediately ready for step response simulations.

The drive unit model is first investigated. The submodel icons in the
MED diagram are mouse sensitive and have associated pop-up menus.
Another MED window is opened from the menu of the drive unit. The
new window, shown in Figure 3.3, displays the internal structure of the
drive unit model. We can see that the servo contains three components:
a motor, a coupling, and a load. Going one step further down in the
component hierarchy the internal structure of the coupling model is shown
in Figure 3.4. The hierarchical decomposition of the servo model in several
levels can be displayed as a tree with the top-level servo as the root. The
servo is selected in the library browser and the appropriate tool is chosen
from the Display menu. The result is shown in Figure 3.5.

Object diagrams

The graphical model representations displayed and manipulated by MED
are called object diagrams which are similar to ordinary block diagrams.
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Figure 3.3 Object diagram of the drive unit
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Figure 3.4 Object diagram of the coupling model.

Submodels appear as annotated boxes, like the drive unit in Figure 3.2,
or with special icons indicating the type of the submodel like, for example,
the controller in Figure 3.2 or the components of the coupling model in
Figure 3.4.

Lines between objects in the diagram represent connections which
define interaction between submodels. A connection is a relation between
two terminals. Terminals represent the interaction variables (external
variables) corresponding to inputs and outputs in ordinary block diagram
models. However, a terminal is more general than an ordinary input or
output variable, for example, it may consist of several quantities and the
causalities (input or output) do not have to be defined. Terminals are in
most cases indicated by small squares located at the rim of the icon or
the object diagram. Figure 3.3 shows terminals at two hierarchical levels:
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Figure 3.5 Submodel composition tree of the servo model.

the squares marked ‘W’ and %y’ are terminals of the drive model, while
the smaller squares at the submodel boxes are terminals belonging to the
components.

All parts of the object diagram displayed in MED are mouse sensitive,
i.e., different menus are associated with submodels, terminals, and con-
nections. The menus contain object specific operations like move, delete,
and show information.

Library of rotational mechanical components

Let us return to the servo example. The components of the coupling model
shown Figure 3.4 are derived from a general library of mechanical compo-
nents called RotMech. It is developed as an example of a general library
for a particular application domain and it contains idealized rotational
components. The coupling model consists of an ideal torsional spring and
a linear damper (a dash-pot).

All the model components defined in RotMech are organized in an
inheritance hierarchy displyed in Figure 3.6. The root of the tree is
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Figure 3.6 Inheritance tree of model classes in the RotMech library.

RotMechModel which in fact is an empty model definition included only
to provide a common root for all model definitions in the library. The
rest of the tree contains more or less specialized model definitions. The
structure of the tree shows common properties of models. For example,
Damper and TorsionalSpring, which appear as components of the cou-
pling model, are both descendents of a definition called TwoCutModel. A
fwo-cut model in this case is a component with two terminals, as it can
be seen in Figure 3.4.

Some models in RotMech will be examined in detail below, after the
terminals have been studied.

Terminal definitions

An important property of a library is that the components of the library
have compatible interfaces that can be connected in a uniform way. This
is achieved by defining a set of standardized terminal types used by all
the components. The rotational mechanics library uses one basic type of
terminal called a cut, defined by the Omola class Cut. The definition can
be located in the library browser, selected, and displayed as Omola code.
The result is shown in Figure 3.7. An Omola class definition often con-
tains many names referring to other class definitions. These names are
printed in bold-face in the display window and they are mouse sensi-
tive, so they can be selected and displayed in another window. Consider
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Figure 3.7 Omola definition of the cut terminal.

TorqueTerm 1sA ZeroSumTerminal WITH
default := 0.0;

direction := ’in;
quantity := "torque";
unit := "N.m";

END;

AngularVelocityTerm 1SA SimpleTerminal WITH

quantity := "angular.velocity";
unit := "rad/sec";
END;

Listing 3.1 Definitions of basic terminals in the RotMech library.

the definition of Cut, shown in Figure 3.7. The first line says that Cut
is derived from the Omola class RecordTerminal, which is predefined in
Omola. This means that it is known by OmSim and has a particular
meaning. An object that is a record terminal is first of all a terminal,
i.e., a part of the interface of the model where it is defined. It is also a
kind of terminal that has several component terminals. The cut terminal
has two components called T and w derived from the library definitions
TorqueTerm and AngularVelocityTerm respectively. These definitions are
listed in Listing 3.1. They represent single physical quantities and they
are derived from ZeroSumTerminal or SimpleTerminal which are prede-
fined classes in Omola. The meaning of a zero-sum terminal is that when
two or more of these terminals are connected the individual quantities
will sum up to zero. The corresponding meaning of a connection between
two simple terminals is that their values are equal. The torque terminal
has an attribute, default, which is used as a value if the terminal is not
connected. Another attribute, direction, bound to in, defines that the
terminal represents a torque from the environment acting upon the com-
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Figure 3.8 Inheritance tree of terminal definitions. The tree includes classes
that are predefined in Omola as well as terminals defined the rotational
mechanics library.

ponent. Note that this has nothing to do with causality, it merely defines
how the sign of the torque must be interpreted.

The terminal definitions in Listing 3.1 also have attributes defining
the physical quantities and the units of measure associated with the
terminal interfaces. These attributes are checked by OmSim to assure that
terminals of different physical quantities are not connected. The units of
measure are used for automatic unit conversion in connections.

The physical interpretation of a cut terminal in the context of our
particular library, is the following. A cut represents an attachment point
of a mechanical object. When cuts of several objects are connected, the
angles are forced to be equal at the attachment points, and the sum of
the torques acting on each object is zero. The idea of a cut has the same
meaning as in mechanical systems analysis. It can easily be generalized
to libraries for 2-dimensional and 3-dimensional mechanical systems.

Since terminals are defined as Omola classes, they also form an
inheritance hierarchy in the same way as the models. The inheritance tree
with the predefined Omola class Terminal as a root is shown in Figure 3.8.

Basic model components

We are now ready to take a closer look at some of the model definitions in
the library. Several of the model components in the library have two cut
terminals. For that reason, a definition has been included that only defines
the terminal interface of these models. The class is called TwoCutModel and
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TwoCutModel 1sA RotMechModel wiTH
terminals:

C1 18A Cut;

C2 15A Cut;
END;

TorsionalSpring 1SA TwoCutModel WITH
parameters:
K 1sa Parameter WITH default := 1.0; END;
% Spring constant in [Nm/rad]
variable:
a TYPE Real,
equations:
a = Clw — C2w,
C1.T = K*a,
C1T + C2.T = 0.0
END;
Listing 3.2 Definition of a general interface class with two cuts and a
specialization into a model of a torsional spring.

it is defined in Listing 3.2.

One of the components of the coupling model is the library model of
a torsional spring defined in Listing 3.2. Since the spring has two attach-
ment points it is defined as a subclass of TwoCutModel. This means that the
spring model inherits the terminal interface definition from TwoCutModel.
The definition of the torsional spring includes a parameter, K, with a de-
fault value, an internal variable, a, and three equations defining the be-
havior of the model. Variable a represents the twist angle. This is defined
by the first equation saying that the time derivative of a is equal to the
difference in speed between the cuts. The second equation defines the
spring torque to be proportional to the twist. Since the spring is free of
mass and inertia, a torque applied at one cut must be balanced by an
equally large torque of opposite sign at the other cut. This is expressed
by the last equation.

The tags written as ‘terminals:’, ‘parameters:’. etc. in the model
definitions are not significant. They can be viewed as comments, added to
the model to indicate the different groups of attributes. Normal textual
comments start with a percent sign and last to the end of the line.
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Figure 3.9 The top-level control panel of the OmSim simulator.

3.2 Simulating the servo

Having examined the servo model in some detail, we are now ready to
simulate it. An OmSim simulator for the servo is created by selecting
the model in the library browser and then choosing Simulator from the
Tools menu. A control panel for the simulator appears as a new window
shown in Figure 3.9. When a simulator is created, the selected model is
first checked for consistency and then instantiated. Instantiation means
that a special copy, an instance, of the model is created to be used for the
actual simulation. All terminal connections of the model are translated
into equations in the instance. The complete set of equations are then
analyzed and manipulated in order to create efficient simulation code
that can be executed by the numerical simulation algorithms. Errors are
reported if the model contains too few or too many equations or if any
other structural deficiency is detected.

The simulator panel has a menu bar with various options and sub-
tools. From the Config menu it is possible to open a panel with several
options and parameters that can be used for controlling the simulation.
For example, it is possible to choose from a set of different integration
methods, change the required accuracy, etc. The simulator has a set of
different subtools for inspecting the model instance, changing model pa-
rameters and initial values, plotting results, connecting to external files,
etc. From the Access menu it is possible to open a panel for displaying and
changing all parameters of the model. The panel in Figure 3.10 is shown
with all parameters having the default setting defined in the model.

Plotter windows are opened from the In/Out menu. Variables can be
connected to plotters by means of menu selections in a Variable Access
window. Two plotters are shown in Figure 3.11. They show the control
signal and the load speed resulting from a simulation of the servo model
with default parameter settings.
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Figure 3.10 A parameter access tool for the servo model.
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Figure 3.11 Plotter windows showing results from a simulation of the servo.

3.3 Creating new model variants

Assume we would like to simulate the servo system with a different model
for the coupling of the drive unit in Figure 3.3. A coupling model with a
mechanical play, or backlash, is defined using the graphical model editor.
The result is shown in Figure 3.12. The backlash component is available
from the library. It is different from the other components of the servo
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Figure 3.12 A coupling mode! a backlash component.

BacklashDrive I1SA Drive WITH
Coupling 1sA BacklashCoupling;
END;

BacklashServo ISA Servo WITH
Drive 1A BacklashDrive;
END;
Listing 3.3 Definitions of new versions of the drive and servo models.

model in the sense that it is not a pure continuous time model. The back-
lash uses discrete events to model the switches between different modes.
The component is either in a slack mode with no transmitted torque when
the angle difference between the cuts is less than a certain constant value,
or in a torque transmission mode with a constant angular difference be-
tween the cuts. The definition of the model is given in Listing 6.12.

Since the new coupling model has the same interface as the old one,
it may replace the old one in the drive model in Figure 3.3. Instead of
actually redefining the drive, a subclass can be defined which inherits
the structure from the original drive model but replaces the coupling
component with the new version. The same thing is done to define a new
version of the servo with the new drive model. The new definitions are
shown in Listing 3.3. The definitions are very simple since most of the
model structure is inherited from the previously defined models. This is
an example of reuse of model structure.
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3.4 Summary

The following points of interest have been encountered during the guided
tour through Omola and OmSim:

e The same uniform schema, based on class definitions, is used for
representing terminals, submodels, and other model components.

e Structured, acausal terminals make it possible to define model com-
ponents representing idealized physical objects.

e A graphical editor is used for defining and displaying composite mod-
els.

e Discrete events are used for defining models with switching modes.

e Two kinds of hierarchies appear in models and model libraries: com-
position trees and inheritance trees.

Reuse of models and model components saves time and prevents errors
when new models are developed. In addition to the traditional copy-
and-modify methodology, Omola supports the object-oriented inherit-and-
specialize methodology. The object-oriented method has several advan-
tages:

o A library can grow organically, like a tree, where the origins of each
new definition can be traced back to its root.

e Modification of the original model are automatically available to de-
rived objects.

e Some of the structure intended by the library designer becomes ex-
plicit in the inheritance hierarchy. This makes it easier for the library
user to find what is needed for a particular application.
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4

The Modeling Language
Omola

Omola is a language for describing dynamic models. Its main purpose is to
provide a user oriented, high-level, and textual representation of models.
Omola models can be used for simulation and as input to different analysis
and design tools. Omola is designed to be a general modeling language
rather than a more specialized simulation language. It is designed to serve
as a general model representation in an integrated environment of tools
supporting model development, system analysis, and design.

This chapter describes the fundamental concepts of Omola in detail.
The syntax and the semantics of the language is defined. The presenta-
tion includes fundamental concepts and continuous time behavior only;
concepts concerning discrete event behavior are discussed in Chapter 5
and Chapter 6.

4.1 Introduction

To design a simulation language means to choose a set of high-level
modeling concepts, to give them a suitable syntactic form, and to give them
a precise meaning in terms of some underlying formalism. A language
design is influenced by several factors, for example
e the kind of models to be represented,
e the size and complexity of the models,
e the capabilities and requirements of the assumed underlying simula-
tion or analysis machinery,
e the background and expertise of the presumed users,
e the traditions established by existing simulation languages and mod-
eling formalisms,
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e the stylistic preferences of the designer.

Omola is designed to represent models whose behavior can be described
by ordinary differential and algebraic equations, difference equations, and
discrete events. One of the main goals have been to include facilities for
structuring large and very complex systems in such a way that they can
easily be understood and maintained. The assumed simulation machinery
consists of a state-of-the-art Differential and Algebraic Equation (DAE)
solver in combination with a discrete event handler. The presumed users
are engineers and researchers, skilled in their own application areas but
not necessarily experts in simulation as such. Omola uses a mathemati-
cal notation common to many existing simulation languages and to matrix
calculation systems. Notation for representing model structures is influ-
enced by object-oriented programming and by frames and similar knowl-
edge representation schemes developed in artificial intelligence (Al), e.g.,
see [Winston, 1984].

To describe a modeling language

The problem of describing a modeling or simulation language is similar
to describing a general programming language. It is difficult to give a
complete and rigorous description. A programming language is often de-
scribed in terms of syntax, semantics, and pragmatics [Waite and Goos,
1984]. The syntax of the language defines which character strings consti-
tute well-formed sentences. There are formal ways of describing syntax.
For example, BNF (Backus-Naur form) and various extensions can be
used for representing a context free grammar [Aho and Ullman, 1977].
A variant of BNF is used in Appendix A to define the syntax of Omola.
The semantics of a language describes the meaning of a program or model
in terms of basic concepts in the language. The pragmatics relates lan-
guage concepts to concepts outside the language like mathematics or the
operation of the executing computer.

A simulation language has many properties in common with pro-
gramming languages. Syntax and semantics are in large parts identical.
For simulation languages designed for discrete event simulation, also the
pragmatics concerning the execution of the model is very similar to a
programming language. A good example of that is the development of
Simula [Birtwistle et al., 1973], a language that was originally designed
as a simulation language for discrete systems and was later developed
into a general object-oriented programming language. However, the ex-
ecutional model of a modeling language mainly designed for continuous
time simulation is considerably different from a programming language.
Equations of a continuous time model are virtually executed in parallel
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MODEL REPRESENTATION

DATA REPRESENTATION

Figure 4.1 A layered view on Omola and OmSim.

while the assignments of a programming language are executed in strict
sequence.

The syntax and meaning of basic Omola concepts are presented in
the following sections. A formal description of the Omola syntax is given
in a BNF like form in Appendix A. The semantic rules and interpretations
of Omola concepts are summarized in special Semantic Rule paragraphs.

How Omola is structured and presented

Omola can be viewed as consisting of two separate layers: the data rep-
resentation layer and the model representation layer, see Figure 4.1. The
data representation layer defines a set of syntactic, semantic, and prag-
matic rules for representing general data. Definitions of model variables
and equations, as well as the basic structuring concept, the class, belong
to this layer. The model representation layer consists of a set of prede-
fined classes with a well-defined meaning. This layer defines the semantic
and pragmatic rules governing how dynamic models are represented in
the language. The first half of this chapter, up to Section 4.7, is mainly
concerned with the data representation layer, while the remaining part is
devoted to the model representation layer.

Figure 4.1 also shows a third layer, the tool layer, on top of the
model representation layer. This layer is not actually a part of the Omola
language but it is a natural extension of the two basic layers and it is
a part of the modeling and simulation environment OmSim, described in
Chapter 7.

The advantage of viewing Omola as consisting of two separate levels
is that a degree of modularity is achieved and it becomes possible to re-
place any of the layers separately. For example, the data representation
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< Omola Text File

Parsing
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< Class Definitions >§

Instantiation

< Model Instance

Figure 4.2 Representations and transformations of Omola models.

layer can be replaced by an object-oriented database or a standardized
data modeling language like EXPRESS [Hope et al., 1991, Spiby, 1992].
It is also easier to extend the model representation layer in order to repre-
sent totally different kinds of models, such as PDE models or qualitative
models.

Omola was originally designed to work as an experimental framework
where different model representations could be tested. It has been a main
goal to design the language in such a way that different modeling concepts
can be tested while the data representation layer is kept conceptually
clean and relatively stable. For that reason it was important to have
flexibility in the language so that new modeling concepts could be added
along the way. In the chosen language structure it is relatively easy
to add new concepts at the model representation level while the data
representation level is kept unchanged.

Another view on Omola focuses on the different forms in which mod-
els are represented in the OmSim environment, see Figure 4.2. Omola
models are permanently stored as text. A parser scans an Omola text file
and builds the internal data structures in the OmSim model database.
Each class definition is represented as an object in the model database.
Model instances can be created from model classes. A model instance is
a data structure where each single part of a model, such as a variable,
an equation, or a submodel, is represented by a separate object. Model
instances are used during model analysis and simulation.
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4.2 The class concept in Omola

The key concept in Omola is the class. A class is a general data aggrega-
tion which is the basis for representing different modeling concepts like
model, terminal, parameter, etc. Just as in object-oriented programming
languages, an Omola class is a description of an object and it can be used
for constructing any number of instances. Model instances are created
from Omola classes by an instantiation procedure which is discussed in
more detail below. A model instance is a data structure that is needed for
further analysis and simulation of a model.

A class has a name and a super class. The name must be a valid
identifier according to the standard rules used in most programming
languages. The super class is a reference to another defined class. The
meaning of a super class is discussed in Section 4.6 below. For the moment
it is enough to view it as a special kind of relation to another class. In
addition, a class may have any number of attributes. The syntactic form
of a class definition is the following.

<name> ISA <name of super class> WITH
<body with attribute definitions>
END;

If the class has no attribute definitions a shorter form can be used:
<name> ISA <name of super class>;

The words ISA, WITH, and END are key-words in Omola and cannot be used
as names. Omola is case insensitive but key-words are written in capital
letters in this thesis. The key-word ISA should be understood as ‘s a’ and
it has the synonym key-word ISAN.

As an example of a class definition, regard the definition of Model
which is a built-in class in Omola:

Model 15A Class;

In this case, ‘Class’ refers to another predefined class.
The properties of a class are defined by its super class and its local
attributes. There are six kinds of attributes; they are:

e other class definitions, called component classes or just components,
e variable definitions,

e variable bindings,

e equations,

e connections, and

e events.
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These attributes are discussed in this chapter except for events which are
discussed in Chapter 6.

Component classes

Much expressive power of a modeling language comes from the ability to
create hierarchies of structural abstractions. A model may be represented
as a structure of submodels which are models themselves.

Hierarchical structures are represented in Omola as classes with com-
ponents, i.e., local class definitions inside other class definitions. The outer
class definition is the owner of the component class. Component classes
of a model are used for representing submodels, parameters, terminals,
etc.

The meaning of a class with components is given by the following
rule:

SEMANTIC RULE 1—Composition
1. A class C with a component D means that every instance of Cincludes
a part which is an instance of D.

2. Given an instance of C, this component can be accessed using the
name of D as a symbolic reference.
O

For example, the class definition

C 18A Class WITH
D 18A Class;
END;

and one instance of C are shown as an object diagram in Figure 4.3.
Classes are displayed with double framed boxes while instances are dis-
played with single framed boxes. Relations between objects are repre-
sented by arrows. The has relations are indicated by dashed annotated
arrows while the instance-of relations are indicated by solid arrows. From
Semantic Rule 1 we can conclude that a component in Omola works in
two ways. It is a class definition and it is a declaration saying that an
instance of the owner class has a component instance with the same name
as the component class. Because of this, local class definitions in Omola
have a different meaning than local class definitions in object oriented
programming languages like Simula [Birtwistle et al., I 973]. A local class
definition in Simula does not automatically mean that the owner class
also has a data attribute of the locally defined class. Data attributes must
be declared explicitly. A motivation for the chosen construct is given in
the discussion at the end of this chapter.
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C has D
———————— ]
Instance of Instance of
c has D
———————— E

Figure 4.3 An object diagram showing a class with one component and one
instance.

4.3 Variables

Variables are the primitive elements used as attributes of classes. Every
variable has a name, a type, and possibly a binding which is an associated
symbolic expression. Variable definitions with and without a binding have
the following syntactical forms:

<name> TYPE <type>;
<name> TYPE <type> := <expression>;

The following is an example of a class definition with two variable at-
tributes, x and y, where the latter has a binding expression.

C 18A Class WITH

x TYPE Integer;

y TYPE Real := 2%x;
END;

Variables represent numeric or symbolic quantities in an instantiated
model. The meaning of a variable attribute can be defined in a similar way
as the meaning of component attributes:

SEMANTIC RULES 2—Variable attributes

1. A class C with a variable attribute x means that every instance of C
has a part which is a variable instance of x.

2. Given an instance of C, the variable instance can be accessed using
the variable name as a symbolic reference.

3. Avariable instance of a variable attribute is an object capable of stor-
ing a value of the data type defined for the variable attribute.

|
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A binding is an expression defining how the value of a variable should be
computed. If the value of the binding expression is defined, then the value
of the variable is also defined to that value. A variable binding may also
appear as a separate attribute of a class. In this case it has the form of an
assignment equation, i.e., the variable name followed by the assignment
symbol ¢:=" followed by the binding expression. Equation attributes are
further discussed below. An equivalent definition of the previous Omola
example with a separate binding attribute for y is

C 18A Class WITH
X TYPE Integer;

y TYPE Real;
y 1= 2%x;
END;

A variable may have bindings defined outside the class where the variable
itself is defined. However, at most one binding is valid and takes prece-
dence over the others. For example, regard the following class definition
which includes C as a component:

D 18A Class WITH
C1 15A C;
Cly := 1.0
END;

The binding attribute refers to variable y defined in class C. This binding
overrides the local binding for the same variable defined in C. Overriding
is controlled by scope rules that are defined in Section 4.7.

A variable that has no binding is called a free variable. A variable
with a binding that can be evaluated to a constant value is regarded as a
constant.

Variable types

Omola has five basic data types. These are real, integer, string, symbol,
and enumeration. In addition, one- and two-dimensional arrays of reals
are supported. A symbol variable takes a value that is an identifier ac-
cording to the lexical rules of Omola. A symbol literal is written as an
identifier preceded by a single quote. An enumeration variable takes val-
ues restricted to a given set of symbols.

Table 1 lists the type specifiers as they are given in a variable def-
inition, and examples of literals, for all Omola types. The type specifier
for an enumeration is a list of possible symbolic values. The table shows
a specific example of en enumeration type. Arrays are defined using the
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Table 1 Omola types and examples of literals. Note that the type specifier
for an enumeration is a list of arbitrary symbols; the table gives a specific

example.
Type specifier Example of literal
REAL 3.14
INTEGER 1
STRING "This is a string"
SYMBOL ’OmSim
(Gas, Water, Steam) | ’Gas
MATRIX [m,n] [1.1, 1.2, 1.3; 2.1, 2.2, 2.3]
COLUMN [m] [1.1; 2.1; 2.2]
ROW [n] [1.1, 1.2, 1.3]

type specifiers Matrix, Column, and Row, which also include size declara-
tions. Column and Row are one-dimensional arrays. The size declarations,
indicated by m and n in the table, are general integer expressions that
must evaluate constant values larger than zero. In the table, m indicates
the number of rows in a matrix or a column while n indicates the number
of columns in a matrix or a row. The notation for matrix literals is similar
to Matlab [Mat, 1993].

Discrete and static variables

Special keywords can be added to a variable definition to define the vari-
able as being discrete or static. A discrete variable represents a piecewise
constant function of time in a dynamic model. The time instances where
a discrete variable changes its value are called events which are further
discussed in Chapter 6. A variable that is declared as static is not in-
stantiated. It defines a property of the class itself and it is shared by all
instances of that class. Static variables are similar to static class mem-
bers in C++ [Stroustrup, 1986]. In Omola, static variables are normally
used to define time independent model properties like the size of an array.
Static and discrete variables are declared as:

<name> TYPE STATIC <type>;
<name> TYPE DISCRETE <type>;
4.4 Expressions

Expressions do not appear alone as class attributes but they are parts of
equations, variable bindings, and in matrix size declarations. An expres-
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sion is a combination of variable references, literals, mathematical op-
erators, and invocations of predefined functions. Variable references are
names of variables which are visible in the context of the expression.
Which variables are visible and how they are referenced are discussed
in Section 4.7. Operators and variables are combined to legal expressions
according to a set of association and precedence rules which are similar
to most programming languages and languages for numeric and symbolic
mathematics, Every expression has a type that depends on the involved
variables, functions, and operators.

Omola includes a basic set of mathematical and logical operators.
Three special operators for matrix indexing, time derivatives, and condi-
tional expressions are discussed below.

Matrix indexing

Variables of type Matrix, Row, or Column can appear in expressions with el-
ement or submatrix indices. The index operator consists of a pair of square
brackets with one or two integer expressions separated by a comma. A
variable of type Matrix must have two index expressions while a variable
of type Row or Column must have one index expression. An index expres-
sion is either an integer expression or an integer interval. An interval is
indicated by two integer expressions with the range operator consisting of
two periods: “..”, in between. For example, assume there is a class with
the following variable attributes:

X TYPE Matrix [5, 5];
Y 1YPE Row [10];
i, ] TYPE Integer;

The variable reference X[1,1]  refers to the scalar element of the first
column and the first row of X, while the reference ‘Y[i]’ refers to any
element of the single dimensional array Y. A matrix, row, or column which
has interval indices (with intervals larger than one element) results in a
submatrix. To continue the example, the reference X[1,1..3]" refers to
the submatrix consisting of the first three elements of the first row in X.

It must always be possible to determine the size of a submatrix.
This means that if the interval expressions contain variables, it must
be possible to eliminate these variables from the difference between the
upper and lower bound expressions. For example, Y[i..i+2]" is correct
since the size of the submatrix does not depend on i while ‘Y[i..j]’ is
not correct unless i and j are known constants.

Constant indices are checked in Omola classes. Variable indices are
checked when the instantiated model is simulated. A row, a column, or a
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matrix with a single element is accepted as a scalar variable everywhere
in expressions.

Derivative operators

There are two equivalent ways of referring to the derivative of a variable.
These are to use the function operator dot or to use single quotes as a
postfix operator. For example, “x’” and “dot (x)” are equivalent and refer
to the time derivative of x which must be a real or array expression.
Second and higher order derivatives are indicated by several quotes or an
additional integer argument to the dot operator. For example, “x’’” and
“dot (x,2)” refer both to the second time derivative of x.

When the derivative operator is applied to an expression containing
several real variables, Omola and OmSim may simplify the expression
according to standard algebraic rules, or introduce an auxiliary variable
equal to the expression. For example, the expression “(x*y)’” may be
expanded to “x’*y+x*y’”. Algebraic manipulations of the equations are
not a property of the language itself. They depend on the tools using the
models and they are discussed in Chapter 7.

When the derivative operator is used together with matrix index-
ing, the correct syntax is to write, for example, “dot (x[i])” or “x[i]’”.
Though, the meaning of the expression is “x’ [i]” since the derivative
operator is not applied to the integer index.

Conditional expressions
A conditional expression has the following syntactic form:
IF <condition> THEN <expression> ELSE <expression>

where the condition part should be a logical expression. If the condition
evaluates to true, the conditional expression is equivalent to the first
expression, otherwise it is equivalent to the second expression.

In general, the condition of a conditional expression is time dependent
and cannot be evaluated in the model (before simulation). In this case the
two alternative expressions must be of the same type which is regarded
as the type of the conditional expression as a whole. However, if the
value of the condition is a known constant, then one of the expressions is
disregarded and not type checked. This is an advantage when a matrix has
a parameterized size and a conditional expression is used for selecting a
correct indexing depending on the actual size. The disregarded expression
may in this case have illegal indices. For example, regard the following
attribute definitions:

N TYPE Integer;
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X TYPE Row [NJ;
Y TvyPE Real := 1r N>1 THEN X[N-1} ELSE 0.0;

If the definitions appear in a class where N is bound to 1, then the THEN
part of the conditional expression is illegal since the index is out of range,
but this part is ignored since the condition is known to be false.

4.5 Equations

An equation is a class attribute for representing constraints between
variables and it is one of the basic ways of representing model behavior
in Omola. The syntactic form of an equation is a left and a right hand
side expression with a separating equal sign:

<expression> = <expression>;

The equation has the following precise meaning which is consistent with
an equation in the usual mathematical sense.

SEMANTIC RULE 3—Equations

An equation is an equality relation between two symbolic expressions
declaring that a possible model behavior is such that the left and the right
hand side expressions are evaluating to the same value. |

Note that the left and the right hand side expressions have equal status
and can be switched without changing the meaning of the model.

Variable bindings, introduced above, can be viewed as a special kind
of equations with the syntactic form

<variable name> := <expression>;

The difference is that a binding defines how a particular variable should be
computed if all variables appearing in the right hand side expression are
known. An ordinary equation defines no particular computational order
and can therefore be solved for virtually any variable that appears in any
of the expressions.

4.6 Class inheritance
Inheritance is a mechanism for propagating attributes of one class, called

the super class, to the definition of a new class, called the derived class.
Every class in Omola, except for the predefined class Class, is derived
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from a super class. Because of this, all classes, predefined as well as user
defined ones, form a tree structure where Class is the root.

Inheritance works as follows: all attributes of the super class are also
attributes of the derived class, except for those overridden by local defi-
nitions in the derived class. Attributes that are defined in the body of a
class definition are called local attributes with respect to the class. At-
tributes that are not local are called inherited attributes. Inheritance is
transitive so that a class inherits all attributes defined in the hierarchy
of super classes starting from the root of the class tree. A local attribute
overrides an inherited attribute with the same name. This makes it possi-
ble for a class to redefine inherited attributes. Attributes without names,
like equations, are also inherited but they cannot be redefined. Inheri-
tance and the meaning of the super class concept can be defined by the
following statement:

SEMANTIC RULE 4—Inheritance and attribute ordering

The attributes of a class is the list formed by the list of attributes of the
super class, excluding those attributes of the super class having the same
name as a local attribute, followed by the list of local attributes in order
of definition. )

The rule states that a class is an (ordered) list of attributes. In most
cases the order in which the attributes are defined is not significant but
for record terminals, which are discussed below, order is important.

The meaning of a class is not dependent on whether a particular
attribute is inherited or local. The inheritance concept is used to structure
class definitions so that more specific classes can be derived from more
general ones. A class representing some general concept can be reused as
a super class and specialized in several different ways. A derived class can
only redefine inherited attributes and add new ones — it cannot remove
inherited attributes. As an example of inheritance, regard the following
definitions:

A 18A Class WITH
X TYPE Real,;
y TYPE Real,
END;

B 1A A WITH
y TYPE Integer;
z TYPE Real,
END;
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Figure 4.4 Diagram showing relationships between classes and attributes
for the example given in the text.

C 18A Class WITH
X TYPE Real,
y TYPE Integer;
z TYPE Real;
END;

Class C is equivalent to class B in terms of the attributes. The definition of
B includes a local attribute, y, which overrides the attribute with the same
name defined in the super class A. The classes are displayed graphically
in Figure 4.4.

Omola only supports single inheritance which means that every class
has at most one direct super class. Multiple inheritance means that a
class may inherit from more than one direct super class (see for example
[Rumbaugh et al., 1991]). Single inheritance is conceptually more clear
and easier to implement. This is the main reason why it is adopted in
Omola. Multiple inheritance may cause conflicts between attributes in-
herited from different paths. Many modeling cases where multiple inher-
itance may seem appropriate, can be solved using single inheritance and
composition.

Resolving the super class

Every class definition has a reference to a super class. The reference is
usually a single name like ‘Class’ and ‘A’ in the examples above. In these
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M1 1sa Class WITH
X 18A Class WITH ... END;
W 1sA Class WITH ... END;
END;

M2 18A Class WITH
X 18A Class WITH ... END;
M21 1A M1 WITH
X 18A Class WITH ... END; % overrides inherited X
Y 1sa THIS:X WITH ... END; % specializes M2.M21.X

Z 1sA SUPER:X; % specializes M1.X
W 13A OUTER:X; % specializes M2.X
END;

END;
Listing 4.1 Example of usage of special super class qualifiers.

cases, the names refer to global class definitions, either predefined classes
or defined in the same library. A global class is a class defined at the top
level, i.e., not as a component of some other class. A class defined as a
component of another class is called a local class. A library is a named
group of class definitions. Each library makes a separate name space for
global definitions. It is possible to refer to a super class defined in another
library using qualified reference. For example, the following class has a
super class defined in a library called Controllers:

Regulator 1sA Controllers::PID;

Libraries are further discussed in Chapter 7.

Specializing local classes

It is possible to specialize a local class, that is, to use a local or inher-
ited component as a super class of another component. To indicate local
inheritance three special super class qualifiers are used: ‘THIS’, ‘SUPER’,
and ‘OUTER’. Listing 4.1 illustrates the use of these qualifiers. All three
qualifiers indicate that the super class is localized by a search in the lo-
cal context instead of globally in libraries. The search works upwards in
the inheritance hierarchy and outwards in the component hierarchy. The
qualifiers differ only in the place where the search is started. They work
as follows.

THIS The super class is first searched in the owner of the class being
defined.
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SUPER The super class is first searched in the owner’s super class. This
makes it possible to define class attributes like X ISA SUPER::X ...’
where the inherited component X is redefined and specialized.

OUTER The super class is first searched in the owner of the owner of the
class being defined. This qualifier is similar to THIS but the search
starts one step further out in the composition hierarchy. It is an error
to use this qualifier for components of global class definitions.

Even though local inheritance is not used for most simple model
definitions, there are cases when it can be useful and there are good
reasons for allowing it in Omola. Omola is heavily based on local class
definitions. The reasons for this are discussed in the end of this chapter.
If a local class definition should really work as a true class, rather than
just an invocation of a global class as a component, it must be possible
to specialize it. This motivates the introduction of the qualifier THIS. If
one component of a model specializes a global class, this qualifier makes
it possible for other components (in the same class body or in derived
classes) to reuse the specialization. The definition of Y in Listing 4.1 is an
example of this.

Another example of a natural use of local inheritance is when it is
desirable to specialize an inherited component. This means to replace an
inherited component with a specialized version of it. It is not possible
to use THIS since “X ISA THIS::X ...;” would create a circular class
definition (a class that is its own super class). Instead of “THIS::X” it
should be “SUPER: :X” which explicitly refers to the inherited X and the
circularity is avoided.

The following is a motivation for the OUTER qualifier. Components can
sometimes be used as model parameters. A model can be reused so that
some of its components are redefined and replaced by definitions adapted
to a particular usage. This kind of model parameterization is discussed in
detail in [Nilsson, 1993]. Class M1 in the example in Listing 4.1 is a model
that is reused as a component, called M21, in class M2. M21 redefines the
inherited component called Y as a subclass of the component X defined in
M2. Without the OUTER qualifier it would not have been possible to refer
to M2.X as a super class in this case, since there is a another component
called X defined locally in M21.

4.7 Variable scope and binding rules
Mathematical and symbolic expressions appear in equations and bindings.

Expressions include symbolic references to class attributes and mathemat-
ical and logical operators. For an expression to be valid, each symbolic
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reference must uniquely determine a variable attribute. When a model is
instantiated, every symbolic reference is resolved into the corresponding
variable instance. For a class to be semantically correct, it is required that
all its expressions are correctly resolvable.

Omola is a block oriented language in a similar way as Algol and
Pascal. A block in Omola is a class definition. The scope rules define
where in the block structure a particular name is a valid reference to
an attribute. The scope rules of a block structured language [Aho and
Ullman, 1977] can be rephrased into Omola terminology:

SEMANTIC RULES 5—Scope rules
1. A named attribute declared within class C is directly accessible within
C and in classes derived from C.

2. Ifclass D is a local component of C, then any named attribute directly
accessible in C is also directly accessible in the body of D, unless D
has an attribute with the same name.

O

The scope rules are adapted to take into account the inheritance. The
phrase “directly accessible” means that the attribute can be referred to
simply by its name. Some attributes that are not directly accessible can
still be reached using name concatenations explained below. In the second
scope rule, it can be observed that if the component class D has an
inherited attribute with the same name as an attribute of the outer class
C, it is the inherited attribute that will be directly accessible. In other
words, an attribute inherited from the super class takes precedence over
an attribute defined in a surrounding (owner) class.

Attributes of components can be accessed using name concatenation
with a period between each name. For example, if A in some context refers
to a component which, in its turn, has a component called B which has
a variable called X, then that variable can be referred to as ‘A.B.X. This
is illustrated by the example in Listing 4.2 where the binding in class M2
refers to the variable defined in class MO.

Value semantics

References in a mathematical or logical expression is assumed to refer to
variable attributes. It is sometimes useful (for reasons that are explained
in Section 4.8) to use classes for representing variables. For example,
assume there are the following definitions:

State 1sA Class WITH value TYPE Real; END;
X 18A State;
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MO 1sa Class WITH
X TYPE Real := 0.0;
END;

M1 18A Class WITH
B 1sa MO witH X := 1.0; END;
END;

M2 1sA Class WITH
A 1sAa M1,
ABX := 2.0
END;
Listing 4.2 Example illustrating reference notation and variable bindings.

Normally, in an expression referring to the value of X, the reference is
written as “X.value”. However, it is also possible to refer to the value of X
using only the symbol “X”. The concept is called value semantics and it is
introduced to simplify the notation. Value semantics applies to all classes
having a variable attribute called value. The concept is summarized by
the following rule.

SEMANTIC RULE 6—Value semantics

If r is a valid reference to a class attribute in a context where a variable
is expected and if r.value is a valid reference to a variable attribute, then
r is also a valid reference to that variable attribute. ]

Variable bindings

A variable binding is an assignment attribute associating a variable with
an expression. Bindings are inherited and can be overridden in subclasses
as well as in owner classes. Listing 4.2 shows an example of this. The
variable is first given an original binding to zero when it is defined in
class MO. Class B, which is a component of M1, inherits the variable but
overrides the binding. Hence, in M1, the value of B.X is one. Component
A in M2 inherits from M1. The binding attribute in M2 again overrides the
value of X in the component of the component.
The following rules summarize the use of variable bindings:

SEMANTIC RULES 7—Variable bindings
1. A variable has at most one valid binding.
2. A local binding overrides an inherited one.

3. A local redefinition of a variable inhibits an inherited binding to that
variable.
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4. If r is a valid reference to a component ¢, and if r.x is a valid reference
to a variable attribute of c, then a binding to r.x overrides a local or
inherited binding to x in c.

5. It is an error if there is more than one local binding to the same
variable.

6. It is not allowed to bind a submatrix or a single element in a matrix
or a vector variable.
O

Rule 3 is illustrated by the following example where the variable X is
made unbound (free) by the redefinition of the variable in class B.

A 18A Class WITH
X TYPE Real := 1.0;
END;

B 15A A WITH
X TYPE Real;
END;

The difference between bindings and equations

A variable that has a binding to a constant expression is called a constant.
A constant expression is an expression that contains no non-constant vari-
ables. The value of a constant can be determined from the class definition
alone by evaluating a number of binding expressions in a recursive or-
der. The difference between the binding “x := 1” and the equation “x =
1” is that the binding defines x to be a known constant while this is not
the case for the equation. The equation is not used for deriving a value
for x in the class definition. In the general case, free variables and equa-
tions make up a non-linear equation system, which cannot be solved by
a simple recursive algorithm. However, when a class definition is instan-
tiated into a simulation model, general non-linear equation systems are
analyzed and the constant values are inferred from general equations.
This is discussed in Chapter 8. The reason why trivial equations like “x
= 1” are not used at an early stage to derive constant variables is to keep
the difference between variable bindings and equations conceptually clear.
Variables with constant bindings are used as model parameters. This is
discussed in detail in Section 4.12.

A binding where the expression cannot be evaluated to a known
constant is similar to an ordinary equation. The difference is that the
computational causality is determined by the binding but not by the
equation. For example, compare the equation and the binding:
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Figure 4.5 The inheritance tree of all predefined Omola classes.

X = y+z;
X 1= y+z;

The equation may be used to determine either one of the tree variables,
while the binding must only be used to compute x when y and z are
known. Normally a structured modeling methodology requires acausal
models which means that behavior is represented by ordinary equations.
However, assignments (bindings) are motivated when the computational
causality is clear from the real system, for example, the output signal
from a controller. If the causality defined by a binding is not consistent
with the other equations of the model, this is detected and reported as an
error when the model is instantiated and analyzed. This is discussed in
detail in Chapter 8.

4.8 Model representation in Omola
Models are represented in Omola based on a set of predefined classes
with predefined interpretations as model components. These classes are

displayed as an inheritance tree in Figure 4.5. The complete definitions of
the built-in Omola classes are found in Appendix B. In this section we will

76




4.9 Terminals

in some cases give simplified definitions where details, irrelevant for the
discussion, are left out. In most cases the omitted parts of the definitions
concern the graphical representation of models.

Models

The predefined class Model is the root class of all user defined models.
A model is basically a class that encapsulates behavior. For example, it
can describe a complete autonomous dynamic system or it can describe
a simple static relation between two interface variables. Any class that
descends from Model is considered a model. It is possible to distinguish
between three basic types of models depending on for what purpose they
are defined:

1. A complete model that can be instantiated into a well-defined simu-
lation problem.

2. A component model that can be used as a submodel in an aggregate
model. Tt is characterized by having an interface of terminals that
can be connected to other submodels. If it is instantiated solely, it
normally leads to an underdetermined simulation problem.

3. An abstract model that can only be used as a super class in other
model definitions. It generalizes properties common to a set of models.

The definition of the abstract model Model can, for the discussion in this
chapter, be viewed as the trivial specialization of Class:

Model 1sa Class;

The true definition of Model, found in Appendix B, contains an attribute
with graphical information determining the model’s graphical presenta-
tion.

4.9 Terminals

A terminal is an object or a class descending from the predefined Omola
class Terminal. Terminals are used for defining the interface of a model,
especially for defining how a component model interacts with other com-
ponent models by means of connections. The class Terminal has number
of subclasses, shown in Figure 4.5, that add attributes and represent dif-
ferent kinds of terminals.

Basic terminals

The class BasicTerminal is a specialization of Terminal. A basic terminal
represents a single interface variable. Its definition is given in Listing 4.3.
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BasicTerminal 1sA Terminal WITH

value TYPE Real;
quantity TYPE STATIC String := "number";
unit TYPE STATIC String := "1";
variability TYPE STATIC (TimeVarying, Parameter) :=
"TimeVarying;
default TYPE STATIC Real,
END;

SimpleTerminal 1SA BasicTerminal wiTH
causality TYPE STATIC (Undefined, Input, Output) :
"Undefined;
END;

ZeroSumTerminal 1SA BasicTerminal wWITH
direction TYPE STATIC (In, Out) := 'In;
END;

Listing 4.3 The definition of BasicTerminal and the specializations
SimpleTerminal and ZeroSumTerminal

The most important attribute in BasicTerminal is value which defines
the actual interface variable. The attributes quantity and unit refer to a
database of quantities and units of measure. They can be used for checking
consistency of connections and they are discussed in more detail in the
following section. The attribute variability is normally bound to the
symbolic value TimeVarying indicating that the terminal represents a
time varying variable. It can be rebound to Parameter to indicate that
the terminal represents a model parameter, i.e., a time invariant value
specified by the user. Parameters are discussed in detail in Section 4.12
and in Section 4.14. The attribute default may be bound to an expression
which will be used as an equation defining the value of the terminal when
it is not connected. This is also discussed in detail in the following section.

BasicTerminal is further specialized into "SimpleTerminal and Zero-
SumTerminal, also defined in Listing 4.3. A simple terminal results in an
ordinary symmetric equation when it is connected to another simple ter-
minal. A set of two or many connected zero-sum terminals result in a
single equation where the sum of the terminal variables equates to zero.
In physical modeling, simple terminals are used for representing across
variables while zero-sum variables represent through variables. Across
and through variables are for example discussed in [Koenig et al., 1967].
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In bond graph modeling the corresponding terms effort variables and flow
variables are used [Karnop and Rosenberg, 1975]. Typical examples of
across variables are variables representing voltage, pressure, and posi-
tion. Examples of through variables are electric current, flow of matter or
energy, force, and torque.

SimpleTerminal defines an attribute called causality which is bound
to Undefined but can be rebound to either Input or Output. This attribute
makes it possible to define the computational causality for the terminal. A
causality of Input means that the value of the terminal is computed by the
environment of the model owning the terminal while a causality of Cutput
means that the value is computed by the model owning the terminal.
Zero-Sum terminals cannot be given a defined causality. On the other
hand, they have an attribute called direction, which can be given the
symbolic values In or Out. This attribute determines if the variable should
appear in the resulting zero-sum equation with a positive or negative sign.
When a zero-sum variable is representing, for example, a flow, its direction
should be interpreted as the direction of positive flow: into the model or
out from the model which owns the terminal. The following section defines
exactly how the terminal attributes affect the consistency and meaning
of connections.

The class SimpleTerminal is further specialized in three additional
classes: SimpleInput, SimpleOutput and DiscreteTerminal. The former
two classes simply rebind the causality attribute of SimpleTerminal to
Input and Output. The class DiscreteTerminal represents a discrete in-
teraction variable, i.e., a variable that only changes its value as a result
of a discrete event. This is discussed more in Chapter 6.

Structured terminals

The class RecordTerminal is used as the super class of terminals that
consists of several quantities, i.e., terminals representing an aggregate of
interaction variables. It is defined as an empty specialization of Terminal.
A record terminal is supposed to have component attributes which are
terminals as well. It is used for grouping a set of terminals which natu-
rally belong together. This is useful for terminals representing physical
interaction like pipe connections containing components of flow, pressure,
and temperature. An example of a record terminal is the cut defined in
Figure 3.7.

4.10 Connections

A connection is a basic concept with a special syntax in Omola. It is a
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class attribute that defines a symmetric relation between two terminals.
It is written as:

<terminal> AT <terminal> ;

Bach <terminal> is a symbolic reference to a component which must be
a descendant of the classes Terminal or EventTerminal (event terminals
are discussed in Chapter 6). Since the connection is symmetric the order
of the terminals is not significant.

A connection is semantically correct only if the involved terminals
have identical structures and if the basic terminal components are con-
nectable. Basic terminals are connectable if their quantity and causality
attributes are consistent. When two record terminals are connected, it
means the same as if each terminal component is pair-wise connected.
Because of this, the order in which the components appear in a record
terminal definition is important. This is the only case in Omola where
the ordering of class attributes is significant. The order of the attributes
in a class is defined by the inheritance rule: Semantic Rule 4.

The rules of connection consistency are summarized by the following
statements:

SEMANTIC RULES 8—Connection consistency
1. Structure: A basic terminal (representing a single quantity) must be
connected to another basic terminal. Record terminals must have the
same number of components and the components must be pair-wise
connectable.

2. Quantity: Basic terminals must have consistent quantities. Quantities
are consistent if they are known by the database and are equal.

3. Type: Basic terminals must be data type consistent according to the
same rules that apply for equations.

4. Value: If connected terminals have constant values they must be equal.

5. Causality:

(@) Two simple terminals (across terminals) with defined causality
(input or output) must be consistent.

(b) Two zero-sum terminals (through terminals) have no defined
causality and are always correct.

(¢c) If a simple terminal is connected to a zero-sum terminal the
former must have a defined causality (input or output).

O

Rules 5a and 5c¢ are defined more precisely in the following. A motivation
for connection rule 5c is that the only sensible interpretation of a connec-
tion between a simple terminal and a zero-sum terminal is to regard it
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Structured Model

Submodel 1 Submodel 2

Type i

Type i

]
J
Term 3

Figure 4.6 A connection diagram showing the three possible connection
schemes.

either as measurement or as an “injection” of a value at the connected
zero-sum terminal.

Equations deduced from connections

Connections are equivalent to equations or assignments between termi-
nal variables. A connection between two basic terminals corresponds to a
single equation. Actual equations are generated from connections during
model instantiation. The resulting equation depends on the classes of the
terminals and their attributes. A terminal derived from SimpleTerminal
has the attribute causality affecting the type of equation, while a Zero-
SumTerminal has the attribute direction affecting the generated equa-
tion. Since causality can take three different values and direction can
take two different values, terminals can be connected in fifteen differ-
ent combinations. Not all combinations are valid connections. The equa-
tion generated from a connection depends also on the connection scheme.
There are three kinds of connection schemes, illustrated in Figure 4.6: (I)
a connection between terminals belonging to one or two submodels, (II)
a connection between a submodel terminal and a terminal of the model
owning the connection, and (IIT) a connection between two terminals, both
belonging to the model owning the connection.

Table 2 shows the types of generated equations from different combi-
nations of terminals and connection schemes. The table lists all possible
combinations of simple terminals with different causalities and zero-sum
terminals with different directions. A dash instead of an equation means
that the combination is illegal and is violating either rule 5a or 5c¢ in
Semantic Rules 8.
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Table 2 Equations generated from connection ‘A AT B’ with different combi-
nations of terminals A and B and with different connection schemes. In the two
left hand columns a SimpleTerminal with different values of the causality

is indicated by ‘S/. ..’ while a ZeroSumTerminal with different values of the
directionis indicated by ‘Z/. . .’. For type II connections, note that terminal
A belongs to the outer model and the reverse order is not included in the table.
Terminal class Equations resulting from
and attributes different connection schemes
A B 1 II 111
S/Undefined | S/Undefined || A = B A =B A =B
S/Input B:=A|B:=A|A:=8B
S/Output A:=B | A:=B|B:=A
Z/In — — —
Z/0ut —_— e —
S/Input S/Input — B :=A —
S/Output A =B — B := A
Z/In A :=B | B:=A|B :=A
Z/0ut A :=B | B:=A|B:=A
S/Qutput S/Output — A =B _—
Z/In B:=A|A:=B | A :=8B
Z/0ut B:=A|A:=B| A :=8B
Z/In Z/In A+B =0 |A-B=0|A+B =0
Z/0ut A-B=0|A+B =0 |B-A=0
Z/0ut Z/0ut A+B = 0 [B~A = 0 | A+B = O

Multiple connections to a single terminal

A terminal can be involved in several connections in the same model. As
an example, regard the situation in Figure 4.7 which shows a model with
one terminal, two submodels, and two connections: ‘T1 AT S1.T" and ‘T1
AT 82.7. If the involved terminals are all derived from SimpleTerminal,
the configuration represents no special case and two equations are de-
duced according to the rules above. However, if the terminals are derived
from ZeroSumTerminal, they represent flows and the semantics of the con-
nections is different. In this case the two connections together represent
a single node in a circuit graph, see Figure 4.7, which corresponds to a
single equation according to Kirchhoft’s law: Ty + To + T3 = 0.

In order to define the general rule for deducing equations from sets
of connected zero-sum terminals some definitions are introduced. First
assume that the connections between the zero-sum terminals of a model
are represented as a graph where terminals are vertices and connections
are edges. In general, the graph is not connected but consists of a set of
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Structured Model

S1.T

T1

T1

Figure 4.7 The left diagram shows a connection diagram with two connec-
tions to the same terminal. The right diagram shows a corresponding node in
a circuit diagram resulting when the involved terminals are zero-sum termi-
nals.

component graphs which consists of the largest connected subgraphs.

DEFINITION 4.1
A connection set of model M is a set of terminals belonging to the same
component graph. O

For example, assume the following connections are defined in the same
model:

T1 ar T2;
T2 ar T3;
T4 ar T5;

The model has two connection sets: {T1,T5, T5} and {T4, T5}.

DEFINITION 4.2

A terminal is an outer terminal with respect to a model M if it is defined
as a component of M. It is an inner terminal with respect to M if it belongs
to a submodel of M. O

For example, in Figure 4.7, T1 is an outer terminal while S1.T and $2.T
are inner terminals of the structured model.

One equation is deduced from each connection set of a model. This
is done according to the following rule which generalizes Table 2 for
connection sets with more than two zero-sum terminals.
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SEMANTIC RULE 9—Zero-sum connections
Each connection set T of a model generates the equation:

Z diS,jU,' =0 (4.1)

T eT
where

d 1 if the direction of T; is In
Y71 =1 ifthedirection is T; is Out

s = 1 if T;is an inner terminal
T =1 if T is an outer terminal

and v; is the value variable of T;. O

Units and quantities

Basic terminals have attributes for specifying quantity and unit of mea-
sure. The quantity attribute is used for checking consistency of connec-
tions according to Semantic Rules 8. A connection between two terminals
is only valid if they have the same quantity. The concept is useful for
preventing accidental connection errors when models are representing
physical systems.

The quantity attribute defined in BasicTerminal must be bound
to a string which must be a valid name of a quantity according to the
standard international standard ISO31. The unit attribute, also defined
in BasicTerminal, must be bound to a string which is a valid unit of
measure specification according to the built-in quantity and unit data
base [Andersson, 1993]. The unit of measure specification for a terminal
may involve multiplicity prefixes which will be used as conversion factors
in the generated equations. For example, if terminal T1 has unit bound to
"m" (meters) and terminal T2 has unit bound to "mm" (millimeters), then
a connection between the terminals, assuming they are simple terminals,
will generate an equation equivalent to

T, = 1073 x T2.

If the terminals are derived from ZeroSumTerminal, the equation gener-
ated according to (4.1) is modified in a similar way.

4.11 Variable components

The predefined class Variable should be used for representing model
variables when it is desirable to define an initial value in the model.
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Initial values apply to state variables and are used by the simulator. The
definition of Variable looks like:

Variable 18A Class WITH
value TYPE Real,;
initial TYPE Real,

END;

Except for the possibility to bind the initial attribute, a variable compo-
nent, for example defined by “x ISA Variable”, is equivalent to an ordi-
nary variable defined by “x TYPE Real”. Because of value semantics, the
variables can be referred to by the name x in an expression, independently
of the type of definition used.

An advantage of using a class to represent a variable is that the
class can be specialized and extended with more attributes. For example,
it may be useful to associate minimum and maximum values with a model
variable.

4.12 Parameters

The predefined class Parameter should be used as a super class for all
user parameters. A free parameter is a variable that is regarded as a
known constant as far as the dynamic model behavior is concerned, but
where the value can be changed, for example between different simulation
experiments, in the instantiated model by the user. In other words, a free
parameter typically affects the model behavior but changes value only due
to events external to the instantiated model. The definition of Parameter
is:
Parameter 1SA Class WITH
value TYPE Real;
default TYPE Real := 0.0;
END;

The parameter has two variable attributes: value and default. The latter
is used as the value of the parameter in case no explicit value is given.

A parameter which has a binding is not a free parameter and cannot
be changed directly in the instantiated model. A parameter with a binding
is either a constant or its value depends on other free parameters. It is an
error to bind a parameter to an expression that depends on time varying
variables.

A parameter equation is an equation that only include parameters.
Parameter bindings and parameter equations can be defined explicitly
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or by connections between terminals. They can be used for propagating
parameter values between different parts of a model. Parameter propaga-
tion occurs in the instantiated model and it is performed by the simulator.
This is discussed in detail in Chapter 7. It should be noted that most of
the semantics concerning free parameters and parameter bindings and
equations is defined by the tools superior to the model definition level of
Omola. At the model definition level, the meaning of a parameter can be
summarized by the following definition and semantic rule.

DEFINITION 4.3
A parameter variable is the value attribute of a component derived from
the class Parameter.

SEMANTIC RULE 10—Parameter bindings
A binding to a parameter variable may only depend on other parameter
variables or constants. |

4.13 Model instantiation

Model instantiation is the procedure of transforming a model, represented
as Omola classes, into a data structure suitable for further analysis and
simulation. The resulting data structure is called a model instance. The
instantiation procedure is discussed in detail in Chapter 7. This section is
intended to clarify the difference between a model represented as a class
structure in Omola and a model instance.

The main difference between an instance and its class is that the
instance contains separate objects for each single component, variable,
and equation. The class representation of a model can be viewed as a
description (a recipe or a blue print) on how to construct the actual
model, i.e., the model instance. The class representation is economic in
the sense that a component that appears in several similar copies may
be represented by a single class. In the model instance however, each
component must have its own separate representation. For that reason,
the model instance is a structure with a one-to-one mapping from model
component objects to objects in the modeled reality.

The following example may help to clarify the differences between
the different model representations used in an Omola based modeling
environment. As shown in Figure 4.2 there are three main representations
to consider: the Omola text representation, the class representation, and
the instance representation. As an example, regard the following Omola
definitions.

A 1SA Model WITH
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C1 1sA B WITH y TYPE Real; END;
C2 15A B wiTH z TYPE Real; END;
END;

B 18A Model wiTH
X TYPE Real,
END;

The definitions are derived from the predefined class Model. Figure 4.8
shows an object diagram with the corresponding class representation of
the textual definitions and one instantiation of class A. The class represen-
tation is created by parsing the textual representation while the instance
representation is constructed by applying the instantiation procedure once
to class A. Variables are actually represented as objects as well, but here
they are only indicated in the diagram by box annotations in order not
to complicate the picture too much. Relations between objects are rep-
resented by arrows. The inheritance (is-a) relations and the component
(has) relations are indicated by dashed annotated arrows. The instance —
class relation is indicated by solid arrows.

An important observation from Figure 4.8 is that the inheritance
structure is removed while the component structure is preserved in the
model instance. These are design decisions based on the following argu-
ments. Inheritance is a way of structuring model descriptions in order
to facilitate model reuse. Inheritance is an artifact added to the model
representation and it has usually no correspondence in the reality repre-
sented by the model. The model instance is a direct representation of the
modeled reality and there is no reason to maintain the inheritance struc-
ture. Viewed simply as a representation of a mathematical problem to be
solved by the simulator, there is no reason to maintain the component
structure in the model instance. However, simulation is an interactive ac-
tivity and the user needs to get access to variables and parameters. This
is most easily done if the component structure, as defined in the class
representation, is kept intact. Since the component structure of a model
often reflects the structural properties of the real system there is also a
reason to maintain the component structure.

4.14 Model parameterization
Model parameters are variables introduced in the model to make it more

reusable and adaptable for different purposes. There are two basic kinds
of parameters appearing in Omola models. These are
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Figure 4.8 An object diagram showing classes and instances of a simple
example given in the text. Class objects are displayed with double framed
boxes while instance objects are displayed with single framed boxes. Dashed
arrows are indicating inheritance and component relations. Solid arrows are
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——

indicating instance — class relations.
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e instance parameters or just ordinary parameters and

e class parameters or structure parameters.

Ordinary parameters

Ordinary parameters are used for time constant physical attributes that
the user may want to change in the instantiated model. For example, a
model of a control system with a process and a PID controller may have
the controller attributes like gain and integral time defined as parameters.
Important properties of the process may also be defined as parameters.
These kind of parameters are not required to have known values in the
model definition. They can be changed in the instantiated model instead,

to specify different simulation experiments.

The predefined class Parameter, presented above, must be used to de-
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TrayModel 1A Model wiTH
TrayArea ISA Parameter;

END;

ColumnModel 18A Model wITH
submodels:
Trayl, Tray2, ..., TraylO 1saA TrayModel;
parameters:
TrayArea 1SA Parameter;
parameterEquations:
Trayl.TrayArea := TrayArea;
Tray2.TrayArea := TrayArea,

Trayl0.TrayArea := TrayArea;
END;

Listing 44 A simplified model definitions to illustrate the concept of pa-
rameter propagation.

fine ordinary parameters. An attribute of this class tells that the variable
(the value attribute) is not time varying and it must get a user defined
value in the instantiated model. The parameter class has an attribute
called default which may be defined in the model and used as a default
value for the parameter.

An ordinary parameter with an unbound value is called a free pa-
rameter. It is common that a library model with many free parameters
is specialized when it is used as a component, and some of the free pa-
rameters are bound to specific values. A bound parameter can no longer
be changed directly in the instantiated model. In fact, if it is bound to a
constant, it cannot be changed at all. A common situation when models
are reused as components is that parameters are bound to expressions de-
pending on other parameters. In this way the value of single parameter
of a top level model can propagate to parameters of several submodels.
Parameter propagation is defined by ordinary binding attributes.

Listing 4.4 shows an example, adopted from [Nilsson, 1993], of a
distillation column model with a set of equally sized tray models as com-
ponents. The TrayArea parameter of the column model is propagated to
all its tray components. The parameters of the tray components can no
longer be changed directly. Parameter propagation helps to create abstract
interfaces for structured models and relieves the user from the trouble of
setting many individual parameters.
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Linear 18A Model WITH
N TYPE Integer;
X typE Column [N}];

A TYPE Matrix [N, N] := —eye(N);
X = A¥X;
END;

Linear2 1sA Linear WITH

N := 2
A := [-1.0, 0.5; 0.3; -0.8];
END;

Listing 4.5 Example of a general linear model of parameterized size and a
specialization into a second-order model.

Structure parameters

Structure parameters are only affecting a model at the class level. Most of
the attributes of the predefined class BasicTerminal (refer to Listing 4.3)
are class parameters. For example, quantity is used for checking connec-
tion consistency and causality affects the way a connection is translated
into an equation. Class parameters concern the way a model definition is
interpreted but are not related to actual behavior of the represented sys-
tem. In this sense, class parameters are a kind of meta model parameters.

Another way of using class parameters are as array sizes. Constants
and constant expressions may be used in array size declarations. It is
possible to define classes with undefined array sizes. Such a class cannot
be instantiated alone but it can be used as a super class or a component
in another class which adds a binding to the matrix size parameter. This
is a common way of defining reusable models. An example is given in
Listing 4.5. The integer variable N determines the size of the matrices.
The class Linear is specialized into Linear2 which binds the value of N to
9 Since N affects the size of the model it is called a structure parameter.
A class cannot be instantiated into a valid model unless all structure
parameters can be determined as known constants.

4.15 Discussion
Omola is totally based on class definitions. Most object-oriented program-
ming languages make a distinction between a class definition and the

invocation of a class as a component of another class. This distinction is
not made in Omola where every local class definition is also an implicit
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invocation of that class as a component. The reasons for this are that the
notation becomes simpler in most practical cases and that fewer names
must be invented by the modeler. The following example illustrates the
idea.

Assume a process is going to be represented as an Omola model. The
process contains, among other components, two storage tanks for liquids.
An appropriate model for the tanks is available from a library of process
model components. The tank model has a parameter, called capacity,
defining the maximum storage capacity of the tank. The tanks of the
modeled process have maximum capacities of 8 m? and 10 m? respectively.
Since the tanks have fixed sizes it is natural to specialize the general tank
model and to bind the capacity parameters. This is done by the following
definitions:

SmallTank 18A ProcessLibrary::Tank WITH
capacity := 8.0;
END;

LargeTank 1SA ProcessLibrary::Tank WITH
capacity := 10.0;
END;

The two definitions are clearly specializations of the general tank model
since a free parameter is bound to constant values. However, the special-
izations are defined to be used as components in the process model only,
and therefore, it is natural to define them as local classes of the process
model. In Omola, this looks like:

Process 18A Model WITH
SmallTank 1SA ProcessLibrary::Tank WITH
capacity := 8.0;
END;
LargeTank 18a ProcessLibrary:Tank WITH
capacity := 10.0;
END;

END;
The local class definitions mean also that the process have two compo-
nents, called SmallTank and LargeTank. This can be referred to as im-

plicit invocation of local class definitions. If Omola did not have implicit
invocation the process model would have to be defined as:

Process 18A Model WITH
SmallTank 1SA ProcessLibrary:Tank WITH
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capacity = 8.0;
END;
LargeTank 1SA ProcessLibrary::Tank WITH
capacity := 10.0;
END;
Tankl TYPE SmallTank; % not correct Omola
Tank2 TYPE LargeTank; % not correct Omola

END;

A drawback with implicit invocation is that it is sometimes desirable
to define local classes that are not instantiated as model components but
only used as super classes. Examples where this is a powerful way of
parameterizing model are discussed in [Nilsson, 1993]. A class definition
that is not indented for direct instantiation is called an abstract class.
Nilsson suggests that Omola is extended with the possibility to define
abstract local classes which are not automatically invoked as components.
This is probably a good idea and requires only a minor extension of Omola

and the associated manipulation tools. One possibility is to introduce the
optional keyword ABSTRACT in a class definition. For example:

A ISAN ABSTRACT Class WITH ... END;

would mean that A is available for specialization but it is not automatically
invoked as a component if it appears in a class body.

4.16 Summary

The modeling language Omola is designed to be a general language for
representation of structured dynamic models. Omola consists of two lay-
ers: a basic, general data modeling layer and a model representation layer.
The basic layer contains the following general concepts:

e Classes with single inheritance are used for data aggregation.

e Classes have attributes that are
o variables,

local class definitions,

equations and bindings, and

connections.

o O O

e Named inherited attributes and bindings can be overridden.

e Variables are of different types including scalar real, array of reals,
integer, string, and symbol.
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Model representation is based on concepts at the second layer of
Omola. This layer includes a set of class definitions used as base classes for
modeling objects such as model, terminal, and parameter. There are differ-
ent kinds of terminals with predefined attributes. Terminal attributes are
used for checking connection consistency and they affect the way connec-
tions are translated into model equations. Terminals may be structured
to represent multivariable interaction between model components.

Omola provide for abstract model interfaces but has no concept of in-
formation hiding. Every attribute of a class is accessible from the outside.
Every named attribute of a class can also be redefined in a subclass.
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5

Modeling of Discrete Event
and Hybrid Systems

Not all dynamic phenomena can be represented by continuous equations.
In particular man-made, non-physical systems involving information pro-
cessing are often modeled as Discrete Event Dynamic Systems (DEDS). A
difficulty with DEDS is that there does not exist any laws of conservation
similar to physical systems. Models cannot be derived from first principles
based on conservation of energy, matter, or momentum. The state space of
a Continuous Variable Dynamic Systems (CVDS) is a dense subset of R"
while the state space of a DEDS can be any set, represented by variables
of different types. This makes DEDS systems hard to analyze compared to
CVDS systems. Hybrid systems, which contain continuous variable parts
as well as discrete events, are even harder to analyze. Simulation is often
the only way to investigate the behavior of such systems. This makes a
simulator an extremely important engineering tool for DEDS and hybrid
systems.

The aim of this chapter is to develop a general mathematical and log-
ical framework for representing hybrid systems. This framework should
serve as the basis for extending Omola with discrete event concepts.

5.1 Introduction

A computer controlled system is an example of a hybrid system. A general
hybrid system consists of continuous processes interacting with a sequen-
tial automata in a network [Nerode and Kohn, 1993]. A dualistic model
of a hybrid control system is shown in Figure 5.1. The physical plant can
be viewed as a set of physical quantities, such as masses, energies, posi-
tions, velocities, etc., that change continuously in time. The behavior of
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the plant, i.e. the evolution of the quantities, is governed by the general
laws of physics. The control system is often a real-time, reactive computer
system. It responds to discrete events from the environment by issuing
other discrete events which affect the environment. A discrete event oc-
curs as a certain point in time, it belongs to a predefined set of possible
event types, and it may be associated with other data. The physical plant
and the computer system interact through two kinds of transducers: sen-
sors which measure quantities of the plant and generate discrete events,
and actuators which generate physical commands from discrete events.

The problem of automatic control design consists of designing a con-
trol system so that the behavior of the overall system stays within certain
given boundaries. Since general hybrid systems are hard to analyze for-
mally and few theoretical results exist, control theory is mainly concerned
with more specialized system models. An example is “classical” computer
control [Astrt')m and Wittenmark, 1990], which models the plant, includ-
ing the transducers, as a sampled data model represented by difference
equations. The controller and the plant are interacting by discrete sig-
nals, issued at regular sampling time points. This model is discussed in
some more detail below. Another type of model abstraction is to view the
process as an asynchronous, discrete event dynamic system (DEDS). A
controller for a DEDS is called a supervisor. The supervisor and the plant
are interacting by means of discrete events occurring with irregular time
intervals. In some cases the supervisor can affect the plant by enabling
or disabling certain controllable events in the plant. Control of DEDS has
attracted much interest in recent years. A control theory with formal anal-
ysis and synthesis methods for DEDS is emerging [Ramadge and Won-
ham, 1989, Balemi, 1992]. DEDS and supervisors are often represented
as finite automata with various extensions involving the notion of time.
Finite automata models are discussed in more detail below. Also more
general hybrid system models are in the focus of theoretical research, see
for example [Nerode and Kohn, 1993].

A simulation environment for discrete event and hybrid models is a

=t Physical World

Actuators Sensors

Computer <t

Figure 5.1 A view of a general hybrid system
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very important tool for control systems engineering. Control systems are
often designed using idealized models and formal methods. The designs
are then verified by simulation with high-fidelity models. This requires
a model representation which is able to represent models with different
levels of idealization and accuracy.

There are several approaches to structure computer controllers. Some
controller structures are suitable for formal design methods while others
are useful for more intuitive design and tuning. Controllers are of very
different complexity, ranging from single loop PID controllers to plant-
wide control systems with layers of sequential and supervisory control. A
lot of interest has recently been attracted to fuzzy controllers [Driankov
et al., 1993], which can be seen as an attempt to simplify the design pro-
cess as well as the implementation of controllers with comparably little a
priori knowledge about the plant. The design process of a fuzzy controller
involves much trial-and-error, which makes simulations even more im-
portant. Adaptive and self tuning controllers often include complex logics
for supervising the behavior of the controller and of the overall system.
Knowledge based controllers [Arzén, 1987, Arzén, 1989] often include as-
pects of fault detection, fault diagnosis, on-line optimization, and strategic
planning. Simulation of these types of control schemas within a coherent
environment requires a powerful and general representation of hybrid
models.

The dualistic view of a hybrid system, shown in Figure 5.1, is a sim-
plified structure. Very often in process design, the process as well as the
control system are modeled in a hierarchical fashion, and the control sys-
tem is often distributed and local to the particular process units [Nilsson,
1993]. In this case, components at every hierarchical level consist of dis-
crete events and continuous elements. Flexible structuring mechanisms
are required in the modeling framework used for representing these kind
of systems.

There exists a number of different formalisms for representing DEDS
and hybrid systems and many of the formalisms appear in several differ-
ent versions, generalizations, and specializations. A few of the formalisms
often used in modeling and control of DEDS and hybrid systems, are pre-
sented in this chapter. The purpose is to give a brief overview of what
kind of models are used in some of the theoretical work being done in the
area of discrete event and hybrid systems. Some of the formalisms have
influenced the design of the discrete event concepts in Omola. Among the
formalisms discussed are sampled data models and Grafcet models often
used in control engineering as way of specifying sequential control sys-
tems. The chapter ends by defining a hybrid model formalism developed
for serving as mathematical and logical framework of Omola. The prob-
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lems associated with simulation of the hybrid model are also discussed
briefly.

5.2 The sampled data model

A simple type of discrete model is the sampled data model used exten-
sively in automatic control [Astrom and Wittenmark, 1990], system iden-
tification and signal processing. A model can be given on state-space form
as

Xpe1 = f (ks trs Tr)

(5.1)
Vi = &%k, up, tr),

where x;, € R",k = 0,1,..., is a sequence of state vectors, u;, is a sequence
of input vectors which may be random variables, and y; is a sequence of
output vectors. In a real-time environment, periodic sampling is assumed
and x;, 4, and y, represent the values at times ¢, = kh, where A is
the constant sample interval. If the functions f and g are linear and
time invariant, the analytical properties of this representation are vast
compared to the other formalisms discussed in this chapter.

5.3 Finite-State Automata

The finite automaton is a simple and often used formalism for represent-
ing discrete behavior [Heymann, 1990]. It is often used for modeling and
specification of digital sequential circuits, manufacturing systems, and
supervisory control algorithms.
A finite state automaton, FSA [Hopcroft and Ullman, 1979, Balemi,
1992], is the tuple
M= (Q,%,6,1,F), (5.2)
where the five components have the following meanings:
e @ = {qo0,q1,...} is a finite set of states,
o ¥ = {01,09,...} is an alphabet of symbols denoting state transitions,

e § is the next state function mapping a state and a transition symbol
to a set of states,

e ] ¢ @ is a set of initial states, and
e F C @ is a set of final states.

The automaton can move from a state g to a state ¢’ accepting a symbol
o if the next state map §(q,0) is defined and ¢’ € §(q,0). The FSA is
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Events ===  Acceptor = Accept

Control —=¢ Generator it E\r@ntS

Events ===@= Input/Output === Events

T

Control

Figure 5.2 Three possibilities to use FSA:s as model components

deterministic if § is a singleton, §(q,0) = {¢'}, for every ¢ and o, and if
the initial state [ is a singleton.

It can be noted that the symbols in T are neither regarded as inputs
nor outputs to the automaton. This depends on how the automaton is
used and — if it is used as a model component — on how it interacts
with other parts of the system. When an FSA is used for representing
discrete behavior, it can be viewed as a submodel interacting with a
dynamic environment. The FSA itself has no notion of time but it can be
a part of a system where time is relevant. In a continuous time dynamic
environment the state transition symbols of an FSA correspond to discrete
events. Consider an FSA submodel in three basic configurations shown in
Figure 5.2. )

1. The FSA works as a string acceptor. The state transitions are caused
by input events generated by the environment. A sequence of input
events corresponds to an accepted string if the reached state is a final
state. The FSA must be deterministic in order to give a well defined
behavior.

2. The FSA works as a generator, generating a sequence of events as
the output. The FSA is controlled by the environment and it may
be non-deterministic. The selection from the set of possible transi-
tions, and the time when a transition should occur, are controlled by
mechanisms outside the FSA itself.

3. The FSA works as an input/output process. Some symbols of the al-
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Start

Figure 5.3 An FSA representation of a simple server model.

Done

phabet are considered to be inputs and the corresponding events are
generated by the environment. The remaining symbols are consid-
ered to be outputs and the events are generated internally, possibly
controlled by some other mechanism outside the FSA.

The input/output configuration of FSAs are used for representing the be-
havior of plants and supervisors in a control system configuration. Control
theory and synthesis methods based on an input/output interpretation
of the Ramadge and Wonham supervisory control theory [Ramadge and
Wonham, 1989] are being developed [Balemi et al., 1993].

Example: Simple server model. As a very simple example of an FSA,
consider the model of a server in Figure 5.3. The figure shows a graphical
representation of an FSA with two states labeled Active and Passive, and
with the alphabet £ = {Start,Done}. The state transition function is
defined for two cases: &(Passive, Start) = {Active} and 5(Active, Done) =
{Passive}. Passive is the initial state and the final state. The server model
can be used in an input/output configuration with Start as an input event
and Done as an output event. O

There are several extensions of finite state automata. One extension,
called Timed Automata [Alur and Dill, 1992] introduces time in the for-
malism. A timed automata can have a set of clocks which can be restarted
as a result of a transition. At any time, a clock represents the time since
it was last restarted. A condition can be associated with a transition, so
that the transition can occur only when certain timing constraints, based
on the clock readings, are fulfilled.

5.4 Generalized Semi-Markov Processes
Generalized Semi-Markov Processes, GSMP, is a formalism for represent-
ing discrete event behavior [Glynn, 1989, Ho and Cao, 1991]. A GSMP

can be viewed as an extension of an FSA, which adds stochastics and
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S(t)

AO A~1 A2 A3 A4 A5 A

Figure 5.4 An example of an output path generated by a GSMP.

the notion of a continuous time. GSMP models are often used for simula-
tion and analysis of discrete manufacturing systems with queuing models.
The definition presented here is based on [Glynn, 1989] with some minor
simplifications.

A Dbasic idea behind a GSMP is to give a stochastic discrete event
model for a process generating a piecewise constant output signal. The
process is assumed to be driven by a sequence of independent random
variables. A sample path generated by the process is shown in Figure 5.4.
The output process jumps from a discrete level to another at distinct time
points. Each jump is a discrete event. The output levels and the event
time points depend on random variables. The output signal S(z) can be
characterized by the sequence of levels (S, : n = 0,1,...) and the event
times (A, : 7 = 0,1,...) or the time intervals between two consecutive
events A, = A, — A,—1. Consider Ag to be the starting time of the process
and A to be the time of the first event. The output levels S, belong to
an enumerable set of discrete outputs.

We regard the output process S(t) as being generated from an inter-
nal state sequence X, according to

Xn+1 = f(77n+1>Xn)

Sn = hl(Xn) (5 3)
An = hQ(Xn) ‘
Xo = xo(70)

where 77 is a sequence of independent stochastic variables.

Example: Server with queue. As an example of a simple GSMP model
assume a system with a server and a queue of waiting customers. The
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time to serve a customer is random with a probability function depending
on the number of waiting customers when the service is started. The
time between two arriving customers is random with a known probability
function. O

A GSMP can be viewed as “language” for representing the state
process (5.3). It can be defined by the tuple

M = (Q,3.E,C,5 F), (5.4)

where the six components have the following meanings.

e @ is an enumerable set of discrete states. These states are often called
physical states to distinguish them from the total state X.

e T = {01,09,...} is an enumerable set of event types.

o E:Q — %, where ¥’ C ¥, is a mapping from states to subsets of
events. E(q) denotes the set of event types that are active in a state
q. An active event means that it may occur as the next event.

e C = {c1,c2,...} is a set of clocks, ¢; € R™, each one associated with an
event type. The clock ¢; represents the time since event type o; last
occurred or became active. The total state X consists of the physical
state in @ together with all the current clock readings.

e & is a family of next state probability functions. 6(q’;x,0) is the
probability that next discrete state gp.1 s q’, given that the current
total state is x and that the next event is o.

e F is a family of probability distribution functions, F;, for the lifetime
of each active event o;. F;(T) is the probability P{¢; < T} where #; is
the lifetime random variable for event o3, i.e., the time between two
consecutive firings of the event.

The evolution of a GSMP can be described by the following algorithm.
Assume that the n’th event has just occurred, the current time is A(n),
and the current physical state is g,.
1. For each active event, 0; € E(g,), generate the residual lifetime
random variable from the distribution function F;(:; ¢y, ;).
2. Let the next event, the trigger event o*, be the event with the small-
est residual lifetime, and let the holding time in current state, A1,
be the residual lifetime of .
3. (Generate the next physical state g,,1 from the probability function
6(5qn, 0%).
4. Update the clocks for every event o; € T so that

c o Cni + An-%-l if o; € E(QI1+1), g; 7é o
i T 0 otherwise
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Example: Server with queue (continued). Let the discrete state of
the process be the natural number g representing the number of cus-
tomers waiting in line plus the one currently being served. Let the set
of event types be £ = {01, 02} where 0 represents the arrival of a new
customer and o, represents the finished serving of a customer. If there
are no customers in the system (g = 0) only 01 may occur; otherwise both
events are active. This gives the active event function:

_ Ao} if
E(q) = { {01,0'2} ifg

0
1

v i

The next state probability functions § are simple since the state transition
is deterministic when the event type is given. The state g increases by
one when o occurs and it decreases by one when o9 occurs. Assume
that the times between two o1 events are normally distributed with the
mean m and the standard deviation d. Finally, assume that the service
time is equally distributed between 0 and #; + to/(1+ q), where £; and 23
are constant times and g is the discrete state when the customer starts
getting service. O

A more general form of GSMP is called time inhomogeneous GSMP
[Glynn, 1989]. In this case, the state transition and residual lifetime
probability functions may depend on the complete history of states. In
most practical modeling cases, time homogeneousness is achieved by a
proper selection of physical states and event types.

The state sequence of a time homogeneous GSMP is a time homoge-
neous Markov chain. If the residual lifetime probability distribution func-
tions F are all exponential, then the GSMP is a continuous time Markov
process. If the clocks are omitted and the residual lifetimes are deter-
mined anew for each active event after a transition, based on a probabil-
ity distribution function F.(-;q), then the GSMP is a semi-Markov process
[Howard, 1971].

5.5 The DEVS formalism

The Discrete Event System Specification (DEVS) formalism was intro-
duced by Zeigler [Zeigler, 1976, Zeigler, 1990, Kim and Zeigler, 1991].
DEVS was constructed to be a convenient representation of models for
discrete event simulation. However, DEVS is also a formal representa-
tion that can be subject to analysis and mathematical manipulations. In
a formal mathematical sense, a DEVS is similar to a generalized semi-
Markov process. A difference between DEVS and the other formalisms

102




5.5 The DEVS formalism

presented here is that the DEVS formalism includes structuring concepts
which make it possible to structure models in a hierarchical fashion. This
is indeed an attractive feature if a formalism is to be used for representing
large systems.

A basic DEVS model is a primitive DEVS model that is not further
decomposed into submodels. It is represented by the tuple

M = <Q$ Zi; ZD’ 5i71t7 5ext, 6t7 A’)y

where the items have the following definitions.

e @ is the internal state set. In general the state space is represented
by real-valued, integer-valued, and symbolic variables. The total state
includes an additional variable, ¢ € R*, which is the local clock. Let
the total state set be denoted by X, X = @ xR™.

e Y, is an enumerable, finite set of input event types.
e ¥, is an enumerable, finite set of output event types.

e 8., is the internal transition function, &, : X — @, defining the next
state after an internal event. An internal event occurs when the local
clock has reached the time defined by J;.

e S, is the external transition function, S : X X %; — Q, defining the
next state after the occurrence of an input event.

e &, is the residual time function, 6; : X — {R*,inf}, defining the
time remaining until the next occurrence of the internal event. If
5.(g) = inf, then the internal event is not scheduled in state g.

e 1 is the output event function, A : X — X,, used for generating an
output event when the internal event occurs. The output event A(q)
is emitted just before the internal event occurs in state q.

A DEVS model is interpreted as follows. At any time when an input event
occurs, the internal state will jump to the new state defined by 6..:(g,c,€)
where q is the current state, c is the local clock, and e is the input event.
Directly after the state transition the local clock is reset to zero. Between
events only the clock is changing and increasing at a constant rate. If
the residual time function, 8:;(q,c) with ¢ and ¢ as before, reaches zero,
then the internal event occurs. In this case, an output event according to
A(q,c) is issued and the state is updated according to 8int(q,¢).

Example: Simple server (continued) Reconsider the simple server
example introduced in the FSA section. Assume that the service times
are normally distributed with mean value m and variance v. Represent
the server as a basic DEVS model with the state ¢ = (s,¢,) with s €
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{Active, Passive}, and f, is the local time when the current job is going to
finish. The model has one input event called Start and one output event
called Ready. The internal transition event occurs when the current job
is finished and the state changes from Active to Passive. This gives the
internal transition function:

Sint(g,c) = (Passive,0).

If the input event occurs when the state is Passive the state changes to
Active and the finishing time is generated from the normal distribution.
If the input event occurs when the state is Active, the system remains
active with current job but the local clock is reset and ¢, must be updated
with the remaining service time. Thus, the internal transition function

becomes:
<ACtiU€, I]> if q = Passive
{g,t, —c) if g = Active

Sut (g8}, ) = {

where 77 is a random variable generated from the distribution function of
the service times. Remember that the local clock ¢ is reset to zero by the
external event. The residual time function becomes:

_ | inf if ¢ = Passive
6:({qg,tr),c) = { t,—c if g = Active

Finally, the output event function becomes:
2({q.t,),¢) = Done

O

Several basic DEVS models may be connected to form a multi-
component, coupled DEVS model. A coupled DEVS model is equivalent
to a basic DEVS model and can be used as a component in another cou-
pled DEVS model. Since the DEVS formalism is closed under composition
it is possible to define arbitrarily deep hierarchical models. A coupled
model is defined by

e a set of component DEVS models,
e sets of input and output events as in a basic model,

o a set of connections, called influences, which are pairs of input events
and output events of this model and of the components, and

e a tie-breaking selector used when several components have internal
events scheduled at current time. The selector determines which one
of the component models should be allowed to carry out its transition
first.
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In a coupled DEVS model, it is also possible to propagate data that is
dependent on the current state of the event issuing component, to the
receiving components. An influence is conceptually similar to a connection
between structured terminals in Omola.

The DEVS formalism can be compared to the GSMP formalism de-
fined previously. In a GSMP model the total state is represented by the
physical, countable state and the clocks associated with each state. In a
DEVS model, the total state can belong to any uncountable and infinite
set. In this sense, the modeling power of DEVS is greater than the model-
ing power of GSMP. However, for the special case that the state of a DEVS
model is only represented by discrete variables, the model is equivalent
to a GSMP.

Software for object-oriented modeling and simulation of DEVS models
has been implemented [Zeigler, 1990, Kim and Zeigler, 1991].

5.6 Hybrid Automata

Hybrid Automata, HA, is a formalism for representing systems with be-
havior involving discrete events as well as continuous time elements. A
typical example is a model of a physical process controlled by a computer
algorithm. The hybrid automata model presented here is introduced in
[Alur et al., 1993] and is based on [Maler et al., 1992]. It can be seen as
an extension of the FSA formalism, adding the notion of time and contin-
uous state evolution.
A hybrid system is the tuple

A = <Q, VD;,Llly,LlZ!,LlS):

where the five components have the following definitions and meanings.

e @ is a finite set of discrete states called locations. They correspond to
what previously have been called physical states.

e Vp is a finite set of real-valued data variables. They represent the
continuous state of the system. The set of all states is denoted by
¥p < R*, where n is the number of variables in Vp.

e 41 is a labeling function that assigns to each location a set of possible
activities. An activity is the behavior of the system with respect to
the evolution of the continuous state within a particular location. It
is a smooth function from R (time) to Zp.

e iy is a labeling function that assigns to each location ! € @ a location
invariant set 15(1) < Tp. If the system is in the physical state /, then
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X2

X1

Figure 5.5 An example of a trace of a hybrid system. The initial state of
the system is 0p in location I;. The continuous state changes according to the
behavior defined for location ;. After some time a transition occurs and the
state is changed discontinuously to a new state in location /s, etc.

the continuous state has to be in z2(l), otherwise an exception is
trigged.

e /13 is a labeling function that assigns to each pair of locations a
transition relation us(li,ls) < T%. us(ly,lz) is a mapping from a
continuous state in location I; to a continuous state in location /5.

The total state of the hybrid system is represented by the location and
the continuous state. The state can change instantaneously, at discrete
events, according to the transition relations u3 or continuously, by elapse
of time, according to the activities defined by z1. The invariants (s must
be fulfilled at all times. A trace of a hybrid system is a state sequence
that fulfills all the restrictions. An example of a trace of a hybrid system
is displyed graphically as a phase plot in Figure 5.5. The hybrid system
has two continuous state variables, named x; and xg. Three locations are
indicated with their corresponding invariant sets and possible activities.
The trace starts in state op and ends in state o7.

The definition of a hybrid system does not define when the transition
events occur. A hybrid system can be viewed as an input-output model of
a controlled process. The input to the process consists of discrete events
causing state transitions in the HA. The output from the process is a
function of time defined by some mapping from the discrete and the
continuous states. The objective of the controller is to monitor the process
and to issue control events so that the HA fulfills its invariants and
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additional specific control objectives.

A linear hybrid system is an important special case of a hybrid sys-
tem. A hybrid system is linear if its activities, invariants, and state tran-
sitions can be defined by linear expressions over the set Vp. In a linear
hybrid system, the continuous state changes linearly in time. This means
that all the activities can be represented in the form #%; = k;; where
x; € V; and k;; is a constant depending on the current location. Note
that the continuous behavior of a linear hybrid system is more restricted
than the behavior of an ordinary linear system in the form & = Ax + Bu.
It is possible to do some analysis on linear hybrid systems. For example,
there are algorithms for verifying that all possible traces of a linear hybrid
system fulfill a given invariant [Alur et al., 1993]. In [Tittus and Egardt,
1993] algorithms for analyzing controllability and for synthesizing control
laws for linear hybrid systems are presented.

5.7 Grafcet

Grafcet is a graphical language for modeling and specification of sequen-
tial processes. Contrary to Finite State Machines, Grafcet can represent
concurrent activities. It was developed by the French organization AFCET
[AFCET, 1977]. The goal was to standardize a well-defined, unambiguous,
and practically useful language for describing sequential and parallel ac-
tivities in automation. The Grafcet standard is now adopted by IEC [IEC,
1988] under the notion of sequential function charts or SFC.

Grafcet can be seen as a special kind of Petri net, introduced by
C. A. Petri in his dissertation in 1962. A lot of publications exist on
Petri nets, see for example [Reisig, 1982, Murata, 1989, David and Alla,
1992]. A Petri net is a graphical representation and a mathematical
formalism used as a modeling tool. It is suitable for formal analysis and as
a specification and simulation language for many kinds of discrete event
systems, like communication systems, control systems, and information
processing systems. Petri nets exist in many different versions.

The name “Grafcet” is used in this thesis for the formalism as such,
while “a grafcet” denotes a particular model defined in Grafeet.

The basic elements of Grafcet

An example grafcet is shown in Figure 5.6. The two most basic elements
are step, drawn as a square box and representing the state of the system,
and transition drawn as a horizontal bar. Other fundamental elements
are parallel split and synchronization, both drawn as double horizontal

107




Chapter 5. Modeling of Discrete Event and Hybrid Systems

(¢}) 03]

(2) mmepmm C2 (3) =t €3 (4) mmmpmm C4
4 5
(5) === C5
]
(6) =t CB

Figure 5.6 Example of a simple grafcet in its initial state.

lines. Steps and transitions are labeled by unique numbers. In Figure 5.6
there are six steps labeled 1 to 6, and six transitions labeled (1) to (6).
The graph also includes a parallel split (the upper one of the two double
par symbols) and a synchronization (the lower one). The basic elements of
a grafcet are connected in a net by directed links (or arcs). An arc always
runs from a step to a transition or from a transition to a step. Arcs drawn
without an arrow are assumed to be directed downwards in the diagram.

The steps of a grafcet represent the state of the modeled system.
Each step can be either active or passive. The current state of the system
may be indicated by filled dots in the active steps. Steps drawn by double
squares are initial steps. They are active in the initial state of the system.
In Figure 5.6 the initial state is shown with Step 1 active and all the other
steps passive.

The state of a grafcet evolves by firing of transitions. Each transition
is associated with a firing condition, also called a receptivity, which is a
logical function of input variables and internal states. A transition is said
to be enabled if all preceding steps are active. An enabled transition is
fireable if its condition is true. Firing a fireable transition means that all
preceding steps are deactivated while all the following steps are activated.
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Figure 5.7 The grafcet shown after transition (1) has fired (a) and then
after transition (2) has fired (b).

For example, in Figure 5.6 Transition (1) is enabled since Step 1 is
active. When the condition C1 becomes true, the transition is fired and
the result is that Step 1 becomes passive while Step 2 and Step 3 both
become active. The new situation is shown in Figure 5.7.a. Now, Transition
(2) and Transition (3) are enabled. If we assume that the condition of
Transition (2) becomes true, the transition is fired and the situation shown
in Figure 5.7.b is reached.

Inputs and Actions

A grafcet interacts with the environment which, for example, consists of
another grafcet, a continuous time model, or a real physical plant. The
inputs to the grafcet consist of the transition conditions. The conditions
may depend on external variables which are then considered as input vari-
ables. The outputs from the grafcet are defined by the actions associated
with the steps.

A transition condition may be a purely logical function of input vari-
ables and the state of steps in the same grafcet. Such a transition is fired
when the transition is enabled and the condition changes to true, as well
as when the condition is true when the transition becomes enabled by the
preceding steps. It is also possible to have edge-trigged firing conditions.
In this case the transition is only fired if it is already enabled when the
condition turns from false to true.

Outputs are associated by the steps of the grafcet. For example, an
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V1

Figure 5.8 A tank with a heater.

action may consist of a boolean output variable that is true when the step
is active. It is also possible to have impulse actions which take place when
the step switches from passive to active.

Figure 5.9 shows the previously discussed grafcet augmented with
conditions and actions in order to control a plant consisting of a storage
tank with a heater shown in Figure 5.8. The plant provides measurements
of the temperature 7', and the level L. The control variables are the valves
V1 and V2, and the heating @. The control variables are all boolean
variables for opening and closing the valves and switching the heat on
or off. The Grafcet controller has two input conditions, Start and Empty,
which are commands from the operator or higher level controllers. When
the controller is in its initial state, it is waiting for the Start condition of
transition (1). When the operator pushes the start button, the transition
fires and Step 2 and Step 3 are activated. This means that V1 is opened
and heat is switched on. The valve remains open until the condition of
Transition (2) becomes true when the tank level becomes larger than the
fixed value Lmax. The heating is on until the condition of Transition (3)
becomes true when the temperature reaches the fixed value Tmax. The
operator can empty the tank by pushing the Empty button when Step 4
and Step 5 are active. In this case, Step 6 becomes active and the valve V2
is opened. When the level reaches below Lmin, Transition (6) can fire and
the process is ready for a new cycle. Steps 3, Step 5, Transition (3), and
Transition (4) constitute a temperature control cycle. If the temperature
goes below Tmin when Step 5 is active, Transition (4) fires, Step 3 becomes
active again, and the heating is restarted.
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Figure 5.9 A grafcet for controlling the tank with the heater.

5.8 Other approaches

A modeling and simulation package called gPROMS (general PROcess
Modeling System) has been developed at Imperial College [Barton and
Pantelides, 1991]. The language and the simulation environment are
general-purpose but they are developed with a special aim to support
modeling of chemical batch processes in combination with continuous time
processes.

Similar to Omola, gPROMS uses general differential and algebraic
equations to represent continuous time behavior. The concepts for de-
scribing discrete behavior are based on a set of elementary tasks. These
tasks include RESET which replaces an input time function with another,
and REPLACE which replaces one or more equations with an equal num-
ber of new equations. An elementary task called REINITIAL is used for
defining discontinuous state changes.

Another approach to hybrid system modeling is based on bond graphs
(see Section 2.1) and is presented in [Stromberg, 1994]. The approach
focuses on physical models with local mode changes such as switches in
electric circuits, dry friction with stick slip motion, etc. An ideal switch
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is introduced as a new bond graph element and is used for representing
mode changes in different domains. The model representation is suitable
for formal analysis and simulation.

5.9 A hybrid model for Omola

A hybrid model formalism based on the formalisms discussed earlier in
this chapter and on the DAE representation for continuous time models,
is introduced. The formalism serves as a basis for extending Omola in
order to represent discrete event and hybrid systems. The formalism is
referred to as the OHM (Omola Hybrid Model).

A solid mathematical formalism, with a well-defined interpretation,
is essential as a foundation for a modeling language like Omola. First,
it makes it easier to translate other formalisms into Omola and to inte-
grate model components developed in different formalisms, into a com-
posite model. Secondly, a well-defined formalism makes Omola models
portable and easier to translate into other simulation languages and into
executable, real-time control programs. The translation of models between
Omola and other formalisms can often be done mechanically. Thirdly, it
facilitates the implementation of the simulation algorithm and provides
a way of verifying its correctness.

Let a hybrid model be represented by the tuple

M =(Q,X,E,g,h, @A),

where the components have the following definitions.

e @ = (q1...qn,,) an array of variables representing the discrete state
of the system. The variables may be of real, integer, or symbolic type.

e X = (x1...x,,) is an array of real variables representing the contin-
uous state of the system.

e E = {e1,...,e,} is a set of event types.

e g ={g1,...,8x} is a set of functions defining the continuous behavior
by the equations:

gi(X(),X(1),Q) =0, gieg (5.5)

The notation ‘@, is used to indicate that the discrete state @ is
updated at discrete time points.

e h = {hi,...,hy,} is a set of Boolean functions such that

hi(X(2),X(t), Q) = true, h; €h (5.6)
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define the invariants of the model. The invariant functions divide the
state space in two parts: the set of admissible states where all h; are
true and the remaining states where at least one of the constraint
functions are false.

e @ is the map h — E associating each invariant function with an

event type.

e A = {&1,...,0,} is a set of vector valued functions, each one associ-
ated with an event type, e; € E, such that when e; occurs then the
equation

é‘i(XaaX(D Qa;XbrXb’Qb) = O (5‘7)

is fulfilled. X, and @, refer to the state immediately after the event,
while X, and @; refer to the state just before the event.

The framework describes a system where the state evolves in two ways:
continuously in time by changing the values of X, and by instantaneous
changes in the total state represented by the variables @ and X. Instan-
taneous state changes are called events. They occur when the system
crosses the border of the set of admissible states, defined by the invariant
functions.

Continuous time behavior

The constraint equations defined by g define the continuous behavior of
the model. This means that continuous behavior is represented by a dif-
ferential and algebraic equation (DAE) system. Since the discrete state
@ is constant in time between events, its time dependency is indicated
by a subscript ¢£. This means that the elements of @ appear as time con-
stant, known parameters, as far as the continuous behavior is concerned.
The constraint equations (5.5) may also include static relations between
discrete variables.

Discrete events

Events occur asynchronously, i.e., they are affecting the system one at a
time, causing a sequence of state transitions. The invariants & and the
map @ define an event to occur when an invariant is violated, i.e., when
any h;(t) turns from true to false. We say that an event e = ®(h;) becomes
enabled at time ¢, if, and only if, A;(f, — €) is true and h;(¢ + ¢€) is false
for any ¢ and some § such that 0 < £ < 8, without considering the effect
of the event.

Firing of an event may cause a discontinuous state transition. The
transition is defined by the set of functions in A associated with the
detected event type. It is the solution of the equation system defined by
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(5.5) and (5.7) that defines the state of the system immediately after
the event, when the current state (X, X,, and Q) is known. Firing of
an event may cause new invariants to be violated. The OHM formalism
proclaims that events are fired until a stable situation is reached when
all invariants are fulfilled.

Event sequences

It may occur that several events become enabled at the same time point.
In this case the events must be fired in sequence, according to some de-
terministic or non-deterministic ordering. In many cases, the order in
which simultaneously enabled events are fired is not significant because
different events may affect different parts of the model without any direct
interaction. However, it is easy to find examples where the firing order
is significant. From a model formalistic viewpoint, it is natural to define
that simultaneously enabled events are fired in a non-deterministic order.
On the other hand, there are advantages of having a deterministic model,
with a well-defined firing order of simultaneously enabled events. A de-
terministic approach, where the ordering of events in E determines the
firing order, is chosen for OHM. However, it is easy to extend a simulator
to use a random firing order as an alternative.

Comparing OHM with HA

The suggested model is inspired by Hybrid Automata [Alur et al., 1993]. A
difference is that OHM is complete in the sense that a model also defines
when events should occur. A Hybrid Automata model can be viewed as
a model of a process where the events are control actions issued by a
mechanism outside the formalism. In OHM it is also possible to represent
the controller, i.e., to define when the control events should occur. This is
done by associating event types with invariant expressions.

Another difference between HA and OHM is that OHM allows a
continuous state space for the discrete time state, represented by @. This
is not a formal difference but a technical convenience. We can view the
discrete state @ in OHM, as being represented by a set of real-valued
variables @,, and a set of discrete-valued variables Q4. Qq represents the
enumerable set of physical states corresponding to the locations in a HA.
Since @, represents an uncountable state, the member variables belong
to the set Vp if the OHM is interpreted as a HA. The variables in @, are
special in the sense that they are constant between events, i.e., they have
zero time derivatives in every location.
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Limitations of the OHM

A limitation of the Omola hybrid model is that the set of continuous state
variables X and the set of behavior functions g are time invariant. This
means that models where objects with local state and behavior, are created
and destroyed, cannot be represented. Such models often appear in pure
discrete event models of, for example, production systems and job shops.
This kind of models are less frequent in process modeling and in automatic
control.

Models of batch processes have properties similar to discrete event
production systems as well as continuous processes. The batch process
contains several processing units which can be activated or deactivated.
If the batch process is represented in Omola, the deactivated units are
also parts of the total model at all times. The problem is mainly a matter
of efficiency.

An advantage of the OHM is that the structural properties of the
model can be analyzed in advance, before the actual behavior is deter-
mined by simulation. Consider a formalism with the more general ap-
proach where a separate continuous time model, with a different set of
state variables and equations, is associated with every discrete mode. Un-
less the model has very few discrete modes, every discrete state cannot
be analyzed in advance. Instead, every new mode is analyzed when it oc-
curs in a simulation. In the more general representation, the problem also
arises how to represent the mode transitions in a general way in order to
avoid defining all possible transitions explicitly. This is a topic for future
research.

5.10 Simulation of hybrid models

A simulation problem is a hybrid model and a set of initial conditions. The
initial conditions are additional constraints on the model variables and
derivatives at the initial time #y. The simulation problem is well-defined
if the initial conditions are consistent and determine initial values for all
variables and if the model is specific enough to define a unique solution
up to some final time ¢;.

The initial conditions of a simulation problem are often specified by
the user in the simulation tool. The model itself may also define default
initial values for variables. The user specifies the initial time, #,, and
the initial values of some of the continuous variables, derivatives, and
discrete variables, so that the equation g(xo, %9, @) = 0 can be solved for
all remaining unknown initial values. Generally we can define the initial
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Figure 5.10 The simulation algorithm for Omola Hybrid Models.

value problem by the initial condition function gz, so that the equation
system
8 (x0, %0, Qo) = 0

g1(x0, %0, @) = 0 (5.8)

can be solved. The vector function g; includes constraints on derivatives,
implied by a high index DAE problem, and user defined initial values.
High index DAE problems are discussed in Chapter 7.

Assuming consistent initial values, the simulation problem can be
reduced into three subproblems and can be solved by the simple algorithm
displayed in Figure 5.10. The subproblems are:

1. to solve the DAE problem,
2. to detect events, and
3. to execute events.

Solving the DAE problem means to advance the time so that the contin-
uous time behavior equations (5.5) are fulfilled. It is assumed that the
initial state is consistent. This problem implies solving non-linear sys-
tems of equations and numerical integration. The methods are discussed
in more detail in Chapter 8.
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The problem of detecting events means to check the invariants A
continuously during DAE solving, and to detect when any of the functions
become false. Methods for this are also discussed in Chapter 8.

To execute an event means to determine the variables affected by
the event and to compute new values for them. The new values must be
consistent with the continuous behavior equations (5.5) so that it works
as an initial state for a new DAE problem. Therefore, event execution is
also referred to as the restart problem which is discussed in the following.

Some terminology that is useful in the following discussions will now
be introduced. The Boolean complements of the invariant expressions in
h = {h1,...,hy,}, are called event conditions. A particular event e may
have several conditions defined by the set {h; : ®(h;) = e}. An event
condition that depends on at least one continuous variable is called a
continuous condition. An event condition that only depends on discrete
variables is called a discrete condition. An event is enabled if it has at
least one of its conditions equal to true, i.e., an invariant is violated,
at some point in the simulation algorithm. An event e; is fired when its
corresponding state update equation J; is applied and the restart problem
(5.9) is solved.

Solving the restart problem

After an event e; has been detected, the equation system

] g(XayXa> Qa) =0 (59)
51'(X0’Xa9 thXb’sz Qb) =0
is solved for a unique and consistent initial state. This problem is similar
to the initial value problem (5.8).
If the restart problem defined by (5.9) can be algebraically manipu-
lated into the following form, it becomes easy to solve:

Qo = 61:(Xp, X, Q)
X, = 62i(Xp, X, Q. Qu) (5.10)
X = f(X’ Qa)

This means that after the event has been detected, the new discrete
state @, can be computed from the state immediately before the event.
Then the new continuous state X, can be computed. Finally, since the
continuous time problem is on explicit state-space form, the new initial
state is trivially consistent and the numerical integration can be resumed.
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The general mathematical restart problem defined by the equation
system (5.9) is difficult to solve, since it contains continuous as well
as discrete unknown variables. However, modeling of physical systems
with a conscious methodology can result in restart problems that can
be manipulated into a simple form like (5.10) and can be solved with
available numerical methods.

The restart problem can be analyzed symbolically, before simulation,
in order to determine how hard the problem is to solve. This analysis is
similar to the analysis applied to a DAE problem in order to verify that
it is structurally well-defined. The steps taken in the analysis include
block triangularization of the equation system which is also needed in
order to transform the problem into executable and efficient simulation
code. Symbolic manipulation of the DAE problem and of the event restart
problems are discussed in more detail in Chapter 8.

Event sequences

In a valid trace of an Omola hybrid model all the invariants of the model
are satisfied at all times. However, since the solution of the restart prob-
lem (5.9) may not fulfill all the invariants, an new event may become en-
abled as a result of firing one. This means that in some cases a sequence
of events is fired, at the same time instance, until all the constraints are
fulfilled. The main rule is that two different events never occur simul-
taneously. If several events are enabled at the same time, then they are
fired in sequence according to their index, i.e., in their order of definition.
It is necessary to define the firing algorithm more precisely. For example,
assume that the continuous event conditions for the events ey and ey are
detected at the same time. Then they are both enabled. First, event e;
is fired according to the ordering rule. As a result, one of three different
things may happen. One possibility is that all the events of the model are
disabled and the continuous simulation can be resumed. Another possi-
bility is that one of the events is now enabled so it must be fired. The
third possibility is that both events are enabled after the firing of the
first one. In this case, we can fire the first event again according to the
ordering rule, or we can argue that the second event should be fired first
since it was originally enabled at the same time as the first one. There
seems to be at least two reasonable algorithms for event firing. The first
alternative can be defined as:

1. Fire the first one of all currently enabled events.

2. Check for enabled events. If no event is enabled, resume continuous
simulation, otherwise go to 1.

The second alternative is defined as:
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Determine the ordered set E’ € E of enabled events.
If E’ is empty, resume continuous simulation.
Fire the first event in E’.

For each of the remaining events in E’, check if it is still enabled and
if so fire it.

5. Go to 1.

The second algorithm is chosen as being the correct way of interpreting
an Omola model. This algorithm is more fair, since it considers all events
that are enabled at the same time, before it re-evaluates the condition for
the first one. It is more complicated to implement but it may in some cases
simplify modeling. An example of that is given when Grafcet simulation
is discussed in Chapter 6.

It is possible to formulate models where the chosen event firing algo-
rithm never halts. In this case the model is not well-defined. There is no
way to detect this problem analytically without running the simulation,
except for very simple cases. In practice, since most models are defined
so that the same event type rarely fires more than a few times in a se-
quence, a simulator can detect a suspected infinite loop and suspend the
simulation with a warning message.

The suggested execution schemes for event sequences assume that it
is possible to compute a consistent state after each separate event firing.
It could be possible to relax this requirement and allow a sequence of
events to be fired where only the last event must result in a consistent
initial state. It is not clear whether this is a desirable feature or not and
it is not tested in OmSim.

N

Scheduled events

In practical discrete event and combined modeling it is common that the
firing times for some events are known in advance, at some earlier time in
the simulation. Such events are represented in the formalism as having
associated invariants defined as h; =t < t;, where ¢ is the current time
and ¢; is a discrete variable representing the future time when the event
should be fired. Events with this kind of conditions are called time events.
Events that are not scheduled are called state events.

Time events can be scheduled in advance. The simulator runs more
efficiently if this type of events are treated specially. The simulator can
have a queue of scheduled events, ordered in time. In that case, the
continuous time solving is always stopped at the next scheduled event,
unless a state event is detected at an earlier time.
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5.11 Summary

This chapter has given a brief overview of some commonly used model-
ing formalisms for discrete event and hybrid systems. These formalisms
inspired the definition of a hybrid model formalism to be used as basis
for Omola. The Omola Hybrid Model (OHM) formalism is general enough
to represent several different classes of discrete event, continuous time,
and hybrid models. It is based on differential and algebraic equations
for representation of continuous time behavior, and on boolean invariants
for defining discrete event conditions. The effect of each discrete event
type is defined as a set of general equations, relating the model states
immediately before and after the event.

The purpose of the OHM is to serve as an intermediate representation
between high-level Omola models and more special-purpose representa-
tions used for numerical simulation or design. A simulation algorithm for
OHM representations was outlined and discussed in general terms.

OHM cannot represent models with variable dimension. That is, sys-
tems where the total number of state variables and equations change as
a result of discrete events. The formalism may be extended to cover also
these kinds of systems but it requires more effort in the implementation
of an efficient simulator.
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6

Discrete Events in Omola

There are many different ways to represent discrete event and hybrid
models. A common property is their capability of representing discontin-
uous state changes. The aim is to provide Omola with basic facilities for
representing discrete events, so that most high level discrete event and
hybrid model formalisms can be supported. The discrete event can be re-
garded as a fundamental concept, common to all hybrid model formalisms.
This chapter extends Omola with language constructions for defining dis-
crete events, and for defining event interaction between submodels. The
additional basic concepts together with the ordinary model structuring
facilities make it possible to support different higher level hybrid model
formalisms in Omola.

6.1 Introduction

The event is a fundamental concept in hybrid models. Every discrete state
change in a simulated model is caused by an event. Events occur because
the time or the state of the system has reached a certain point. A hybrid
model defines discrete behavior in terms of event types. The concepts can
be illustrated by the following examples.

e Assume a model of a digital controller operating on a continuous time
process. At regular time instances, the controller samples the contin-
uous measurements from the process and computes a new control
value. Each sample instance, occurring when the model is simulated,
is an event of the sampling event type defined in the controller model.

e Assume a model of the friction force between two moving bodies in
physical contact. The friction model is concerned with two kinds of
discrete events defined by two event types in the model. One type of
event occurs when the relative velocity of the two bodies reaches zero
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and they may get stuck to each other. The other type of event occurs
when the static friction force between the bodies exceeds a certain
maximum and they start sliding again.

e Assume a model of a processing cell in a discrete manufacturing
system. The arrival of a new item to the input buffer is modeled
by an event type. The completed processing of an item is modeled as
another event type.

An event type defines how a particular event affects the system. The event
type definition can also include the conditions for the event to occur.

The event type is the basic language concept in Omola for defining
hybrid models. The concept of an event precedes the concept of a discon-
tinuous state change in the sense that any discontinuous state change is
always caused by the occurrence of an event. This is different from Dy-
mola which does not recognize events as a basic language concept and
does not allow event types to be defined explicitly [Elmqvist et al, 1993].
However, the concept of an event type is useful when events are propa-
gated between different parts of a model. An event type is abstract in the
sense that it does not have to be associated with the discontinuity of a
particular variable. The concept is also useful in the definition of other
discrete modeling facilities.

A reason for having events as a basic language concept is the desire
to define clean and abstract interfaces between model components. If a
submodel needs to communicate to the environment the fact that some
internal discontinuity has occurred, it defines a terminal that is an output
event. This terminal can then be connected to an input event terminal
of another submodel, that can react on the event and take appropriate
internal actions. A modeling language where events are not part of the
language must represent the same type of submodel interaction using, for
example, Boolean variables in the terminals. In this case the interacting
submodels must agree on how to interpret a change in the interface
variable: Is the important event occurring when the interface variable
changes from false to true, from true to false, or both? If one of the two
former conventions are adopted, then one of the interacting processes
must take care of resetting the interaction variable before the next event
occurs. This kind of implicit conventions, and possible confusions, between
communicating processes are avoided if the more abstract concept of a
pure event is used.

To summarize, the concept of an event, defined in a model as an event
type, makes a clear distinction between

e the event as such, i.e., the idea that something occurs at a specific
instance in time,
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e the condition for the event to occur, and
¢ the effect on the system when the event occurs.

This chapter describes how events are defined in Omola. It introduces
the syntactic constructions and defines them in terms of the Omola Hybrid
Model (OHM) formalism, defined in the previous chapter. This is followed
by a description of the event propagation and synchronization facilities.
Finally, some examples are given, relating to the traditional hybrid model
formalisms discussed in the previous chapter.

6.2 Defining discrete events

In this section, the fundamental concepts for defining discrete event mod-
els in Omola are introduced.

Discrete variables

Discrete variables are declared to change value only at discrete time
points as the result of events. Ordinary (continuous time) variables
change in general continuously by time and discontinuously by events.
The optional key-word DISCRETE is used to declare a discrete variable.
For example:

X TYPE DISCRETE Real;

The effect of declaring a variable as discrete is the same as defining the
time derivative of a continuous variable to be equal to zero. Only real
variables and matrices can change continuously. Therefore, variables of
discrete types, such as integer and boolean, may be considered as discrete
variables even if this is not explicitly declared.

A continuous variable may behave as a discrete variable as a result
of the total model behavior. This is the case for a variable that can
be computed from an equation that otherwise only depends on discrete
variables or parameters, or a variable with the time derivative set equal
to zero. Such variables can be found in the model analysis and eliminated
from the continuous time simulation problem. Parameters are similar to
discrete variables in the way they affect the continuous time behavior of
the model.

Event type declarations

Events occur in hybrid systems and when a hybrid model is simulated.
Events are defined in Omola models as event type declarations. Event
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M 1A Model wiTH

X TYPE Real,;

X = 1-x;

E 1saN Event WITH
condition := x > 0.5;
NEW(x) := 0;

END;

END;

Listing 6.1 An example of a model with a discrete event.

types are model components defined as subclasses of the predefined class
Event, which is defined as:

Event 1sa Class WITH
condition TYPE Boolean := false;
END;

The attribute condition defines a Boolean condition for the event to occur.
It is the logical complement of an invariant in the hybrid model formalism.
The condition is bound to the constant false in Event but it is typically
rebound to a Boolean condition, depending on continuous time variables,
when a particular event type is defined as a subclass of Event. An event
of the defined type occurs when its condition changes from false to true.
The effect of the event, called the event action, is defined as a set of
equations defining a state transition. Listing 6.1 shows an example of a
complete model with an event. The model has a continuous time variable
x and a differential equation. It defines the event E to occur as soon as
x becomes larger than 0.5. As a result of the event, the value of x will
change discontinuously to zero. The definition of E specializes Event by
redefining the condition and adding an equation attribute. The equation
uses the operator new to refer to the value of x immediately after the
event. :

As illustrated by the example in Listing 6.1, an event definition
appears as a component in a model class and it has the structure:

<event name> ISAN Event WITH

condition := <logical expression>;
<body of actions>
END;

There is also an alternative, more compact syntax for defining events
without names. This syntax is presented in Section 6.4. Attributes of an
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event class are indicated as the “body of actions”. They define the effect
of the event on the system. Not all kinds of attributes have well-defined
meanings in an event definition. The following attributes are accepted:

o Variable definitions with bindings are always regarded as discrete
variables and they are computed as a result of the event. The binding
expression may depend on any variable, accessible in the scope, with
or without the new-operator.

e Equations (or assignments) involving at least one new-operated vari-
able.

e Side effect actions like, for example, calls to the event scheduler.

The different parts of an event definition will now be discussed in more
detail.

Event Conditions

An event condition is the logical expression appearing as the binding to
the condition attribute. The event condition is the logical complement
to an invariant in the Omola Hybrid Model formalism. For example, an
event condition defined as:

condition := x > 0;

defines the invariant x < 0.

Event conditions that involve continuous time variables are called
continuous event conditions. The simulator has to treat continuous event
conditions specially, since they have to be evaluated along the continuous
time solution by the numerical integration routine. Non-continuous condi-
tions only have to be evaluated immediately after discrete state transition
caused by an event.

Continuous event conditions involve relational operators on continu-
ous time expressions. The relational operators available in Omola are the
inequality operators <,<=,>,<=, and the equality operator ==.

The standard boolean operators AND, OR, and NOT can be used in event
conditions to logically combine several continuous and discrete conditions.
It is possible to activate and deactivate continuous conditions selectively
in different discrete states. For example, assume i is a discrete integer
variable and x and y are continuous variables in the following event
condition.

condition := (i==0 AND x > 0) OR (i==1 AND y < 0);

In this case, we can say that the invariant x < 0 is active only in the
discrete states characterized by i = 0, while the invariant y > 0 is active
only in the discrete states characterized by i = 1.
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Edge trigged events

Event conditions may include a special operator called the transition
operator. It is a prefix operator on Boolean expressions and it is written
in Omola as “V’ (the exponential operator). The transition operator is used
to indicate that the event occurs when the condition changes from false to
true only. In order to fire the event for the same condition again, it must
become false and then true again. A condition with the transition operator
does not define an invariant in the ordinary OHM meaning. However,
the transition condition can be transformed into an ordinary invariant
condition by introducing an additional Boolean variable. For example,
regard the event definition:

E 18AN Event WITH
condition := *(x > 0);
END;

The event is edge trigged which means that it is fired once each time x
becomes larger than zero. The same event will not occur again until x has
become negative and then reaches zero again. If the condition was defined
without the transition operator, the model would prohibit a positive x.
The event with the transition operator is equivalent to a model with the
following definitions:

Econd TYPE Boolean,;

E 1saN Event WITH
condition := NOT Econd AND x > 0;
NEW(Econd) := true;

END;

Ereset 1sAN Event WITH
condition := Econd AND x <= 0;
NEW(Econd) := false;

END;

Since transition events are rather common, the transition operator is
much more convenient to use, compared to defining the same behavior
using only invariant conditions. The simulator can also represent the
transition conditions for most efficient simulation.

From a formal, model semantic point of view, the event conditions
are ordinary logical expressions with continuous and discrete variables.
In order to achieve an efficient and numerically sound simulation model,
they need to be manipulated and transformed into a more suitable form.
This is discussed in more detail in Chapter 8.
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Event Actions

Event actions are defined by attributes in the event class definition. There
are a few different types of actions that can be defined for an event. A
discontinuous state update is a kind of action defined by equations in-
volving at least one new-operated variable. These equations define the
discrete transition functions A of the OHM formalism. Examples of tran-
sition equations are:

NEW(x) := 1;

NEW(y) + NEW(X) + y = 0;
where x and y may be discrete or continuous variables. The first equation
uses the binding operator to emphasize that x is assigned a new value as
a result of the event. The binding operator is equivalent to the ordinary
equation operator but it requires that the left side expression is a single
new-operated variable. The second equation implicitly defines a new value
for y as a function of the new value of x and the old value of y.

Equations without any new-operated variables are not allowed in an
event. Such equations express constraints that are valid at all times, i.e.,
ordinary equations. They have no particular meaning within an event
definition but they are allowed in a model anywhere outside the body of
an event definition.

Note that when an event is fired, not only the equations defined in
the event but all the equations of the model are considered in the state
transition.

Another type of event actions are local variable definitions with bind-
ings. Such definitions are motivated by the need for defining temporary
variables for complicated expression, used mainly within the event defini-
tion. The value of a local variable is computed as a result of the event and
may be used in other expressions in the event definition. A local variable
may not be new-operated. In fact, all occurrences of the variable in the
event definition are interpreted as representing the new value computed
as a result of this event. Outside the event definition, a local variable is
treated as any discrete variable and it maintains the value computed at
the last occurrence of the event in which it is defined. The value of a local
variable is undefined until the first occurrance of the event. An example
of an event with a local variable is the following:

E 1saN Event wiTH
x TYPE Real := sin(y);
NEW(z) := x*x;

END;

When the event fires, the local variable x is first computed. This value
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is then used for computing the new value of z. In general, the order in
which the equations and local variable definitions are defined in an event
is not significant. Their meaning and computational order is determined
by the occurrence of new-operators and local variables in the expressions.
In fact, current version of Omola does not allow the model to specify the
computational order explicitly. This may be a disadvantage when, for ex-
ample, a computer algorithm must be represented as a model component.
A solution to this problem could be to allow procedures coded in some
ordinary programming language, like C or FORTRAN, to be included in
models and executed as discrete event actions.

A third type of event actions are procedure calls. A common type of
procedure call is the schedule command which instructs the simulator to
fire a certain event at a certain time in the future. A schedule command
looks like

schedule(EventName, Delay);

The Delay argument can be any real-valued expression which is evaluated
when the event occurs. It defines the delay from the current time to the
firing time of the specified event. A descheduling command used as

deschedule(EventName);

is useful in certain types of modeling. It removes the next occurrence of
the specified event type from the scheduling queue.

Another type of procedure action available in OmSim is printlog
which does not affect the model, but is used for logging data and for
diagnostic messages in respond to events.

Discrete and continuous equations and bindings

Continuous and discrete variables can be mixed in ordinary model equa-
tions. If an equation contains at least one, non-constant, continuous vari-
able, it is a continuous time equation. An equation with only discrete
variables and constants is a discrete equation. Continuous and discrete
equations have the same meaning in a model — they define constraints
that must be true at all times. However, a discrete equation does not
affect the continuous behavior directly, and can be disregarded by the
continuous time simulation procedure.

Assignments to discrete variables are only defined if the assignment
expression is discrete, i.e., contains no continuous variables. This is ex-
pressed in the following rule:

SEMANTIC RULES 11—Discrete variables and bindings
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1. A discrete variable changes its value only as a result of an event.

2. A binding expression for a discrete variable must not include any
continuous variables.
]

For example, regard the following definitions:

X, y TYPE Real;

d TYPE DISCRETE Real;
x := d — 1.0; % correct
d:= 2.0 *y; % error

Il

The third line is correct since a continuous variable can be bound to a
discrete expression. The fourth line is an error since a discrete variable
cannot be assigned with a continuous expression except as an event action.

6.3 Event synchronization and propagation

Events can be synchronized and propagated between submodels. Event
synchronization is a way of defining interaction between submodels.
Omola allows event interaction to be defined by terminals and connec-
tions in a way similar to continuous time interaction. Omola uses three
basic synchronization mechanisms:

e Symmetric synchronization
e Directed synchronization, or propagation
e Conditional directed synchronization

The equation and assignment operators in basic Omola, (= and :=), are
used for defining event synchronization. The connection operator (AT) is
also interpreted as event synchronization when the connected terminals
are derived from a set of predefined event terminals.

In order to simplify the presentation and exact definitions of the
synchronization operators, some additional notation is introduced. Let an
event definition be represented by the triple E = (S,C,A), where S is a
set of unique symbolic names referring to the event type, C is the boolean
event condition, and A is the list of action attributes. Let all event types of
a model be totally ordered by the depth-first traversal of the instantiated
model. If an event e; comes before another event e;, we say that e; has
higher priority than e;. Let the priority concatenation of two action lists be
the action list where the actions of the higher priority event are followed
by the actions of the lower priority event with identical actions removed.
The priority concatenation of the action lists Ay and Ap is denoted by
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A; - Ag. Note that the ordering of actions is only important for certain
side-effect actions.

Symmetric synchronization is represented in a model using the equa-
tion operator with the left and right operands as event names. For ex-
ample, with E1 and E2 as event names, they are synchronized by the
“equation” attribute

El = E2;

The meaning of symmetric synchronization is that whenever one of the
synchronized events fires, the other one fires as well, at the same time.
The behavior of the synchronized events is not separable. A more precise
definition of event synchronization is:

SEMANTIC RULE 12—Symmetric synchronization

Let er = (S1,C1, A1) and es = (S3, Co, Ag) be two event types. The synchro-
nization of ey and e is the event (S1W S, C1 Vv Co, A1 - Ag) which replaces
ey and e9 in the model. O

In other words, when two events are synchronized, they are replaced by a
new event which can be referred to by either of the names of the original
events, its condition is the disjunction of the original conditions, and its
action is the combination of the actions of the original events.

Directed synchronization is defined using the binding operator. For
example, the assignment

E2 = EIl;

defines the directed synchronization from E1 to E2. It means that the
occurrence of event E1 also causes E2 but E2 may occur independently of
E1. This type of synchronization is also called event propagation; event E1
is propagated to event E2, and it defines a causal relationship between two
events. The exact meaning of directed synchronization is the following.

SEMANTIC RULE 13—FEvent propagation

Let ey = (S1,C1,A1) and ey = (Sy, Ca, A) be two event types. A directed
synchronization from ej to es leaves the event ey unaffected but replaces ey
with the event (S1, C1,A; - Ag). O

In other words, with this type of synchronization, the actions of the propa-
gated event are augmented by the actions of the event to which it is prop-
agated. An example of a system using event propagation, is a sampled
system with several subsystems and common clock, generating sampling
events. The sampling events are propagated to every module to achieve
synchronous sampling.
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A variant of event propagation is conditional directed synchroniza-
tion. The difference from ordinary (unconditional) event propagation is
that the propagation only occurs if a certain boolean expression is true.
Conditional propagation is defined as

E2 := condition AND El;

where condition is any boolean expression. As for unconditional propaga-
tion, only the definition of E1 is affected. The actions of E1 will condition-
ally be augmented by the actions of E2. Formally this is described as the
follows.

SEMANTIC RULE 14—Conditional propagation

Let ¢ be a boolean expression and let e1 and eg be two event types with a
conditional directed synchronization from ey to ez on condition ¢. When e1
is enabled and about to fire, then c is evaluated. If ¢ evaluates to false,
then no synchronization takes place and ey is fired alone. If ¢ evaluates to
true, then e is propagated to ez as if there was a directed synchronization
from ey to es. ]

Events with directed and symmetric synchronization operators have
algebraic properties that can be used to simplify models and to develop a
canonical representation used in the simulator. These properties will now
be discussed.

DEFINITION 6.1

Two sets of event specifications (event definitions and synchronizations)
are behavior equivalent if one set can replace the other without affecting
the behavior (the set of all possible traces) of the model. O

Behavior equivalence is denoted by the equivalence operator <. For
example, the behavior equivalence

<Sl, Cl,A>, <Sz, CQ,A) [=-=4 <S1 | Sz, Cl \ CQ,A) (61)

states that two event definitions with identical actions are behavior equiv-
alent to a single event definition with the union of symbolic names and a
disjunction of the conditions. The validity of (6.1) can be verified against
the OHM formalism. Another basic rule is that unique names, not occur-
ring in any other events, can be added or removed from an event without
changing the behavior of the model. This is written as

(S,C,A) & (SUS',C,A), (6.2)

were S’ is a set of unique symbols. Behavior equivalences can be used
as rewriting rules defining model manipulations that are not changing
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the behavior of the model. Such manipulations may be done in order to
simplify the simulation.

The definitions of the directed and symmetric synchronization oper-
ators, given as Semantic Rule 12 and Semantic Rule 13 above, can also
be defined as the following behavior equivalences where e; = {81,C1, A1)
and €9 = <Sz, Cz,Ag).

el — (Sl |\ SQ, Cl \ CQ,A]_ 'Az) (6.3)
e1 &= (S1,C1, A1 - Ag), (S3,C3, Az) (6.4)

e1, €2, €2

It

e, ez, €2

DEFINITION 6.2

An empty event, denoted eg, is the event (S, false, (), i.e., the event with

an arbitrary set of symbolic names, that never occurs, and has no actions.
O

An empty event can be added to or removed from a model without affecting

its behavior. We can write this as

ey = D (6.5)

Provided that its symbolic names are unique, an empty event is a neutral
element under synchronization, i.e., using (6.2) — (6.5) it is easy to show
that for any event e;:

ep = e —— €1 = €y ez (66)
ep = e &= e 1= eg &> el (6.7)

It can also be shown that symmetric synchronization is commutative and
associative, and that directed synchronization is associative.

The following proposition states that if two events have directed syn-
chronization in both directions, this is equivalent to a symmetric synchro-
nization.

PROPOSITION 1
For any events e; and eg:

e .= eg,e3 .= e1 &> €1 = €g (6.8)

|

The proposition can be proved using the definition of directed synchro-
nization (6.4) twice on the left hand side of the equivalence, and then
reducing it by using (6.1) and (6.3).
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Active events

Events defined without any actions of their own can still be useful as links
in an event propagation chain. Since event propagation may be conditional
and depend on the current state, it may occur in some states that events
without actions of their own are not affecting the model state at all. The
following definition is useful:

DEFINITION 6.3
An event type is active in a particular model state if it has the potential
to affect the model state. .

The following rules determine if an event is currently active or not:

SEMANTIC RULES 15—Active events

1. An evente = (S, C,A) is always active (in any model state) if it has a
non-empty action list A. Pure side-effect actions like printlog are not
counted.

2. An event ey is active if there is a directed synchronization from ey to
eq and if eg is active.

3. An event ey is active if there is a conditional directed synchronization
from ey to e and if the condition is true and eg is active.
O

The concept of active events is useful in models for specifying event
propagation. Examples are given in Section 6.6. For this reason, a special
event operator is available in Omola. The operator, called ACTIVE, operates
on event names and returns a boolean value. As an example, regard the
Omola definitions:

E1l, E2, E3 15aN Event;
E1 := acrive(E2) AND E3;

Event E3 is propagated to event E1 only if event E2 is currently active.

Event terminals

One reason for having concepts for event synchronization and propagation
is the possibility to have submodels that interact by means of events. An
event caused by a condition in one submodel may propagate to another
submodel causing its internal state to change. Synchronized events may
cause the states of different submodels to be updated consistently and at
the same time.
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The concepts of directed and symmetric synchronization of events
in different submodels are analogous to connections with and without a
defined causality. For that reason, it is also natural to allow terminals that
are events, rather than ordinary variables. Omola has three predefined
event terminal classes:

EventTerminal 1SAN Event;
EventInput 1SAN EventTerminal;
EventOutput 1SaAN EventTerminal;

Within a model they all appear as ordinary event classes. In addition, they
are regarded as terminals and are accepted by the connection operator AT.
Since event terminals are regarded as terminals as well as events, they
could have been derived from the predefined class Terminal as well (see
Figure 4.5 in Chapter 4). This is an example where multiple inheritance,
i.e., classes with more than one direct super class, would have been useful.

Two connected event terminals that are both derived from Event-
Terminal result in a symmetric synchronization. Connected combinations
of event inputs, event outputs, and undirected event terminals result
in directed synchronization. For example, if submodel S1 has an event
input called Ei, and submodel S2 has an event output called Eo, then the
following three definitions are all equivalent.

S1.Ei ar S2.Eo;
S2.Eo ar S1.Ei;
S1.Ei := S2.Eo;

6.4 A compact syntax for events

The generic way to define events is to define subclasses of the predefined
class Event, as described above. In many cases, the name of the event is
not relevant and not used anywhere else in the model. In this case, it is
convenient to use an alternative syntax, specialized for event definitions,
that does not require a name to be defined for the event. The syntax
also includes constructions for defining event propagation and synchro-
nization. The following constructions may be used for defining events in
Omola.

WHEN <condition> [ CAUSE <event list> ]
[ DO <actions> END ] ;
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The initial keyword WHEN is followed by the event condition. There is
an optional list of event names defining propagation to other events.
Finally, there is an optional do—end block with the event actions. With this
construction it is possible to define condition, propagation, and actions of
an event in a compact way.

Event propagation, i.e., directed synchronization, can be defined in
either direction. Propagation from the defined event to a named event
is defined by including the name in the list after the key-word CAUSE.
Propagation from named events can be defined using the OR operator
and the event name in the condition expression. For example, regard the
following definitions on generic form.

E1, E2 1saN Event;
E 1sAN Event wiTh

condition := cl;
END;
E2 .= E;

E := ¢2 anD E1;

The equivalent definition in compact form, where previous event E is
replaced by an anonymous event, is the following.

E1, E2 18AN Event;
WHEN cl OR (c2 aND E1) cause E2
DO

END;
Symmetric synchronization cannot be defined directly between anony-
mous events.

6.5 Discontinuities in continuous time equations

The modeling language contains several functions and relations that de-
pend on real valued arguments in a discontinuous way. A few examples
are the round function that returns the closest integer to a real argu-
ment, and the comparison operators like ‘<’ and ‘>’ returning a Boolean
result. When these functions appear in continuous models they may cause
trouble for the numerical integration algorithm which has to resolve the
discontinuities by taking very small steps. A numerically better way to
handle discontinuities is to use a state event to detect the crossing of a
discontinuity. In this case, the discontinuous function or operator should
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be replaced by a discrete variable or a function that extends continuously
across the original discontinuity. For example, if the original model con-
tains a conditional expression like

y = IF x > 0 THEN a(x) ELSE b(x);

where x is a real variable and a(x) and b(x) are real functions of x. If
a(0) # b(0), the compound expression has a discontinuity at x = 0. An
equivalent model using discrete events is:

xpos TYPE Boolean;

WHEN Xpos AND NOT (x > 0) DO NEW(xpos) := FALSE; END;
WHEN NOT Xpos AND (x > 0) DO NEW(xpos) := TRUE; END;
y = IF xpos THEN a(x) ELSE b(x);

The important difference is that the conditional expression now depends
on the discrete variable xpos and thus, switches between the alternatives
only as a result of an event. The original condition, x > 0, is no longer part
of the continuous time model but appears instead as an event condition.
The function a(x) must be defined also for x < 0 and the function b(x)
must be defined also for x > O for the construction to work. Better behavior
of the numerical integration can be expected when the two functions are
continuous also at x = 0.

It is convenient for the model designer to use the former, much sim-
pler construction, and get the more efficient event model generated auto-
matically. This is done in Dymola [Elmqvist et al., 1993], and it is planned
to be implemented in OmSim as well.

A similar type of rewriting can be applied to discrete variables that
depends directly on continuous time variables. For example:

i TYPE Integer := round(x);

The integer variable i is a discrete variable but its value depends on the
real variable x. Since i can appear in some other continuous time ex-
pression, it causes the same problem for the numerical integrator as the
previous example. A way of rewriting the discontinuous binding into an
event model is given in Listing 6.2. Similar constructions can be intro-
duced for every discontinuous or discrete function of real variables. An
advantage of rewriting expressions in this way is that it decouples the
discrete time part of the model from the continuous time part. This is a
form of tearing [Elmqvist and Otter, 1994]. In short, tearing means that a
system of equations is divided into two parts where the equations in one
part can be solved easily if only the variables solved from the other part
are known.
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1 TYPE DISCRETE Integer;
xlo, xhi TYPE DISCRETE Real;
WHEN x > xhi DO
NEW(i) := round(x+0.5);
NEW(xlo) := new(i) — 0.5;
NEW(xhi} := new(i) + 0.5;
END;
WHEN X < xlo DO
NEW(i) := round(x—0.5);
NEW(xlo) := new(i) — 0.5;
NEW(xhi) := new(i) + 0.5;
END;

Listing 6.2 An event model that is equivalent to a binding with the discon-
tinuous function round.

6.6 Examples of discrete and hybrid models

The different formalisms for discrete event and hybrid models, presented
in the previous chapter, are now used as examples and represented in
Omola. The purpose is to demonstrate that the basic discrete event con-
cepts and the structuring facilities of Omola are sufficient to represent a
wide range of hybrid models.

Sampled data models

A sampled data model defined by the state-space equations:

Xptl = f(xkau'katk)

6.9

Vi = & Xk Uk, Lr), (6.9)
has only one type of event — the sampling event (see also Section 5.2).
Therefore, all sampled data models have a common mechanism, the sam-
pling clock, that generates the sampling events. It is natural to define a
generic sampling clock as in Listing 6.3. The sampling period is constant
and defined by a parameter that can be changed by the model user. The
model defines an event called Init. This is a special event that is always
fired by the simulator at the start of a new simulation. Init schedules
the first sampling event and after that, each sampling event schedules
the next one. SampledModel can be used as a base class for any specific
sampled model. A generic definition of a sampled data model, according
to (6.9), is given in Listing 6.4. The model is designed to operate in a con-
tinuous environment. The input is a continuous variable that is sampled

137




Chapter 6. Discrete Events in Omola

SampledModel 1sSA Model WITH
Sample, Init 1SAN Event;
h 1sA Parameter WiTH default := 1.0; END;
WHEN Sample OR Init DO
schedule(Sample, h);
END;
END;

Listing 6.3 Base class for sampled data models.

M 18a SampledModel WITH
terminals:

u ISA Simplelnput;

y IsA DiscreteOutput;

state:
X TYPE DISCRETE Real;
behavior:
WHEN Sample Do
NEW(X) := state update expression;
NEW(y) := output expression;
END;
END;

Listing 6.4 Generic Omola code for a sampled data model.

by the discrete model. The output is a discrete variable that works as a
continuous zero-order hold reconstruction of the output sample.

It is also possible to represent structured sampled data models. For
example, a simple digital filter can be structured as shown in Figure 6.1.
Synchronous sampling is obtained by a common sample clock that gen-
erates the sample events and propagates them to each submodel. The
sampler component has a continuous input signal and a discrete output
signal. The reconstructor component has the reverse terminal configura-
tion. The two filter components are purely discrete models, with discrete
input and output signals. An example of a base class for a linear discrete
model is shown in Listing 6.5. The base class can be specialized into a
model with bindings specifying the model order and the system matrices.
The behavior of the model is defined by the sample event containing two
equations. Note the use of the new-operators. The new-operator is used
for the input signal, since the input must propagate through the system
without any time delay. At any sample occurring at time ¢;, the model
should compute y; and x;,1, depending on u; and x4, but u; may be the
output of another model, computed at this sample.
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SampledSystem

[}t sampier [———-= Filter1 |- ——»l Filter2 |-——-= Reconstr. —[ ]
Sampling
generator

Figure 6.1 Example of a sampled data system composed of several discrete
models. The fat arrows indicate continuous signal connections, the dashed
arrows indicate discrete signal connections, and the thin arrows indicate event |
connections.

DiscreteLinear 1A Model WITH
terminals:
Sample 1A InputEvent;
u 1SA Discretelnput;
y 18A DiscreteOutput;
parameters:
N 1YpE Integer; % model order
A TYPE Matrix [N, NJ;
B 1YPE Column [NJ;
C 1YPE Row [NJ;
D TYPE Real := 0.0,
state:
X TYPE DISCRETE Column [N];
behavior:
WHEN Sample DO
NEW(x) := A*x + B*NEW(u);
NEW(y) := C*x + D*NEW(u);
END;
END;

Listing 6.5 A base class for a discrete linear model.

139




Chapter 6. Discrete Events in Omola

Server 1SA Model WITH
state TYPE DISCRETE (Passive, Active);
Start, Ready, Init ISAN Event;

transitions:
WHEN state == ’Passive AND Start DO
NEW(state) := ’Active;
END;
WHEN state == ’Active AND Ready DO
NEW(state) := ’Passive;
END;
initialization:
WHEN Init DO
NEW(state) := "Passive;
END;
END;

Listing 6.6 An FSA server model in Omola.

Modeling of Finite-State Automata

In the following, it is shown how a deterministic finite-state automaton,
according to the definition in the previous chapter, can be represented in
Omola. It is also shown how composition of FSA:s is represented.

Each symbol in the input alphabet = of an FSA, corresponding to state
transitions, is represented by a named event type. An anonymous event
is defined for each combination of state and input symbol with a non-
empty transition function 8. The state of the FSA can be represented by
a discrete variable of integer or enumeration type. The idea is illustrated
by an example in Listing 6.6 which shows an Omola model for the server
FSA presented in Figure 5.3.

The suggested representation is not very compact for an FSA with
many defined transitions. The number of event definitions may be as large
as the number of input symbols times the number of states. It is possible
to use a more compact representation if the events and states are coded
by integers used for indexing a state transition table, represented by a
constant matrix. Only one event for each input symbol has to be defined
in this case.

An FSA is a non-autonomous model in the sense that all transitions
are caused by events which are regarded as inputs to the model. The FSA
model relies on some external mechanism inducing the transitions. An
important observation is that there is no way an FSA model can prevent
firing of an event. If an event is not enabled in current state, i.e., there
is no defined transition for the event from current state, then firing is
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CompositeFSA
s1 S2
E2 [ ] E2
E{ E1
11 1
L L LJ
E1 E2 E3

Figure 6.2 Full synchronous composition of two FSA submodels, involving
the event E2

an empty operation. However, the environment of an FSA model can
determine if an event is currently enabled using the active-operator. Only
events for which active is true are currently accepted as input symbols.
For that reason, an Omola FSA model is a true representation of an FSA.

A composite model may contain several FSA submodels. If there is
no event synchronization between the FSA components, they are said to
operate in parallel composition [Heymann, 1990]. There are other types of
FSA compositions that involve elements of synchronization between the
components. Two kinds of synchronizing compositions, introduced in [Hey-
mann, 1990], will be discussed here. These kinds of model compositions
are interesting because they are important in the design of controllers for
discrete event dynamic systems [Ramadge and Wonham, 1989, Balemi,
1992].

One type of FSA composition is called full synchronous composition.
In a full synchronous composition of two FSA:s, input symbols that belong
to the alphabets of both FSA:s are accepted by the composite FSA only
when they are accepted by both FSA:s separately. Full synchronous com-
position of Omola models is illustrated in Figure 6.2. The picture shows a
composition of two FSA components, named S1 and S2. Each input sym-
bol of an FSA is indicated by an input event terminal. According to the
normal conventions of Omola, each component is defined by a separate
class that constitutes a separate name space. Synchronizing events is the
same as saying that an input symbol of one FSA is actually an alias name
for an input symbol of another FSA. In the example, E1 of the compos-
ite model is an alias name for 81.E1 while E2 of the composite model is
an alias name for S1.E2 and $2.E2 which are considered to be the same
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CompositeFSA 15A Model wiTH
events:
E1, E2, E3 1sA EventInput;
components:
S1 18A ...
S2 1SA ...
synch:
S1.E1 := EI;
wHEN E2 AND active(S1.E2) AND active(S2.E2)
CAUSE S1.E2, S2.E2;
S2.E1 := E3;
END;
Listing 6.7 Textual definition of the FSA composition in Figure 6.2

event. The composite FSA is a full synchronous composition of S1 and 82
if £2 is enabled if, and only if, S1.E2 is enabled and S2.E2 is enabled. This
is accomplished by the conditional synchronization:

WHEN E2 AND active(S1.E2) AND active(S2.E2)
CAUSE S1.E2, S2.E2;

In this way E2 is active and is propagated to the components only when
both components are ready to accept the event. The textual definition of
the composite FSA is given in Listing 6.7.

A more general kind of composition is called prioritized synchronous
composition. In this case a subset of the input symbols of each compo-
nent FSA is said to be prioritized by the component. A component with a
prioritized symbol must agree and be enabled for the symbol for the syn-
chronized event to occur. If synchronized events are prioritized by several
components, then all these component must agree for the event to occur.
This synchronization is strict, as in full synchronous composition. How-
ever, if an event is prioritized by one component only, then it is enabled
in the composite FSA if, and only if, it is enabled in that component. The
other components must accept the symbol, but fire the event only if they
can. Further more, an event that is not prioritized by any of the compo-
nents, is enabled by the composite FSA if, and only if, it is enabled in at
least one of the components. Figure 6.3 shows an example with all four
types of synchronizations. Component $1 has events E2 and E4 prioritized,
while component 2 has events E2 and E5 prioritized. Listing 6.8 gives the
corresponding Omola code.
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CompositeFSA

L
E1 E2 E3 E4 E5 E6

Figure 6.3 Graphical representation of prioritized Synchronous composi-
tion.

CompositeF'SA 15A Model WITH
events:
E1, E2, E3, E4, E5, E6 15A EventInput;
components:
S1 IsA ...
S2 18A ...
sync:
S1.E1 := E1;
WHEN E2 AND active(S1.E2) AND active(S2.E2)
CAUSE S1.E2, S2.E2;
WHEN E3 cause S1.E3, S2.E3;
WHEN E4 AND active(E1.E4) cAUsE S1.E4, 52.14;
WHEN E5 AND active(E2.E5) cause S1.E5, S2.E5;
S2.E1 = Es6;
END;
Listing 6.8 Omola code for the prioritized Synchronous composition of Fig-
ure 6.3.

Modeling of GSMP

A GSMP (Generalized Semi-Markov Process) model can be represented
as an Omola Hybrid Model. A generic GSMP model consists of a set of
event types, a set of discrete-valued state variables, and a set of clocks,
one for each event type. The clocks increase at a constant rate and they
are restarted from zero when the event occurs. An event fires when its
clock has reached the lifetime scheduled for the particular event type.
Occurrence of an event results in a state change. Any OHM that has these
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ServerWithQueueGSMP 18A Model WITH
q TYPE DISCRETE Integer; % number of customers
NewCust, ReadyCust, ServeCust, Init 1SAN Event;
parameters:
tl, t2, m, d 18A Parameter;
transitions:
WHEN NewCust DO
NEW(q) 1= q+1;
schedule(NewCust, normal()*d+m);
END;
WHEN ReadyCust DO
NEW(q) := q—1;
END;
WHEN Init DO
schedule(NewCust, normal()*v+m);
END;
WHEN (q==0) AND NewCust OR (q>1) AND ReadyCust
CAUSE ServeCust;
WHEN ServeCust DO
schedule(ReadyCust, rect()*(t1+t2/(q+1)));
END;
END;
Listing 6.9 Example of an Omola GSMP model of the server with a queue.

properties is a GSMP according to the general definition given in [Glynn,
1989]. The following example shows a rather specific GSMP model.

Example: Server with queue (continued) This example is continued
from Chapter 5. Listing 6.9 shows an Omola model of the server with the
queue. The integer variable q represents the current number of customers
in the system. The event NewCust represents the arrival of a new customer,
the event ReadyCust represents completed service of a customer, and the
event Init initializes the model. An additional event, ServeCust, occurs
when the service of a customer is started. It is conditionally propagated
from NewCust or ReadyCust. Parameters affect the distribution functions
for the service time and for the time between arriving customers. O

The GSMP formalism does not include any structuring or composition
concepts. In practical modeling examples the modeled process often has
some higher level structure which can be used to structure the model.
For example, GSMP models are often used for queuing networks and
manufacturing systems. In this case, natural structuring units are queues
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and production cells. For this reason, the typical GSMP model is probably
resulting from a set of model components, from some application oriented
library.

DEVS modeling in Omola

The DEVS formalism was presented in Chapter 5. The formalism can
represent structured discrete event models with a general state space of
real-valued and discrete-values variables. A basic (atomic) DEVS model
has an associated event type called the internal event. In addition it may
have a set of input event types and a set of output event types. The
input and output events are used for propagating internal events between
different basic models in a multi-component model. The internal state of a
basic model is changed as a result of either an input event or the internal
event. The firing time of the internal event depends on the internal state.
In other words, a basic model can schedule its own internal event.

When basic DEVS models are to be represented in Omola, it is natural
to use a common base class defining the common properties. Listing 6.10
shows the definition of a base class for basic DEVS models. The global
constant inf is used for representing the infinity which is the value of
the time advance function when the internal event is not scheduled. Any
real value which is not in the simulation time interval can be used for
representing infinity. In this case we have chosen a negative value, assum-
ing that all simulations start from time zero or later. Another possibility
would be to use a very large value to represent infinity but this would
give problems when quantities that occasionally assume the value of inf
are displayed in a graph.

The base class BasicDEVS defines two variables: next which is discrete
and represents the time of next scheduled internal event, or inf if the
internal event is not scheduled, and tr which is continuous and represents
the residual time function, i.e., the time that remains until next scheduled
internal event. Two event types are defined in BasicDEVS: the internal
event and the initial event. The class is intended to be used as a base
class and specialized for particular DEVS models. A particular DEVS
model defines additional state variables, input events, and output events.

Example: Simple server model (continued). This example continues
the simple server model discussed in Chapter 5. An Omola definition of
the DEVS model is given in Listing 6.11. The discrete state is represented
by the symbolic variable s. The start event is represented as an input
event and the ready event is represented as an output event. The internal
event occurs when the current job terminates. It causes the output event,
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inf TYPE Real := -1.0;

BasicDEVS 15A Model wITH
next TYPE DISCRETE Real;
tr TYPE Real := IF next == :inf THEN :inf
ELSE next — Base:Time;

InternalEvent, Init 1SAN Event;
END;
Listing 6.10 The base class for basic DEVS models.

SimpleServer I1SA BasicDEVS WITH
s TYPE DISCRETE (Active, Passive);
Start 1SAN EventInput;

Ready 1san EventOutput;

WHEN InternalEvent CAUSE Ready DO

NEW(s) := 'Passive;
NEW(next) := :uinf}

END;

WHEN Start AND s == ’Passive DO
NEW(s) := ’Active;
st TYPE Real := normal();
NEW(next) := st + Base:Time;
schedule(InternalEvent, st);

END;

WHEN Init DO
NEW(next) := uinf}

END;

END;

Listing 6.11 Omola definition of the simple server DEVS model.

changes to passive mode, and sets the time of next internal event to
infinity. The start event affects the system only if the mode is currently
Passive. In this case, the mode is switched to Active, a normally distributed
service time is generated, the time of next internal event is updated, and

the internal event is scheduled.

Coupled DEVS models are represented in Omola using connections
between input and output ports of basic and other coupled DEVS models.
The formal definition of coupled DEVS models includes a tie-breaking
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Figure 6.4 Discrete mode switches of the backlash model.

selector function. This function selects which one of the components in the
coupled model should be allowed to fire its internal event when several
components are scheduled at the same time. In Omola, the definition order
of components determines in which order events scheduled at the same
time should be fired.

6.7 A mode switching physical model

An Omola model of the backlash component in the rotational mechanics
system discussed in Section 2.2 is now presented. The model is a good ex-
ample of a physical, mainly continuous time system with switching modes.
The backlash component has two rotating shaft interfaces. When the angle
between the shafts is close to zero, they can rotate independently. If the
angle difference reaches a certain positive or negative limit, the shafts
get in contact and a positive or negative torque is transmitted. As dis-
cussed in Section 2.2, the model has three modes which are called Slack,
Forward and Backward. The mode switches can be modeled by the FSM
diagram in Figure 6.4. The transitions of the state diagram are labeled
with logical transition conditions. These conditions depend on the contin-
uous variables representing the angle difference between the shafts, and
the transmitted torque T'. The parameter P represents the maximum play
angle.

The continuous time behavior equations (2.10) and the state diagram
of Figure 6.4 can be translated into an Omola model in a straightforward
way. The model is given in Listing 6.12. The model is defined as a subclass
of TwoCutModel defined in Listing 3.2. Recall that a TwoCutModel has two
terminals called C1 and €2 which have the components w representing
the angular velocity and T representing the torque. Note the use of a
conditional, mode dependent expression in the third equation. The mode
switches are represented by four event definitions.
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Play 1sA TwoCutModel WITH
parameters:
P 18A Parameter wWITH default := 0.1; END;
variables:
P2 TYPE Real := P/2.0;
mode TYPE DISCRETE (Slack, Forw, Backw);
angle TYPE Real;
equations:
angle’ = Clw ~ C2.w;
C1T + C2.T = 0.0;
0.0 = 1F mode=="Slack THEN C1.T ELSE Cl.w — C2.w;

events:

WHEN mode=="Slack AND angle > P2 DO
NEW(mode) := "Forw;

END;

WHEN mode= ="Slack AND angle < —P2 Do
NEW(mode) := 'Backw;

END;

WHEN mode=="Forw anp CLT < 0.0 DO
NEW(mode) := ’Slack;

END;

WHEN mode=="Backw annp C1.T > 0.0 DO
NEW(mode) := 'Slack;
END;
END;
Listing 6.12 Omola model of the rotational mechanics backlash component.

6.8 Grafcet in Omola

This section describes how Grafcet specifications can be represented in
Omola. The Grafcet formalism for representing sequential systems was
discussed in Chapter 5. It is desirable to have an Omola library of basic
Grafeet elements, which can be composed into complete Grafcet models
according to the standard composition rules. The components must be
defined so that a simulation of a grafcet represented in Omola behaves
exactly according to the standardized Grafcet interpretation rules. Unfor-
tunately, the standardized interpretation rules according to [IEC, 1988],
are not completely unambiguous for all correct grafcets. An unambiguous
interpretation algorithm is given in [David and Alla, 1992].

The basic elements of a grafcet are step, transition, parallel split, and
synchronization. These elements are connected by arcs into a complete
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StepLowerTerm 1SA RecordTerminal WITH
State 1SA BooleanOutput;
Fire 1saAN EventInput;

END;

TransUpperTerm 1SA RecordTerminal wWITH
State 1A BooleanInput WITH default := true END;
Fire 1saN EventOutput;

END;

TransLowerTerm 15aN Event Output;

StepUpperTerm 1saN EventInput;

Listing 6.13 Terminal classes for step and transition interaction.

grafcet according to the syntactic rules. A starting point when a new model
library is developed, is to analyze the interaction between the components
and then define the necessary terminal classes. In a grafcet, the state
of the model is maintained in the steps, while the decisions to change
the state are made in the transitions. The decision to fire a transition is
based on the condition associated with it, and on the state of the step
above. Firing a transition is a discrete event and the state of a step is
represented by a Boolean variable. The interaction between a transition
and the steps above and below is illustrated in Figure 6.5. The necessary
terminal classes are given in Listing 6.13. The different structures of the
terminals, and the defined causalities, prevent steps and transitions to be
connected in a way that is violating the syntactic rules of Grafcet.

The basic Grafcet elements step and transition can now be defined.
The first attempt is shown in Listing 6.14. The transition defines a firing
event condition and propagates the event through the terminals connected
to the steps above and below. The firing condition requires that the step
above is active and that the boolean condition is true. The step defines
event actions for fire events from the transitions above and below. The
proper actions are to switch to the active state if a fire event is coming
from the transition above and to switch to the passive state if a fire event
is coming from the transition below.

The suggested model for the step shows the general idea but in
some cases it does not behave according to the firing rules of Grafcet.
One firing rule specifies that simultaneously fireable transitions must be
fired simultaneously. A grafcet in Omola will always fire the transitions
in sequence according to the interpretation of Omola models discussed

149




Chapter 6. Discrete Events in Omola
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Figure 6.5 Illustration of the interaction in a grafcet. The terminals marked
‘SL2, ‘T, “TL), and ‘SU’ are derived from the terminal classes StepLowerTerm,
TransUpperTerm, TransLowerTerm, and StepUpperTerm respectively.

Transition 1SA Model wiTH
U 15A TransUpperTerm;
L 18A TransLowerTerm;
C 1sA BooleanInput;

wHEN TU.State aAND C caUsE TU.Fire, TL.Fire;
END;

Step 1sA Model wITH
U 18Aa StepUpperTerm;
L 1sA StepLowerTerm;
State 1SA BooleanOutput;

wHEN U.Fire DO NEW(State) := true; END;
WHEN L.Fire DO NEW(State) := false; END;
END;

Listing 6.14 Simple Omola definitions for the basic Grafcet elements
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Step 1SA Model WITH
U 18A StepUpperTerm;
L 18A StepLowerTerm;
State 1A BooleanOutput;

Update 1sAN Event;
activate, deactivate TYPE Boolean;

WHEN U.Fire DO
NEW(activate) := true;
schedule(Update,0.0);
END;
WHEN L.Fire DO
NEW(deactivate) := true;
schedule(Update,0.0);
END;
wHEN Update DO
new(State) := activate OR State AND NOT deactivate;

new(activate) := false;
new(deactivate) := false;
END;
END;
Listing 6.15 A definition of step that behaves correctly for simultaneous
transitions.

in Section 5.10. Simultaneously or sequential firing matters only if the
firing of one transition can affect the firing of another simultaneously
enabled transition. This may be the case if the grafcet is such that some
transition conditions directly depend on the current state of a step. In
this case, the evolution of the Omola model may depend on the ordering
of simultaneously fireable transitions, which is against the firing rules of
Grafcet.

A more elaborate definition of the step model solves the problem
with simultaneous firings. The new definition, shown in Listing 6.15, also
handles correctly the Grafcet interpretation rule stating that a step that
must be simultaneously activated and deactivated remains active. Instead
of having the transition events updating the states of the steps directly,
additional events called Update are scheduled with a zero time delays for
each step that is affected by transition firings. All simultaneous firings
are scheduled before the actual states are updated, thus assuring that
updating one step does not prevent simultaneous firing of another.
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Split2 1sA Model WITH
U 1sA StepUpperTerm;
L1, L2 1sa TransLowerTerm;

wWHEN U.Fire caUSE L1.Fire, L2.Fire;
END;

Synch2 1sA Model WITH
U1, U2 15A TransUpperTerm,;
L 18a StepLowerTerm;

WwHEN L.Fire cAaust Ul .Fire, U2.Fire;
L.State := Ul.State AND U2.State;
END;

Listing 6.16 Definitions of Omola models for parallel split and parallel
synchronization with two output and input branches, respectively.

Parallel split and synchronization

A parallel split must always be preceded by a transition and followed
by a number of steps, one for each parallel branch, according to the
syntactic rules of Grafcet. For that reason, a parallel split represented
in Omola has a single terminal that is a StepUpperTernm and any number
of terminals that are TransLowerTerms. The model only has to propagate
the firing events downwards from the preceding transition to each one of
the following steps. Listing 6.16 shows a definition of a parallel split with
two output branches.

A parallel synchronization has a terminal configuration that is the
opposite of the parallel split. In addition to propagating events, the syn-
chronization model must propagate the conjunction of the states of all
preceding steps. The following transition must be enabled only if all the
preceding steps are enabled, according to the rules of Grafcet. The defini-
tion is shown in Listing 6.16.

Omola has currently no way of defining models with a varying num-
ber of terminals. Therefore, separate model definitions have to be made
for parallel splits and synchronization with different numbers of output
branches and input branches. However, this is not a problem since it is
possible to use components with superfluous terminals that are left un-
connected. Proper behavior with unconnected terminals is accomplished
by properly defined default values.

152




6.8 GQGrafcet in Omola
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Figure 6.6 A grafcet with alternative paths.

Selection

The Grafcet syntax allows alternative paths, called selections, as illus-
trated in Figure 6.6. If Step 1 is active then Transitions (1) and Transi-
tion (2) are both enabled. If condition C1 is true then Transition (1) will
fire and Step 2 becomes active. Alternatively, if condition C2 is true then
Transition (2) will fire and Step 3 becomes active. The conditions C1 and
C2 should be mutually exclusive, so that only one of the alternative paths
are selected. If C1 and C2 become true simultaneously, there will be a
conflict situation in the grafcet and the behavior is not well-defined. The
alternative paths end with a selection convergence as shown in the figure.

No special arrangements are necessary to represent selections and
convergence in Omola grafcets. The lower terminal of a step is simply
connected to each one of the alternative transitions. The step will receive
a fire event from either one of the connected transitions. The same applies
to the convergence where the lower terminals of the last transitions of
each branch are connected to the same upper terminal of the following
step.

Conditions and actions

Interaction between a process model, which is often mainly a continuous
time model, and a grafcet is defined in the conditions and the actions.
Conditions can be any type of logical condition based on process measure-
ments and the state of this or other grafcets. The actions can affect the
process in many different ways. The control output from a step can be
almost any kind of logic sequence, including for example delays and hold
functions, activated by the step. Since the conditions and the actions are
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MaxTempTransition ISA Transition WITH
Temp 1SA Temperaturelnput;
Tmax ISA Parameter WITH default := 100.0; END;
C = Temp > Tmax;
END;
Listing 6.17 Definition of a transition with a temperature measurement as

input. Its condition becomes fulfilled when the temperature exceeds the limit
defined by a parameter.

normally special for each step and each transition, there is not much point
in having steps and transitions with predefined actions and conditions.
There are basically two ways of defining the interface between a
process and a grafcet. One possibility is to define each step and tran-
sition as separate classes, derived from the library definitions Step and
Transition. The derived classes extends the definitions by adding the nec-
essary interface terminals and equations. For example, the tank heater
system described in Section 5.7 has a transition with a condition based
on a temperature measurement. Listing 6.17 shows how such a transition
can be defined. Steps can be extended with actions in a similar way.
Another way to structure the interface between the grafcet and the
process, is to define all conditions and actions as separate components,
connected to their associated steps and transitions by terminal connec-
tions. This adheres to the standardized way of drawing actions as sepa-
rate boxes in connection with each step. Each action box or condition box
defined in Omola has a standardized interface towards the step and the
transition, but a specially designed interface towards the process model.

6.9 Summary

In this chapter we have enhanced the modeling capabilities of Omola to
represent discrete event and hybrid systems. The concepts are based on
the Omola Hybrid Model (OHM) formalism, and they make it possible to
define discrete event behavior on a fairly low level. Events are defined as
ordinary class components but a more compact, special syntax can also
be used. Event conditions are defined as boolean expressions. A special
operator is introduced to specify transient conditions. Special discrete
commands for scheduling and descheduling events are also introduced.

The concepts of event synchronization and propagation are introduced
and given a precise meaning. They make it possible to structure models
containing discrete events according to the same principles as ordinary
continuous time models.
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Modeling and Simulation
Environment

An environment for construction and simulation of Omola models has been
implemented. The environment is called OmSim and it is a collection of
tools for defining, editing, displaying, analyzing, and simulating Omola
models.

OmSim is programmed in C++ and runs under Unix and X-Windows.
It uses InterViews [Linton et al., 1987] for the graphical user interaction.
It also uses a set of various numerical packages for numerical integration
and equation solving.

This chapter gives a general overview of the architecture of OmSim.
Detailed descriptions are given for some parts of more fundamental impor-
tance. This chapter also defines some of the fundamental data structures
used for representing models. Finally, a more general discussion is in-
cluded on the architecture of OmSim in relation to a suggested reference
model for open CACSD architectures.

7.1 Introduction

OmSim consists of two main parts: the modeling environment and the
simulation environment. The basic structure of OmSim is shown in Fig-
ure 7.1. The modeling environment and the simulation environment are
interactive tools. The modeling environment can read models, defined as
Omola classes, from text files and store them internally as data struc-
tures. The user can then display the models, edit them, and include them
as components in new models. A complete model definition can be used to
generate a model instance which is sent to the simulation environment.
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Figure 7.1 A top-view at OmSim

The simulation environment extracts necessary information from a
model instance and manipulates it into a form suitable for numerical
solution. The simulation environment allows the user to specify model
parameters and problem specific attributes of the model, and to perform
various simulation experiments. In addition to being controlled directly by
the user, the simulation environment can also execute scripts written in
a special command language called OCL (OmSim Command Language).

The main data structures manipulated by the modeling environment
are Omola class definitions, while the main data structures in the simula-
tion environment are the model instances. A model instance is a compila-
tion of a set of class definitions. In Chapter 4, the meaning of Omola code
was defined in terms of the created instances. A model instance is a rep-
resentation of an Omola Hybrid Model (OHM) and additional information
about the hierarchical structure. The OHM equations obtained from the
model instance cannot be used directly for simulation. They have to be
analyzed and checked to ensure that they make up a well-posed problem,
and they have to be manipulated into a form that is suitable for the nu-
merical simulation algorithms. Finally, before a simulation problem can
be solved, executable simulation code must be generated from the manip-
ulated OHM. The process is called model compilation and the main steps
are illustrated in Figure 7.2. This chapter is mainly concerned with the ar-
chitecture of the environment and of the different object representations.
Chapter 8 discusses the algebraic model manipulations in detail.

OmSim has an interactive, graphical user interface. It is an important
part of OmSim and necessary in order to fully support the object-oriented
modeling methodology. The user interface is outside the scope of this thesis
so it is only briefly discussed in this chapter.
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Omola Classes }———-l» Model Instance }——l» OHM]——-I» Simulation Code

Figure 7.2 Data structure transformations from Omola classes into simu-
lation code. The loop at the OHM box indicates successive steps of transfor-
mations in order to derive a suitable and efficient simulation model.
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Figure 7.3 The basic structure of the modeling environment of OmSim

7.2 Modeling environment overview

The modeling environment of OmSim is pictured in Figure 7.3. The envi-
ronment consists of a set of more or less independent tools operating on
data structures maintained in the class store. The modeling environment
has interfaces to the file system, where Omola class definitions are stored
permanently, and to the simulation environment which is using the model
instances. The tool components are normally controlled interactively by
the user but they can also be activated on demand from the simulation
environment. The tool components indicated in the Figure 7.3 are the
following:

¢ A parser that reads Omola files, checks the syntax, and produces data
structures in the class store.

o A graphical model editor which allows the user to define new classes
representing structured models composed of submodels, terminals,
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and connections.

Various ways to display classes and model structures as textual pre-
sentations and tree diagrams.

e A class instantiator for producing model instances needed by the
simulator.

e A model check tool for checking that symbolic references are valid.

e A resolve unit that processes class definitions and resolves symbolic
super class references.

e A [ibrary handler that is capable of searching for class definitions
externally in the file system and load them into the class store auto-
matically.

The library handler has an interactive tool called the Library Browser
where the user can find and select named Omola definitions. External
class definitions in files, as well as internal, already loaded definitions
can be selected in the browser. An external definition is loaded when it is
selected for the first time. The browser currently implemented in OmSim
is simple and displays only the contents of libraries as lists of names.
It is clearly desirable to have much more advanced browsing facilities.
For example, it should be possible to search for models with specific
properties. The browser tool should also be connected to the display tools,
so they would be automatically updated with the selected class. Advanced
browsers for object-oriented environments were first introduced for the
Smalltalk programming language [Goldberg, 1983, Goldberg, 1984].

Figure 3.2 shows the graphical model editor. A model can have an
internal view and an external view. It is the internal view that is defined
and edited by the model editor of OmSim. The external view is used when
the model appears as a component of some other model. By default the ex-
ternal view is simply an annotated box, but it can also be a bitmap created
and edited by a general bitmap editor external to OmSim. The graphical
views of an Omola class are represented by ordinary class attributes. The
graphical attributes are derived from special predefined classes, recog-
nized by the graphical editor. The model instantiation tool also recognizes
the graphical attributes and ignores them, since they are not needed in
the model instance.

An advantage of including model view attributes as ordinary model
attributes is that no special language has to be introduced. On the other
hand, it may be a drawback that a new model version has to be defined
if a different graphical view is wanted.

Examples of display tools are shown in Figure 3.5 and Figure 3.6.
They present inheritance structure and component structure as tree dia-
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Table 3 Relations between entities in different domains of object-oriented
modeling. Simple arrows indicate instantiation while double arrows indicate

representation.
Domain Description Instance
Real world: | physical concept — physical object
U 4
Model: Omola class — model instance
U U
Abstract repr: | C++ class Class C++ class ClassInst
S
Concrete repr: Class object —> ClassInst object

grams. It is of course also possible to display a definition as Omola code.
The displayed Omola code can be filtered so that attributes concerning
the graphical representation are removed.

The following sections describe the representation of classes and
model instances in more detail.

7.3 Representation of classes

The terminology used in the following may seem obfuscated because the
discussion concerns objects, classes, and representations from several dif-
ferent levels and domains. In the modeling domain there are Omola mod-
els and model instances. In the implementation domain there are C++
classes and objects used for representing model domain entities. The con-
cepts of class and instance occur in both domains. The levels and the
concepts, and their relations, are illustrated in Table 3. The main focus
of this chapter is the abstract representation level. This section discusses
the representation of Omola classes. The following section is concerned
with the representation of model instances.

When an Omola class is loaded from a text file into the internal mem-
ory, the parser checks the syntax and constructs an object representing the
definition. The object diagram in Figure 7.4 shows the internal represen-
tation of Omola classes. The object diagram is made in the style of Rum-
baugh et al. [Rumbaugh et al., 1991]. It displays graphically the most im-
portant C++ classes used for reresenting Omola classes in the class store.
Classes are represented by boxes annotated with class names. Some boxes
also show some important attributes of the class. Lines between boxes
represent associations between classes and between instances. Filled cir-
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Figure 7.4 Object model of the internal representation of Omola classes.

cles indicate a multiplicity of zero or more, while white circles indicate
a multiplicity of zero or one. In some case the multiplicity is given as a
number. For example, the association between Library and Class means
that a library may be associated with many classes but a class is always
associated with exactly one library. A diamond at one end of an associa-
tion indicates aggregation. This is a special kind of association where one
object is considered to be subordinate to an aggregate object. For example,
a Class object is an aggregate of zero or many Attribute objects, and an
Equation object is an aggregate of two Expression objects. An association
marked with a triangle indicates generalization and it is an association
between classes and not between objects. Generalization is the same as
a subclass — super class relation. For example, Atiribute generalizes the
different Omola class attributes Connection, Equation, Variable, Event,
and Component.

The most important entity in the representation of Omola is defined
by the class Class in the object model in Figure 7.4. Important attributes
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of Class are name and version. A Class object may be composed of many
Attribute objects representing connections, equations, variables, events,
and components, which are other Class objects. An Equation object is
composed of two Expression objects for the left and right hand sides.
A Variable object has a name and possibly an Expression object which
reresents a binding. An Expression object is a tree of nodes representing
functions with arguments, references to variables, and literal data. A
Reference object is a symbolic reference to a variable or a component in the
Omola structure. A reference is resolvable (valid) if it refers to a variable
or a component according to the scope rules of Omola.

Libraries and class versions

A library is a collection of global Omola classes. A global Omola class is
a class that is defined at the top-level of a file, i.e., not as a component of
another class. Every global class belongs to a library. Global classes can
be searched by name in libraries.

When a new class is added to a library which already has a global
class with the same name, the new class is considered as a new version
of the existing class. When a class is searched by name it is always the
latest version that is obtained from the library.

A reason for keeping old versions of classes is that resolved classes
which refer to a class that is updated with a new version, are still valid,
even if they are not up-to-date. They can be updated at a later occasion.
Another reason is of course to make it possible to retain old versions and to
compare models of different versions. However, a proper versioning system
for models must be based on permanent storage. This will be discussed
further on.

A library is also associated with a list of other libraries used as search
path for localizing super classes. The search path is defined by a special
USES statement in an Omola file. For details see [Andersson, 1993]. The
use of the search path is explained below.

Super class resolve

A Class object may be in two different modes: resolved and unresolved.
When the object is first created, it is unresolved which means that super
classes are referred to by symbolic references. The class has a resolve
operation which resolves the super class reference and replaces it by a
hard link to the actual super class object. The resolve procedure involves
searching for names in libraries. The reason for not resolving super classes
immediately when a class is loaded, is to have the flexibility to load a set
of classes in any order, not necessarily so that super classes are loaded
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first.

A symbolic reference to a super class consists of a class name and
possibly a library name. If no library name is given and if a class with
the given name is not found in the current library, it is searched in the
libraries specified by the search path of the current library.

A library search path makes it possible to write models with generic
super class names. The actual super class found during resolve will de-
pend on the library into which the model is loaded, and the search path
of that library.

Internal and external class storage

Omola classes are stored externally as Omola code in files or internally
in the OmSim class store as objects. In a more general framework, the
external storage may consist of a general engineering database. A gen-
eral framework for computer aided control engineering including the use
of databases is discussed in Section 7.6. A database for storing Omola
class definitions may provide several important services in addition to
providing permanent storage. Current version of OmSim considers only
the file system as external storage. This section will discuss the facilities
in OmSim for loading and storing class definitions on files.

An important issue in the communication between internal storage
and an external file system or database, is the granularity of the commu-
nicated data, i.e., the smallest entity which can be loaded into OmSim in
one operation. Consider three possibilities which are natural in the case
of OmSim:

1. libraries,
2. classes, and
3. class attributes.

Loading a library means that a file containing a set of class definitions
is parsed and brought into the class store. This is efficient if a major
part of the library is needed in the environment. However, a library for
a particular application may be large and may contain many definitions
not needed to solve a particular task, and an application may need def-
initions from several large libraries. In this case it is not practical to
load all definitions into the internal memory. A class-based loading policy,
where only the definitions actually needed from each library are loaded,
is more efficient. With an even finer loading granularity it is possible to
load classes with only some of their attributes. It depends on the modeling
methodology if this is efficient. For example, a model may include alterna-
tive behavior descriptions of different complexity represented as separate
class attributes. Then it may be efficient to load only those attributes
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Figure 7.5 A model database directory tree

needed for solving the particular task. On the other hand, if models are
minimal in the sense that all attributes are needed for most tasks, then
this granularity is inefficient. This is the case for the modeling examples
given in this thesis, so attribute-based loading is not considered in the
following.

Current version of OmSim supports file-based loading directly con-
trolled by the user, and automatic class-based loading. An Omola file may
consist of any number of class definitions, and can make up a complete
library or a part of a library. With file-based loading it is the user’s re-
sponsibility to assure that the necessary files are loaded in a proper order.
After a file has been loaded, the new class definitions are automatically
super class resolved. If a super class is not found in the internal class
store, an error occurs.

In addition to file-based loading controlled by the user it is possible to
specify a database search path, which OmSim will use to localize and load
missing class definitions from external files automatically. This requires
that libraries and definitions are organized in a certain way shown in
Figure 7.5. A model database is a directory containing a number of library
directories. A library directory contains the class definitions; each one in a
separate file with the same name as the class it defines. A library directory
may also contain a special library header file, always named library.ol,
which contains library specific documentation, global variable definitions,
library path, etc. The database search path is a list of model database
root directories used by OmSim to localize class definitions when they are
needed for the first time.

The automatic, demand-directed loading of class definitions works by
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a recursive definition of the procedure for loading files. The procedure
LoadFile parses the file and then calls the procedure ResolveSuperClass
for each new class definition. ResolveSuperClass tries to find the refer-
enced super class by first searching among loaded classes in libraries
specified according to current library search path. If the super class is
not found in the internal class store, searching continues externally in
the first model database in the model database search path, using the
same library search strategy as before. If a file containing the super class
definition is found, that file is loaded by a recursive call to LoadFile.

The arrangement of a model database search path offers the basic
support for concurrent engineering, i.e., when a group of engineers are
working on the same project. A version handling system, like the Unix
RCS and CVS [Tichy, 1985], can then be used for storing and retrieving
multiple revisions of models in the database. The individual users have
database paths with their private database followed by the database com-
mon to the project. A user can check out a model version from the common
database, experiment with different modifications, and then update the
common version. The database path of OmSim will assure that the user’s
private version will be used if it exists, otherwise the public version will
be used.

7.4 Representation of model instances

An important step in the derivation of simulation code from an Omola
class is the creation of a model instance. A model instance is represented
by a data structure consisting of a hierarchy of class instances. Every
component and variable of a model instance is represented by a unique
object. This is different from the Class object where several components
and variables may share a common description. Another difference be-
tween the class object structure and the class instance structure is that
the inheritance structure is not maintained in the instances. Only the
composition structure is kept intact.

A model instance serves as an interface between the model repre-
sentation and tools like the OmSim simulator. It provides a hierarchical
storage for the variables, the equations, and the events that make up the
mathematical description of a model.

Model instantiation was discussed briefly in Chapter 4. In this sec-
tion we will focus on the representation of model instances as ClassInst
objects, and on the instantiation procedure, i.e., the algorithm for creating
ClasslInst objects form Class objects.
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The class instance object structure

Figure 7.6 shows the relations between the objects in the representation
of instantiated Omola classes. The most important classes in the dia-
gram are ClassInst for representing instantiated Class objects, Equlnst
for representing instantiated equations and connections, and Varlnst for
representing instantiated variables. Some of the classes in Figure 7.6,
like Class, Equation, and Variable, are identical to those displayed in Fig-
ure 7.4.

The same basic classes are used for representing an instantiated
expressions as are used at the class level in Figure 7.4. An expression
is a tree where the nodes are functions and the branches are function
arguments. The difference between an instantiated expression and a class
level expression is in the representation of variables. At the class level,
a variable in an expression is represented by a reference node, which is
a symbolic reference to a variable attribute. The association to Variable
object is only implicit in the name and in the search procedure used
for resolving symbolic references. In an instantiated expression, each
reference node is replaced by a Varlnst Node object, which has a direct
association to a Varlnst object.

The instantiation procedure

The instantiation procedure is implemented as a method of Class. It
creates a structured ClassInst object and builds it up in several passes.
The passes of the instantiation procedure are the following.

1. Traverse the Class composition tree, visit each component attribute
and build a corresponding composition tree of Classlnst objects.

2. Instantiate all Variable attributes and add the variable instances to
the new tree.

3. Visit all non-array variables and instantiate their binding expres-
sions.

. Evaluate the dimensions of all array variables.

. Instantiate binding expressions to array variables.
Instantiate all equations.

Instantiate connections into equations.

®» e o

Instantiate events.
9. Do various model specific post processing.

All passes except the first one, involve a recursive traversal of the Class
tree and the ClassInst tree in parallel. Data is extracted from the first
tree and used for decorating the second tree. All passes except the last
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Figure 7.6 Object model for instantiated Omola classes.

one are universal in the sense that they do not discriminate between
different Omola classes, i.e., models, terminals, parameters, etc. are all
treated equally. In the last pass, however, different classes are treated
differently.

The reason why bindings to scalar variables and to array variables
are instantiated in different passes is that the size of array variables
may depend on scalar variable bindings (see Listing 4.5 for an example).
A binding expression must be instantiated before it can be evaluated.
Array variables are instantiated with undetermined sizes in Pass 2, since
they may depend on constant variables that cannot be evaluated at this
stage. In Pass 3, the bindings of all scalar variables are instantiated, so
that they can be used for determining the size of the array variables
in Pass 4. Finally, in Pass 5, the bindings to the array variables are
instantiated. Models may have complicated dependencies between array
sizes and scalar bindings that cannot be resolved with this instantiation
procedure. One possibility to handle more complicated cases would be to
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iterate over Passes 3, 4, and 5 until all array sizes are determined.

The class-specific instance processing in Pass 9 recognizes the basic
set of predefined Omola classes discussed in Section 4.8 and defined in
Appendix B. It makes up the model representation layer in the layered
view of OmSim in Figure 4.1. It has been a design goal to have as little
class specific processing as possible, and to localize these computations to
as few modules as possible. This makes it easier to modify assumptions
about basic model representation in Omola.

The following classes, and all user-defined and predefined classes
derived from them, receive special treatment at the final instantiation
pass.

Variable The value attribute of non-constant variables will receive an
explicit pointer to the initial attribute of the same class instance. The
pointer is used during simulation to obtain a model-defined initial value
for the variable.

Parameter The value attribute of non-constant parameters will receive
an explicit pointer to the default attribute of the same class instance. The
pointer is used during simulation to obtain a model-defined default value
for the parameter.

BasicTerminal 1If the variability attribute of the terminal is set to
Parameter the value attribute instance is marked as being a parameter.
If the terminal is not connected on the outside of the model, and if the
value attribute does not have a binding, then the binding to the default
attribute will be used as a binding to the value attribute.

Class instance operations

A Classlnst object represents a model instance that provides all the nec-
essary data needed by the simulator. The interface between the simula-
tion tool and model representation is defined by a set of access methods
of ClassInst. The most important methods are declared in C++ and de-
scribed in the following. The methods are used for extracting the variables
and the equations of a model for further manipulation by the modules in
the simulation environment. The returned data types for several of the
methods are written as ‘LIST (¢ype)’. This is a preprocessor macro defining
that the returned object is a list of elements of the specified type.
LIST(VarInst) GetLocalVariables() const;

Returns all variable instances included in this class instance.
Variables declared static are not included.
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LIST(ClassInst) GetLocalComponents() const;
Returns all class instances included as components of this class
instance.

LIST(EventInst) GetLocalEvents() const;
Returns all event instances included in this class instance.

LIST(EquInst) GetEquations() const;
Traverse the composition hierarchy of ClassInst objects, begin-
ning from this class instance, and return all Equlnst objects.
LIST(VarInst) GetVariables() const;
Traverse the composition hierarchy of ClassInst objects, begin-
ning from this class instance, and return all Varlnst objects. Vari-
ables declared static are not included.
ClassInstx ClassInstResolve(const Name &) const;

Returns a component ClassInst if one exists with the given name.

VarInsts VarInstResolve(const Name &) const;
Returns a Varinst object if one exists with the given name.

The listed methods extract the OHM representation of the model instance.
This representation is then analyzed and manipulated by the simulation
environment.

7.5 Simulation environment overview
The simulation environment is the part of OmSim that simulates a model

selected from the class store. It consists of several modules which can be
divided into four groups:

Model compilation modules

Hybrid model simulator modules
Simulation service modules

e Supervisor and user interaction modules

The task of the model compilation modules is to transform the instantiated
model into code that can be used by the numerical simulation algorithms.
Different modules handle different parts of the model, such as the contin-
uous parts, the discrete event parts, etc. The simulator modules include
numerical integrators, static solvers, and event handling. Service modules
include a plotter module for presenting simulation results and tools for
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Figure 7.7 A functional model of the model compilation.

displaying and setting initial values and parameters. The supervisor is a
logical controller that activates the different tools in the environment in
response to user commands.

The focus of this section is the general architecture of the simulation
environment from a functional point of view. Some modules concerning
the model compilation and the hybrid simulator are described in more
detail in the following sections.

A functional model of the OmSim simulation environment is shown
in Figure 7.7, which mainly includes the model compilation parts, and in
Figure 7.8, including the rest of the modules. The functional model is pic-
tured as data flow diagrams using the graphical notation of [Rumbaugh
et al., 1991]. The main graphical elements are ellipses representing pro-
cesses or data processing objects, and arrows representing data flows. A
solid data flow arrow represents main data flows from a producer to a
consumer. A dashed arrow indicates a flow of commands or control in-
formation. Another type of object is the data store drawn as two parallel
horizontal bars with a name or a description in between. The rectangular
boxes are actors. The actors drive the data flow. They work as inputs or
outputs of data.

Model compilation

The model compilation part of the simulation environment produces sim-
ulation code from a model instance. This part is invoked each time the
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Figure 7.8 Functional model of the simulator, the service modules, and the
interaction supervisor.

user selects a new model for simulation.

The data flow diagram in Figure 7.7 shows the model compilation
part of the simulation environment. The source of data is the class in-
stance, shown as an actor to the left in the diagram. The model instance,
represented as a class instance, is obtained from the model environment
and defines the raw model. Data from the model instance consists of equa-
tions, variables, and events. This data is used to set up four important
modules: a parameter handler that propagates user defined parameter
values, a DAE handler that stores the continuous time simulation mod-
els, an event handler that stores the discrete event model, and the discrete
handler that stores the time constant parts of the model. The modules do
different processing and transformations of the raw model data during
their set up phases. The results are stored in different data stores until
they are needed by the simulator modules. Some of the modules send their
result to code generators, which produces simulation code that is stored
in the calculator modules.

More detailed presentations of the DAE handler and event handler
processes are given in Chapter 8.
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Figure 7.9 Expanded function model of the simulate process.

Hybrid model simulator

The processes simulate and calculate shown in the flow diagram of Fig-
ure 7.8, are handled by simulator modules. The process simulate is ex-
panded into a more detailed flow diagram shown in Figure 7.9. The sim-
ulate process consists of the subprocesses compute discrete, integrate, fire
events, and initialize. These processes are supervised by the subprocess
simulate interval, which receives commands from the higher level super-
visor represented by the execute command process in Figure 7.8. The pro-
cesses in the simulator collects data about the simulation problem from
various data stores. The data consists of the size and the type of the cur-
rent model and start addresses to blocks of code in the calculator. The data
flow labeled code block in the diagrams are commands from the simulate
process to the calculate process to execute a specific block of code. The
simulate process receives the computed results from the model variables,
stored in the all variables data store.

It should be noted that the description of the simulation process is
simplified and focussed on the conceptual ideas. The actual implemen-
tation is more complicated. For example, the integrator module contains
several different integration methods. These are all implemented by nu-
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merical routines obtained from different sources as ready-made packages
of subroutines, mostly coded in FORTRAN. Unfortunately, all the differ-
ent integrators have different calling interfaces and require slightly dif-
ferent driving procedures. It has been an important effort to encapsulate
the differences and to define a standardized Integrator class which could
serve as an interface to all the different methods. Particular methods are
represented by subclasses of Integrator.

Interaction between modeling tools, like OmSim, and the actual nu-
merical routines for simulation would be simplified by some kind of stan-
dardized interface for integration methods. One possibility would be to
use DSblock [Otter, 1992]. Attempts to define uniform interfaces to mod-
ular numerical software, using object-oriented methods, have been made;
for example, see |[Gustafsson, 1993] and [Skjellum et al., 1993].

Simulator service modules

The simulator service modules include tools for plotting results, for stor-
ing results in external files, and for reading input data from external
files. There are also user interface modules for direct interaction with
model variables and simulator parameters. Different modules handle the
processes read, store, and plot. The actor Access Device handles the user
interaction with model variables. Initial values and parameter values are
displayed and changed by the access device. Different types of access de-
vices have different ways of organizing the model variables. Figures in
Chapter 3 show examples of control panels and graphical displays for the
different modules.

An important service module is the Calculator used for evaluating
numerical expressions of the simulation model. The module implements
the calculate process in Figure 7.8 and it maintains the calculator code
memory. It is used by the numerical integration routines, by the event
simulator, and by the static equation solver. In the current OmSim im-
plementation the calculator is a virtual stack machine that operates on
model variable instances. A complication is that the numerical routines
require the unknowns to be allocated consecutively in real arrays. In or-
der to avoid excessive copying of variables, the calculator allows variable
instances to be reallocated to such arrays.

The implementation of the calculator module has a major effect on the
simulation speed. However, simulation speed has not been considered very
important in the first OmSim prototype. It is relatively easy to replace
the code generator and the calculator module, so that efficient simulation
code in C or FORTRAN is generated, compiled, and dynamically linked
into OmSim.
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Simulator supervisor

The simulator is normally controlled interactively by the user. A simula-
tion experiment is often a process involving several steps and iterations.
A typical scenario for a simulation session involves the following activi-
ties. A session starts when the model has been successfully instantiated
and introduced to the simulator. At this stage, all parameters and state
variables have default values, defined in the model. If the model is well-
defined, it should be possible for the user to just push the start button
and run the simulation until the specified final time. The user repeats the
simulation from the beginning with different parameters and different ini-
tial values. It is also possible to run a simulation up to a specific time,
change some parameters and some state variables, and then continue the
simulation from current time.

Each time the user changes a parameter, the simulator has to prop-
agate the new parameter value according to the parameter equations of
the model. Each time the user restarts the simulation with a new initial
state, the simulator has to solve the static initialization problem, defined
by the static relations of the model. The same applies if the user changes
the value of any dynamic variable at a temporary stop in the dynamic
simulation.

From the user’s point of view, it is reasonable to consider the sim-
ulation process residing in two different modes: initialization mode and
active mode. Each simulation run starts in the initialization mode and
ends in the active mode, where the user has the option to continue the
simulation run or to restart from the initialization mode. Parameters can
be manipulated in both modes. In the initialization mode the user can ma-
nipulate initial values, which are remembered from one simulation run
to the next. In the active mode, the user can manipulate current values
of simulation variables but these settings are volatile.

The user’s view of the simulation process in OmSim is similar to
many other interactive simulators like, for example, Simnon [Elmqvist
et al., 1990]. Differences that make it more complicated in OmSim are
the parameter propagation and the state initialization steps. These steps
may themselves involve user interaction, and they may be interrupted or
they may fail to complete their tasks.

Because of the complex dependencies between the atomic operations
in the simulation process, a supervisory control system is introduced to
aid the user. The control system is displayed in Figure 7.11. The purpose
of the supervisor is to accept commands from the user and execute them as
a proper sequence of atomic simulator operations. The supervisor should
accept only those user commands which are appropriate at the particular
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Figure 7.10 Control panel for the OmSim simulator.
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Figure 7.11 The supervisor viewed as a discrete controller for the simulator.

stage in the simulation process.

User input actions to the supervisor come from a command language
interpreter or from the control panel shown in Figure 7.10. The upper
part of the control panel consists of a set of pull-down menus for specific
operations and for opening of various subtools. It also has a status field
displaying the current status of the simulator. The panel has numeric
input fields for specifying start time and stop time of the simulation,
and a meter showing the current simulation time. In this section we will
focus on the five buttons in the lower part of the panel labeled Start, Stop,
Continue, Step, and Reset, which are used for controlling the simulation
activity.

The purpose of the supervisor is to monitor and control the simulation
process according to the user’s commands. For that purpose, the supervi-
sor has an internal model of the simulation process, represented as a state
machine. This state machine, shown as a state diagram in Figure 7.12,
completely determines the behavior of the supervisor.

The user’s input actions are associated with the five buttons at the
control panel, except for the Stop button which is special. In addition, the
user can issue a Model Reset command from the Config pull-down menu.
He or she can also modify parameters and variables by means of special
model access tools. Such manipulations result in Set Parameter and Set
Variable input actions to the supervisor. The supervisor also accepts a
fail input from the simulator, indicating that the last command was not
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Figure 7.12 The supervisor state machine is a model of the simulation
process. The transition arcs are labeled with input events followed by the
output atomic simulator actions.

successfully executed. Mainly the parameter propagation and the static
initialization operations may render a fail. The supervisor’s input actions
are summarized in the following list. Each item is labeled with the short
form used in the transition labels of the state diagram of Figure 7.12.

Co The Continue button is used for restarting the current simulation
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from the current time.

Fail The fail input comes from the simulator in response to a disrupted
parameter propagation or static initialization.

Re The Reset button is used to reset the simulator to a pre-initialization
state, and the current simulation time to the starting time.

Rm The Reset Model menu action is used to reset the simulation model to
the original state, as directly after the instantiation. All user specified
initial values and parameters are forgotten and replaced by model
defaults.

Sp A Set Parameter command is issued when the user changes a model
parameter.

Ss The Step button is used to advance the simulation process one step.
The exact meaning of a step depends on the current status of the
simulation.

St The Start button is used to restart the simulation from the initial
state.

Sv A Set Variable command is issued when the user enters a new initial
or current value for a model variable.

The output from the supervisor consists of atomic simulator opera-
tions. The control actions are specified as outputs in the state diagram
of Figure 7.12, and described briefly in the following list. The items are
labeled by the short names used in the diagram.

Init initializes the simulation by setting the initial value of all model
variables and then firing the initial event. Tools for manipulating
model variables are switched from accessing the initial values to
accessing the current values.

Modres removes all user specified parameters and initial values and
restores the default values defined by the model. This command puts
the simulator and the simulation model in the same state as when it
was first instantiated.

Prop propagates user specified parameter values according to the pa-
rameter constraints defined by the model. This command may result
in a fail event, recognized by the supervisor.

Reset resets the simulator to a pre-initialization status. Current variable
values are forgotten but user specified parameters and initial values
are kept. The user gets access to modify initial values.

Simu runs the simulator to advance the current time. The command can
be executed in single-step mode or until the specified final time is
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reached. This command can be interrupted by the Stop button at the
control panel.

Stat performs static equation solving in order to reach a consistent initial
state for the model. This command may render a fail event which is
recognized by the supervisor.

The state machine of the supervisor has six states. The initial state,
state number 1, is entered when a model instance has been successfully
introduced. A special concept of halting states for particular input events
has been used in the supervisor. A halting state for an input is indicated
by the input name in the state node. For example, as shown in Figure 7.12,
states number 2, 3, and 4 are halting states for the Ss (step) input event.
The meaning of a halting state is that the supervisor makes a halt and
waits for a new input event if a state transition ends up in a halting
state for the current input event. The normal behavior is otherwise to
move on to another state, as long as there is a transition defined for the
current input event. For example, if the supervisor is residing in State 1
and receives a St (start) input it will sequentially move to State 2, 3, 4,
and 5. It stops in State 5 since this is a halting state for Start. During the
sequence it will issue the simulator commands Prop, Init, Stat, and Simu.
The same sequence can be achieved by Ss (single step) inputs but since
the states 2, 3, and 4 are all halting states for Ss, four Ss input events
are required to reach State 5.

The concept of halting states and asynchronous state transitions are
introduced in order to get a simple state machine with few states. The
same kind of behavior could have been achieved by a standard state
machine, without the concept of halting states and repeated transitions,
but this would have required more states.

It is straightforward to implement the supervisor based on the state
machine in Figure 7.12. The state machine can be represented as a table
which makes it easy to modify the behavior and to add additional states,
inputs or actions. A by-product of the table-driven supervisor is that it
also defines which input events are admissible in each state. This is used
for enabling and disabling the corresponding buttons in the simulator’s
control panel.

7.6 Open architecture for OmSim
It is desirable to create an open environment of tools for computer-aided

control engineering. Attempts to specify Open architectures and inte-
grated environments for CACE have been made by different research
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groups, for example, by the group at the University of Wales, Swansea
[Barker et al., 1993] and by the group at DLR, Germany, [Griibel, 1992].
Interesting issues are what kind of tools are needed and at what granu-
larity they should be integrated, how tools should communicate and how
they should be controlled to fulfill their tasks.

It was an original goal of the project in Lund to design an open and
integrated environment for modeling, analysis and simulation of dynamic
systems [Andersson, 1989b]. However, the current implementation of Om-
Sim is an example of an integrated but not very open environment. The
implementation is modular but it runs as a single process and the in-
terfaces between the modules are not formally defined. We like to view
OmSim as a prototype for an open environment of integrated tools where
we easily can experiment with different tools and architectures without
the need to specify the interfaces in advance (the hacker’s approach to
software development).

In [Barker et al., 1993] a CACE framework reference model is sug-
gested. The framework is inspired by a CASE (Compute Aided Software
Engineering) framework reference model and it contains a set of common
services that can be accessed by the tools in the environment. The services
suggested in the CACE framework are the following:

e Modeling Services

e Database Services

e Task Management Services
e User Interface Services

o Message Services

The Modeling Services provide a standardized representation for models
and engineering data. It provides a high level model description layer, a
neutral format model layer, and a control data object layer. Database ser-
vices maintain relationships between models of different versions, exper-
imental frames, and input and output data, from all stages of the design
process. Database support in CACE environments is considered important
and has been much discussed and studied by several research groups, for
example, in the GE-MEAD project [Taylor et al., 1989]; see also [Tan and
Maciejowski, 1989, Griibel and Joos, 1991, Hope et al., 1991, Maffezzoni
ot al., 1994].

Task management services standardize the control of the tools in the
environment. It’s role is similar to the simulator supervisor in OmSim but
it must be more flexible and based on a common, standardized command
language. The user interface services provides a standard “look and feel”
to the different tools in the environment. It can work as a graphical

178




7.7 Summary

front end to some tools but should also provide direct text-based access.
Standardized message services define a common protocol for messages and
data. They provide the means for having tools running in parallel on a
distributed net of compute servers.

Figure 7.13 shows the architecture of OmSim mapped onto the “Swan-
sea toaster” reference model. To the right in the picture, the Modeling
Services are represented as three data buses. The data format on the
High Level Model Bus is Omola code. The Neutral Model Bus carries OHM
representations. OHM is a mathematical and logical model representation
in symbolic form. It fulfills the requirements of being a neutral format.
It can be analyzed and manipulated by various tools in the environment.
It can also be translated into more specific representations, for example,
into a simulation model used by a particular simulation algorithm or into
DSblock [Otter, 1992]. In order to turn OmSim into an open environment,
it is necessary to give a precise definition of the OHM data structure. This
may be done using some standard data modeling language like STEP and
EXPRESS [Harbison-Briggs et al., 1993].

The only Control Data Object that is used by OmSim is time response
objects, produced as a result from simulations. Time responses can be dis-
played by the plotter. The different tools in the environment are controlled
directly by the user through separate graphical user interfaces or by OCL
scripts. The OCL interpreter can be viewed as a Task Manager. The class
store in OmSim does not qualify as a proper database service but it has
at least some of the properties of a real database. It is able to search and
load models from permanent store.

An interesting question that arises when a CACE reference model
is standardized, is the granularity of the tools and their interaction. For
example, in Figure 7.13 the simulator is modeled as a single black-box that
accepts a model on a neutral standardized format and returns simulation
results. However, this chapter has shown that the simulator itself contains
several modules, like numerical integrator, event detection and execution,
static equation solver.

7.7 Summary

The architecture of OmSim was presented in two main parts: the modeling
environment and the simulation environment. The modeling environment
stores Omola models internally. They can be displayed in different ways:
as Omola code or as tree diagrams showing composition and inheritance
hierarchies. Models can be defined and displayed graphically by a compo-
nent diagram editor. Omola definitions are organized in libraries. OmSim
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Figure 7.183 The architecture of OmSim viewed as CACE Open System
Reference Model.

can search the external file system organized as multiple model databases
for definitions that need to be loaded into the internal store.

The object-oriented data structures representing Omola class defini-
tions and model instances were presented. The procedures for resolving
symbolic references and model instantiation were also discussed in some
detail.

The OmSim simulation environment compiles Omola models into sim-
ulation code. The environment contains an interactive simulator for hy-
brid models and a set of supporting tools for setting parameters, and
initial values, for plotting simulation results, etc. Functional diagrams
for compilation and data handling in the simulator were given. The fi-
nite state machine controlling the interactive simulation process was also
defined. Finally, OmSim was discussed in the perspective of open envi-
ronments for computer-aided control engineering.
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3

Model Manipulation

The model instance, discussed in the previous chapter, is the data struc-
ture that contains all the behavior equations in their original form. An
important task is to determine if the set of equations constitutes a well-
defined model from a mathematical point of view. Basically, this means to
analyze the equations and to check that every unknown variable of the
model is determined by them. If the model is going to be used for sim-
ulation, it is also necessary to manipulate the equations and the event
definitions into a form most suitable for the numerical simulation algo-
rithms.

The topic of this chapter is to give an overview of the analysis and
symbolic manipulations performed on Omola hybrid models in OmSim.
The first section is devoted to the continuous time parts while the second
section is concerned with the discrete event parts of the model. The final
section discusses the algorithms for detecting continuous time state events
during simulation.

8.1 Continuous time model

The raw model is analyzed in order to detect anomalies that make it
impossible to derive a proper simulation model, and to detect undesired
properties that are likely to cause problems for the numerical solvers. It
is important that errors and potential problems are detected as early as
possible, and presented to the user in a form that is related to the original
Omola model, so that he or she can easily correct it. This is in general a
very difficult problem.

Model transformations are made in order to obtain a representation
that is suitable for the chosen numerical algorithm. Some manipulations
are done independently of the algorithm, while others are specific for a
particular integration method. The choice of method also depends on how
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successful the manipulations are. For efficiency reasons, it is desirable to
do as many general transformations first and to save the result. Method
specific manipulations are postponed as far as possible. This makes it ef-
ficient to change integration method which is important since it is always
a good idea to compare the results of different methods.

Some model manipulations are done mainly in order to improve ef-
ficiency during simulation. This makes it possible to design high-level
Omola models, mainly focusing on the clarity of the description, without
considering simulation efficiency. The simulation model can be optimized
for efficient simulation by detecting and eliminating redundant variables
resulting from the modeling methodology.

The original model and the final resuit

The instantiated model provides the model equationsin their original form
together with equations generated from the connections. These equations
serve as a starting point for the analysis and manipulations discussed
in the following. The following information is extracted from the model
instance.

e A set of continuous time variables denoted x
e A set of equations depending on x

o A set of assignments where variables in x are assigned to functions
of x, like for example:

% = gi(x)

Here and in the following, the subscript i is used to indicate an element in
a set, e.g., x; € x. The notion of sets of variables and sets of functions are
used in order to emphasize that variables and function are objects that
can be rearranged and manipulated. A set of variables can be regarded
as a vector, and a set of functions can be regarded as a vector function,
with some assumed ordering of elements.

The functions returned from the model instance are in fact also de-
pending on discrete variables and parameters, but they are left out in this
discussion in order to simplify the notation. Discrete variables and param-
eters are regarded as unknown constants during equation manipulation
and analysis, and as known constants during simulation, as far as only
the continuous time aspects are regarded. The variables x contain state
variables and their derivatives, up the highest appearing order, and al-
gebraic variables. The equations and assignments correspond to equation
(5.5) of the OHM in Chapter 6. They include all explicit equations in the
model and all equations generated from connections. Variable bindings
and connections with defined causality yield the assignments.
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The continuous model, which is a part of the OHM representation,
is extracted from the model instance and transformed by a sequence of
manipulations into a general form suitable for simulation with different
integration algorithms. The resulting form is also useful for other pur-
poses, such as analysis and design. The transformation may introduce
additional variables and equations in the model. Equations and variables
that are not needed to represent the dynamic behavior are separated, thus
reducing the size of the problem. The transformation process also includes
structural analysis for detecting possible errors as early as possible. De-
fective models result in error messages. The result from a correct model
is available in the following form.

e A dynamic problem consisting of
o two sets of variables: dynamic state variables y and their first-
order derivatives y’
o a set of algebraic state variables z
o a set of auxiliary algebraic variables v
o a set of dynamic equations and blocks of equations sorted in
computational order

e An output problem consisting of
o a set of output variables w
o a set of output assignments for computing w

e A discrete problem consisting of
o a set of implicitly discrete variables d
o a set of equations to be solved for d

The variable sets are subsets of x augmented with auxiliary variables
introduced in the transformation process. There is a one-to-one map as-
sumed between the dynamic state variables y and the derivatives y'. The
algebraic state variables z are variables which do not appear differenti-
ated but must be solved from an implicit equation by the DAE solver. If
the problem is on ODE form there are no variables of this kind. The aux-
iliary algebraic variables v can be computed explicitly from y, ' and z.
They represent intermediate values and may be hidden for the integration
method.

The output variables w are not needed for solving the simulation
problem but may be of interest to the user for displaying and plotting.
The implicitly discrete variables are a subset of the original variables x,
which have been deduced to depend only on discrete variables and user pa-
rameters. The output variables and the implicitly discrete variables with
their defining assignments can be separated from the main simulation
problem.
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Ui U2... 1A

Figure 8.1 [Illustrations of BLT forms. Each row corresponds to an equation
and each column corresponds to a variable. Black areas means that a variable
appears in the equation. The white area means that the variables do not
appear in the equations. In the grey area variables can appear or not in the
corresponding equations. The left matrix is an example of a general BLT form
while the right matrix shows the special case where all blocks have single
elements.

BLT form

The dynamic equations are returned as a sequence of blocks where each
block contains one or more equations. The equations are all first-order dif-
ferential and algebraic equations. Each block can be solved as a separate
problem assuming all previous blocks are solved. This means that the dy-
namic equations are sorted in Block Lower Triangular (BLT) order. This
can be illustrated by the incidence matrix, sometimes called the structural
Jacobian, shown in Figure 8.1. The incidence matrix is a square matrix
of Boolean elements indicating which unknown variables appear in each
equation. A row in the matrix corresponds to an equation, while a column
corresponds to an unknown variable. Element (i,j) is true (or 1) if vari-
able v; appears in equation e;, otherwise it is false (or 0). In Figure 8.1,
elements which are true are indicated by black, while false elements are
indicated by white. Grey areas indicate elements that are either true or
false. A BLT form is a permutation of equations and unknowns so that the
incidence matrix is triangular or block triangular. The BLT form returned
from the equation manipulations regards the state derivatives y’ and the
algebraic variables z and v as unknowns. The equations of the BLT are
of three different kinds:

I

yi' == fu(y.y,zv.d) (a)
vii=  fai(v,y,z,0,d) (b) (8.1)
0= falyy.zvd) ()
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Some equations are explicit assignments to state derivatives (8.1a). Some
of these assignments are of the trivial form y,/ = y; and generated in the
process of transforming the original model into a first-order differential
equation model. Other equations are assignments to algebraic variables
(8.1b). Assignments of the first two types always appear in single element
blocks. The third type of equations can appear in larger blocks. They are
implicit equations which can be written on residual form (8.1c). The BLT
form means that the equations from the three groups are sorted so that the
unknowns appearing in the equations of each block are either unknowns
of the same block or solved from some of the previous blocks.

One goal of the equation manipulations is to get as few implicit
equations as possible. If there are no implicit equations at all, it is possible
to use a standard ODE solver to simulate the model, which may be more
efficient.

The resulting representation, discussed so far, is independent of the
chosen integration method. Now it remains to transform the equations
(8.1) into a form required by the chosen integration algorithm. Three
types of integration methods are considered here: general ODE methods,
implicit Runge-Kutta methods for DAE problems, and general multistep
DAE methods.

General ODE methods

A typical ODE method, for example, a Runge-Kutta method like RKF45
[Hairer et al.,, 1987], solves problems of the form

Y, (52)
and requires a method for computing the function f when y and ¢ are
given. This is possible if the manipulated model has no implicit equations
of type (8.1c). In this case, the BLT form has only single element blocks
on the diagonal. The function f can be constructed from (8.1a) and (8.1b)
by substituting derivatives and algebraic variables. In practice, the sub-
stitution is not done since the assignments can be used directly, evaluated
in order as they appear in the BLT form.

An implicit Runge-Kutta methods for DAE systems

One possible representation for DAE systems is the form

dy

Bar

= f(Y,t), (8.3)
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where B is constant and in general a singular matrix. This form is for
example used by Radaub [Hairer et al., 1989].

The required form can be obtained by the following operations. Ex-
plicit derivative assignments of type (8.1la) are used as they are, and
explicit auxiliary variable assignments of type (8.1b) are hidden for the
integration algorithm. Only the implicit equations have to be manipu-
lated. Consider a block of equations of type (8.1c) in the BLT form. In
that particular block subsets of ¥’ and z are regarded as unknowns, while
the remaining variables are either computed by the previous blocks or do
not appear at all. Let ¥, ¥ and z denote the subsets of unknowns. The
block of equations can then be written as the system of equations

0= £(3.5.2). (8.4)

The dimension of f is equal to dim{¥y) + dim(z). A new set of algebraic
variables % is introduced; one element in Z for each element in ¥'. When
¥’ is substituted by 2 in (8.4) the new system of equations becomes

[0 0 0] d _ [f(y,%,é)]_ (8.5)

I 0 0)dt 3

™ <21

N>

This equation is similar to the desired equation (8.3). When all blocks are
considered, the state vector ¥ in (8.3) consists of y, 2, and the additional
variables 2 are introduced for each block. The matrix B will contain ones
and zeros.

General DAE method

DASSL is an example of a general multistep DAE method |Brenan et al.,
1989]. It assumes a model of the form

dy
0= , =t 8.6
gy zpt) (8.6)
and it requires a method to compute the residual
1= 5(5.5.0) (8.7)

when the arguments are given. This is easy to obtain if the assignment
of type (8.1a) and (8.1c) are used as
Ap =y = fri(y. ¥, 2,0,d)
A; = f3i(y,y'2,0,d).

Similar to the other methods, the algebraic variables v and their assign-
ments (8.1b) can be hidden for the numerical integration routine.

(8.8)
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Transformation of the raw model

The main steps in transformation procedure from the raw model obtained
from the model instance, to the simulation model defined above, are now
presented. A general discussion of the equation manipulations in OmSim
is also given in [Mattsson et al., 1993].

1.

Get all variables and all equations from the model instance.

2. Create assignments from variable binding expressions, and add them

to the set of equations.

Divide the variables into four groups with respect to their variability
determined during class instantiation. The variability groups are:

a. Constants, i.e., variables with a known fixed value

b. Parameters

c. Discrete variables

d. Continuously time varying variables

Divide the equations into four groups with respect to their variability.
The highest variability rank of the appearing variables determines
the variability of the equation. Hence, the equation variability groups
are:

a. Constant equations

b. Parameter equations

c. Discrete equations

d. Continuous equations

. Check that the constant equations are consistent. If they are fulfilled,

they can be disregarded in the following steps. If they are not fulfilled,
the model is wrong and the analysis is terminated with an error
message.

Use the parameters and the parameter equations to set up the Pa-
rameter Handler module.

Check that the set of continuous equations are structurally nonsin-
gular. If they are singular, produce an error message and terminate
the procedure.

Make a BLT partition of the continuous equations. For each block,
eliminate the time derivative operator by introducing new variables.
Divide the blocks in three groups

a. Constant BLT blocks

b. Discrete BLT blocks

¢. Time varying BLT blocks

Try to solve the constant BLT blocks. If this is not possible, produce
an error massage and terminate the procedure. Hereafter, regard
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the variables of the solved blocks as constants and disregard the
corresponding equations.

10. Use the discrete BLT blocks to set up the Implicit Discrete Handler
module.

11. Deduce the differentiated index one problem of each time varying BLT
block and do index reduction when needed.

12. Manipulate each time varying BLT block and try to make it diagonal.
Eliminate auxiliary algebraic variables.

13. Turn the problem to a first-order DAE system.

14. Separate the blocks into a dynamic part and an output part. The out-
put part consists of those blocks not needed for solving the dynamic
problem.

15. Check if the dynamic part consists of only assignments. In this case
the problem is classified as an ODE problem, otherwise it is an DAE
problem.

The check for structural nonsingularity in Step 7 checks if the number of
equation and continuous variables are the same, and if each variable can
be paired with an equation in which it appears. State variables and their
derivatives are regarded the same in this analysis step. Speaking in terms
of the incidence matrix introduced above, this step consists of permuting
the rows or the columns of the matrix so that incidence is obtained for all
diagonal elements. An efficient algorithm for this is for example described
in [Duff et al, 1986]. If the pairing of variables and equations is not
successful, the problem is structurally singular. This means that the model
has too many or two few equations, or that some equations involve the
wrong variables. If it is found that the problem is singular, the missing
or redundant number of equations is obtained from the algorithm. In this
case the problem is to present an appropriate error message to the user.

The next step (Step 8) in the procedure consists of ordering the
equations into a sequence of subproblems. This is done by symmetric row
and column permutations, so that the incidence matrix becomes block
triangular, with minimal blocks. An efficient algorithm for this is given
by Tarjan [Tarjan, 1972, Duff and Reid, 1978].

Some blocks in the BLT partition may be deduced to be constant or
discrete. They can be separated from the time varying problem. A block
is constant or discrete if none of the equations refer to a time varying
variable or the time explicitly, and if none of the unknown variables in
the block appears differentiated. If any equation in the block refers to a
discrete variable, then the block is considered as discrete, otherwise it is
constant. The unknowns of the block are hereafter regarded as discrete or
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constant. The constant blocks are solved immediately while the discrete
blocks are solved during simulation after each discrete event.

Step 11 uses Pantelides’s algorithm [Pantelides, 1988] to determine
how many times each equation in each block has to be differentiated in
order to obtain an index-zero DAE system. This is discussed in more detail
below.

After index reduction, each block is manipulated in order to reduce its
size and to find algebraic variables which can be hidden for the numerical
solver. If the unknowns appear linearly and if the size of the block is not
too large it is possible to manipulate it into diagonal form. Another tech-
nique for reducing the size of a block is called tearing which is discussed
in [Elmgvist and Otter, 1994].

Hierarchical modeling with several levels of submodels introduces a
chain of equations and variables of the form

represented as separate equations. The intermediate variables xg to x,_1
can be eliminated and the chain of equations reduces to the single equa-
tion x; = x,. The eliminated variables are maintained with proper as-
signments. They will be sorted out as output variables at a later stage.

So far the model contains high order derivatives, defined in the orig-
inal model or resulting from the previous index reduction. The model
is turned into a first-order DAE system by introducing additional state
variables and equations. In fact, since all derivatives are represented as
separate variables already in z, only equations relating derivatives and
states have to be added to the model. For example, assume there is a base
variable x and chain of derivatives in increasing order denoted x41, %42,
etc. Then the new equations &’ = x41, X;; = %42, etc., are added. This cor-
responds to a controller canonical form state-space realization [Kailath,
1980]. It should be noted that from now on, all occurrences of the highest
order derivative should be interpreted as the first derivative of the state
variable representing the second highest order derivative.

Finally in the model transformation procedure, the output variables
and their assignments are separated from the main dynamic problem.
These variables need to be computed only on request from the user.

The model has now reached the required form presented above as the
BLT sorted equations (8.1). If there are no remaining implicit equations of
type (8.1c), then the model can be classified as ODE (state-space) model,
and it can be solved by ordinary ODE methods.
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Problems with high index

The index is an important property of DAE systems. Different definitions
of index can be found in the literature. In [Brenan et al., 1989], index
is defined as the minimum number of times all or parts of 0 = g(&, x,¢)
have to be differentiated in order to determine x as a function of x and
t. Another definition of index is used in [Hairer et al, 1989]. An ODE
problem in state-space form, & = f(x,t) is index-zero. A DAE problem in
the form

x = f(x’y> t)

0= g(x’ Y, t)
is index-one if the Jacobian dg/dy is non-singular. This means that in
principle y can be solved from the second equation and substituted into
the first equation to get state-space form. A DAE problem in the general
form 0 = g(%,x,¢) may have higher index. DAE systems with an index
of two are difficult for the numerical solver. Available DAE solvers may
solve some index-two problems but they fail when the index is higher.
Pantelides’s algorithm [Pantelides, 1988] can be used to determine the
number of times each constraint has to be differentiated in order to reduce
the index to one or zero.

Index is not a property of the modeled system but a property of a
particular model representation, and therefore a function of the modeling
methodology. For that reason, it should be possible to reduce the index
by symbolic manipulations. High indices indicate that the model has al-
gebraic relations between differentiated state variables. By using insight
in the particular modeling domain it should be possible to eliminate the
number of differentiated variables and thus reduce the index of the prob-
lem. However, this violates the object-oriented modeling methodology we
want to support.

In OmSim it is desirable to have general methods of reducing the
index of high index problems to index-zero or index-one. Two methods are
currently utilized. One method is based on the elimination of redundant
state variables and another method is based on the introduction of so-
called dummy derivatives. A simple example is used to illustrate the
methods. Regard the following DAE system.

(8.9)

Ui +u1—i1=0

o+ Uy —ig =0

prm (8.10)
Uy —ug =0

i

Il

i1+i2

The model may result from two RC circuits connected in parallel as shown
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ST777

Figure 8.2 Electric circuit resulting in an index 2 DAE model.

in Figure 8.2, and is driven by the current i which is a known function of
time. From the circuit diagram it is easy to realize that the model can be
reduced to a single RC circuit with one state variable. The DAE model is
index-two. It can be reduced to index-one by replacing the third constraint
by its derivative. The new index-one problem, with consistent initial val-
ues, is mathematically equivalent to the original problem However, due
to numerical errors in the solver there is no guarantee that the original
third constraint will hold in the final solution.

One way to reduce the index of (8.10) is to eliminate the redundant
state variable. This is done by using a differentiated version of the third
constraint to eliminate either 21 in the first constraint or &z in the second
one. It is then possible to transform the problem into explicit ODE form
using symbolic Gaussian elimination. The resulting equations in compu-

tational order are:
Ug 1= U1

1
o = 5(1 = (u1 + ug)) (8.11)

I1:= U1+ Uy

lg 1= Ui + Ueg

This method is used when possible in OmSim. An advantage of the method
is that it reduces the size of the problem and, like in this case, often results
in a state-space model. However, it is not always possible to find a state
variable that can be eliminated.

Another possibility to reduce the index of a problem is to use the
method of dummy derivatives introduced in [Mattsson and Séderlind,
1990, Mattsson and Soderlind, 1993]. The method consists of augment-
ing the DAE system with differentiated versions of equations and re-
placing some of the differentiated variables with new algebraic variables,
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called dummy derivatives. In the example above, the system is first aug-
mented by the third equation differentiated. This gives the following over-
determined system.

Uy +up—ip =0

il2+162—i2 =0
0 (8.12)

i

Uy — Uz

il + iz

lll — ng =0
One of the derivatives of the new constraint is chosen and replaced by an
algebraic variable in all constraints. For example, choose @9 and let uy’

denote the dummy derivative. The dummy derivative replaces all occur-
rences of the real derivative and the new system becomes the following.

ll1+u1—i1=0

ll2/+LL2~i2=0

up—ug =0 (8.13)
i1 +1y = l
i —ug =0

The new DAE system is determined and index-one.

The index reduction techniques are applied to each time varying block
in the BLT partition obtained from Step 8 in the model transformation
procedure above.

8.2 Discrete event model

In this section, the compilation and simulation of the discrete event model
is discussed. Three major issues in the compilation procedure are dis-
cussed. First, the event propagation is analyzed. The purpose is to es-
tablish chains of events that must be fired synchronously. Secondly, the
effect of each set of synchronous events is analyzed. The purpose is to de-
termine which variables are affected by the events and which equations
are involved in the propagation of the effect throughout the model. This is
called the restart problem. The third issue concerns the compilation of the
continuous firing conditions. Last in this section, the simulation problem,
in particular the localization of state events, is discussed.
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Compiling the discrete event model

Preparing the simulation model consists of analyzing the event propaga-
tion and synchronization structure according to the model semantic rules
described in Chapter 6. According to the OHM formalism, an event type
has conditions defined as explicit model invariants, and actions defined
as equations. Event conditions are classified whether they depend on con-
tinuous time variables or not. The event actions must, together with the
other model equations, determine an initial value for the continuing sim-
ulation. Event actions can also consist of commands to event scheduler,
print commands, etc.

Analyzing event propagation

The starting point for the preparation of the discrete event parts is the list
of event instances obtained from the model instances. The list contains
all instantiated event definitions from the model class to be simulated.
Additional input consists of the discrete variables and the discrete equa-
tions collected during compilation of the continuous time model, discussed
previously.

The compilation procedure starts by analyzing the synchronization
structure. This is done by constructing a graph according to the following
procedure.

1. Get all event instances from the selected model. Also get the dis-
crete variables and the discrete equations from the continuous model
compilation.

2. Collect all instantiated event synchronization and propagation decla-
rations from the model instance.

3. Represent each event instance by a node. For each symmetric syn-
chronization, add an undirected link between the corresponding nodes
in the event graph. For each directed synchronization, add a corre-
sponding directed link to the graph. If the propagation is conditional,
annotate the directed link with the condition.

4. Identify and mark all events that may occur independently of other
events. We call these events root events. Events that appear in sched-
ule commands or have condition attributes bound to expressions are
root events.

5. Cluster nodes that are connected by undirected links into a single
node. Clusters which contain at least one root event are considered
as root nodes. Only directed links remain in the graph. This is an
application of Semantic Rule 12 in Chapter 6.
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El, E2, E3, E4 18aAN Event;

WHEN E1 CAUSE EZ2;

WHEN E2 DO NEW(x) := 1; END;

WHEN y > 0 CAUSE EI;

WHEN E1 AND z < 0 DO NEW(y) := O; END;
WHEN E3 DO schedule(E4,1.0); END;

E3 = EI,

Listing 8.1 Event definitions for the example discussed in the text.

S: s: E4

c: v>0 C:

A: A:
g. E3 g. FE1 s E2
C: C: C:
A: A: A:

z<0

S: S: S:
C: C: C:
A: SCHED(E4, 1.0) A: NEW(y):=0 A: NEW(X):=1

Figure 8.3 Event graph for the example discussed in the text.

6. Reduce the graph by removing empty events and circular directed
synchronization according to Proposition 1 in Section 6.3.

7. Construct a tree for each root event node. The tree is a subgraph of
the complete graph. It is constructed by starting from the root event
and including every link and node that can be reached by directed
links.

As an example of applying the graph construction and reduction proce-
dure, regard the Omola event definitions in Listing 8.1. The graph result-
ing directly from the definitions is shown in Figure 8.3. The definitions
of the event classes called E1 to E4 result in one event node each. The
first WHEN-clause results in a link from Ei to E2. The second WHEN-clause
results in a link from E2 to a new anonymous event node with an action,
and so on. The symmetric synchronization between E1 and E3 result in an
undirected link in the graph. The top nodes in the graph are root events,
the top left node because it has an event condition, and E4 because it is
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Et, E3 E4
y>0
SCHED(E4, 1.0)

NEW(x) = 1

»Q0
200

z2<0

NEW({y) := 0

»

Figure 8.4 The graph in the previous figure reduced to minimal size.

scheduled. The graph in the example can be reduced by applying behavior
preserving transformations described in Chapter 6. The minimal graph is
shown in Figure 8.4. It is not always a good idea to reduce the graph into
the minimal form since it may be difficult to trace the result back to the
original model, for example, to produce error messages.

From the root event trees the discrete event simulation model can
be constructed. Each root event defines a particular restart problem for
the continuous simulator. First assume that a root event tree has only
unconditional links between the nodes. In this case, the equations and
other actions associated with the root event, are obtained by a complete
traversal of its tree. The discrete equations collected from a root event tree
together with equations from the continuous time model that are affected
by the event, define a restart problem.

Analysis of the restart problem

The event equations define a new discrete and continuous state to be used
as the initial value when the simulation is restarted. An event equation
may explicitly assign a new value to a discrete or a continuous state
variable. For example, the event equation

NEW(x) := 0;

defines the initial value of x for the continued simulation. Depending on
the ordinary model equations, the effect of changing one variable may
propagate to other variables of the model. In other words, as soon as
one variable is changed as a result of an event, all equations must be
considered in order to determine the new consistent state. For many
events, however, only a small subset of all variables are affected and
only a small subset of all equations have to be evaluated. By structural
analysis of the equations, it is possible to determine the set of equations
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that must be evaluated, and the set of variables that can change, as a
result of an event.

First the special, but rather common case where the continuous time
problem has been transformed into state space (ODE) form, will be con-
sidered. Also assume that only discrete variables and continuous state
variables appear as unknowns in the set of event equations, and that
these equations can be solved for the unknowns. In this case, the restart
problem is solved and the event is executed by the following computational
steps:

1. Use the solved event equations to compute new values for some dis-
crete and some continuous state variables. Keep the current values
for the remaining variables.

2. Evaluate the implicitly discrete equations.
3. Evaluate the continuous time dynamic equations.
4. Evaluate the output equations.

In this case the result from the analysis of the continuous time model (8.1)
is used directly, and the dynamic equations and the output equations are
evaluated in the same order as for the continuous time problem. Written
as variable assignments, we get the following sequence defining the event
restart problem:

qi = 61i(q.y)

yi = 62:(q,y) } (a)

yil = fl.i(‘)”y/’zsvad’Q) } (C) '
U = fg‘,v(y,y’,z,v,d,q)

wi = fai(y.yz0.d,q) (d)

The subscript i is used as before to indicate that there are several equa-
tions of each kind. The first two groups of assignments, labeled (a), are
event specific and sorted in computational order. The implicitly discrete
equations (b), the dynamic equations (c), and the output equations (d)
are event independent and obtained from the continuous model.

If the continuous model is not on ODE from, the evaluation sequence
(8.14) can still be used as long as the variables computed by the event
equations (a) are not appearing as unknowns in the continuous problem.
The dynamic problem (c), however, includes implicit blocks of equations
that have to be solved numerically.

In case the event equations do not fulfill the above requirements but
contain derivatives, output variables, and intermediate algebraic vari-
ables as unknowns, then the suggested event execution cannot be used
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directly. It means that the effect of an event propagates through the model
in a direction which is different from the computational causality of the
continuous model. For example, assume a model with an input-output
submodel and an event which prescribes a new output value. The indirect
result of the event is that the internal state of the input-output model
is affected from the output. There are two possible ways to construct the
event restart problem in such cases. One way is to substitute unknowns
in the event equations using equations from the manipulated ODE model,
and then solving for state variables which are not appearing as unknowns
in the ODE model. This may be a useful method in some cases but it may
also create a very inefficient event restart problem if many substitutions
are needed.

The general approach to construct the event restart problem is to
manipulate all the original model equations together with the specific
event equations, without using the result of the continuous model manip-
ulations. In this case, all continuous time variables and derivatives are
considered as unknowns. In the event equations only the new-operated
variables are unknowns. Note that for example new(x) appearing in an
event equation is considered the same unknown as x appearing in an or-
dinary equation. The procedure is now similar to the continuous model
structure analysis using Duff’s algorithm for pairing equations and vari-
ables and Tarjan’s algorithm for sorting the equations in a BLT order.
However, in general there are two few equations. The missing equations
are the continuity assumptions, i.e., variables not affected by the event
that keep their old values. What is missing is a number of equations of the
type new(x) := x. Instead of actually adding such missing equations, the
corresponding unknowns can be removed as unknowns from the problem
and treated as known variables. The following procedure is used:

1. Use Duff’s algorithm on the complete set of discrete and continuous
equations and unknowns.

2. For variables that do not get paired with an equation, give them a
dummy equation containing all unknowns.

3. Apply Tarjan’s algorithm. Variables with missing equations will then
end up as unknowns of the last block.

4. Apply the continuity assumption for state variables, i.e., for variables
that appear differentiated, and remove them as unknowns from the
block.

5. Apply Duff’s algorithm to the last block. ‘

6. Ifthere are redundant equations: if these equations no longer contain
any unknown variable they can be removed, otherwise produce an
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error message and break.

7. If there are still missing equations, provide dummy equations and
apply Tarjan’s algorithm to the last block.

8. Again apply the continuity assumption to the last block. This time,
derivatives and algebraic variables, which are unknowns in the last
block, are assumed to keep their values and turned into known vari-
ables.

9. Remove redundant equations or report errors as before.

The idea of applying the continuity assumption in two steps, first
for the state variables and then for the derivatives, is illustrated by the
following example. Assume that one equation is £ + x + y = 0, where y is
affected by the event and computed from some other equation and & and
x only appear in this equation. The equation and the unknowns x and
x will appear in last block of the first application of Tarjan’s algorithm.
Only x is now assumed to keep its value and is regarded as a known
value. When Duff’s algorithm is applied for the second time, the equation
is paired with the remaining unknown x.

The suggested algorithm terminates with an error if the continuity
assumption cannot be applied consistently. For example, regard the equa-
tions

x+y=0
y+z+w=0

where x, v, and z are algebraic unknowns of the last block of the second
application of Tarjan’s algorithm, while w is computed from an equation of
some earlier block. Only one equation is missing and when the continuity
assumption is applied to x , y, and z, the two equations will be redundant.
The second one cannot be removed since we cannot consistently assume
that both y and z will remain unchanged by the event, and w will probably
change. In this case an error is reported and the user has to provide
additional equations in the event definition. On the other hand, if w
was a state variable that was removed as an unknown when continuity
assumption was applied in the previous step, then it could be consistently
assumed that x, y, and z remain unaffected by the event. In this case the
redundant equations can be removed.

It is sometimes an advantage if models with over determined restart
problems are accepted. For this reason, redundant equations should not
result in errors. Instead, they can be evaluated during simulation and
checked for consistency.

The result obtained so far is a BLT ordering of all the equations rele-
vant to solve the restart problem of the particular event type. Sometimes
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s: EO
C:
A:
C1 c2
g Ef s: E2
C: C:
A: NEW(y):=1 A: NEW(X):=2

Figure 8.5 Event graph with conditional propagation. C1 and C2 are Boolean
conditions determining if the root event EO is propagated to E1 and E2.

it is desirable to obtain a triangular form, so that each unknown can be
solved separately, the next step is to try manipulating each block and to
solve it symbolically. This may be possible if the unknowns appear lin-
early and if the block is small enough. Remaining blocks, that cannot
be reduced, are checked for the kind of unknown variables that must be
solved from the block. If a block contains unknowns of type real only, then
a numerical static equation solver can be utilized at simulation time, to
solve the equations. If the block contains only discrete variables or a mix of
discrete and real variables, then the restart problem is hard (see also the
discussion in Chapter 6). One possibility is to use tearing, i.e., to exclude
some of the unknowns, so that the problematic block splits into smaller
blocks or become triangular [Elmqvist and Otter, 1994]. The restart prob-
lem must then be solved by iterations with guessed initial values for the
excluded unknowns. Another possibility is to give an error message and
force the user to reformulate the problematic event definitions.

Root events with conditional propagation

For root events with unconditional propagation it is reasonable to compile
the restart problem associated with the event in advance, before the
simulation is started. This is because each root event only results in one
restart problem. However, if the propagation tree contains conditional
links, each conditional link gives two alternative restart problems. This
is because each condition affects the set of discrete equations involved in
the event firing, and each different set of equations represents a different
restart problem. If a root event tree contains n conditional links, then
there are potentially 2" different restart problems associated with the
root event. An example is shown in Figure 8.5. If the event conditions E1
and E2 are independent, then the root event EO may result in four different
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restart problems: one where nothing is changed, one where y is updated,
one where x is updated, and one where both x and y are changed.

Because of the combinatorial explosion of potential restart problems,
it is not in general efficient to compile all of them in advance. Many of
all the possible restart problems may not occur at all when the model is
simulated. In this case it is better to defer compilation until simulation
time, when the conditions are evaluated and a particular restart problem
can be selected. Naturally, the compiled restart problem is saved and
reused if the same situation occurs again or if the simulation is repeated.

If several propagation conditions in a root event tree are identical or
each other’s Boolean complements, then the number of possible restart
problems is reduced. For some modeling methodologies this may be a
common situation that is worth considering in the analysis.

Compiling the event conditions

Event conditions are Boolean expressions depending on discrete or con-
tinuous model variables. Each condition is associated with an event type.
The event occurs as soon as the condition changes from false to true. It is
useful to separate the event conditions into two groups: conditions which
only depend on discrete variables and conditions which depend on con-
tinuous as well as discrete variables. The former group, called discrete
condifions, needs to be evaluated only after some other event has been
fired. Conditions in the other group are called continuous conditions and
they have to be evaluated along with the continuous time solution.

Discrete conditions need no particular discussion. They are main-
tained by the discrete event simulator and evaluated when necessary.
When a condition evaluates to true the corresponding event becomes en-
abled and scheduled for firing. The continuous conditions, however, need
special treatment. A Boolean event condition needs to be converted into
a smooth function that can be evaluated along the continuous time solu-
tion. The function should be constructed so that it has a zero where the
Boolean condition changes from false to true. The integration algorithm
can then be designed to locate the zero accurately and efficiently.

OmSim is translating a Boolean event condition so that the event
occurs when a zero up-crossing is detected. For example, the event con-
dition x > xpq 18 translated into the continuous event function x — x,nq«.
See Figure 8.6. Most numerical software is designed to detect any zero
crossing and the decision to associate events with up-crossings in OmSim
is arbitrary.

A Boolean event condition is an expression with the Boolean operators
AND, OR, and NOT, the relational operators <, <, >, >, =, and #. The
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X > Xmax |

A t
X - Xmax

Figure 8.6 Boolean event function and and a corresponding continuous one.
An event is detected at the up-crossing root, at time e.

OR

di ci AND AND

/\

d2 c2 d3 ~c3

Figure 8.7 An event condition on normal form. The leaf nodes labeled with
a ‘d’ indicate discrete conditions, while leaf nodes labeled with a ‘¢’ indicate
continuous conditions.

event condition may also include the transition operator 1. The expression
is transformed into a normal form using the rules of Boolean algebra.
The normal form consists of an or expression with a number of terms.
Each term is continuous relation, a discrete Boolean expression, or an
and expression with a discrete Boolean factor and a continuous relation
factor. The normal form is illustrated in Figure 8.7. The purpose of the
normal form is to separate parts depending only on discrete variables
from parts depending on continuous time variables. Each term of the root
or expression constitutes a separate firing condition for the event. The
continuous terms are translated into separate event functions as described
above. Each and term with a discrete and a continuous factor is then
translated into the continuous event function

ifd thencelse —1

where d is a the discrete factor and c¢ is the continuous factor,
A continuous term or factor may be a compound of several relations
depending on different continuous time variables. Regard for example

(X > Xmax) and (¥ > Ymax)

where x and y are continuous time variables. It is possible to form a single
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continuous event function using the min function:
min(x ~ Xmax> Y — ymax)

However, this may cause numerical problems for the root finder, since
the derivative is not continuous even if x and y both have continuous
derivatives. A better way, but more complicated, is to introduce two addi-
tional discrete Boolean variables and two additional events, one for each
continuous condition.

The transition operator, T, is used for indicating that the event is
enabled and fired only once, when the condition changes from false to
true. Algebraic rules for the transition operator are given in [David and
Alla, 1992, p235]. For example, the following distributive laws are used
to manipulate event conditions.

T(aand b) = (Ta and b) or (e and Tb)
T(aorb) = (Taandd’) or (o' and 1b)

In [David and Alla, 1992] the hypothesis that two independent events
never occur simultaneously, is used. This means that Ta and 76 = false,
if @ and b are independent Boolean variables. It is a problem to determine
if @ and b are independent. One possibility is to forbid more than one
transition operator in a term, and to force the user to reformulate the
condition.

Event conditions are divided into two groups during compilation:
invariant conditions are conditions without the transition operator, while
transition conditions are event conditions with the transition operator.
Invariant conditions enable the event unconditionally when the event
function is positive. Transition conditions enable the event once each time
the event condition changes from negative to positive. During simulation,
every transition condition is associated with a Boolean status flag telling
if the condition is currently regarded as negative or positive.

8.3 Detecting continuous events

Continuous time event conditions must be evaluated along with the con-
tinuous time solution. This means that the integration routine and the
event detection algorithm are operating in close connection. DASSRT is a
variant of the DAE solver DASSL [Brenan et al., 1989] that has a built-
in root finder. Brankin et al. [Shampine et al., 1991] have developed a
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Figure 8.8 Event ¢; is not detected since the event function has two roots
that happen to occur in the same integration step. Event es is a spurious
event because event ey was localized with a finite tolerance. Event es is also a
spurious event because a numerical error was introduced when ey was fired.

package of subroutines for event detection that can be used together with
several standard integration routines. Event location is also one of the
main topics in [Cellier, 1979].

All event location methods are based on the same simple idea. After
the integration algorithm has completed a step and computed a new
solution point, the event functions are evaluated and checked for sign
changes between the previous solution point and the new one. If a sign
changes, this indicates that one or more of the event functions have roots
in the interval. Then the next task is to determine the first root and to
localize it. The location of the first root is usually determined by a search
combined with some standard root solving algorithm, e.g., some variant
of regula falsi.

Though the basic idea of locating events is simple, there are many
things that can fail. For example, if we look for sign changes of the event
function by examining the end points of each integration step, event
functions with more than one root in an interval may be missed. It is
also a possibility to detect spurious events at the beginning of an interval
for event functions that starts at zero or close to zero; see Figure 8.8 for
an illustration of the problems. It should also be noted that localizing
several roots which are close to each other, is an ill-conditioned problem.
A small error in the event function may result in two separate roots, a
second order root, or no root at all.

If the method is modified to avoid spurious events, then there is the
risk that some real events are excluded as well. In the OmSim environ-
ment, it is very important that the event location algorithm is robust and
can handle most cases correctly. It is also important that warnings are
issued when borderline cases are detected so that the user can modify
his model or at least become aware that the simulation results may be
incorrect.
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OmSim is using DASSRT with the built-in root finder or the routines
by Brankin et al. in combination with Radau5. The DASSRT implemen-
tation has a problem if it is used directly. It cannot be started if an event
condition is close to zero. This is a common situation. The method by
Brankin et al. is discussed in the following. It is presented in [Shampine
et al., 1991] and consists of a set of subroutines and a main driver routine
called ALEVNT. Even though ALEVNT is not used directly in OmSim, the
name will be used as a collective name for the package of subroutines.

ALEVNT is designed to be used with integration algorithms that
can provide solution points between the steps. This is often called dense
output and is provided by many modern methods like DASSRT, Radau5,
and DOPRI(4)5 [Hairer et al., 1987]. Polynomial interpolation is used to
provide solutions between integration points. The interpolants are often
provided by the integration method at almost no extra cost. ALEVNT
constructs interpolation polynomials for representing the event functions
between solution points. Then it uses Sturm sequences to check if any root
is present in the interval [Stroer and Bulirsch, 1980). If a root is found,
interval bisections and Sturm sequences are used to find an interval were
the first root is located. Finally it uses a standard bisection and secant
algorithm [Press et al., 1992] to localize the root precisely. This method
is efficient and capable of detecting multiple roots within an integration
interval.

ALEVNT is efficient since it uses polynomial approximations of the
event functions. If the order of the polynomials are the same in the
integration method and in ALEVNT, then the approximations of the event
functions are correct if the event functions are linear in the unknown
variables. Since OmSim accepts also non-linear event functions, ALEVNT
is actually misused. Remedies are discussed in the following.

Some notation is now introduced. Let y(¢) be the true solution of
the DAE problem and let (¢) be its derivative. Let y(¢) and y(t) be the
solution at t,_; < t < t, provided by the integration method after step
k. Let g = g(t,%(t),5(t)) be the event function based on the computed
solution. Finally, let g(¢) be the polynomial approximation of g(t) used
by ALEVNT. In general g(t) # g(t) but if the event functions are not
too nasty, then we can expect that g(¢) = g(t). There are still different
possibilities to use ALEVNT:

1. Use ALEVNT for the linear event functions and use some other
method based on g(¢) for the others

2. Convince the user only to use linear event functions

3. Introduce auxiliary variables that are solved by the integrator that
makes the event functions linear
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Figure 8.9 An event first detected and localized approximately using z(t)
and ALEVNT, and then localized exactly using g(t)

4. Use a higher order polynomial for g(t)

5. First locate the event approximately using ALEVNT, then iterate
using some standard bisection or secant method based on g(z).

The last method has been implemented and tested in OmSim. It gives
maximum efficiency for well-behaved event functions and it is robust
with more difficult ones. Figure 8.9 illustrates the method. The event first
located by ALEVNT occurs at time Z,. This time is used as one side (Z,) of
a bracket for g(t), i.e., a time interval where g(t) has a sign change. The
other bracket () is obtained by a “double Newton-Raphson step”, where
Z(t) is obtained from ALEVNT and used instead of £ (¢):

(ta)

&(ta)’

For very peculiar event functions it may occur that a bracket for g(t) is
not found in this way. In this case OmSim gives up with an error message
but it would also be possible to apply some search method.

After a bracket for g(t) is found, some iterative method can be ap-
plied to narrow the bracket until the desired tolerance is achieved. The
tolerance can either be specified in terms of |¢, — &,| or in terms of |g(#)].
The later is of course affected by the scaling of the event function. This
can be an advantage for the conscious user since different accuracy can be
achieved for different conditions. On the other hand, the tolerance speci-
fied in terms of time is not affected by scaling and is more robust.

tp =ty — 2

Spurious events

Event functions that start close to zero, for example when integration is
restarted after an event, may cause spurious events. Unfortunately such
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0.82

. .
0 0.005 0.01
Time

Figure 8.10 Interpolated result returned from Radaub during the first step.
The first solution point is at ¢ = 0.01. The dashed line shows the correct
solution when the integrator is started with consistent initial values. The
solid line results from starting the integrator with initial values slightly off
consistent.

event functions are rather common. As shown in Figure 8.8, the spurious
events may occur because the event function is deviating from an exact
zero because of numerical errors. Even if we make sure to start with the
event function slightly positive, spurious events may occur due to bad be-
havior of the interpolated solution returned by the integrator. Figure 8.10
shows the solution for the first step when Radaub is restarted with an ini-
tial state that is not exactly consistent. The slightly inconsistent starting
point is accepted by Radaub and does not affect the accuracy of the first
solution point, but it affects the interpolated solution during the first step
considerably. In order to avoid trouble with spurious events, ALEVNT is
not used for the first step after the integration method is restarted. This
can be justified by the fact that integration methods are usually started
with a default step size which is considerably shorter than what is mo-
tivated by the required accuracy. Instead of ALEVNT, a simpler method
is used that fails to detect an even number of roots in the interval. The
method used for the first step is as follows.

Each event function is classified if it is negative, zero, or positive
at the initial point and at the first solution point. Function values that
are absolutely less than a certain tolerance ¢ are classified as zero. The
tolerance should be set slightly larger than the event location tolerance
and the accuracy of the initial value computation. Table 8.3 gives all
possible combinations of event function values at the initial point (o)
and the first solution point (#1). The numbers in the table refer to the
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8.3 Detecting continuous events

to | t1 || Comment

— | = || No root

— | 0| Event at t; (1)

— | + || Root in first step (2)

0 | — || No root

0 | 0 || Noroot (3)

0 | + || Possible event at ¢p (4)
+ | — || Root but no event (5)
+ | 0 |, No event (6)

+ | + || No root

Figure 8.11 Combination of event function values at the initial point #o
and at the first solation point ¢1. The numbers in the third column refer to
comments listed in the text.

following comments.

1. A root is present close to t;. Iterate with initial steps of different
length until desired precision.

2. A root is located between fy and t;. Iterate with initial steps of dif-
ferent length until desired precision.

3. The event function remains close to zero. This is an undesirable
property of the event function, but it is sometimes hard to avoid.
Issue a warning and treat the next step as an initial step.

4. The event function becomes positive. If this is an invariant condition,
then the step should be rejected and the event fired at #. If this is a
transient condition, no event occurs and integration is resumed.

5. Down-crossing root but no event. Update event function status and
resume integration.

6. No event but redo the initial step with different step size, in order
to move away from the zero. This is necessary in order to update the
event function status properly.

Event functions that remain close to zero for longer periods should
be avoided in the model. It is not appropriate to apply ALEVNT until all
event functions have clearly moved away from zero. If it is known from
the model that a particular event function remains zero for periods, then
the model should be modified so that the period is explicitly represented
as a discrete mode, and the event function should be deactivated in that
mode. For proper models, event functions that remain zero after the first
step are rare. It may occur either if the event function is not properly
scaled, or if it has a high order root at the initial point. Event functions
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with high order roots should also be avoided since the location problem is
ill-conditioned. This justifies the strategy of comment 3.

Another strategy to handle event functions that start close to zero is
used in DYMOLA and described in [Elmqvist et al., 1993]. When an event
function g causes an event and if g is close to zero when the integration
restarts, then g is first replaced by two other event functions, g + eps
and g — eps, where eps is a small constant quantity. This means that
& is considered to be zero as long as it remains within a small interval
close to zero, and events will occur when it leaves the interval. After
that, the original event function g is restored. The method is probably
better at handling event functions that remain zero for longer periods
in time. However, such event functions should be avoided in any case. A
drawback of the method is that two event functions are needed for each
event condition in the model. The method also wastes computations by
localizing the exact time when the event function leaves the region *eps.
Experimental studies with practical models must be performed to compare
the methods.

8.4 Summary

A general overview of the symbolic model manipulations applied to OHM
representations was given. The continuous time and the discrete event
parts of the model were discussed separately. Analysis and manipulation
of the continuous time parts mainly consist of the following steps:

1. Check that the model has the right number of equations so that each
unknown variable can be determined.

2. Reduce size and index if necessary, and do other symbolic manipula-
tions in order to simplify the solution.

3. Transform the model into a format required by the chosen numerical
integration algorithm and generate simulation code.

These model manipulation steps have been discussed in some detail.

Main steps in analyzing the discrete event model were discussed. The
steps include analysis of event propagation in order to determine a min-
imal set of fundamental discrete event types. For each event type, the
reinitialization problem is analyzed and transformed into event simula-
tion code. The continuous time event conditions are also analyzed and
transformed into a representation suitable for the numerical algorithms.
Finally, a general discussion on discrete event detection in combination
with numerical integrators was given.
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Conclusions

Models are important in all areas of engineering as representations of
real processes and potential designs. They are used for analysis, design,
and simulation. Different engineering disciplines have developed different
traditions in modeling. The computer tools that have been developed
are also specialized either for a particular engineering domain or for a
particular task. In the fields of control engineering and process design,
there is a need to represent mixed domain models in a form that can
be used for different tasks such as numerical simulation and symbolic
analysis. There is also a need to represent combined continuous time and
discrete event models. Since good models are hard to develop, it is very
important that models and model components can be reused.

This thesis defined two model representations: a high-level modeling
language called Omola and low-level hybrid model formalism called OHM.
It also presented an integrated environment for model development and
simulation called OmSim.

Omola is defined with a syntax which is intended to be understandable
by people and computers. The size and the complexity of real systems are
major difficulties when models are developed. For this reason, Omola is
provided with powerful concepts for creating abstractions and for hier-
archical decompositions of models. Concepts like classes and inheritance
from the field of object-oriented programming are used to support reuse
of models and model components.

Models represented as classes make it possible create model libraries
where definitions are organized in inheritance hierarchies. General model
definitions are represented by separate classes which can be refined and
specialized in multiple levels. This helps to organize the model libraries
and increases the possibilities for reuse.

Model behavior is represented in Omola as differential and algebraic
equations and discrete events. Component interaction is defined by con-
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nections that relate terminal interfaces. The meaning of a connection is
defined in terms of equations and event propagations, and it depends on
terminal attributes. Composite models can be defined and displayed using
graphical editors.

Omola is defined as two separate layers. A basiclayer has concepts for
general, object-oriented definitions of data structures. A second layer —
the model representation layer — is defined by a set of predefined classes
with defined meanings as model components. The layered approach makes
it easier to extend the language and to include new modeling concepts.

OHM is a model formalism for representing hybrid continuous time and
discrete event systems. The representation consists of sets of variables,
parameters, equations, event conditions, and event actions. It has a well-
defined meaning in terms of mathematics and logic. The main purpose
of OHM is to represent behavior so that the model can be analyzed and
manipulated algebraically. OHM is an intermediate representation, that
serves as a common mathematical framework that can be translated
automatically into more specialized representations. For example, one
representation may be the code required to simulate a model, another
can be the transfer function that represents the linearized behavior at a
particular operating point.

The thesis defined the procedure for translating an Omola model into
an OHM representation. An intermediate step in this procedure is to cre-
ate a model instance which is an instantiated version of the top-level
Omola class defining the model. A model instance preserves the composi-
tion hierarchy of the model but removes the inheritance hierarchy. There
are simple methods for extracting the OHM representation from a model
instance. This done by traversing the model hierarchy and extracting all
variables, equations, and event definitions.

An OHM representation can be analyzed algebraically and checked
for various structural properties. Well-known graph theoretical methods
can be applied to sort equations and to analyze the degrees of freedom in
the model and its index. Superfluous variables and equations can be elimi-
nated to reduce the size of the model. Proper models can be translated into
more specific representations suitable for numerical simulation. Methods
for this were discussed in the thesis, though they are mainly based on
previously known results.

OmSim is an implementation of an environment supporting develop-
ment and simulation of Omola models. OmSim organizes model libraries
permanently stored in the computer’s file system as Omola code. Models
are parsed and loaded into an internal model store. OmSim contains tools
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for presenting and defining models graphically as component diagrams. It
also contains tools for checking consistency of connections. Further more,
OmSim instantiates models, manipulates them and creates simulation
code for a set of different numerical integration routines. Instantiated
models can be simulated interactively.

The thesis documented the architecture of OmSim and discussed
some of the important design issues. The architecture of OmSim was
compared with a suggested standard for open architectures for computer
aided control engineering.

Applications

Omola and OmSim have been used in several application studies. These
include a modeling and simulation study of the Nordic power net [Persson,
1992], a Petri-Net modeling and simulation study of production systems
[Nilsson, 1991], a development of an object-oriented modeling methodol-
ogy for chemical processes [Nilsson, 1993], a modeling and simulation of
a heat exchanger system [Ericsson and Ostberg, 1993, Mattsson et al.,
1994), a study of models of dry friction [Eborn, 1994], a model library for
multibody mechanical systems [Anell, 1994], and object-oriented modeling
of lows [Ramos Gonzélez, 1994].

The need for a new model representation standard

The representation of dynamic models is central in software tools for con-
trol and process engineering. A complete environment for model repre-
sentation, development, analysis, simulation, and engineering design, is
a huge piece of software. It cannot be realized as monolithic program sup-
ported by a single vendor. For this reason, it is of vital importance that
representations are standardized so that different vendors and scientists
can contribute to an integrated environment of independent tools.

The main contribution of this thesis consists of the model representa-
tions Omola and OIIM. They can be viewed as a proposal for a standard for
representation of hybrid models [Mattsson and Andersson, 1991, Matts-
son, 1993].

A high-level language, such as Omola, is important since it makes it
possible to structure models in order to make them understandable and
reusable. With a standardized language, component manufacturers are
stimulated to provide product documentation in terms of dynamic models
that could be used directly together with models of other components.
This would simplify system engineering and design drastically. Omola
can also be used as an intermediate representation which can be used in
many engineering fields. With a standardized common representation it
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is possible to combine mixed domain models developed in different high-
level modeling tools.

A formal representation, such as OHM, is important since it has
a well-defined meaning expressed in mathematical and logical terms.
When this representation is standardized, different tools for analysis,
simulation, and design can be developed independently and used in an
integrated environment.

Future work

Omola may be extended in various directions.

Regular structures. A convenient syntax may be introduced for spec-
ifying models with arrays of similar components connected in a regular
way. This has been suggested in [Nilsson, 1993] and [Mattsson et al.,
1994]. The extension requires that the syntax of Omola is augmented and
that the instantiation procedures are updated.

Abstract classes. The discussion at the end of Chapter 4 suggested a
way of defining local classes that are not automatically instantiated as
model components. This is a simple, easily implemented extension.

Strict encapsulation. There may be reasons for providing more strictly
encapsulated model components. For example, it may be useful to forbid
access to model attributes that are not part of the model’s interface. This
is a modest extension of the language and the variable resolve procedures
in the modeling environment.

Formalized assumptions. It may be useful to document models more
formally. For example, assumptions about range of validity may be added
to the model. They can then by checked automatically during simulation.

Sequences and external functions. Some discrete event actions are
most conveniently defined as a sequence of operations. It would be possible
to extend Omola to allow an event action to be defined as a sequential
algorithm executed as a result of the event. However, in order to avoid
that Omola grows into a complete sequential programming language, it
may be better to provide an interface for external functions. Sequential
event actions can then be coded in an ordinary programming language
and dynamically linked to OmSim.
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A data model for OHM. 1If OHM is going to be used as common repre-
sentation in integrated environment it must be given a precise definition
as a language or a data structure. This can be done either by defining
a concrete syntax for OHM or by defining OHM in some standardized
data definition language. OHM may also provide an interface to tools for
symbolic manipulations.

Models with variable structure. It is possible to extend Omola and
OHM to represent models with variable structure. This means models
where parts of the system are added and removed from the model as a
result of the system’s behavior. This would enhance the modeling power, in
particular for discrete event systems. The extension means that language
concepts for introducing and initializing components dynamically must
be defined. OHM also needs to be extended to represent sets of equations
that can be activated or deactivated as a result of discrete events.

Extensions to the modeling environment. 1t is easy to imagine many
tools that are useful to support model development and analysis. The
following gives a few examples:

e An interface to a proper database where different versions of models
can be associated with simulation and analysis results.

e An interactive tool to operate on Omola models and make it possible to
modify hierarchical models, for example, to aggregate or disaggregate
components and to introduce or remove hierarchical levels.

e A tool for presenting and operating on OHM representations so that
the user can understand the algebraic properties of the model and
direct the symbolic manipulations.

o A code generator that translates discrete event parts of an OHM
into executable real-time procedures. This may be used for automatic
implementation of control systems represented in Omola.
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A

Omola Grammar

omola-definitions ::=
/* empty */
omola-definitions id class-def ;
omola-definitions id type-declaration ;
omola-definitions LIBRARY id ;
omola-definitions USES name-list ;
omola-definitions block ;
omola-definitions COMMENT

clags-def ::=
super-class-def
super-class-def WITH body END

super-class-def 1=
ISA lib-id

lib-id :: =
id
id ::1id

body ::=
/* empty */

body body-item ;
body COMMENT
body TAG

body-item ::=
name-list class-def
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name-list type-declaration
reference := expr

exXpr = expr

reference AT reference
event-handler

event-handler ::=
WHEN expr cause-list event-body

cause-list =
/* empty */
CAUSE expr-list

event-body ::=
I* empty */
DO actionbody END

actionbody 1=
/* empty */
actionbody name-list type-declaration
actionbody function-designator := expr ;
actionbody function-designator ;
actionbody cond-action
actionbody expr = expr
actionbody COMMENT

cond-action 1=
IF expr THEN function-designator ELSE function-designator ;
IF expr THEN function-designator ;

type-declaration ::=
TYPE var-kind type-designator
TYPE var-kind type-designator := expr

var-kind ::=
/* empty */

DISCRETE
STATIC

type-designator ::=
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MATRIX [ expr , expr ]
ROW [ expr ]
COLUMN [ expr ]
REAL

INTEGER

STRING

( name-list )
BOOLEAN
REFERENCE
SYMBOL

expr-list ;1=

expr

expr
expr-list , expr

IF expr THEN expr ELSE expr

expr AND expr
expr OR expr

NOT expr

expr REL-OP expr
expr ADD-OP expr
expr MUL-OP expr
expr HAT expr
expr DOTHAT expr
ADD-OP expr

expr QUOTE
primary

primary ;=

reference

QUOTE id

matrix

REAL

INTEGER
STRING

( expr )
function-designator

matrix ;1=

[ rows ]
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TOWS @i =
columns
rows ; columns

columns 1=
expr
columns , expr

range =
expr
expr .. expr

function-designator ::=
id ( expr-list )
id ()

name-list ;:=
id
name-list , id

indexed ::=
id
id [ range ]
id [ range , range ]

indexed-list 1=
indexed
indexed-list . indexed

reference ;=
indexed-list
.+ indexed-list
id :: indexed-list
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B

The Base Library

The following is a listing of the Omola Base Library which contains a set of
definitions always available in Omola. The classes defined in this library
must be used as super classes, directly or indirectly, of all user-defined
models and model components.

LIBRARY Base;
Time TYPE Real,;

Layout 1A Class WITH
x_pos TYPE Real;
y_pos TYPE Real;
x_size TYPE Real := 400,
y_size TYPE Real := 300;
invisible TYPE Integer := 0;
END;

Model 18A Class WITH
attributes:

Graphic 18A Layout;
END;

Event 18A Class WITH
condition TYPE Boolean := false;
END;

EventTerminal 1SAN Event WITH

Graphic 18A Layout;
END;
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EventInput 1SAN EventTerminal wiTH
causality TYPE STATIC Symbol := ’input;
END;

EventOutput 1SAN EventTerminal wiTH
causality TYPE STATIC Symbol := ’output;
END;

Connection 1SA Class;

Parameter 1sa Class wWITH
attributes:

value TYPE Real,;

default TYPE Real := 0.0;
END;

Variable 18A Class WITH
attributes:

value TYPE Real,;

initial TYPE Real := 0.0;
END;

DiscreteVariable 1SA Variable wiTH
attributes:
value TYPE DISCRETE Real;
initial TYPE Real := 0.0;
END;

Terminal 1sA Class WITH
Graphic 18A Layout;
END;

BasicTerminal 1sA Terminal wiTH
attributes:
value TYPE Real;
quantity TYPE STATIC String := "number";
unit TYPE STATIC String := "1";
variability TYPE STATIC (TimeVarying, Parameter) :=
"TimeVarying;
default TYPE STATIC Real,
END;
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SimpleTerminal 1SA BasicTerminal wiTH
causality TYPE STATIC (Undefined, Input, Output) := ‘Undefined;
END;

Simplelnput 1SA SimpleTerminal WiTH
causality := ’Input;
END;

SimpleOutput 15A SimpleTerminal WITH
causality := ’Output;
END;

ZeroSumTerminal 1sA BasicTerminal wiTH
direction TYPE STATIC (In, Out) := ’In;
END;

DiscreteTerminal 15A SimpleTerminal WITH
value TYPE DISCRETE Real;
END;

RecordTerminal 18A Terminal WITH
components:
END;

InputObject 1SA Class WITH
value TYPE Real;
default TYPE Real := 0;
END;

ContinuousInput 1SAN InputObject WITH
END;

Discretelnput 13aN InputObject wiTH

value TYPE DISCRETE Real,
END;
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