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1. Introduction

This is a final report for the project “Tools for model development and simu-
lation” (ST'U projects 87-02503, 87-02425) carried out in the period July 1987
to June 1989. The project is the last part of the STU supported research
program “Datorbaserade hjilpmedel for utveckling av styrsystem (Computer
Aided Control Engineering, CACE)”, which started in the end of 1984,

Automation and advanced control are of strategic importance for the
Swedish industry. There are examples in the whole range from traditional
process industry and power generation to aero- and astronautics. To be able
to develop and operate high performance systems, computer based tools for
model development, simulation, analysis, design, validation, operator training,
production planning, operator support, supervision, fault diagnosis etc. are
needed.

Today’s CACE tools have proved to be useful. However, they were de-
signed 10-20 years ago. The computers had then moderate computing capacity
and primitive hardware for graphical input and output. The main function of
the tools is to perform extensive numeric calculations and present the results
in the form of simple plots. The users want to have tools that better support
their needs: user inferfaces which support their way of thinking, integrated
environments supporting all phases from specification and design to operation
and maintenance etc. The enormous development of the information technol-
ogy {workstations, object-oriented programming, computer graphics, artificial
intelligence, expert system techniques, computer algebra etc.) has opened
possibilities to improve the CACE tools significantly. The goal of the CACE
project has been to

1. investigate how the CACE tools can be improved
2. develop prototype tools
3. establish international contacts

In the first phase of the CACE project a number of pilot projects investigated
some ideas and the potential of computer graphics, computer algebra and
expert system techniques. Prototype tools, which can demonstrate ideas and
principles were also developed. These projects showed that it indeed is possible
to improve the tools. A summary can be found in Mattsson (1987).

For the last phase of the CACE project it was decided to focus on tools
for model development and simulation (Mattsson, 1987). The motives were:

1. It is of importance for all kinds of engineering.
2. It contains most of the important issues for CACE,
3. It fitted well in the international collaboration.

An important conclusion from the pilot projects was that model representation
is a critical issue. The system concept is fundamental in control engineering,
but today’s tools have only primitive representations, which do not support
the users’ perception of systems. Furthermore, a common basic representation
is needed to make the CACE tools integrated.

The work in last phase of the CACE project has largely followed the
research program. A major result is a design proposal for a kernel for model
development and simulation. The proposal may be of interest for all users of




models. A basic idea is to support reuse of models so that models can be used
for different tasks and so that it easy to modify a model to describe a similar
system, since it is difficult and laboriocus to develop new models. By a kernel
we mean the routines to manipulate the internal representation. In our design
there is a clear separation between user interface, internal representation of
data and models and processing tools. This separation makes the design more
flexible and allows customized user interfaces. The kernel can be viewed as a
central model data base in an integrated environment for model development,
simulation, analysis, design, documentation etc. A prototype implementation
of the kernel as well as a user interface has been written in Common Lisp
and KEE. The project has also comprised an application study focusing on
modelling of chemical processes to get some evaluation of the ideas.

This report is organized as follows. In Chapter 2 motives for supporting
model development are given. Chapter 3 outlines basic ideas and our ap-
proach to support model development. Chapters 4 and 5 describe the kernel
in some detail. Chapter 6 is about user interfaces and Chapter 7 is about
the application study. Chapter 8 contains the conclusions. Appendices A —
C list published papers, conference contributions, other reports and external
lectures given by CACE group members.

2. Models Are Essential

The reason for supporting model development is that
1. models are essential in all kinds of engineering and
2. model development is difficult and time consuming,

It is a well-known fact that it is difficult and time-consuming to develop a new
model and we will discuss approaches to support model development in the
next section. Let us now motivate why models are needed.

What are the uses of models?

Models are useful in all phases of a systems life from design to operation and
maintenance, The designer can use a model to simulate and to analyse the
behaviour to learn about the system and to get insight in its behaviour and to
validate his design. He can try various system architectures or configurations
to make the best choice. He can use optimization tools to tune system param-
eters, Models are needed in simulators for education and training. Computer
based tools for production planning, online optimization, operator support,
supervision and failure analysis need models of the system,

Note that modelling and simulation are closely connected to each other.
To simulate you need a model. Realistic models are typically non-linear, which
implies that it is difficult to analyse a behaviour in other ways than through
simulations. However, with a modelling language clearly separated from cal-
culation and simulation issues, models can be used in a more general context
for process documentation and to preserve design knowledge.




Why are models needed?

All mathematical methods need some kind of model of the system under con-
sideration. If we do not want to use mathematical methods and models when
making a new design we have to make trial-and-error experiments on real
equipment, It may be unfeasible to make experiments on real equipment for
complexity, performance, safety and economic reasons. First, the system to be
designed may have to be so complex that it is impossible to come up with any
reasonable design from trial-and-error experiments. Second, to achieve high
performance the system must be optimized, but it is in practice impossible
to tune more than three coupled parameters by trial-and-error. Third, safety
regulations may forbid real experiments, or require validation of the design for
extreme and emergency conditions and it may be dangerous or impossible to
perform this validation by real experiments. Fourth, real experiments are of-
ten expensive and time consuming to perform. Furthermore, when redesigning
a plant, it may not be allowed to disturb the operation of the existing plant,

Power generation, aero- and astronautics are typical areas where advanced
mathematical methods have been used for a long time to handle complexity,
performance and safety issues.

Fierce competition is an important force to use advanced mathematical
methods to make better and cheaper designs, and to use computer based tools
for production planning, online optimization, operator support, supervision
and failure analysis to increase productivity and quality and to decrease pro-
duction and maintenance costs.

Requirements on saving energy and raw material as well as avoiding en-
vironmental pollution make the designs more complex, since the system must
contain recirculation loops to win back energy and material. Recirculation
loops introduce interactions between various parts of the process implying
that it is impossible to design and to operate them independently of of each
other.

More specific motives for using advanced mathematical methods for de-
sign and in particular control design can be found in Anon (1987) and Fleming
(1988). The US Department of Defense has picked simulation and modelling
technology as one of 22 eritical technologies, since it can reduce design and pro-
duction costs, improve performance and maintenance, train personnel. Sim-
ulators for education and training have been used for a long time in power
generation, aero- and astronautics. The interest from other industry areas
to use simulators for education, training and operator support is large today.
STU has a special research program DUP to investigate how process opera-
tors’ tasks can be supported by computer based tools. A large part of this
program is devoted to simulators.




3. Support of Model Development

In this chapter we will first indicate requirements on concepts and tools for
model development and then outline our approach.

3.1 Requirements

Since models are important and since it is difficult to develop new models, a
basic question is how computer based tools can support model development?

Reuse

The best way is of course to be able to provide the user with the desired model
directly and automatically. This implies model libraries and reuse of models.
There are three facets of reuse:

1. Various purposes or caleulations.
Models are needed in all mathematical methods and it should be possible
to use a model for various purposes without having to recode it manually.

2. Similar systems,
It should be easy to adapt a model to describe a similar system.

3. Different users.
The user interface should preferable be customized and adapted to un-
derstand and use the user’s concepts and terminology.

New models

A model can be developed using first principles or by analysing measured data.
Our project have mainty focused on the first approach.

When developing a new model, decomposition is needed to handle com-
plexity. It should also be possible to extract and reuse parts of existing models.
There should be tools that tune mode! parameters from measured data.

3.2 Basic ideas

Our proposal is based on four main ideas
1. declarative models
2. structured models
3. automatic consistency checking
4

. customized user interfaces

Declarative models

Models developed to be used in one package today cannot be used in another
package without additional work. Unfortunately, much “model development”
work of today consists of manual recoding or implementation of adapters.




An obvious reason is of course that there is no common agreement on the
representation of models.

Another maybe less obvious reason is that the representations used in
most of today’s CACSD and simulation tools are too specialized and of too low
a level to allow reuse of models for other tasks than simulation. Today’s most
used languages for continuous simulation (ACSL, CSMP, CSSL IV, EASYS
etc., for overviews see Kreutzer (1986) and Kheir (1988)) follow the CSSL
definition (Strauss, 1967). These tools solve problems of the type da Jdt =
J(t,2) if the user defines a Fortran-like procedure which calculates f(t,z).

To allow a model to be used for different purposes, it should be declarative
and not procedural. It should describe facts and relations (equations) and not
be a calculation procedure. A declarative model is multipurpose, since it can
be manipulated automatically to generate efficient code for simulation, code for
calculation of stationary points, linear representations, descriptions which are
accepted by other existing packages etc. Models of controllers can be used for
automatic generation of the control software or to generate layouts for special
purpose analog or digital VLSI circuits which implement the controller.

A declarative model is usually also closer to the model developer’s percep-
tion of the physical reality, and therefore, development of new models is easier.
When developing a model from first principles for a physical system one uses
fundamental laws as mass balances, energy balances and phenomenological
equations. Model development as well as documentation are facilitated if the
user can enter these equations as they are without having to transform them
into a computational procedure. The risk of introducing errors during manual
transformation is reduced. The natural declarative form for continuous time
models are Differential-Algebraic Equation (DAE) systems, g(t, & y2)=0. An
overview of important properties can be found in Mattsson (1989a).

The kernel can allow any logical and mathematical framework such as
differential-algebraic equations or difference equations to describe behaviour,
but a basic idea is that behaviour descriptions should be declarative and equa-
tion based,

Structured models

To understand large models and to be able to reuse parts of models, good
structuring facilities must be supported. A powerful modularization concept
supports model development by beating complexity as well as it allows reuse
of parts and building of models by putting together existing components.

Block diagrams is a common structuring tool. A block represents a sub-
model. The connections between the blocks show cause-and-effect relation-
ships between inputs and outputs of the submodel. A connection is unidirec-
tional saying that the value of an output should be calculated from the input
connected. It means that the model developer must deduce the computational
causality to define what are inputs and outputs to a submodel.

When making a model library, it is very inconvenient to define which
of the terminals of a submodel that are outputs, because what are inputs
and outputs of a submodel is not only a property of the submodel itself, but
also of how it is used. As motivated above a model should not be a com-
putational procedure. It should not be a procedure which can calculate the
outputs when the values of the inputs and the internal state are given., The
model development and simulation tools must be able to handle interactions
with unspecified computational causality (non-directional interaction). A con-




nection should only define a relation saying that two terminals A and B are
equal, not define a compute statement A := B or B := A. Ideas like this have
been developed in connection with special purpose simulators. An example is
SPICE (Nagel, 1975) for electrical circuits where the basic building blocks are
four poles.

In a simulation language like CSSL (Strauss, 1967) model decomposition
is handled by macros, which require specification of the causality of the inter-
action. Another drawback with the macro concept is that the model structure
is not preserved at compilation, The macros are expanded at compilation and
at simulation the model has no structure, The names of the states and the
variables of the submodels are replaced by names like 0QQQ1, QQQ42 etc that
are generated automatically resolve potential name conflicts, In the simula-
tion language Simnon (Elmqvist, 1975) blocks are included in the language,
but it is necessary to specify causality.

Bond graphs (Karnopp and Rosenberg, 1971) is another way of describing
a model. It works well if the components are coupled via energy exchange only,

OQur proposal for model structuring is object-oriented and introduces a
small, basic, common set of concepts; A collection of basic objects like mod-
els and terminals with specified properties and operations. The proposal is
described further in the next chapter.

Automatic consistency checking

It is important to make the use of library models safe and reliable. A model
component is an encapsulated entity with well defined interfaces. This pre-
vents to a large extent unintended abuse. It would be nice if the user could
get automatic warnings when making improper connections when putting to-
gether a model. To allow automatic consistency checks, the model developer
must “supply” redundant information. Our concepts allow a model developer
to supply such information as described in next chapter. However, it is not
our aim to force a user who, for example, is in an exploratory phase, to specify
things that the computer itself can deduce from the contexi. A model devel-
oper is hopefully better motivated to supply redundant information when he
has tested the model and is going to include it in a public model library. Such
information can be seen as a part of the model documentation.

Customized user interfaces

We believe that various users could agree upon the objects proposed, but
that they want to have customized user interfaces with various textual and
graphical presentations. The proposal focuses on the basic objects and their
properties and allows integration of different customized user interfaces.

The concepts proposed are basic and are mainly intended for researchers
and modelling and simulation specialists. Other user categories can be sup-
ported by building new user interfaces and new layers of tools. Such tools can
allow an architect or a chemical engineer to describe his building or chemical
plant and the assumptions in his own language. The tools should then gen-
erate the desired model in an explicit form as outlined below. It means that
the generated model is readable and can be modified by the user. Today’s
“high-level” tools of this kind are too rigid. They produce canned, black box
models which cannot be modified. The user is in trouble if some component
is missing, since it is very difficult or even impossible for him to add new
components.




4. Model Structures

An important conclusion from computer science is that modules should be
encapsulated with well-defined interfaces. The idea is to support abstraction
by separating the internal details of a model from its interface. It means also
that internal details can be changed without affecting the way the module is
used as a component,

The model is the kernel’s basic structuring unit. It is an abstraction of
some dynamic behaviour. A model consists of three parts: terminals, pa-
rameters and realizations, The terminals are variables which constitute a
well-defined interface to describe interaction with the environment. Parame-
ters are interface variables defined by the model designer to allow the user to
adapt the description of behaviour.

Realizations

A realization is a description of model behaviour. A model user can use &
model without having to bother about how its behaviour is defined internally
and the model designer can and must define its behaviour without any as-
sumptions about the environment.

One reason for treating a realization as a separate part within the model is
that we want to have multiple realizations. Different realizations can give more
or less refined descriptions of the behaviour or they can define the behaviour
for different working conditions or phases of a batch process. The user can
choose the appropriate realization for each particular use.

We distinguish between primitive realizations and structured realizations.
A structured realization is decomposed into submodels and its behaviour is
described by the submodels and their interaction. The submodels can in turn
have structured realizations which means that the model concept is hierar-
chical. A primitive realization is not decomposed into submodels, but its be-
haviour is described in some mathematical or logical framework as differential
equations, difference equations etc.

Parameters

A parameter is a time invariant variable that can be set from ountside to modify
a realization. The burden of a user to set parameters can be relieved by letting
the model developer provide default values. If a good default alternative is
provided, the casual user could be left unaware about -the flexibility and no
extra burden is put on him. To support reparameterizations and alternative
parameters, it is possible to define relations between parameters.

Terminals

Terminals can be viewed as variables which are shared by the internal descrip-
tion of the model and its environment.

It is natural to aggregate terminal variables, since the description of an
interaction often involves several quantities. We propose two types of compos-
ite terminals: record and vector terminals, Their subterminals can be simple,
record or vector terminals,
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ExAMPLE 4.1—A pipe terminal

A terminal to describe the ends of a pipe or the inlets and outlets of pumps,
valves and tanks can be defined as a record terminal

PipeTerminal IS A RecoxrdTerminal WITH
components:
P IS A PressureTerminal;
g IS A MassFlowTerminal;
d IS A DiameterTerminal;

END;
having three components, which are simple terminals. The component d de-
fines the diameter of the pipe or hole. (]
Connections

Interactions between submodels of a structured realization are described by
terminal connections. The term “connection” reflects what we are doing in the
block diagram when describing an interaction, We will not discuss user inter-
faces here, but just point out that a block diagram is a good way of describing
model structure. Elmqvist and Mattsson (1989) have developed a prototype
simulator, where hierarchical block diagrams with information zooming are
used to visualize the model structure. Information zooming means that the
amount of information displayed in a block changes dynamically depending on
its size on the screen.

A connection between two structured terminals means that their first
components are connected to each other and so on recursively down to the
level of simple terminals. There are two sorts of simple terminals: across
and through. A connection between two across terminals means that they
are equal. Examples of physical quantities are position, pressure, temperature
and voltage. Through terminals have an associated direction (in or out) and
connected terminals should sum to zero. Examples of through quantities are
mass flow, energy flow, force, torque and current.

A simple terminal has an attribute defining the unit of measure with
the SI unit as default. It is used for automatic introduction of proper scale
factors in the connection equations, thus eliminating the need of user defined
adapters.

It is important to note that generally the causality of a terminal (input
or output) is not defined by the model designer but is inferred from the use of
the model.

The semantics of a connection is kept simple, since we do not want to
provide two different ways of describing complex behaviors. It is possible to
describe complex interaction by introducing new submodels. Tt is also desirable
to make the means to describe interactions independent of the frameworks used
to describe the behaviour of primitive models.

EXAMPLE 4.2—Pipe terminals cont.

Assume that we want to model a system where a tank has a valve at the
outlet. We then just connect the outlet terminal of the tank model to the
inlet terminal of the valve model. The equations for the interaction saying
that the pressures as well as the diameters should be equal and that the mass
flows should sum to zero are deduced aufomatically from the connection. 0
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Consistency of connections

It is important to make the use of library models safe and reliable. The
encapsulation of the models prevents to a large extent unintended abuse, but
the terminals are dangerous holes in the wall. To allow automatic checks of
connections, the model developer may add extra information, which also is
useful for documentation.

Simple terminals have the attributes name of quantity and value range.
The name of quantity is used used to check the consistency of connections.
There is an international standard (ISO 31) for naming of quantities in differ-
ent national languages like English or Swedish. Information about ranges of
validity is used to test for unintended abuse during simulations.

A terminal component may be declared as time-invariant. Such a ter-
minal is similar to a parameter. This has two complementary uses. First, a
connection implies automatic propagation of parameter values from one sub-
model to another. Second, if the two connected parameter terminals have
defined values, they must be equal for the connection to be consistent.

ExaMPLE 4.3—Pipe terminals cont.
Consider PipeTerminal in Example 4.1, The pressure component p can be

defined by

PressureTerminal IS A SimpleTerminal

WITH
attributes:

value = UNKNOWN;
quantity := pressure;
unit = kPa;
direction = ACYOS8S;
variability := time_varying;
causality = UNKNGWN;

END;

The mass flow component q and the diameter component d are defined in
analogous ways. An important difference is that mass flow is a through variable
and the direction attribute should be set to in or out.

The variability of d ought to be set to time_invariant if the model does
not allow the size of the pipe or hole to vary with time. It also allows automatic
check of that two connected pipes are of the same diameter.

The terminal could also have a component indicating medium, which can
be used for consistency checking or parameter propagation, For example, we
can check that water pipes are connected to water pipes. O

Unspecified terminal attributes

To allow exploratory model development and prototyping, a declaration of
a terminal may leave attributes unspecified as long as necessary information
can be deduced from the context. Unspecified atiributes make it possible
to develop generic models. To support consistency checks of generic models,

the model developer can specify relations between unspecified attributes. See
Mattsson (1989b).
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5. Object-Oriented Representation

In this chapter we will outline the conceptual design of a kernel for model
representation. The basic entities, relations between entities and operations
on them are discussed.

Object-oriented programming has been an increasingly popular method-
ology for software development. Increased programmer productivity, increased
software quality and easier program maintenance are the objectives for this
new methodology. Object-oriented programming supports these objectives by
facilitating modularization and reuse of code. We will here show that ideas
from object-oriented programming are useful also for model representation.
For a brief introduction to object-oriented programming see Stefik and Bo-
brow (1986).

Basic model objects

Models and model components are objects in the kernel for model Tepresen-
tation. An object has a unique identity within the system and it contains a
collection of attributes. There is a number of important types of ob jects rec-
ognized in the kernel. They are representations of model structuring entities
discussed in the previous section:

e models,

¢ terminals,

¢ paramefers and

+ realizations,

The last three object types can be used as components of models.

Class objects and relations

In our proposal, all model objects are represented as classes, In object-oriented
programrning a class describes the properties common to a set of similar ob-
jects — it defines an object type. For this reason, a model defines a component
type rather than a particular instance of a component; the same applies to
realizations, terminals, etc, A class can have a number of attributes which can
be simple variables or relations to other model objects.

There are a three important relations which can be established between
model objects. These are:

¢ has — part-of
e subclass - super class

e connection

The has-link is typically used between a model and its terminals, parameters
and realizations, Further, a structured realization has this kind of relation to
other models indicating the submodels. A has-link is stored as an attribute of
the owner. The inverse relation is called part-of.

One class can be defined to be a subclass of another class — the super
class. The subclass will inherit all properties of the super class in addition to
the locally defined properties. Inheritance is an important concept in object-
oriented programming and its use in this context will be discussed below.

13




A connection is a symmetric relation between two terminals and it is
stored as an attribute of a structured realization.

ExAMPLE 5.1—Tank model
In this example we will show a model of a tank written in Omola (Object-
Oriented Modelling Language) (Andersson, 1989a,b). Omola is a declarative

language for model representation that has been designed to support our pro-
posed concepts.

Tank IS A Model WITH
terminals:
inlet IS A InPipeTerminal;
outlet IS A OutPipeTerminal;
level IS A OutTerminal;
parameters:
area TYPE real
roh TYPE real
realization:
normalBehaviour IS A Set0fDAE WITH
equations:
area*dot(level) =
inlet.q - outlet.q;
inlet.p + level*rohkg =
outlet.p - rohkviabs(v)/2;
outlet.q =
pix(outlet.d/2) “2*v*roh;
END;
END;

This code represents a tank model with three terminals, two parameters and a
realization component stored as attributes. The inlet and outlet terminals are
both pipe terminals as in Example 1, but with directed flow components. For
inlet positive flow is into the tank and for outlet positive flow is out from
the tank, The realization has three equation attributes. The first equation
is a mass balance and the other two are derived from Bernoulli’s equation,
In Figure 5.1 we can see some of the objects involved and their relations
represented graphically. O

I Model !

RecorTermInI

SimpleTerminat

UnPIpaTermlnalj {OutPIpeTermlnaﬂL OutTerminal _i

Figure 5.1 Some of the objects and their relations in the tank model. Subclass
links are golid while has-links are dashed.
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Inheritance

Inheritance is an intricate but powerful concept in object-oriented program-
ming, When a class is defined to be a subclass of another class it will inherit
all attributes and properties from the super class. The subclass is then free to
add additional attributes or to redefine inherited attributes. Inheritance can
be used to separate out some general attributes from a set of similar classes
into a common super class.

Inheritance will facilitate reuse of models since carefully designed general
models can be saved in libraries. These models or model components can be
used as super classes of more specialized model objects. We have already seen
how terminals have been defined in this way. The inlet and outlet terminals
of the tank model are subclasses of InPipeTerminal and OutPipeTerminal
which are specializations of the same super class RecordTerminal.

As an example of how models can be defined by specializations we can
imagine a model of a regulator defining only the terminals: set-point, measure
value and control value. This model can be specialized into different types
of regulators by means of adding different realizations. We may then define
a structured model like in Figure 5.2, containing the most general regulator
model. The structured model can then be specialized to contain different
regulator models,

TenkSystem

Regulator [~¢ Pump M}—[

Figure 5.2 A structured model

Interpretation of model objects

Model structures represented in the kernel or in Omola code can be accessed
and manipulated by different tools in a CACE environment. We may say that
a particular tool that extracts relevant properties of a model interprets the
model. Different tools may extract different properties and therefore, they
interpret the model differently.

Since all model objects discussed so far are classes, i.e., they represent
types rather than instances of model objects, one obvious interpretation is to
use a model as a template to create a model instance. A model instance is,
for example, needed when the model is going to be simulated. Then there
must be representations for each particular model object and state variable.
The instantiation procedure is recursive in the components and submodels.
Typically when we want to simulate a model it is first instantiated then all
equations are extracted from the primitive models and equations are generated
from the connections. Second, the equations are sorted and turned into code
that can be used by the DAE-solver, Since the model structure is maintained

15




in the simulation model (the model instance) the user can access it the normal
way, perhaps through its block diagram, and examine or change parameters
and initial values,

As examples of other possible interpretations of model objects we can
mention

* to generate a graphical picture of a system structui'e,

* to generate a text descriptions of a model for documentation,

¢ to generate a special purpose code, e.g., regulator code or

* to turn a model into a form accepted by a particular design package.

6. The User Interface

The user interface is a very important component in any computer based tool
and in particular it is important in our proposed environment. A simple user
interface has been implemented in our prototype in order to demonstrate the
basic concepts. In this chapter we will first give a very brief overview of the
current trends in design of interactive user interfaces. Then we will give a
short description of the interface of the implemented prototype.

Current trends in user interface design

Human — computer interaction is currently a very active research area. De-
velopments in computer hardware technology have made it possible to create
very advanced user interfaces to application programs. However, the methods
for designing such advanced interfaces are still rather primitive.

A current trend is to more and more separate the implementation of the
user interface from the application program. For simple applications this can
be done in a clean and natural way, but in many cases for more complicated
application programs this is not a clean cut. Often a good user interface needs
a substantial amount of “understanding” of the application. In other words,
the user interface needs a model of the application. In this case we have
the problem of keeping the application model consistent with changes in the
application.

Another trend in interface design is to use higher level specifications of the
user interaction. Commonly used are toolkits of various graphical objects and
interactors, such as dialogue boxes, push buttons and menus of different kinds.
They are often designed for a special computer or a special window manager.
The InterViews (Linton et al., 1989) is an example of such a toolkit based on
X Window System. A User Interface Management System (UIMS) contains a
Iibrary of interactive objects like the toolkits but it also has a number of tools
that helps the interface designer to put the objects together into a complete
user interface. The interface designer may describe the interface on a more
abstract level, sometimes by a declarative language. This means that the
designer specifies what is to be done by the user interface rather than the exact
details of how to do it. The designer may also use some formalism to describe
dialogue such as transition graphs or BNF (push-down automaton). Some
more advanced tools allow the interface designer to build the user interface in
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an interactive or semi interactive way with immediate feedback showing the
current appearance of the interface. An introduction and survey of UIMS can
be found in Mayers (1989).

The ongoing standardization of windowing systems and graphic input
and output primitives makes it more attractive to develop and commercialize
advanced UIMS software. In a few year’s time such systems will probably be
more commonly available at reasonable prices.

The prototype interface

In our prototype we have realized the importance of a reasonable good user
interface. In the project we have not in particular studied user interface design
as such, since the project have been focusing on representation of models
rather than the presentation. However, in order to demonstrate the power
and appropriateness of the underlaying representation a reasonably advanced
interactive user interface had to be designed. We chose KEE! as the basic
implementation tool for the prototype. One reason was that it provided some
amount of support for building user interfaces. KEE uses object-oriented
representation of graphical entities. Predefined primitive graphical objects
can be specialized and combined into more advanced ones.

A graphical interface in our suggested modelling environment can not be
clearly separated from the application — the model representation data base
— because it is too much involved in the used data model. The approach
taken instead, is to let the user interface operate directly on the model data
base. The models represented in the data base may then contain additional
information manipulated only by the user interface. For example, a model
contains information about how it is presented on the screen, graphically or
as text, menus of possible operations, etc.

Direct manipulation of models

The style of interaction in the prototype user interface is based on direct
manipulation. Most objects, atiributes and relations in the model data base
can be represented on the screen. The screen representation can be a graphical
icon, a diagram or a textual representation. In general every object is mouse
sensitive and has an associated menu of operations,

The model data base in our prototype is divided into a set of libraries.
A library is a collection of model objects and their attributes, and it can be
saved and loaded from external memory. Objects in different libraries may
have relations. The sereen is separated into four important areas:

¢ an access window for loaded libraries,
e a library display window,

e an editor area and

& one or more general display windows,

The access window for loaded libraries displays a list of all loaded libraries
where each entry is mouse sensitive and has an associated menu of library
actions. The library display window shows the content of a selected library.
For example, it may show the graphical icon of every model object in the
library. Two important operations are implemented for most model objects;
these are display and edit. These operations can of course be called from

! Knowledge Engineering Environment, KEE is a trademark of IntelliCorp, Inc.
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the object’s menu which is accessible through its icon but since they are very
commonly used there is an alternative short cut. An object can be picked
from the library display and an icon contour image can be dragged into an
appropriate area of the screen. If an object is dragged into a display window
the object will be displayed in that window. If an object is dragged into the
editor area of the screen, the object can be edited.

In the editor area of the screen, one of a number of different editors may
appear. The type of the object fo edit determines which editor that will be
invoked. There is a text editor for primitive realizations (equations) and other
text definitions. A structure editor is invoked for block diagram editing of
structured models and a form is invoked for editing the attributes of simple
terminals.
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7. An Application Study

The project has also included an application study which focused on modelling
of chemical processes. The aim was to get some evaluation of the ideas and
feedback from a real example. The application study has been performed by
Bernt Nilsson, who is a chemical engineer interested in modelling. He has
played the role of a user who wants to model a medium sized, typical chemical
process plant that contains a reaction part with a tank reactor and two tubular
reactors, and a separation part with three distillation columns in series.

The modelling work is described and discussed in Nilsson (1989), where
also the model can be found. Since the application is a typical chemical plant,
he presents an object-oriented modelling approach for chemical plants.

Chemical processes are often complex plants that are composed of a large
number of components. However, chemical processes are often built as a num-
ber of subprocesses, In the application there are the reaction part and separa-
tion part. These subprocesses can be decomposed further into process compo-
nents or unit operations. This decomposition is easily and neatly described by
our hierarchical model decomposition concept. The process components are
often standard process equipments such as pipes, pumps, valves, reactors, heat
exchangers, distillation columns etc. that are used in different configurations
in different processes. A model class allows reuse of a description in several
instances and the inheritance mechanism allows adaptation of a model.

Nilsson (1989) describes ways of further decomposing chemical models.
One interesting example is the medium and machine decomposition. It is
of interest to separate the description of the process components from the
descriptions of the chemical media. In today’s simulation systems a model of
for example a chemical reactor contains a reaction model which can only be
modified by setting parameter values. A specification of a chemical reactor
should contain the equations describing its thermodynamic and hydrodynamic
properties, while the equations describing the reaction should be associated
with the chemical media. Nilsson shows that the submodel concept allows a
nice medium and machine decomposition.

Regular structures are common in chemical processes. For example, a
distillation column may contain a few hundred trays connected in series. To
handle this conveniently, Nilsson proposes matrices of submodels and a ma-
trix notation to describe how they are connected. Finite element approaches
to distributed parameter systems (partial differential equations) create also
regular structures,

Parameterization and generic models are important to increase the flexi-
bility and the reusability of models. The concepts proposed support Nilsson’s
basic needs of parameterizations. He states that it important to be able to
parameterize structural properties like the number of chemical components
flowing in a pipe. With matrices of submodels it is possible to let the number
of trays in a distillation column be a parameter. He illustrates in several ways
that inheritance allows powerful parameterizations. For example, it makes it
simple to change the model of the medium in the distillation column.

Nilsson concludes that the proposed model representation is superior to
existing ones, but it requires also a good model/user interface and number of
tools to make a good modelling environment.
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8. Conclusions

First, the results of the project is summed up, Then technology transfer is
considered. Third, some more general experiences of software techniques and
tools are discussed.

8.1 Results

Most of today’s languages for continuous simulation follow the CSSL defini-
tion (Strauss, 1967). It has served well for over 20 years. We think it is time
to capitalize on the enormous development of information technology and re-
consider the foundations of model representation. Qur preposal is a modest
effort in that direction.

The major contribution of the project is that experience in model struc-
turing, progress in numerical analysis and new ideas in object-oriented design
are collected and turned into a coherent scheme for model representation. Qur
proposed model representation scheme is general, powerful, clean and easy to
understand. The result is presented as a design proposal of a kernel for model
representation. The kernel is intended as central model representation data
base in an environment of tools for system engineering. The basic features of
the kernel are:

® Declarative and equation based behaviour descriptions to make the mod-
els versatile and useful for various applications.

¢ Hierarchical models with well defined interfaces based on terminals and
parameters.

¢ Terminal attributes for automatic check of connection consistency.

* A model may have several behaviour descriptions to support model ver-
sions and alternative behaviour.

¢ Object-oriented representation where classes with inheritance facilitates
reuse and incremental model development.

* An internal representation which preserves the structure of models,

¢ The kernel allows integration of customized user interfaces and various
tools.

A prototype implementation has been written in Common Lisp and KEE. To
get some feedback and evaluation of the ideas, the project has also comprised
an application study focusing on modelling of chemical processes. Experiences
from the prototype and from the application study indicate that the ideas are
sound and that the kernel proposal may indeed serve as a basis for a new
generation of modelling, design and simulation tools,

The proposed kernel ought to be of interest in all areas of engineering
and for all who use models and simulation. The ideas have been presented at
conferences and the prototype has been demonstrated for a number visitors
from industry and universities. People from many different areas of engineering
who have struggled with similar problems of model representation, have found
our solutions very interesting,
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8.2 Development and technology transfer

The scientific results of the project are and will be made public through articles
in international magazines and as conference contributions (see Appendix A).
Some of the results have and will be published as licentiate and doctoral theses.

The contact net with Swedish and foreign universities and companies that
develop CACE tools is extensive and functioning. We are now extending it
to include also researchers and developers working with model development
tools and simulation in general, The international conferences give good op-
portunities to exchange ideas and information and to make acquaintance with
new people. Besides control engineering conferences we have also participated
in conferences aimed at modelling and simulation in general as well as con-
ferences aimed at special applications as chemical engineering and building
simulation.

Implementation of the kernel

A very good way of transfering results like that of our project is of course
to make the tools available to many people. The experiences from Simnon
show that useful program components are a very good way of spreading new
ideas and methods. OQur prototype is written in Common Lisp and KEE, The
advantage for us of using KEE was that the prototype could be implemented
with a modest effort. However, since KEE is very expensive, we do not expect
the prototype to be widespread.

To make our tools generally available, it is necessary to implement them
using cheaper and more commonly available languages and software compo-
nents, We think that it is not the task of a university to develop, market
and maintain commercial and professional software. But we realize that we
have a responsibility of transfer the results of our project and making them
generally available. A project supported by STU (STU project 89-01837 “A
kernel for modelling and simulation”) has just been started to implement a
kernel for model development and simulation, which someone else can develop
further into a commercial product of the prototype kernel. C++ is used as the
basic implementation language. An economic reality is that it is expensive to
develop professional software and the market for CACE-products is relatively
small. However, our kernel may be of interest in most areas of engineering and
ought to have a much larger market. There are companies and groups that
have expressed interest in making a commercial product. However, it is too
early to make any predictions now and we welcome all proposals.

Application projects

Another good way of spreading new ideas and methods is to have joint ap-
plication projects with developers and users. However, to be able to transfer
the results in application projects, implementation of the tools are needed. In
application projects the developers get feedback and can modify and improve
the tools, For a special application they can develop customized tools and
user interfaces. Model libraries can be built which can be of use not only for
the participating part, but also for a whole line of business.

We are planning to run a number of application projects. However, as
pointed out above, we need implemented tools and the implementation project
has therefore been given priority. A proposal for an application project to-
gether with Sockerbolaget has been submitted to STU’s research program
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DUP. The application is modelling of sugar crystallization. Simulation and
simulators have a central role in DUP, which aim is to investigate how process
operators’ tasks can be supported by computer based tools, Tt is natural to set
up and finance application projects in DUP. STU’s program “Applications of
the information technology” is another possible source of financing application
projects.

Standardization

Much could be gained if we could agree upon a common set of ideas, It is time
to lay the foundation for a new standard for model representation. IFAC has
a working group on standards for CACSD Software. We are participating in
this work. It has not addressed non-linear systems yet, but it has focused on
linear systems.

It may be remarked that to build flexible model libraries we must also
agree on cornmon principles for model development. This is a hard task, but
it might be possible to achieve in certain application areas,

There is an international association IBPSA (the International Building
Performance Association), which promotes the science of building performance
simulation in order {o improve the design, construction, operation and main-
tenance of all types of buildings. IBPSA’s international membership includes
architects, engineers, building managers, academics, software developers, and
government representatives concerned with building performance. IBPSA or-
ganized a conference Building Simulation '89 on June 23-24, 1989 in Vancou-
ver, Canada. At this conference Per Sahlin, The Swedish Institute of Applied
Mathematics, ITM, Stockholm and Edward Sowell, California State Univer-
sity, Fullerton, California presented a proposal for a neutral format for building
simulation models to allow users to share models (Sahlin and Sowell, 1989).
This proposal is inspired and influenced by the results of our project.

8.3 Experiences of software techniques and tools

The project has dealt with design of tools for model development and simu-
lation and to do this we have exploited ideas, approaches, methods and tech-
niques from computer science as well as used existing software. Hence we may
also ask what we have learned that can be of more general interest,

Object oriented programming

Object oriented programming (for overview see e.g. Stefik and Bobrow, 1986)
is a technique for structuring programs and to support reuse. The basic ideas
are data abstraction and inheritance.

Objects and abstraction is natural in engineering, Block diagrams and
and ofher kinds of schematics and flow graphs are common. Blocks have
often well defined interfaces. In control engineering it is common to talk
about input/output models, where only the relations between the inputs and
outputs are known. Nothing is then said about the internal structure or the
implementation of it. When the model also defines internal structure, we speak
about infernal models.

Although the ideas of object oriented programming are or at least seem
to be natural, it is not self evident how to use them in a special application.
Zobel and Curmnings (1989) discuss use of object orientation for digital signal
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applications. They had found that it is many cases not obvious whether oper-
ations should be implemented as methods or as special processing objects. For
example, should FFT be a method of signals or a special object {machine)?
They were going to carry through both approaches to get a deeper insight and
experiences,

In discrete event simulation the models can perform the simulation them-
selves by sending messages to each other. This is not possible in continuous
time. The differential-algebraic equations must be solved simultaneously. It
could be done in an object oriented fashion by having a Solver object that
collects the equations from all the models, solves them and returns the result
to the models.

We have used object orientation on several levels. First, for the architec-
ture of the system to get an flexible and extendible integrated environment
which allows customized user interfaces. Second, the modelling concepts are
object oriented. Third, the internal model representation is also object ori-
ented.

A kernel for model development must allow interactive definition and cre-
ation of new model classes (types). Interactive languages like KEE, CLOS,
Smalltalk allow interactive definition of new classes and a model class can
basically be implemented as a class in the implementation language. In com-
piled languages like Simula and C++, it is not possible to define new classes
interactively. It means that it is not possible to represent model classes di-
rectly as classes in the implementation language. An extra layer to handle
definition of new model classes and inheritance between model classes must
be implemented.

Databases

Databases are central. We need them to store models, parameter data, mea-
surements, results of calculations etc. Common representations are needed to
make the tools integrated.

Today’s databases can handle a large set of independent data efficiently,
but in CACE the amount of data are moderate, but the relations are complex.
For example, a model may be a linear version of another model at a certain
operating point for some given parameter values. Object oriented databases
is a promising approach,

Graphics and user interfaces ‘

Computer graphics gives good possibilities to improve the user interface. It
can be used to make concepts, properties, structures and other information
more concrete. Direct manipulation is an interesting technique which allows
the user to operate on visual objects and get immediate visual feedback, Visual
metaphors must be selected carefully to give the user a correct conception.

Graphics must be designed carefully to be useful and endurable in the
daily use. The primary use of graphics should not be spectacular demonstra-
tions.

Unfortunately, it is laborious to implement graphics. First, portability is
a major concern. As a user you want to have a homogeneous environment,.
The advantages of having a standard window system for all CACE programs
are quite obvious and uncontroversial, but it should be noted that CACE
programs are not the only use of a workstation. The user will use the native,
vendor-supplied window system, and would therefore prefer that one also in
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CACE programs, The same also applies for text editors. The situation seems
to improve and X Window System is today a de facto standard. Second, there
are today very few tools available for definition and implementation of user
interfaces, but it is an active area. Hopefully there will be commercial user
interface management systems (UIMS) available within a few years.

AT and expert system techniques

The complexity of Al has speeded up and influenced the development of pow-
erful workstations, high interactivity, computer graphics, animation, object
orientation, direct manipulation etc.

We consider the expert system technique as a useful and powerful pro-
gramming technique. The kernel does not itself contain any expert system,
but we have exploited ideas on information representation and declarative
programming; equations to describe behaviour. Rules can be used to define
events. Deduction of unspecified model attributes and consistency checking
can be implemented by rule based systems.

Some people claim that they have knowledge based simulation when they
provide simple model libraries. Knowledge based simulation is, however, in
our opinion more than providing a model library. There should be facilities
that assist the user to select the proper models and model versions as well as
to evaluate the results.

Symbolic manipulation and computer algebra

The increasing computing capacity makes it possible to perform symbolic ma-
nipulation. The user can give his problem on for him a suitable form. Symbolic
manipulation can then be used to simplify the problem and to generate de-
scriptions that the numerical tools need. Analytic expressions may give better
insight than tables of numerical values.

Existing commercial packages for computer algebra such as MACSYMA,
REDUCE, Scratchpad, Maple and Mathematica are powerful. Unfortunately,
it is not easy to use exisiting packages for computer algebra in other tools.
They are interactive and assume that they are run by human beings. The
results returned from the packages are on a format intended for human beings.
They are not built to be run or called by other programs. They can of course be
run as separate processes and comunication can be done via pipes, mailboxes
etc. depending on the operating system. The difficulty is to decode the text
strings returned by the package. The reference manuals do not give any formal
specification of the format. So if we want to write a program to decode it,
we have first to investigate what is returned. All this is laborious to do but
the situation is even worse. Since the format is not formally specified, a new
release of the package may change (improve) the format.

Libraries of routines for symbolic manipulation, like the numerics libraries
would be very useful.
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Simnon,” Report TFRT-7423, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden,

MarTssoN, S.E. and M. ANDERSsON (1980): “A Kernel for System
Representation,” Report TFRT-7429, Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

Marrsson, 8.E. and K.J. AsTrGM (1988): “The CACE Project— Steering
Committee Meeting, 1987-11-25," Report TFRT-7375, Department of
Automatic Control, Lund Institute of Technology, Lund, Sweden.

MartssoN, §.E. (1988): “The CACE Project— Steering Committee Meeting,
1988-06-01,” Report TFRT-7395, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.
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MATTSSON, 5.E. (1989): “The CACE Project— Steering Committee Meeting,
1988-11-23," Report TFRT-7412, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

MATTssoN, 5.E. (1989): “The CACE Project— Steering Committee Meeting,
1989-09-08,” To appear, Department of Automatic Control, Lund Institute
of Technology, Lund, Sweden.

NiLssoN, B. (1987): “Experiences of Describing a Distillation Column in
Some Modelling Languages,” Report TFRT-7362, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

C. Lectures

Oct 2, 1987. Sven Erik Mattsson: “Hibliz,” Studsvik, Nyn#shamn, Sweden,

Feb 29, 1988. Sven Erik Mattsson: “Overview of the CACE project and
Hibliz,” Foxboro Company, Foxboro, Massachusetts, USA.

March 16, 1988. Sven Erik Mattsson: “Hibliz and the expert system inter-
face for Idpac,” Department of Information Processing, Umed University,
Umed, Sweden.

March 16, 1988. Sven Erik Mattsson: “The CACE project,” the Department
of Information Processing, Umed University, Umea, Sweden

April 26, 1988. Sven Erik Mattsson: “The CACE project,” Intelligent Au-
tomation Laboratory, Department of Electrical and Electronics Engineer-
ing, Heriot-Watt University, Edinburgh, Scotland.

May 20, 1088. Sven Erik Mattsson and Bernt Nilsson: “The CACE project

and tools for model development and simulation,” the management group
of the DUP project at STU, Stockholm, Sweden.

Aug 23, 1988. Sven Erik Mattsson: “On Model Structuring Concepts,” the
4th IFAC Symposium on Computer-Aided Design in Control Systems,
CADCS’88, August 23 — 25, 1988, Beijing, P.R. China.

Sept 22, 1988. Sven Erik Mattsson: “Methods and languages for development

of simulation models,” workshop on the use of simulators in the process
industry, arranged by the STU-program DUP, Stockholm, Sweden

Oct 20, 1988. Dag Briick: “Modelling of Control Systems with G+ and
PHIGS,” the USENIX C++ Technical Conference, October 17 — 20, 1988,
Denver, Colorado, USA.

Nov 2, 1988. Karl Johan Astrém: “Drum water modelling,” a one day seminar
on Simulation and Advanced Control of Power Plants at Sydkraft, Malms,
Sweden

Nov 2, 1988. Sven Erik Mattsson: “Future Modelling and Simulation Environ-
ment,” a one day seminar on Simulation and Advanced Control of Power
Plants at Sydkraft, Malmé, Sweden.

Nov 11, 1988. Dag Briick: “Object oriented design in C++,” Ericsson Radar
Systems, Molndal, Sweden,
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Dec 14, 1989. Sven Erik Mattsson: “Future Modelling and Simulation Envi-
ronment,” Workshop on Future Research Needs in CACSD, Cambridge,
14 & 15 December 1988. Arranged by the Science and Engineering Re-
search Council, SERC in UK.

March 14, 1989. Dag Briick “Experiences of G4+ and UNIX,” STFI, Stock-
holm, Sweden

May 7, 1989. Bernt Nilsson: “Tools for Model Development and Simulation,”
SAIS ’89, the annual workshop of the Swedish Artificial Intelligence Soci-
ety, Lund, Sweden

May 31, 1989. Sven Erik Matisson: “The CACE project and new tools for
mode] development and simulation,” the council of SIGSIM, Sweden.

June 8, 1989, Mats Andersson: “An object-oriented modelling environment,”
ESM’89, the 1989 Buropean Simulation Multiconference, June 7-9, 1989,
Rome, Italy,

June 8, 1989. Sven Erik Mattsson: “Modelling of interaction between sub-
models,” ESM’89, the 1989 European Simulation Multiconference, June
7-9, 1989, Rome, Italy.,

June 23, 1989. Sven Erik Mattsson: “Concepts supporting reuse of models,”
Building Simulation ’89, Vancouver, Canada.
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