Hydration and strength of high-performance concrete

Persson, Bertil

1992

Citation for published version (APA):

Total number of authors: 1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
HYDRATION AND STRENGTH OF HIGH-PERFORMANCE CONCRETE

Bertil Persson

Rapport TVBM-7070
Lund, 1992
HYDRATION AND STRENGTH OF HIGH-PERFORMANCE CONCRETE

Bertil Persson, M.Sc.
Division of Building Materials
Lund Institute of Technology, Lund, Sweden

Introduction

In High-performance Concrete there is too little water for the cement to be completely hydrated. The large amount of unhydrated cement creates a potential risk for the long-term soundness of the concrete due to interior deterioration. Furthermore, High-performance Concrete exhibits a very dense interfacial zone between the aggregate and the paste which delays movements of water in the concrete. In concrete with a higher water-cement ratio a porous zone appears around the aggregate due to bleeding effects and water-film formation.

It was therefore of great interest to study the long-term effects on the hydration and the strength of High-performance Concrete when cured in different environments such as air and water. As a reference, membrane cured conditions were also studied. Since the expected difference was small it was essential to produce a specimen with very small variations in the concrete recipe.

Tested concretes

Quartzite sandstone combined with natural sand was used as aggregate. As binder, a low-alkali Portland cement (Degerhamn; specific surface 320 m²/kg, Blaine) was used except for mixture 1 where a moderate alkali Portland cement (Slite Standard; 380 m²/kg, Blaine) was used. For half the number of specimens, 10% silica fume (Micropoz) of the cement content was used. As a superplasticizer, naphthalene sulfonate (SP 62) was used. The proportions of the tested concretes are indicated in Table 1.
Concrete of type no 1 was not pourable. The remaining types of concretes were cast in the shape of circular disks, 1 m in diameter and 0.1 m thick. The day after pouring both sides of their flat surfaces were covered with at least 2 mm epoxi plastic to eliminate moisture movement. The rim was exposed to water, to air or totally sealed (self-desiccation); Figure 1.

Table 1 Proportions of tested concretes (kg/m³)

<table>
<thead>
<tr>
<th>Recipe no</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quartzite</td>
<td>8-12</td>
<td>910</td>
<td>1145</td>
<td>1150</td>
<td>1155</td>
<td>1215</td>
<td>1160</td>
<td>1305</td>
<td>1305</td>
</tr>
<tr>
<td>Natural sand</td>
<td>0-8</td>
<td>910</td>
<td>830</td>
<td>810</td>
<td>845</td>
<td>725</td>
<td>730</td>
<td>630</td>
<td>550</td>
</tr>
<tr>
<td>Cement</td>
<td></td>
<td>400</td>
<td>305</td>
<td>300</td>
<td>300</td>
<td>400</td>
<td>390</td>
<td>455</td>
<td>475</td>
</tr>
<tr>
<td>Silica fume</td>
<td></td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>39</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>Naphthalene</td>
<td></td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Total water</td>
<td></td>
<td>150</td>
<td>172</td>
<td>140</td>
<td>143</td>
<td>130</td>
<td>139</td>
<td>114</td>
<td>115</td>
</tr>
<tr>
<td>(w_0/C)</td>
<td></td>
<td>0.38</td>
<td>0.58</td>
<td>0.47</td>
<td>0.48</td>
<td>0.33</td>
<td>0.36</td>
<td>0.25</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Figure 1. Plan and section of specimen.
Compressive strength

800 cores (40 mm in diameter) were drilled out of the disks at different distances from the surface. Compressive strength, f_3, was tested on cylinders 80 mm in length using interlayers of hardboard. The results indicate very small differences related to distance from the exposed surface. The compressive strength as function of time is given in Figure 2. The effective water-binder ratio, $w_o/(C+2S)$, is indicated to the right of the figure. ($w_o =$ mixing water, $C =$ cement, $S =$ silica fume).

![Compressive strength graph](image)

Figure 2 Compressive strength, f_3, as function of time.
(------ = 10% silica fume, ---- = no silica)

Split tensile strength

More than 200 cores for split tests were drilled out of the disks at positions very close to cores meant for compressive tests. The split strength tests were also carried out with interlayers of hardboard, width 4.5 mm. In Figure 3 the split strength is indicated as function of the compressive strength. Each mark represents 27 measurements (totally 648 measurements).

Figure 3. Split tensile strength, \(f_{\text{spl}} \), related to compressive strength, \(f_3 \). (\(\bullet \) = 10% silica fume of the cement content, \(o \) = no silica fume).
Furthermore there was a slight tendency of decreasing relative split strength at 450 days of age as compared with 90 days of age at low values of the water-cement ratio, especially when silica fume was present. In Figure 4 split tensile strength, f_{spl}, is indicated as a function of time. The effective water-binder ratio, $w_o/(C+2S)$, is indicated to the right of the figure. (w_o = mixing water, C = cement, S = silica fume).

![Figure 4](image.png)

Figure 4 Split tensile strength, f_{spl}, as function of time.

(-- = 10% silica fume, --- = no silica)
Hydration

About 450 core fragments from the compressive tests were dried out at 105°C for 1 month. Hydration was then established by igniting 250 g concrete fragments for 16 h at 1050°C. Relations established between hydration factor, w_n/w_o, and water-cement ratio, w_o/C, see figure 5 (each mark is 18 measurements). ($w_o =$ mixing water, $w_n =$ chemically bound water, $C =$ cement content)

![Figure 5. Hydration factor, w_n/w_o, as function of water-cement ratio. Figures indicate number of mixture. (--- = 10% silica fume, --- = no silica fume).](image-url)
The maximum value of the hydration factor is 0.64 for concretes with a water-cement ratio less than 0.39; Persson (1992). For concretes with silica fume the value of \(\frac{w_n}{w_0} \) starts to diminish at an age of about 90 days (dehydration). This is most probably due to polymerisation; see Kühl (1967).

Effect of silica fume and of aggregate on compressive strength

As the very same cores were tested for compressive strength and ignited, a relationship between the hydration factor, \(\frac{w_n}{w_0} \), and the compressive strength, \(f_3 \), was established according to Figure 6 at an age of 450 days.

![Compressive strength vs Wn/Wo](image)

Figure 6 Compressive strength, \(f_3 \), as function of hydration factor, \(\frac{w_n}{w_0} \). (--- = 10\% silica fume of the cement content, --- = concrete without silica fume, \(\times \) = cube results acc to Powers (1948) for cement paste; --- = recalculated to cylinders).
At the hydration factors, \(w_n/w_o \), between 0.30 and 0.60 the concrete with silica fume exhibits a substantial increase in compressive strength, \(f_{3, \text{silica fume}} \), expressed as (MPa):

\[
 f_{3, \text{silica fume}} = 50 \cdot (w_n/w_o + 0.40) \quad \text{for } 0.30 < w_n/w_o < 0.60 \quad \text{(1)}
\]

where \(f_{3, \text{silica fume}} \) is the increase in compressive strength due to 10% silica fume, \(w_o \) mixing water and \(w_n \) chemically bound water.

In Figure 6 results on compressive strength for a low-alkali Portland cement paste are indicated; Powers (1948). The results presented in the figure were recalculated from cubes 50 mm to cores 40 mm (length 80 mm); Berglund (1992) according to (MPa):

\[
 f_3 = 210 \cdot (w_n/w_o - 0.14) \quad \text{(2)}
\]

where \(f_3 \) is the compressive strength of a cylinder, \(w_o \) is mixing water and \(w_n \) is chemically bound water.

The effect of the aggregate on the compressive strength, \(f_{3, \text{aggregate}} \), was then established as the difference between the dotted line and the equation (2) as shown above (MPa):

\[
 f_{3, \text{aggregate}} = 100 \cdot (w_n/w_o - 0.28) \quad \text{for } 0.30 < w_n/w_o < 0.60 \quad \text{(3)}
\]

where \(f_{3, \text{aggregate}} \) is the effect of the aggregate on the compressive strength of a cylinder, \(w_o \) is mixing water and \(w_n \) is chemically bound water.

Conclusions

Compression and split strengths for 8 types of construction concrete together with hydration were tested over a time of 450 days. The concrete was exposed either to water or to air, or self-desiccated. The specimen was formed as a simulated
circular column, diameter 1 m and thickness 0.1 m. About 1200 cores of these "columns" are tested. Compression strength displayed 10% increases between 90 and 450 days of age. However, values of split strength indicate a drop of about 5% at low water-cement ratio. Measurements of hydration of high strength concrete displayed drops of values between 90 and 450 days of age when the recipes contain silica fume. Without silica fume there was a continued increase in the hydration.

References

