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SYMBOLS

Ac effective area of cross section

As cross sectional area of tension reinforcement

Ase cross sectional area of compression reinforcement

Asv cross sectional area of a bar in a stirrup

Ec initial modulus of elasticity of concrete for short-term loading

Es modulus of elasticity of reinforcing steel

El bending stiffness

Fe resultant force due to concrete stresses in the compression zone

Fs force in the tension reinforcement

Fsc force in the compression reinforcement

M bending moment

Mc reference moment

Mi bending moment at subdivision point No

Mm span moment

Mr moment which initiates eraeking

M ultimate momentu

My yield moment

Nc reference force

O point load

Ou ultimate load

Oy yield force

Vn shear force at subdivision point No n

Vy shear force at subdivision point No n at incipient plastic flow

at the plastic hinge

Vo shear force at subdivision point No o

We externa l work

Wi total consumed deformation energy

a moment shift

ai maximum elastic deflection at subdivision point No i
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an
an
ay
aSO
b

c

d

ec
es
fcc
fcck

fet

f sc
f st
f stk
f stu
f sv

maximum elastic deflection at subdivision point No n

fictitious length of plastic hinge

length of yield region

length of plastic hinge over which the moment is greater than O.S Mu

width of beam

distance of compression reinforcement from compression face

effective depth of cross section

non-dimensional initial modulus of elasticity of concrete

non-dimensional modulus of elasticity of reinforcing steel

compressive strength of concrete

characteristic value of the compressive strength of concrete

tensile strength of concrete

compressive strength of compression reinforcement

tensile strength of tension reinforcement

characteristic value of the tensile strength of the reinforcement

maximum tensile strength of the reinforcement

tensile strength of stirrup reinforcement

span

lo length of rotation span

q distributed ultimate load

qy distributed yield load

r radius of curvature

r i radius of curvature at subdivision point No i

s spacing of stirrups

x depth of compression zone

xm depth of fictitious compression zone

Yc ordinate of the position of Fe

Yi ordinate of the centroid of strip No i

Ys ordinate of the centroid of tensile reinforcement

Ysc ordinate of the centroid of compression reinforcement



6Ac

6Q

a
y

S

r

cross sectional area of a strip ln the compression zone

increment in Q

increment in deformation energy per unit length of beam

increment in mean strain in strip No i

increment in strain ln tensile reinforcement

increment in strain in compression reinforcement

6W in non-dimensional form

contribution of concrete to 6~

contribution of tensile reinforcement to 6~

contribution of compression reinforcement to 6~

Es/Ec

6Ac/Ac

a in non-dimensional form

ay in non-dimensional form

coefficient which determines the shape of the moment curve

non-dimensional dtstance of compression reinforcement from

compression face

7

re partial coefficient for concrete ln compression

Yr partial coefficient for rotation capacity

Ys partial coefficient for reinforcement in tension

6 non-di mens tonal bending stiffness

€ strain

Se strain in concrete

scu ultimate compressive strain in concrete

€cuk characteristic value of the ultimate compressive strain in concrete

si mean strain in concrete strip No i

So limit strain (strain at maximum stress)

Ss strain in tension reinforcement

ssc strain in compression reinforcement
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ultimate strain in reinforeing steel

eharacteristic value of the ultimate strain in reinforcing steel

lower strain hardening limit of reinforcing steel

strain at limit of proportional ity for reinforcing steel

n

e

eeale

Bobs

er

eu
euv
K.

l

~.
l

~u

~y

~1

~2

fstu/fst

non-dimensional ordinate of strip No i

Ys in non-dimensional form

Yse in non-dimensional form

rotation

calculated rotation capacity

observed rotation capacity

rotation requirement of a plastic hinge

rotation eapacity of a plastic hinge

rotation capacity calculated with shear force taken into consideration

non-dimensional deflection at subdivision point No i

non-dimensional deflection at subdivision point No n

slenderness of rotation span

bending moment in non-dimensional form

non-dimensional bending moment at subdivision point No i

ultimate moment in non-dimensional form

yield moment in non-dimensional form

moment variation in tension lone

moment variation in compression lone

v fsc/fst

c depth of compression lone in non-dimensional form

cm fictitious depth of compression lone in non-dimensional form

Co non-dimensional depth of eompression lone under elastic conditions

p non-dimensional radius of curvature

G stress

Ge stress in concrete at compression face



°ci

as

°sc

~

~e

~i

~

~c

~sc

~t

~1

~2

w

Wb

Wc

wcr

wfic

Wv

Wo

mean stress in strip No i

stress in tension reinforcement

stress in compression reinforcement

creep factor for concrete

external work in non-dimensional form

internal work of deformation in non-dimensional form

deformation energy per unit length of beam in non-dimensional form

contribution of concrete to ~

contribution of compression reinforcement to ~

contribution of compression zone to ~

deformation energy in tension zone per unit length of beams

deformation energy in compression zone per unit length of beam

effective reinforcement ratio for tension reinforcement

effective reinforcement ratio for balanced reinforcement

effective reinforcement ratio for compression reinforcement

critical value of W with respect to rotation capacity

fictitious value of w

effective reinforcement ratio for stirrups

esw/wc
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Abbreviations

CEB Comite Euro-international du Beton

CW cold worked

HR hot rolled

PH plastic hinge
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INTRODU cn ON

1.1 The limit state method of design

The loadbearing capacity of a statically indeterminate structure such as

a continous beam or a frame can be determined by means of the limit state
method, based on the theory of plasticity, as follows.

If the construction material is assumed to possess ideal elasto-plastic pro

perties, with a stress-strain diagram according to FIG. 1.1a, it will react
in a purely elastic manner to externa l loads so long as the maximum stress

in the worst stressed section of the structure is less the n the yield stress

0y of the material. Over this loading range the moment-curvature relation of
the section is represented by the straight line DA in the figure. If, as the

externa l load is increased, the yield stress 0y is reached, plastic flow

begins under the influence of the yield moment My' As the load is further
increased, plastic flow spreads out within the section until, at a certain

load level, the section is completely plastic. Sections situated adjacent to

that subjected to the highest stress are at the same time in a state of parti al

plastic flow. During the increase in moment while plastic flow spreads over

the most heavily stressed section, i.e. while the moment increased from My

to the ultimate moment Mu' the moment-curvature diagram of the section con
forms to the portion AB in FIG. l.la. As the external load is further raised,

the moment in the section under consideration is constant and equal to Mu

while the curvature increases. During this stage of loading the moment-curva
ture diagram is represented by the straight line BC in the figure. Failure

of the material is assumed to occur when the curvature reaches the value (1/r)u

determined by attainment of the ultimate strain E
U

of the material.

For purposes of simplification it is assumed in the following introductory

argument that the properties of the material and the sectional shape of the

beam element are such that an arbitrarily chosen section in the structure has

an ideal elasto-plastic moment-curvature diagram, i.e. that the length of the

portion AB of the curve is negligible. The diagram the n becomes bilinear.

The loads acting on the structure are assumed to be fixed in position in

relation to this and to increase continuously and proportionately from zero

until the value of the limiting load is reached. At a certain load level the
most heavily stressed section of the structure will become completely plastic,

i.e. the moment in this section now reaches the maximum value, My=Mu' which

this section is capable of sustaining.
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An initial plastic hinge will thus have been formed in the structure. During
further increase in load the moment is constant and of known magnitude at
this plastic hinge, and the degree of static indeterminacy has therefore
decreased by one unit while load further increases from this load level.
During the further increase in load, after same time another plastic hinge
will be formed at same other point in the structure at a higher load level.
The moment is now of known magnitude at this section also, and the degree of
static indeterminacy has decreased by another unit while load further rises.

As load is gradually increased, the degree of static indeterminacy thus
decreases as new plastic hinges are formed, and the structure will therefore,
at a certain load level, change inta a statically determinate structure
for further increase in load. When, on further increase in load, one more

plastic hinge is formed, the structure finally changes inta a mechanism
and collapse ensues.

The load which acts on the statically determinate structure immediately before
the last plastic hinge is formed is thus a measure of the loadbearing capacity
of the structure, its limiting or ultimate load.

As the load increases between two load levels at which two consecutive plastic
hinges are formed, there takes place, simultaneously with the increase in
load, a plastic rotation at the already formed plastic hinges. In order there

fore that it should be possible for the load to be increased right up to the
limiting load determined by behaviour of the structure as a mechanism, it is
essential that the necessary plastic rotation can take place at the plastic
hinges without material failure at these points.

The process described above can be illustrated by means of a worked example.

Let us study a beam of the configuration and loading shown in FIG. 1.1b.
It is assumed that this beam has ideal elasto-plastic properties at every

section in conformity with the moment-curvature diagram shown in the figure.
The ultimate moment Mu of the beam is then assumed to be the same for both
positive and negative bending moments, and the symbol Mu therefore refers
to the absolute value of the moment.

The structure is statically indeterminate in the first degree, and the for
mation of an initial plastic hinge therefore makes the structure statically
determinate for further increase in load. When a second plastic hinge is
formed the structure changes inta a mechanism in response to attainment of
the collapse load.
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FIG lo1a Stress-strain curve for ideal elasto-plastic material.
Schematic moment-curvature curve for the cross section

of an ideal elasto-plastic material.
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Let us note what happens inside the structure as conditions gradually

become plastic due to increase in the load O from zero.

For small values of O the structure behaves in a completely elastic manner.

The moment distribution can be calculated by the elastic theory and has the

shape shown in the figure, with the greatest moment at the section of fixity.

As load is gradually increased, O assumes a value O at which a plastic
y

hinge PH is formed at the section of fixity. The magnitude of O is determined
y

by the condition

which gives

(1.1.1)

(1.1.2)

During gradual increase in load up to Oy there is no rotation at the rigidly

restrained section. When load is increased beyond Oy a plastic rotation e

takes place at the plastic hinge formed. The increase in load ~O = O - Oy is

not accompanied by a corresponding increase in fixing moment, since the

moment at the section of fixity has already attained its maximum value. With

the assumed shape of the moment-curvature diagram, the rotation at the plastic

hinge can therefore be calculated by the elastic theoryas for a beam simply

supported at both ends. We thus have

__1 ~Q12
e - 16 Er

When the load O is greater than O , the span moment under the point load is
y

At this load level the structure is statically determinate for further increase

in load since the support moment has assumed the known value Mu' and the

span moment can therefore be calculated according to the equilibrium equation
(1.1.3.).

The ultimate load Ou of the structure is reached when a plastic hinge is also
formed at the midpoint of the span, i.e. when M attains the value M . Whenm u
this occurs a mechanism is formed and collapse therefore ensues. This limit

state is determined by Equation (1.1.3) with O = Ou and Mm = Mu



FIG 1.1b
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which gives

6M
uQ =

u l
(1.1.4)

(1.1.5)

After the first plastic hinge has been formed at the section of fixity, the
load can therefore be further increased by

6M 16M 2M Q
= ---"l _ __u_ = ---"l = -.X..

l 31 31 8
llQ = Q -Q

u y

before the structure collapses.

During increase in the load from Qy to Qu there takes place a plastic rotation
about the plastic hinge at the section of fixity, which can be calculated
using Equations (1.1.2) and (1.1.5).

(1.1.6)

The plastic rotation calculated from (1.1.6) is that required in order that

a beam mechanism may be formed at the ultimate load Qu' If material failure
occurs owing to excessive material strain in the first plastic hinge before

the load Q reaches the value Qu' the actual ultimate load is less than Qu
and the ultimate load determined by the limit state method is therefore too
high. We can thus say that the plastic hinge has a rotation requirement Br
which, in the case studied, is calculated from Equation (1.1.6). This rotation
requirement must be compared with the ability of the plastic hinge to rotate
in a plastic manner without consequent material failure, i.e. without attain
ment of the ultimate curvature (1/r)u in FIG. 1.1b. This ability is denoted
the rotation capacity Bu of the plastic hinge.

One condition for the limit state method described above to be capable of use
for determination of the ultimate load of a structure is that the rotation
requirement should be no greater then the rotation capacity. The condition

e '" Br u
(1.1.71

must therefore be satisfied for all plastic hinges in the statically determinate
structure which are needed to sustain the increase in load immediately prior to
formation of the mechanism due to the limiting load.
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For steel structures the condition (1.1.7) is generally satisfied. Apart from
extreme exeptional cases, there is therefore no need as a rule to pay much
attention to the rotation capacity of plastic hinges. The situation is diffenent
in reinforced concrete structures where it has been found in experiments that
the rotation capacity of plastic hinges in structures loaded to failure may be
insufficient to permit the redistribution of moments which a design according
to the plastic theory assumes. It is therefore essential that it should be

possible to calculate, at the design stage, the rotation requirement and
rotation capacity for those plastic hinges which are assumed in design accord
ing to the limit state method.

It is evident from the above worked example that it is in pronciple easy to
calculate the rotation requirement of a plastic hinge. The rotation require
ment will therefore be dealt with only in a summary manner in this report,
and attention will instead be concentrated on an analysis of the rotation capa

city of plastic hinges in reinforced concrete structures.

1.2 Rotation requirement

The rotation requirement of plastic hinges in statically indeterminate beam
structures of reinforced concrete, acted upon by different external loads and
imposed deformations, has been studied by Alemo (1976) and others. It appears
that the rotation requirement of a plastic hinge can be given the general

form

(1.2.1)

i.e. the same form as in the above worked example - see Equation (1.1.6).

If any imposed deformations which may be present are ignored, then KO is a
coefficient which is a function only of the configuration of the structure
and the type and placing of the load. See also Plem (1973).

Mu is the ultimate moment of the plastic hinge under consideration, and can
be written

M = A f d(1 -~) (1.2.2)
u s st 2
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where

As ~

f st
~

d ~

w ~

cross sectional area of reinforcement at the plastic hinge
tensile strength of tension reinforcement
effective depth of the section containing the plastic hinge
effective reinforcement ratio

A plastic hinge is often discontinous, for instance when it forms over an
intermediate support in a continous beam. In such cases it is easiest to
study rotation requirement and rotation capacity separately for each side.

The expression (1.2.1) refers to the rotation requirement on one side of
the plastic hinge, and l is the length of the beam on the side being
considered.

El is the mean beam stiffness calculated for the concrete in Stage II, i.e.
when it is cracked and elastic. The stiffness may be obtained from a diagram
constructed by Larsen &Vigerust (1966) in the form

El = A E d2~
sm s

where

( 1.2.3)

A ~ a mean value over the length of the beam of the cross sectional areasm
of the reinforcement, adapted in view of the moment distribution

Es ~ modulus of elasticity of the reinforcing steel
~ ~ a function of ap where a ~ Es/Ec ' i.e. the ratio of the modulus of

elasticity of steel to that of concrete, and p is the geometrical

reinforcement ratio

If Asm is assumed to be proportional to As and Equations (1.2.2) and (1.2.3 )

are substituted into Equation (1.2.1), we have

(1.2.4)

According to the above equation, for a given reinforcement the rotation
requirement is directly proportional to the slenderness l/d of the beam. If
the ratio (1-w/2)/~ is studied for variable normal reinforcement ratios,

it is found that the rotation requirement er decreases for increasing values
of w.

As will be seen from the example in Section 1.1, it is in principle easy to
calculate the rotation requirement of a plastic hinge. The calculation can be

carried out with the aid of information in the usual manuals or by means of
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the energy equation. However, for structures of a high degree of static inde
terminacy, such as multistorey frames, calculation can be laborious. For such
structures, Baker (1956) developed a systematic calculation method which,
when formulated in matrix notation, is suitable for computer programs.

Other factors, not studied in detail here, may affect the magnitude of the
rotation requirement. Brief comments on these are as follows.

Displacements of supports can, depending on the directions of the dis
placements, increase or decrease the rotation requirement.

Creep of the concrete is general ly dealt with in calculations by reducing
the modulus of elasticity of concrete. This increases the parameter ap,

and reduces C According to Equation (1.2.4), creep thus increases the
rotation requirement.

Depending on the geometrical design and reinforcement of the structure,
shrinkage of the concrete may increase or decrease the rotation requirement.

Cracking of the concrete always reduces the rotation requirement. This is
commented on further in Section 1.3.

1.3 Rotation capacity

In principle, the rotation capacity of a plastic hinge in a reinforced
concrete beam can be determined from the moment-curvature diagram of
the beam section concerned. Such a diagram is shown to the right ot FIG. 1.3a,
in which Mis the bending moment and 1/r the beam curvature. In the diagram

My is the moment at yield and Mu the ultimate moment. The figure in the centre
illustrates a variation "b" in moment over the beam length lo between a plastic
hinge PH and the nearest point of zero moment. In the following, this section
of the beam will be referred to as the rotation span of the plastic hinge.
The variation "b" in moment may be considered to correspond to a uniformly

distributed load on a beam fixed at PH. On top of this diagram there is
another diagram which represents the variation in beam curvature along the
rotation span. It has been drawn up with the aid of the moment diagram and
the moment-curvature diagram.

A corresponding transformation of the beam curvature diagram by means of another

moment curve "a", which may be considered to correspond to the variation in
moment in the vicinity of a plastic hinge in the span in a beam subjected to

a uniformly distributed load, is shown to the left in the figure.
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The rotation between the end cross sections of the portion lo of the beam
is obtained as the integral of the curvature over the length lo' i.e. as the
area below the 1/r curve constructed. Part of this rotation is elastic and
reversible, another part is plastic and irreversible. The latter has been
shaded in the figure and marked "B". According to the definition, this part

is the rotation capacity Bu of the plastic hinge. Traditionally, the rotation
capacity is regarded as though it were concentrated at the plastic hinge but,
as will be seen, it is in real ity distributed over part of the length of the
rotation span. It is also evident from the figure that the magnitude of the
rotation capacity is dependent on the magnitude of the area "A" above the
M-1/r diagram, and on the shape of the moment curve. Area "B" is larger at
moment curve "a" than at moment curve "b", which means that the rotation capa
city in the former case is greater than in the latter case.

It will be evident from the above that the rotation capacity of a plastic
hinge in a given situation can be obtained by calculation of the area "B" in
FIG. 1.3a. However, such an approach is not applied in the following,
since in recent year interest has focussed on the study of the behaviour of
structures under the action of extreme loads. Impact loads playa dominant part
in this connection, and the effect of impact loads on a beam structure cannot

be studied without including the deformation energy of the structure in the
calculations. Calculation of the rotation capacity Bu in the following has
therefore been based on a study of the variation of energy in the part of
the beam adjacent to a plastic hinge. In this way the calculation method
devised attains such properties that it can relatively easily be further deve
loped into a calculation method for analysis of statically indeterminate beams

subjected to impact loads. Such development has been planned, but has been
deferred until later work.

The moment-curvature diagram in FIG. 1.3a assumes a section cracked from the
outset. If an initial ly uncracked section is assumed, the general appearance of

the moment-curvature diagram will conform to the line OAFED in FIG. 1.3b. The
slope of the line DB represents the bending stiffness of the uncracked section,
and the slope of the line DC represents the bending stiffness of the cracked

section. The moment Mr is the moment which initiates cracking. If the area AFCBA
above the moment curve is transformed and the corresponding curvature contri
butian is subsequently integrated over the length of the rotation span, the
rotation which occurs due to cracking is obtained. This phenomenon has been

studied by Rechardt (1968) and others.
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The intention here is to regard the rotation capacity as an unambiguously

determined quantity associated with the plastic hinge and the part of the beam

adjacent to this. The contribution due to cracking of the concrete is therefore

not included in the rotation capacity, but is assumed instead to be taken into

account as a corresponding reduction of the rotation requirement er when the

condition (1.1.7) is checked. For the same reason, no study is made either of

the effect on the rotation capacity due to shrinkage of the concrete. The effect

of shrinkage cannot be unambiguously associated with the plastic hinge region,

but is dependent on the response of the entire structure to the deformation

action.

1.4 The scope of the work

The primary object of the work reported here has been to study the way in

which different material properties influence the rotation capacity of a

plastic hinge. If such a study is to be meaningful, it is essential that the

calculations should be based on realistic stress-strain curves for the con

stituent materials concrete and steel. Such curves are presented in Chapter 2.

However, the stipulation regarding realism in describing materials poses com

putational difficulties of such magnitude that it has been impossible to

construct exact formulae for calculation for the rotation capacity. The calcu

lation method which is developed in Chapters 3-6 has therefore been formu

lated right from the beginning in view of the need to program it for processing

in a computer. Such a program has been developed, and it is presented and

commented on in an appendix.

Cet"tain 11lltiIattOnS in the usefulness of the program must be pointed out.

Only rectangular cross sections have been studied. However, T-beams can also

be dealt with provided that the entire compression zone is situated in the flange.

In such a case the width of the flange must be used as the width of the beam

in calculating the effective reinforcement ratio w. This limitation is of

quite a minor nature since most beams in practical use have a rectangular or

T section.

The program does not take into account gradual curtailment, if any, of the

reinforcing steel over the length of the rotation span. It is probable that

this does not playa major role since most of the consumption of energy occurs

in a very limited region adjacent to the plastic hinge. It may be expected that

in practical beam design the quantity of reinforcement is constant over this

region.

The effect of normal force has been ignored.
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Results of calculations regarding combinations of typical steels and concrete
types, and also the calculated rotation capacity when the parameter values
chosen for the typical steels and concrete types have been departed from, are
shown in Chapter 7.

The effect on rotation capacity due to creep of concrete within the rotation
span is studied in Chapter 8.

The effect of compression reinforcement and the effect of concrete creep in
conjunction with compression reinforcement is dealt with in Chapter g.

In calculations regarding the above phenomena, discussed in Chapters 7-9, the

effect of shear force which may be present simultaneously with the bending
moment has been ignored. In Chapter 10 the analytical model is modified in such
away that it is possible, at least approximately, to study the effect of shear

force. It is found that the effect of shear force is considerable when the
rotation span is not slender.

The presence of stirrups around the compression zone of the beam has been

found to increase the rotation capacity considerably. This is studied in
Chapter 11 where an approximate method which also includes this beneficial
effect in the developed analytical model is derived in a semi-empirical manner.

The developed calculation method has been compared with theresults of tests
carried out at the Department of Structural Engineering, Division of Concrete
Structures, Chalmers University of Technology, Gothenburg. It is found that
there is reasonable agreement between the experimental and calculated rotation
capacities. One ~rtial result of this comparison is utilised in Chapter 10 of
this report. It is planned that a complete report will be published elsewhere.
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FIG 1.3b

M

B C D

-t------------ ,
, ,I I

,

I,
I

+--------------------1--.... 1/r
O

Moment-curvature curve for an initially uncracked beam section.

The eraeking moment of the section is Mr'

- 1,0

FIG 2.la Schematic form of the stress-strain diagram for concrete in
compression in non-dimensional terms. The line AB represents
removal of the load.
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Distribution of strain in the compression zone of the concrete
for two consecutive situations a and b. In one area the con
crete is being subjected to load while in another area it is

being unloaded.
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2 THE STRESS-STRAIN CURVES FOR STEEL AND CONCRETE

The selected calculation procedure permits the application of realistic stress
strain curves for the steel and concrete. Analytical expressions which give a
good approximation of the mechanical properties of these materials when
subjected to short-term loads are given below. Concrete and steel are dealt
with separately.

2.1 The stress-strain curve for concrete

Concrete in tension is assumed to be cracked. Active concrete is therefore only

found in the compression zone of the beam, with the stress-strain curve

generally in conformity with FIG. 2.1a. In order that the formulae derived
later on may have the greatest possible general application, the stresses are
made non-dimensional by dividing them by the compressive strength f of thecc
concrete. In this way the modulus of elasticity is also non-dimensional. The
expression for the non-dimensional initial modulus of elasticity for short-term
loading is

e
c

c=-
f

cc
(2.1.1)

In FIG. 2.1b the compression zone of depth x is examined in a situation just
before crushing failure. During the gradual increase in load up to failure,

the distribution of strain at a certain instant was represented by line a.
A little later the distribution is given by line b. The figure shows that the
compression zone is divided inta two regions, an upper one where the concrete
is being subjected to load and therefore conforms to the basic full-line curve
of the stress-strain diagram, and a lower one in which the concrete is still
in compression but is being unloaded. For concrete in the latter region the
stress-strain relation is described by an unloading curve which is assumed to

be a straight line of slope ec ' shown by the dashed line AB in FIG. 2.1a. This
is taken into account in the developed computer program.

A large number of analytical expressions are given in the literature to de
scribe the stress-strain curve of concrete in compression. Use is made here
of that proposed by Sargin &Handa (1969) which can be written as

a
c

f
cc

(2.1.2)
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The coefficient Kl contained in this expression is obtained as

K = -e €
1 c o

(2.1.3)

where E
O

is the limit strain (with the appropriate sign) corresponding to

the maximum compressive stress 0c/fcc = -1.0. The shape of the curve between
EC = O and EC = E

O
is essentially governed by the value of Kl' while its

shape after it has passed its extreme point is mainly determined by the
coefficient KZ' This latter coefficient has no direct physical meaning. In
purely practical terms, the value of KZ is determined by making 0c/fcc have
the correct value at the ultimate compressive strain E

CU
'

In order that the effect of different concrete properties on the rotation

capacity may be studied, comparative calculations with two distinct types of
concrete, denoted A and B, are performed in Chapter 7.

Concrete of Type A is broadly in conformity with that recommended by the CEB,
characterised by E = -Z.O °/00 and E = -3.5 °/00' An appropriate value of theo cu
non-dimensional modulus of elasticity ec has been considered to be lZ00. It
will be shown later, in Chapter 7, what the effect is on the rotation capacity
if a departure is made from the chose n value.

According to Equation (Z.1.3) the value of the coefficient Kl = lZ00 . O.OOZ

= Z.4. The coefficient KZ is determined in such away that 0c/fcc = -0.8 for
E

CU
= -3.5 0/00 • This condition yields KZ = 0.363. With the selected

coefficients, the stress-strain curve for concrete of Type A is that shown
in FIG. 2.1c.

Compared with experimental ly determined values of E
O

and E
CU

' it would
appear that the values recommended by the CEB have been chosen with a com
fortable margin of safety. In actual fact, the magnitudes of EO and E

CU
do

not make much difference, when these parameters are to be applied for the
calculation of the ultimatemoment. In this connection it iSE

CU
which is of

the greatest significance, since it determines the boundary wb between an

over-reinforced and normally reinforced section, where wb detones the
effective reinforcement ratio corresponding to balanced reinforcement. For
the calculation of the rotation capacity, however, it is found that it is
important for E

CU
not to be limited too stringently unI ess absolutely

necessary. For this reason it has been decided to include in the study of the
rotation capacity a concrete which has mechanical properties more in keeping
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310 x Ec

ec ; 1200

- 0,8

- 1. O

FIG 2.1c Non-dimensional stress-strain diagram for concrete type A in

compressian

- 7,0

TYPE "8"

-2,5
310 x Ec

I

-----L-,

I

e_ ;1200
c

- 0,5

FIG 2.1d

FIG 2.2a

--+ -1,0

Non-dimensionsl stress-strain diagram for concrete type B in

compressian

Schematic form of the stress-strain diagram for tension
reinforcement in non-dimensional terms. The line AB is an,
unloading line. The diagram relates to steel with a pronounced
yield point.
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with actual conditions. Such a concrete will in the following be referred to as

concrete of Type B.

On the basis of tests carried out by Mattock (1965) and Corley (1966), the

characteristic compressive strains €o ~ -2.5 ~oo and €cu ~ -7.0 ~oo are chosen
for concrete of Type B. For this concrete also, the modulus of elasticity is
put ec ~ 1200, which makes K1 ~ 1200'0.0025 ~ 3.0. The coefficient K2 is

given such a value that 0 c/fcc ~ -0.5 for €cu ~ -7.0 ~oo , which gives
K2 ~ 0.342. Concrete of Type B thus determined by the seleeted parameters

has stress-compressive strain curve shown in FIG. 2.1d.

The effect of creep in the concrete is discussed separately in Chapter 8.

2.2 The stress-strain curve for reinforcing steel

The stress-strain curve for reinforcement in tension is shown schematically

in FIG. 2.2a. It is assumed that the stress-strain curve for reinforcement
in compression is of the same type.

In the case of steel also it is found convenient to use non-dimensional
stresses, which are obtained by division by the tensile strength fst of the
steel defined as the yield stress of hot-rolled steel and the 0.2% proof

stress of cold-worked steel. Owing to this, the modulus of elasticity of the
steel is also non-dimensional. The non-dimensional modulus of elasticity is

e
s

(2.2.1)

Compressive reinforcement may be subjected to unloading during the gradually
increasing stressing of the section up to failure. A situation may be arise
where the depth of the compression zone decreases as the strain in the tensile

reinforcement increases. The tensile reinforcement may also be subjected to
unloading as the section proceeds towards failure. This may occur if there is
a steep drop in concrete stresses as the compressive strain in the concrete
increases. In this case, once the maximum value has been passed, the bending

moment drops rapidlyas the curvature increases. In view of these phenomena,
the basic curve of the stress-strain diagram must be supplemented by unloading
curves schematically represented by the straight line AB of slope es in
FIG. 2.2a. This has been taken into account in the program.
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The stress-strain curve for a hot-rolled steel (denoted in the following HR
steel) may be approximated by straight lines and a second degree perabola,
in principle as shown in FIG. Z.Zb. The exact form is determined by the

following parameters:

es ' the non-dimensional modulus of elasticity of the steel, defined by
Equation (Z.Z.1),

E Z' an indirect parameter which is defined from the equation EZ = 1/es and
can therefore be interpreted as the strain corresponding to the limit of
proportional ity of the steel,

E1' the strain corresponding to the boundary between the yield region and
the strain hardening region of the steel.

E
O

' the limit strain which occurs at the maximum tensile strength f stu '

ESU ' the ultimate strain,

n, the ratio of f stu to f st '

For the sake of simplicity, the diagram is assumed to be horizontal between

E
O

and E
SU

' As a rule, this has no effect on the rotation capacity since f stu
is hardly ever reached.

With the parameters defined above, the stress-strain relation for HR steel may

be expressed as

E e O S s < s2s s s

1,0 E
2

< E < sl
(J - s

s (2.2.2)-- = 2f st
S -E

n-(n-')( o s) s, S s < s
S -E S o

o 1

n s S E S S
o s su

When values of the parameters which represent a typical HR steel are to

be chosen, the difficulty arises that these parameters vary over quite a
large range, not only between grades of steel but also, due to statistical
scatter, for one and the same grade of steel. By studying the stress-strain
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curves for Swedish HR steels, and taking into consideration the scatter in
these, the following parameter values have been chosen to define a repre
sentative HR steel.

e = 350s
n = 1.4
E = 0.0151
E = 0.080o
E = 0.100su

Obviously, for instance for deformed bars Ks 40, the value of E is consider-su
ably higher than the ultimate strain selected above, but this has no appre-
ciable influence on the rotation capacity since, after all, E

SU
is never

reached before the section fails.

As far as the non-dimensional modulus of elasticity es is concerned, since
Es is practically constant and equal to 200 GPa for different grades of steel,

e varies as a function of f t. FIG. 2.2c shows the relationship between thes s
nominal yield stresses or 0.2% proof stresses of common Swedish reinforcing
steels. It is seen in the figure that, as a convenient mean value, es = 350

may be chosen for both hot rolled and cold worked steel.

Within reasonable limits, deviations from the selected value have only a

marginal effect on the calculated rotation capacity. This is demonstrated
in Chapter 7.

With the selected parameters, the stress-strain curve for the typical HR steel
is that shown in FIG. 2.2b.

The stress-strain curve for a cold worked reinforcing steel (denoted in the
following CW steel) can be approximated by a straight line and part of an
ellipse, in principle according to FIG. 2.2d and e. The exact shape is deter

mined by the parameters es ' n, EZ' E1, E
O

and E
SU

' the definitions of which
are the same as in the case of the HR steel. Of the above parameters E2
and E1 need not be given explicity since they are uniquely determined by the
chosen curve geometry and the other parameters.

The stress-strain curve for the CW steel is calculated as follows. See also
FIG. 2.Ze.

1
E

1
= 0,002 + ;-

s
(2.2.3)
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FIG 2.2b Non-dimensional stress-strain diagram for a representative HR

steel.
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5s26
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5s 80

COLD WORKED

f st =800 MPa
(es =250)

5s 70A

.-_.- f st=572MPa

(es=350)
Ps50

fst =286MPa
(es =700)

FIG 2.2c

HOT ROLLED

The relationships between the nominal yield stresses and 0.2%
proof stresses of common Swedish reinforcing steels.
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FIG 2.2d Non-dimensional stress-strain diagram for a representative

CW steel.
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FIG 2.2e Stress-strain diagram of a CW steel approximated by a straight
line and part of an ellipse.
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FIG 2.2f

T)=1.0

I
I
I
I
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I
I
es =350

I
I
I
I
I
I

The stress-strain diagram recommended by the CEB for rein

forcing steel.



35

The horizontal semi-axis of the ellipse has the length

(2.2.4)

where

g2 = (e s -n)(n-1)((e s -n)-(n-1))s o s o

2 2
g = (e s -n) (n-1)

3 s o

The length of the vertical semi-axis of the ellipse is

(2.2.5)

(2.2.6)

(2.2.7)

(2.2.8)

(2.2.9)

The strain at the limit of proportional ity is calculated from the expression

2
s + ~(n-S)e

o S2 s

s2 = ",2 2
+ - e

S2 s

The expression for the stress-strain curve is therefore

{

e s
(J s s

s
f = s -s 2
st n-S(1-~1-(O",S)) E < E: :s. E:

2 - s su

(2.2.10)

In the following, the steel described by the parameters

es = 350

n = 1.1

So = 0.050
s = 0.065su

is considered to be a typical CW steel.

With the seleeted parameters, the stress-strain curve for the typical CW

steel is that shown in FIG. 2.2d.
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For both the HR and CW steels, the seleeted curves are representative mean
curves. A study is made in Chapter 7 of the rotation capacities which are
obtained using the above stress-strain curves, and the changes which occur
in the rotation capacity when these selected curves are varied in different
ways.

As a supplement to the stress-strain curves for HR and CW steels, the stress
strain curve at present recommended by the CEB for reinforcing steel is also

included here. The shape of this curve is given in FIG. 2.2f. It is character
ised by the parameters

es = 350

n = 1.0

E1 = E = E = 0.010o su

the value assigned to es being
specified by the more complete

the same as that applied for the steel types
stress-strain curves in FIG. 2.2b and d.

The reason why the CEB has selected this stress-strain curve for reinforcing
steel appears to be that, computationally, it yields practically the same
ultimate moment as the two more realistic curves studied here. However, as
will be seen from Chapter 7, such a simplified stress-strain diagram cannot
be used as the basis for calculation of the rotation capacity.
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3 THE DEPTH OF THE COMPRESSION ZONE

Using Bernoulli's hypothesis and a condition of equilibrium, the relation
between beam curvature and depth of compression zone is calculated in this
Chapter.

3.1 Calculation geometry

Using the symbols Fs for force in the tension reinforcement, Fsc for force
in the compression reinforcement and Fc for the resultant of the concrete
stresses in the compression zone of the beam, resolution of forces yields
the equilibrium condition.

F + F + F = O
c se s

(3.1.1)

The positions and positive directions of these forces are shown in FIG. 3.1a.

In the view of the numerical caluclation procedure, the compression zone is
divided into strips of equal depth parallel to the neutral axis. In principle,
this division can be effected in two distinct ways. One is characterised by the
fact that the depth of the compression zone which is applicable at a certain
instant is divided into a constant number of strips. This means that the

depth of a strip varies in step with the depth of the compression zone. When
this method of subdivision is applied, a strip will successively represent
different parts of the concrete in the compression zone during the loading
process.

The second method of subdivision is characterised by the fact that a ficti

tious compression zone depth is introduced and that this is kept constant
during application of the load. The fictitious depth xm is made so large

that it will at all times accommodate the real compression zone applicable
at that instant. When this method is applied, all the strips are not active
and the number of active strips changes during application of the load. In
return, there is the advantage that the depth of a strip remains constant,
and that each strip always represents the same. concrete area. This latter

aspect is significant when the previous history of the concrete must be taken
into account, for instance when a strip is reJieved of load.

The latter alternative is chosen here. It is illustrated in FIG. 3.1b. The
strips are numbered from 1 to n, and the ordinate Yi to the centroid of strip
No i is calculated according to the figure from the expression
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x
y. = _ m (i _ l)

l n 2

where n is the number of strips.

If we introduce the non-dimensional ordinate

where d is the effective depth of the section, and the non-dimensional depth
of the compression zone

(3.1.4)

Equation (3.2.1) can be written as

If ~Ac = xmb/n denotes the area of a strip, and Ac = bd the effective area
of section, the non-dimensional part area a can be calculated from the
expression

(3.1.6)

which, substituted into Equation (3.1.5), yields

n. = a
l

According to FIG. 3.1b, the ordinate to the centroid of the tension reinforce

ment is

y = d - x
s m

or, in non-dimensional form,

n = 1 - S
s ffi

(3.1.8)

According to the figure, the ordinate to the centroid of the compression

reinforcement is
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in establishing the equilibrium equation of the cross section.
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FIG 3.3a

Geometry of cross section and distribution of strain over the

depth of the section.
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4.3. 5.

0,3 -------------

Variation in the depth ~ of the compression zone for increasing

stress in the cross section. The numbered points refer to the
stress distributions shown in FIG 3.3b.
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-x + c
ID

where c is the distance between the compression reinforcement and the most
heavily stressed edge. Using the notation

y = E.. (3.1.9)
d

we obtain the non-dimensional ordinate of the compression reinforcement

(3.1.10)

r

The relevant strains are calculated as follows. According to Bernoulli's
hypothesis and FIG. 3.1b, we obtain for the curvature of the beam the expression

1
e

_ = _::;s_
d - x

where r is the radius of curvature, es the strain in the tension reinforcement,
and x the depth of the compression lone at that instant. If this is multiplied

by the effective depth d of the beam, we have

1 d es
-=-=-:-=~

p r 1 - ~
U.1.11)

where p is the non-dimensional radius of curvature and ~ denotes the non
dimensional depth of the compression lone at the instant under consideration.
The expression (3.1.11) gives the depth of the compression lone

~ = 1 - pe
s

(3.1.12)

as a function of the values of the radius of curvature and strain in the

tension reinforcement which are applicable at each particular instant.

Further, from FIG. 3.1b we derive the relation

e e
c s- - =

x d - x

or

U.1.13)

e =c
x

d - x

which, after substitution into it of Equations (3.1.11) and (3.1.12) yields

1 1
e = -( 1 - pe ) - = e

c s p s p
(3.1.14)
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In the above, E
C

is the maximum compressive strain in the concrete corresponding

to the gi ven parameter va 1ues 1/p and €s' The val ue of E c i s compared with the

ultimate compressive strain €cu in the concrete to see if crushing failure

occurs in the concrete.

According to FIG. 3.1b, the strain €sc in the compressian reinforcement is

obtained from the express ian

E se _ x-c _ b
-€--7- ~

c

or, with ~ accord-ing to Equation (3.1.12) and E
C

according to Equation (3.1.14),

1-pE -y
E = _----"s'-- (€
se 1-pE s

s

1
- -) = E

P s
1 (l-y)
p

(3.1.15)

The mean strain for concrete strip No i is obtained from the expressian

E. -y.-(x -x) -n--~ +~
l l ffi l ffi

- = =
E

C
x

wh ich, using Equations (3.1.12) and (3.1.14), is re-wri tten to read

-n--~ +1-PE 1 1l m s (E ( 1-~ -n· )E_ = - -) = E
l 1-PE S P s p m ls

or, with n· according to Equation (3.1.7),
l

(3.1.16)

All the relevant strains have now been expressed in terms of the parameters

1/ p and E
S

'

3.2 Depth of the compressian zone under elastic conditions

The position of the neutral axis is calculated in the following from Equation

(3.1.1). The case characterised by purely elastic conditions is studied first.

The following relationships are obtained from FIG. 3.1b.

E
~C =E - ~s

and

E
~se - y=E 1 - ~s

(3.2.1)
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From Equation (3.2.1), Hooke's law and Equations (2.1.1) and (2.2.1) we obtain

a E a f e
c s c st s ~--=-----=-

E a f a e - ~c s cc s c

from which

a e a
_c_ = c -;-:Z~-=- s
f e - ~ f stcc s

From Equation (3.2.2) we similary obtain

a E a f f
~2.=~2!2E.= _
E a f a f

s s se s st

~ - y
1 - ~

If we introduce the symbol

\J =
f

sc
f st

(3.2.4)

we obtain the expression

a
- y _s_
- ~ f

st

The equilibrium condition (3.1.1) is now written as

1
- a xb + A a + A a = O2 c se se s s

which, after multiplication by 2 and division by the reference force

N = bdf = A fc cc c cc

yields the equation

(3.2.6)

a
_c_ -" +
f d
cc

A f a
2~~~+

A f f
c cc se

A f a
2~~_s-=O

A f f
c cc st

If the effective reinforcement ratios

As f stw =---
A f

c cc

w
c

A f
=~~

A f
c cc

(3.2.8)
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are substituted in this, we have the expression

o
c

f
cc

~ + 2w
c

o
se-- +

f
se

o
2w _s_ = O

f st

The expressions (3.2.3) and (3.2.5) and the new quantity

e
s

w = - w
o e

c
(3.2.10)

are substituted into (3.2.9), which yields a second degree equation for
determination of the depth ~ of the compression zone. The equation

~2+2W (1
w w

1 c
2w (1 + Y ---.S:.)+ - -)~ =o v w o v w

has the solution

w
+ ~ (1

w
2

w
(-(1

. 1 c + .l ---.S:.)2 ( 1 + Y ---.S:.)} (3.2.11)~ = w + --) + -
o v w v w w v w

o

3.3 Depth of the compression zone under elasto-plastic conditions

Under elasto-plastic conditions, the depth of the compression zone cannot be

determined explicitly. The depth is instead calculated by means of an iterative
process as follows. For this case, the equilibrium condition (3.1.1) is written

i n the form

il

'EI1Ao.+A o
1 c el se se

+ A o
s s

= O

where the summation extends over the n strips into which the fictitious

compression zone is divided. If this is divided by the reference force Nc
according to Equation (3.2.6), we have

il I1A o. A f o A f o
'E __c ~ +~~~ + 2.~_s_ = O
Af Aff Aff

1 c cc c cc se c cc st

or, making use of Equations (3.2.7), (3.2.8) and (3.1.6),

(3.3.1 )

When this method is selected to deal with variation of the compression zone
during the load application process, a is a constant. It has therefore been

moved outside the summation sign. The ratio 0ci/fcc then remains inside the
summation sign. According to Chapter 2, it is this ratio which is read in
the non-dimensional stress-strain diagram for a given strain.
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w=O,1S

-o 5 o

FIG 3.3b Stress distribution over the compressian zone of the concrete
for five different stages of stressing. The corresponding beam

curvatures are shown in FIG 3.3a.
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The procedure for determination of the depth of the compressian zone during

gradual increase in beam curvature will then be as follows.

A fictitious depth ~m is first determined. Trial calculations have shown that

a convenient value is

where ~o is the depth of the compressian zone under elastic conditions, calcu

lated from Equation (3.2.11).

The curvature 1/p is then allowed to increase in equal steps from O until, at

same value of l/p, material failure occurs. After each increase in 1/p an

adjustment is made to the strain E
S

in the tension reinforcement, with the value

of 1/p being maintained constant, so that the equilibrium conditian (3.3.1) is

satisfied within a specified tolerance (2 - 10 °/00 of the force in the tension

reinforcement). The iterative process can be described as follows.

1. Increase 1/p to a new value which is then kept constant during the sub
sequent calculation steps.

2. Increase the strain in the tension reinforcement by 6E S to E s' the value
of 6E

S
being at first made the same as the increase in strain during the

previous change in l/p.

3. Calculate the relevant strains from Equations (3.1.14), (3.1.15) and

(3.1.16) using the values of 1/p and E
S

applicable during this calculation

step.

4. From the calculated strains and the stress-strain curves for the concrete

and steel, determine the corresponding non-dimensional stresses 0Ci/fcc'

0sclfsc and o/fst '

5. Substitute the stresses obtained in 4 inta Equation (3.3.1). If this is

not satisfied within the specified tolerance, adjust the value of 6E
S

and

repeat the iteration process from step 2 onwards. Once the specified tolerance

is attained in Equation (3.3.1), continue with

6. and calculate the relative depth ~ of the compressian zone from Equation

(3.1.12).
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The results of a calculation according to the procedure described above are

illustrated ln FIG. 3.3a. The calculation refers to a section without compression
reinforcement, and with the quantity of tension reinforcement characterised by

w = 0.15. The reinforcement consists of HR steel and the concrete is of Type B

(see Chapter 2). The full line shows variation of the depth ~ of the compression

zone as a function of the beam curvature 1/p. The chain line indicates the

fictitious depth ~m of the compression zone calculated from Equation (3.3.2).

If we assume that the stress block in the compression zone is rectangular and

of depth 0.8 ~ at the ultimate stage, we have ~ = 1.25w . This value is also

given in the figure. The ultimate stage, characterised by crushing failure

of the concrete, has been marked with a cross at the end of the curve.

The calculated stress distribution in the compression zon e is shown in FIG.

3.3b for five values of 1/p . The corresponding positions are marked by the

figures 1 ... 5 in FIG. 3.3a.
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4 MOMENT-CURVATURE DIAGRAM

Onee the depth of the compressian zone has been determined aeeording to
the proeedure deseribed in the previous ehapter (as a fundtion fo the eur
vature 1/p ), the moment-eurvature diagram can be ealeulated.

For the purely elastie ease it is most eonvenient to relate the moment
equilibrium to the position of the resultant of the eonerete stresses. Using
the symbols in Chapter 3 and FIG. 3.1a, we thus have

M + F (l x-c) - F (d - l x) = o
se 3 s 3

(4 . i )

where Mis the bending moment. If we introduee inta Equation (4.1) the

express ians Fse = Ase iJse and Fs = As iJs ' and di vi de by the referenee moment

M = N d (4.2)
c c

we have the moment in a non-dimensional form

A f iJ
-~~~

A f f
c cc se

1(- ~-y)
3

(4.3 )

Substitution of the effeetivereinforeementratios w and Wc according to
Equations (3.2.7) and (3.2.8) respeetively, and of Equation (3.2.5), inta
Equation (4.3) yields

iJ i
~ = w __s__ (1 - -~) +

f st 3

iJ
s i~-y(l )w -- -~-y

c f st v 1 - ~ 3
(4.4)

The beam curvature is calculated from the Equation (3.1.11) and Hooke's law,
and i s written

e
s

iJ
S

- ~ f st
(4.5)

If the ratio iJs/fst is eliminated from the expressions (4.4) and (4.5), we
have

(4.6)
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where the non-dimensional bending stiffness 6 is

6 = we {( 1
s

1 1 w 1
-3 ~)(1 - ~) + - ~ (y - - s)(y - ~)}

\) w 3 (4.7)

Expressian (4.6) gives the relation between the curvature 1/p and the bending

moment ~, the stiffness 6 for elastic behaviour and the given depth ~ of the

compression lone being determined from Equation (4.7).

Under elasto-plastic conditions it is more convenient to relate the moment
equilibrium to the bottom edge of the fictitious compression lone, see FIG.

3.1a and b. We then have the relation

M - F Y + F (x - c) - F (a - x ) = o
eL c se ID s ID

(4.8)

where Yc is the ordinate of the position of the resultant Fc of the concrete

stresses. Equation (4.8) is re-written as

n
M - ~ LA a .y. + A a (x - el - A a (a - x l = o

C el l se se ID s s ffi

which, after division by the reference moment Mc, yields the non-dimensional

moment

A f t a
s s s ( )+ - -- -- l-s

A f f m
c cc st

A f a
-~~~

A f fc cc se

Substitution of w, Wc and ni according to Equations (3.2.7), (3.2.8) and
(3.1.7) into Equation (4.9) yields the expression

a
+ w {(l-s) _s_ +

m f
st

w a
)

c se(y-s - --)
m w f

se

(4.10)

For selected value of 1/p the procedure in Chapter 3 gives the corresponding
depth ~ of the compression lone. The strain distribution is then known and

the corresponding stresses 0ci/fcc' 0s/fst and asc/fsc can be determined
with the aid of the stress-strain diagrams for the steel and concrete, after
which the moment is calculated from Equation (4.10). By successive repetition
of this procedure for values of l/p increasing in discrete steps, a moment
curvature curve is determined for the section.

As an example of the results obtained according to the calculation technique
described above, FIG. 4a shows the moment-curvature curve for a section
without compression reinforcement for different values of w. The calculation

refers to HR steel and concrete of Type A.
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FIG 4a Moment-curvature curves for different values of w. The curves
relate to a cross section with tension reinforcement of HR steel.
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FIG 4b Moment-curvature curves for different values of w. The curves
refer to a cross section with tension reinforcement of CW steel.
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FIG 4d Ordinary shape of moment-curvature curve. This curve permits
two alternative definitions of the ultimate moment.
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For purposes of comparison, FIG. 4b and 4c show the corresponding moment
curvature-curves for CW steel and CEB steel. All calculations have been
carried as far as the ultimate strains of the steel and concrete permit.

When some convenient definition of the ultimate moment has been deci~ed on,
this can be read off the moment-curvature diagram. If the loading process
is assumed to be force-controlled, and this is the assumption made in the

following, then at least two failure criteria can be stipulated. As a rule,
the moment-curvature diagram increases monotonically up to a maximum moment
after which the moment decreases. The situation is set out schematically in
FIG. 4d. Material failure can occur either before or after the maximum moment
at point B. If it occurs before this, as at point A, the corresponding moment

is taken to be the ultimate moment ~u (=~uA)' This situation occurs, for
instance, in the case of w = 0.010 in FIG. 4a. If the material failure occurs
after the maximum moment, as at point C in FIG. 4d, then the maximum moment

is taken to be the ultimate moment ~u (=~uB)' This is the situation which
occurs, for instance, in conjunction with w = 0.15 in FIG. 4a. These two
failure situations occur in conjunction with both HR and CW steel reinforce
ment.

In certain cases a special situation may occur in conjunction with HR steel.
This is illustrated by FIG. 4e. The moment has a first maximum at point A.
If, at the same time, the stress in the concrete has reached its minimum

value Gc/fcc = -1.0 at the upper edge of the compression zone and the steel
strain is at incipient yield level then, as curvature continues to increase,
the strain in the steel will rise for a eons tant force in the reinforcement,
and at the same time the position of the minimum stress in the concrete is
displaced downwards in the compression zone, as shown in FIG. 3.3b. The moment
thus drops due to the decrease in the internal level arm while the curvature

continues to increase, until the strain in the steel has passed the lower
limit of strain hardening, after which the moment again increases. This process
is described schematically by curve A-B-C in FIG. 4e. After this the process may
be as shown in FIG. 4d. When loading is force-controlled, the above process
implies that an instabil ity situation occurs at point A. As the moment continues
to rise, the situation changes instantaneously from a position with a higher
potential, point A, to one with a lower potential, point C. In other con texts
this phenomenon is referred to as "snapping". For a section with the proper
ties described, the moment corresponding to point A is taken to be the ultimate
moment ~uA if material failure occurs between points A and C, such as at point
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Shape of moment-curvature curve in which instabil ity may occur.

This curve permits three alternative definitions of the ultimate
moment.
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reinforcement.
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B. If material failure occurs along the section C-E, for instance at point D,

the corresponding moment is taken to be the ultimate moment ~uD. Finally, it is
possible for material failure not to occur until the moment has passed its
second maximum, point E, in which case the moment corresponding to the maximum

point is considered to be the ultimate moment ~uE.

If the stipulated failure criteria are applied to the moment-curvature diagrams
shown in FIG. 4a, 4b and 4c, the relationship between w and ~u will be as shown

in FIG. 4f. As will be seen, the ultimate moment is practical ly the same
for all three types of steel.

The ultimate moment is often calculated on the basis of a simplified
rectangular stress distribution in the compression zone. In such a case,
the moment is

~ =w(l--"'-) (4.11)
il 2

This equation yields a curve which is practical ly coincident with that for
CEB steel in FIG. 4f.
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5 DEFORMATION ENERGY

The calculation technique which results in the derivation of the moment
curvature diagram for an arbitrarily selected section in a reinforced con
beam, under elastic and elasto-plastic conditions, was developed in Chapters
3 and 4. This will be complemented below by calculation of the corresponding
consumption by the cross section of deformation energy per unit length of
the beam, a moment-energy relation being constructed.

The quantity of internal energy 6W per unit length of the beam which is stored
during the increase in curvature 6(1/p), i.e. during one calculation step, is

n
D~ = L DA o .D€.+A o DE +A o DE

1 C el l se se se s s s
( 5 . 1 )

where 6W includes both reversible and irreversible energy consumption.

The increments in strain 6€sc and 6€i corresponding to the increase in
curvature 6(1/p) are obtained by partial differentiation of the expressions
(3.1.15) and (3.1.16). The following expressions are obtained

62
se

1
= -( l-y) ·6(-)+62

p s

6€. = (0.(-21 - i) + ~ -1) ·6(..1.-)+6€
l ID P s

with the increment in strain 6€s determined by means of an equilibrium con
dition according to Chapter 3.

The stresses contained in Equation (5.1) are obtained from the stress-strain
diagram of the section component concerned, the stresses being referred to
the centre of the corresponding strain interval 6€.

If 6W according to Equation (5.1) is divided by the reference force Nc '
the increase in consumed deformation energy per unit length of the beam is

obtained in non-dimensional form

n 6A eJ.
I __c ~ M.

A f l
1 c cc

A f (J

+~~~!J.E
A f f se

c cc se

A f (J
s st s+ - -- -- 62

A f f t sc cc s

Substitution into the above of Equations (3.1.6), (3.2.7) and (3.2.8) yields
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n a .
el1'.1); = 1'.1); +1'.1); +1'.1); =Ci. l: f I'.E.+W

C se s 1 cc l C

Use of Equations (5.2) and (5.3) yields the following for the contribution
of the compressed concrete to the deformation energy per unit length of the
beam

= Ci.

n a .
l: ~

f
1 cc

For the contribution of the compression reinforcement, we have

1'.1);
se

w a
c se= w --

w f
se

1((y-1)I'.(-)+I'.E )
P s

and for the contribution of the tension reinforcement

a
=w_s_ 1'.,

f
st

s

The total deformation energy per unit length of the beam consumed at the

prevailing state of deformation is obtained by summation from zero up to the
appropriate value of the curvature 1/p • We then have

With 1/p as the governing parameter, associated values of 1); and)J can now be
calculated according to Equations (4.10) and (5.9). In this way the moment
energy relation sought is obtained.

As an example of the results of such a calculation, FIG. 5a shows the)J - 1);

relation for a cross section of concrete Type B reinforced with HR steel.
The effective reinforcement ratio is w = 0.30 on the tension side and

w = 0.15 on the compression side. The example chosen includes the effect
of creep in the eonerete, the creep factor being ~= 3. The effect of creep
on the rotation capacity is studied in Chapter 8. The only reason why creep
has been included in this case is that the figure is clearer as a result. The
figure shows three curves, of which the bottom one represents the share of
the concrete 1);c in the energy consumption. The centre curve gives the energy
consumption in the compression zone of the beam
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FIG 5b Moment-energy curve for a cross section in a beam reinforced

with CW steel.
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i.e. the quantity of deformation energy per unit length of the beam which is
stored by the compressed concrete and the compression reinforcement taken
together.

The top curve shows the total energy consumption of the cross section per
unit length of the beam. Point A in the figure represents the state of affairs
in the cross section when the tension reinforcement reaches the upper yield
stress, i.e. when E

S
= EZ' Point B represents the state of affairs when the

tension reinforcement reaches the lower strain hardening limit E 1. Finally,
point C represents the ultimate state which in this case is characterised by
crushing failure of the concrete.

A corresponding ~ - ~ curve for a beam reinforced with CW steel but in other
respects similar to the previous case is shown in FIG. 5b. The tension re
inforcement fails at point B. However, this diagram is utilised only up
to point A which is characterised by the fact that the ultimate moment ~u

here is equal to the maximum moment.
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6 ENERGY BALANCE

In the following, the rotation span of a plastic hinge refers to the part
of the beam between the plastic hinge and the nearest point where the moment
is zero. A discontinuous plastic hinge has two rotation spans, one on each
side of the hinge, while a continuous plastic hinge, for instance one at a
fixed end, has only one rotation span. In the following, only conditions on
one side of a plastic hinge will be studied, whether it is a discontinuous
or continuous hinge.

The length of the rotation span is detoned lo' The value of lo generally
varies somewhat during application of the load. However, the simplifying
assumption is made here that lo is constant and equal to the length corres
ponding to the ultimate moment Mu of the plastic hinge. Most of the energy
interchange during a complete loading process occurs for moments of this
magnitude, and the variation in the length of the rotation span which occurs
in the region around the zero moment can therefore be considered to have a
negligible effect on the total energy situation of the span.

In the following, a calculation is first made of the external work required
for deformation of the rotation span, the deformation energy simultaneously

stored in the span is then determined according to Chapter 5, and final ly an
energy balance is drawn up from which the elasto-plastic rotation, the rota
tion capacity, is calculated.

6.1 The external work

FIG. 6.1a shows the rotation span of length lo between a plastic hinge PH
to the right and a point of zero moment to the left. At its left-hand end,
the part of the beam is acted upon by the shear force Vn. At its right-hand

end it is acted upon by the ultimate moment Mu and the shear force Vo' The
span is assumed to carry a uniformly distributed load q. The variation of

moment over the length of the span is thus parabolic, as shown in the upper
moment diagram in the figure. Under this assumption, the moment variation is
uniquely characterised by a coefficient S according to the figure, which
expresses the difference between this moment variation and a linear variation

shown das hed in the figure.

The above method of describing the moment variation does not cover all

conceivable situations. Examples of such cases are a uniformly distributed
load over part of the span, and one or more point loads placed between the
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plastic hinge and the point of zero moment. On the other hand, this method
permits uncomplicated treatment of the loading situations which most often
occur in practice.

The following values of S can occur. See FIG. 6.1b.

S ~ -0.06 represents the moment variation adjacent to a plastic hinge near
a support section when the beam carries a uniformly distributed load.

S ~ O represents the variation adjacent to a plastic hinge which is situated
either near a support section or in the span when the beam is acted upon by
point loads.

S ~ 0.25 represents the moment distribution near a plastic hinge in the span

when the beam carries a uniformly distributed load.

The moment distribution can be written as

M ~ (1 - ~)(1 + 4$ ~)M
l l il

o o

(6.1.1)

If the rotation span is divided into n equal parts each of length 61
0

, as

shown in FIG. 6.1a, the relation

z i-= -
l n

o

applies at point No i.

(6.1.2)

Substitution of Equation (6.1.2) into Equation (6.1.1), and simultaneous
division by the reference moment Mc according to Equations (3.2.6) and (4.2)

gives the non-dimensional moment at point No i as

M. ~

~. =~ = ~ (n-i)(n+4$i)/n~
l M u

c

(6.1.3)

The relation between S and q is written according to the figure

J.. q12 = SM
8 o il
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FIG6.1a Moment distribution at the ultimate stage over the length lo

of the rotation span. The internal and external forces acting
on the rotation span. The deformation of the rotation span
divided into a plastic and an elastic portion.
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or

(6.1.4)

Moment equilibrium for the part of the beam under consideration gives

M + l q1
2 - V l = O

u 2 -o n o

from which, by making use of Equation (6.1.4), we calculate

M
V = (1+4S)~

n l
o

(6.1.5)

(6.1.6)

Under the influence of the forces acting on the beam, the rotation span is

deformed according to the lower figure in FIG. 6.1a. The deflection is
divided into an inelastic and an elastic part.

In an initial phase, all deformations are elastic. During this phase the
external load rises from zero to a value qy which is attained when plastic
flow begins in the section where the moment is a maximum, i.e. at the theo
retical plastic hinge. At the same time as this occurs, the bending moment
at the plastic hinge is My and the shear force at the point of zero moment is
Vy' In this situation, the relations corresponding to Equations (6.1.4) and
(6.1.6) are

(6.1.7)

and

(6.1.8)

As the external load increases from the yield value qy to the ultimate value q,
there is plastic rotation about the plastic hinge, and at the same time the
elastic deflection at the point of zero moment increases to its maximum value
an' The elastic part of the deflection at the arbitrary point No i is corres

ponding denoted ai .

Computationally, the inelastic deformation is treated as a rotation of the

rotation span, considered as a rigid body, through an angel Bu about the
plastic hinge. According to the definition, Bu represents the rotation
capacity of the plastic hinge on the side being considered. When failure
occurs, the maximum inelastic deflection at the point of zero moment is

loBu'
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FIG6.1b Three moment distributions over the length of the rotation span.
The form of the moment distribution is determined by the parameter s.



64

The relationship between beam deformation and plastic hinge moments over
the moment interval My - Mu' i.e. over the elasto-plastic loading range, is
dependent on a number of factors among which the shape of the stress-strain
diagram of the reinforcing steel is dominant. In view of all the other un
certainty which is associated with this type of calculation, the following
derivation has been based on the approximate assumption that the above
relationship is linear.

The total external work which is performed during the loading phase up to

fa il ure i s thus

w = lv a + l(v +V )8 l
e 2 n n 2 y n u o

1
n

- -1:'1./11 a.
2

1
o l

1 1- -(a +'1)1 '-8 l
27 o2uo

(6.1.9)

With reference to FIG. 6.1a the following comments are made concerning the
various terms in this relation.

The first term refers to the elastic work performed by the shear force at

the point of zero moment as the force rises from zero to its maximum value
Vn, and at the same time the elastic part of the deflection at the same section

increases to its final value an'

The second term refers to the plastic work performed by theshear force at
the point of zero moment. Up to the value V no plastic work is done. As they .
shear force then increases from Vy to Vn, the mean force during the plastic
loading phase is (Vy + Vn)/2. This acts over the plastic part of the deflection

8ulo'

The third term refers to the elastic work performed by the ultimate load q

when the elastic part of the beam deflection, as the load increases, rises
to the final value ai at the point No i.

The fourth term, final ly, refers to the plastic work performed by the dis

tributed load. Up to the value qy no plastic work is done. As the load then
rises from the yield value qy to the ultimate value q, the resultant of the

mean load during the plastic loading phase is (qy + q)lo/2. This resultant,
which acts at the centre of this part of the beam, acts over the deflection

8ulo/2.
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The section forces Vo~and Mu are also shown in FIG. 6.1a. All displacements
have been related to the plastic hinge which, in this derivation, has been
assumed to be a point incapable of displacement. The work done by the shear
force is therefore equal to zero. Nor has the ultimate moment Mu which acts
at the plastic hinge been included in Equation (6.1.9) because, in this
context, Mu may be considered to be an internal moment. That this is so is
evident if we imagine that the plastic hinge being considered occurs over
an intermediate support in a continuous beam, and consequently envisage the
part of the beam being considered to comprise the section 21 0, placed symmet
rically with regard to the plastic hinge.

Substitution of qyl02 according to Equation (6.1.7), ql02 according to Equa
tion (6.1.4), and Vn and Vy according to Equations (6.1.6) and (6.1.8) res
pectively into Equation (6.1.9) yields

M 1 a
+ --Z)M e + -( 1+4S)M --'"' -

M u u 2 ul
u o

1\1 n a.
4SM ~E--1o.

u l 1 lo o
(6.1.10)

If this is divided by the reference moment Mc and it is noted that 1\1 0/1 0 =

1/n, we have the external work in a non-dimensional form

W 1
~ =~=-(1
~e M 2

c

1 d a
+ -(1+4S)~ ---'"'-

2 u l d
o

(6.1.11)

If we introduce the symbol

l
Je =.....2. (6.1.12)

d

for the non-dimensional length of the rotation span (the slenderness of the
span), the relation (6.1.11) can be written as

1
~ = {-t 1

e 2

~ 1 1 a
+ --Z) e + -( 1+4S)- --'"' -

~ u 2 Je d
u

(6.1.13)

The elastic deflection ai and an are calculated with the aid of finite dif

ferences. We thus have the relation

a. 1-2a.+a'+11- l l

(1\1 )2
o

=-
r.

l

(6.1.14)
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FIG 6.2a Transformation of the moment-energy curve by means of the moment

curve. The transformation yields the distribution of consumed
deformation energy ~ per unit length of beam along the rotation span.
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where r i is the radius of curvature at point No i under elastic conditions.
The relation is re-written as

111 2 l 2 d A2 1
= (-.-Q) (-9.) _ = __

l d r. 2 p.
o l n l

(6.1.15)

where Pi = ri/d is the non-dimensional radius of curvature at point No i.

If we introduce the non-dimensional deflection

(6.1.16)

into Equation (6.1.14), we have the difference equation

(6.1.17)

Since the portion of the beam is rigidly fixed at the plastic hinge with
respect to elastic deflection, the boundary conditions

K = O
o

apply there, and when these are substituted into Equation (6.1.17), we have
the deflection at the first subdivision point (i = 1) as

1 1
K =--

l 2 Po

From Equation(6.t.U) we obtain the recursion formula

1
K. 1 = 2K. -K. 1 + -

1+ l 1- p.
l

(6.1.18)

(6.1.19)

for successive calculation of the elastic part of the deflection.

When the elastic beam curvature required for calculation of ai and an in
Equation (6.1.13) is to be determined, the calculation cannot be based on the
depth of the compression zone which corresponds to purely elastic behaviour
of the cross section. It must be borne in mind that, in actual fact, conditions
are elaste-plastic, and the corresponding compression zone depth must be used.

It was shown in Chapter 3 how the depth s to the compression zone can be deter
mined as a function of the elasto-plastic curvature. Chapter 4 describes the
corresponding determination of the bending moment~. Using the elasto-plastic
curvature as the governing parameter, a ~ - s relation can be calculated in

this way.
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It is now possible to calculate the moment ~i from the expression (6.1.3) for
every subdivision point in the rotation span, and then to determine the corres
ponding value of ~ from the ~ - ~ relation obtained as above. This, when

substituted into Equation (4.7), gives the bending stiffness 6. The sought
elastic curvature is then obtained from Equation (4.6).

Finally, substitution of the non-dimensional elastic deflection according to
Equation (6.1.16) into Equation (6.1.13) gives the non-dimensional external
work in the form

1
~ = -( 1

e 2

~

+ -L)8 ~
~ u u
u

(6.1.20)

6.2 The consumed deformation energy

The way in which the relation between the non-dimensional deformation energy
~ per unit length of beam and the non-dimensional bending moment ~ can be
determined was shown in Chapter 5. Such a relation is shown, for instance,
in FIG. 5a. This relation is reproduced in principle, but with another orien
tation, in FIG. 6.2a along the moment diagram of the rotation span. The way
the ~ - ~ relation can be transformed via the moment diagram so as to give

the distribution of ~ along the length A of the rotation span is evident from
the figure. The total deformation energy consumed within the beam volume of
the rotation span is thus equivalent to the dashed area in FIG. 6.2a. With the
same subdivision of the span as that applied in Section 6.1, we obtain the
following relation for the total energy - see also Equation (5.4)

l
VI. = IN ~.lll . = N III I~. = N -2.I~. (6.2.1)

l elO COl cnl

If this expression is divided by the reference moment Mc = Ned, the total
consumed deformation energy is obtained in non-dimensional form as

W. l 1
~. = -l. = -2. - I~.

l H d n l
c

A n
= - I~.

n 1 l

(6.2.2)

6.3 Energy balance

The total consumed deformation energy ~i is equal to the work ~e performed by
the external forces within the rotation span, i.e.

(6.3.1)
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If we substitute into this expression ~ according to Equation (6.1.20) ande
~i according to Equation (6.2.2), we have

1 \l
- (1 +.1)8 \l
2 \l u il

il

A EK.
+ ---2 {(1+4S)K -8s l }\l

2n n n u

A
= - E1jJ.

n l

from which the rotation capacity is calculated as

1 E1jJ. 1 EK.
{ l + t8s l _

\l n 22 nu n
(6.3.2)

8
u-=

Equation (6.3.2)

program. Results

foll owi ng.

( 1+4s) K )} ---"02_
n \l

+.1
\lu

has been used as the basis for the development of a computer

of calculations using this program are set out in the
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7 DEPENDENCE OF THE ROTATION CAPACITY ON THE SHAPES OF THE STRESS-STRAIN
DIAGRAMS FOR THE STEEL AND CONCRETE

The rotation capacities for the three typical steels HR, CW and CEB, combined
with the two concrete types A and B described in Chapter 2, are first calcu
lated. The calculation is made for three moment distributions corresponding
to S= 0.25, S = O and S = -0.06 according to Chapter 6. The object of this
investigation is to show the general effect on the rotation capacity due to
the different shapes of the stress-strain diagrams for the steel and eonerete.

The way the rotation capacity changes when there are deviations from the
parameter values seleeted in Chapter 2 for the description of the stress-strain
diagrams of the three typical steels and the two concrete types is then demon
strated. For the sake of clarity, results are only shown for a moment distri
bution corresponding to S = 0.25, i.e. the moment distribution which occurs
in conjunction with a plastic hinge which is not acted upon by large shear
forces.

The results are set out in the form of diagrams, with the effective reinforce

ment ratio as the abscissa and 8u/A as the ordinate. The value of w is made
to vary between the limits 0.04 and 0.31, which ought to cover all situations

that normally occur.

7.1 Different combinations of typical steels and concrete types

If HR steel is combined with concrete types A and B, results according to
FIG. 7.1a are obtained. The two families of curves have the same general form,
characterised by the existence of a critical value ofw, wcr ' at which there
is a change in the shape of the curves.

For w <wcr ' there is a marked increase in rotation capacity with decreasing
w, while for w >wcr the value of w is low and practically constant. If de
tailed calculations are made in order to find an explanation of this pheno
menon, it is seen that at wcr failure occurs exactly whenthe strain in the
steel coincides with the lower strain hardening limit E 1 of the steel in FIG.

2.2b. When w< wcr ' failure occurs within the strain hardening region of the
steel.
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When w> wcr ' failure occurs at the yield level of the steel. This shows that
the concepts of over-reinforcement and normal reinforcement must be given
different meanings depending on whether it is the ultimate moment or the

rotation capacity that is being studied. The boundary between over-reinforce
ment and normal reinforcement is at the steel strain E2 = 1/es for calculation
of the ultimate moment, while for calculation of the rotation capacity it may
be considered to be situated at the end point of the yield level, at the
strain E1. The statement sometimes encountered, that the rotation capacity is at
all times sufficient provided that the beam is normally reinforced, is thus

rather rash.

FIG. 7.1a also shows the effect due to variation of the mechanical properties

of concrete. For concrete type A, wcr = 0.15, while for type B wcr = 0.21. In
this context it is primarily the ultimate compressive strain E

CU
of the con

crete which is critical with regard to the position of wcr '

A corresponding calculation relating to CW steel gives results according to
FIG. 7.1b. In this case there is no wcr since this steel has no pronounced
boundary between the yield region and the strain hardening region. The rotation
capacity of a concrete beam with CW steel is consistently lower than that of a
beam with HR steel.

The results of a calculation relating to CEB steel are shown in FIG. 7.1c. As
may have been expected after a study of the moment-curvature diagram for this
hypothetical steel ,·the rotation capacity is extremely low. This shows that
it is unrealistic to apply the stress-strain curve suggested by the CEB for
reinforcing steel in conjunction with calculation of the rotation capacity.
On the other hand, as shown in Chapter 4, this truncated stress-strain curve

does not exhibit any palpable disadvantages in conjunction with the calculation
of the ultimate moment of a cross section.

It is a common feature of the results set out that the moment distribution

S = 0.25 gives a larger rotation capacity than the distributions S = O and
S = -0.06, which is to be expected in view of the general discussion in
relation to FIG. 1.3a. It must however be noted that any effect due to shear
force is not taken into consideration here. The presence of shear force can
change the results in a direction favourable for the distributions S = O and

S = -0.06.
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FIG1.1a Rotation capacity expressed in terms of the ratio BulA as a
function of w. The curves relate to HR steel combined with
concrete types A and B for three different moment distributions.
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FIG7.1b Rotation eapaeity expressed in terms of the ratio sulA as a
function of w. The curves relate to CW steel combined with
eoncrete types A and B for three different moment distributions.
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FIG7.le Rotation eapaeity expressed in terms of the ratio sulA as a
funetion of w. The curves relate to CEB steel combined with
eonerete types A and B for three different moment distributions.
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7.2 Deviations from the parameter values selected for the typical steels
and the concrete types

All the calculation results given in this section refer to the moment
distribution S = 0.25.

In Section 2.1 representative parameters were determined for the description
of concretes type A and B. The value ec = 1200 was chosen for the non
dimensional initial modulus of elasticity of the concrete. It is interesting
to see what the effect of deviations from the selected value is for the
rotation capacity. In order to investigate this, two calculations have been
made for CW steel, in one case combined with concrete type A, with ec = 1800,
and in the other combined with concrete type B, with ec = 800. The results
are shown inFIG. 7.2a where corresponding results using the normal value
ec = 1200 are also shown with dashed lines for purposes of comparison. As will
be seen from this figure, the effect of variations in ec on the rotation

capacity is insignificant, and for this reason ec can be omitted as a variable
parameter in the following, and the constant value of ec = 1200 used.

In section 2.2 a value es = 350 was chosen as the non-dimensional modulus of
elasticity of the steel, and this was then applied as normal value for all
three typical steels, HR, CW and CEB. In order to see what effect deviations
from the selected value have on the rotation capacity, two calculations have
been made for HR steel and concrete type B, with e = 250 in one case ands .
es = 700 in the other. See FIG. 2.2c. The results obtained are shown in FIG.

7.2b. Compared with the results for the normal value of es = 350, the differ
ences are small, and for this reason it may be considered justified to omit
es also as a variable parameter and to use the constant value es = 350

irrespective of steel type and the value of f st .

For HR steel, the lower strain hardening limit El = 0.015 was chosen as normal
value in Section 2.2. Comparative calculations for this value and the alternae

tive values E1 = 0.005 and E1 = 0.025 are of interest, during which process
the entire strain hardening region of the steel between E1 and E

O
is give~ a

corresponding sideways displacement as shown in FIG. 7.2c. The results of
calculations using the alternative stress-strain curves for the HR steel in
combination with concretes types A and B are shown in the same figure. In view
of the above explanation concerning the physical meaning of a critical value
wcr for the effective reinforcement ratio, it may be expected that a variation

in E1 will be reflected in a corresponding variation in wcr ' The figure shows
that this is actually the case. The value of wcr changes from approx. 0.10 to
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0.29 when 81 is changed from 0.025 to 0.005 in combination with concrete
type A. In combination with concrete type B, the corresponding change in wcr
is from about 0.15 to a value in excess of 0.31.

In order to throw further light on this subject, n = fstu/fst is vari ed for
an HR steel as shown in FIG. 7.2d, the value of the lower strain hardening

limit being maintained at 8 1 = 0.015. Two values of n, 1.2 and 1.6, are com
bined with eoneretes types A and B. A variation in n has no effect on the

position of wcr ' nor on the rotation capacities corresponding to w >w er' since
failure then occurs at steel strains less than the lower strain hardening
limit. The calculation results set out in the figure also show that the varia

tion in rotation capacity with n is moderate for w <w er'

Finally, FIG. 7.2e shows what change is obtained in the rotation capacity
when n for a CW steel is increased from the seleeted normal value of 1.1
to 1.2. Calculated results are set out in the figure for the CW steel in
combination with eoneretes types A and B. It is seen from the figure that
the variation studied causes a moderate change in the rotation capacity.

Tho following conslusions may be drawn from the above analysis.

The non-dimensional initial modulus of elasticity of concrete may be con
sidered constant and equal to ec = 1200 in all contexts.

For both HR and CW steels, the non-dimensional modulus of elasticity of steel
may be considered constant and equal to es = 350.

The stress-strain curve suggested by the CEB for reinforcing steel is not
applicable in conjunction with determination of the rotation capacity.

The boundary between over-reinforcement and normal reinforcement, which for

calculation of the ultimate moment is put at the steel strain 8z = 1/es '
should instead be related to the lower strain hardening limit 81 when the
rotation capacity is calculated.

The magnitude of the rotation capacity, within certain values of w, is greatly
dependent on the position of the lower strain hardening limit of the steel.

The value of the ratio n = fstu/fst does not have the same significance.
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The value of the rotation capacity is consistently somewhat greater when the
calculations are based on concrete type B, which is more in conformity with
actual conditions, than when the calculations are based on concrete type A
which is more restrictive as regards deformations.
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8 CREEP OF THE CONCRETE

As a rule, the effect due to creep of the concrete is not taken into con
sideration when the rotation capacity of a concrete beam is calculated. In
cases when an accurate check is made on the compatibility conditions and
the effect of creep is thus taken into account in determining the rotation
requirement of the plastic hinge, inclusion of the effect of creep in
calculating the rotation capacity is also warranted.

Computationally, the effect of creep can be allowed for by transforming the
compressive stress-strain curve of the concrete by means of changing the

scale along the ~c axis, as shown in FIG. 8a. The scale factor is 1+~, where
~ is the creep factor. Computationally, this implies that the appropriate
strain ~i in strip No i must be divided by 1~ and the modified strain thus
obtained used for determination of the stress in the untransformed stress-strain
diagram for the compressive stresses in the concrete. In consequence of this,
the modulus of elasticity of concrete must be divided by 1~ in the previously
derived formulae for calculation of the rotation capacity.

Calculations which take the creep of concrete into account give the results
shown in FIG. Sb and Sc. In FIG. Sb the effect of creep on concrete type A,
in combination with reinforcing steels of both types HR and CW, is studied.
FIG. Sc shows the corresponding results for concrete type B in combination
with the same reinforcing steels.

The figures show that an increase in the creep factor consistently raises the
rotation capacity. The reason for this is that the greater value of E

CU
applicable in conjunction with creep allows agreater strain in the tension
reinforcement before the concrete undergoes crushing failure. As a result,
agreater quantity of deformation energy can be stored within the volume of
the rotation span. In particular, the value of wcr for HR steel becomes

progressively higher as the creep factor increases.

When there is compression reinforcement within the section, creep of the
concrete causes a change in the distribution of force between the compression
reinforcement and the compressed concrete. If, prior to creep of the concrete,
the stress in the compression reinforcement is below the yield stress, the
concrete will berelieved of load and a greater proportion of the force will

be transferred to the steel. If the compression reinforcement has already
attained its yield stress before the concrete begins to creep, there is no
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Stress-strain cllrve for concrete in compression, with and
withollt consideration of the creep of concrete.
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FIG 8b The ratio 8u/A as a function of w for different values of the
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in combination with both HR and CW steel.
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redistribution of force. It may therefore be expected that creep of the con
crete in a section containing compression reinforcement will cause agreater
increase in rotation capacity for larger values of w than for small ones.
See also Chapter 9.

87
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9 THE EFFECT OF COMPRESSION REINFORCEMENT

When compression reinforcement is used, the compression force on the cross
section is sustained jointly by the compression reinforcement and the concrete.
The depth of the compression zone is then somewhat less than in a comparable

beam without compression reinforcement. Reduction in the depth of the com
pression zone results in an increase in strain in the tension reinforcement
before the ultimate moment is reached, which, in turn, means that more
deformation energy is stored within the volume of the rotation span and the
rotation capacity is therefore greater.

A calculation for HR steel and concrete type B, with the position of the
compression reinforcement in the section determined by y = c/d = 0.1, gives
the rotation capacity shown in FIG. 9a. For w= 0.055 the rotation capacity
is independent of the quantity of compression reinforcement, the reason
being that, at this value of w, the neutral axis is at the same level as the

compression reinforcement. For larger values of wthe rotation capacity
increases with wc/w. It may also be noted that wcr increases as the value of

wc/w increases.

The results of corresponding calculations for CW steel, with the same condi
tions regarding concrete type and the position of the compression reinforcement,
are set out in FIG. 9b. In this case the neutral axis and the compression re

inforcement coincide at w= 0.068. It will be seen that for w/w> 0.8 thec -
rotation capacity is practical ly independent of w within the range studied.

The results given in FIG. 9a and 9b are based on the assumption that the steel

in the tension and compression reinforcement is of the same type, and that f st
for the tension reinforcement is equal to f sc for the compression reinforce

ment, i.e. v = fsc/fst = 1.0. In other respects there is no need to make any
further assumptions concerning identity of the properties of the tension and

compression reinforcement, for instance concerning the position of the lower
strain hardening limit. The reason for this is that while the tension reinforce
ment can develop strains beyond the lower strain hardening limit, this is
impossible in the case of the compression reinforcement. Even in extreme cases,
the strain in the compression reinforcement is at the beginning of the yield
range, determined by the ultimate compressive strain 8

CU
of the surrounding

concrete.
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In order to investigate what the effect is on the rotation capacity when
different grades of steel are chosen for the tension and compressian reinforce
ment, comparative calculations have been made using v = 0.7 and 1.3. The other
conditions are: HR steel, concrete type B, y = 0.1 and wc/w = 0.5 and 1.0.
With the boundaries of wequal to 0.05 and 0.30, in no case was the difference
found between the calculated rotation capacities for v = 0.7 and 1.3 greater
than 0.1%. This demonstrates that the coefficient v need not be regarded a
variable parameter, butcan be given the fixed value v = 1.0. This is the
value which has been applied in all other calculations concerning compressian
reinforcement.

The results set out in FIG. 9a and 9b are based on a position of the com
pression reinforcement corresponding to the value y = 0.1. In order to see
how sensitive the rotation capacity is to variations in the placing of the
compressian reinforcement within the cross section, calculations have been
made for the values y = 0.05, y = 0.10 and y = 0.20. The other conditions

are: HR steel, concrete type B, wc/w = 0.5. The results are shown in FIG. 9c.
When the compressian reinforcement is placed high up in the section, y = 0.05,

there is same increase in rotation capacity, for values of w less then 0.18,
compared with the position given by y = 0.10. For greater values of w the
rotation capacity obtained is about the same in both cases. For compressian
reinforcement placed low in the section, y = 0.20, there is a considerable
reduction in rotation capacity over the entire range of wstudied. The rotation
capacity calculated under similar conditions but without consideration of
the compressian reinforcement has been plotted in the figure with a dashed
line. As will be seen, the results for the compressian reinforcement situated
low in the section are in same cases less favourable that for no compressian
reinforcement at all. This is due to the fact that for low values of w the

compressian reinforcement drops below the neutral axis of the section and will
be in tension instead of in compressian. If, therefore, compressian reinforce
ment is chosen as a means of elevating the rotation capacity, care must be

taken to ensure that the reinforcement is properly placed in the formwork
and that it is not displaced downwards when the concrete is poured.

In ordinary calculations of the ultimate moment of a reinforced concrete
cross section, based on the assumption that the distribution of stress in
the compressed concrete is rectangular, it is generally assumed that the
depth of the compressian zone can be calculated from the expressian

~ = 1,25 (w - w )
c
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This assumes that the compressian reinforcement takes up that proportion
of the resultant compressive force which corresponds to the yield stress
of the reinforcement. For calculation of the ultimate moment, this approach
can be accepted, since the resulting force in the compressian reinforcement
is generally practical ly coincident with the resultant of the compressive
stresses in the eonerete. The calculation results are therefore insensitive
to the way in which the total compressive force is divided between the two
resultant components. If, for instance, expressian (9.1) is applied for
Wc = w, ~ = O is obtained, i.e. it is assumed that the entire compressive
force is resisted by the compressian reinforcement, and the concrete is
therefore unstresses. Naturally, this is functionally unreasonable, but still
gives a fairly correct value of the ultimate moment. On the other hand,
application of the same approach for calculation of inelastic deformations

yields meaningless results. Same authors claim that the rotation capacity
can be expressed as a function of only the depth ~ of the compressian zone.
Quite apart from the fact that this assumption has no meaning, application

of Equation (9.1) will give completely erroneous results if there is a large
quantity of compressian reinforcement. This problem is illustrated by FIG. 9d
in which (9.1) is plotted with das hed lines for w = 0.10 and w = 0.20. The

full lines show the calculated variation in the actual depth of the compressian
zone at failure as a function of the ratio wc/w. The calculation relates to
HR steel and concrete type B. As will be seen from the figure, for large

values of wc/w there is a considerable difference between the depth of the
compressian zone calculated on the basis of realistic stress-strain curves
and that obtained from E~uation (9.1).

When failure occurs under the influence of long-term loading, creep takes
place in the compressed eonerete. This causes a certain redistribution of
forces in the compressed portion of the cross sectian. For low values of w
this redistribution is moderate, since the stress in the compressian re

inforcement will already have reached, or is very near, the compressive
yield stress of the steel before creep commences. For larger values of w,
the stress in the compressian reinforcement is substantially below the
yield point when creep begins, and it ts therefore possible for this stress
to increase during creep, while at the same time the stress in the concrete
in the compressian zone decreases. During this process there is same reduction
in the depth of the compressian zone, and the rotation capacity therefore
increases in the corresponding degree. The final results on completion of
creep are given in FIG. ge for both HR and CW steels in combination with
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concrete type B. The creep factor is ~ ~ 3.0, and the compression reinforce
ment corresponds to wc/w ~ 0.5 and 1.0. As will be seen, the rotation
capacity obtained for both steel types is practically constant within the
range of w considered.

The analytical model is based on the assumption that the compression rein
forcement is rigidly fixed in the stipulated position during the entire

loading process. In experimental investigations of concrete beams with com
pression reinforcement, it is sometimes noted that local deflection of the
compression reinforcement occurs at moments near the ultimate moment. With
regard to the rotation capacity, in such cases the compression reinforcement
does more harm than good, since the deflected reinforcement causes splitting
of the concrete in the compression zone and thus accelerates crushing failure.
In order therefore that the rotation capacity calculated by means of the
analytical mode l may be considered reliable, it is essential that the com
pression reinforcement is restrained by stirrups of suitably close spacing.





10 THE EFFECT OF SHEAR FORCE
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The calculations set out so far have been consistently based on the validity

of e.g. Bernoulli's hypothesis, which indirectly implies that the effect on

the rotation capacity due to shear force acting simultaneously with the

ultimate moment has been ignored. Experiments reported in the literature

show that the incidence of a large shear force in the vicinity of the plastic

hinge increases the rotation capacity. An attempt should therefore be made

to modify the analytical model developed in such away that the favourable

effect of shear force may be included, if only approximately.

10.1 Analytical model

When the effect of shear force is to be included in the analytical model,

application of the Ritter-Marsch truss model is the obvious choice, and this

is therefore used as the basis of the following line of reasoning.

If the analytical model derived in the provious section is supplemented by

diagonals between the tension and compression zones in such away that a

truss is formed, and the model thus constructed is acted upon by shear force,

two principal phenomena occur,

a. The diagonals of the truss are deformed under the action of the applied

forces, and thus store deformation energy.

b. The variation of force along the compression and tension zones of the
analytical model is different from that in the original model, and the

energy stored in these zones i s therefore also modified correspondingly.

With regard to the effect in a, the following may be stated. If stirrups
which in actual fact are uniformly distributed are assumed in the model to

be concentrated into discrete diagonals in tension, then the stresses, defor

mations and the associated energy storage in these can, in principle, be

calculated with reasonable accuracy. However, the calculations presuppose

that the distance between the diagonals in tension is known. For a given

stirrup inclination, this distance is dependent on the inclination of the

compressed concrete diagonals postulated in the truss model, i.e. dependent
on the directions of the bending shear cracks which occur. Correct treatment

of this problem thus demands knowledge and consideration of the variation

in crack direction along the rotation span. If this is to be applied in

the analytical model, the number of primary parameters will be increased very

considerably, and the results will lose the clarity hitherto achieved. It is

therefore desirable that this situation be avoided by the use of some appro-
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riate approximation.

It is a general rule in the design of a reinforced concrete beam that the
factor of safety with regard to shear failure should be greater than that
with regard to bending failure. In view of this it is not unreasonable to
introduce the assumption that, when bending failure occurs subsequent to
plastic flow, if any, the steel in the stirrups will just about have

attained its yield stress. All the deformation in the diagonals in tension
will then have been elastic, and the deformation energy stored in these is
therefore balanced by some of the work which the shear force performs during
shear deformation. The rotation capacity of the plastic hinge is therefore
unaffected by this.

As regards the compressed concrete diagonals in the model, the problem arises

as to what formal cross sectional area is to be assumed for these. It is
possible to assume a large area and small compressive stress, or vice versa,
within limits determined by beam geometry and the compressive strength of
the concrete. Whichever course is adopted, however, the total deformation
energy stored by these compressed diagonals will be very much less than that
stored by the diagonals in tension, and can therefore be ignored.
The conclusion drawn concerning the effect according to a is therefore
that the rotation capacity of the plastic hinge can be calculated without
consideration of the contribution of the diagonals to the deformation
energy, with no major error being introduced in consequence.

The following may be said with regard to the effect according to b. Without
consideration of the shear force, the extent ay of the plastic hinge, i.e.

the region over which the reinforcement yields, is determined according to

figure a in FIG. 10.la by the ratio of the ultimate moment ~u to the yield
moment ~y' For purposes of simplicity, it is assumed that variation of moment
over the length of the rotation span is linear. If inclined shear cracks are

formed along the rotation span, conditions are altered, as will be seen from
FIG. 10.1b which shows the portion of the beam between the point of zero moment
and an inclined shear crack. It is evident from the figure that deformations
and stresses in the tension reinforcement at section 2 are determined by the

moment ~1 at section 1, and that the corresponding stresses and deformations
in the compression zone of the concrete at section l are determined by the
moment ~2 at section 2. For a constant shear crack direction along the rotation
span, this means that the moment curve must be shifted a distance a to the
left for calculation of the state of affairs in the tension reinforcement,
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FIG 10.1e
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Fan shaped eraek pattern in the region near a plastie hinge

above a point load.
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The moment shifts assumed in the analytieal model. The moment

variation ~1 relates to the tension reinforeement. The moment

variation ~2 relates to the eompression zone.
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and to the right for calculation of the state of affairs in the compression
zone. Owing to this, the extent of the yield region is increased by the

distance a, as shown in figure b in FIG. 10.1a. However, the directions of

the cracks are not constant along the rotation span, since the state of
affairs is characterised by simultaneous occurrence of a large shear force

and a linear moment distribution with a large maximum moment. This gives rise

to the fan-shaped crack configuration, radiating from the point of action

of the point load, shown in FIG. 10.1c. In order that this may be taken into

account, the fictitious moment curves are modified as shown in figure c in

FIG. 10.1a. The advantage gained by this modification is that the zero moment

is now clearly defined. For arealistic value of the ratio "u/"y' the change
in the length ay of the yield region from figure b to figure c is insignificant.

This approach gives rise to the fictitious moment distribution shown in FIG.

10. Id, in which some more modifications have been introduced. For the crack

configuration in FIG. 10.1c, most of the strain in the reinforcement and thus

the consumption of energy take place in the cracks and in the region in the

immediate vicinity of the eraeks. In the reinforcement between two cracks the

strain and energy consumption are less. For a constant moment "u over the
distance a, see FIG. 10.ld, this is not taken into account, and calculations

yield an excessive energy consumption over the distance a. This can be com

pensated for by making this distance inclined instead of horizontal. In view

of the fact that the gradient dW/d" is very large at the section where "u

occurs, even a slight inclination should produce a reasonable reduction in

the calculated energy consumption. According to FIG. 10.1d, it is decided

here to reduce the moment from "u to 0.98 "u over the distance d. The fic
titious moment curve OBC thus determined is used as the basis for calculation

of the contribution of the tension reinforcement to the deformation energy.

The following may be noted with regard to the compression zone. According to

figure c in FIG. 10. la, the moment curve 2 for calculation of the state of

affairs in the compression zone produces at the section where the formal

plastic hinge occurs a moment which is less than the maximum moment "u;

this is contrary to the equilibrium condition. However, it is evident from

FIG. 10.1c that the concrete struts approaching the plastichinge at an

inclination are gradually relieved of load over a relatively short distance.

It may therefore be expected that the strains in the compression zon e

will rapidly increase over this distance until, at the plastic hinge section,

they attain a value corresponding to the moment "u. It is assumed here that
this transition at a high strain gradient takes place over a region of the
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selected length a/Z, and that the contribution by the compression zone to the
deformation energy can therefore be based on the fictitious moment curve DEC
in FIG. 10.1d.

The fictitious moment curves OBC and DEC introduced here may be regarded as
approximations to more correct curves which are probably of a continually
variable curvature and pass between points O and C.

Application of these fictitious moment curves produces the conditions shown

in FIG. 10.1e. This figure shows the fictitious moment curves ~1 and ~Z

and the way in which the energy variation w1 in the tension zone is trans
formed by means of the moment curve ~1 of the tension zone into a corres
ponding energy variation over the length Aof the rotation span. In the same
way, it is shown how the energy variation Wz in the compression zone is
transformed by means of the moment variation ~Z in the compression zone.
The vertically shaded area thus represents, for the rotation span, the total
energy consumption within the tension zone, and the area with inclined shading

represents the total energy consumption within the compression zone.

For the sake of simplicity, the derivation here has been based on a linear
moment distribution over the rotation span. The reasons for this are as
follows. According to Chapter 6, S = 0.Z5 represents a moment distribution
at a plastic hinge in the span when the beam is acted upon by a uniformly
distributed load. In this situation, the shear force is zero at the plastic
hinge and small within the rotation span. This situation is therefore not

appropriate in this context. For the other two moment distribution alterna
tives, S = O and S = -0.06, large shear forces can occur at the plastic hinge.
However, from the calculation results set out in Chapter 7 it is evident that
the difference between the values 8

U
/A calculated for S = O and S = -0.06

is insignificant. For this reason, only the case S = O, i.e. linear moment
distribution, is studied in the following.

The analytical expressions for the fictitious moment variations OBC and DEC

in FI3. 10.1d, which are necessary for the calculation, are as follows.

According to the figure, for the tension zone

~ = (1-0 02 ~)~, d u för z < a (10.1.1)

), _ z
el

u = -,---"
,\ - r)

( 1-0, 02a ) ~
U

för a ~ z :s l
o

(10.1.2)
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~1
~1

FIG 10.1e Transformations of the moment-energy curves by means of the moment

curves ~1 and ~2· The distributions of ~1 and ~2 along the
rotation span are obtained as a result.
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where A = lo/d and a = a/d.

For the compression zone, similarly,

A+a-3
z
d a

~ = ~ för z <
A+a u 2

A - ~

d för a
l~ = ~

- ,; z SA+0. u 2 o

(10.1.3)

(10.1.4)

When the rotation span is divided into n equal parts according to FIG. 6.1a,
with the subdivision points numbered from O to n, the expression for the

moment ~i at point No i is as follows for the moment curve in the tension
zone:

(1-0,02
A

i)~ för i a
(10.1.5)~. = < - n

l n u ),

l-i/n
( 1-0,C2ah P" a

(10.1.6)u. = -- .l or - n S l ;: n
l l-alA u A

and for the moment curve in the compression zone,

( 1 3 .!o )~ för
1 a

(10.1.7)il. = - l < - n
l 1+2[/), n u 2 A

l-i/n
för

1 a
i (10.1.8)~. = ~u

-- n S :: n
l l+C'/A 2 A

(10.1.9)

Equation (6.3.2) for calculation of the rotation capacity 6u can now be

modified, in view of the inclusion of the effect of shear force, by multi
plication by A which can no longer be isolated on the left-hand side of the
equation since the ~ - ~ relation has been made dependent on the value of A.

We thus have, with B= O substituted into Equation (6.3.2),

l L~. K 2
= ), (- _l - ~) -l-+"--=--/~"-

~ n 22 ""u n y u
6

uv

The symbol 8u has now been augmented by the subscript v to indicate that the
rotation capacity obtained in this way includes the effect of shear force.

10.2 The length of the yield region

What remains now is to choose an appropriate value of the moment shift a. It
is reasonable to assume in this connection that a/d is proportional to the
non-dimensional shear force V /N , where V is the constant shear force in then c n
rotation span, see FIG. 6.1a. We therefore write



§: = K
d

c

(10.2.1)
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or, since M ~ loV and M ~ dN c'u n c

lJ
u

a = K -
A

(10.2.2)

In an extreme case, this relation yields a ~ O for A ~ 00, which means that

the moment shift is equal to zero when the shear force is zero.

An approximate value of the coefficient K is determined as follows. The

length ay of the yield region is obtained according to figure c in FIG.

10.la from the relation

a
y

lJ -lJ
u y l

lJ o
u

or, in non-dimensional form,

a
y

lJ
+ (1 - --.:L) A

Il
il

(10.2.3)

Substitution of Equation (10.2.2) into this gives

a
y

( 10.2.4)

At the Department of Structural Engineering, Division of Concrete Structures,

Chalmers University of Technology, experiments have been carried out con

cerning the rotation capacity of plastic hinges in reinforced concrete beams.

In these tests observations were made regarding the extent of the yield region

along the beam. For a few beams the determination was made with the aid of

strain gauges attached to the tension reinforcement. For the other beams

the determiantion was made more approximately by measuring the distance

between the outermost large cracks in the tension zon e level with the
tension reinforcement. From these tests, 22 were chosen for assessment of

the value of the coefficient K.

The beams were simply supported and acted upon by a point load at the centre,

i.e. the moment distribution corresponds to the case S ~ O.

The beam data of interest in this context - type of reinforcement and the

slenderness A of the rotation span - are given in Table lO.2a together with

the values of lJ , lJ IlJ and a b measured during the tests. The lattery y u y,o s



TABLE 10,2a Comparison of experimental ly determined and calculated yield lengths

Beam Reinforcement A l' \.J /11 a " a/eJ.
y y u y,obs y,culc Y,obs y,calc

90'2-1 Ks )~O 11,0 0.150 O ,91~11 0,8') 0,"(5 ',10

-2 Ps 50 11 ,4 0,175 0,896 O,l19 1 "))-1 0,37

-3 Ks 80 10,8 0,121 O,SJl'9 O, )1<., 0,66 o,e,
-3A Ks 60 10,9 0,141 O,9)d 1,27 0,75 1,69

-4 Ks 40 11,8 0,208 0,954 1, Hl 0,72 1,611

-5 Ps 50 11,9 0,218 0,935 () ,9~1 0,96 1,03

-6 Ks 80 10,9 0,157 0,982 0,67 0,34 1,97

-6A Ks 60 11 ,0 0,175 0,')17 0,91 1 ,er( 0,90

-7 Ks 40 5,8 0,239 0,722 1,5h ~J ,02 0,76

-8 Ps 50 5,9 0,225 o,8~8 0,9(,) () ,~)8 1 ,01

-13 Ks 60 9,1 0,065 0,788 1,611 2,00 O, f.t?

-14 Ks GO 7,3 0,060 (), 'r p" 1 ,'J 1 1 .6)~ 1,17

-15 Ks 60 5,5 O,OGl 0,769 1 ,H'~ 1,:i8 1,33

-lG Ks Go 4,G 0,065 0,G1I9 1,37 1,7G 0,78

-17 Ks 60 3,7 0,057 0,675 1,23 1,3G 0,91

-18 Ks Go 9,1 () , 101 O, Sin 1,:31 1,50 0,88

-19 Ks 60 7,4 o, 1?,l~ 0,885 0,91.1 1,02 0,92

-20 Ks 60 5,5 0,090 0,820 0,62 1,15 o, )+'[

-21 Ks 60 4,G 0,107 0,862 1,31 0,87 1,5 1

-22 Ks 60 3,6 0,101 O,8Jll 1,36 0,85 1,59

-23 Ks 60 9,2 0,190 0,971 o,fj6 0,117 1,88

-?7 Ko 60 3,7 0,17G O,q;-.C; 1,17 O, Tri 1 • r;(;
--~-----~._._,---_._---- ---------_..,~

C)

CD
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quantity refers to the observed non-dimensional length of the yield region

determined as a mean value on each side of the plastic hinge.

The corresponding length a l of the yield region for the beams studiedy,ca c
has been calculated from Equation (10.2.4) for different values of K. The

best agreement with the experimental ly determined lengths was obtained for

a value of K approximately equal to 20.

If Equation (10.2.4) is studied with K put equal to 20 in different extreme

situations, it is found however that in certain cases the calculated length

of the yield region is greater than A. In order to avoid this, it has been

decided here to put K = 10. It must be pointed out that ay , calculated from

Equation (10.2.4), is only slightly dependent on the value of K under normal

circumstances.

The yield lengths a l calculated from Equation (10.2.4) with K = 10,y,ca c
and the ratio a b la l' are set out in the table. The mean value ofy,o s y,ca c
the ratio is 1.14, with the coefficient of variation equal to 0.38. For large

values of A the effect of shear force on the rotation capacity is small - see

Section 10.3 below. It is therefore interesting to campare the experimental ly

determihed yield lengths with the calculated ones, particularly for small

values of A. Of the 22 beams studied here, 11 have a value of A less than 8.

For these 11 beams the mean value of the ratio a b la l is equal toy,o s y,ca c
1.10, with the coefficient of variation equal to 0.33. The agreement may be

considered acceptable in view of the way in which the length of the yield

region was determined in the experimental investigations.

The expression (10.2.2) can then be written as

a = ( 10.2.5)

This expression is used for calculation of the moment shift ln Equations

(10.1.5) - (10.1.8).

10.3 Calculation results

Using the computer program as augmented by the modified model developed in

Section 10.1, the rotation capacity e is now calculated for some materialuv
combinations, for values of A varying between 2 and 10. The first calculation

relates to HR steel and concrete type B. The beam is assumed to have no

compression reinforcement. The results are set out in FIG. 10.3a. FIG. 7.1a
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FIG 10.3a Rotation capacity e for a plastic hinge reinforced with HRuv
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section without compression
reinforcement.
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FIG 10.3b Comparison of the yalues of the rotation capacity for a plastic
hinge with HR steel, obtained when the calculations consider

(SUy) and do not consider (su) the effect of shear force. The
comparison relates to a section without compression reinforcement.
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FIG 10.3c Rotation capacity e for a plastic hinge reinforced with HRuv
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section with compression
reinforcement characterised by wc/w ~ 0.5.
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FIG 10.3d Rotation capacity 8uv for a plastic hinge reinforced with HR
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section with compression

reinforcement characterised by wc/w = 1.0.
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8 Wc /W, 0,5
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O 0,10 0.20 0.30

FIG 10.3e Comparison of the values of the rotation capacity for a plastic
hinge with HR steel, obtained when the calculations consider (suv)

and do not consider (su) the effect of shear force. The comparison
relates to a section with compression reinforcement characterised

by wclw ~ 0.5 and 1.0.
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(s = O) shows the results of a corresponding calculation performed under the
same conditions, but with the effect of shear force ignored. The two figures
cannot be compared directly as one shows 8uv and the other 8/A. However,
the curve for 8/ Acan be multipl ied by the fixed value of Aand the ratio
8u/8u can then be formed which gives an idea of the effect of shear force.
For the example in question this yields the results set out in FIG. 10.3b. The
peaks which the curves exhibit occur at w where the 8 curves change direction.er
It is not very likely that, in actual fact, the peak is as pronounced as it
appears in the figure. It is probable that some equalisation can be expected

in the region around wcr ' as indicated by the das hed lines in the figure. As
will be seen, the effect of shear force is a function of w. As w increases,

the effect increases up to w= 0.26, after which it again decreases.

In order to find an explanation for the fact that there is a maximum value
for the effect of shear force, it is necessary to study the detailed calcu
lations. The following can be seen from these. As w increases, so does the
ultimate moment ~u' and this means, according to Equation (10.2.5), that a
and thus, according to Equation (10.2.3), the extent ay of the yield region

also increase. On the other hand, at the same time the ratio ~y/~u approaches
the value 1.0 asymptotically. According to Equation (10.2.3) this means that
ay decreases as w increases. For w< 0.26 one of these effects is dominant,
and for w> 0.26 the other, and therefore a maximum can occur. It is also
evident from FIG. 10.3b that the value of the ratio 8u/8u increases as A
decreases, i.e. as the shear force increases.

Corresponding calculations for the combination HR steel and concrete type B
have also been performed for a section with compression reinforcemnt. For

w/w = 0.5 and wc/w = 1.0 the results are set out in FIG. 10.3c and 10.3d
respectively. It is evident from these figures that the effect of shear force
is considerable for short rotation spans. It is seen that, for A= 2 and

wc/w = 0.5, the rotation capacity remains practical ly eons tant as w increases,
and that for A = 2 and w/w = 1.0 it even increases as w increases. A com
parison of the rotation capacities calculated with and without shear force
is made for these cases in FIG. 10.3e. It is seen in this figure also that
the effect decreases as the value of A increases, and increases as the value
of w i nereases .

Analogous calculations for CW steel in combination with concrete type B

are shown in FIG. 10.3f for wc/w = O, w/w = 0.5 and w/w = 1.0. In this
case the effect of shear force is relatively large, which is perhaps not
directly evident from the figure, but will be seen if the associated ratio
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FIG 10.3f Rotation capacity 8uv for a plastic hinge reinforced with CW
steel calculated with the effect of shear force taken into con
sideration. The figure relates to a section with variable amounts
of compression reinforcement.
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FIG 10.39 Camparison of the values of the rotation capacity for a plastic

hinge with CW steel, obtained when the calculation consider (suv)
and do not consider (Bu) the effect of shear force. The camparison
relates to a section with variable amounts of compressian rein

forcement.
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8uv/8
U

' which is plotted in FIG. 10.3g, is studied.

It is evident from the studied worked examples that the analytical model
constructed yields results in good agreement with those to be expected in
view of previous experimantal experiences.
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11 THE EFFECT OF STIRRUPS

It is known from the literature that the presence of stirrups in the beam
in the vicinity of a plastic hinge has the effect of raising the rotation
capacity. This effect is primarily due to the fact that the stirrups hold
together the concrete in the compression zone in the stress interval ~y to
~u' It is in consequence possible for compressive strains several times
higher than the ultimate strain of the unreinforced concrete to occur without

splitting of the concrete in the compression zone.

Tests on concrete surrounded by stirrups and subjected to compressive
stresses show that the presence of stirrups affects the stress-strain diagram
of the concrete in different respects. 80th the ultimate compressive strain
E

CU
and the limit strain E

O
corresponding to the maximum compressive stress

are increased, the latter more moderately. The compressive strength fcc of
the concrete and the stress corresponding to the ultimate strain E

CU
are also

raised. Taken together, the effect is that the area bounded by the stress
strain diagram increases owing to the application of stirrups, which in turn
means that the ability of the compression zone to store deformation energy

is enhanced. In particular, the fact that \u increases also means that the
tension reinforcement can develop alarger strain before crushing failure
of the concrete occurs. The deformation energy of the tension reinforcement
also increases in consequence. The use of stirrups thus results in a total
increase in the capacity of the concrete to store deformation energy within

the volume of the rotation span, which gives the plastic hinge a higher
rotation capacity as most of the increment in energy consumption is of an

irreversible nature.

In the following, a method whereby the previously constructed analytical model

can be extended so as to take into account the effect of stirrups will be
developed semi-empirically.

11.1 Phenomenological discussion

The magnitudes of the above parameters which determine the stress-strain
curve of the concrete are functions of the extent of stirrup reinforcement,
i.e. the dimension, strength and spacing of the stirrups and the strength
of the surrounded concrete. The way one set of parameters is dependent on
the other is unknown at present. It is therefore necessary to group together
a number of parameters in a reasonable manner so as to constitute a single
parameter which is then used as a measure of the extent of the effect due

to the stirrups.
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The effective reinforcement ratio of the stirrups, defined by the expression

w
v

;;:, " s-"= ---~
bs -'"'

-'-et

is used as the governing parameter, where

Asv = cross sectional area of one stirrup bar
f sv = tensile strength of the steel in the stil'rup
b = width of the compression zone
s = stirrup spacing

fct = tensile strength of concrete

That the selected parameter combination is a reasonable one will be evident
from the following. The stirrups have the effect of holding together the
concrete in the compression zone which, under the influence of large com
pressive stresses in the axial direction, expands in the transverse direction.
When the stirrups are rectangular in shape, the counterbalancing forces can
principally be developed at the corners of a stirrup. This effect should

therefore decrease with increasing distance between the two interacting
corner forces, i.e. for the usual stirrup shape with increasing width b. The
maximum magnitude of the corner forces is directly proportional to both Asv
and f sv ' and the maximum corner force per unit length of beam is inversely
proportional to the stirrup spacing s. Immediately prior to crushing failure
of the concrete, this disintegrates while undegoing transverse expansion.
This transverse expansion can not take place without the formation of a large
number of microcracks in the concrete in the compression zone. It is there
fore probable that the tensile strength of concrete is a more signi ficant
parameter in this context than the compressive strength.

It is assumed in the following that the stirrup effect is a function only
of the parameter wv'

In order to exemplify the above, let us first calculate the rotation capaclty
for a beam with Wv = O, i.e. for a beam without stirrup reinforcement. The
beam is assumed to be of concrete type B, see FIG. 11.1a, in combination with

both CW steel and HR steel. The beam is then assumed to be provided with
stirrup reinforcement corresponding to a value wv1' and as a result the
stress-strain curve of the concrete in the compression zone is assumed to
change to the curve marked B1 in FIG. 11.1a. The rotation capacity is cal
culated for this curve. Finally, it is assumed that stirrup reinforcement
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FIG 11. 1a Stress-strain curve for concrete type B in compression, and two

modified $tress-strain curves B1 and B2.
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with wv2 > wv1 is applied, the stress-strain curve of the concrete being
assumed to change to curve B2 in the figure, and the corresponding rotation
capacity is calculated. Unfortunately, we do not know the relationship between
the values wv1 and wv2 on the one hand, or between curves B1 and B2 on the
other. We can thus assume only that the greater the value of wv' the larger
also will be the area bounded by the stress-strain diagram. The results of
calculation are set out in FIG. 11.1b. It is evident from the families of
curves obtained that, within each such group, the curves B1 and B2 can be
approximately obtained from curve B by changing the scale along the horizontal
axis. This implies that both curves B1 and B2 can be changed back into curve
B, i.e. the curve representing the beam with no stirrup reinforcement, by
converting the actual value of w for the beam with stirrups into a fictitious

value wfic relating to curve B. This conversion is performed by division
by some expression which is a function of wv' We can therefore write

(11.1.2)

The requirement for the function f(wv) is that it must assume the value 1
for Wv = O, and increase·with increasing value of wv' In view of all the
other factors of uncertainty, there is no point in selecting a very

complicated expression for this function. The expressions

r(w \ = l+K w (11.1.3),
v 1 v

r(w ) = (l+K w )2 (11.1.4)
v ' 2 v

r(w , 2 (11.1.5)I = l+K W
v 3 v

will be tested in the following, where K1, K2 and K3 are assumed to be
non-dimensional constants which must be determined from the test results
reported in the literature.

11.2 The tests of Mattock and Corley

A large number of tests concerning the rotation capacity of plastic hinges

are described in the literature. From these, the reports published by
Mattock (1965) and Corley (1966) have been seleeted. These test series are
relatively comprehensive and supplement one another, and in addition the
results are reported in such away that all the information required for
this investigation is clearly set out. All the tests performed by Mattock
and Corley for which the measured rotation capacities are reported relate
to simply supported beams over one span acted upon by a point load at the
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FIG 11.1b Rotation capacity calculated for a beam reinforced with CW steel
and HR steel in combination with concrete types B, B1 and B2
according to FIG 11.1a.
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midpoint of the beam. Mattock's series comprises 31 beams, and that of Corley
40. A total of 71 beams have therefore been studied, the parameters of interest
being varied over wide limits. The effective depth d of the beam is thus varied
between 5" and 30" (127-762 mm), the width b of the beam between 3" and 12"
r6-305 mm), and the slenderness Abetween 2.75 and 11 . The cylinder strength

of the concrete is between 3400 and 6200 psi (23-43 MPa), and the yield stress
of the tensile reinforcement varies between 45 and 80 ksi (310-550 MPa). The

effective reinforcement ratio for the tension reinforcement covers the range
w= 0.11 to w= 0.57, which is combined with compression reinforcement

corresponding to the range Wc = 0.01 to Wc = 0.33.

What is of the greatest interest in this context is the large variation in
stirrup reinforcement covered by these tests. Reinforcing steel of dimensions
1/4", 3/8" and 1/2" (6.4, 9.5 and 12.7 mm) and of grades indicated by yield
stresses ranging from 49 to 80 ksi (340-550 MPa) has been used. The stirrup
spacing varies between 1.25" and 15" (32-381 mm). The effective reinforcement

ratio Wv for the stirrups, calculated from Equation (11.1.1), thus varies
from 0.14 to 2.32. In determining wv' the tensile strength of concrete has
been calculated from the expression

f = 4,52 ,Ir
et cc

where both fcc and fet are in psi.

(11.2.1)

For the beams in Mattock's and Corley's test series the rotation capacity

has been calculated by means of the program developed here, account being
taken of the extent and position of the compression reinforcement and of
the effect of shear force, the latter according to the analytical model
developed in Chapter 10. Concrete type B was assumed in the calculations,
while for the tension and compression reinforcement the actual stress-strain
diagrams applicable to the steels concerned were used. The calculated relation
between w and 8uv has been plotted for all the beams. Two calculated curves,
one relating to beams B1 and Dl and one relating to beams B2 and D2 according to
the notation used by Mattock, are shown in FIG. 11.2a as examples. Using the
rotation capacities measured in the tests as initial values, corresponding
values of the fictitious effective reinforcement ratio wfic are obtained from

the curves, see FIG. 11.2a. The ratio of the actual w to the value of wfic
obtained as above gives a value of the function f(wv) according to Equation
(11.1.2). Once the value of w is known for each beam, the coefficients

v
Kl' K2 and K3 can then be calculated for each beam by means oc Equations
(11.1.3), (11.1.4) and (11.1.5). Since it is assumed that K1, K2 and K3



125
310 8 uv

0,20
+--f---l---,-+--1-----,--__ w

70

60

50

,

40 I
30 _r: '_

euv,obs

II20 ,

I I,
10 ' 81 IDl

I
O

O 0,10 Wfic

FIG 11.2a s - w curves calculated for beams B1, D1, B2 and D2 in Mattock'suv
test series. The experimental ly determined value of the rotation

capacity, Suv,obs' gives the value of wfic by means of the curve
relating to the test.

'- '-
Gu'

,
---- --I',

-""w V

I
GuD - ---

w
w, Wo

FIG 11.2b The appropriate value of the effective reinforcement ratio Wo

gives the rotation capacity Suo for a section without stirrup
reinforcement. When the section is provided with stirrup rein

forcement, Wo is transformed into w1' and as a result the
rotation capacity increases to Su1'
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are constants, they can be determined as the means of the individual values

calculated from the test material in the way described above. Of the suggested
expressions (11.1.3), (11.1.4) and (11.1.5), the one which exhibits the least
scatter with respect to the mean is then selected. Such an analysis performed
on the present test material verifies expression (11.1.4) as the best. This
expression yields the value ~ = 1.31 when all 71 tests are included. When
seven extreme values are removed, the mean for the remaining 64 beams is

~ = 0.97. The approximation ~ = 1.0 is chosen. Equations (11.1.2) and
(11.1.4) then yield the relation

ww = --"-----;o-
fic (1+w)2

v

(11.2.2)

Calculation of the rotation capacity with respect to the effect of the
stirrup reinforcement can now be carried out as follows, see FIG. 11.2b.
The plastic hinge is assumed to have the actual effective reinforcement ratio
wo' Without stirrup reinforcement, the rotation capacity 8uo is thus obtained
by means of a curve for Wv = O, calculated by means of the computer program.

With stirrup reinforcement corresponding to wv' the rotation capacity 8u1 for
Wo would be obtained by means of the dashed curve. The method adopted in
practice is to convert Wo to w, = wfic by means of Equation (11.2.2), and
to obtain the sought rotation capacity 8u1 from the curve relating to Wv = O.

That it is functionally correct to adopt the above procedure is confirmed by

the following. The way the stress-strain curve of the concrete increases in
deformation capacity for increasing Wv is indicated in FIG. 11.la. What this
figure, which is non-dimensional, does not show is that fcc also increases for
increasing wv' An increase in fcc implies a reduction in w, which corresponds
to some of the shift in the curve shown in FIG. 11.2b.

The power 2 in expression (11.2.2) for the scale factor f(wv) can be explained
by the dual effect of the stirrup reinforcement. Surrounding of the concrete

increases not only fcc but also scu' and the latter increase also results in
an increase in rotation capacity, which in calculations according to the pro

posed method is taken into account by further reduction of w.

As mentioned above, the calculation procedure developed has been systematically

applied to the tests of Mattock and Corley. The measured rotation capacities
80bs were then compared with the calculated rotation capacities 8calc by means

of the ratio 8obs/8calc' In the investigation a number of test results were
rejected. These related to tests which exhibited such extreme discrepancies

from the general trend that there was justification to suspect a measuring
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error or some other procedural error. Mattock and Corley themselves report
difficulties in measurement. Two tests from Mattock's series, and 11 tests
from Corley's series, have been omitted. The remaining tests yield the
following results.

For Mattock's tests, the mean value of 29 values of 8obs/8calc = 0.97, with
the coefficient of variation = 0.35.

For Corley's tests, the mean value of 29 values of 8obs/8calc = 1.08, with
the coefficient of variation = 0.40.

For all the 58 tests analysed, the mean value of 8obs/8calc = 1.03, with the
coefficient of variation = 0.38.

The comparative calculation performed is shown in detail in FIG. 11.2c. The
validity of the results obtained must be judged in view of the fact that in

these test series the value of Wv varies over very wide limits, viz. between
0.14 and 2.32.
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12 DISCUSSION OF THE SAFETY ASPECT

The following discussion relates to the safety philosophy advocated by the
CEB (1976). In principle, it is the same philosophyas that on which the
Swedish "General regulations for loadbearing structures" (AK 77) and "Regula

tions for concrete structures" (BBK 77) arebased.

According to the CEB, the ultimate limit state due to a bending moment is to
be checked by comparing the ultimate moment with the bending moment capacity

of the section concerned. Determination of the bending moment capacity is to
be based on the design compressive strength fcc of the concrete and the
design tensile strength f st of the reinforcement. In turn, these design
strengths are to be obtained from the characteristic strengths fcck and f stk
respectively of the materials, defined in a certain manner, by dividing these
by partial coefficients. The following expressions apply

cc
"~eek

= (12.1)

( 12.2)

where Yc is the partial coefficient for concrete in compression, and

f
stk=--
Ys

where Ys is the partial coefficient for reinforcement in tension.

An analogous procedure should be applicable when a deformation characteristic
is studied. The rotation capacity of a plastic hinge is essentially deter
mined by the strain capacities of the steel and concrete, and it therefore

appears reasonable to apply the factors of safety to these. We therefore
assume that the characteristic ultimate strain Esuk of the reinforcement
and the characteristic ultimate compressive strain Ecuk of the concrete
are quantities defined in a certain manner, and determine the corresponding
design values from these. We thus have

"euk
" =--eu Ye

and

( 12.3)

"su
"suk=

Ys

( 12.4)

In principle, the partial coefficients relating to ultimate strains should
be chosen in view of the appropriate scatter characteristics of these strains.
For the sake of simplicity, however, in the following calculations the partial
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coefficients relating to strains are given the same values as those relating

to the corresponding strengths.

The deformation limit state considered here occurs when 8r = 8u' i.e.
when the design value of the rotation requirement attains the design value
of the rotation capacity. It is therefore of interest to see how the
operations (12.3) and (12.4) affect the design value of the rotation capa
city. The following comparative calculations are therefore made.

Since the CEB proposes that the ultimate compressive strain of concrete is
to be taken as Ecuk = -0.0035, the calculations are made using concrete
type A. The value quoted is considered to be a characteristic value. If the
partial coefficient Yc = 1.5 is selected, the corresponding design value
is E

CU
= -0.0035/1.5 = -0.0023.

For reinforcement of HR steel, the characteristic value of the ultimate
strain is taken to be Esuk = 0.100. If the partial coefficient Ys = 1.2
is chosen for steel, then the design value of the ultimate strain is E

SU
=

= 0.100/1.2 = 0.083. The characteristic value of the ultimate strain of
CW steel is assumed to be Esuk = 0.065, and the design value is therefore

E
SU

= 0.065/1.2 = 0.054.

Calculations made with HR and CW steels combined with concrete type A yield

the results set out in FIG. 12a and b. The calculations are made using both
the characteristic values and the design values of the ultimate strains of
the steel and concrete. The results relate to moment distribution along
the rotation span determined by S = 0.25, and to a cross section without
compression reinforcement. For the sake of completeness, FIG. 12c and d
give the results of corresponding calculations relating to cross section
with compression reinforcement to an extent determined by wc/w = 0.5.

The figures show the way in which the ratio 8u/X decreases from a charac

teristic to a design value when partial coefficients are applied to the
strain capacities of the steel and concrete.

It is evident from the printouts that it is only the ultimate compressive

strain of the concrete which determines the rotation capacity in the ca ses
studied. In no case has the ultimate strain of the steel been reached. Appli
cation of the partial coefficient Ys = 1.2 has therefore had no effect at all
on the design value of the rotation capacity, and may just as well have been

omitted in the cases studied.
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FIG 12a Values of the rotation capacity calculated on the basis of

the characteristic and design values of the ultimate strains
of the steel and eonerete. The figure relates to a section
with tension reinforcement of HR steel, and without compression

reinforcement.
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FIG 12b Values of the rotation capacity calculated on the basis of
the characteristic and design values of the ultimate strains
of the steel and eonerete. The figure relates to a section
with tension reinforcement of CW steel, and without compression

reinforcement.
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FIG 12c Values of the rotation capacity calculated on the basis of the
characteristic and design values of the ultimate strains of the
steel and eonerete. The figure relates to a section reinforced
with HR steel, and with compression reinforcement represented

by w/w = 0.5.



134

10

cw- A

~ ; 0,25

Wc/W; 0,5

5

rCharaeteristic va lues

Design values

0,30,20,1
0+-------,--------,------,-....... W
°

FIG 12d Values of the rotation capacity calculated on the basis of the

characteristic and design values of the ultimate strains of
the steel and eonerete. The figure relates to a section reinforced
with CW steel, and with compression reinforcement represented by

w/w = 0.5.
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In practice, it would be an advantage if the curves relating to the rotation

capacity could be calculated from the characteristic ultimate strains and
the factor of safety instead applied to w, i.e. by replacing the characteristic
strengths by the design strengths when w is calculated. This would give rise

to the expression

" f
stk Ye Yest

w. '" o '" p '" w
kel f f cck

y Yscc s
( 12.5)

where wd is the design value of w and wk the corresponding characteristic value.

In view of the fact that in the cases studied, and probably also in ordinary
practical cases, y has no effect on the design value of the rotation capacity,s
it should be possible to simplify Equation (12.5) to

W,="{Ul
kJ. c_~

( 12.6)

Expression (12.6) implies a change of scale in relation to the waxis, with

Yc as the scale factor. This hypothesis is checked for wc/w'" O by changing
the scale of the curves in FIG. 12a and b dividing w by Yc '" 1.5. The curves
shown by chain lines in the figures are obtained in this way. These are
practical ly completely coincident with the full lines based on the design

strains of the steel and concrete when wc/w = O.

For the sake of consistency, the characteristic value of the ratio wc/wk =

= (wc/w)k for a sectioll with compression reinforcement should be replaced
by its design value

(w /w). '" w/w. '" w /Y w '" (w /w)k/Yc Q c G.. c ck c c
(12.7)

For the case studied, this implies that the curve relating to the design
value of the rotation capacity is obtained by the above change in scale in

relation to the curve calculated for wc/w'" 0.5/1.5 = 0.33. The curves plotted
with chain lines in FIG. 12c and d, which are a good approximation to the
curves calculated by means of the design values of the ultimate strains, are
obtained in this way.

It is proposed on the basis of the above analysis that the curves which can
be calculated with the computer program described in this report should in
practice be applied by first determining w for the characteristic strengths
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of the steel and eonerete and then introdueing the faetor of safety by
multiplying the value of w thus ealeulated by a partial eoeffieient Yr
relating to the rotation eapaeity. In ordinary cases, Yr should be made
equal to Ye , and equal to unity when abnormal loads are studied.



137

13 OVERALL CONCLUSIONS

The au thor has earlier analysed the rotation capacity of plastic hinges 

see Plem (1973a), the following expression being derived for approximate

calculation of the rotation capacity 8u
a

e ~ ?'ln-3 n (1+250p )
il x V

(13.1)

x is the depth of the compression zone and an a fictitious yield length,

which can generally be made the length of that section of the beam adjacent

to the plastic hinge over which the ultimate moment exceeds n% of the ultimate

moment Mu' The effect of stirrups is taken into account by means of the
quantity Pv which is the geometrical reinforcement percentage of the stirrups,

calculated in a certain way.

Expression (13.1) is discussed by Cederwall, Losberg & Palm (1974) who propose

certain additional rules in order that this expression may have agreater

degree of differentiation.

In some circumstances, aSO ' i.e. the section over which the moment is greater

than O.SMu' can be selected for an' If at the same time we assume a linear
moment distribution (6 ~ O) and ignore the effect of stirrups, Equation (13.1)

can be written

8
u

( 13.2)

where A~ lo/d is the slenderness of the rotation span. If we apply the

rectangular stress distribution proposed by the CEB to the compression zone

of the beam cross section, we obtain the value x/d ~ 1.25w by means of an

equilibrium expression, which, substituted into Equation (13.2), yields

the expression

8
u
A

( 13.3)

This relation is plotted in FIG. 13a. As will be seen from the figure, the

curve (part of a hyperbol a) has the same general shape as the curves calcu

lated in another way and presented in the previous publication.

However, Equation (13.1) is far too undifferentiated to permit closer study

of the way in which different parameters affect the rotation capacity. This

is particularly true with regard to those parameters which describe the
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mechanical properties of the steel and concrete, but it is also difficult
to take inta account in a correct manner the other factors which affect
the rotation capacity. For instance, there is a temptation to take inta
account the presence of compressian reinforcement by replacing w by
(w - wc) in Equation (13.3). It is shown in Chapter 9 that such a procedure
is erroneous.

The object of the work presented in this report has been to examine in
greater detail the questions which can be posed concerning the yield charac
teristics of reinforced concrete beams, and to study in this connection the
way in which the rotation capacity is affected by various factors. The
analysis carried out is summarised and commented on briefly in the following.

The calculations are based on standardised, but realistic, stress-strain

curves for the constituent materials concrete and steel. These are described
in Chapter 2. The calculations are of such complexity that a computer must
be employed. A program for the computation of the rotation capacity under
the influence of various factors has been developed, and is presented in an
appendix.

Mainly two types of reinforcement and two concrete types have been included
in the investigation. One of the concretes, Type A, has an ultimate compressive
strain E

CU
= -0.0035, while the other, Type B, has an ultimate compressive

strain E
CU

= -0.0070. One of the typical steels, denoted HR (hot rolled),
has a pronounced yield point, while the other, denoted CW (cold worked), has
no pronounced yield point. The truncated stress-strain diagram for reinforc

ing steel at present recommended by the CEB is also mentioned in passing.

After derivation of the necessary formulae (Chapters 3 - 6), in which process
expressions are constructed for determination of the rotation capacity by
means of a study of the mechanical energy balance of the rotation span, the
results of calculations relating to different combinations of typical steels

and concrete types are given in Chapter 7. In this connection, the para
meters describing the steel types are varied in different ways. Special

mentian must be made of one result from this investigation.

For plastic hinges reinforced with HR steel, there exists a critical value
wcr of the effective reinforcement ratio w. This critical valueis charac
terised by the following. For beam cross sections with w > wcr the rotation
capacity is low and almost constant irrespective of the value of w. The
cross section may be described as over-reinforced with respect to the
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FIG 13a Rotation capacity expressed in terms of the ratio 8U/A as a
function of the effective reinforcement ratio w, the curve

being calculated by means of the formula given in the figure.
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FIG 13b Plastic hinge underneath a single point load, figure al,
and underneath a pair of point loads, figure bl.
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rotation capacity. For beam cross sections with w < w the rotation capacity
increases rapidlyas the value of w decreases. The cross section may be
described as normally reinforced with respect to the rotation capacity. This
phenomenon will be understood most easily by examination of FIG. 1.3a.
The rotation capacity of a plastic hinge is represented by the hatched area
B in the figure. This area has been obtained by transformation of the area A

above the moment-curvature relation for the beam cross section by means of
the moment diagram. For large values of w failure of the beam occurs at

small values of the curvature, with the result that area A and thus the
rotation capacity are small. For small values of w beam failure ensues at
such large values of the curvature that the lower strain hardening limit of
the steel has been passed, and the part of the moment-curvature relation which
is again increasing has been entered. In this case, the area A and thus the
rotation capacity will be large.

The value of wcr ' i.e. the boundary between a cross section over-reinforced
and normally reinforced with respect to the rotation capacity, is determined
for a given concrete by the value of the lower strain hardening limit of the

steel, i.e. the end of the yield region of the steel.,This is quite analogous
to the determination by the initial point of the yield region of a balanced

reinforcement expressed in terms of wb' i.e. the boundary between a beam cross
section over-reinforced and normally reinforced with respect to bending failure.
It will be evident from this that a beam cross section may be under-reinforced
with respect to bending failure (w < wb) while at the same time it is over
reinforced with respect to the rotation capacity (w > wcr )' Generally, wb> w cr'
and the rotation capacity is therefore at all times extremely small for a

beam cross section over-reinforced with respect to bending moment. A beam
which is over-reinforced with respect to bending moment should therefore never
be used when reinforced concrete structures are designed purely by the plastic
theory.

In Chapters 8 - 11, a study is made of the way in which factors other than

the shape of the stress strain curves of the steel and concrete affect the
rotation capacity of plastic hinges.

Creep of the concrete increases rotation capacity. However, inclusion of this

effect in determining the rotation capacity is no guarantee that it will be
easier to satisfy the condition in (1. 1.7), since the rotation requirement
of the plastic hinge also increases as a result of creep, as mentioned in

Section 1.2. The overall effect is dependent on the design of the structure.
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For values of w in excess of 0.05 - 0.07. the presence of compression rein
forcement increases the rotation capacity. The increase in relation to cross
sections without compression reinforcement, for usual values of w, is depen
dent on the value of this, a higher value of w resulting in agreater increase.
This is a favourable effect since the rotation capacity for the cross
section without compression reinforcement decreases as the value of w in
creases. In order that this effect may be utilised to the full, it is

essential that the compression reinforcement should be fixed within the
cross section by means of stirrups in order to prevent buckling of the rein
forcing bars.

If the effect of shear force on the rotation capacity is not taken into account
in calculating the rotation capacity, it is found for a given cross section
that the rotation capacity is directly proportional to the slenderness A

of the rotation span. See Equation (13.3). If the effect of shear force is
allowed for in calculations, it is found that the rotation capacity increases
considerably and disproportionately for small values of A, i.e. for A= approx.
2. This increase diminishes for increasing values of A, and vanishes for values
of A of about 8 - 10.

The effect of shear force is explained by the fact that the inclined shear
cracks which occur in the part of the beam acted upon by shear force cause
yield of the tension reinforcement to take place over a larger region of the
rotation span. For alarger yield length, the capacity of the rotation span
to store deformation energy increases, and the rotation capacity increases
in consequence. It must be realised, however, that this favourable effect

is never fully developed in practice, since intensive yield characterised
by contraction of the cross section general ly occurs only within a limited
region of a reinforcing bar stressed up to the yield point. This is also

taken into account in the computer program. The above fact must also be
borne in mind in conjunction with determination of the rotation capacity of
a plastic hinge which develops in a beam acted upon by a constant bending
moment over a certain distance. The rotation capacity of the plastic hinge
over the distance a in FIG. 13b, b), is thus hardly greater than that of
tha plastic hinge shown in a), in spite of the fact that, computationally,
yield in the tension reinforcement takes place over a longer distance in

the former case than in the latter.

If the concrete in the compression zone is surrounded by stirrups, the
deformation capacity of the compressed concrete is enhanced, and this means
that the rotation capacity also increases. The report outlines the way in
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which this effect can be approximately calculated. This method involves a

downward correction of the value of w, which generally results in an
increase of the rotation capacity.
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APPENDIX

The computer program developed for calculation of the rotation capacity
of a plastic hinge in a reinforced concrete beam is presented and commented
on in this appendix. The program has been written in ALGOL 60, with notation
according to the conventions applied in conjunction with the computer
system UNIVAC 1108.

The computational potential of the program is outlined in the introduction.
The program is then described and reproduced, and finally examples of the
printout are given.

A.l Calculation alternatives

•Three alternative calculation methods are possible. All begin with a computation

of the following quantities which relate to the cross section under consider
ation. The non-dimensional curvature 1/p is employed as the governing parameter.
The curvature is increased in discrete steps from zero to the value which
results in material failure. The length of the increment prior to the yield
moment is ~(1/p) = 0.5 • 10-3, and after the yield moment ~(1/p) = 2.0 • 10-3.

The calculated quantities, all of which are given in non-dimensional form,
are as follows:

~ bending moment
~depth of compression zone

maximum compressive strain in the concrete
compressive strain in compression reinforcement, if any
strain in tension reinforcement

contribution of compressed concrete to ~

contribution of compression zone to ~

total deformation energy stored in the cross section per unit length

of the beam

The values obtained in this introductory section are printed out in tabular
form by means of the procedure SKRIV(K).

Computation can then proceed in two ways.
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Alternative 1 relates to calculation without consideration of the effect
of shear force on the rotation capacity. This yields the ratio 8u/A

according to Equation (6.3.2) for the required moment variations expressed
in terms of the coefficient s. The results of calculations according to

this alternative are printed out by means of the procedure SKRIW 1.

Alternative 2 relates to calculation with regard to the effect of shear
force according to the analytical model described in Chapter 10. In this
alternative the value of S is at all times zero, i.e. variation of moment
over the length of the rotation span is assumed to be linear. The calcula

tion yields the rotation capacity 8u corresponding to read-in values of
the slenderness A of the rotation span. Results according to this alter
native are printed out by means of the procedure SKRIW 2.

Alternative 3 is a combination of Alternatives 1 and 2. It is used when it
is desired to calculate the rotation capacity in the same run both with
and without consideration of the effect of shear force. When this alternative
is selected, values of both B and A must be read.

A.2 Procedure declarations associated with the main program

Before the main program there are a number of procedure declarations which

are commented on in the following. The numbers in brackets refer to the
statement number in the program reproduced in Section A.4.

INDATA (12 - 26)

This procedure comprises reading of data cards. The following input data
cards may be used.

TYP card. Contains an integer which specifies the desired calculation
alternative. This integer may be 1, 2, 3 or a negative number. A negative

number indicates the end of the input list.

STEEL card. Contains a description of the stress-strain curve of the
reinforcing steel. The following data are punched consecutively.
Steel type, 1 for HR steel, 2 for CW steel.
Non-dimensional modulus of elasticity es of the steel.



The ratio n = fst/fst '
The lower strain hardening limit E1. For CW steel E1 = O is put.
Limit strain E

O
'

Ultimate strain E
SU

'

CONCRETE card. Contains a description of the stress-strain curve of the
eonerete. The following data are punched consecutively.

Non-dimensional modulus of elasticity ec of the eonerete.
The coefficient KZ in Equation (Z.1.2)

Limit strain E
O

' with a negative sign.
Ultimate strain E

CU
' with a negative sign.

Creep facto r ~. If creep is not taken into account, ~ = O is put.

FC card. This card contains the ratio of the strength of the compression

reinforcement to that of the tension reinforcement, i.e. u = fsc/fst ' and
the non-dimensional distance y = e/d of the compression reinforcement from
the extreme fibre in compression. This card must be included even when
there is no compression reinforcement, in which case 1.0 0.1 is punched.

OMEGA card. This card must begin with an integer which specifies the number
of the values of w which follow. The values of w for which the calculation
is to be performed are then given consecutively. If required, the values of
w may extend over several cards.

OMEGAC card. This card must begin with an integer which specifies the number

of the values of wc/w which follow. The values of wc/w for which the
calculation is to be performed are then punched consecutively. If required,

these may extent over several cards. When there is no compression reinforce
ment, 1 0.0 is punched on this card.

BETA card. This card must begin with an integer which specifies the number
of the values of S which follow. The values of S for which the calculation
is to be performed are then punched consecutively. The following values of S
may occur: - 0.06, O and 0.25. This card is to be omitted in Alternative 2.

LAMBDA card. This card must begin with an integer which specifies the number
of the values A which follow. The values of A for which the calculation

is to be performed are then given consecutively. This card is to be omitted
in Alternative 1.

147
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N card. This card contains an integer which specifies the number of strips

in the fictitious compression zone. The length of the rotation span is
divided into the same number of parts.

The cards must be read in the order specified.

A run may comprise a series of computations where each computation is
described by a complete series of input data cards as above. The last data
card in a run must be a TYP card containing a negative integer.

RUBRIC (28 - 38)

Call of this procedure causes shifting of the paper in the line printer
to a new side and the printout of a heading which includes input data.
The extent of the heading is shown in the example in Section A.5.

SKRIV(K) (40 - 46)

This procedure causes printout of one row in the table of results referred
to in Section A.1.

SKRIW 1 (48 - 51)

Call of this procedure causes printout of a read value of S and the value

of BulA calculated for this.

SKRIW 2 (53 - 56)

Call of this procedure causes printout of a read value of A and the value
of Buv calculated for this.

TRYCK (58 - 71)

Call of this procedure causes printout of the appropriate distribution of
compressive stresses in the compression zone of the beam. Ordinarily, this
procedure is not called in the main program, but the program thus incorpo

rates a provision for the study of the stress distribution which can be

made use of if required.
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This proeedure gives the non-dimensional eompressive stress 0e/fee in the

eonerete as a funetion of the strain "c in strip No i in the eompression
zone. During applieation of load the stress is eomputed from Equation (2.1.2),

and during removal of load from the expression for line AB in FIG 2.la.
This proeedure requires two globally deelared quantities, namely array EA,

EB (1:N). Initially, these are zeroed, but when a strip is relieved of load,
data whieh determines the position of the unloading line in the stress-strain
diagram of the eonerete is inserted into the eorresponding positions in EA

and EB. This proeedure yields the value of 0e/fee with a negative sign.

The parameters listed are as follows:

E the appropriate value "ei of the eonerete strain in strip No i
DE the inerement in "ei during a ealeulation step. Whether the eonerete

is being loaded or unloaded is determined by the sign

SI the value of 0e/fee eomputed by the proeedure
EM the instantaneous modulus of elastieity of eonerete in a non-

dimensional form
Fl the eoeffieient K2 in Equation (2.1.2)

ED limit strain "o of the eonerete
CR the ereep faetor ~

I the number of the strip eoneerned.

STEEL (Z,E,DE,SI,EM,Y,E1,EO) (99 - 146)

This proeedure gives the non-dimensional stress 0s/fst in the reinforeement
as a funetion of the strain "s in the tension reinforeement, or the stress

0se/fse as a funetion of the strain "se in the eompression reinforeement.
During applieation of load the stress is eomputed from the stress-strain
diagram applieable to the steel type in question, see Seetion 2.2, and during
removal of load from the expression for an unloading line, in prineiple in
conformity with FIG 2.2a. The proeedure requires two globally deelared
quantities, namely real TA,TB. Initially, these are zeroed, but when the re

is removal of load they are assigned values whieh determine the position of
the unloading line in the stress-strain diagram of the steel. This proeedure

yields the non-dimensional stress with a positive sign. The main program must
therefore perform a eorreetion of sign when the proeedure is applied to
eompression reinforeement.
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The parameters listed are as follows:

Z indication of steel type, 1 for HR steel, 2 for CW steel
E the appropriate value of the steel strain E

S
DE the increment in E

S
during the calculation step in question. Whether

the steel is being loaded or unloaded is determined by the sign

SI the value of 0s/fst or 0sc/fsc computed by the procedure
EM the non-dimensional modulus of elasticity es of the steel

y the coefficient n ; fstu/fst
El the lower strain hardening limit El of the steel (; O for CW steel)
ED the limit strain E

O
of the steel

INTERPOL (A,E,X,AE) (148 - 160)

This procedure is used for linear interpolation in the tables computed
by the program. Application will be evident from the following parameter
list.

A the name of the column in the table, declared as an array, in which
interpolation is to be effected

E the name of the argument column declared as an array
X the argument value in question
AE the highest row number in columns A and E. It is stipulated that

numbering of rows begins with 1.

This procedure is a real procedure. The procedure name INTERPOL therefore
assumes the computed value when called.

A.3 The main program

The main program begins on line 162 by reading the actual data. The program
structure is characterised by two loops, the outer one of which relates to
successive values of wclw and the inner one to successive values of w.

Inside these loops the program can be divided into a number of sections.
The first of these, which extends to statement 221, determines by iteration
the internal equilibrium according to Equation (3.3.1) for each new increase
in the curvature lip. This section thus yields at the same time the distri

bution of strain over the depth of the cross section, and therefore the
depth c of the compression zone also.
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The iteration proceeds by variation of the strain Ss in the tension reinforce
ment until Equation (3.3.1) has been satisfied with a certain tolerance. In
order to save computatian time, this tolerance has been made variable as
follows. For a start, it is 0.2% of the force in the tension reinforcement.
If equilibrium is not achieved within five iterations, the tolerance is
increased by another 0.2%. This procedure is repeated, but the maximum tolerance
is 1%. Control printouts have shown that the tolerance is normally 0.2 - 0.4%.

A subsequent sectian of the program, statement 222 to statement 238, calculates

the non-dimensional bending.moment ~ according to Equation (4.10) which
corresponds to the equilibrium postian found. In conjunction which this a
check is made to see if the ultimate moment ~u has been reached, the value of

~u being determined according to one of the definitions given in Chapter 4.
If the increase in moment in any one computatian step is less than 1/10 of
the increase in moment in the first computatian step, then the yield moment

~y is considered to have been reached. The step length of the governing
parameter ~(1/p) is then quadrupled.

The program sectian which extends from statement 239 to statement 267
determines, by means of Equation (5.5), the increase in deformation energy W
per unit length of the beam which occurred during the calculation step. The
contributians of the eonerete, compressian reinforcement and tension rein
forcement are calculated separately. The calculated energy is summated
according to Equation (5.9). This program sectian is concluded by printout

of the tabulated values listed in Sectian A.1.

The next program sectian extends from statement 268 to statement 294. A check

is now made to see if material failure has occurred during the computational

step, i.e. whether Is 1>ls or whether s >s . If this is not the case,c - cu s- su
the curvature is increased by yet another increment and the above calculations

are repeated. If material failure is found the n either se or Ss is a little
too large. The quantities listed in Section A.1, which were determined during
the last computational step, are therefore adjusted by interpolation so that

they just correspond to scu or to ssu' depending on whether material failure
occurs in the concrete or in the steel. After this correction, the new values
relating to the last computational step are again printed out. This correction
is made only when the ultimate moment is determined by material failure.
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The next program section, statement 298 to statement 316, is employed for
calculation alternatives 1 and 3. Tt calculates the rotation caoacity with
out consideration of the effect of shear force for the desired moment distri
butions described by the coefficient S. See FTG 6.1b. The calculation is
carried out using Equation (6.3.2). The appropriate values of S and the
calculated values of the ratio 8 lA are printed out.

u

The last program section, statement 317 to statement 340, relates to calcu
lation alternatives 2 and 3. Tt calculates the rotation capacity with the
effect of shear force taken into consideration by means of Equation (10.1.9)
for desired values of A for the non-dimensional length of the rotation span.
The appropriate values of A and the calculated values of the rotation
capacity 8uv are printed out.
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A.4 The complete program in ALGOL 60

1 REGIN CCMMENT ROTATIONSKAPACITET VERSION ln;
2 INTEGER I,I1,I2,r3'iq,N,NAE,hlA,~OM,NO~C,PV,R\~'ST,TYP;

3 REAL AL,BE,C,CU,OCU,OcC'OES,~Sl,OS2,EC,FCI\UX,ECU,ECO,EMC,EMS,ES,

4 ESAliX,ESC,ESU,ESU,cSl,FTAUX,F,FS,KA1,KA2,KA5,MI,MU,MY,MYP,MY1,
5 NY,OM,OMC,PIII,PSI,PSIC,PSIS,PSIT,RE,NIG,RIGn,SIC,SIS,SISC,SOM,
6 SUM,T,TA,TAC,TAT,T8,THC,TBT,TET,VI,X,I~,XU,Y,Z,ZU'A,LA,Ml,Ml,

7 SMY,DESC,MF;
H BOOLEAN CONf,FIRST,lTER,VAl;
9 ARRAY AB E, ALA, U '/1 CC1 : 1u) dl'~ C1 : 2 U) , EA, EB C1 : " U) ,

10 ACU,AEC,AES,AESC;AMy,APSI,APSIC,APSlS,APSIZ,AI,SlCl:10O);
1 1
12 PROCEDURE INDATn;
13 BEGIN INTEGER K;
14 READCTYPJ;
15 IF TYP LSS O THE~ GO TO FIN;
16 READCST,E~S,Y,ES1,ESJ,ESU);

17 READCEMC,PHI,ECU,ECU,VI);
18 READCF,C);
19 READCNOM,FOR K=C1,1,NO~) ~O UMCK));
20 READCNOMC,FOR K=Cl,I,NOMC) DO UMCCK»;
21 lE TYP EQL 1 OR TYP EQl 3 THEN
22 READCNBE,FOR K=ll,1,NQE) DO A8ECK»);
23 IF TYP EQL 2 OR TYP ERl 3 THEN
24 RFADlNLA,FOR <=ll,I,NLA) DO AlACKl);
25 READOl!
26 END INDATA;
27
2R PROCEDURE RURRIC;
29 BEGIN FORMAT RUCE4,XK,'CO~CRFfE: E~C =',P7.1,X6,'STEEL: EMS =',
30 D6.1,X6,'n~EGA =',DS.2,A2,X19,'PHI =',D7.3,XI4,'ETA =',D6.3~io,
31 'OMC!OM=',OS.2,Al,X19,'EPrO=',D7.4,XI4,'EPS1=',D6.3,Al,119,
32 ' f PCU= , , D7 .4, Xl 4 , , EPS1'= , , ~ 6 • 3, A1 , XI, 5 , , t:. PSU= , , 116 • 3,A 1 • 2 , 18,
53 'FSC!FST=',D5.2'X1;,'C!1l=',D6.5,11;,'C~EEP=',D4.1,X1S,'N=',13,

34 Al.2,Xl0,'lfR0',XK,
35 'MY',X9,'KSI',X~"EPSC"X7"EPSSC',XK"EPSS"X8"PSIC',X8,

36 'PSIT',II3,'.PSI',Al.1l;
3 l wRI TE l ~ U, F '1 C, U'I S , O"1 , f' il I , Y, () " C, ECU, ES 1 , lo CU, ESO, E SII, F, C, VI , N)

38 END RUBRIC;
39
4U PROCEDURE SKRIVCK);
41 VALUE K;
42 INTEGER K;
43 BEGIN FORMAT TACXS,D7.;,iDll.4,3D12.;,D14.7,2D12.7,A1);
44 ~PITE(TA,Acucr),AMYlK),AxCK),AEC(K),AEtiClK),AE5CK),

45 APSICCK),APSIZlK),APSICK)
46 END SKRIV;
47
48 PR0CEDU~E SKPI~l;

49 8EGIN FORMAT FCXK,'8ETA=',D5.2,X4"TETA/LA~8DA=',D5.6,A2);

50 "PITECF,dE,TET)
5 l E 'I D SKR [ w1 ;
52
53 PROCEDURE SKRl~2;

54 8EGIN Fl)RMAT F(XX"LAMBDA=',nf,2,xx,ITETA=',O~.6,A2);

55 ~RITECF,lA,TET)

56 E~D SKRIWZ;
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58 PROCFDURE TRYCK;
59 REGIN INTEGEP K;
60 REAL E,DE,S;
61 FORI" AT Ail ( E4, X1 U, , DI STRl B'! TI O~i OF CONC~ ETE STp ESSES ' , Al, 1 ,
62 x10,'srRIP NO',X6,'SIGMA/FCC',XY,'EA',X14,'EB',Al,l J ,
63 BB<I1 5,016 ,5,2D1I':> ,6,Al);
64 ,IRITE(AAJi
b5 FOR K=l STEP 1 UNTIL N DO
66 BEGIN E=ES+CU*(Xi1-1+AL*(U,5-K»;
67 OE=DES+DCU*(XM-1+AL*(U,S-KJ);
66 CONCRETE(E,DE,S,EMC,PHT,EcU,VI,K);
69 WNIrE(8B,K,S'EA(KJ,E~(K»

70 UJD
71 END TRYCK;
72
73 PROCEDUR E CO~CRETE(E,DE,SI,Ey,FI,EO,CR'I);

74 VALUE E,DE,E~,FI,EU,CR,I;

75 INTEGER Ii
76 REAL E,DE,SI,EM,FI,EO,CR;
77 BEGIN REAL F,H,K,S;
78 REAL PROCEDURE SIGMA(T);
79 VALUE T;
60 REAL T;
81 AE.GIN
82 SIGMA=(K*T+(Fl-1J*T*TJ/(1+(K-Z)*T+FI*T*T);
83 END SIGMA;
84 K=-EM*EO;
~5 S=E/EO/(1+CR);

IF S LSS ES(l) THEN BEGIN SI=U; GO TO ~ END;
67 A: IF EB(IJ EQL U AND -DE GEQ U THEN

AEGIN SI=-SIG~A(S);GO TO B END;
89 IF E~(IJ EQL C AND -DE LSS U THE~

90 REGIN EA(IJ=F=S-DE/oU/(l+C R);
91 H=SIGMA(F);
92 EH(I)=F-H/K
93 END;

Ir S GTR FA(IJ THEN ~EGJ~ EA(I)=ER(I)=u; GU TO A END;
95 SI=-K*(S-EP(IJ);
96 . B:
97 EN~ CONCRETE;
98
99 PROCeDURE STEFL(l,E,OE,SI,E~,Y,f:1,EUJ;

100 vALUE l,E,DE,E~,Y,El,EU;

1 U1 pJTEGER Z;
102 REAL E,DE,SI,EM,·,E1,EU;
103 REGIN REAL H;
104 ReAL PROCEnURE SIGMA(T);
105 VALUE T;
106 REAL T;
107 BEGIN REAL AL2,~E,D1,D2,D',E2,Gl,G2'G5,K,S,S1,S2;

108 IF l EaL 2 THEN GO TO LL;
109 F2=1/EM;

IF T LSS E2 THeN BEGIN SIGMA=T*EM; bO TU L END;
I~ T LSS E1 THEN ~EGIN SIGMA=1,U; GU TO L END;



155

112 IF T LSS EU THEN
113 REGIN S=CEII-T)/IFU-E1);
114 SIG<'A=Y-(Y-l)*S*S;
115 GOTOL
116 ENO;
117 SIGMA=Y;
118 GO TO Li
119 Ll :D1=EO-II.UO?~1/Ei'I;

120 D2=EMOEU-Y;
121 03=Y-1;
122 S1=EM*o1;
123 S2=02*D3;
124 G1=Sl*S1-4*S2;
125 G2=S2*(D2-D3);
126 G3=S2*S2;
127 BE=(G2+SQRT(G2*G2-Gl*G~»/Gl;

128 K=01*Dl/D3/(2*8E-D5);
129 E2=(EO+K*E~O(Y-BE»/11+K*EMOE~);

130 AL2=KoPE*BE;
131 SIGMA=IF T LSS E2 THEN T*E~ ELSE
132 y- El E* ( 1 - SIl R T( 1- CFD- T) * ( Eil - Tl / • L2 ) ) ;
133 L:
134 END SIGMA;
135 A: IF TB EQL O AND DE GEQ u THE<

BEGIN Sr=SIGMA(F); GO TO 8 END;
137 IF TEl EQL U AND DE LSS U THEI,
138 8EGIN TA=E-DE;
139 H=SIGMA(TA);
140 TB=TA-H/E~

141 Ef:O;
142 IF E GTR TA T~EN

BEGIN TA=TS=U; GO TU A END
144 ELSE SI=EM*CE-TEl);
145 R"
146 END .STEEL;
147
148 REAL PROCEDUPE I<TERPOLIA,E,X,AE);
149 VALUE X,AE;
150 I~TEGER AE; REAL X; ARRAY A,F;
151 BEGIN INTEGEP I,K;
152 REAL D,S;
153 FOR 1=1 STEP 1 UNTIL AE 00

IF A8S(X) LSS ASS(E(I» THEN ElEGIN K=I-l; GO TO Z ENO;
155 Z: IF K EWL n THEN K=l;
156 D=(EIK+l)-E(K»/ECK);

IF ABS(D) LSS l~-b THEN fEGIN S=(AIK+ll+A(K)/Z; GO TO Y END;
lS~ S=A(K)+CA(r+ll-A(K)IO(X/E(KI-l)/O;
159 Y: !~TERPOL=S

160 ENu INTERPOL;
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1 62 LL : I ~n H A;
163 FOR 11=1 SHoP 1 UIHIL NOIH DD

164 BEGI~ OMC=UMCCI11;
165 FOR 12=1 STEP 1 UNTIL ~O~ DO

166 8EGIN OM=u·CIZ);
167 RUBRIC;
168 CU=ES=~YP=PSIC=PSIT=PSIS=SMV=O;

169 DCU=5&-4;
170 FIRST=CDNT=TRUF;
171 VAL=FALSE;
172 NY=OM*E~S*C1+VI)/EMC;

173 XO=NY*CSQRT«1+ÖMC/F)*C1+DMCjF)+2*Cl+C*OMC/F)/NY)~(1+0MC/F»;

1 74 XI'I=1. 25*XU;
175 AL=XM/N;
176 RV=U;
177 FOR 1=1 STEP 1 u'nIL ,.) DO EA(1)=ER(IJ=O;
178 TAT=TBT=TAC=TBC=U;
179 LO: ITER=FALSE;
180 cu=cu+ncu;
181 IF FIRST THEN DES=C1-xOJ*ocu;
182 OS1=oS2=U;
183 RW=U;
184 T=U,002;
185 Ll: IF RW FGL , THEN
186 BEGIN RW=U;
187 IF T LSS U.01U THE~ T=T+U.UOZ
18B E"D;
189 IF ITER THEN Rw=RW+1;
190 ES=Es+nES;
191 TA=TAU TI:l= TtH;
192 STEEL(ST,ES,DES,SIS,E0S,V,FS1,ESU);
193 TAT=TA; T8T=T8; TA=TI,c; TR=TIJC;
194 ESC=ES-C1-C)*CU;
195 DESC=STGNCESCJ*(DES-(1-CJ*DCUJ;
196 SJEELCST,APS(ESCJ,DESC,SISC,FMS,V,Eti1,ESU);
197 SISC=SJG~CESC)*S15C;

191\ TAC=TA; T8c=T8;
199 X=1-ES/CU;
2UO IF FIRST THEN GO TO L3;
201 SUM=O;
2U2 FOR 1=1 STEP 1 UNTIL , DO
203 BEGI~ EC=ES+CU*(XM-1+AL*(U,,-I)J;
2U4 DEC=DES.DCU*(XM~1+Al*(O.5-I»);

2U5 CONCRETECEC,DEC,SJC,FMC,PHI,ECO,VI,I);
206 SlI,~=SlI'YI"'SIC

2U7 E,lD;
20B FS=OM*SIS;
2U9 RE=AL*SUM+0M*O~c*5rSc.FS;

210 IF ARSCRE) LSS T*FS THEN GO TO L3;
211 ES=ES-DES;
212 IF ITER THE,l GO TO L2;
213 IF RE ess U THEN

REGIN ~S1=DES; OES=DES+O.UUU1 END ELSE
REGIN nS2=DES; DES=DES-O.OIJU1 END;

216 IF 051 NEW U AND DS2 NEO O THEN
BEGIN nFS=(DS1+DS~)/2; ITER=TRUF END;

218 GO TO L1;



219 L2 :
~20

221
222 L3:
223
224
225
226
227
228
229
230

232

234
235
236

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

IF RE LSS C TH~N DS1=DFS ELS E nsZ=ntS;
DES=(US1+DSZ>lZ;
GO TO L1;
SLJM=O;
FOR 1=1 STEP 1 LJNTIL N DO
BEGIN EC=ES+CU*CXM-1+AL*CC.5-I»;

DEC=OES+OCLJ*(XM-1+AL*CO.5-I»;
CONCRETE(EC,DEC,SIC,EMC,PHI,ECC,VI,I);
SUM=SUM+SIC*(U.5-I)

E r4 D;
MY=AL*AL*SUM+OM*<SIS*(1-XM)+OMC*SISC*(C-XM»;
IF MY LSS MYP ÄNO NOT VAL THEN
8EGIN P=RV; SMY=MYP; VIL=TRUEENO;
IF MY GTR SMY Aho VAL TH~N VAL=FALSt;
IF FINST TIIEN ~EGIN ~Y1=~Y/1U; FIRsr=FALSE END;
ESAUX=ES-DFS/Z;
ETAUX=ESC+(1-C)*OCU/2-DES/Z;
IF MY-MYP LS~ ~Y1 AND CONT THEN
BEGIN nCU=I.*DCiI; OES=4*OES; CO~'T=FALSEi MF=MY END;
MYP='-Y;
TA=TA T; TfJ=TtH;
STEEL(ST,ESAUX,DES,SIS,EMS,Y,ES1,ESU);
TAT=TA; H;r=TJ; TA=TAC; TB=T8C;
STEEL(ST,AflS<ETAUX),DFSC,SISC,EMS,Y,ES1,ESU);
SISC=SIGN(ETAUX)*SISC;
TilC=TA: TBC=T8;
Slm=o;
FOR 1=1 STEP 1 UNTIL N DO
BEGIN EC=ES+CU*lXM-1+AL*CU.5-1»;

DEC=nES+UCU*(XM-1+AL*(O.5-I));
EC;\UX=EC-DEClZ;
CO,< CRETE ( ECAII X, DEC, S I C, E", C, PHI , E' i; U, V! , I ) ;
S lJi1= S Uf"+ S I C*D EC

END;
PS I C=PS I c+r,L *S',,",';
PSIT=rSIT+OM*O~C*Slsc.(nCU*<C-1)+DES);

PSIS=PSIS+OM*SIS*DES;
RV=1+RV;
AClI(RV)=CU;
AES(RIi)=ES;
AX(RV)=X;
AMY(RV)=r"y;
AESC (/lV)=ESC;
AEC<RV)=EC=ES-CU;
APSIC (RV) =psrc;
APSIS(R\I)=PSIS;
APSIZ(R\I)=PSIC+PSrT;
AFSI(RV)=PSIC+PSIT+PSIS;
SKRIV(pl);
IF EC GTR FCU*ll+vI) A~D ES LSS ESU THE~ GO TO LO;
IF VAL THE~ GO TO L4;
M= RV;
FOR 1=1 STEP 1 UNTIL '4 DO SL(I)=O;

157
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272
273
274
215
276
277
278
279
280
281
2~2

2~3

2~4

285
2~6

2~7

2~8

289
290
291
292
293
294
295 1_4:
296
297
298
299
300
3U1
302
3U3
304
305
306
307
308
31)9

310
311
312
313
314
315
316
317
318
319
320
321
322
323

IF tSU LSS AtSlM) THtfJ
BEGHi Z=EStt;

SLl~-1)=MtSIM-T); SLIM)=AESlM)
END FLSE
BEGIN ?=ECU*l'+VI);

SLlr'-')=AtClt~-i); SLlfl)=AECI''i)
EI, D;
ACUlM)=INTEAPOL(ACU,SL,l,~);

AMYlM)=INTERPOLIAMY,SL,l,M);
AXlM)=IMTERPOLIAX,SL,Z,M);
AESClM)=I~TERPOLIAE5C,SL,?,M);

APSIC(P)=INTERPOL(APSIC,SL,Z,M);
APSISl~)=INrERPOLlAPSIS,SL,l,M);

APSIIlM)=INTERPOLlAPSIZ,SL,Z,M);
APSI(M)=INTERPOLIAPSI,SL,Z,M);
IF ESU LSS AES(M) THE N
BEGIN AEC(")=INTERPOL(AEC,St,Z,M);

AESli")=ESU
END ELSF
BEGIN AES(~)=IMTERPOL(AES,SL,l,M);

AECIM)=ECU*11+VI)
O.D;
SKRIV(i'');
~;U=AI'tY U~);

XG=AX (r1);

RIGU=OM*EMS*I('-XU/3)*11-XO)+OMC*IC-XO/3)*IC-XU)/F);
IF TYP EQL T 0 R TYP EQL 3 THEN
FOR 13=1 STEP' llNTIL ~PE DO
BEGIN PE=APEII3);

SIi"I=KA2='~UIR 1 GUl 2;
SO"i=APSI (M) re;
K.A3=U;
FOR T=1 STEP 1 UNTIL N-T DO
BEGIN ~I=MU*IN-I)*IM+4*dE*I)/N/~;

X=INTERP0LIAX,AMy,MI,M);
RIG=0M*E~5*ll'-X/3)*l1-X)+OMC*lC-X/3)*IC-X)/F);

zu=rn/Rre;;
KA1=2*KA2-KA3+zu;
·SU~'=SU~I+KA1;
rA3=rAZ; KAZ=KA1;
SOM=SOM+INrERPOLIAPSI,AMY,MI,M)

EtiD r;
TET= 12 * SM' I '" i~ Ii + l~. Hl E* SIi MI !II - l T+4 * to El * KA1 ) / N I N) I ( 1 H1F / MU) ;

SKRI",
U.D BETf\;
IF TYP EQL 2 o~ TYP EQL 3 THEN
FOR 13=, STEP 1 1i"TTL NLA ro
BEGI fl I. A=1\ l A( I 3) ;

A=1U*t'u/LA;
KA 2=i"LJ I P I GLiI Z;
SUM=APSISIM)/Z+APSIZIM)/Z;
KA.3=I);
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325
326
327
32~

329
350
331
332
333
334
335
356
337
338
339
340
341
342
343
344
345

FOR 1=1 SIPP 1 U~lIL N-l DO
BEGJN 0J=~U*IN-I)/~;

JF I LSS N*Ä/LA T~E~ Ml=(1-O.u2*LA*I/N)*MU
ELSE ~l=(l-IIN)*(l-U.U~*A)*MU/(l-A/LA);

If I LSS 1"*{,/LA/2 THEN '~2=(1-j*IiN/(1+A/LA)*"IU
"2 =( 1- lit) * r,j UI ( 1 H II. A) ;
X=INTERP0l(,\x,p~v,MI,M);

rIG=OM*E~S*(11-X/3)*11-X)+OMC*(C-X/3)*(C-X)/F);

zU='q/RIGi
KA1=Z*KA2-KA3+zu;
vA3=KAt; KA2=KA1;
SUM=SU~+Ir'lEPPOL(APSIS~AMy,Ml,M)

+INTERPOL(APSIl,AMy,.t,~);

EhD Ii
TET=I. A* l 2* SI'" IIU "I' - KAl/N I ") I ( 1PH / '" U) ;
SKRIH2

END LA"!"D;,;
END Or1EGA

E~H' or1C;
GO TO LL;

Fl i~:

ENO PPOGRA~,

EI.SE
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A.5 Examples of printouts

Two examples of the printout of the results are shown. The first relates
to ealeulation alternative 1. The eonditions are as follows.

Conerete Type A, see Seetion 2.1.
Tension reinforeement of HR steel, see Seetion 2.2, with the effeetive
reinforeement ration w = 0.07.
No eompression reinforeement.
Creep of the eonerete is not taken into consideration.

The printout of the results is reprodueed in FIG A.5a. The proeedure RUBRIC

results in printout ot the input values and table heading. The proeedure
SKRIV (K) causes printout of the table in whieh the different quantities are
funetions of the parameter 1/p (1/RO in the printout). As will be seen, the
ultimate moment ~u is determined by material failure in the eonerete. In the
penultimate line se = -0.00356. All the values in this line have therefore
been eonverted so as to eorrespond to se = -0.0035. The modified values are
given in the last line of the table. The example studied does not inelude

compression reinforeement, and the strains given in the eolumn for sse are
therefore fietitious - they relate to strains at a level within the cross
seetion determined by y = e/d = 0.1. Since there is no compression reinforee

ment, the contents of the eolumns for ~c and ~t are equal.

Three values of S and the values of the ratio sulA ealculated for these
values are printed out underneath the table. This printout is eontrolled
by the proeedure SKRIW 1.

The second example relates to ealeulation alternative 2. The eonditions are
as follows.

Conerete Type B.

Tension and eompression reinforeement of CW steel, with w = 0.20 and Wc = 0.05,

u = fsclfst = 1.0, and y = e/d = 0.1.
Creep of the eonerete is not taken into consideration.



CONCRETF: FMC = 1200.0
PHI = 0.~63

fPCO=-0.0020
FPCU=-0.0035

fSClFST= 1.00

1/00

0.0 0 050
0.00100
0. 0 0150
0.0°200
0.0025U
0.00~01)

0.OO~50

0.00400
0.00450
0.('0~50

0.00"5n
0.0105'1
0.0125n
0.01l.5n
0.n1~50

0.01"50
0.n?050
n. 0225[1
0·Q?1.50
0.02~50

0.0?"5(1
0.0305(1
0.0~250

n.0 345 (j

0.03404

MY

0.0094
0.01R7
0.0?7Q
0.0371
0.0462
0.0 5 52
0.0641
0.Ob54
0.Ob56
0.06 63
0.0666
0.Ob68
0.Ob 7 0
0.Ob71
O.Ob??
0.0685
0.0 7 00
0.0 7 14
0.0 7 27
0.074(\
0.0752
0.0 7 63
0.0774
0.07R3
0.0781

STFFL: EMS = 350.0 O"EGA = 0.07
HA = 1.40('1 OMClOM= 0.00
EPS1= 0.015
EPSO= O.ORO
EPSU= 0.10(\

ClD= 0.100 CRFEP= 0.0 N= 50

KST FPSC FPSSC FPSS PSIC PS TT PSI

f'I.1~?7 -O.OOOOQ -0.noo0 4 0.00041 0.000000.\ 0.000000.\ o.onoron
r.1R~2 -0.00019 -0.0000 9 0.00n o1 O.oOOor13 o.00onn1'l 0.0000094
r.1~84 -0.00n20 -0.000 13 0.00122 0.00n0029 0.nOoo029 0.0000?10
r.19n3 "'O,00(l3R -0.0001 P 0.001 A2 0.0000r52 n'00a005? 0.0(\00~7'
0.1921 -0.00Q40 -0.000?3 0.00202 O.OOOOORl 'J.nOOOORl 0.0000S.1
r.194P -0.000 58 -0.00n2° 0.00242 0.0000120 n.o oon120 0.oonn"3~
0.19b7 -D.000~9 -0.000 34 0.002"1 0.0000165 n.0000165 0.000113~
r.1P73 -0.00n?5 -0.00035 0.00325 0.00nn1~4 ~.roon1~4 0.0001460
0.177~ -O.OOO~O -0.0003~ 0.003 7 n 0.0000231 n.on00231 0.0002764
0.152 9 -0.00099 -n.ono3/~ 0,00551 O.000f\2P7 0.0000?"7 0.0004005
0.13A7 -0.00116 -0.00031 0.00714 O.0000~3/. r) '" r~nf)n334 n.nnn541J.
r.125~ -0.00132 -n.00027 0.OO91~ O.OOOO'po n.()nOO~"O O.onOb?I••
0.1177 -0.00147 -0.00022 0.01103 0.0000424 0.[10004 ?4 [Looo"r"?
r.11 18 -0.n01b2 -(".00017 C.012 R8 O. 000nt. 70 0.nn004711 n.Oo09/.2·
0.11'69 -0. 0 01 7 6 -r.C10n11 0.01474 Oloonn~1/. n.nOon511. 0.001n772
n,1[o',1 -0.001 9 3 -0.0000" 0.01657 0.00n0573 O. nOo0573 0.001?127
0.1025 -0.00210 -0.nOO05 0.01840 G.0000A42 0.nOo0642 0.0013517
0.10110 -0.on2?" -n.r)(lnf13 0.02022 0.0000?11 n.0000717 0.OO14??6
0.1 008 -0.00247 -O.nOOO? 1).0??n3 n.00n079~ O. (lOO079R 0.On1 .. ~b7
0.1005 -0.002b~ -0.00001 n.023R4 0.0000·P4 n.ooonp84 0.0017~31.
0.1004 -0.002"6 -0.00001 0.025A4 0.0000Q75 0.00no9?5 0.001Q'2~
0.1010 -0.00308 -0.00003 0.02742 0.000108? 0.00010R2 0.on2O R4 0
0.101 9 -0.On331 -0.0000 6 0.0291 9 D.000119~ 0.00011Q~ 0.On22'17
0.1C31 -0.0 0 356 -0.00011 0.030 94 0.0001324 0.000 1324 0.0023 0 34
0.102" -0.003 5 0 -0.00010 0.03054 0.0001295 0.f\0012 Q 5 n.1)023~77

RETA=-n.Ob

BETA= o.nu

RETA= n.25

FIG A.Sa

TFTA/L·MR~A=0.002545

TFT'/LAMRDA=0.0031~9

TfTA/LAMB~A=0.0092QO

Example of the printout of the results calculateo accoroing to
Alternative 1

(J)



"SI EPsc EPsSC FPSs

0.28C5 -0.0001 4 -0.00009 0.00036
0.291.4 -0.00020 -0.00019 0.00071
0.2961 -0.00044 -0.00029 0.OO10l'
0.';024 -1').')on60 -0.00040 0.00140
0";000 -o.nOO77 -0.00052 0.00173
0.';143 -0.00094 -0.UU064 0.00206
0 • .)207 -0.00ll2 -0.00077 0.00231'
O• .j270 -0.00131 .,0.00091 0.00260
u.311'7 -0.00143 -0.00090 0.00307
U";077 -".nn15'~ -0.00104 0.00346
U.2771 -0.00194 -0.00124 0.00506
0.2560 -0.00230 -0.00140 0.00670
0.2420 -0.00?66 -0.00156 0.001'34

'o .2313 -O.on~OI -n.00171 0.0099°
0.2239 -0.00336 -0.00186 0.0116~
O.21fJ3 -0.00371 -o.uO?OI 0.01320
u.2131' -0.00406 -0.OO~16 0.01494
0.2105 -0'0044? -0.00232 0.01 n 51'
0.2077 -o.nOq·7A -0.00241' 0.01022
0.20~9 -0.0051~ -0.00::'65 0.01985
0.2062 -0.00557 -n.00::'87 0.02143
0.2100 -0.00600 -0.00~19 0.02291
Q.214B -0.0066n -0.00"56 0.02434
0.221)6 -0.0072" -0.00~91l 0.02572

TFTA=0.0?7428

T·P=0.021413

T·T~=0.01A21l0

T""Tn=0.016373

"l:: ~o

CONCRETE: EMC = 1200.0
,'HI = 0.342
I::PCO=-0.0025
["CU=-0.0070

FSClFST= 1.00

1/R0 MY

0.00050 n.O??5
0.00100 0.04 4 7
0.00150 0.0663
0.00200 0.01'174
:1.0P2S0 O.1OPO
0.00:\00 ri.1 27')
1).00350 ').1,.-.73
0.00400 0.11',61
0.00450 O.17?2
o.n(l~n0 0.17"3
0.or700 0.1797
0.00900 0.11'130
0.01100 0.11'55
0.01300 0.11173
0.01500 0.I A1'8
0.01700 n.1<J°l
0.01900 0.1°10
0.02100 0.1 0 19
n.0?300 0.19:'6
(I. 02~)fln (l.1°~2

0.02700 0.1 035
0.0?900 0.1934
0.03100 n.1Q~1

0.03300 0.1 0 23

LA:.1Pf)/\= 2.0(1

LA-:orA= 3.00

LAMR[\~= Lj..o!'\

LAMRD~= 5.00

STFEL: EMS = 350.0
ETA = 1.100
EPS1= 0.000
E"So= 0.0<;0
EPSI '= 0.065

CID= 0.100'

OMFG~ = 0.20
O"'1C/O,'.'= 0.25

C"EFP= 0.0

"SIr-

0. 0000011
0.0000041',
0.000010~

0.000019?
0. 0 00030"
0.0000450
0.ouor624
0. 0 00083 0
0.oUo 094 7
0. 0 00125"
0.0001591
O.oOOISIl?
O.flOO?17'"
0.000?457
".("IllO;,,7,?
n.oOO~047

O. oOO"3'~ l
n.I"lOO~64?

n.('lOO~93"7

0. 0 004247
0.000463 7
0.OOO"17?
0.000"78 0
0.n006450

PSTT

o.noroo11
0.0000050
0.00,.nl13
0.00 0 0206
o.np"r;t.2g
0.00n04P6
0.0000677
'O.000000~

0.00 0 1032
0.000131'1
0.00"1754
0.no('l'08.3
0.000?419
0.00 07 741
0.00n"083
0.000"430
o.nn"~77q

O.nnn/!t42
o .nn"11~03

0.0004P90
0.0005:"81
0.0006076
0.00""1166
O.nn"'744

PSJ

0.000005 7
0.0000?2<;
n.oooosO"
f'l.OQ(lnF38.A
0.0001377
0.0001967
0.000~65~

O.(lon:~43Q

0.000420'
0.0007741
0.0011?01
0.00149;>1
0.OOIr,60 7
0.007?336
0.00?6091'
f) " f10?O~et:l

O.OO::-::'6qo
0.OO~7530

0.0041376
0.004"?34
0.004°103
0.rOS797'
n.0056A3°
0.006060'

O'>
N

FIG A. 5b Example of the printout of the results calculated according
to Alternative 2



In this case the printout is reproduced in FIG A.5b. The ultimate moment
here has been determined by the highest point in the moment-curvature curve.

The table shows that ~u = 0.1935 for 1/p = 0.027. As 1/p increases, the
moment decreases. The table continues right up to material failure, in this

case crushing failure of the eonerete.

Four values of A and the rotation capacities 8uv calculated for these values
are printed out underneath the table. This printout is controlled by the
procedure SKRIW 2.
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