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1 INTRODUCTION

1.1 The limit state method of design

The loadbearing capacity of a statically indeterminate structure such as
a contincus beam or a frame can be determined by means of the Timit state
method, based on the theory of plasticity, as follows.

If the construction material is assumed to possess ideal elasto-plastic pro-
perties, with a stress-strain diagram according to FIG. 1.%1a, it will react
in a purely elastic manner to external Toads so long as the maximum stress
in the worst stressed section of the structure is Tess then the yield stress
ay of the material. Over this loading range the moment-curvature relation of
the section is represented by the straight line 0A in the figure. If, as the
external load is increased, the yield stress ay is reached, plastic fliow
begins under the influence of the yield moment My. As the load is further
increased, plastic flow spreads out within the section until, at a certain
Toad Tevel, the section is completely plastic. Sections situated adjacent to
that subjected to the highest stress are at the same time in a state of partial
plastic flow. During the increase in moment while plastic flow Spreads over

the most heavity stressed section, i.e. while the moment increased from My

to the ultimate moment Mu’ the moment-curvature diagram of the section con-
forms to the portion AB in FIG. 1.%la. As the external Toad is further raised,
the moment in the section under consideration is constant and egual to Mu

while the curvature increases. During this stage of lcading the moment-curva-
ture diagram is represented by the straight Tine BC in the figure. Failure

of the material is assumed to occur when the curvature reaches the value (1/r)u
determined by attainment of the ultimate strain £, of the material.

For purposes of simplification it is assumed in the following introductory
argument that the properties of the material and the sectional shape of the
beam element are such that an arbitrarily chosen section in the structure has
an ideal elasto-plastic moment-curvature diagram, i.e. that the length of the
portion AB of the curve is negligible. The diagram then becomes bilinear.

The Toads acting on the structure are assumed to be fixed in position in
relation to this and to increase continucusly and proportionately from zero
until the value of the iimiting load is reached. At a certain load level the
most heavily stressed section of the structure will become completely plastic,
i.e. the moment in this section now reaches the maximum value, My:Mu, which

this section is capable of sustaining.
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An initial plastic hinge will thus have been formed in the structure. During
further increase in load the moment is constant and of known magnitude at
this plastic hinge, and the degree of static indeterminacy has therefore
decreased by one unit while load further increases from this load level.
During the further increase in load, after some time another plastic hinge
will be formed at some other point in the structure at a higher Tload level.
The moment is now of known magnitude at this section also, and the degree of
static indeterminacy has decreased by another unit while Toad further rises.

As load is gradually increased, the degree of static indeterminacy thus
decreases as new plastic hinges are formed, and the structure will therefore,
at a certain load level, change into a statically determinate structure

for further increase in load. When, on further increase in load, one more
plastic hinge is formed, the structure finally changes into a mechanism

and collapse ensues.

The load which acts on the statically determinate structure immediately before
the last plastic hinge is formed is thus a measure of the loadbearing capacity
of the structure, its limiting or ultimate load.

As the load increases between two load Tevels at which two consecutive plastic
hinges are formed, there takes place, simultaneously with the increase in
Toad, a plastic rotation at the already formed plastic hinges. In order there-
fore that it should be possible for the Toad to be increased right up to the
Timiting Toad determined by behaviour of the structure as a mechanism, it is
essential that the necessary plastic rotation can take place at the plastic

hinges without material failure at these points.

The process described above can be illustrated by means of a worked example.

Let us study a beam of the configuration and loading shown in FIG. 1.1b.

It is assumed that this beam has ideal elasto-plastic properties at every
section in conformity with the moment-curvature diagram shown in the figure.
The ultimate moment Mu of the beam is then assumed to be the same for both
positive and negative bending moments, and the symbol Mu therefore refers

to the absolute value of the moment.

The structure js statically indeterminate in the first degree, and the for-
mation of an initial plastic hinge therefore makes the structure statically
determinate for further increase in load. When a second plastic hinge is

formed the structure changes into a mechanism in response to attainment of

the collapse load.
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FIG 1.1a = Stress-strain curve for ideal elasto-plastic material.

Schematic moment-curvature curve for the cross section
of an ideal elasto-plastic material,
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Let us note what happens inside the structure as conditions gradually
become plastic due to increase in the load Q from zero.

For small vaiues of Q the structure behaves in a completely elastic manner,
The moment distribution can be calculated by the elastic theory and has the
shape shown in the figure, with the greatest moment at the section of fixity.
As Toad is gradually increased, ¢ assumes a value Qy at which a plastic

hinge PH is formed at the section of fixity. The magnitude of Qy is determined
by the condition

3 _
76 &t =M

which gives

16M
Q = 2 (1.1.1)
¥ 31
During gradual increase in Toad up to Qy there is no rotation at the rigidly
restrained section. When load is increased beyond Qy a plastic rotation 6
takes place at the plastic hinge formed. The increase in load 4Q = Q - Qy is
not accompanied by a corresponding increase in fixing moment, since the

moment at the section of fixity has already attained its maximum value. With
the assumed shape of the moment-curvature diagram, the rotation at the plastic
hinge can therefore be calculated by the elastic theory as for a beam simply
supported at both ends. We thus have

2 ‘
6 = —L 2Q1 {1.1.2)
16 EI

When the load Q is greater than Qy, the span moment under the point load is

I N | .
Moo=y Ql-g M (1.1.3)
At this Toad Tevel the structure is statically determinate for further increase
in Toad since the support moment has assumed the known value Mu, and the
span moment can therefore be calculated according to the equilibrium equation

(1.1.3.).

~The ultimate Toad Qu of the structure is reached when a plastic hinge is also

formed at the midpoint of the span, i.e. when Mm attains the value Mu’ When
this occurs a mechanism is formed and collapse therefore ensues. This limit
state is determined by Equation (1.1.3) with Q = Qu and M, = Mu



FIG 1.1b
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Beam fixed at one end with point Toad Q and associated moment
distribution according to the elastic theory. Plastic rotation
& at the plastic hinge PH due to the point Toad AQ. Moment-
curvature curve for the beam section.
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u (1.1.4)

After the first plastic hinge has been formed at the section of fixity, the
load can therefore be further increased by

6Mu 16Mu M Ex
QQ:Qu—-Qy: T T TR =31 =3 {(1.1.5)

before the structure collapses.

During increase in the load from Qy to Qu there takes place a plastic rotation
about the plastic hinge at the section of fixity, which can be calculated
using Equations (1.1.2) and (1.1.5).

1

1
r 16 31 EI =~ 24 EI

n
=
o

GZ

(1;1.6)

The plastic rotation calculated from (1.1.6) is that required in order that

a beam mechanism may be formed at the ultimate load Qu‘ If material failure
occurs owing to excessive material strain in the first plastic hinge before
the Toad Q reaches the value Qu’ the actual ultimate Joad is less than Qu

and the ultimate load determined by the limit state method is therefore tog
high. We can thus say that the plastic hinge has a rotation reqguirement 8.
which, in the case studied, is calculated from Equation (1.1.6). This rotation
requirement must be combared with the ability of the plastic hinge to rotate
in a plastic manner without consequent material failure, i.e. without attain-
ment of the ultimate curvature (T/P)u in FIG. 1.1b. This abitity is denoted
the rotation capacity %, of the plastic hinge.

One condition for the 1imit state method described above to be capable of use
for determination of the ultimate load of a structure is that the rotation
requirement should be no greater then the rotation capacity. The condition

6 <9 {f1.1.7)

must therefore be satisfied for all plastic hinges in the statically determinate
structure which are needed to sustain the increase in Toad immediately prior to

formation of the mechanism due to the limiting Toad.
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For steel structures the condition (1.1.7) is generally satisfied. Apart from
extreme exeptional cases, there is therefore no need as a rule to pay much
attention to the rotation capacity of plastic hinges. The situation is diffenent
in reinforced concrete structures where it has been found in experiments that
the rotation capacity of plastic hinges in structures loaded to failure may be
insufficient to permit the redistribution of moments which a design according

to the plastic theory assumes. It is therefore essential that it should be
possible to calculate, at the design stage, the rotation requirement and
rotation capacity for those plastic hinges which are assumed in design accord-

ing to the 1imit state method.

[t is evident from the above worked example that it is in pronciple easy to
calculate the rotation reguirement of a plastic hinge. The rotation require-
ment will therefore be dealt with only in a summary manner in this report,

and attention will instead be concentrated on an analysis of the rotation capa-

city of plastic hinges in reinforced concrete structures.

1.2 Rotation requirement

The rotation requirement of plastic hinges in statically indeterminate beam
structures of reinforced concrete, acted upon by different external loads and
imposed deformations, has been studied by Alemo (1976) and others. It appears
that the rotation requirement of a plastic hinge can be given the general

form

M1
g = u (1.2.1)

r “o ET
i.e. the same form as in the above worked example - see Equation (1.1.6).

If any imposed deformations which may be present are ighored, then “o is a
coefficient which is a function only of the configuration of the structure
and the type and placing of the load. See also Plem (1973).

M, is the ultimate moment of the plastic hinge under consideration, and can

bhe written

W
\ - = 1.2.2
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where

AS = ¢ross sectional area of reinforcement at the plastic hinge
fst = tensile strength of tension reinforcement

d = effective depth of the section containing the plastic hinge
w = effective reinforcement ratio

A plastic hinge is often discontinous, for instance when it forms over an
intermediate support in a continous beam. In such cases it is easiest to
study rotation requirement and rotation capacity separately for each side.
The expression (1.2.1) refers to the rotation requirement on one side of
the plastic hinge, and T is the length of the beam on the side being
considered.

El is the mean beam stiffness calculated for the concrete in Stage II, i.e.
when it is cracked and elastic. The stiffness may be obtained from a diagram
constructed by lLarsen & Vigerust (1966) in the form

El = A E d°¢ (1.2.3)
sm s
where
Asm = a mean value over the length of the beam of the cross sectional area
of the reinforcement, adapted in view of the moment distribution
ES = modulus of elasticity of the reinforcing steel
£ = a function of op where o = ES/EC, i.e. the ratio of the modulus of

elasticity of steel to that of concrete, and o is the geometrical

reinforcement ratio

If A . 1s assumed to be proportional to A  and Equations (1.2.2) and {1.2.3 )
are substituted into Equation (1.2.1), we have

+h

5 =1 .st
T £ Es

o

(1 —g) (1.2.4)

According to the above equation, for a given reinforcement the rotation
requirement is directly proportional to the slenderness 1/d of the beam. If
the ratio (1-w/2)/& is studied for variable normal reinforcement ratios,
it is found that the rotation requirement & decreases for increasing values

of w.

As will be seen from the example in Section 1.1, it is in principle easy to
calculate the rotation requirement of a plastic hinge. The calculation can be
carried out with the aid of information in the usual manuals or by means of
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the energy equation. However, for structures of a high degree of static inde-
terminacy, such as multistorey frames, calculation can be laborious. For such
structures, Baker {1956) developed a systematic calculation method which,
when formulated in matrix notation, is suitable for computer programs.

Other factors, not studied in detail here, may affect the magnitude of the
rotation requirement. Brief comments on these are as follows.

Displacements of supports can, depending on the directions of the dis-
placements, increase or decrease the rotation reguirement.

Creep of the concrete is generally dealt with in calculations by reducing
the modulus of elasticity of concrete. This increases the parameter ap ,
and reduces £. According to Equation (1.2.4), creep thus increases the

rotation requirement.

Depending on the geometrical design and reinforcement of the structure,
shrinkage of the concrete may increase or decrease the rotation requirement.

Cracking of the concrete always reduces the rotation requirement. This is

commented on further in Section 1.3.

1.3 Rotation capacity

In principle, the rotation capacity of a plastic hinge in a reinforced
concrete beam can be determined from the moment-curvature diagram of

the beam section concerned. Such a diagram is shown to the right ot FIG. 1.3a,
in which M is the bending moment and 1/r the beam curvature. In the diagram

M., is the moment at yield and Mu the ultimate moment. The figure in the centre
illustrates a variation "b" in moment over the beam length 10 between a plastic
hinge PH and the nearest point of zero moment. In the following, this section
of the beam will be referred to as the rotation span of the plastic hinge. '
The variation “b" in moment may be considered to correspond to a uniformly
distributed load on a beam fixed at PH. On top of this diagram there 1is
another diagram which represents the variation in beam curvature along the
rotation span. It has been drawn up with the aid of the moment diagram and

the moment-curvature diagram.

A corresponding transformation of the beam curvature diagram by means of another
moment curve "a", which may be considered to.correspond to the variation in
moment in the vicinity of a plastic hinge in the span in a beam subjected to

a uniformly distributed load, is shown to the left in the figure,
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The rotation between the end cross sections of the portion 10 of the beam

is obtained as the integral of the curvature over the length 10, i.e, as the
area below the 1/r curve constructed. Part of this rotation is elastic and
reversible, another part is plastic and irreversible. The latter has been
shaded in the figure and marked "B". According to the definition, this part
is the rotation capacity 6, of the plastic hinge. Traditionally, the rotation
capacity is regarded as though it were concentrated at the plastic hinge but,
as will be seen, it is 1in reality distributed over part of the Tength of the
rotation span. It is also evident from the figure that the magnitude of the
rotation capacity is dependent on the magnitude of the area "A" above the
M-1/r diagram, and on the shape of the moment curve. Area "B" is larger at
moment curve "a" than at moment curve "b", which means that the rotation capa-
city in the former case is greater than in the latter case.

It will be evident from the above that the rotation capacity of a plastic
hinge in a given situation can be obtained by calculation of the area "B" in
FIG. 1.3a. However, such an approach is not applied in the following,

since in recent year interest has focussed on the study of the behaviour of
structures under the action of extreme loads. Impact loads play a dominant part
in this connection, and the effect of impact loads on a beam structure cannot
be studied without including the deformation energy of the structure in the
calculations. Calculation of the rotation capacity &, 1in the following has
therefore been based on a study of the variation of energy in the part of

the beam adjacent to a plastic hinge. In this way the calculation method
devised attains such properties that it can relatively easily be further deve-
loped into a calculation method for analysis of statically indeterminate beams
subjected to impact loads. Such development has been planned, but has been

deferred until later work.

The moment-curvature diagram in FIG. 1.3a assumes a section cracked from the
outset. If an initially uncracked section is assumed, the general appearance of
the moment-curvature diagram will conform to the line OAFED in FIG. 1.3b. The
slope of the line 0B represents the bending stiffness of the uncracked section,
and the slope of the Tine OC represents the bending stiffness of the cracked
section. The moment Mr is the moment which initiates cracking. If the area AFCBA
above the moment curve is transformed and the corresponding curvature contri-

~ bution is subsequently integrated over the length of the rotation span, the

rotation which occurs due to cracking is obtained. This phenomenon has been
studied by Rechardt (1968) and others.
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The distributions have been calculated by transforming the
moment-curvature curve of the beam section by means of the

moment curves a and b.
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The intention here is to regard the rotation capacity as an unambiquousiy
determined quantity associated with the plastic hinge and the part of the beam

""" : adjacent to this. The contribution due to cracking of the concrete is therefore

| not included in the rotation capacity, but is assumed instead to be taken into
account as a corresponding reduction of the rotation requirement 8. when the
condition {1.1.7) is checked. For the same reason, no study is made either of
the effect on the rotation capacity due to shrinkage of the concrete. The effect
of shrinkage cannot be unambiguously associated with the plastic hinge region,
but is dependent on the response of the entire structure to the deformation

action.

1.4 The scope of the work

The primary object of the work reported here has been to study the way in
which different material properties influence the rotation capacity of a
plastic hinge. If such a study is to be meaningful, it is essential that the
calculations should be based on realistic stress-strain curves for the -con-
stituent materials concrete and steel. Such curves are presented in Chapter 2.
However, the stipulation regarding realism in describing materials poses com-
putational difficulties of such magnitude that it has been impossible to
construct exact formulae for calculation forthe rotation capacity. The calcu-
tation method which is developed in Chapters 3-6 has therefore been formu-
lated right from the beginning in view of the need to program it for processing
in a computer. Such a program has been developed, and it is presented and

commented on in an appendix.

Certain iimitations in the usefulness of the program must be pointed out.

Only rectangular cross sections have been studied. However, T-beams can also

be dealt with provided that the entire compression zone is situated in the flange.
In such a case the width of the flange must be used as the width of the beam

in calculating the effective reinforcement ratiow. This limitation is of

quite a minor nature since most beams in practical use have a rectangular or

T section.

The program does not take into account gradual curtailment, if any, of the
reinforcing steel over the length of the rotation span. It is probable that
this does not play a major rcle since most of the consumption of energy occurs
in a very limited region adjacent to the plastic hinge. It may be expected that
in practical beam design the quantity of reinforcement is constant over this

region.

The effect of normal force has been ignored.
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Results of calculations regarding combinations of typical steels and concrete
types, and also the calculated rotation capacity when the parameter values
chosen for the typical steels and concrete types have been departed from, are

shown in Chapter 7.

The effect on rotation capacity due to creep of concrete within the rotation

span is studied in Chapter 8.

The effect of compression reinforcement and the effect of concrete creep in
conjunction with compression reinforcement is dealt with in Chapter 9.

In calculations regarding the above phenomena, discussed in Chapters 7-9, the
effect of shear force which may be present simultaneously with the bending
moment has been ignored. In Chapter 10 the analytical model is modified in such
a way that it is possible, at Teast approximately, to study the effect of shear
force. It is found that the effect of shear force is considerable when the

rotation span is not slender,

The presence of stirrups around the compression zone of the beam has been

found to increase the rotation capacity considerably. This is studied in
Chapter 11 where an approximate method which also includes this beneficial
effect in the developed analytical model is derived in a semi-empirical manner.

The developed calculation method has been compared with the results of tests
carried out at the Department of Structural Engineering, Division of Concrete
Structures, Chalmers University of Technology, Gothenburg. It is found that
there is reasonable agreement between the experimental and calculated rotation
capacities. One partial result of this comparison is utilised in Chapter 10 of
this report. It is planned that a complete report will be published elsewhere.
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FIG 1.3b Moment-curvature curve for an initially uncracked beam section.
The cracking moment of the section is Mr'
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FIG 2.1a Schematic form of the stress-strain diagram for concrete in

compression in non-dimensional terms. The 1ine AB represents
removal of the load.
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FIG 2.1b Distribution of strain in the compression zone of the concrete

for two consecutive situations a and b. In one area the con-
crete is being subjected to load while in another area it is

being unloaded.
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2 THE STRESS-STRAIN CURVES FOR STEEL AND CONCRETE

The selected calculation procedure permits the application of realistic stress-
strain curves for the steel and concrete. Analytical expressions which give a
good approximation of the mechanical properties of these materials when
subjected to short-term Toads are given below. Concrete and steel are dealt

with separately.

2.1 The stress-strain curve for concrete

Concrete in tension is assumed to be cracked. Active concrete is therefore only
found in the compression zone of the beam, with the stress-strain curve
generally in conformity with FIG. 2.1a. In order that the formulae derived
later on may have the greatest possible general application, the stresses are
made non-dimensional by dividing them by the compressive strength fcc of the
concrete. In this way the modulus of elasticity is also non-dimensional. The
expression for the non-dimensional initial modulus of elasticity for short-term
“loading is

e (2.1.1)

In FIG. 2.1b the compression zone of depth x is examined in a situation just
before crushing failure. During the gradual increase in load up to failure,
the distribution of strain at a certain instant was represented by line a.

A 1ittle later the distribution is given by line b. The figure shows that the
compression zone is divided into two regions, an upper one where the concrete
is being subjected to load and therefore conforms to the basic full-Tine curve
of the stress-strain diagram, and a lower one in which the concrete is still
in compression but is being unloaded. For concrete in the latter region the
stress-strain relation is described by an unloading curve which is assumed to
be a straight Tine of slope e.s shown by the dashed 1ine AB in FIG. 2.1a. This
is taken into account in the developed computer program.

A large number of analytical expressions are given in the Titerature to de-
scribe the stress-strain curve of concrete in compression. Use is made here
of that proposed by Sargin & Handa (1969) which can be written as

K (E£)+(K —1)(23)2
ig_=_1€o 2 o (2.1.2)
oo +{x ~2)(i£)+m (59)2 o
1 £ 2 €
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The coefficient K4 contained in this expression is obtained as

K, = -2 g {(2.1.3)

where £, is the 1imit strain (with the appropriate sign) corresponding to
the maximum compressive stress oc/fCC = -1.0. The shape of the curve between
& = ¢ and Ec T €, is essentially governed by the value of Kqs while its
shape after 1t has passed its extreme point is mainly determined by the
coefficient Ko This latter coefficient has no direct physical meanihg. In
purely practical terms, the value of €5 is determined by making GC/fCC have
the correct value at the ultimate compressive strain Ecye

In order that the effect of different concrete properties on the rotation
capacity may be studied, comparative calculations with two distinct types of

concrete, denoted A and B, are performed in Chapter 7.

Concrete of Type A is broadly in conformity with that recommended by the CEB,
characterised by €, = -2.0% and €cy = -3.5 Yn. An appropriate value of the
non-dimensional modulus of elasticity e. has been considered to be 1200. It

will be shown Tater, in Chapter 7, what the effect is on the rotation capacity

if a departure is made from the chosen value.

According to Equation (2.1.3) the value of the coefficient Ky = 1200 - 0.002
= 2.4, The coefficient Ko is determined in such a way that oc/fcC = -0,8 for
£y = ~3-5 % . This condition yields <, = 0.363. With the selected
coefficients, the stress-strain curve for concrete of Type A is that shown
in FIG. 2.1c.

Compared with experimentally determined values of €6 and € oy it would
appear that the values recommended by the CEB have been chosen with a com-
fortable margin of safety. In actual fact, the magnitudes of €5 and €cu do
not make much difference, when these parameters are to be applied for the
calculation of the ultimate moment. In this connection it is'scu which is of
the greatest significance, since it determines the boundary wy between an
over-reinforced and normally reinforced section, where 0y detones the
effective reinforcement ratio corresponding to balanced reinforcement. For
the calculation of the rotation capacity, however, it is found that it is
important for eqy NOt to be 1imited too stringently unless absolutely
necessary. For this reason it has been decided to inciude in the study of the

rotation capacity a concrete which has mechanical properties more in keeping
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TYPE "A” O./f

FIG 2.1c Non-dimensional stress-strain diagram for concrete type A in
compression
TYPE "B" 0. /fee
A
- 7.0 -2.5 '
; . 3
! ! 107 x €
\-Ec:1200
- -0,5
- - 1,0
FIG 2.1d Non-dimensional stress-strain diagram for concrete type B in
compression
O/ fst
4 A
1,0 4 {
[
ES [I
|
!
I
L = £g
B
FIG 2.2a Schematic form of the stress-strain diagram for tension

reinforcement in non-dimensional terms. The‘]ine AB is an
unloading tine. The diagram relates to steel with a pronounced

yield point.
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with actual conditions. Such a concrete will in the following be referred to as

concrete of Type B.

On the basis of tests carried out by Mattock (1965} and Corley (1966), the
characteristic compressive strains €y = -2.5 % and Ceu - 7.0 Ym are chosen
for concrete of Type B. For this concrete also, the modulus of elasticity is
put e. = 1200, which makes <q = 1200-0,0025 = 3.0. The coefficient <o is
given such a value that o /f_. = -0.5 for e = -7.0 %o , which gives

Ko = 0.342. Concrete of Type B thus determined by the selected parameters
has stress-compressive strain curve shown in FIG. 2.1d.

The effect of creep in the concrete is discussed separately in Chapter 8.

2.2 The stress-strain curve for reinforcing steel

The stress-strain curve for reinforcement in tension is shown schematically
in FIG. 2.2a. It is assumed that the stress-strain curve for reinforcement
in compression is of the same type.

In the case of steel also it is found convenient to use non-dimensional
stresses, which are obtained by division by the tensile strength fst of the
stee] defined as the yield stress of hot-rolled steel and the 0.2% proof
stress of cold-worked steel. Owing to this, the modulus of elasticity of the
steel 1is also non-dimensional. The non-dimensional modulus of elasticity is

- fs (2.2.1)

st
Compressive reinforcement may be subjected to unloading during the gradually
increasing stressing of the section up to failure. A situation may be arise
where the depth of the compression zone decreases as the strain in the tensile
reinforcement increases. The tensile reinforcement may alsoc be subjected to
unfoading as the section proceeds towards failure. This may occur if there is
a steep drop in concrete stresses as the compressive strain in the concrete
increases. In this case, once the maximum value has been passed, the bending
moment drops rapidly as the curvature increases. In view of these phenomena,
the basic curve of the stress-strain diagram must be supplemented by unloading
curves schematically represented by the straight Tine AB of slope e, in
FIG. 2.2a. This has been taken into account in the program.
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The stress-strain curve for a hot-rolled steel {denoted in the following HR
steel) may be approximated by straight lines and a second degree parabola,
in principle as shown in FIG. 2.2b. The exact form is determined by the
following parameters:

e the non-dimensional modulus of elasticity of the steel, defined by
Equation (2.2.1),

€5, an indirect parameter which is defined from the equation E2 = 1/eS and
can therefore be interpreted as the strain corresponding to the Timit of
proportionality of the steel,

€45 the strain corresponding to the boundary between the yield region and
the strain hardening region of the steel.

the 1imit strain which occurs at the maximum tensile strength f

€
0’ stu?

£ the ultimate strain,

su’

n, the ratio of fstu to fst'
For the sake of simplicity, the diagram is assumed to be horizontal between
€ and €_ ., As a rule, this has no effect on the rotation cdpacity since fstu

0 su
is hardly ever reached.

With the parameters defined above, the stress-strain relation for HR steel may
be expressed as

s 8 ] 2
c_ 1,0 €2 2 %5 5y
S —
?;. = Ve - (2.2.2)
n-(n=-1) (=) e, S e, < ey
o 1
n f0 = %5 = fsu

When values of the parameters which represent a typical HR steel are to

be chosen, the difficulty arises that these parameters vary over quite a
large range, not only between grades of steel but also, due to statistical
scatter, for one and the same grade of steel. By studying the stress-strain
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curves for Swedish HR steels, and taking into consideration the scatter in
these, the following parameter values have been chosen to define a repre-
sentative HR steel.

e, = 350
n =1.4
51 = 0.015
&, = 0.080
€y = 0.100

Obviousiy, for instance for deformed bars Ks 40, the value of u is consider-
ably higher than the ultimate strain selected above, but this has no appre-
ciable influence on the rotation capacity since, after all, sy is never
reached before the section fails,

As far as the non-dimensional modulus of elasticity &g is concerned, since

ES is practically constant and equal to 200 GPa for different grades of steel,
e varies as a function of fst' FIG. 2.2¢c shows the relationship between the
nominal yield stresses or 0.2% proof stresses of common Swedish reinforcing
steels. It is seen in the figure that, as a convenient mean value, e = 350

may be chosen for both hot rolled and cold worked steel.

Within reasonable 1imits, deviations from the selected value have only a
marginal effect on the calculated rotation capacity. This is demonstrated

in Chapter 7.

With the selected parameters, the stress-strain curve for the typical HR steel
is that shown in FIG. 2.2b,

The stress-strain curve for a cold worked reinforcing steel (denoted in the
following CW steel) can be approximated by a straight 1ine and part of an
ellipse, in principle according to FIG. 2.2d and e. The exact shape is deter-

mined by the parameters €gs Ny €9y €45 € and ¢ the definitions of which

0 su’
are the same as in the case of the HR steel. 0Of the above parameters )
and 2 need not be given explicity since they are uniquely determined by the

chosen curve geometry and the other parameters.

~ The stress-strain curve for the CW steel is calculated as follows. See also

FIG. 2.2e.

e, = 0,002 + L (2.2.3)
1 eS
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COLD WORKED
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FIG 2.2c¢ The relationships between the nominal yield stresses and 0.2%

proof stresses of common Swedish reinforcing steels.
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FIG 2.2e Stress-strain diagram of a CW steel approximated by a straight
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FIG 2.2f
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The stress-strain diagram recommended by the CEB for rein-

forcing steel.



The horizontal semi-axis of the ellipse has the Tength

B = E% (g, + gg - 8,85) (2.2.4)
where

g = e§(80~61)g—h(eseo—n)(n—1) ' (2.2.5)
g, = (esaown)(n*1)((esso-n)—(n—1)) (2.2.6)
&y = (eszo—n)z(n~1)2 | (2.2.7)

The length of the vertical semi-axis of the ellipse is

gle -¢_)
o = o “1 (2.2.8)

V{n-1){28-(n-1))
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The strain at the limit of proportionality is calculated from the expression

. 0,2
€ ;g(ﬂ—B)es .
e = (2.2.9)
2 2
0, 2
‘I-!-—'-g“eS
B
The expression for the stress-strain curve is therefore
- e . C =< es < 82
£ = (2.2.10)
‘ €O~ss 2
s n-(1- N1-( Y ) e, S E_<¢

In the following, the steel described by the parameters

e, = 350

n 51-1 h
€ = 0.050

€y = 0.065

is considered to be a typical CW steel.

With the selected parameters, the stress-strain curve for the typical CW
steel is that shown in FIG. 2.2d.
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For both the HR and CW steels, the selected curves are representative mean
curves. A study is made in Chapter 7 of the rotation capacities which are
obtained using the above stress~strain curves, and the changes which occur
in the rotation capacity when these selected curves are varied in different

ways.

As a supplement to the stress-strain curves for HR and CW steels, the stress-
strain curve at present recommended by the CEB for reinforcing steel is also
included here. The shape of this curve is given in FIG. 2.2f. It is character-

ised by the parameters

eS = 350
n =1.0
€ T € T B, T 0.010

the value assigned to e, being the same as that applied for the steel types
specified by the more complete stress-strain curves in FIG. 2.2b and d.

The reason why the CEB has selected this stress-strain curve for reinforcing
steel appears to be that, computationally, it yields practically the same
ultimate moment as the two more realistic curves studied here. However, as
will be seen from Chapter 7, such a simplified stress-strain diagram cannot
be used as the basis for calculation of the rotation capacity.
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3 THE BEPTH OF THE COMPRESSION ZONE

Using Bernoulli's hypothesis and a condition of equitibrium, the relation
between beam curvature and depth of compression zone is calculated in this

Chapter.

3.1 Calculation geometry

Using the symbols FS for force in the tension reinforcement, Fsc for force
in the compression reinforcement and Fe for the resultant of the concrete
stresses in the compression zone of the beam, resolution of forces yields
the equilibrium condition.

FO+F 4+ F =0 (3.1.1)

The positions and positive directions of these forces are shown in FIG. 3.1a.

In the view of the numerical caluclation procedure, the compression zone is
divided into strips of equal depth parallel to the neutral axis. In principle,
this division can be effected in two distinct ways. One is characterised by the
fact that the depth of the compression zone which is applicable at a certain
instant is divided into a constant number of strips. This means that the

depth of a strip varies in step with the depth of the compression zone. When
this method of subdivision is applied, a strip will successively represent
different parts of the concrete in the compression zone during the loading

process.

The second method of subdivision is characterised by the fact that a ficti-
tious compression zone depth is introduced and that this is kept constant
during application of the Toad. The fictitious depth X is made so large

that it will at all times accommodate the real compression zone applicable

at that instant. When this method is applied, all the strips are not active
and the number of active strips changes during application of the Toad. In
return, there is the advantage that the depth of a strip remains constant,
and that each strip always represents the same concrete area. This latter
aspect is significant when the previous history of the concrete must be taken
into account, for instance when a strip is relieved of load.

The latter alternative is chosen here. It is illustrated in FIG. 3.1b. The
strips are numbered from 1 to n, and the ordinate Y5 to the centroid of strip
No i 1s calculated according to the figure from the expression



X

) (3.1.2)

N |-

y. = - = (i -
1 I

where n is the number of strips.
If we introduce the non-dimensional ordinate

¥i
ﬂi *T (3-1-3)

where d is the effective depth of the section, and the non-dimensional depth

of the compression zone

Xm h
E =T (3.1. )

Equation (3.2.1) can be written as

1 1 .
- 1.
ni = £ (2 i) (3 5)

If AAC = xmb/n denotes the area of a strip, and AC = bd the effective area
of section, the non-dimensional part area o can be calculated from the

expression
ﬂAc ’ :
= - .1.6)
@ AC 7 Em (3

(3.1.7)

According to FIG. 3.1b, the ordinate to the centroid of the tension reinforce-

ment is

gr, in non-dimensional form,

= - .1.8
ng =1 - &, (3.1.8}

According to the figure, the ordinate to the centroid of the compression

reinforcement is
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FIG 3.1a External moment M and internal forces Fsc’ FC and FS to be used

in establishing the equilibrium equation of the cross section.
The figure shows the positive directions of forces and moments.
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FIG 3.1b Geometry of cross section and distribution of strain over the
depth of the section.
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5
FIG 3.3a Variation in the depth £ of the compression zone for increasing

stress in the cross section. The numbered points refer to the
stress distributions shown in FIG 3.3b.
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where ¢ is the distance between the compression reinforcement and the most

heavily stressed edge. Using the notation

(3.1.9)

AT

Y:

we obtain the non-dimensional ordinate of the compression reinforcement

v
sc (3.1.10)

"se =@ Y T
The relevant strains are calculated as follows. According to Bernoulli's

hypothesis and FIG. 3.1b, we obtain for the curvature of the beam the expression

where v is the radius of curvature, € the strain in the tension reinforcement,

and x the depth of the compression zone at that instant. If this is multiplied
by the effective depth d of the beam, we have

£
d s
= 2 = L1017
r 1 - £ (3.1 )

1
i)
where o is the non-dimensional radius of curvature and & denotes the non-

dimensional depth of the compression zone at the instant under consideration.
The expression (3.1.11} gives the depth of the compression zone

gE=1- e (3.1.12)

as a function of the.va1ues of the radius of curvature and strain in the
tension reinforcement which are applicable at each particular instant.

Further, from FIG. 3.1b we derive the relation

£ £

- L -_5
X

- {3.1.13)

which, after substitution into it of Equations (3.1.11) and (3.1.12) yields

= - —— l: ....l .
€, fi pas) s £ S (3.1.14)
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In the above, e is the maximum compressive strain in the concrete corresponding

to the given parameter values 1/p and ¢ The value of € is compared with the

s
ultimate compressive strain € cu in the concrete to see if crushing failure

occurs in the concrete.

According to FIG. 3.1b, the straince in the compression reinforcement is

obtained from the expression

sC

or, with £ according to Equation (3.1.12) and £ according to Equation (3.1.14),

1_963—7 1 1
= (e - =) =¢ - — (1-y) {(3.1.15)
scC 1—pr~:s 5 [ S &

The mean strain for concrete sirip No 7 is obftained from the expression

€. ~yi-(xm—x} -n;~E *E

x - 3

=
€
e

which, using Equations (3.1.12) and (3.1.14), is re-written to read

-n.—-& +1-
_ i F’m Feq iy _ a1
£. = (e - =) =¢_ -
1 T—pes S o} 8 P

(1=¢_-n.)
or, with n; according to Equation (3.1.7),

(14£m+u(i - %)) {3.1.16)

1
E. =g - =
i g p

A11 the relevant strains have now been expressed in terms of the parameters

1/p and €

3.2 Depth of the compression zone under elastic conditions

The position of the neutral axis is calculated in the following from Equation
(3.1.1). The case characterised by purely elastic conditions is studied first.
The following relationships are obtained from FIG. 3.1b.

[}
cC £
— = - —= (3.2.1}
ES 1 £
and
€
s¢ . L= (3.2.2)
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From Equation (3.2.1), Hooke's Taw and Equations (2.1.1) and (2.2.1) we obtain

%% % T %5

EC os fcc US ec 1 - £

from which

o e £ o

fc ___c — fS {(3.2.3)
ce es st

v = —=5 (3.2.4)

TS B Wl A (3.2.5)

The equilibrium condition (3.1.1) is now written as

1 g xb+ A ¢ + A g =20
2 ¢ 8¢ 8¢ 5 8

which, after multiplication by 2 and division by the reference force

¥ =bpdf = Acf (3.2.6)

0c b4 Asc fsc Usc As fst Cfs
T atfE r .t t%n 7t 1.°°

ce c ce o sc ¢ cc “st

I[f the effective reinforcement ratios

A T
= _8 _st :
6= s (3.2.7)
c “cc
Asc fsc
wc=r—f— (3.2.8)
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are substituted in this, we have the expression

o]

Oc Gsc “

_— -+ 1 + ——
7 £ Emc 7 2w 7
cce s st

=0 ' (3.2.9)

The expressions (3.2.3) and {3.2.5) and the new quantity

e
o = -2 4 (3.2.10)
< .

o]
C

are substituted into (3.2.9), which yields a second degree equation for
determination of the depth ¢ of the compression zone. The eguation

(11} 44
—Syg = 2p {1+ L5
w Q Vow

< |=

Z
£ +2mo(1 +

has the solution

wc J 1 wc 2 2 Y ¢
= - X —_— - = 31 V2.
t Yol G ! A VoW ) w (1 + VoW )} (3.2.11)

3.3 Depth of the compression zone under elasto~plastic conditions

Under elasto-plastic conditions, the depth of the compression zone cannot be
determined explicitly. The depth is instead calculated by means of an iterative
process as follows. For this case, the equilibrium condition (3.1.1) is written

in the form

n

LA o .+ A ¢ + Ac =20
1 c C1 3¢ scC S B

where the summation extends over the n strips into which the fictitious
compression zone is divided. If this is divided by the reference force N_

according to Fquation (3.2.6), we have

nih o . A f a A T o

5 c Cc1 " sC¢ s8¢ sc + 5 st s = 0
A

i e fcc Ac fcc fsc Ac fcc fst

or, making use of Equations (3.2.7), (3.2.8) and (3.1.6),

%1 s Yo Tse
tulg—+rF ) =0 (3.3.1)

fst sc

=]
MY
|

ce

When this method is selected to deal with variation of the compression zone
during the load application process, a is a constant. It has therefore been
moved outside the summation sign, The ratio Gci/fcc then remains inside the
summation sign. According to Chapter 2, it is this ratio which is read in
the non-dimensional stress-strain diagram for a given strain.
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FIG 3.3b Stress distribution over the compression zone of the concrete

for five different stages of stressing. The corresponding beam
curvatures are shown in FIG 3.3a.
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The procedure for determination of the depth of the compression zone during
gradual increase in beam curvature will then be as follows.

A fictitious depth Em is first determined. Trial calculations have shown that
a convenient value is

£, = 120 & (3.3.2)

where £o is the depth of the compression zone under elastic conditions, calcu-
lated from Eguation (3.2.11).

The curvature 1/p is then allowed to increase in equal steps from 0 until, at
some vaiue of 1/p, material failure occurs. After each increase in 1/, an
adjustment is made to the strain Eg in the tension reinforcement, with the value
of 1/0 being maintained constant, so that the equilibrium condition (3.3.1) is
satisfied within a specified tolerance (2 - 10 Ywof the force in the tension
reinforcement). The iterative process can be described as follows.

1. Increase 1/ to a new value which is then kept constant during the sub-
sequent calculation steps.

2. Increase the strain in the tension reinforcement by(des to::s, the value
of e being at first made the same as the increase in strain during the

previous change in 1/o.

3. Calculate the relevant strains from Equations (3.1.14), (3.1.15) and
(3.1.16) using the values of 1/ and € applticable during this calculation
step.

4, From the calculated strains and the stress-strain curves for the concrete
and steel, determine the corresponding non-dimensional stresses Gcilfcc’
Oéc/fsc and 0S/fst'

5. Substitute the stresses obtained in 4 into Eguation {3.3.1}. If this is

not satisfied within the specified tolerance, adjust the value of Ass and
repeat the iteration process from step 2 onwards. Once the specified tolerance
is attained in Equation {(3.3.1), continue with

6. and calculate the relative depth £ of the compression zone from Equation
(3.1.12).



46

The results of a calculation according to the procedure described above are
illustrated in FIG. 3.3a. The calculation refers to a section without compression
reinforcement, and with the quantity of tension reinforcement characterised by
w= 0,15, The reinforcement consists of HR steel and the concrete is of Type B
(see Chapter 2). The full line shows variation of the depth £ of the compression
zone as a function of the beam curvature 1/p. The chain tine indicates the
fictitious depth ¢ of the compression zone calculated from Equation (3.3.2).

If we assume that the stress block in the compression zone is rectangular and
of depth 0.8 £ at the ultimate stage, we have £ = 1.254« . This value is also
given in the figure. The ultimate stage, characterised by crushing failure

of the concrete, has been marked with a cross at the end of the curve.

The calculated stress distribution in the compression zone is shown in FIG.
3.3b for five values of 1/p . The corresponding positions are marked by the

figures 1 ... 5 in FIG. 3.3a.
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4 MOMENT-CURVATURE DIAGRAM

Once the depth of the compression zone has been determined according to
the procedure described in the previous chapter (as a fundtion fo the cur-
vature 1/p), the moment-curvature diagram can be calculated.

For the purely elastic case it is most convenient to relate the moment
equitibrium to the position of the resultant of the concrete stresses. Using
the symbols in Chapter 3 and FIG. 3.1a, we thus have

M+ F (- xec)-Fla-=2x)=0 (L.1)
sc '3 3 3

where M is the bending moment. If we introduce into Equation (4.1} the

expressions FSC = ASCc%C and FS = As‘%’ and divide by the reference moment

M =14 (L.2)

st s (4 _ 1y _se’sc scd . o, (4.3)

Substitution of the effective peinforcementratios » and . according to
Equations (3.2.7) and (3.2.8) respectively, and of Equation (3.2.5), into
Equation (4.3) yields
: s 1 1 1 ) (b
p=o—-—— (1 -ZE)+uw - - & -y .
ot 3 cf,v1-873
The beam curvature is calculated from the Equation (3.1.11) and Hooke's law,

and is written

g f o
1 1 s st _ 1 1 5 M
== S (L.5)

o 1-Ef F T-Ef

s s

If the ratio cg/fst is eliminated from the expressions (4.4) and (4.5), we

have

(4.6)

o

1
o
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where the non-dimensional bending stiffness ¢ is

w
- 21 - e, 2 - .
§ =we {01 -5 )01 -¢8)+ 5= {y -3y - &)} (L.7)
Expression (4.6) gives the relation between the curvature 1/p and the bending
moment ¥, the stiffness & for elastic behaviour and the given depth £ of the

compression zone being determined from Equation (4.7).

Under elasto-plastic conditions it is more convenient to relate the moment
equilibrium to the bottom edge of the fictitious compression zone, see FIG.
3.ta and b. We then have the relation
M-Fy +F (x -¢)~F {d-x2)=0 {4.8)

e cC sC m - 3 m
where Ye is the ordinate of the position of the resultant FC of the concrete
stresses. Equation (4.8) is re-written as

LA o .y. + A (x -c)-Ao{d-x)=0

M - ' o
coe1lt1 s¢c sC m m

- 133

which, after division by the reference moment Mc’ yields the non-dimensional

moment

o>
Q
>
H
a

L= 2 AAC %ei - _E_fst S (1-g ) - B8 _8C _SC (r _)
Cor i rf f m
1 Ac fcc * Ac f.cc fst m Ac ¢ceoosc

(L.g)

Substitution of By 0 and ns according to Equations (3.2.7), (3.2.8) and
(3.1.7) into Equation (4.9) yields the expression

o

o w
. s ¢ sc
- i) +w {(1-€m} ra + (Y“Em) :;-ET_& (L.10)
ce st sc

Q
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# o= (

-
|
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For selected value of 1/0 the procedure in Chapter 3 gives the corresponding
depth & of the compression zone. The strain distribution is then known and
the corresponding stresses GCi/fCC’ Gs/fst and Usc/fsc can be determined

with the aid of the stress-strain diagrams for the steel and concrete, after
which the moment is calculated from Equation (4.10). By successive repetition
of this procedure for values of t/p increasing in discrete steps, a moment-

curvature curve is determined for the section.

As an example of the results obtained according to the calculation technique
described above, FIG. 4a shows the moment-curvature curve for a section
without compression reinforcement for different values of w. The calculation

refers to HR steel and concrete of Type A.
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FIG 4a Moment-curvature curves for different values of w. The curves

relate to a cross section with tension reinforcement of HR steel.
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FIG 4b Moment-curvature curves for different values of w. The curves

refer to a cross section with tension reinforcement of CW steel.
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FIG 4c

FIG 4d

Moment-curvature curves for different values of w. The curves
refer to a cross section with tension reinforcement of CEB steel.

= 1 /p

Ordinary shape of moment-curvature curve. This curve permits
two alternative definitions of the ultimate moment.
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For purposes of comparisen, FIG. 4b and 4c show the corresponding moment-
curvature-curves for CW steel and CEB steel. A1l calculations have been
carried as far as the ultimate strains of the steel and concrete permit.

When somé convenient definition of the ultimate moment has been decided on,
this can be read off the moment-curvature diagram. If the Toading process

is assumed to be force-controiled, and this is the assumption made in the
following, then at least two failure criteria can be stipulated. As a rule,
the moment-curvature diagram increases monotonically up to a maximum moment
after which the moment decreases. The situation is set out schematically in
FIG. 4d. Material failure can occur either before or after the maximum moment
at point B._If it occurs before this, as at point A, the corresponding moment
is taken to be the ultimate moment My (=EUA). This situation occurs, for
instance, in the case of w = 0.010 in FIG. 4a. If the material failure occurs
after the maximum moment, as at point C in FIG. 4d, then the maximum moment
is taken to be the ultimate moment My (=uuB). This is the situation which
occurs, for instance, in conjunction with w = 0.15 in FIG. 4a. These two
failure situations occur in conjunction with both HR and CW steel reinforce-

ment.

In certain cases a special situation may occur in conjunction with HR steel.
This is illustrated by FIG. de. The moment has a first maximum at point A.

If, at the same time, the stress in the concrete has reached its minimum

value Ot/fcc = -1.0 at the upper edge of the compression zone and the steel
strain is at incipient yield level then, as curvature continues to increase,

the strain in the steel will rise for a constant force in the reinforcement,

and at the same time the position of the minimum stress in the concrete is
displaced downwards in the compression zone, as shown in FIG. 3.3b. The moment
thus drops due to the decrease in the internal level arm while the curvature
continues to increase, until the strain in the steel has passed the lower

1imit of strain hardening, after which the moment again increases. This process
is described schematically by curve A-B-C in FIG. 4e. After this the process may
be as shown in FIG. 4d. When loading is force-controlled, the above process
implies that an instability situation occurs at point A. As the moment continues
to rise, the situation changes instantaneously from a position with a higher
potential, point A, to one with a Tower potential, point C. In other contexts
this phenomenon is referred to as ”snappihg“. For a section with the proper-
ties described, the moment corresponding to point A is taken to be the ultimate
moment HUA if material failure occurs between points A and C, such as at point
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FIG 4e Shape of moment-curvature curve in which instability may occur.

This curve permits three alternative definitions of the ultimate
moment.
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FIG 4f The ultimate moment as a function of the effective reinforcement
ratio. The curves relate to a beam section with no compression
reinforcement,
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B. If material failure occurs along the section C-E, for instance at point D,
the corresponding moment is taken to be the ultimate moment Wup* Finally, it is
possible for material failure not to cccur until the moment has passed its
second maximum, point E, in which case the moment corresponding to fhe maximum

point is considered to be the ultimate moment HyE®

If the stipulated failure criteria are applied to the moment-curvature diagrams
shown in FIG. 4a, 4b and 4c, the relationship between w and uy will be as shown
in FIG. 4f. As will be seen, the ultimate moment is practically the same

for all three types of steel.

The ultimate moment is often calculated on the basis of a simplified
rectangular stress distribution in the compression zone. In such a case,

the moment is

b, =W (1 - E) (k.11)

This equation yields a curve which is practically coincident with that for

CEB steel in FIG. 4f.
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5 DEFORMATION ENERGY

The calculation technique which results in the derivation of the moment-
curvature diagram for an arbitrarily selected section in a reinforced con-
beam, under elastic and elasto-plastic conditions, was developed in Chapters
3 and 4. This will be complemented below by calculation of the corresponding
consumption by the cross section of deformation energy per unit length of
the beam, a moment-energy relation being constructed.

The quantity of internal energy 4w per unit Tength of the beam which is stored
during the increase in curvature A({/p), i.e. during one calculation step, is

N
.
—

~—

Aw =

— i~ B3

GA 0 LAe.+A g Ae  +A O Acs (
c Cc1i 1 5C¢ 8¢ 5C 5 5 ]
where Aw incltudes both reversible and irreversible energy consumption.

The increments in strain be and be corresponding to the increase in
curvature A(1/p) are obtained by partial differentiation of the expressions

(3.1.15) and (3.1.16). The following expressions are obtained
Ag = ﬂ(1—y)‘A(l)+Aa {5.2)
se o 5

= (g} _ s —iyen(
be; = {alg - 1) + £ -1) A(p)+AeS (5.3)
with the increment in strain AES determined by means of an eguilibrium con-

dition according to Chapter 3.

The stresses contained in Equation (5.1) are obtained from the stress-strain
diagram of the section component concerned, the stresses being referred to
the centre of the corresponding strain interval ae.

If aw according to Equation (5.1) is divided by the reference force NC,
the increase in consumed deformation energy per unit length of the beam is
obtained in non-dimensional form

. f

& _c1 _sc _s¢ _s¢ ., 4 S8 _S%
i f T

Ac fcc + Ac Iﬂcc s¢ s¢ ¢ “¢ce st

R

Ae
s

(5.4)

?I>|m:1>
H

Substitution into the above of Equations (3.1.6), (3.2.7) and (3.2.8) yields
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g . g 8]

cl s¢ S
.+ _— +y —— A .
f Asl wc f AESC w T EE; (5.5)
ce scC st

My = A+ Y=o

_

Use of Equations (5.2) and (5.3) yields the following for the contribution
of the compressed concrete to the deformation energy per unit length of the

beam

Q

C r z

n .
a0 = a5 =2k {(a(d - i)+ -1)6(L)+ae ) (5.6)
1 Tcece w o s

For the contribution of the compression reinforcement, we have

G ,
. - .. _C& _sc _ 1
S =0 g T (m1aC)we,) (5.7)

€

and for the contribution of the tension reinforcement

MDD = — Ae

mlps —u)f AHS (5.8)

The total deformation energy per unit length of the beam consumed at the
prevailing state of deformation is obtained by summation from zero up to the
appropriate value of the curvature 1/o. We then have

Y = LAY = BAY ¢ DAY+ DAY (5.9}

With 1/p as the governing parameter, associated values of y and y can now be
calculated according to Equations (4.10) and (5.9). In this way the moment-

energy relation sought is obtained.

As an example of the results of such a calculation, FIG. 5a shows the u -y
relation for a cross section of concrete Type B reinforced with HR steel.

The effective reinforcement ratio is w = 0.30 on the tension side and

w = 0.15 on the compression side. The example chosen includes the effect

of creep in the concrete, the creep factor being ¢ = 3. The effect of creep
on the rotation capacity is studied in Chapter 8. The only reason why creep
has been included in this case is that the figure is clearer as a result. The
figure shows three curves, of which the bottom one represents the share of
the concrete Ve in the energy consumption. The centre curve gives the energy
consumption in the compression zone of the beam

(5.10)
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FIG 5b Moment-energy curve for a cross section in a beam reinforced

with CW steel.
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i.e. the gquantity of deformation energy per unit length of the beam which is
stored by the compressed concrete and the compression reinforcement taken

together.

The top curve shows the total energy consumption of the cross section per

unit length of the beam. Point A in the figure represents the state of affairs
in the cross section when the tension reinforcement reaches the upper yield
stress, i.e. when eg =€y Point B represents the state of affairs when the
tension reinforcement reaches the lower strain hardening limit €. Finally,
point C represents the uitimate state which in this case is characterised by

crushing failure of the concrete.

A corresponding M - ¥ curve for a beam reinforced with CW steel but in other
respects similar to the previous case is shown in FIG. 5b. The tension re-
inforcement fails at point B. However, this diagram is utilised only up
to point A which is characterised by the fact that the ultimate moment My
here is equal to the maximum moment.
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6 ENERGY BALANCE

In the following, the rotation span of a plastic hinge refers to the part

of the beam between the plastic hinge and the nearest point where the moment
is zero. A discontinuous plastic hinge has two rotation spans, one on each
side of the hinge, while a continuous plastic hinge, for instance one at a
fixed end, has only one rotation span. In the following, only conditions on
one side of a plastic hinge will be studied, whether it is a discontinuous

or continuous hinge.

The length of the rotation span is detoned 10. The value of 10 generally
varies somewhat during application of the load. However, the simplifying
assumption is made here that 10 is constant and equal to the length corres-
ponding to the ultimate moment MU of the plastic hinge. Most of the energy
interchange during a complete loading process occurs for moments of this
magnitude, and the variation in the length of the rotation span which occurs
in the region around the zero moment can therefore be considered to have a
negligible effect on the total energy situation of the span.

In the following, a calculation is first made of the external work required
for deformation of the rotation span, the deformation energy simultaneously
stored in the span is then determined according to Chapter 5, and finally an
energy balance is drawn up from which the elasto-plastic rotation, the rota-
tion capacity, is calculated.

6.1 The external work

FIG. 6.1a shows the rotation span of length ]0 between a plastic hinge PH

to the right and a point of zero moment to the left. At its left-hand end,
the part of the beam is acted upon by the shear force Vn‘ At its right-hand
end it is acted upon by the ultimate moment M, and the shear force Vo' The
span is assumed to carry a uniformly distributed load q. The variation of
moment over the length of the span is thus parabolic, as shown in the upper
moment diagram in the figure. Under this assumption, the moment variation is
uniquely characterised by a coefficient g according to the figure, which
expresses the difference between this moment variation and a Tinear variation

shown dashed in the figure.

The above method of describing the moment variation does not cover all
conceivable situations. Examples of such cases are a uniformly distributed
Toad over part of the span, and one or more point loads placed between the
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plastic hinge and the point of zero moment. On the other hand, this method
permits uncomplicated treatment of the loading situations which most often
occur in practice.

The following values of B can occur. See FIG. 6.1b.

B = -0.06 represents the moment variation adjacent to a plastic hinge near
a support section when the beam carries a uniformly distributed Toad.

g = 0 represents the variation adjacent to a plastic hinge which is situated
either near a support section or in the span when the beam is acted upon by

point loads.

B = 0.25 represents the moment distribution near a plastic hinge in the span
when the beam carries a uniformly distributed load.

The moment distribution can be written as

o _ Z IREY i
M= lo)(1 + uB lomu (6.7.1)

If the rotation span is divided into n equal parts each of length A]O, as
shown in FIG. 6.7a, the relation '

(6.1.2)

B I=E

£z
1
o

appiies at point No 1.

Substitution of Equation (6.1.2) into Equation (6.1.1), and simultaneous
division by the reference moment M. according to Equations {3.2.6) and (4.2)
gives the non-dimensional moment at point No i as

=

by == (nmi)(n+hgs) /o (6.1.3)

=

1 M
c
where = .
y = MM

The relation between gand q is written according to the figure

r

1° = g
al_ = BM_

ol



FIG 6.1a

Moment distribution at the ultimate stage over the length ]o
of the rotation span. The internal and external forces acting
on the rotation span.‘The deformation of the rotation span
divided into a plastic and an elastic portion.
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or

o
al” = BEM (6.1,
o] u .

Moment equilibrium for the part of the beam under consideration gives

1 2
t q“ - - O 6.1-

from which, by making use of Equation {6.1.4), we calculate

M
Vo= (1+h3}EE (6.1.6)

o
Under the influence of the forces acting on the beam, the rotation span is
deformed according to the lTower figure in FIG. 6,%a. The deflection is

divided into an inelastic and an elastic part.

In an initial phase, all deformations are elastic. During this phase the
external load rises from zero to a value qy which is attained when plastic
flow begins in the section where the moment is a maximum, i.e. at the theo-
retical plastic hinge. At the same time as this occurs, the bending moment

at the plastic hinge is My and the shear force at the point of zero moment is
V . In this situation, the relations corresponding to Equations (6.1.4} and
(6.1.6} are

qyli = SBMy (6.1.7)
and
M
Vy = (1+hg)11 {(6.1.8)
8}

As the external load increases from the yield value qy to the ultimate value g,
there is plastic rotation about the plastic hinge, and at the same time the
elastic deflection at the point of zero moment increases to its maximum value
a,. The elastic part of the deflection at the arbitrary point No i is corres-

ponding denoted 3.

Computationally, the inelastic deformation is treated as a rotation of the
rotation span, considered as a rigid body, through an angel 6, about the
plastic hinge. According to the definition, eu represents the rotation
capacity of the plastic hinge on the side being considered. When failure
occurs, the maximum inelastic deflection at the point of zero moment is

106u.



FIG 6.1b
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P.H.

Three moment distributions over the length of the rotation span.
The form of the moment distribution is determined by the parameter 3.
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The relationship between beam deformation and plastic hinge moments over
the moment interval My - Mu, i.e. over the elasto-plastic loading range, is
dependent on a number of factors among which the shape of the stress-strain
diagram of the reinforcing steel is dominant. In view of all the other un-
certainty which is associated with this type of calculation, the following
derivation has been based on the approximate assumption that the above

relationship is linear,

The total external work which is performed during the loading phase up to

failure is thus

W=V a +—1~(v +V )8 1 —-]-IZ]qf_\.la -1{0 +q)1 Ao (6.1.9)
2nn 2y n uo o1 2 2uo

e 21

With reference to FIG. 6.1a the following comments are made concerning the

various terms in this relation.

The first term refers to the elastic work performed by the shear force at
the point of zero moment as the force rises from zero to its maximum value

~V , and at the same time the elastic part of the deflection at the same section

increases to its final value a .

The second term refers to the plastic work performed by the shear force at

the point of zero moment. Up to the value Vy no plastic work is done. As the
shear force then increases from Vy to Vn, the mean force during the plastic
loading phase is (Vy + vn)/z. This acts over the plastic part of the deflection

Elu'lo.

The third term refers to the elastic work performed by the ultimate load o!
when the elastic part of the beam deflection, as the Toad increases, rises

to the final value a; at the point No 1.

The fourth term, finally, refers to the plastic work performed by the dis-
tributed load. Up to the value qy no plastic work is done. As the Toad then
rises from the yield value qy to the ultimate value q, the resultant of the
mean load during the plastic loading phase is (qy + q)lO/Z. This resultant,
which acts at the centre of this part of the beam, acts over the deflection

9u10/2.
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The section forces Voiand M, are also shown in FIG. 6.%1a. All displacements
have been related to the plastic hinge which, in this derivation, has been
assumed to be a point incapable of displacement. The work done by the shear
force is therefore equal to zero. Nor has the ultimate moment Mu which acts
at the plastic hinge been included in Equation {6.1.9) because, in this
context, Mu may be considered to be an internal moment. That this is so is
evident if we imagine that the plastic hinge being considered occurs over

an intermediate support in a continuous beam, and consequently envisage the
part of the beam being considered to comprise the section 210, placed symmet-
rically with regard to the plastic hinge.

Substitution of qy102 according to Equation (6.1.7), q]oz according to Equa-
tion (6.1.4), and V, and Vy according to Equations (6.1.6) and (6.1.8) res-
pectively into Equation (6.1.9) yields

h

M a 41 n
o

(1 + =L)M 8 + ~(1+48)M =2 — Lpu r -+ (6.1.10)
M uu 2 4 11

W = —_—
© u lO u lO o]

M |—

If this is divided by the reference moment M_ and it is noted that a1 /1. _

1/n, we have the external work in a non-dimensional form

nai
5 ——
1 a

=

i
- e -1 ¥ 1
¢ ; (1 + " )uueu + 2(1+ug}p

=
c u

&
a®n a1 ¢
g . n_ - L1.11
1 & By 1 o ( )
C O

|-

If we introduce the symbol

1

= 2 £.1.12
x == ( )

for the non-dimensional length of the rotation span (the slenderness of the
span), the relation (6.1.11) can be written as

6 = {21 + El)e + —1-(1+his)iil-zl - 48 —g Ei}u (6.1.13)
e 2 uu u 2 A ‘d 1 d
The elastic deflection a; and an are calculated with the aid of finite dif-

ferences. We thus have the relation

a, ,—2a.ta.
1 1 1

: ul R (6.1.14)
(81.) Ty
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FIG 6.2a Transformation of the moment-energy curve by means of the moment
curve. The transformation yields the distribution of consumed
deformation energy ¢ per unit length of beam along the rotation span.
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where rs is the radius of curvature at point No i under elastic conditions.
The relation is re-written as

N

a 2 a _ Alo 2 lO 2 a A
d) 2{d) +(d) = (i“*) (j;J — =3
i-1 i i+1 o Ty

( (6.1.15)

e
i
where Py = ri/d is the non-dimensional radius of curvature at point No 1.

I[f we introduce the non-dimensional deflection

a 2

i T if’fg (6.1.16)

into. Equation (6.1.14), we have the difference equation

(6.1.17)

= L
Ki 178K My T T,

1
Since the portion of the beam is rigidly fixed at the plastic hinge with
respect to elastic deflection, the boundary conditions

apply there, and when these are substituted into Equation (6.1.17), we have
the deflection at the first subdivision point (i = 1} as

=11 {6.1.18)
K = o |
1 2 po
From Equation‘(sly;yy)_we obtain the recursion formula
B ~ 1
Kigqg = 2Ki Kiq * g;- (6.1.19)

for successive calculation of the elastic part of the deflection.

When the elastic beam curvature required for calculation of a, and a, in
Equation {6.1.13) is to be determined, the calculation cannot be based on the
depth of the compression zone which corresponds to purely elastic behaviour

of the cross section. It must be borne in mind that, in actual fact, conditions
are elaste-plastic, and the corresponding compression zone depth must be used.
[t was shown in Chapter 3 how the depth & to the compression zone can be deter-
mined as a function of the elasto-plastic curvature. Chapter 4 describes the
corresponding determination of the bending moment u. Using the elasto-plastic
curvature as the governing parameter, & u - & relation can be calculated in

this way.
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It is now possible to calculate the moment M from the expression (6.1.3) for
every subdivision point in the rotation span, and then to determine the corres-
ponding value of £ from the u - & relation obtained as above. This, when
substituted into Equation (4.7), gives the bending stiffness 6. The sought
elastic curvature is then obtained from Equation (4.6).

Finally, substitution of the non-dimensional elastic deflection according to
Equation (6.1.16) into Equation (6.1.13) gives the non-dimensicnal external

work in the form

114y 2 " :
o, =51+ uu)euuu + ;;5{(1+MB)KH—$6 A (6.1.20)

6.2 The consumed deformation energy

The way in which the relation between the non-dimensional deformation energy
¢ per unit length of beam and the non-dimensional bending moment . can be
determined was shown in Chapter 5. Such a relation is shown, for instance,

in FIG. 5a. This relation is reproduced in principle, but with another orien-
tation, in FIG. 6.2a along the moment diagram of the rotation span. The way
the u - y relation can be transformed via the moment diagram so as to give
the distribution of ¥ along the length *» of the rotation span is evident from
the figure. The total deformation energy consumed within the beam volume of
the rotation span is thus equivalent to the dashed area in FIG. 6.2a. With the
same subdivision of the span as that applied in Section 6.1, we obtain the
following relation for the total energy - see also Equation (5.4)

1
W. = IN §.AL = N ALl Iy, = B -8y, _ (6.2.1)
1 c 1 (o] c (o] 1 c n .1

If this expression is divided by the reference moment Mc = ch, the total
consumed deformation energy is obtained in non-dimensional form as

n
1 o ] E'ﬁb. _&_ Zw ) (6-2.2)
. n 3

6.3 Energy balance

The total consumed'deformation energy ¢ is equal to the work $a performed by
the external forces within the rotation span, i.e.

¢ = ¢ {6.3.1)

e i
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If we substitute into this expression $o according to Equation (6.1.20) and

$. according to Equation (6.2.2), we have

u LK,
A . 1 -
(1+ =50 u + 5 ((1+hg)e -88 —= hu,
u 2n

il b

1
2 Ly;

from which the rotation capacity is calculated as

g RAE 3 Lk, 5 :
= o (8 —E - (1) )} —— (6.3.2)
A v, o on n ey _
_ 1

Equation (6.3.2) has been used as the basis for the development of a computer
program, Results of calculations using this program are set out in the

following.
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7 DEPENDENCE OF THE ROTATION CAPACITY ON THE SHAPES OF THE STRESS-STRAIN
DIAGRAMS FOR THE STEEL AND CONCRETE

The rotation capacities for the three typical steels HR, CW and CEB, combined
with the two concrete types A and B described in Chapter 2, are first calcu-
lated. The calculation is made for three moment distributions corresponding
to g=0.25, 8 =0 and 8 = -0.06 according to Chapter 6. The object of this
investigation is to show the general effect on the rotation capacity due to
the different shapes of the stress-strain diagrams for the steel and concrete.

The way the rotation capacity changes when there are deviations from the
parameter values selected in Chapter 2 for the description of the stress-strain
diagrams of the three typical steels and the two concrete types is then demon-
strated, For the sake of clarity, results are only shown for a moment distri-
bution corresponding to B = 0.25, i.e., the moment distribution which occurs

in conjunction with a plastic hinge which is not acted upon by large shear
forces.

The results are set out in the form of diagrams, with the effective reinforce-
ment ratio as the abscissa and eu/A as the ordinate. The value of « is made

to vary between the limits 0.04 and 0.31, which ought to cover all situations
that normally occur.

7.1 Different combinations of typical steels and concrete types

If HR steel is combined with concrete types A and B, results according to

FIG. 7.1a are obtained. The two families of curves have the same general form,
characterised by the existence of a critical value of w, W s at which there
is a change in the shape of ‘the curves.

For w < ey there is a marked increase in rotation capacity with decreasing
w, while for w > Oep the value of w is Tow and practically constant. If de-
tailed calculations are made 1in order to find an explanation of this pheno-
menon, it is seen that at wcr'faiiure occurs exactly when the strain in the
steel coincides with the lower strain hardening Timit €y of the steel in FIG.
2.2b. When uw< s failure occurs within the strain hardening region of the
steel.
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When w > Oy failure occurs at the yield level of the steel. This shows that
the concepts of over-reinforcement and normal reinforcement must be given
different meanings depending on whether it is the ultimate moment or the
rotation capacity that is being studied. The boundary between over-reinforce-
ment and normal reinforcement is at the steel strain £y = T/eS for calculation
of the ultimate moment, while for calculation of the rotation capacity it may

be considered to be situated at the end point of the yield Tevel, at the

strain € The statement sometimes encountered, that the rotation capacity is at
all times sufficient provided that the beam is normally reinforced, is thus

rather rash.

FIG. 7.1a also shows the effect due to variation of the mechanical properties
of concrete. For concrete type A, Wep = 0.15, while for type B Wep = 0.21. In
this context it is primarily the ultimate compressive strain Eey of the con-
crete which is critical with regard to the position of Oy
A corresponding calculation relating to CW steel gives results according to

FIG. 7.1b. In this case there is no Bep since this steel has no pronounced

boundary between the yield region and the strain hardening region. The rotation
capacity of a concrete beam with CW steel is consistently lower than that of a

beam with HR steel.

The results of a calculation relating to CEB steel are shown in FIG. 7.%1c. As
may have been expected after a study of the moment-curvature diagram for this
hypothetical steel, the rotation capacity is extremely Tow. This shows that

it is unrealistic to apply the stress-strain curve suggested by the CEB for
reinforcing steel in conjunction with calculation of the rotation capacity.

On the other hand, as shown in Chapter 4, this truncated stress-strain curve
does not exhibit any palpable disadvantages in conjunction with the calculation

of the ultimate moment of a cross section,

It is a common feature of the results set out that the moment distribution

8 = 0.25 gives a larger rotation capacity than the distributions g = 0 and

B = -0.06, which is to be expected in view of the general discussion in
relation to FIG. 1.3a. It must however be noted that any effect due to shear
force is not taken into consideration here. The presence of shear force can
change the results in a direction favourable for the distributions g = 0 and
B = -0.06.
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FIG 7.1a Rotation capacity expressed in terms of the ratio eu/k as a
function of w. The curves relate to HR steel combined with

concrete types A and B for three different moment distributions.
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FIG 7.1b Rotatien capacity expressed in terms of the ratio eu/l as a

function of w. The curves relate to CW steel combined with
concrete types A and B for three different moment distributions.
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FIG 7.1c Rotation capacity expressed in terms of the ratio eu/A as a

function of w. The curves relate to CEB steel combined with
concrete types A and B for three different moment distributions.
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- 7.2 Deviations from the parameter values selected for the typical steels

and the concrete types

A1l the calculation results given in this section refer to the moment
distribution 8 = 0.25.

In Section 2.1 representative parameters were determined for the description
of concretes type A and B. The value e, = 1200 was chosen for the non-
dimensional initial modulus of elasticity of the concrete. It is interesting
to see what the effect of deviations from the selected value is for the
rotation capacity. In order to investigate this, two calculations have been
made for Cw_stee], in one case combined with concrete type A, with e. = 1800,
and -in the other combined with concrete type B, with e, = 800. The results

are shown in FIG. 7.2a where corresponding results using the normal vaiue

e, = 1200 are also shown with dashed lines for purposes of comparison. As will
be seen from this figure, the effect of variations in e, on the rotation
capacity is insignificant, and for this reason e, can be omitted as a variable
parameter in the following, and the constant value of e = 1200 used.

In section 2.2 a value e, = 350 was chosen as the non-dimensional modulus of
elasticity of the steel, and this was then applied as normal value for all

' three typical steels, HR, CW and CEB. In order to see what effect deviations
from the selected value have on the rotation capacity, two calculations have
been made for HR steel and concrete type B, with e, = 250 in‘one case and

e = 700 in the other. See FIG. 2.2c. The results obtained are shown in FIG.
7.2b. Compared with the results for the normal value of e, = 350, the differ-
ences are small, and for this reason it may be considered justified to omit
e also as a variable parameter and to use the constant value e, = 350
1rrespective of steel type and the value of fst' '

For HR steel, the lower strain hardening Timit eq = 0.015 was chosen as normal
value in Section 2.2. Comparative calculations for this value and the alterna-
tive values e = 0.005 and e = 0.025 are of interest, during which process
the entire strain hardening region of the steel between £ and A is given a
corresponding sideways displacement as shown in FIG. 7.2¢. The results of
calculations using the alternative stress-strain curves for the HR steel in
combination with concretes types A and B are shown in the same figure. In view
of the above explanation concerning the physical meaning of a critical value
for the effective reinforcement ratio, it may be expected that a variation
The figure shows

Ycr

in & will be reflected in a corresponding variation in e

that this is actually the case. The value of ey changes from approx. 0.10 to
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0.29 when 2 is changed from 0.025 to 0.005 in combination with concrete
type A. In combination with concrete type B, the corresponding change in DA
is from about 0.15 to a value in excess of 0.31.

In order to throw further Tight on this subject, n = fstu/fst is varied for

an HR steel as shown in FIG. 7.2d, the value of the lower strain hardening
1imit being maintained at €y = 0.015. Two values of n, 1.2 and 1.6, are com-
bined with concretes types A and B. A variation in n has no effect on the
position of w.ps MO ON the rotation capacities corresponding to w Dw or? since
failure then occurs at steel strains less than the lower strain hardening
lTimit. The calculation results set out in the figure also show that the varia-
tion in rotation capacity with n is moderate for u <uw crt
Finally, FIG. 7.2e shows what change is obtained in the rotation capacity
when n for a CW steel is increased from the selected normal value of 1.1
to 1.2. Calculated results are set out in the figure for the CW steel in
combination with concretes types A and B. It is seen from the figure that
the variation studied causes a moderate change in the rotation capacity.

- Tho following conslusions may be drawn from the above analysis.

The non-dimensional initial modulus of elasticity of concrete may be con-
sidered constant and equal to e. = 1200 in all contexts.

For both HR and CW steels, the non-dimensional modulus of elasticity of steel

may be considered constant and equal to e, = 350.

The stress-strain curve suggested by the CEB for reinforcing steel is not
applicable in conjunction with determination of the rotation capacity.

The boundary between over-reinforcement and normal reinforcement, which for
calculation of the ultimate moment is put at the steel strain & = 3/es,
should instead bte related to the lower strain hardening Timit 51'when the

rotation capacity is calculated.

The magnitude of the rotation capacity, within certain values of w, is greatly
dependent on the position of the lower strain hardening limit of the steel.
The value of the ratio n = fstu/fst does not have the same significance.
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FIG 7.2a Rotation capacity as a function of the non-dimensional modulus

of elasticity €. of the concrete.
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FIG 7.2b Rotation capacity as a function of the non-dimensional modulus of
elasticity e of the reinforcing steel.
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Stress-strain curve for HR steel modified by variation of the
Tower strain hardening limit of the stee]. The ratio eu/A as a
function of w for combinations of the modified curves with

concrete types A and B.
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FIG 7.2d Stress-strain curve for HR steel modified by variation of the
coefficient n. The ratio eu/k as a function of w for combinations

of the modified curves with concrete types A and B.
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FIG 7.2e Stress-strain curve for CW steel modified by alteration of the
coefficient n from 1.1 to 1.2. The ratio eu/h as a function of w
for combinations of the modified curve with concrete types A and B.
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The value of the rotation capacity is consistently somewhat greater when the
. calculations are based on concrete type B, which is more in conformity with
""" ? actual conditions, than when the calculations are based on concrete type A
which is more restrictive as regards deformations.



83

8 CREEP OF THE CONCRETE

As a rule, the effect due to creep of the concrete is not taken into con-
sideration when the rotation capacity of a concrete beam is calculated. In
cases when an accurate check is made on the compatibility conditions and
the effect of creep is thus taken into account in determining the rotation
requirement of the plastic hinge, inclusion of the effect of creep in
calculating the rotation capacity is also warranted.

Computationally, the effect of creep can be allowed for by transforming the
compressive stress-strain curve of the concrete by means of changing the

scale along the £ axis, as shown in FIG. 8a. The scale factor is 1+p, where

¢ is the creep factor. Computationally, this implies that the appropriate

strain € in strip No 1 must be divided by 1+ and the modified strain thus
obtained used for determination of the stress in the untransformed stress-strain
diagram for the compressive stresses in the concrete. In consequence of this,
the modulus of elasticity of concrete must be divided by f+p in the previously
derived formulae for calculation of the rotation capacity.

Calculations which take the creep of concrete into account give the results
shown in FIG. 8b and 8¢c. In FIG. 8b the effect of creep on concrete type A,
in combination with reinforcing steels of both types HR and CW, is studied.
FIG. 8c shows the corresponding results for concrete type B in combination
with the same reinforcing steels.

The figures show that an increase in the creep factor consistently raises the
rotation capacity. The reason for this is that the greater value of oy
applicable in conjunction with creep allows a greater strain in the tension
reinforcement before the concrete undergoes crushing failure. As a result,

a greater quantity of deformation energy can be stored within the volume of
the rotation span. In particular, the value of mcr for HR steel becomes
progressively higher as the creep factor increases.

When there is compression reinforcement within the section, creep of the
concrete causes a change in the distribution of force between the compression
reinforcement and the compressed concrete. If, prior to creep of the concrete,
the stress in the compression reinforcement is below the yield stress, the
concrete will be relieved of load and a greater proportion of the force will
be transferred to the steel. If the compression reinforcement has already
attained its yield stress before the concrete begins to creep, there is no
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FIG 8a Stress-strain curve for concrete in compression, with and

without consideration of the creep of concrete.
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FIG 8b The ratio eu/A as a function of w for different values of the

creep factor ¢ for concrete. The figure relates to concrete type A
in combination with both HR and CW steel.
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FIG 8c
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The ratio eu/k as-a function of o for different values of the
creep factor ¢ for concrete. The figure relates to concrete type B
in combination with both HR and CW steel.



redistribution of force. It may therefore be expected that creep of the con-
crete in a section containing compression reinforcement will cause a greater
increase in rotation capacity for larger values of « than for small ones.

See also Chapter 9.
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9 THE EFFECT OF COMPRESSION REINFORCEMENT

When compression reinforcement is used, the compression force on the cross
section is sustained jointly by the compression reinforcement and the concrete.
The depth of the compreésion zone is then somewhat less than in a comparable
beam without compression reinforcement. Reduction in the depth of the com-
pression zone results in an increase in strain in the tension reinforcement
before the ultimate moment is reached, which, in turn, means that more
deformation energy is stored within the volume of the rotation span and the
rotation capacity is therefore greater. -

A calculation for HR steel and concrete type B, with the position of the
compression. reinforcement in the section determined by v = ¢/d = 0.1, gives
the rotation capacity shown in FIG. 9a. For o = 0.055 the rotation capacity
is independent of the quantity of compression reinforcement, the reason
being that, at this value of w, the neutral axis is at the same level as the
compression reinforcement. For larger values of w the rotation capacity
increases with uh/uu 1t may also be noted that w._ increases as the value of

cr
uk/w increases,

The results of corresponding calculations for CW steel, with the same condi-
tions regarding concrete type and the position of the compression reinforcement,
are set out in FIG. 9b. In this case the neutral axis and the compression re-
inforcement coincide at w = 0.068. It will be seen that for ut/uyz 0.8 the
rotation capacity is practically independent of w within the range studied.

The results given in FIG. %a and 9b are based on the assumption that the steel
in the tension and compression reinforcement is of the same type, and that fst
for the tension reinforcement is equal to fsc for the compression reinforce-
ment, i.e. v = fsc/fst = 1.0. In other respects there is no need to make any
further assumptions concerning identity of the properties of the tension and
compression reinforcement, for instance concerning the position of the Tower
strain hardening Timit. The reason for this is that while the tension reinforce-
ment can develop strains beyond the lower strain hardening limit, this is
impossible in the case of the compreséion reinforcement. Even in extreme cases,
the strain in the compression reinforcement is at the beginning of the yield
range, determined by the ultimate compressive strain €y of the surrounding
concrete.
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In order to investigate what the effect is on the rotation capacity when
different grades of steel are chosen for the tension and compression reinforce-
ment, comparative calculations have been made using v = 0.7 and 1.3. The other
conditions are: HR steel, concrete type B, v = 0.1 and mc/w = 0.5 and 1.0.

With the boundaries of « equal to 0.05 and 0.30, in no case was the difference
found between the calculated rotation capacities for v = 0.7 and 1.3 greater
than G.1%. This demonstrates that the coefficient v need not be regarded a
variable parameter, but can be given the fixed value v = 1.0. This is the

value which has been applied in all other calculations concerning compression

reinforcement.

The results set out in FIG. %9a and 9b are based on a position of the com-
pression reinforcement corresponding to the value v = 0.1. In order to see
how sensitive the rotation capacity is to variations in the placing of the
compression reinforcement within the cross section, calculations have been
made for the values v = 0,05, v = 0.10 and v = 0.20. The other conditions

are: HR steel, concrete type B, wc/w = 0.5, The results are shown in FIG. 9c.
When the compression reinforcement is placed high up in the section, vy = 0.05,
there is some increase in rotation capacity, for values of w less then 0.18,
compared with the position given by v = 0.10. For greater values of w the
rotation capacity obtained is about the same in both cases. For compression
reinforcement placed Tow in the section, v = 0.20, there is a considerable
reduction in rotation capacity over the entire range of w studied. The rotation
capacity calculated under similar conditions but without consideration of

the compression reinforcement has been plotted in the figure with a dashed
line. As will be seen, the results for the compression reinforcement situated
low in the section are in some cases less favourable that for no compression
reinforcement at all. This is due to the fact that for Tow values of w the
compression reinforcement drops below the neutral axis of the section and will
be in tension instead of in compression. If, therefore, compression reinforce-~
ment is chosen as a means of elevating the rotation capacity, care must be
taken to ensure that the reinforcement is properly placed in the formwork

and that it is not displaced downwards when the concrete is poured.

In ordinary calculations of the ultimate moment of a reinforced concrete
cross section, based on the assumption that the distribution of stress in
the compressed concrete is rectanguiar, it is generally assumed that the
depth of the compression zone can be calculated from the expression

£=1,25 (w- o) (9.1)
¢
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This assumes that the compression reinforcement takes up that proportion

of the resultant compressive force which corresnonds to the yield stress

of the reinforcement. For calculation of the ultimate moment, this approach
can be accepted, since the resulting force in the compression reinforcement
is generally practically coincident with the resultant of the compressive
stresses in the concrete., The calculation results are therefore insensitive
to the way in which the total compressive force is divided between the two
resultant components. If, for instance, expression (9.1) is applied for

W = w, £ G is obtained, i.,e. it is assumed that the entire compressive
force is resisted by the compression reinforcement, and the concrete is
therefore unstresses. Naturally, this is functionally unreasonable, but still
gives a fairly correct value of the ultimate moment. On the other hand,
application of the same approach for calculation of inelastic deformations
yields meaningless results. Some authors claim that the rotation capacity
can be expressed as a function of only the depth ¢ of the compression zone.
Quite apart from the fact that this assumption has no meaning, application
of Equation (9.1) will give completely erroneous results if there is a large
guantity of compression reinforcement. This problem is illustrated by FIG. 94
in which (8.1) is plotted with dashed lines for w = 0.10 and ¢ = 0.20. The
full 1ines show the calculated variation in the actual depth of the compression
zone at failure as a function of the ratio mc/m. The calculation relates to
HR steel and concrete type B. As will be seen from the figure, for large
values of wc/w there is a corsiderable difference between the depth of the
compression zone calculated on the basis of realistic stress-strain curves

and that obtained from Equation {9.1).

When failure occurs under the influence of Tong-term loading, creep takes
place in the compressed concrete. This causes a certain redistribution of
forces in the compressed portion of the cross section. For Tow values of o
this redistribution is moderate, since the stress in the compression re-
inforcement will already have reached, or is very near, the compressive
yield stress of the steel before creep commences. For Targer values of w,
the stress in the compression reinforcement is substantially below the
yield point when creep begins, and it ts therefore possible for this stress
to increase during creep, while at the same time the stress in the concrete
in the compression zone decreases. During this process there is some reduction
in the depth of the compression zone, and the rotation capacity therefore
increases in the corresponding degree. The final resuits on completion of
creep are given in FIG. 9e for both HR and CW steels in combination with



FIG Sd

The non-dimensional actual depth £ of the compression zone at
beam failure as a function of wc/w for two fixed values of w.
The dashed lines represent the depth of the compression zone

calcuTated by the expression £ = 1.25(w - wc)
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concrete type B. The creep factor is @ = 3.0, and the compression reinforce-
ment corresponds to u&/w = 0,5 and 1.0, As will be seen, the rotation
capacity obtained for both steel types is practically constant within the
range of w considered,

The analytical model is based on the assumption that the compression rein-
forcement is rigidly fixed in the stipulated position during the entire
loading process. In experimental investigations of concrete beams with com-
pression reinforcement, it is sometimes noted that Tocal deflection of the
compression reinforcement occurs at moments near the ultimate moment. With
regard to the rotation capacity, in such cases the compression reinforcement
does more harm than good, since the deflected reinforcement causes splitting
of the concrete in the compression zone and thus accelerates crushing failure,
In order therefore that the rotation capacity calculated by means of the
analytical model may be considered reliable, it is essential that the com-
pression reinforcement is restrained by stirrups of suitably close spacing.
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10 THE EFFECT OF SHEAR FORCE

The calculations set out so far have been consistently based on the validity
of e.g. Bernoulli's hypothesis, which indirectly implies that the effect on
the rotation capacity due to shear force acting simultaneously with the
ultimate moment has been ignored. Experiments reported in the literature

show that the incidence of a large shear force in the vicinity of the plastic
hinge increases the rotation capacity. An attempt should therefore be made

to modify the analytical model developed in such a way that the favourable
effect of shear force may be included, if only approximately.

10.1 Analytical model

When the effect of shear force is te be included in the analytical model,
application of the Ritter-Morsch truss model is the cobvious choice, and this
is therefore used as the basis of the following line of reasoning.

If the analytical model derived in the provious section is supplemented by
diagonals between the tension and compression zones in such a way that a
truss is formed, and the model thus constructed is acted upon by shear force,

two principal phenomena occur,

a. The diagonals of the truss are deformed under the action of the applied
forces, and thus store deformation energy.

b. The variation of force along the compression and tension zones of the
analytical model is different from that in the original model, and the
energy stored in these zones is therefeore also modified correspondingly.

With regard to the effect in a, the following may be stated. If stirrups
which in actual fact are uniformly distributed are assumed in the modeil to

be concentrated into discrete diagonals in tension, then the stresses, defor-
mations and the associated energy storage in these can, in principle, be
calculated with reasonable accuracy. However, the calculations presuppose
that the distance between the diagonals in tension is known. For a given
stirrup inclination, this distance is dependent on the inclination of the
compressed concrete diagonals postulated in the truss model, i.e. dependent
on the directions of the bending shear cracks which occur. Correct treatment
of this problem thus demands knowledge and consideration of the variation

in crack direction along the rotation span. If this is to be applied in
the'anaTytica1 model, the number of primary parameters will be increased very
considerably, and the results will lose the clarity hitherto achieved. It is
therefore desirable that this situation be avoided by the use of some appro-
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riate approximation.

It is a general rule in the design of a reinforced concrete beam that the
factor of safety with regard to shear failure should be greater than that
with regard to bending failure. In View of this it is not unreasonable to
introduce the assumption that, when bending failure occurs subsequent to
plastic flow, if any, the steel in the stirrups will just about have
attained its yield stress. All the deformation in the diagonals in tension
will then have been elastic, and the deformation energy stored in these is
therefore balanced by some of the work which the shear force performs during
shear deformation. The rotation capacity of the plastic hinge is therefore
unaffected by this.

As regards the compressed concrete diagonals in the model, the problem arises
as to what formal cross sectional area is to be assumed for these, It is
possible to assume a large area and small compressive stress, or vice versa,
within 1imits determined by beam geometry and the compressive strength of
the concrete. Whichever course is adopted, however, the total deformation
energy stored by these compressed diagonals will be very much less than that
stored by the diagonals in tension, and can therefore be ignored.

The conclusion drawn concerning the effect according to a is therefore

that the rotation capacity of the plastic hinge can be calculated without
consideration of the contribution of the diagonals to the deformation
energy, with no major error being introduced in consequence.

The following may be said with regard to the effect according to b, Without
consideration of the shear force, the extent a, of the plastic hinge, i.e.

the region over which the reinforcement yields, is determined according to
figure a in FIG. 10.%1a by the ratio of the uitimate moment uy to the yield
moment ;. For purposes of simplicity, it is assumed that variation of moment
over the length of the rotation span is linear. If inclined shear cracks are
formed along the rotation span, conditions are altered, as will be seen from
FIG. 10.1b which shows the portion of the beam between the point of zero momeni
and an inclined shear crack. It is evident from the figure that deformations
and stresses in the tension reinforcement at section 2 are determined by the
moment oy at section 1, and that the corresponding stresses and deformations

in the compression zone of the concrete at section 1 are determined by the
moment 1o at section 2. For a constant shear crack direction along the rotation
span, this means that the moment curve must be shifted a distance a to the

left for calculation of the state of affairs in the tension reinforcement,



FIG 10.1a Moment shift as a result of inclined shear cracks.
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FIG 10.1b Portion of beam bounded by point of zero moment and an inclined

shear crack.
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FIG 10.1c Fan shaped crack pattern in the region near a plastic hinge

above a point load.

098y,

FIG 10.1d The moment shifts assumed in the analytical model. The moment
variation iy relates to the tension reinforcement. The moment

variation Hy relates to the compression zone.
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and te the right for calculation of the state of affairs in the compression
zone. Owing to this, the extent of the yield region is increased by the
distance a, as shown in figure b in FIG. 10.%1a. However, the directions of
the cracks are not constant along the rotation span, since the state of
affairs is characterised by simultaneous occurrence of a large shear force
and a linear moment distribution with a large maximum moment. This gives rise
to the fan-shaped crack configuration, radiating from the point of action

of the point Toad, shown in FIG. 10.1c. In order that this may be taken into
account, the fictitious moment curves are modified as shown in figure ¢ in
FIG. 10.%a. The advantage gained by this modification is that the zero moment
is now clearly defined. For a realistic value of the ratio uu/uy, the change
in the Tength ay of the yield region from figure b to figure ¢ is insignificant.

This approach gives rise to the fictitious moment distribution shown in FIG.
10.1d, in which some more modifications have been introduced. For the crack
configuration in FIG. 10.1c, most of the strain in the reinforcement and thus
the consumption of energy take place in the cracks and in the region in the
immediate vicinity of the cracks. In the reinforcement between two cracks the
strain and energy consumption are less. For a constant moment u, over the
distance a, see FI5. 10.1d, this is not taken into account, and calculations
yield an excessive energy consumption over the distance a. This can be com-
pensated for by making this distance inclined instead of horizontal. In view
of the fact that the gradient 3%/3u is very Targe at the section where M
occurs, even a slight inciination should produce a reasonable reduction in
the calculated energy consumption. According to FIG. 10.1d, it is decided
here to reduce the moment from M to 0.98 n, over the distance d. The fic-
titious moment curve OBC thus determined is used as the basis for calculation
of the contribution of the tension reinforcement to the deformation energy.

The following may be noted with regard to the compression zone. According to
figure ¢ in FIG. 10.%a, the moment curve 2 for calculation of the state of
affairs in the compression zone produces at the section where the formal
plastic hinge occurs a moment which is Tess than the maximum moment TR

this is contrary to the eguilibrium condition. However, it is evident from
FIG, 10.1c that the concrete struts approaching the plastic -hinge at an
inclination are gradually relieved of Toad over a relatively short distance.
[t may therefore be expected that the strains in the compression zone

will rapidly increase over this distance until, at the plastic hinge section,
they attain a value corresponding to the moment e It is assumed here that
this transition at a high strain gradient takes place over a region of the
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selected length a/2, and that the contribution by the compression zone to the
deformation energy can therefore be based on the fictitious moment curve QEC
in FIG. 10.1d.

The fictitious moment curves OBC and OEC introduced here may be regarded as
approximations to more correct curves which are probably of a continually
variable curvature and pass between points 0 and C.

Application of these fictitious moment curves produces the conditions shown

in FIG. 10.1e. This figure shows the fictitious moment curves Hy and iy

and the way in which the energy variation w1 in the tension zone is trans-
formed by means of the moment curve Hy of the tension zone into a corres-
ponding energy variation over the length A of the rotation span. In the same
way, it is shown how the energy variation ¢2 in the compression zone 1%
transformed by means of the moment variation Ky in the compression zone.

The vertically shaded area thus represents, for the rotation span, the total
energy consumption within the tension zone, and the area with inclined shading
represents the total energy consumption within the Compression zone.

For the sake of simplicity, the derivation here has been based on a Tinear
moment distribution over the rotation span. The reasons for this are as
follows. According to Chapter 6, B8 = 0.25 represents a moment distribution

at a plastic hinge in the span when the beam is acted upon by a uniformly
distributed load. In this situation, the shear force is zero at the plastic
hinge and small within the rotation span. This situation is therefore not
appropriate in this context. For the other two moment distribution alterna-
tives, 8= 0 and 8 = -0.06, large shear forces can occur at the plastic hinge.
However, from the calculation results set out in Chapter 7 it is evident that
the difference between the values eu/l calculated for 8 =0 and B = -0.06

is insignificant. For this reason, only the case 8 = 0, i.e. linear moment
distribution, is studied in the following.

The analytical expressions for the fictitious moment variations OBC and OEC
in FI3. 10.1d, which are necessary for the calculation, are as follows.

According to the figure, for the tension zone

u o= {1-0,02 )uu fér z < g (10.1.1)

z
d
)‘._%

G

, -~ (1-0,02a)u féor a & 2z <1 (10.1.2)
AT u Q
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FIG 10.1e Transformations of the moment-energy curves by means of the moment
curves . and Ho The distributions of Uy and Py along the
rotation span are obtained as a result.
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where A = ]O/d and o = a/d.

For the compression zone, similarly,

el g 2 ( )
P for 7 < = 10.71.3
M Ato Lu 2
Ay - % .
= Sr = 10.1.14
H A+ Uu for 2 £z= lo ( )

When the rotation span is divided into n equal parts according to FIG. 6.1a,
with the subdivision points numbered from 0 to n, the expression for the
moment U at point No i is as follows for the moment curve in the tension

zone:
b o= (1-0,02 2 i)y £or 1 < = n (10.1.5)
1 ’ n u ‘ 3
. = i:iéﬁ (1-0,02a )y PEr Y n o< io<n (156.1.6)
1 T—a/A * u 3 =
and for the moment curve in the compression zone,
3 i . 1 « .
M. S - T T & < 10.1.7
o (1 Tl n)uu fér 1 5 5o ( )
1-i/n .. 1w . .
LY - = < < L1
Wi T TR M fér - n<izn (10.1.8)

Equation (6.3.2) for calculation of the rotation capacity 6, can now be
modified, in view of the inclusion of the effect of shear force, by multi-
plication by A which can no longer be isolated on the left-hand side of the
equation since the u - ¥ relation has been made dependent on the value of 3.
We thus have, with B = 0 substituted into Equation (6.3.2),

Iy, K
8 = o(~_—1._ny__2% (10.1.9)

27 1+
uv w, o o uy/vu

The symbol %J has now been augmented by the subscript v to indicate that the
rotation capacity obtained in this way includes the effect of shear force.

10.2 The Tength of the yield region

What remains now is to choose an appropriate value of the moment shift a. It
is reasonable to assume in this connection that a/d is proportional to the
non-dimensional shear force Vn/NC, where Vn is the constant shear force in the
rotation span, see FIG. 6.1a. We therefore write
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o m
I

3 = = ;
or, since Mu 19Vn and MC dkc,

U

6 = K 7% (10.2.2)

In an extreme case, this relation yieids a« = 0 for 1 = =, which means that
the moment shift is equal to zero when the shear force is zero.

An approximate value of the coefficient « is determined as follows. The
length a_ of the yield region is obtained according to figure ¢ in FIG.
10.1a from the relation

U uoTH
a = L a + ——;—1 1
Y 2 u o

b W
o = - o + (‘] .__L)}\ (1023)
vy oom N

u

Substitution of Equation (10.2.2) into this gives

" U
o =k L+ (1 - =L (10.2.4)
y A B

At the Department of Structural Engineering, Division of Concrete Structures,
Chalmers University of Technology, experiments have been carried out con-
cerning the rotation capacity of plastic hinges in reinforced concrete beams.
In these tests observations were made regarding the extent of the yield region
along the beam. For a few beams the determination was made with the aid of
strain gauges attached to the tension reinforcement. For the other beams

the determiantion was made more approximately by measuring the distance
between the outermost large cracks in the tension zone level with the

tension reinforcement. From these tests, 22 were chosen for assessment of

the value of the coefficient «.

The beams were simpiy supported and acted upon by a point load at the centre,
i.e. the moment distribution corresponds to the case 6 = 0.

The beam data of interest in this context - type of reinforcement and the
sTenderness X of the rotation span - are given in Table 10.Za together with
the values of uy, uy/uu and uy,obs measured during the tests. The latter



TABLE 10,2a Comparison of experimentally determined and calculated yield lengths

801

Beam Reinforcement A ny u o obs U cale T

G02-1 Ks 40 11,0 0,150 0,004 : 0,83 0,75 1,10
-2 Ps 50 11,1 0,175 0,866 0,40 1,34 0,37
-3 Ks 80 10,8 0,121 0,949 0,54 0,66 0,81
-34 Ks 60 10,9 0,11 0,73 1,27 0,75 1,69
~h Ks L0 11,8 0,208 0,954 1,18 0,72 1,60
-5 Ps 50 11,9 0,218 0,935 0,99 0,96 1,03
-6 Ks 80 10,9 0,157 0,982 0,67 0,3h 1,97
-6A Ks 60 11,0 0,175 0,917 0,07 1,07 - 0,90
=7 Ks 40O c,B 0,239 0,722 1,54 2,00 a,7h
-3 Ps S50 5,9 0,229 0,808 0,99 0,08 1,01
-13 Ks 60 9,1 0,065 0,788 1,64 2,00 0,82
-1k Ks 60 7,3 0,060 0,787 1,91 1,6h 1,17
-15 - Ks 60 5,5 0,061 0,769 1,83 1,38 1,33
-16 Ks 60 b,6 0,065 0,649 1,37 1,76 G,78
-17 Ks 60 3,7 0,057 0,675 1,23 1,36 6,91
-8 Ks 60 9,1 0,101 0,8h7 1,33 1,50 0,88
~19 Ks 60 7,k 0,12k 0,885 0,00 1,02 0,92
-20 Ks 60 5,5 0,090 0,820 0,62 1,15 0, kT
-21 Ks 60 b, 6 0,107 0,862 1,31 0,87 1,51
-2z Ks 60 3,6 ¢,101 0,8h1 1,36 0,85 1,59
-23 Ks 60 9,2 0,19C 0,971 0,86 0,07 1,88

-2 Ke 60 3,7 0,176 0,006 1,17 0,75 1,56
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quantity refers to the observed non-dimensional length of the yield region
determined as a mean value on each side of the plastic hinge,

The corresponding length o of the yield region for the beams studied

y,calc
has been calculated from Fquation (10.2.4) for different values of «. The
best agreement with the experimentally determined lengths was obtained for

a value of « approximately equal to 20.

If Equation {10.2.4) is studied with x put equal to 20 in different extreme
situations, it is found however that in certain cases the calculated Tength
of the yield region is greater than . In order to avoid this, it has been

decided here to put « = 10. It must be pointed out that oy catculated from
Equation {10.2.4), is only slightly dependent on the value of « under normal

circumstances.

calculated from Equation (10.2.4) with « = 10,

The yield lengths o
, are set out in the table. The mean value of

,calc
and the ratio ?y,obs/ay,ca}c
the ratio is 1.14, with the coefficient of variation equal to 0.38. For large
values of X the effect of shear force on the rotation capacity is small - see
Section 10.3 below. It is therefore interesting to compare the experimentally
determined yield Tengths with the calculated ones, particularly for small
values of x. Of the 22 beams studied here, 11 have a value of i less than 8.
For these 11 beams the mean value of the ratio uy,obs/ay,ca1c is equal to
7.10, with the coefficient of variation egual to 0.33. The agreement may be
considered acceptable in view of the way in which the Tength of the yield

region was determined in the experimental investigations.
The expression {(10.2.2) can then be written as
3!

o = 10‘7} (10.2.5)

This expression is used for calculation of the moment shift in Equations
(10.1.5) - (10.1.8). |

10.3 Calculation results

Using the computer program as augmented by the modified model developed in
Section 10.1, the rotation capacity By is now calculated for some material
combinations, for values of » varying between 2 and tC. The first calculation
relates to HR steel and concrete type B. The beam is assumed to have no
compression reinforcement. The results are set out in FIG. 10.3a. FIG. 7.1a
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FIG 10.3a

0 0,10 0.20 0.30

Rotation capacity €y for a plastic hinge reinforced with HR
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section without compression

reinforcement,



FIG 10.3b
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Comparison of the values of the rotation capacity for a piastic
hinge with HR steel, obtained when the calculations consider

{euv) and do not consider (eu) the effect of shear force. The
comparison relates to a section without compression reinforcement.
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FIG 10.3c
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Rotation capacity 94y for a plastic hinge reinforced with HR
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section with compression

reinforcement characterised by wc/w = (0.5.



FIG 10.3d
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Rotation capacity @uv for a plastic hinge reinforced with HR
steel calculated with the effect of shear force taken into
consideration. The figure relates to a section with compression

reinforcement characterised by o /w = 1.0.
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FIG 10.3e

Comparison of the values of the rotation capacity for a plastic
hinge with HR steel, obtained when the calculations consider (euv)
and do not consider (eu) the effect of shear force. The comparison
relates to a section with compression reinforcement characterised

by mc/w = 0.5 and 1.0.
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(8 = 0) shows the results of a corresponding calculation performed under the
same conditions, but with the effect of shear force ignored. The two figures
cannot be compared directly as one shows 8y and the other eu/l. However,

the curve for f%/l.can be multiplied by the fixed value of X and the ratio
%Jv/eu can then be formed which gives an idea of the effect of shear force.
For the example in guestion this yields the results set out in FIG., '10.3b. The
peaks which the curves exhibit occur at w . where the 6 curves change direction.
It is not very likely that, in actual fact, the peak is as pronounced as it
appears in the figure. It is probable that some egualisation can be expected
in the region around W.ps 8S indicated by the dashed tines in the'figure. As
will be seen, the effect of shear force is a function of w. As « increases,
the effect increases up to w= 0.26, after which it again decreases.

In order to find an explanation for the fact that there is a maximum value
for the effect of shear force, it is necessary to study the detailed calcu-
lations. The following can be seen from these. As w increases, so does the
ultimate moment u , and this means, according to Equation (10.2.5), that o
and thus, according to Equation (10.2.3), the extent % of the yield region
also increase. On the other hand, at the same time the ratio u /uu approaches
the value 1.0 asymptotically. According to Equation (10.2.3) this means that
qy decreases as w increases. For « < 0,26 one of these effects is dominant,
and for w > 0.26 the other, and therefore a maximum can occur. It is also
evident from FIG. 10.3b that the value of the ratio euv/eu increases as A

decreases, i1.e. as the shear force increases.

Corresponding calculations for the combination HR steel and concrete type B
have also been performed for a section with compression reinforcemnt. For
uE/w = 0.5 and mc/w = 1.0 the results are set out in FIG. 10.3c and 10.3d
respectively. It is evident from these figures that the effect of shear force
is considerable for short rotation spans. It is seen that, for A = 2 and

wc/w = 0.5, the rotation capacity remains practically constant as w increases,
and that for A = 2 and wc/w = 1.0 it even increases as « increases. A com-
parison of the rotation capacities calculated with and without shear force

is made for these cases in FIG. 10.3e. It is seen in this figure also that
the effect decreases as the value of ) increases, and increases as the value

of w increases.

Analogous calculations for CW steel in combination with concrete type B
are shown in FIG. 10.3f for wc/w = 0, wc/w = 0.5 and wc/m = 1.0. In this
case the effect of shear force is relatively large, which is perhaps not
directly evident from the figure, but will be seen if the associated ratio
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FIG 10.3f Rotation capacity B,y for a plastic hinge reinforced with CW
steel calculated with the effect of shear force taken into con-
sideration. The figure relates to a section with variable amounts

of compression reinforcement.
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FIG 10.3¢ Comparison of the values of the rotation capacity for a plastic
hinge with CW steel, obtained when the calculation consider (euv)
and do not consider (eu) the effect of shear force. The comparison
relates to a section with variable amounts of compression rein-

forcement.
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euv/eu’ which is plotted in FIG. 10.3g, is studied.

It is evident from the studied worked examples that the analytical model
constructed yields results in good agreement with those to be expected in

view of previous experimantal experiences.
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11 THE EFFECT OF STIRRUPS

It is known from the literature that the presence of stirrups in the beam

in the vicinity of a plastic hinge has the effect of raising the rotation
capacity. This effect is primarily due to the fact that the stirrups hold
together the concrete in the compression zone in the stress interval Hy to
Mo It is in consequence possible for compressive strains several times
higher than the ultimate strain of the unreinforced concrete to occur without

spltitting of the concrete in the compression zone.

Tests on concrete surrounded by stirrups and subjected to compressive
stresses show that the presence of stirrups affects the stress-strain diagram
of the concrete in different respects. Both the ultimate compressive strain
€.y and the limit strain & corresponding to the maximum compressive stress
are increased, the latter more moderately. The compressive strength fcc of
the concrete and the stress corresponding to the ultimate strain e, are also
raised. Taken together, the effect is that the area bounded by the stress-
strain diagram increases owing to the application of stirrups, which in turn
means that the ability of the compression zone to store deformation energy

is enhanced. In particular, the fact that Sy increases also means that the
tension reinforcement can develop a larger strain before crushing failure

of the concrete occurs. The deformation energy of the tension reinforcement
also increases in consequence. The use of stirrups thus results in a total
increase in the capacity of the concrete to store deformation energy within
the volume of the rotation span, which gives the plastic hinge a higher
rotation capacity‘as most of the increment in energy consumption is of an

irreversible nature.

In the following, a method whereby the previously constructed analytical moded
can be extended so as to take into account the effect of stirrups will be

developed semi-empirically.

11.1 Phenomenclogical discussion

The magnitudes of the above parameters which determine the stress-strain
curve of the concrete are functions of the extent of stirrup reinforcement,
i.e. the dimension, strength and spacing of the stirrups and the strength

of the surrounded concrete. The way one set of parameters is dependent on
the other is unknown at present. It is therefore necessary to group together
a number of parameters in a reasonable manner so as to constitute a single
parameter which is then used as a measure of the extent of the effect due

to the stirrups.



120

The effective reinforcement ratio of the stirrups, defined by the expression

poom e R . (11.1.1)

is used as the governing parameter, where

Asv = ¢ross sectional area of one stirrup bar

fsv = tensiie strength of the steel in the stirrup
b = width of the compression zone

s = stirrup spacing

fct = tensile strength of concrete

That the selected parameter combination is a reasonable one will be evident
from the following. The stirrups have the effect of holding together the
concrete in the compression zone which, under the influence of large com-
pressive stresses in the axial direction, expands in the transverse direction.
When the stirrups are rectangular in shape, the counterbalancing forces can
principally be developed at the corners of a stirrup. This effect should
therefore decrease with increasing distance between the two interacting
corner forces, i.e. for the usual stirrup shape with increasing width b. The
maximum magnitude of the corner forces is directly proportional to both Asv
and fsv’ and the maximum corner force per unit length of beam is inversely
proportional to the stirrup spacing s. Immediately prior to crushing failure
of the concrete, this disintegrates while undegoing transverse expansion.
This transverse expansion cannot take place without the formation of a large
number of microcracks in the concrete in the compression zone. It is there-
fore probable that the tensile strength of concrete is a more significant
parameter in this context than the compressive strength.

It is assumed in the following that the stirrup effect is a function only

of the parameter -

In order to exemplify the above, let us first calculate the rotation capacity
for a beam with w, = 0, i.e. for a beam without stirrup reinforcement., The
beam is assumed to be of concrete type B, see FIG. 1%t.1a, in combination with
both CW steel and HR steel. The beam is then assumed to be provided with
stirrup reinforcement corresponding to a value w12 and as a result the
stress-strain curve of the concrete in the compression zone is assumed to
change to the curve marked B1 in FIG. 11.1a. The rotation capacity is cal-
culated for this curve. Finally, it is assumed that stirrup reinforcement
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FIG 11.1a Stress-strain curve for concrete type B in compression, and two

modified stress-strain curves B1.and BZ.
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with w0 > 0 is applied, the stress-strain curve of the concrete being
assumed to change to curve B2 in the figure, and the corresponding rotation
capacity is calculated. Unfortunately, we do not know the relationship between
the values w1 and w,p On the one hand, or between curves Bl and BZ on the
other. We can thus assume only that the greater the value of By > the larger
also will be the area bounded by the stress-strain diagram. The results of
calculation are set out in FIG. 11.1b. It is evident from the families of
curves obtained that, within each such group, the curves B1 and 82 can be
approximately obtained from curve B by changing the scale along the horizontal
axis. This implies that both curves Bf and BZ can be changed back into curve
B, i.e. the curve representing the beam with no stirrup reinforcement, by
converting the actual value of y for the beam with stirrups into a fictitious
value we. . relating to curve B. This conversion is performed by division

by some expression which is a function of o, We can therefore write

Yeie T Tlw (11.1.2)

The requirement for the function f(wv) is that it must assume the value 1
for o, = 0, and increase with increasing value of w, - In view of all the
other factors of uncertainty, there is no point in selecting a very
complicated expression for this function. The expressions

Plw ) = 1+c.w {11.1.3)

v 1w
Mo ) = (it w ) (11.1.4)
2 v
flw § = 1+ _w {11.1.5)
v 3

will be tested in the following, where Kqs Kp and k3 are assumed to be
non-dimensional constants which must be determined from the test results

reported in the literature,.

11.2 The tests of Mattock and Corley

A large number of tests concerning the rotation capacity of plastic hinges
are described in the literature. From these, the reports pubTlished by
Mattock (1965) and Corley (1966) have been selected. These test serijes are
relatively comprehensive and supplement one another, and in addition the
resuits are reported in such a way that all the information required for
this investigation is clearly set out. A1l the tests performed by Mattock
and Corley for which the measured rotation capacities are reported relate
to simply supported beams over one span acted upon by a point load at the
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FIG 11.1b Rotation capacity calculated for a beam reinforced with CW steel
and HR steel in combination with concrete types B, B1 and B2
according to FIG 11.1a.
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midpoint of the beam. Mattock's series comprises 31 beams, and that of Coriey
40, A total of 71 beams have therefore been studied, the parameters of interest
being varied over wide limits. The effective depth d of the beam is thus varied
between 5" and 30" (127-762 mm), the width b of the beam between 3" and 12"
(76-305 mm), and the slenderness * between 2.75 and 11 . The cylinder strength
of the concrete is between 3400 and 6200 psi (23-43 MPa), and the yield stress
of the tensile reinforcement varies between 45 and 80 ksi (310-550 MPa). The
effective reinforcement ratio for the tension reinforcement covers the range
w= 0,11 to w=0.57, which is combined with compression reinforcement

corresponding to the range w, = 0.01 to w, = 0.33.

What is of the greatest interest in this context is the large variation in
stirrup reinforcement covered by these tests. Reinforcing steel of dimensions
174", 3/8" and 1/2" (6.4, 9.5 and 12.7 mm) and of grades indicated by yield
stresses ranging from 49 to 80 ksi (340-550 MPa) has been used. The stirrup
spacing varies between 1.25" and 15" (32-381 mm). The effective reinforcement
ratio W, for the stirrups, calculated from Equation (11.1.1), thus varies
from 0.14 to 2.32. In determining 0,5 the tensile strength of concrete has

been calculated from the expression

= b f= o
Tet 202 VI (11.2.1)

where both fcc and fct are in psi.

For the beams in Mattock's and Corley's test series the rotation capacity
has been calculated by means of the program developed here, account being
taken of the extent and position of the compression reinforcement and of

the effect of shear force, the latter according to the analytical model
developed in Chapter 10. Concrete type B was assumed in the calculations,
while for the tension and compression reinforcement the actual stress-strain

diagrams applicable to the steels concerned were used. The calculated relation
between & and 6y has been plotted for all the beams. Two calculated curves,

one relating to beams BT and Df and one relating to beams BZ and D2 according to
the notation used by Mattock, are shown in FIG. 11.2a as examples. Using the
rotation capacities measured in the tests as initial values, corresponding
values of the fictitious effective reinforcement ratio ey, are obtained from
the curves, see FIG. 11.2a. The ratio of the actual w to the value of Wese
obtained as above gives a value of the function f(mv) according to Eguation
(11.1.2). Once the value of @, is known for each beam, the coefficients

Kys Ky and k3 Ccan then be calculated for each beam by means oc Equations
(11.1.3), (11.1.4) and (11.1.5). Since it is assumed that kys Kp and kg
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FIG 11.2a 6 - wu curves catculated for beams B1, D1, B2 and D2 in Mattock's

uv
test series. The experimentally determined value of the rotation
capacity, 8,y obs? gives the value of Weie by means of the curve

relating to the test.

FIG 11.2b The appropriate vaiue of the effective reinforcement ratio W
gives the rotation capacity %0 for a section without stirrup
reinforcement. When the section is provided with stirrup rein-
forcement, w, is transformed into wys and as a result the
rotation capacity increases to 81"
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FIG 11.2¢ Comparison of the calculated rotation capacities and those
determined by the tests of Mattock and Corley.
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are constants, they can be determined as the means of the individual values
calculated from the test materijal in the way described above. Of the suggested
expressions (11.1.3), (11.1.4) and (11.1.5), the one which exhibits the least
scatter with respect to the mean is then selected. Such an analysis performed
on the present test material verifies expression (11.1.4) as the best. This
expression yields the value K = 1.371 when all 71 tests are included. When
seven extreme values are removed, the mean for the remaining 64 beams is

& = 0.97. The approximation «, = 1.0 is chosen. Equations (11.1.2) and
(11.1.4) then yield the relation

6o =-(—:z—? (11.2.2)

v
Calculation of the rotation capacity with respect to the effect of the
stirrup reinforcement can now be carried out as follows, see FIG, 11.2b.
The plastic hinge is assumed to have the actual effective reinforcement ratio
e Without stirrup reinforcement, the rotation capacity 60 is thus obtained
by means of a curve for w, = 0, calculated by means of the computer program.
With stirrup reinforcement corresponding to w, the rotation capacity eu! for
wy would be obtained by means of the dashed curve. The method adopted 1in
practice is to convert w, to w, = w.;. by means of Equation (11.2.2), and
to obtain the sought rotation capacity 8,1 from the curve relating to w, = 0.

That it is functionally correct to adopt the above procedure is confirmed by
the following. The way the stress-strain curve of the concrete increases in
deformation capacity for increasing w,, is indicated in FIG. 11.1a. What this
figure, which is non-dimensional, does not show is that fcc also increases for
increasing w . An increase in fcc implies a reduction in w, which corresponds

to some of the shift in the curve shown in FIG, 11.2b.

The power 2 in expression (11.2.2) for the scale factor f(mv) can be explained
by the dual effect of the stirrup reinforcement. Surrounding of the concrete
increases not oniy fcc but also ey’ and the latter increase also results in
an increase in rotation capacity, which in calculations according to the pro-
posed method is taken into éccount by further reduction of w.

As mentioned above, the calculation procedure developed has been systematically
applied to the tests of Mattock and Corley. The measured rotation capacities
eobs were then compared with the calculated rotation capacities ®calc by means
of the ratio eobs/aca1c' In the investigation a number of test results were
rejected. These related to tests which exhibited such extreme discrepancies
from the general trend that there was justification to suspect a measuring
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error or some other procedural error. Mattock and Corley themselves report
difficulties in measurement. Two tests from Mattock's series, and 11 tests
from Corley's series, have been omitted. The remaining tests yield the

following results.

For Mattock's tests, the mean value of 29 values of eobs/ecalc = (.97, with
the coefficient of variation = 0.35,
For Corley's tests, the mean value of 29 values of gobs/scaic = 1.08, with

the coefficient of variation = 0.40.

For all the 58 tests analysed, the mean value of eobs/e = 1.03, with the

coefficient of variation = 0.38.

calc

The comparative calculation performed is shown in detail in FIG. 11.2c. The
validity of the results obtained must be judged in view of the fact that in
these test series the vaiue of o, varies over very wide Timits, viz. between
0.14 and 2.32.
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12 DISCUSSION OF THE SAFETY ASPECT

The following discussion relates to the safety philosophy advocated by the
CEB (1976). In principle, it is the same philosophy as that on which the
Swedish "General regulations for loadbearing structures” (AK 77} and “Regula-
tions for concrete structures® {BBK 77) are based.

According to the CEB, the ultimate 1imit state due to a bending moment is to
be checked by comparing the ultimate moment with the bending moment capacity
of the section concerned. Determination of the bending moment capacity is to
be based on the design compressive strength fcc of the concrete and the

design tensile strength fst of the reinforcement. In turn, these design

strengths are to be obtained from the characteristic strengths fcck and fstk
respectively of the materials, defined in a certain manner, by dividing these

by partial coefficients. The following expressions apply

s = _Gck (12.1)

s = STE (12.2)

where Vs is the partial coefficient for reinforcement in tension.

An analogous procedure should be applicable when a deformation characteristic
is studied. The rotation capacity of a plastic hinge is essentially deter-
mined by the strain capacities of the steel and concrete, and it therefore
appears reasonable to apply the factors of safety to these. We therefore
assume that the characteristic ultimate strain Uk of the reinforcement

and the characteristic ultimate compressive strain €cuk of the concrete

are quantities defined in a certain manner, and determine the corresponding

design values from these. We thus have

£
Quk ' \
g = (12.3)
cu Y
C
and
£
e . = _Suk (12.4)
su ¥ '

s

In principle, the partial coefficients relating to ultimate strains should
be chosen in view of the appropriate scatter characteristics of these strains.
For the sake of simplicity, however, in the following calculations the partial
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coefficients relating to strains are given the same values as those relating

to the corresponding strengths.

The deformation 1imit state considgred here occurs when er = ql, i.e.

when the design value of the rotation requirement attains the design value
of the rotation capacity. It is therefore of interest to see how the
operations (12.3) and (12.4) affect the design value of the rotation capa-
city. The following comparative calculations are therefore made.

Since the CEB proposes that the ultimate compressive strain of concrete is
to be taken as Eauk = -0.0035, the calculations are made using concrete |
type A. The value quoted is considered to be a characteristic value. If the
partial coefficient Y. = 1.5 is selected, the corresponding design value

is Cey T -0.0035/1.5 = -0.0023.

For reinforcement of HR steel, the characteristic value of the ultimate
strain is taken to be Ecuk = 0.100. If the partial coefficient Y = 1.2

is chosen for steel, then the design value of the ultimate strain is sy -
= 0.100/1.2 = 0.083., The characteristic value of the ultimate strain of

CW steel is assumed to be ¢ = 0.065, and the design value is therefore

€y = 0.065/1.2 = 0.054,

suk

Calculations made with HR and CW steels combined with concrete type A yield
the results set out in FIG. 12a and b. The calculations are made using both
the characteristic values and the design values of the ultimate strains of
the steel and concrete. The results relate to moment distribution along

the rotation span determined by 8 = 0.25, and to a cross section without
compression reinforcement. For the sake of completeness, FIG. 12c¢c and d
give the results of corresponding calculations relating to cross section
with compression reinforcement to an extent determined by mc/m = 0.5.

The figures show the way in which the ratio eu/x decreases from a charac-

teristic to a design value when partial coefficients are applied to the
strain capacities of the steel and concrete.

It is evident from the printouts that it is only the ultimate compressive
strain of the concrete which determines the rotation capacity ih the cases
studied. In no case has the ultimate strain of the steel been reached. Appli-
cation of the partial coefficient Yo = 1.2 has therefore had no effect at all
on the design value of the rotation capacity, and may just as well have been

omitted in the cases studied.
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FIG 12a Values of the rotation capacity calculated on the basis of

the characteristic and design values of the ultimate strains
of the steel and concrete. The figure relates to a section
with tension reinforcement of HR steel, and without compression

reinforcement.
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FIG 12b
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Values of the rotation capacity calculated on the basis of

the characteristic and design values of the ultimate strains

of the steel and concrete. The figure relates to a section

with tension reinforcement of CW steel, and without compression
reinforcement.
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FIG 1Zc Values of the rotation capacity calculated on the basis of the

characteristic and design values of the ultimate strains of -the
steel and concrete. The figure relates to a section reinforced
with HR steel, and with compression reinforcement represénted

by mc/w = 0,5.

133



134

38y
A CW- A
10 - B =025
We./w=05
g
) T T T B ()
0 0.1 0.2 0.3
FIG 12d Values of the rotation capacity calculated on the basis of the

characteristic and design values of the ultimate strains of

the steel and concrete. The figure relates to a section reinforced
with CW steel, and with compression reinforcement represented by
wc/m = 0.5,
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In practice, it would be an advantage if the curves relating to the rotation
capacity could be calculated from the characteristic ultimate strains and

the factor of safety instead applied to w, i.e. by replacing the characteristic
strengths by the design strengths when o is calculated. This would give rise

to the expression

£ T

1 bi Y v .

+ tk o c

o= St stk ‘e _ {12.5)
4 :F‘ e ¥ K ¥y
cco cek s s

where wy is the design value of w and oy the corresponding characteristic value.

In view of the fact that in the cases studied, and probably aiso in ordinary
practical cases, Vs has no effect on the design value of the rotation capacity,
it should be possible to simplify Equation (12.5) to

o= (12.6)

Expression (12.6) implies a change of scale in relation to the w axis, with
Y. as the scale factor. This hypothesis is checked for mc/w = 0 by changing
the scale of the curves in FIG. 12a and b dividing w by Yo = 1.5. The curves
shown by chain Tines in the figures are obtained in this way. These are
practically completely coincident with the full lines based on the design

strains of the steel and concrete when mc/m = (.

For the sake of consistency, the characteristic value of the ratio wc/mk =
= (mc/m)k for a section with compression reinforcement should be replaced

by its design value

(wc/w)d =w fu, = DA (wc/w)k/Yc (12.7)
For the case studied, this implies that the curve relating to the design

value of the rotation capacity is obtained by the above change in scale in
relation to the curve calculated for mc/w = 0.5/1.5 = 0.33. The curves plotted
with chain Tines in FIG. 12c and d, which are a good approximation to the
curves calculated by means of the design vaTues of the ultimate strains, are

obtained in this way.

It is proposed on the basis of the above analysis that the curves which can
be calculated with the computer program described in this report should in
practice be applied by first determining « for the characteristic strengths
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of the steel and concrete and then introducing the factor of safety by
multiplying the value of  thus calculated by a partial coefficient T
relating to the rotation capacity. In ordinary cases, Y should be made
equal to Yoo and egual to unity when abnormal loads are studied.
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13 OVERALL CONCLUSIONS

The author has earlier analysed the rotation capacity of plastic hinges -
see Plem (1973a), the following expression being derived for approximate

calculation of the rotation capacity %

a
e = 210 ° = {1+250p ) (13.1)
X v

x is the depth of the compression zone and a, a fictitious yield length,

which can generally be made the length of that section of the beam adjacent

to the plastic hinge over which the ultimate moment exceeds n% of the ultimate
moment Mu' The effect of stirrups is taken into account by means of the
quantity iy which is the geometrical reinforcement percentage of the stirrups,

calculated in a certain way.

Expression (13.1) is discussed by Cederwall, Losberg & Palm (1974} who propose
certain additional rules in order that this expression may have a greater

degree of differentiation.

In some circumstances, agq> i.e. the section over which the moment is greater
than O.BMU, can be selected for 3 If at the same time we assume a linear
moment distribution (B = 0) and ignore the effect of stirrups, Equation (13.1)

can be written

6 =0.4107°0 -2 = o,h'1o'3 3 & (13.2)
1 3 x

where A = 1O/d is the sienderness of the rotation span. If we apply the
rectangular stress distribution proposed by the CEB to the compression zone
of the beam cross section, we obtain the value x/d = 1.25w by means of an
equilibrium expression, which, substituted into Eguation (13.2), yields

the expression

3
w

This relation is plotted in FIG. 13a. As will be seen from the figure, the
curve (part of a hyperbola) has the same general shape as the curves calcu-

Tated in another way and presented in the previous publication.

However, Equation (13.1) is far too undifferentiated to permit closer study
of the way in which different parameters affect the rotaticn capacity. This
is particularly true with regard to those parameters which describe the
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mechanical properties of the steel and concrete, but it is also difficult
to take into account in a correct manner the other factors which affect

the rotation capacity. For instance, there is a temptation to take into
account the presence of compression reinforcement by replacing w by

(w - wc) in Eguation (13.3). It is shown in Chapter 9 that such a procedure

is erroneous.

The object of the work presented in this report has been to examine in
greater detail the questions which can be posed concerning the yield charac-
teristics of reinforced concrete beams, and to study in this connection the
way in which the rotation capacity is affected by various factors. The
analysis carried out is summarised and commented on briefly in the following.

" The calculations are based on standardised, but realistic, stress-strain

curves for the constituent materials concrete and steel. These are described
in Chapter 2. The calculations are of such complexity that a computer must
be employed. A program for the computation of the rotation capacity under
the influence of various factors has been developed, and is presented in an

appendix.

Mainly two types of reinforcement and two concrete types have been included

in the investigation. One of the concretes, Type A, has an ultimate compressive
strain ey = ~0.0035, while the other, Type B, has an ultimate compressive
strain ey = -0.0070. One of the typical steels, denoted HR {hot rolled),

has a pronounced yield point, while the other, denoted CW (cold worked}, has

no pronounced yield point. The truncated stress-strain diagram for reinforc-
ing steel at present recommended by the CEB is also mentioned in passing.

After derivation of the necessary formulae (Chapters 3 - 6), in which process
expressions are constructed for determination of the rotation capacity by
means of a study of the mechanical energy balance of the rotation span, the
results of calculations relating to different combinations of typical steels
and concrete types are given in Chapter 7. In this connection, the para-
meters describing the steel types are varied in different ways. Special
mention must be made of one result from this investigation.

For plastic hinges reinforced with HR steel, there exists a critical value
of the effective reinforcement ratic w. This critical value ‘is charac-
" the rotation

W
cr
terised by the following. For beam cross sections with w > @,

capacity is low and almost constant irrespective of the value of w. The
cross section may be described as over-reinforced with respect to the
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FIG 13a Rotation capacity expressed in terms of the ratio eu/A as a

function of the effective reinforcement ratio w, the curve
being calculated by means of the formula given in the figure.
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FIG 13b Plastic hinge underneath a single point load, figure a),

and underneath a pair of point loads, figure b).



140

rotation capacity. For beam cross sections with w < w the rotation capacity
increases rapidly as the value of w decreases. The cross section may be
described as normally reinforced with respect to the rotation capacity. This
phenomenon will be understood most easily by examination of FIG. 1.3a.

The rotation capacity of a plastic hinge is represented by the hatched area
B in the figure. This area has been obtained by transformation of the area A
above the moment-curvature relation for the beam cross section by means of
the moment diagram. For large values of w failure of the beam occurs at

small values of the curvature, with the result that area A and thus the
rotation capacity are small. For small values of w beam failure ensues at

such Targe values of the curvature that the lower strain hardening Tlimit of
the steel has been passed, and the part of the moment-curvature relation which
is again increasing has been entered. In this case, the area A and thus the

rotation capacity will be large.

The value of 0. s i.e. the boundary between a cross section over-reinforced

and normally reinforced with respect to the rotation capacity, is determined
for a given concrete by the value of the lower strain hardening 1imit of the
steel, i.e. the end of the yield region of the steel. This is quite analogous

to the determination by the initial point of the yield region of a balanced
reinforcement expressed in terms of @ i.e. the boundary between a beam cross
section over-reinforced and normally reinforced with respect to bending failure.
It will be evident from this that a beam cross section may be under-reinforced
with respect to bending failure (v < wy) while at the same time it is over-
reinforced with respect to the rotation capacity (w > “Er)' Generally, W W
and the rotation capacity is therefore at all times extremely smail for a

beam cross section over-reinforced with respect to bending moment. A beam

which is over-reinforced with respect to bending moment should therefore never
be used when reinforced concrete structures are designed purely by the plastic

theory.

In Chapters 8 - 11, a study is made of the way in which factors other than
the shape of the stress strain curves of the steel and concrete affect the

rotation capacity of plastic hinges.

Creep of the concrete increases rotation capacity. However, inclusion of this
effect in determining the rotation capacity is no guafantee that it will be
easier to satisfy the condition in (1. 1.7), since the rotation requirement

of the plastic hinge also increases as a result of creep, as mentioned in
Section 1.2. The overall effect is dependent on the design of the structure.



141

For valtues of w in excess of 0.05 - 0.07. the presence of compression rein-
forcement increases the rotation capacity. The increase in relation to cross
sections without compression reinforcement, for usual values of w, is depen-
dent on the value of this, a higher value of w resulting in a greater increase.
This 1is a favourable effect since the rotation capacity for the cross

section without compression reinforcement decreases as the vaiue of v in-
creases. In order that this effect may be utilised to the fulil, it is

essential that the compression reinforcement should be fixed within the

cross section by means of stirrups in order to prevent buckling of the rein-

forcing bars.

If the effect of shear force on the rotation capacity is not taken into account
in calculating the rotation capacity, it is found for a given cross section
that the rotation capacity is directly proportional to the slenderness X

of the rotation span. See Equation (13.3). If the effect of shear force is
allowed for in calculations, it is found that the rotation capacity increases
considerably and disproportionately for small values of X, i.e. for X = approx.
2. This increase diminishes for increasing values of A, and vanishes for values
of A of about 8 - 10.

The effect of shear force is explained by the fact that the inclined shear
cracks which occur in the part of the beam acted upon by shear force cause
yield of the tension reinforcement to take place cver a larger region of the
rotation span. For a larger yield length, the capacity of the rotation span
to store deformation energy increases, and the rotation capacity increases
in conseqguence. It must be realised, however, that this favourable effect
is never fully developed in practice, since intensive yield characterised
by contraction of the cross section generally occurs only within a Timited
region of a reinforcing bar stressed up to the yield point. This is also
taken into account in the computer program. The above fact must also be
borne in mind in conjunction with determination of the rotation capacity of
a plastic hinge which develops in a beam acted upon by a constant bending
moment over a certain distance. The rotation capacity of the plastic hinge
over the distance a in FIG. 13b, b), is thus hardly greater than that of
tha plastic hinge shown in a), in spite of the fact that, computationaliy,
yield in the tension reinforcement takes place over a longer distance in
the former case than in the latter.

If the concrete in the compression zone is surrounded by stirrups, the
deformation capacity of the compressed concrete is enhanced, and this means
that the rotation capacity also increases. The report outlines the way in
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which this effect can be approximately calculated. This method involves a
downward correction of the value of w, which generally resuits in an
increase of the rotation capacity.
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APPENDIX

The computer program developed for calculation of the rotation capacity

of a plastic hinge in a reinforced concrete beam is presented and commented
on in this appendix. The program has been written in ALGOL 60, with notation
according to the conventions applied in conjunction with the computer
system UNIVAC 1108.

The computational potential of the program is outlined in the introduction.
The program is then described and reproduced, and finally examples of the

printout are given.

A.1 Calculation alternatives

Three a1ternat§ve calculation methods are possible. A1l begin with a computation
of the following quantities which relate to the cross section under consider-
ation. The non-dimensional curvature 1/p is employed as the governing parameter.
The curvature is increased in discrete steps from zero to the value which
results in material failure. The length of the increment prior to the yield
moment is a(1/0) = 0.5 . 10"3, and after the yield moment A(1/p) = 2.0 10"3.

The calculated quantities, all of which are given in non-dimensional form,

are as follows:

u bending moment
‘depth of compression zone
£¢ maximum compressive strain in the concrete
€5 compressive strain in cpmpression reinforcement, if any

strain in tension reinforcement
Ve contribution of compressed concrete to y
Vi contribution of compression zone to ¢
P total deformation energy stored in the cross section per unit Tength

of the beam

The values obtained in this introductory section are printed out in tabular

form by means of the procedure SKRIV(K).

Computation can then proceed in two ways.
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Alternative ] relates to calculation without consideration of the effect
of shear force on the rotation capacity. This yields the ratio eu/x
according to Equation (6.3.2} for the reguired moment variations expressed
in terms of the coefficient g. The results of calculations according to
this alternative are printed out by means of the procedure SKRIW 1.

Alternative 2 relates to calculation with regard to the effect of shear
force according to the analytical model described in Chapter 10. In this
alternative the value of g is at all times zero, i.e. variation of moment
over the length of the rotation span is assumed to be linear. The calcula-
tion yields the rotation capacity : corresponding to read-in values of
the slenderness A of the rotation span. Results according to this alter-
native are printed out by means of the procedure SKRIW 2.

Alternative 3 is a combination of Alternatives 1 and 2. It is used when it

is desired to calculate the rotation capacity in the same run both with

and without consideration of the effect of shear force. When this alternative
is selected, values of both g and A must be read.

A.2 Procedure declarations associated with the main program

Before the main program there are a number of procedure declarations which
are commented on in the following. The numbers in brackets refer to the
statement number in the program reproduced in Section A.4.

INDATA (12 - 26)

This procedure comprises reading of data cards. The following input data

cards may be used.

TYP card. Contains an integer which specifies the desired calculation
alternative. This integer may be 1, 2, 3 or a negative number. A negative
number indicates the end of the input Tist.

STEEL card. Contains a description of the stress-strain curve of the
reinforcing steel. The following data are punched consecutively.
Steel type, 1 for HR steel, 2 for CW steel.

Non-dimensional modulus of elasticity € of the steel.
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The ratio n = fstu/fst'
The Tower strain hardening Timit € For CW steel € = 0 is put.
Limit strain €

Ultimate strain gy

CONCRETE card. Contains a description of the stress-strain curve of the
concrete. The following data are punched consecutively.

Non-dimensional modulus of elasticity €. of the concrete.
The coefficient «, in Equation (2.1.2)

Limit strain £y with a negative sign.

Ultimate strain e. , with a negative sign,

cu
Creep factor . If creep is not taken into account, © = 0 is put.

FC card. This card contains the ratio of the strength of the compression
reinforcement to that of the tension reinforcement, i.e. v = fsc/fst’ and
the non-dimensional distance v = ¢/d of the compression reinforcement from
the extreme fibre in compression. This card must be included even when

there is no compression reinforcement, in which case 1.0 0.1 1is punched,

OMEGA card. This card must begin with an integer which specifies the number
of the values of w which follow. The values of w for which the calculation
is to be performed are then given consecutively. If reqguired, the values of
w may extend over several cards.

OMEGAC’card. This card must begin with an integer which specifies the number
of the values of w_/w which follow. The values of mc/w for which the
calculation is to be performed are then punched consecutively. If required,
these may extent over several cards. When there is no compression reinforce-

ment, 1 0.0 is punched on this card.

BETA card. This card must begin with an integer which specifies the number
of the values of g which follow. The values of g for which the calculation
is to be performed are then punched consecutively. The following values of g
may occur: -0.06, 0 and 0.25. This card is to be omitted in Alternative 2.

LAMBDA card. This card must begin with an integer which specifies the number
of the values X which follow. The values of A for which the calculation
is to be performed are then given consecutively. This card is to be omitted

in Alternative 1.
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N card. This card contains an integer which specifies the number of strips
in the fictitious compression zone. The length of the rotation span is
divided into the same number of parts.

The cards must be read in the order specified.

A run may comprise a series of computations where each computation is
described by a complete series of input data cards as above. The last data
card in a run must be a TYP card containing a negative integer.

RUBRIC (28 - 38)
Call of this procedure causes shifting of the paper in the line printer

to a new side and the printout of a heading which includes input data.
The extent of the heading is shown in the example in Section A.5.

SKRIV(K) (40 - 46)

This procedure causes printout of one row in the table of results referred

to in Section A.1.

SKRIW 1 (48 - 51)

Call of this procedure causes printout of a read value of g and the value
of eu/x calculated for this.

SKRIW 2 (53 - 56)

Call of this procedure causes printout of a read value of A and the value

of euv calculated for this.

TRYCK (58 - 71)

Calil of this procedure causes printout of the appropriate distribution of
compressive stresses in the compression zone of the beam. Ordinarily, this
procedure is not called in the main program, but the program thus incorpo-
rates a provis{on for the study of the stress distribution which can be

made use of if reqguired.
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CONCRETE (E,DE,SI,EM,FI,E0,CR,I) (73 - 97)

This procedure gives the non-dimensional compressive stress gc/fcc in the
concrete as a function of the strain £c in strip No i in the compression

zone. During application of load the stress is computed from Equation (2.1.2),
and during removal of Toad from the expression for 1ine AB in FIG 2.1a.

This procedure requires two globally declared quantities, namely array EA,

EB (1:N). Initially, these are zeroed, but when a strip is relieved of load,
data which determines the position of the unloading 1ine in the stress-strain
diagram of the concrete is inserted into the corresponding positions in EA

and EB. This procedure yie1ds the value of GC/fCC with a negative sign.
The parameters listed are as follows:

E the appropriate vaiue €ci of the concrete strain in styrip No i

DE  the increment in €ci during a calculation step. Whether the concrete
is being Toaded or unloaded is determined by the sign

SI  the value of Uc/fcc computed by the procedure

EM  the instantaneous modulus of elasticity of concrete in a non-
dimensional form

FI  the coefficient Ko in Equation (2.1.2)

EO Timit strain €4 of the concrete

CR  the creep factor ¢

I the number of the strip concerned.

STEEL (Z,E,DE,SI,EM,Y,E1,EQ) {99 - 146)

This procedure gives the non-dimensional stress cS/fSt in the reinforcement
as a function of the strain £g in the tension reinforcement, or the stress
Gsc/fsc as a function of the strain € in the compression reinforcement.
During application of load the stress is computed from the stress-strain
diagram applicable to the steel type in guestion, see Section 2.2, and during
removal of load from the expression for an unloading line, in principle in
conformity with FIG 2.2a. The procedure requires two globally declared
quantities, namely real TA,TB. Initially, these are zeroed, but when there

is removal of load they are assigned values which determine the position of
the unloading 1ine in the stress-strain diagram of the steel. This procedure
yields the non-dimensional stress with a positive sign. The main program must
therefore perform a correction of sign when the procedure is applied to

compression reinforcement.
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The parameters listed are as follows:

Z indication of steel type, 1 for HR steel, 2 for CW steel

E the appropriate value of the steel strain £

DE  the increment in £ during the calculation step in guestion. Whether
the steel 1is being loaded or unloaded is determined by the sign

SI the vaiue of os/fst or USC/fSC computed by the procedure

EM  the non-dimensional modulus of elasticity e of the steel

Y the coefficient n = fstu/fst
E1  the Tower strain hardening limit e of the steel (= 0 for CW steel)

E0  the limit strain €5 of the steel
INTERPOL (A,E,X,AE) (148 - 160)

This procedure is used for linear interpolation in the tables computed
by the program. Application will be evident from the following parameter
list.

A the name of the column in the table, declared as an array, in which
interpolation is to be effected
the name of the argument column declared as an array

X the argument value in question

AE  the highest row number in columns A and E. It is stipulated that
numbering of rows begins with 1.

This proéedure is a real procedure. The procedure name INTERPOL therefore

assumes the computed value when called.

A.3 The main program

The main program begins on line 162 by reading the actual data. The program
structure is characterised by two loops, the outer one of which relates to
successive values of wC/w and the inner one to successive values of w.
Inside these loops the program can be divided into a number of sections.

The first of these, which extends to statement 221, determines by iteration
the internal equilibrium according to Eguation {3.3.1) for each new increase

~in the curvature 1/p . This section thus yields at the same time the distri-

bution of strain over the depth of the cross section, and therefore the

depth £ of the compression zone also.



151

The iteration proceeds by variation of the strain €g in the tension reinforce-
ment until Equation (3.3.1) has been satisfied with a certain tolerance. In
order to save computation time, this tolerance has been made variable as
follows. For a start, it is 0.2% of the force in the tension reinforcement.

If equilibrium is not achieved within five iterations, the tolerance is
increased by another 0.2%. This procedure is repeated, but the maximum tolerance
is 1%. Control printouts have shown that the tolerance is normally 0.2 - 0.4%.

A subsequent section of the program, statement 222 to statement 238, calculates
the non-dimensional bending moment u according to Equation (4.10) which
corresponds to the eguilibrium postion found. In conjunction which this a

check is made to see if the ultimate moment My has been reached, the value of
M being determined according to one of the definitions given in Chapter 4.

If the increase in moment in any one computation step is less than 1/10 of

the increase in moment in the first computation step, then the yield moment

4., 15 considered to have been reached. The step length of the governing

parameter A{1/p} is then guadrupled.

The program section which extends from statement 239 to statement 267
determines, by means of Equation (5.5), the increase in deformation energy y
per unit Tength of the beam which occurred during the caiculation step. The
contributions of the concrete, compression reinforcement and tension rein-
forcement are calculated separately. The calculated energy is summated
according to Equation (5.9). This program section is concluded by printout
of the tabulated values 1isted in Section A.1.

The next program section extends from statement 268 to statement 294. A check
is now made to see if material failure has occurred during the computational
step, i.e. whether |e_|>|c  —or whether ¢ >e_ . If this is not the case,

the curvature is increased by yet another increment and the above calculations
are repeated. If material failure is found then either ec OF eg is a Tittle
too large. The quantities Tisted in Section A.1, which were determined during
the Tast computational step, are therefore adjusted by interpolation so that
they just correspond to €ey or to gy depending on whether material failure
occurs in the concrete or in the steel. After this correction, the new values
relating to the last computational step are again printed out. This correction

is made only when the ultimate moment is determined by material failure.
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The next program section, statement 298 to statement 316, is employed for
calculation alternatives 1 and 3. It calculates the rotation capacity with-
out consideration of the effect of shear force for the desired moment distri-
butions described by the coefficient B. See FIG 6.1b. The calculation is
carried out using Equation (6.3.2). The appropriate values of 8 and the
calculated values of the ratio eu/A are printed out.

The last program section, statement 317 to statement 340, relates to calcu-
lation alternatives 2 and 3. It calculates the rotation capacity with the
effect of shear force taken into consideration by means of Equation {10.1.9)
for desired values of A for the non-dimensional length of the rotation span.
The appropriate values of A and the calculated values of the rotation
capacity 5,, are printed out.
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A.4 The complete program in ALGOL 60

1 REGIN CCMMENT RHTATIONSKP«PACIFFT VERSION 107

2 INTEGER IfI‘lIIZ)151!‘ff‘uff\‘ﬁFrI\.Lﬂ;?\JOF"U"iO"“C RV RkWrSTATYP,

3 REAL AL:BEICJCLN'DCU;DECIDFS;DQ?pﬁserFCJFF‘!\UXIECUIECUIENCJEMSIESl

4 ESAUX,ESC,FSUrESULEST FTAUX,FLFS,KAT,KAL, PEASAMI MU, MY, MYPAYT»
5 NYs0Mp0vCoPHIsPS1,PSIC,PSISsPSIT,RELRIGARIG(,SIC,SIS,SISCASOM,
& SU"}IT;TA’TACITATITBITHC’TBTITFT YT X Xtip XUs YeZ,7UsdsLAsMT o M2,
7 SMY,DESC.MF/
& ROCLEAN CONTAFIRSTALTER,VAL,
@ ARFAY ABEAALALUMCCIIIU) UM (12200 #FEALERBCT1 20U,

10 Acu;AEc,nﬁg,nﬁqc;smv,ADSI,nPsIc,Apsxs,Apsxz,Ax,SL<1:100);
11

12 PROCEDURE INDATAZ

13 BEGIN INTEGEPR K,

14 READLTYP)

15 IF TYP LSS O THE« GO TO FIN:

16 READ(ST,EMS,YrEST,ESULESU)#

17 READCEMCSPHIAECULECU,VI)S

18 READC(FAC):

19 READ{(NOM,FOR ¥=C1,7,N0M) nO UMLK} »

20 READ (NOMC,FOR K={1,1.N0MC) DO UMC(K)),

21 IF TYP EQL 1 COR TYP EQL 3 THENM

22 READ(NBESENK ¥=01,1,N3E) N0 ABE(K) )i

23 IF TYP EGL 2 2R TYP EQL 3 THEN

24 READ(NLALEOR ¥={1,1,NLA) 1O ALA(K) )/

25 READ(N)

26 END INDATA;

27

28 PROCEDURE RURRICY

29 BEGIN FORMAT RU(ELsXR,'CONCRETE: E®C =1,07,1,X6s"'STEELT EMS ='»
30 : DE 1sXhs tRAEGA T',DS,2,02,419,"'PHI =',07,5+X142"ETA ="4D6, 3,X06,
31 LOMC/OMSY .05, 2,A1,X19,7EPCCS14DT7, LrX16s EPSTI='4D6,32A12X19,
3z YEPCU=E ';D? AlX“ﬁ-;'&PS!“’"ﬁﬁ ?IAT:XQ{'J('EPSU" DB L3801 ,2,%8,
33 CESC/EST=',05,2¢X15,"'C/0="sD6,3,X15, CREEP=",D4, 1;x15.'&-'p13;
34 A1,2,X10, VT1/RDY 2 XA,

35 'NY':XQ;‘VQI’;X&:'&P;C';X7:'EPSSC':XR;'EPSb';XR;‘PSIC'rXB:
36 _ TeSIT!' X3, "PS1'rat, 127

37 NRITE(RU,FMCfEMS;OM:?HIf?pQMCrECU’EST’tCu;tSUrESU;F;C;VI;N)
38 EMD RUBRICS '
39 -

40 PROGCEDURE SKRIV(ED:

41 VALUE K2

42 INTEGER K7

43 BEGIN FORMAT TA(XBsD7.5¢20711,6+3012,5eD1647,2012,7,41)7

T CWRITECTALACUCKY #AMY(KY pAX (KD ,AECCK) »AESCIKISAES (KD,

45 APSTC(K) #APSIZLK) ,APSI(K))

b4 END SKRIV/

47

48 PROCEDURE SKFIWT-

49 BEGIM FORMAT FUX®,'"SETAS',D5,2sXbs " TETA/LAMREDAZ »DB,6,R2)»

50 WRITECF,EE,TET)

51 EHD SKR{WT} ‘

52 :

S% - PROCEDURE SKRTWZ?

54 BEGIN FURMAT F(XR,'tAMSDAST, DA, 2, X8, TETAS D8, 6,A2)7

55 WRITE(F,LALTET)
56 EMD SKRIWZ; .
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58
59
60
61
62

64
65
66
67
63
69
70

71

72
73
74

7é
7
78
79
80
&1
B2
83
84
85

87

89
90
91
92
2?3

¥5
74
97
98
99
100
101
102
103
104
195
1046
107
108
109

63

PROCFDURE TRYCK:
BEGIN INTEGEP K;
REAL E#DEsS/
FORMAT AA(E&4,X1U,'DISTRIBHTION OF CONCKRETE STRESSES',AT,1,
X10s"STRIP N0, X6, SIGMA/FCC' 7 X9+ "EAT#X14,"EB',AT, 10y
RB(IT5+D16,3,2D16,464A1):
WRITECAA);
FOR K=1 STEP 1 UNTIL N DO
BEGIN E=ES+CU*(Xi=T1+AL*({,5-K) )7
DESDES+DCU(XM=T+AL®(U,5=K) )}
CONCRETEC(E,DE,S,ENC,PHILECUFVILKIZ
WRITE(BBsKsS,PEACKDLEB(X))
EMD '
END TRYCKS

PROCEDURE CONCRETECESDESSISLEVM,FIAEQACRPIIF
VALUE EsDELEM,FIsEU,CR,IZ
INTEGER 17
REAL E,DE+sS1sElsFIrE{sCR,
REGIN REAL FrHsK#S/s

REAL PROCEDURE SIGMA(T);

VALUE Ti

REAL T/

HEGIN :
SIGMAS(K*T+(FI=1)*T*T)/(1+(K=2)*T+F1*T*T),

EnD SIGMAZ

K==EM*EQ,

S=ZE/JEQ/(1+CR) 5

IF S LSS ER(I) THEN BEGI®N SI=(s GO TO 8 ENDJ
A: IE EH(IY FQL 4 AND =DE GER U THEN

REGIN SI==SIGHA(S)S GO TQ B END;

IF Es(I) FQL @ AKD =DE L5S U THEN

REGIN EA{1)SF=S=DE/EU/{T+CR):

H=SIGHALF)/F
EB(I)=F=H/K
EMDJ
IF S GTR FA{I) THEN BEGIN EACI)=ER(I)=Us GO TO A ENDJ

S1==Kx (S=-FER(I))/

‘B3

END CONCRETES

PROCFDURF STEFL(ZAE,DESIAEN,Y LN ,EN) S
VALUE Z,E+DEFENYrETAEUS
INTEGER 7+
REAL E#DEsSIsEF,Y,sETsELUS
BEGIM REAL H»s
. REAL PROCEDURY SIGMALT);
VALUE T
REAL T»r :
REGIN REAL ﬂLZlﬂErD?rﬁfrD@;EEuG1fGZIGS:K;S'S?fSZ;
IF 2 EalL 2 THEM GO TO (L
F2=1/E%,
IF T LSS £Z2 THEN BEGIN SIGMA=T#EM; 60 TO L ENDs
I+ T LSS E1 THEN BEGIN SIGWA=T,Us GU TO L ENDs



112
113
114
115

116
117
118
119
120
121

122
123
124
125
126
127
128
129
130
131

132
133
134
13%

157
138
139
140
141
142

144
145
146
147
1438
149
150
151
152
153

155
156

T5¢
159
160

=

IF T 1L8S €0 THEMN
REGIN S=(E0=T)/(EU-E1) >
SIGMASY=(Y=1)*x3*5;
GO TO L
END#
SIGMA=Y
GO TO L+
LLDT=E0=-C,U0Z2=T/EM,
DZ=EMRE{=Y/
P3=Y~-i-
ST=gEM*DH1,
§2=b2*n3;
G1=S1%8§1=4%5d;
G2=S2*x(D2-n3);
G3=S2%527
BEZ(GZ2+SGURT(L2*G2-G1*53) /617
K=DT1*D1/D3/(L*BE~D3)
E2=CEQ+K*E* (Y=RBE) )/ (1 +KREMKEM) ]
AL2=K*RE*BE, ‘
SIGMA=IF T LSS E¢ THEN T*EWM ELSE
Y=BE*(T=SURT(1-(FU=TI*(EU=TI/AL2) )}
L
END SIGHAJ
IF TB EGL U AND DF GEQ ¢ THEN
HEGIN SI=SIGHACF); GC TO B EMDS
IF TH EGQL U AMD DE LSS {0 THEN
BEGIN TASE-DE;
H=STGHMA(TA)
TR=TA=R/EN
ENDS
IF E GTR TA THEN
REGIN TA=TB=U; GO TOQ A END
ELSE SI=tM*x(E~-TH);

EnNG ETEELS

REAL PROCEDURE IFTERPOL{A,E X AEDS
VALUE XsAE/

CINTEGER AE; REAL Xi ARKAY A FJ

BEGIN INTEGER 1,K7

Y

REAL DeSs

FOR I=1 STEP 71 UNTIL AE DO .

IF ABS{X) LSS ABSCECI)} THEN BEGIN K=I=1; GO TQ Z END/
IF ¥ EQL N THEN K=17

BE(E(K+1)=E(RII/E(K);

155

IF ABS(R) LS5 18~ THEN FFEGIW ST (A(K+1)+A(KI)I/2; 60 TO Y END;

SEACKI+(ACKFTI=A(K) IR (X/ECKI=T)/DJ
IMTERPOL=S '

ENLE INTERPOQL,
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162 LLIINGATAZ

163 FOR I1=17 STEP 1 uUnTIL NOMT DO

164 BEGIM OWMC=UM{(I%)s

165 FOR JIZ=1 STEP 1 uUNTIL NOw DO

166 BEGIN OM=uM{IZ2)s

167 PUBRIC, '

168 CUSES=0YP=PSIC=PSITSPSIS=SMY=0;
169 PCUSS5K=47

170 FIRST=CONT= THUE.

171  VAL=FALSE;

172 NYSOMKEMSk (T1+VI}/EMC,

173 XQ= my*(saaf((1+omL/F)*(1+nmc/FJ+g*(1+c*0MC/FJ/NY)~(1+0MCIFJ):
174 XM=1,25%X07

175 AL= xm/L,

176 RVY=U7

177 FOR I=1 STEP 1 UHTIL & DO EACII=ER(I)=07
178 : TAT=TBT=TAC=TRC=U;

179 LG: ITER=FALSE/

180 CUsSCU+NCLs

181 IF FIRST THEN DES=S(1=x0)*dCU:

182 DST1=DS2=Us

183 RW=U;

184 T, 0027

185 L1: IF R FQL &% THFN.

186 BEGIN RW=:

187 IF T LSS (.074 THE: T=T+U,002
158 ENbds ' '

186 IF ITER THEN RwSRW+17

190 ES=ES+NESS

191 TA=TAT: TB=TST!

192 STEEL(ST,ES/PESASIS,EXNS,Y,FEST1,ES0) 7
193 TAT=TA; TBT=TE; TA=TA(C; TR=THCS
194 ESC=ES~(1=CInCUJ

195 DESC= SIhh(ESC)*(D&S-(1-C}*DCU);
196 STEEL(STAARSCESC) ANESC,SISCAFMSAY,EST,ESUS
197 SISC=STGR(ESCI*SLSCS

193 TACSTAZ TBC=TH/

199 X=1=ES/CU7

200 . I1F FIRST THEN 60 TO L3:

211 SyM=0,

212 FOR I=1 STEP 1 UNTIL ~ DO

203 BEGIN FCRESHCU*X(XH=T+AL*(d,5=1))7
204 DEC=DES+DCUX (XM=T+AL* (), 5=1))7
2Us CONCRETE(EC,DEC,SIC,EME,PHILECO,VILI) S
206 SUM=SUM+SIC

207 EoiDas

208 . FST=OMxSIS;

209 RESAL*SUM+OI*OMC*SISC+FS7

210 IF ARS(RE) LSS T*FS THEM 6O TO L&7
211 ESTES~DESH

212 IF ITEP THEWN G0 TO L2/

213 IF RE LSS o THEN

BEGIN 0S1=DES; DES=DES+{, U201 END ELSE
REGIr NSE=PES; DES=DES~Q.O00UT END;
2 IF DST MEQ U AND DSZ2 wWFR 0 THEM
BEGIN NES={DS1+DS5¢)/2; ITER=TRUE EMD,
218 GO TO L1s
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229
221
222
223
224
225
226
227
228
229
230

232

234
235
236

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

L3
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IF KF LSS o THEW DS1=DFS ELSE DSZ=DESs

DES=(DS1+D0S52) /27

89 To L1-

SumM={s

FOR I=1 STEP 1 UNTIL ® DO

BEGIN EC=ES+CU*(XM=t+al *(0,5~1))7
DECSDES+DCU* (XU=1+AL*(0.5-1))7
-CONCRETE(EC}DECISICrEMCrF’HIJECGJ'VI:I.)r'
SUM=SUM+SIC*{U.5~1)

END '

MYSALAXAL*SUMTOM* (SIS {(1=XM)+OMC*SISCH(L=XM)) s

IFf MY LSS ™MYP AND NOT WAL THEWN S

BEGIN F=RV:s SHMYSMYP; VALSTRUE END;

IF MY §TR SeY AND VAL THEN VAL=FALSE;

TF FIRST THEN REGIN BY1sMY/107 FIRSI=FALSE END/

ESAYX=FS=0FRS3/27 '

ETAUXFESC+(1=CI*DCU/2=~NES/ 27

IF MY-®YP L3S ®Y1 AND CONT THEN

REGIM NLU=4%DCUF DES=4*%DESS CONTSFALSEF MFSMY ENDs

MYP:MY;

TA=TAT, TB=TS8T/

STEEL(ST+ESAUXsDES,SIS,EMS,Y,EST,ESU);

TAT=TA; T18T=T3; TA=TAC; TR=TBC;

STEEL(STAABS{ETAUX) #DESC,SISC,EMS,YrESTAESUIS

SISC=STIGR{FTAUXI*SISL,

TAC=TAZ TBC=TR;

SuM=(7

FOR I=1 STEP 1 UNTIL n DO

BEGIN FC=ES+CUnUAM=T+AL*(U,5=1) )7
DEC=DES+CU*(XMN=1+aL*x (N, 5=1) 3+
ECAUXSEC-DEC/ 27
CORCRETECECAUKADFC,SIC,EMCsPHILELU,VEATD S
SUM=SUM+SIC*DEC '

ENDJ

PSIC=PSIL+Aal ®xS!]m;

PSIT=PSIT+ON*OMC*SISCH(DPCU*(L=1)+DES);

PLIS=PSIS+OMASIS*DES,

RVST+RY S

ACULRVI=CYS

AES(RVI=ES/

AX{RV)=X;

AMY(RVI=NY?

AESC(RYI=ESCH

BEC(RVIZE(=ES=CUS

APSIC{RY)=PSICS

APSIS(RY)I=PSIS;

APSIZ(RY)I=PSIC#PSIT,

AFSI(RV)=PRSIC+PSIT+PSIS,

SKRIV{rRW],

IF EC GTR FLUXCT+VI)} a%D ES £SS ESU THEW GO TO LU/

If VAL THEN GO TO L45 '

Mm=gy; _

FOR I=1 STEP 1 UNTTL @ DO SLLID)=0;
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272
273
274
275

276

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
3u1
302
303
304
305
306
307
3u8
29
310
311
31
213
314
315
3186
317
318
319
320
321
322
323

IF £ESU LSS AbES{#M) THEH
BEGIN Z=ESUs
SL{M=1)SAES(M=1)7 SI{M)=AES (M)
ENP ELSE ) ’
BEGIN 7=ECuUx{1+vI}:
SL(r=1)=AEC(M=12) SL{MISAEC(M)
END S '
ACUCMY=INTERPOLCACUASLAZAM) i
AMY(M)ZINTERPOL CAMY»SLaZrt")i
AX(M)=SIMTERPOL(AX,SLaZ M)
AESC(M)=INTERPOLCAESC,SLeZsMi;
APSICC(M)=INTERPOL(APSIC,SL2Z2sM)4
APSIS(w)=IMNTERPOL(APSIS,SLAZ,M)s
APSIZ(M)SINTERPULKAPSIZ,SLeZsM)s
APSI(M)=INTERPOL(APSI,SLsZsM) 7
IF ESU L$S AES(™M) THEN
BEGIN AEC(S)SINTERPOL(AEC,SLoZom)]
AES (M) =ESU
END ELSF
REGILH AES(E)SIMNTERPOL(AES,SLsZo);
AECI™M)SECUX(T1+VI)
ENDS
SKRIV(™),
MUZAMY ()
XO=AX(MT)
RIGU=OMAEMSH L (T=Xu/ 3w (1=XU)FOMCK(C=XU/ 32+ (C~X0)/F)
IF TYP EGL 1 GR TYP EQL S THEN '
FOB I3=1 STEP 1 UNTIL MRE DO
BEGIN RE=AFE(IZ);
SUMSKAZEMU/RIGU/ 2,
SOM=ARSI{(™M) /27
KA3=ts
FOR I=1 STeP 1 UNTIL N=1 DO
BEGTIN AI=MU% (N=T)x(N+4*xBE*XI) /N/MG
X=IHTERPOLCAX,AMY M p™M) ]
RIGSOMRENS*{(TmX /34 T=X)+0MC*(L=X/3)%(C=X)/F):
ZUSMI/RIGS . '
KAT=PXKA2=KAR+ T U]
QlUF=SUM+E AT ;
FEZSVALS? KACSKATS,
SOM=SOM+ INTERPOLCAPSIAAMY, ML %)
Etip I
TET=(24S0M/ M/ U+ (R*kREXSUM/Ne (T+L*BEI*KATI/N/N) / CT+ME/ MU 7
SKRIwWT ) '
END BETAS
IF TyP FGQL 2 R TYP EQL 3 THEN
FUR T3=1 STEP 1 GRTIL HWLA DO
BEGIN LA=ALA(I3)S
A=l i/ LA}
KAZ=mrU/PIGU/ s
SUMEAPSISIM) F2HAPSTIZ () /27
KAS=iis -
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225
326
327

328

329
356
331
332
333
334
335
336
337
338
339
340
341
342
3473
344
345

FRD PFOGRAM

FOR I=1 STER 1 UMTIL N1 20
BEGIM =I=M*(n=T)/%47

IF I LSS WN¥A/LA THEN MI=(1~0,UZ2*LA*XT/N) %My
FLSE M1z (1=~I/N)* (1= U2%a)*mu/ (1=A/LAY;

TE I LSS M*A/LA/? THEN H2=(1=5xI/N/(T+A/LA))*MU ELSE

MEE(A=1/ 1) RUS(TEALILAD
¥YSINTERPOLUAX BNV ,MT M),
RIG=0M*E#S*((1—x15)*(1-X)+OMC#(C~X/3)*(C*X)/F?;
U= /RIG:
VATSZ2*KAZ=KAZ+7 U]
vAZ=pAZ;, KAZ=xp1: :
SUMSUMHINTERPOLIAPSIS/AMY  ¥T M)
+IMTERPOLCARSIZAAMY 2 ,4) 5
Is

TETSLA®(2*SUM/ N/ M i=akKAT/N/NY/C14F/M0) S
SKERTHZ
EnD LAYBDA
EnD OMEGA
ENE QRC,
GO TC Lis

159
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A.5 Examples of printouts

Two examples of the printout of the results are shown. The first relates
to calculation alternative 1. The conditions are as follows.

Concrete Type A, see Section 2.1.

Tension reinforcement of HR steel, see Section 2.2, with the effective
reinforcement ration « = 0.07.

No compression reinforcement.

Creep of the concrete is not taken into consideration.

The printout of the results 1is reproduced in FIG A.5a. The procedure RUBRIC
results in printout ot the 1hput values and table heading. The procedure
SKRIV (K) causes printout of the table in which the different quantities are
functions of the parameter 1/p {1/R0O in the printout). As will be seen, the
ultimate moment Hy is determined by material failure in the concrete. In the
penultimate 1ine £ = ~0.00356. A171 the values in this line have therefore
been converted so as to correspond to €. = -0.0035. The modified values are
given in the last line of the table. The example studied does not include
compression reinforcement, and the strains given in the column for ege 2re
therefore fictitious - they relate to strains at a level within the cross
section determined by v = ¢/d = (0.1. Since there is no compression reinforce-

ment, the contents of the columns for Ve and by are equal.

Three vaiues of g and the values of the ratio eu/x calculated for these
values are printed out underneath the table. This printout is controlled
by the procedure SKRIW 1.

The second example relates to calculation alternative 2. The conditions are

as follows.

Concrete Type B.

Tension and compression reinforcement of CW steel, with w= 0.20 and w. = 0.05,
v o= fsc/fst = 1.0, and v =¢/d = 0.1.

Creep of the concrete is not taken into consideration.
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=0,00210
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~0,NN331
-n,NN356
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TETA/ L AMBPA=N, 002545

TETA/LAMRDA=(0,003150

TETA/LAMBPA=), 009270

350,0
1,400
n,015
0,NAN

= 0,100

FPSSC

=n,a000né
=0.0000%
'P.00013
'H,OODTR
=0.n0n23
“n,NOn2~
=n,0N034
-n,n0n3s
-n,N00n3s
'D.Dﬂﬂ3ﬂ
-1,00031
-n,Non27
~n,.00n2?
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~n,n00n05
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“-n,n0on?
-0, 00001
-n, 00007
-0, 00pn3
=n. 00006
=N, 00017
=0, 00010

OMEGA

CREEP= 0,0

FPSS

n.n0041
0.000R1
0.00122
c.0onM1k2
N.NN202
0.00242
N.nNNz=1
J.NN325
p.0n370
0,00551
J.,007%4
D.00918
p.01103%
N.012R8%
0.01474
D.N1657
N.NT840
D.02n22
NeNe2n3
NeNZ2384
G.025hA4
Da27472

Q02919

Gs03096
0.030%4

= O.D?
oMg/omM= 0,00

PSIC

g.00nnnp3
0.0000Nn13
0,0000N029
J.00nnns2
0.00NNNR1
G.000n1290
0.,000n1465
G.000N184
0.000NN231
OD.000N2R7
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09000”330
0.0000424
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L.00N05%4
0.0000573
G.000NNAL?
C.00DN717
D.00NN79R
N.00NNRRYG
0,00nNNe7s
C.00N1nE?
Ca000119%
0.00017%24
G.0001295

Example of the printout of the results calculated according to
Alternative 1

b1}

50

PSIT

n,o0000n0n3
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CONCRETE :

FSC/FST=

1/RQ
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FIG A. 5b
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Example of the printout of the results calculated according

to Alternative 2
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In this case the printout is reproduced in FIG A.5b. The ultimate moment
here has been determined by the highest point in the moment-curvature curve.
The table shows that M, S 0.1935 for 1/p = 0.027._As 1/p increases, the
moment decreases. The table continues right up to material failure, in this

case crushing failure of the concrete.

Four values of x and the rotation capacities CHY calculated for these values
are printed out underneath the table. This printout is controlled by the

procedure SKRIW 2.
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