LUND UNIVERSITY

On overload control through queue length for web servers

Jianhua, Cao; Nyberg, Christian

Published in:
Sixteenth Nordic Teletraffic Seminar NTS 16 : Helsinki University of Technology, Espoo August 21-23, 2002 :
proceedings (Report / Helsinki University of Technology, Networking Laboratory)

2002

Link to publication

Citation for published version (APA):

Jianhua, C., & Nyberg, C. (2002). On overload control through queue length for web servers. In P. Lassila, E.
Nyberg, & J. Virtamo (Eds.), Sixteenth Nordic Teletraffic Seminar NTS 16 : Helsinki University of Technology,
Espoo August 21-23, 2002 : proceedings (Report / Helsinki University of Technology, Networking Laboratory)
Helsinki University of Technology, Networking Laboratory.

Total number of authors:
2

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/87935f36-e6c7-4163-8313-f4f738ad2ff3

This is an author produced version of a paper presented at
Sixteenth Nordic Teletraffic Seminar NTS 16 : Helsinki University of
Technology, Espoo August 21-23, 2002.

This paper may not include the final publisher
proof-corrections or pagination.

Citation for the published paper:
Cao, Jianhua, Nyberg, Christian, 2002,

"On overload control through queue length for web servers",
Sixteenth Nordic Teletraffic Seminar NTS 16 : Helsinki University of
Technology, Espoo August 21-23, 2002 : proceedings (Report / Helsinki
University of Technology, Networking Laboratory, ISSN 1458-0322).
Publisher: Helsinki University of Technology, Networking Laboratory.

http://linda.linneanet.fi/cgi-bin/Pwebrecon.cgi?SC=Title&SEQ=20060213115755&PID=17703&SA=Sixteenth++Nordic+Teletraffic+Seminar+NTS+16+Helsinki+University+of+Technology,+Espoo+August+21-23,+2002+proceedings
http://linda.linneanet.fi/cgi-bin/Pwebrecon.cgi?SC=Title&SEQ=20060213115755&PID=17703&SA=Sixteenth++Nordic+Teletraffic+Seminar+NTS+16+Helsinki+University+of+Technology,+Espoo+August+21-23,+2002+proceedings

On Overload Control through Queue Length for Web Servers

Jianhua Cao and Christian Nyberg

Department of Communication Systems
Lund Institute of Technology, Sweden
e-mail: {jcao, cn}@telecom.lth.se

Abstract

We investigate the performance of overload control through queue length
for two different web server architectures. Both of them use finite queue
lengths to prevent servers from being overloaded. One architecture prioritizes
requests from established sessions while the other treats all requests equally.
First, we introduce queueing models for these two systems. Then, we define
and explain a new web server performance metric that is a function of session
throughput, error rate for connection within sessions and average request
response time. Finally, we use simulation to evaluate the performance of
these two types of web servers. The result suggests that the benefit of request
prioritization is noticeable only when the capacities of the sub-systems match
each other.

1 Introduction

The excessive delay of web services is more and more common as the number
of Internet users increases everyday. Not only the customers will be unsatis-
fied but also the service provider will be hurt in the long term. There are two
ways to alleviate the problem, namely, infrastructure upgrading and overload
control. Infrastructure upgrading is an obvious approach and will bring more
traffic and, probably, more profit to the operator. Overload control, however,
assures a certain quality of service to a limited amount of customers and
sacrifices the rest by throttling the incoming traffic.

Overload control may not be the best thing to do when infrastructure
upgrading is possible, but it is still a necessary complement to upgrading
approach for two reasons. First, one can not upgrade the system so often
as to keep up with the ever increasing Internet traffic. Second, the large
variance of Internet traffic will cause the web server overload from time to

time even if the web server is engineered to handle the average traffic. So
how could overload control be done? A crude overload control mechanism
will constantly monitor the server’s CPU usage, connection response time, the
number of current connections (jobs) and/or the number of queued requests.
When certain parameters exceed some predetermined levels, the server starts
to reject customers until monitored parameters are back to normal. However,
this easy scheme has a small problem.

A customer visiting a web site tends to send several requests in sequel. A
possible sequence could contain the following commands: browsing, searching,
ordering, paying and exiting. We call such a sequence of requests a session.
As one can see here, the customer will be very irritated if her paying request
is rejected after filling in her credit card number. In general, requests within
a session should not be rejected. When a overload control scheme is blind at
sessions, it is called request-based overload control (RBOC) otherwise session-
based overload control (SBOC).

Different overload control strategies for telephone switches have been stud-
ied by Nyberg [5]. The performance of SBOC and RBOC for e-commerce
web sites has been studied by Kihl and Widell [2] recently. Several attempts
[1, 4, 6] have been tried to model the web servers and have different level of
success.

In this paper, we use simulation to study the effectiveness of SBOC and
RBOC through queue length. Overload control through queue length means
that the control decision is based on the number of queued requests. The
result shows that the SBOC through queue length is not necessarily effective
when the web server is not carefully configured.

The paper is organized as follows. In Section 2, we introduce the queuing
models of a web server. We then define and explain a performance metric for
web servers in Section 3. Section 4 gives the simulation results of web servers
using SBOC and RBOC with three different configurations. We conclude the
paper in Section 4.

2 Queuing models of web servers

The basic queuing model used here is based on [4]. The model consists of three
subsystems, TCP, HTTP and IO, in tandem. Fig. 1 shows the structure.

The TCP subsystem is modeled as a multi-server system with zero buffer.
The number of TCP servers, myp is equal to the maximum number of allowed
concurrent TCP connections. The HTTP subsystem is modeled as a multi-
server system with a finite buffer. The number of HTTP servers, muttp, is
equal to the maximum number of allowed concurrent HTTP processes or
threads. The IO subsystem is modeled as a processor sharing server with a
finite buffer. The buffer size of HI'TP subsystem, nntp, and the buffer size
of the IO subsystem, mj,, along with my., and mpgp, are all configurable
parameters.

® ®
— O O—=mo—

O O

TCP HTTP 10

Figure 1: A basic queueing model of web server consists of three subsys-
tems, TCP, HT'TP and IO in tandem.

The model works as follows. When a HTTP request arrives, the TCP
subsystem will establish a connection between the client and the web server
by handshake. So the service time of the TCP subsystem, xcp, is equal to
the the round trip time, t.t. Note that the TCP subsystem will allow at
most mycp simultaneous connections .

After the connection is established, the request is forwarded to the HTTP
subsystem and the TCP server will be released. The request will be pro-
cessed immediately if there is a free HI'TP server available otherwise it will
be pushed into the FIFO queue. The service time of the HTTP subsystem,
Thttp, 1S the total time spending on parsing the HI'TP requests and fetch-
ing/generating the HTML files. We could reasonably assume that @pep is
proportional to the returned file size with coefficient, k(with unit s/KB). As
soon as the returned files are compiled, the job will be transfered to the 10
subsystem when there is an 1O slot available, otherwise the HTTP server that
processes the request will be hold. The HTTP server on holding state can
not process more HTTP requests until it is freed.

The IO subsystem uses the TCP protocol to send the HTML files. The
bandwidth of IO server is shared by all jobs in the queue. The IO server
polls jobs in a round robin fashion. The service time of an IO job, z;,(with
unit seconds), depends on the file size, sge(with unit KB), the bandwidth
of the server, wserver(with unit KB/s), and the client, wejient, the number of
concurrent 10 jobs, nio(< my0), and the packet loss rate of the connection,
Diloss-

To simplify the derivation of x;,, we use the following four assumptions.
First, all the clients use the same maximum segment size, Smss (With unit
KB). Second, all the clients have the same packet loss rate of zero, piss = 0.
Third, all the connection have the same TCP flow/congestion control window
size, Synd (With unit KB), all the time. Fourth, the bandwidth of client is less
than that of server. So, the approximated IO service time is given by Eq.1.

Tig = " Sfile -‘ bres + Sfile + "-Sﬁle-‘ Smss (nio _ 1) (1)

Swnd Welient Smss | Wserver

The first item in the right hand side of the equation is the transmission

time of the file; the second item is the time for client to receive the file; the
third item is the waiting time.

The model described above can be used to predict the throughput, the
response time of the web server quite accurately. But it needs some modifica-
tion when the requests are grouped in sessions, otherwise the arrival process
is not a Poisson process any more.

delay

® Q |
— O—O—=ot-
O O

TCP HTTP 10

Figure 2: The session is modeled by Bernoulli feedback. If the feedback
probability is ¢, then average number requests in a session is 1/(1 — q).

In our case, we model the sessions by adding a Bernoulli feedback from
the output to the input of the model above, as shown in Fig. 2. So it implies
that the number of requests in a session is geometrically distributed. This
fact is justified by the statistical analysis of [3]. Since the transient analysis is
not our major interests, the delay between requests is not modeled explicitly
here.

The HTTP server with FIFO queue of finite length is in fact an imple-
mentation of RBOC through queue length. Therefore the model above can
be used to investigate the performance of RBOC. The HTTP subsystem of
SBOC is a bit different from that of RBOC, as illustrated in Fig. 3. Let us
call the customers from the feedback the old customers and the others new
customers. The SBOC uses two separate queues in the HTTP subsystem: one
for new customers and one for old customers. The queue for old customers is
assigned with a higher priority in order to break as little number of sessions
as possible.

3 Web Server Performance Metrics

Three metrics, throughput, H, response time, 7', and connection error rate,F
are widely used to evaluate the performance of web servers. Throughput is
defined as the average number of completed requests (or sessions) per second.
Typically, the throughput will reach some limit when the arrival intensity, A,
i.e. the number of arrived customers per second, exceeds some threshold,
A*. Below that threshold, the throughput will increase linearly with A. The

delay

@, Q
O—10_Gd

oo

TCP HTTP 10

R

Figure 3: The model of web server using SBOC scheme. Two
queues are used for old customers and new customers. The queue
for old customers has higher priority than the other one.

response time measures the interval between when request is sent and when
the requested files are received by the customer. It should be a small constant
when A < A* and increase when A is close to A*. If the web server uses
finite buffers, the response time will be a large constant when A > A*. The
connection error rate reflects the percentage of requests (or sessions) that
are rejected (or broken) due to the limited capacity of the web server. It
should be approximately zero when A < A*, and approach one when \ goes
to infinite.

In order to compare overall performance of RBOC and SBOC, we need
a unified metric. In analogy with the definition of network power which is
throughput divided by delay, we propose a metric called the power of web
server, denoted by P. It is a function of session throughput, error rate for
sessions and average request response time:

H ion
P= ﬂ(l - Esession) (2)

Trequest

where Hgession is the number of completed sessions per second, Trequest i the
average response time for each accepted request, Fgession iS the probability
that a session is being broken because one of its requests is rejected by the
server.

Since Hession, Lrequest and Fisession are all functions of the arrival intensity
A, and so is the server power, P. We would expect the power of an ideal server
to have the following properties: First, it should be proportional to A when
A < A*. Second, it should be able to maintain the maximum power, P(A*),
when A > A*. As we can see later, the RBOC cannot maintain the second
property and the power of web server using RBOC will drop. So can SBOC
maintain maximum power constantly even if the server is heavily loaded?
Our answer is “it depends” as the simulation shows.

4 Simulation Results

We use discrete event simulation to investigate the performance of web servers
using RBOC and SBOC.

To avoid unnecessary complication, we limit the sources of randomness
in our simulation to be two: the customer arrival process assumed to be
Poissonian and the session length which is geometrically distributed with
mean 1/(1—¢q) = 6.0. The following parameters are assumed to be constants:
the size of file that clients request, sge = 10KB; the speed of file feteching,
k = 0.01 s/KB; the client bandwidth, weiient = 5.5KB/s; the round trip time
between client and server, t;tt = 0.1s; the maximum segment size, Spmgs =
0.5KB.

The following parameters in both models are configurable: the number of
TCP servers, mycp; the number of HTTP servers, muttp; the maximum queue
length of HT'TP subsystem, nntp; the maximum buffer size of 10 subsystem,
Mio; and the bandwidth of the web server, wgerver-

Let C denote the capacity of a system, i.e. the maximum number of
requests that can be proceeded in one second. The capacities of TCP, HTTP,
IO subsystems are then given by:

Myc Myc
Ciop = e _ htep (3)
P
Ttep trit
Mhntt Mhtt
Chigp = —nttp . Thtp (4)
ttp
Thttp k- Sfile
Mio
Cio = (5)
Tio |njo=mio

Given that k, sge and t. are constants, the capacities of the sub-systems,
Cicpy Chttps Cio, are then fully determined by the system configuration.

In most configurations, it will usually be the case that Cicp > Chetp and
Cicp > Cio- So we limit our investigation to the following three cases: Chytp >
Cio (case A), Chitp = Cio(case B), Chetp < Cio (case C).

Further we fix the configurations: mycp, = 102, npyp = 100, mi, = 507
and Wserver = 100Mbits/s, to make Cj, a constant. The variation of Chytp is
then achieved by adjusting the number of HI'TP servers, mugtp.

We show the different configurations of mu¢tp and corresponding subsys-
tem capacities in three cases in Table 1. The simulation results are shown in
Fig. 4 and Fig. 5.

In Fig. 4, we plot the session throughput, average request response time
and session error rate for systems using RBOC and SBOC in three different
cases. The sub-figure (a) and (b) show that RBOC and SBOC give almost
identical session throughput. But SBOC gives lower response than RBOC in
all three cases as sub-figures (c) and (d) indicate. The sub-figure (e) gives
expected behavior of session error rate of RBOC that approaching to one
when arrival intensity exceeds some threshold. However the session error
rate of SBOC in case A shows the the same pattern. Recall that in case

‘ case A case B case C

mhttp 24 12 6
Clep 10240 10240 10240
Chstp | 240 120 60

Cio 120.057 120.057 120.057

Table 1: Different configuration of myp and the capacities of subsystems
in different cases. case A: Chgp > Clo; case B: Cpyip = Cio; case C:
Chitp < Clo-

A, the capacity of HTTP subsystem is greater than that of IO subsystem,
therefore HTTP servers tend to be held when a job completes. When there
are some HTTP servers are held, the effective number of servers will decrease
and queues of HTTP subsystem will tend to pile up.

In Fig. 4, we show the power of systems using RBOC and SBOC. Now it
is much more straightforward to compare RBOC and SBOC in three different
configurations. Let us first consider the case B. It is clear from the simulation
results that the power of the system using SBOC does not drop even when
the arrival intensity exceeds the threshold A*, while it is not the case for
the system using RBOC. However in case A, the power of two systems using
RBOC and SBOC is the same. The reason is mainly due to that in both
systems the session error rate increases as the arrival intensity increases. In
case C, we see some advantages of SBOC over RBOC but the gain is not that
much as in case B. We also notice that the power of the two systems in case
C is the half of that in case B. If checking the Table 1, we will find out that
the number of HTTP servers in case C is half of that in case B. Obviously
the configuration of case C makes the web server under utilized.

So finally, we can reach a conclusion that SBOC will have its largest
advantage over RBOC when the web server is configured in such a way that
the capacities of subsystems match each other.

5 Conclusion Remarks

In this paper, we first introduce the queuing model of web servers with SBOC
and RBOC respectively. To facilitate the investigation, we define a new
performance metric called the power of web server. We use simulation to
investigate the performance of two overload control schemes in the cases that
the capacity of the HTTP subsystem does/does not match that of the 10
subsystem. The result suggests that SBOC is effective when the web server
is properly configured so that the capacities of the subsystems match each
other.

For the future work, first, it is preferred to use analytical model over

session throughput (1/sec)

average request response time (sec)

session error rate

0 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45 50
session arrival rate (1/sec)
(a) Throughput (RBOC)
RBOC
7 T T T T T T T T T
ey
case B -
Wl ST |
6 O e e o
.

x

3 L L L L L L L L L
0 5 10 15 20 25 30 35 40 a5 50

session arrival rate (1/sec)

(c) Average Response Time (RBOC)

session arrival rate (1/sec)

(e) Session Error Rate (RBOC)

average request response time (sec) session throughput (1/sec)

session error rate

sBoc
T T T T T T T T T
case A —+—
case B --x--
case C -
20 -
15 -

L
0 5 10 15 20 25 30 35 40 a5
session arrival rate (1/sec)

(b) Throughput (SBOC)

50

SBOC
7 T T T T T T T T T
case A ——
case B -
case C -
65
6| 4

o 5 10 15 20 25 30 35 40 45
session arrival rate (Usec)

(d) Average Response Time (SBOC)

50

sBoC
0.25 T T T T T T T T T
case A —+—
case B --x---
case C -
02 4
0.5 4
01 4
0.05 4
0
0.05 | 4
01 L L L L L L L L L
0 5 10 15 20 25 30 35 40 45

session arrival rate (1/sec)

(f) Session Error Rate (SBOC)

Figure 4: The throughput, average request response time and session
error rate of web servers using RBOC and SBOC in three different cases.

50

RBOC

5 T
case A ——
case B ---x---
case C -~~~

power

0 5 10 15 20 25 30 35 40 45 50
session arrival rate (1/sec)

(a) Power (RBOC)

SBOC

power

0 L L L L L L L L L

0 5 10 15 20 25 30 35 40 45 50
session arrival rate (1/sec)

(b) Power (SBOC)

Figure 5: The power of web servers using RBOC and SBOC in three
different cases.

simulation model in order to find out the region of the system parameters that
renders the different overload control schemes effective/ineffective. Second, a
more realistic model of the web server is needed. In order to simplify both
simulation and analysis, the current web server model ignores the fact that
the tasks like HTTP command parsing, network and file 10 operation are all
sharing resources such as CPU, network bandwidth and hard-disk. Hence a
processor sharing based queueing network model could reveal more interesting
dynamics of the web server.

References

[1]

2]
3]

[4]
[5]
[6]

John Heidemann, Katia Orbraczka, and Joe Touch. Modeling the perfor-
mance of http over several transport protocols. IEEE/ACM Transactions
on Networking, 5(5), October 1997.

Maria Kihl, Niklas Widell, and Christian Nyberg. Performance modeling
of distributed e-commerce sites. In Networking, 2002.
Zhen Liu, Nicolas Niclasusse, and Cesar Jalpa-Villanueva. Traffic model

and performance evaluation of web servers. Performance Evaluation, 46,
2001.

R. D. Van Der Mei, R. Hariharan, and P. K. Reeser. Web server perfor-
mance modeling. Telecommunication Systems, 16(3,4):361-378, 2001.

Christian Nyberg. On Owverload Control in Telecommunication Systems.
PhD thesis, Lund University, 1992.

P. K. Reeser, R. D. van der Mei, and R. Hariharan. An analytical model
of a web server. In ITC16, pages 1199-1280, 1999.

