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1. INTRODUCTION.

The concept of system inverses plays an important role

in linear system theory. The reason for this is that the
inverse system contains much information about the ori-
ginal system such as tracking ability and stabilizabili-
ty. Many fundamental control and estimation problems are
consequently clogely related to system inversion. A few
examples are decoupling [2, W, 6, 8, 10], model matching
[3, 11] and feedforward control. It has also been shown
that systems with unstable inverses can be very difficult
to control [121.

For linear time invariant systems with zero initial states
the inversion problem cdn be treated in a completely al-

gebraic fashion using the transfer function description

of the system. The inversion problem tHenc becomes a prob-
lem of inverting a matrix of rational functions. This can
be done [5} for instance using the invariant factor theo-
rem. However, this approach seems to be more or less tech-

nical and suffers also from computational difficulties.

Silverman [1] and Siliverman and Payne [2] have developed
a gquite different inversion theory using state space ter-
minology. The inverse system is constructed by means of a
certain algerithm, called the structure algorithm, avoid-
ing some of the computational difficulties in the trang-
fer function approach. Moreover, some properties of the
inverse system can be extracted from this algorithm [2].
Related work has also been done by Sain and Massey [8].
Quite recently Wonham and Morsé ful gave some necessary
and sufficient conditions for left invertibility in terms

of a certain invariant subspace.

In this paper the concept of minimal system inverse will

be introduced as the inverse dynamical system having the
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lowest possible order. Minimal system inverses are
constructed for systems with arbitrary unknown initial-
states and zero initial states. Even more interesting
ig that the order and the spectrum of the minimal in-
verse can be characterized using properties of the ori-

ginal system without first caleculating the whole inverse.

The spectrum of the minimal inverse is shown to be unique
in the sense that all minimal inverses have the same
spectrum. This is an interesting fact since it leads to

a proper definition of the zeroces in the multivariable
case. The "zeroces" have a simple and straightforward in-

terpretation in state space terminology.
The paper is organized as follows:

The concept of minimal system inverse iswﬁafined in See-
tion 2. Some geomeiric concepts introduced by Wonham and
Morse [81 are the basic mathematical tools. These con-
cepts are introduced in Section 2.

In Section 3 the problem of minimal system inverses will
be solved first for arbitrary unknown initial states and
later for zevo initial states. The concept of inverse

spectrum as a state space equivalence to the concept of

zepoes 1s also discussed.

a




7. PRELIMINARTES.

The notations of [u] are adopted with only smaller mo-
difications. Basic knowledge of linear algebra and 1li-
near system theory is assumed, but for completeness some
basic concepts and theorems are summarized below. For a

more detailed account the peader is referred to (4, 81,

Algebraic Background.

Let X be a finite dimensional vector space and A:X » X
a linear map., If V © X is & linear subspace then AV =
= {xBX|x = Az, €V} is the image of V under A and
N {x€ X|Ax€ V} is the inverse image of ¢ under A.
A subspace V& X is said to be A»invariantﬁif AV V. If
V is A-invariant and V is a basis matrix for V, the
restriction of A to V, A|V, is defined by AV = VA and
A = paly ef.[16].

(A,B)-Invariant Subspaces.

The concept of (A,B)-invariant subspaces was originally
introduced by Bassile and Marro [7] and Wonham and Mor-
se [8] in connection with the decoupling preblem. A sub-
space Ve R" is said to be (A,B)~invariant if for some L

(A+BL)V e V

It is shown in [7, 8] that a necessary and sufficient

condition for V to be (A,B)~invariant is

AV V. + B (2.13




where B denotes the range space of B, Let ¥ be an apr-
bitrary subspace of ', One can show {7, 81, that there
exists a unique maximal subspaeelUM contained in a gi-
ven subspace ¥, i.e. WMo v where ¥ is any subspace sa-
tisfying AV<V + B and V< ¥, The subspace ytt can be
constructed according to the following algorithm [7, 8]

Vg = D
vy = 90T B
‘ (2.22
_ -l
Let i be the first integer euch that V, = ¥, then

i1
Uﬂ = Vs It can be shown that this algorithm,converges

after at most v steps where v = dim(P),

Statement of the Problemn.

‘The class of systems considered dénsists of all systems’
S(A,B,C) described by the differential equation

®x = AX + Bu x(to)_: X (2.3)

L1}

v Cx

where x(t) € R" is the vector of states, u(t)EZRm is the
vector of inputs and y(t) € RP is the vector of cutputs.
A, B and C are linear time invariant maps (matrices). Tt
will be assumed that there are no redundant inputs o
outputs in (2.3), i.e. the matrices B and C have full




rank. The system S5(A,B,C) iec assumed to be completely
observable. This is no restriction since the system can

be reduced modulus +the unobservable subspace.
The solution of (2.3) is

Alt-ty) t Alt-g)
y{t) = Ce X * | ce Bu(s)ds
t
¢

which can be regarded as an input~output map paramete-

rized by the initial state Xgs i.e.
y = B(XD,u) z 91<Xg) + Bz(u)

The input space U consists of all piecewise continuous
realvalued m-vector functions on (tg,é).';he output
space Y 1s defined as the image of R¥xU under 8, i.e.
Y = 6 (R™xy). All-y €Y will then be continuous and con-

tinuous differentiable up to some finite order o.

A left inverse to the system (2.3} is any operator 8:
Y + U such that

By = Se{xg,u) z jeeq(xg) * 86,(u) = u (2.4)

for all input~output pairs (u,y) €UxY of (2.3). The in-
verse is linear and can be deseribed by a dynamical sys-
tem of order at most n (cf. Remark 2), where n is the
dynamical order of S(A,B,C) [1]. The inverse system 0

is represented by a dynamical system of the form

i

W o= Aw 4 N, (ply

(2.5)

for
t

Cw + No(ply




d
dt’
This representation of the inverse is assumed in the se-

where N,(s) and N,(s) are polynomial matrices and p =

guel., The concept of minimal system inverse can now be
concisely defined,

Definition. A minimal (left) inverse of S(A,B,C) is any
operator 6 with representation (2.5) such that the con-
dition (2.4) is satisfied and w in (2.5) is of minimal

dimension.

Remark 1. Only the case of left inverses has been consid-
ered, i.e. the problem of finding an operator that with y
as input produces u as output. The corresponding right in-
version problem, i.e. to find some input u to the system
to produce a predefined output y, may be more interesting
in some control problems. Such an input fs preduced by

the right inverse with the desired output as forcing fun-
ction. The results of this paper can be extended to the

case of right inverses by considering the adjoint system

) T T

It can be shown [3} that, for zero initial state, the origs
inal system is right invertible if and only its adjoint is
left invertible,  As an 131ustrailon con81ﬂer the transfer-
functions G(s} = C(sI=A) 18 and G g) = B gI- A ) 1CT and
their left and right inversesp'Some care must howaver be

taken in defining the appropriate input and oulput spaces.

Remark 2. By dynamical ovrder we here mean the dimension of
the state vector.




3. MINIMAL SYSTEM INVERSES,

In this section the properties of minimal system inver-
ses for left invertible systems with arbitrary unknown
initial states and zero initial states will be investi-~
gated. In the former case existence conditions are pro-
vided, since such conditions do not seem to he known pre-
viously. Naturally, the class of inveptible systems is
much broader in the latter case, which will also he clear

from the invertibility conditions.

Systems with Unknown Initial States.

Consider the system S(A,B,C) and assume the initial state
is arbitrary and unknown. The inverse shall reproduce the
input irrespective of what the initiallstgﬁe ig. We can
express Ehis in terms of the following cdnditions on the

inverse ® using (2.4%)
8e, = 0 66, = I (3.1)

Tntroduce Y as the maximal (A,B)~invariant subspace con-
tained in ker(C) (the null space of C). The following lem=

ma will be needed in the proof of the theorem below

I

v - 0 there are maps N rRP, ™, LI I N

Lemma 1. If

such that

qn 4

b NiCA = In

1=0

P i~k :

.E fiCA B =0 | k = 1,2,..40
1=k

_ 1 - -
Proof. Show first that V' = 0 implies that {0} n {R} = 0O




'Qhere'{‘} denotes the range space and R and 0 are the
the following block matrices

C o r’g‘ G"!‘t!‘.l!l

r » 0 5
CA CB D £ 005 a ¢ a3 b e ¥ G
Q = . R = CAB CB [ I R N ) Q (3&2)
n * 0 l-l.. * ¢ 4 4 & & & B & 5 F B 4 O & 4
CA) ca™ g ,..... caB  CB]

Assume that {Q} n{R} 4 0. There exist vectors x and

el = [rfg rg; C ey rZ} such that Qx = Rr, i.e, usging
(3.2)

Cx = B

CA; - CBP1 =0 | : (3.3)
CA®x - CABr, - CBr, =@ '

H]

Introduce vy * and Vigq © Avi - Br., i=1,2,...,n0.
The sequence (3.3) then becomes Cvi =0, 4 = 1,2,...,

n+l. Since Avi B Va4 7 Bri we can write in subspace no-
tations

A{vi} e {Vi+1} + B {vi} o ker{C) (3.4)

where B denotes the range space of B. Now define a se-
quence of subspaces Ukﬁ k= 0,7,2,.0.,0, by

n~lk+1
vy = ‘Z {vi}

=
i
—

Using (3.4):

n-kAd n-k+1
A= 1 Alvir e f vy}t B eV, ¢ B (3.5)
151 1=1
V., e ker{()

k




We then have a sequence of subspaces satisfying 0 # Un <
= V.4 -+ ©V, = ker(C). Since V_ is nonzero and ker(C)

has dimension at most n-1 it follows that Uj = for

] 1+1
some j. Then from (3.5)

) .
A‘jJr‘i - uj-ﬁ + B 3 Vjﬂ e ker(C)

- Thus VM £ 0 and {0} n {R} = 0 by contradiction. However,
by the observability assumption, dim{{Q}) = n and the
columns qu, Qps «2e5 q OF Q is a basis for {0Q}. Moreover
let ryy ohs oony r be a basis for {R}. Since {0} fn {R}= O
from above, the vectors-q15 Qos veey sy Traseresy g

are lineariy independent. This implies that there is a map

N:'Rp(ﬁ+1} » R" such that Nq:.L = ey where e, is the i:th

unit vector, and Nr, = 0. For this map we have NQ = In

and NR = 0. Partion N = {ND Ny

the blocks in @ and R. An evaluation of thﬁ matrix pro-

“

s Nnioompa%ibly with
ducts NQ = In and NR = 0 give the sums i¥ the lemma G«
The minimal inverse in the case of arbitrary unknown

initial state is then charactarized in the following

theorem.

Theorem 1., Assume the system 5(A,B,C) is completely ob-

servable. There exists a left inverse with the property
(3.1) if and only if T Moreover, if UM.: 0 there
is a polynomial matrix N(sg) such.that for all (u,y) €

UsY and all xg

S
11}

Niply I S (t6~.,m)
B (3.6)

ﬁ(pI*A)N(p)y

=
]

where p = %¥ and B is a left inverse of B,
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Proof. Assume first there is an operator g with the pro-

perty (3.1} and A Let Ly be ammap such that (A+BL, yy
c vt and consider the input uy @ Lyx with Xy € VM, Then
X = (A+BLM)X . x(tU)fz X

{3.7)
y = Cx
u, = LMX

Since x, € v ana (A+BLM)UM e v it follows that x(t) ¢ vM
and thus y(t)-= 0 for t > Tg
ly zero for all X, € V{Is 81nce this would imply that Ly VAL
= 0 and ker(C) » VM 5 (asptov = a0 and the obsepvablzlty

assumption is contradicted, The same output is however

The input U, is not identical-

produced by x, = 0 and v, = 0, and it will be impossible
to distinguish between the inpnpts u, andrﬁé by observing
the output and left invertibility in the sense of (3.1)

fails.

Conversely, assume T 0. By successive differentiation
of ¥y in (2.3) we have using Lemma 1 and the substitution

x{t) = A I?x(s)ds + B ftu(s}ds + Xy

=
g
i

N Cx = N CA [:x(s)ds + NHC? [ u(sl)as + N Cx, =

Lh

N, CA | x(s)ds + N Cxg

(1) o e - 2 _
Ny oo+ Ny 4y o= N CAX 4 N, Cx s (N _CA +7$n_1CA) [x(s)ds

* (N CAB + N__,CB) [u(s)ds +# (N CA + N__,C)x

-1 0

- 2 \ . 'l -
= (N CA® + N__,CA) {x(s)ds + (N CA + N4 Cxg

(1) 2

(N_CA® + N__.CA)x
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Proceeding recursively in this way we have after n steps

n R n .
5 Niy(l).: 3 NiCAlX

i=1 i=1

and adding Noy = NOCX to either side

n . n .

r o owny$? 2 x weatx = (3.8)
. a1 . 1

iz0 i=9

where Lemma 1 has been used once more. The last expression
can be written in operator form as N(ply = x with N(p) =
Ny + Nyp + v 4 ann. From (2.3} we have (pIqux = Bu.
§ubstitute x = N{ply and multiply from left by B, where

E ig a left inverse of RB. We cobktain
B{pI-A)N(ply = u _ . (3.9)

The lagt relation holds for all x, and a left inverse in

0 -
the sense of (3.1) exists. The second statement in the

theorem is also proven by (2.8) and (3.9) @

Remark 1. The inverse operator 6 = B{(pI-AIN(p) is obvious-
1y in the required minimal form since w in the representa-
tion (2.5) has zero dimension. The construction of the op-

erator N{p) can be done as cutlined in the proof above.
Remark 2. For systems with one input and output, the con=

dition vH o i is equivalent to the condition that the tran-~

sfer function has no zeroes.

Systems with Zero Initial States.

For zero initial states, the input-output operators of
S(A,B,C) and its controllable and observable subsystem are
the same. Therefore it is no restriction to assume the sys=-
tem is completely controllable and observable. This prop-
erty is assumed in the sequel. In this case the inverse

~

shall satisfy 88,= I, which can be compared with (3.1).
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1 V! is the maximal (A,B)-invariant subspace contained
in ker(C), a necessary and sufficient condition for the
system to be left invertible in the case of zere initial

state is given by ful

[
et
=
=
o]
H
o

(3.10)
ii) ker(B)

it
fow

where B denotes the range space of B. The second condition

is here satisfied by assumption.

To construct the minimal inverse it will be convenient

to fiprst make the transformation

(T,L) 4 1
S(A,B,C) = S(T (A+BL)T, T 'B, CI} (3.11)

with suitable T and L., This transformation is .achieved
by a state feedback u = Lx + Ug and a coordinate trans-

formation z = =y,

Let LM be a map such that (A+BLM}UM s Vﬁ. From the inver-
tibility condition (3.10) it can be seen that the whole
space can be factorized into independent subspaces as

R" = £Z® B @ UM, where X is any extension space. Introduce

Ty = [X B ¥y (3.42)

where X B and VM are basis matrices for X s B and U res-
pectively. Consider now the tpdnsformatlon {(3.11) with

M

(Ty,Ly?). Since V' is (A+BLM)“1nvarlan$gand contained in

ker(C) the transformed system must take the form

Z4 ) A11 0 Zy . B1

o | u (3.13a)
_ 0 .

2 Aaq Bag|l|Zg o).
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{3.13b)

L., T,z = L +

Mi%1 * g%y
where z; and z, are given by x = (XB)z, + Vyz,. Home

properties of the system (3.13) are given below

Lemma 7. Consider the system (3.13). There exists a po-
lynomial matrix N(s) such that

Z4 = N(ply
(3.14)
u = Bq(plﬂAT?)N(p)y

where §1 is a left inverse of B1 and p = 3
Proof, Let U? be the maximal (A11,B1}?invariant contained
T .Y

in ker(Cq). By the maximal property of M it follows that

Mo
U,I - 0'

Consider then the system (3.13). Since the initial state

zy = 0, the input-output operator of (3.13) becomes equal
to the input-output operator for the subsystem S(Aqquj,_
Cq) by neglecting the unobservable part, i.e.

&

Z4 = Aijz1 + BTuO )

The lemma then follows directly from Theorem 1.
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Lemmna 3. The pair (LM23A22) is completely observable.

Proof. If the pain (LMQ’AQQ) is not completely observ-
able there is an A22~invariant subspace {§ contained in
ker(LI ). If W is a basis matrix for W this implies that
Azzw z WQ for some matrix Q and LMZW = 0. Introduce

A = M (A+BLM} and wl = [0y w 1. From the special block
form of A shown in (3.13) it immediately follows that

Al = WQ. Consider then V = T, W. By some simple manipula-

M
“tions
(A+BLIV = AV + BlyTyW = AV + BL, W = AV
(A+BL OV = TyAW = T,WQ = v

Thus AV = VQ and ¥ = {V} is A~-invariant. Moreover by the
form of Ty (3.12) and W, V = T ﬁ = VW and thus V < UM
Since UM,C ker(C) this implies that V is an A~invariant
contained in ker{C) and the observability assumption .is
contrédicted?h '

With these notations the following theoremg may now be
stated characterizing the minimal inverse for systems

with zevo initial states.

fheorem 2. Denote the characteristic polynomial of ‘A,,
by aM(s). Let & be an arbitrary left inverse of S(A,B,C)
with %g * ¢ and let a(s) be the characteristic polyno-
mial of A in the representation (2 §). Then oy(s) di-
vides a(s)

Proof. Let x4 € v, since the system S(A,B,C) is complete-~
ly controllable, there exists an input,uo ¢ U such that
x(ty) = x4 for some fixed point of time ty > t,. Consi-
der then the input
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u, () _ t, gt ¢t

where Ly is given by (3.11). Obviously u € U. For t 3 T,
the seclution of S(A,B,C) becomes

X = (A+BLM)X X(t1) = Xy
y = Cx
u o= Lﬁx

Consider now the tramsformation z = T&ix with Ty as in
(3.12). The transformed system is described by (3.13)
with uy = 0 and subject to the initial condition z(t, )
= [0 zzﬁ] since x(t1) € UML Thus for t : t1

.

ult) = Ly,e © Zog y(t) 5 O

However, u is also produced as the output of any left

inverse 6 with y as input.
Since y(t) = 0 for t 3 t, we have from (2.5)

. A(t»ti) A1)
u(t) = Ce wlty) = Ce wlty)

where (C,A) denotes the observable subsystem of (C,A).
It is easy to show that the characteristic polynomial
2(s) of A divides a(s). Since Zoq is an arb:trary ymveac-

M

tor where v = dim ¥ (x(t ) is arbitrary in V ) we have

derived the following relation between A22 and A
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A (t=~t,)
2 (Bt
LMze = C

- —

A(t~t1)
e 9] (3.15)

for some matrix W. Introduce the observability matyices

( Y (C )
Lygy | g
Ry _|CA
Q = 1, | W = |,
Ly, AN can"
oo ) | )

where n equals the dimension of A. A successive differen-
tiation of {(3.15) gives

Apo(t=t,) ACt-t, ) :
Qe 22 (e Qe ?_w (3.16)

* .
4 ¥

According to Lemma 2, the pair (LMQ’AQQ) is completely
observable, i.e. rank(Q,) = v. Setting t = 4 in (3.18)
we have Q, = QZQ and it follows that rank (W) = v. Since
the pair (E,A) is completely observable Q, has a left in-
verse.62 and é2Q1 = W, Another differentiation of (3,16)
gives with t = T4

Q

R,y = QAR

o

Multiply from left by Q,

@AZQ = AW

From the last expression we conclude that W = (W} ig A~
~invariant and A,, = A{{#.Thys ayls) divides a(8). Since
a(s) divides a(s), the theorem follows triviallyn
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Remark. The theorem above sets a lower limit on the dy-
namical order of any inverse 8 of the form (2.5). This

limit equals deg(aM(s)) = aim(v'h.

Theorem 3. Assume the system S(A,B,C) is left invertible.
With notations as above a minimal inverse of dynamical

order v = dim(UM) is given by

5
[H

A22w + N1(p)y w(tg) = 0

i

u Lyg% + NQ(p)y

whera

My (p) = Ay N(p)

]

Ny(p) = (Lyq + By(pI-A, ) ]N(p)

and N(p) is given by Lemma 2 and B, is a left inverse of
TV

‘Proof. Notice first that it from Theorem 2 follows that

the dynamical order f' of any inverse must satisfy‘ﬁo_a

0
3 dim{UM)= Let u € U be an arbitrary input and define
g by uy = u - LMx. Make the transformation (3.10) with

(Tygslgy) From (3.13)

z A & Z B :
e b1 B I e (3.19)
Zy tA21 Ara] {2 0

v o= G424

B = bygqsg 4+ Lypz, 4w

Mz2 0

The input-output operator for this system equais the
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input-output operator for the subsystem S(A11,81,C1) by
neglecting the nonobservable part. From Lemma 2

N(ply = Z

BT(pI~A11)N(p)y = ug

where N(s) is a polynomial matrix and p = §¥. Using (3.18)
UOE Lygsg + Lypzy *ouy
= LyoZy * (Lyg * &gpI#H1ﬂprh¥ (3.20)

where Zo satisfies

& r

Zy = RgoBy * Agqzy = Ayaz, 4 AjN(Ply ¢ | (3.21)

ZQ(tOJ = ¢

Then (3.2D)Aand (3.21) obviously constitutes a left in-~
verse for S(A,B,()nm .

The spectrum of the minimal inverse, i.e. the eigenvalues

cof the matrix Ays will satisfy some uniqueness conditions:

Corollary. The spectrum of the minimal inverse is unique
and is a subset of the spectrum of any other inverse.

Proof. Follows directly from Theorem 2 and Theorem 3 and
i
the uniquenesg of the subspace Uh.

Remark. The minimal inverse may be constructed as out-

lined above. The computational steps involved comsist of
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o calculating a maximal (A,B)-invariant ytt and an as-
sociated map Ligs

o  transforming the system by (3.10},

o calculating the operator N{(p) using the sufficiency
part of Theorem 1 and Lamma 2.

The Inverse Spectrum.

The inverse spectrum, or the zerces in the transfer func-
tion case, may now be characterized in simple terms from
the system description S(A,B,C). According to Theorem 3,

and its corcllary, the inverse spectrum for left inver-

tible 'systems is unique and equals the matrix App in (3.13)

i.e. the spectrum of the map

M
(A+BLy) |V

M

where V" is the maximal (4,B)~invariant subspace contained

in ker{C) and LM is such that (A+BLM)UM < UM. UM

constructed sccording to the algorithm (2.2). The corres-

can be

ponding result for right invertible systems is obtained
via the adjoint system S(Al PT T) Let UM
(a® C J=invariant subspace contalned in ker(B') and let

be the maximal

Ky be such that (A+KMC) y o« Vu, The inverse spectrum in
this case is the spectrum of the map

T, M
{J.Ax“i' KMC } ] U i

Remark. Computationally the spectrum of (A+BL)[UM can be
obtained as the elvenvalues of V?(A+BLM)VM where VM is a
basis matrix for VI and (»3% denotes the pseudoinverse
[13, 14},
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4. CONCLUSIONS.

The problem of minimal system inverses for linear time
invariant systems has been formulated and solved for
systems with unknown initial states as well as for sys-
tems with zero initial states. The basic mathematical
tool is some geometric concepts introduced by Wonham and
Morse [B] which can be transformed to computational al-
gorithms [%]. This will be devoted to a future paper.

The spectrum of the minimal inverse, or the zeroes in
the transfer function case, has been characterized in
a simple way from the state space description S(A;B,C)
of the system. This means that the "zeroes" have been
available as dynamical characteristics in state space

aynthezis.
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