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INTRODUCTION

The problem of stability of direct discrete-time adaptive control with
recursive least squares identification is investigated in this report.

The problem of direct adaptive control was formulated in the original article
by Astrdm and Wittenmark (1973). These authors left the the stability problem
as an open problem. Some results were soon established for systems with
positive real transfer functions and systems with time delay equal to one.

The difficulties to give proofs of stability for a general class of systems
inspired work into new directions, see Goodwin et al (1980) and Egardt (1980).
With this approach it was possible to show stability for a broad class of
adaptive control systems.

The stability concept was however different from traditional concepts of
stability. The new concept was more qualitative while the traditional
concepts of control theory are quantitative.

Thus, using the new stability concept it was not longer possible to give
bounds for convergence rates and error magnitudes. It was neither possible to
explain impacts of modelling errors on the convergence properties.

A rigorous comparison between the traditional concepts and the new concept
has not been made and it is therefore difficult to translate the "new" stability
properties to well known properties of e.g. asymptotic stability. Some doubts
on the stability properties have been presented despite of the stability
proofs. Rohrs et al (1982) showed with some examples that some disturbances
in presence of unmodeled dynamics resulted in unstably growing errors. As a
result the scientific discussion changed into the direction of robustness

rather than stability.

This work tries to follow a traditional way of stability analysis in control
theory. A first attempt in this direction was made by Johansson ( 1983) where
global Lyapunov stability and exponential convergence were shown for a
discrete time pole placement adaptive control scheme with a simple gradient
method for parameter estimation. The present contribution gives similar
results for deterministic pole placement adaptive control with recursive least
squares estimation.

The paper starts with a formulation of algorithm elements and presents then
some adaptive algorithms to be investigated. Then follows state space formu-
lations and definitions of Lyapunov function candidates. Finally, the global
Lyapunov stability and global exponential convergence are shown for one
algorithm and some instability problems are demonstrated for two other but
related algorithms.



THE ALGORITHM ELEMENTS

Algorithms of direct adaptive control are given below. No derivation is given
here. A general introduction to the problem and may be found in Egardt (1980)
where it is shown how many discrete-time adaptive control schemes in the
literature may be reformulated into a unified scheme of the form below.

The adaptive algorithms require choices of an algebraic structure of
polynomials to describe the process model, regulator model, a reference
model etc.. Let this be denoted by <a>. Further, it is needed to choose a
parameter vector to be estimated <pl |p2ip3>, a recursive least-squares type
of identification method <i> and a control law <c1,c2,c3>. A particular choice
of adaptive algorithm will then be described by a quadruple e.g. <a,pl,i,c>.
Several other identification methods and control laws would have been
possible to use with good result. This presentation does however not pretend
to cover all possible cases but is restricted to three different choices of
parameter vectors. These specific algorithms are described in next section.

Consider the following algebraic structure for direct adaptive control suited
for model reference control and explicit pole placement control.

Process model

A" (g Hyer = boq'kB*(q'1>u<t) <a>, (1)

Regulator model

R* (g hut) = - s*g™hiycty + T*(q-l)uc(t) <a>, (2)
Reference model
*, -1
_ BX«q™hH -k
vy (t) = q KX () = I — y (&) <a>, (3)
m a¥(qg"l © T*p¥ °C
M4 1°M
Regulator equations
rR*A + s* [b,qa”¥B"] = b P* <a>, (4)
o 0
+ ’
* -1 LI PN -1 -n
P (q )= TjAyB" =1 +pg " +..... +p g "P <a>, (5)



®_
= >
T TlBH <a>, (6)
Direct parametric model
#r -k *r -k *_ %
v t)=R" [q futtr])+8” (@ Fy(t) ) y (t) = T ALy(t)
£ [ ] f 1™ <a>, (7)

-k -k *
ef(t)=R*[q uct) )+s” [q y(t) ]-y_(t-k); e (t) = Tlxne(t)

Estimation models

T-

ne>

yelt) = boﬁ(t) + 8,0, (t) boﬁtt) + 8 @(t) <pl>
yelt) = bOG(t) + eI& (t) 2 oTot) <p2>, (8)
- 1 T- 1 A T-

ult) = - [_3591] o, (t) + bo]yf(t) 2 0 g(t) <p3>

where ¢ contains components of delayed input-output data. The '~’ means
delay of k steps.

PCt) = uCt-k) ult-k-1) v.ee.yCt=Kdeeuoo )T (9)

in the case of <p%>. Similarly, the parameter vector © 1 contains the coeffi-
cients of R and S of (2).

Recursive identification of ©

T

Li(t) = 8 @(t)

A A -
a(t) 8(t-1) + P(t)e(tle(t) <i>



_ P(t-1)g(t)p (£)P(t-1)
TorPe-Drpt)

P(t) P(t-1)

1+ 9

T

A -
L(t) - 6 (t-1)g(t)

e(t)

The control laws

—4 C— —&— AT - L]
u(t) = bo[el(t>¢1(t) yc(t)] H b0 known a priori <cl>
_ 1 (AT
ult) = - — [el(t)¢1(t) - yc(t)] <c2>
b
0
1" T 1
_ 1
u(t) = - [Sgel] (tre, (t) + [=]y_(t) <c3>
)
where a correct control law would be
utt) = - =—(eTect) - y_(t)] (10)
(=]
o)
with
(t) = T (g HHu_(t) (11)
Y q ug

THE ADAPTIVE ALGORITHMS

The following specific algorithms may be composed and will be investigated
below.

<a,pl,i,cl> A prototype self-tuner where the gain b0 is supposed to be
known exactly a priori.

<a,p2,i,c2> An output-matching algorithm where the controller parameters
including b, are estimated. The estimate of b0 is used in the
control law.

<a,p3d,{,c3> An input-matching algorithm where the controller parameters are
estimated along with the inverse (1/b0) of the gain.



It is in all cases supposed that the correct orders of polynomials are known
and that the time delay k is known.

A STATE VECTOR FOR PARAMETER ESTIMATES

A ~ A
The parameter estimates are denoted by © and the error is ©=6-6. The
least-squares criterion is denoted by J(6). The one-step ahead convergence
properties of recursive least-squares estimation is treated in textbooks on
identification, see Ljung and Sdderstrém (1983).

The parameter error vector © is § natural state representation. It is however
necessary to have k consecutive 6:s in order to have a full state description
for the k step delay case. One state representation k steps ahead is given by

eT

2(t) = [07(t+k-1) ....00(t)])T (12)

where the P-matrix generalizes to
n(t) = diag(P(t+k-1),....,P(t)])

The convergence properties of £ is described in detail in appendix 1 where it
is also shown that the parameter error Lyapunov function candidate

t+k-1
Ve [E(tr]) = if

3(6¢ir) (13)
t

develops over time as a non-increasing function, see (A1.25).

A STATE SPACE MODEL

The growth rate of a state vector x(t) representing the states of the control
object and the controller will now be investigated.

The state vector of the control object (1) is easy to represent via a refor-
mulation to a fraction form

A (g hz = uty
(14)

yit) = bOB*(q-l)g(t)

where E(t) is referred to as the partial state. A state vector for the control
object is



(5ct-1) §(t-2).....§(t-nA)]T (15)

where n, is the appropriate order. The states of the regulator (2) may be
represen%ed in the same way. However, the regulator makes use of old input-
-output data. It is then natural to express also the regulator states of the
vector ¢ in terms of E.

x(t) = [g(t-1) §(t—2).....§(t—nx)]T (16)

The order of x is some number n, that is chosen large enough to enable us to
write

(pl(t) = M¢X(t) (18)

for a matrix Mq, which contains the parameters of the A*- and B*—polynomials.

u(t-1) lay ay...ay 0..0]
_|utt=k+1)|_|O .. 1l ;ceevea . -
? (V)= (ty “lo......0 by b, iR : Mo CE)
Y(t:-l) .0 TR E(t_nx)

. 4

A special form of the state-space equation sufficlent to cover (1) and (2) will
now be used. Define via (5)

vit) 4 P*(q-l)E,(t) = u(t) + ;—-e'{cp(t) (19)
o
Then it follows that a state space description is given by

x(t+l) = &x(t) + Iv(t)

The ¢-matrix and the I"'-vector are then

—pl -p2 -paoo-o..-pn pT 1

¢= é ?II.I.G..I..‘ ; = I ? ; r"—" ?
. . . . (n-1)x(n-1)| - g
6........0 "1 o0 0 0

(20)

The components of the vectqr p are the coefficients p, of the polynomial P*.
Notice that the polynomial P represents all poles of the closed-loop system -
also those poles which cancel the zeros of the B -polynomial.



THE GROWTH RATE OF E(t)

We will now investigate the growth rate of the state vector. It is then
possible to introduce a norm or a Lyapunov function candidate which grows
when the norm of x grows. Introduce therefore the function

V [xtt)) = 1nf2 + uxT () AX () ] (22)

with a constant u>0 and with A chosen as a positive definite matrix. The
matrix A will be chosen as a solution to the Lyapunov equation

Th¢ - A = -@ - pp’ (23)

where we also require that

AT =T (24)

The vector I' is then an eigenvector of A. Firstly, we need to show existence
of solutions to (23-24) in order to proceed. This is done in the following
lemma.

Lemma:

There are solutions to the equations (23-24) if

T

Re{(z+1)r (I+¢)[z1-¢]'1r} >0 ; z=e 3 -n S e SK

Proof: See appendix 2.

A necessary condition for (23) to hold for positive definite A and Q is that ¢
has all its eigenvalues within the unit circle. For example, all stable first
order polynomials satisfy (25). The theorem is valid for closed-loop pole
locations in a restricted part of the stable region.

An Example

Assume that the desired closed-loop pole locations are given by the poly-
nomial

PP(q™h =1 (26)



This means that p ,...,pn of (27) are all zero. Let ¢ be some constant in the
open interval ]0,1]1.. Then define the matrix

1 O ® 5 8 8 8 0 8 e 8w 0
2 . .
- O e . .
Ae . . ‘0 (27)
o L I I I R N D R I 0 e2n
It is then easy to see that l\e and Qe below satisfies equations (23-24).
[ 1 - e2 O' R EEREEREEE 9 1
2 4 .
0O, e -e .
@=|: - "> (1 - e%)a (28)
e : : ; 0 e
x 0 ® oo 28 e 0060 0 09 00 0 ezn‘

It is now possible to give a statement about the growth rate of function (21)
and the state magnitude.

Result:

The adaptive control algorithm <a,pl,i,cl>, <a,p2,i,c2>, <a,p3,i,c3> may at
most result in a growth rate of the state vector such that

v [xct+1)]) - v [x(t)] < (29)
X X
T 2
< «Tiraxcey  [PxE) - viwr] + 2u vZ(t)
1+ uxT (AX(E) 1+ px! (£)Ax(t) 1+ px (£ Ax(E)

Proof: See appendix 3.

Remark:

The fact that the condition for existence of solutions to equation (25) does not
mean that the proof only covers the class of systems usually thought of as
"positive real transfer functions", cf. Landau (1979) and Ljung (1977).

Notice also that the condition enters in such away that there are only
restrictions on the closed-loop pole locations. There are e.g. no restrictions
on the number of time delays.
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THE P-MATRIX

In order to represent the states it is finally necessary to consider the
P-matrix. A scalar function to represent the II-matrix is e.g.

t+k-1
Vp(mer) = = tr P(D) (30)
i=t
It is trivial to show that each tr(P) decreases at each recursion. Since the
P-matrix is a positive definite matrix with positive eigenvalues, it follows
that (30) is decreasing and positive.

GLOBAL LYAPUNOV STABILITY

We will now give a Lyapunov function for the considered adaptive systems
for the reference value y =0. Start to consider the parameter convergence
properties. Applying (41.25 to <pl>, <p2> and <p3> when the control laws are
<cl1>, <c2> and <c3>, respectively, gives via (A1l.21) and (29) that

2

vo(t)
Vo [Et+1d] - v [E(tr] < - = - (A1.25)
1 + ¢ (£+K)P(t)@(t+k)
with
b2vZt) <a, pl, i, cl>
v2it) = bgvz(t) <a, p2, i, c2>
. (32)
bgvz(t)[ ; IBY <a, p3, i, c3>
)

Assume that the initial value of the P-matrix (Al.4) for <pl> is P, =P T>0. Let

the initial value of the P-matrix of <p2> and <p3> be diag(l?P )q This a
special choice for <p2> and <p3> but all arguments are the same in the
general case. Choose the constant p of (22) so that

T
“A > M P_M (33)
¥ ¢ O¢

where M(p is defined in (18). With this choice of y, it holds for <pl> that
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2 2 2

- v (t) < - v (t) < - v (t)

1+ @ (IP(L)p(t) 1 + ¢I(t)P0¢1(t) 1+ pxl(t)Ax(t) 3P

The function

vixen ) = vg(Er]) ¢ kv [xct)]) + vy (meed] (35)

composed of (13), (22) and (30) decreases with time at least as

T
vixce+sn ] - v(xee) < - %bg‘ e (LIdx(t) (36)
1 + px (L)AX(L)
for
1,2
K > 50bg (37)

This is shown via (32), (34), (A1.25) and (A3.6). The function V of (35) is thus
shown to be a Lyapunov function. The right hand side is non-positive but not
necessarily negative for a non-zero parameter error. This is sufficient for
global Lyapunov stability but not sufficient to claim asymptotic stability.

STABILITY PROBLEMS OF FULL OUTPUT- AND INPUT-MATCHING

Calculations similar to (34) for the full output- and input-matching algorithms
gives respectively

2 2
b2vZ(t)
2 1+ u2(e) + pxT(t)Ax(t)
= () < | (38a-b)
1+ ¢ (IP(t)@(t) .22 .
bov (t) 1742
T b

-1 + bgvz(t) + pux (t)Ax(t) O

It is seen that no K is sufficient to make a Lyapunov function for neither the
output-matching nor the input-matching algorithms. The problem for the
output-matching algorithm is associated with the denominator (38a) which
depends on u. For any K it is possible to find a (large) u which results in
growth of V.

For the input matching algorithm there are two problems. Firstly, for any K
and when v | is large enough it follows that V grows. Secondly, when the
estimate of the inverse gain is small, it follows that (38b) is small in
magnitude and V may grow.
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However, in harmony with the arguments in stability proofs ad modum
Goodwin et al, it follows that a large u or v will bound the right hand sides
of (38) away from zero and will eventually result in parameter convergence.
There is then however no longer any obvious relation between the growth of
Vx and the descent of Ve.

EXPONENTIAL CONVERGENCE

Exponential convergence to an arbitrarily small neighbourhood around the
origin may be shown. Consider e.g. the unit sphere of the state space x. Let
q and A be extremal eigenvalues of Q and A, respectively. For |x||21
1% 8 1ows 5N (36) that

v(xce+n)] - v[xcer) s (39)
2t
1.2 % Anin 1.2  9min A
s - 3P 2 $ - 2P -
1 + px"(t)A 1 + uaA
max max

Then it follows from the properties of the Lyapunov function and that the
maximally attainable value of

v [xor]) s vxe]) s v(x] - at (40)

Since Vx is logarithmic it follows that

xT(t)Ax(t) (41)

is bounded from above by an exponentially decreasing function with time
constant o of (39). Hence, there is global exponential convergence to the
neighbourhood of the origin.
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APPENDIX 1

The parameters 6 of (Al.1) will be estimated given (Z,,(f)).

PN
L(t) = 8 ¢(t) (AL. 1)

Least-squares criterion with respect to N pairs of (C,,a).
A N AT-
J(ey = Z [t,(i) - 8 <p(i)] (Al.2)
i=1

Recursive equation

A A -
8(t) = 8(t-1) + P(t)g(t)Ie(t) (A1.3)
P(t-1)9(t)g (£IP(t-1)
P(t) = P(t-1) - s t Gdde, 28
1+ ¢ (BIP(t-1)(t) :
AT -
E(t) = L(t) - © (t-1)g(t) (A1.5)
Cf. (Ljung & S&derstrdm,1983; (2.21)).
A _1 A tl -
8ct,) = P(t,) [PTh(t06Ct ) + I° @(1)%(i)] (A1.6)
1 1 af=%Eg” T
1=t +1
0
) -1 AP SO P | A t -
et )=[P r e + = gtrp (1] T [PTT (e 8(t ) + I @(iIG(L)]
1 0 0'"" ‘o
i=1 i=1 (A1.7)

~A
Reformulate the cost criterion J of (A1.2) with the parameter error 6=0-6.

e 1

A — ~
J(et)]) = e ()P T (tr0(t) (A1.8)

Any pair (Q,c_p) which satisfies (Al.1) and which is used in the recursion of
{A1.3-5) results in a decreasing cost criterion J. In each step it holds that

2
slecer) - s[BCt-1) = - e (t) (A1.9)

1+ e (£IP(t-1)g(t)
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Now consider the parameter error state vector (12)

(L) = [ sT(t+k-1) .....ST(u]T (Al1.10)
and the corresponding P-matrices

n i) = diag[P'l(t+k-1),....,P'ltt)] (A1.11)

A Lyapunov function candidate with respect to the parameter errors that
covers all the k steps is defined by

t+k-1
ve[z(t)] = = J(ew] (13), (Al1.12)
i=t

It is shown via (A1.8) and (A1.12) that
1 t+k-1.

() "(L)IE(t) = £ 8 (L)P
i=t

=T 1

Vo[E(tr] = (1)6(4) (A1.13)

The Lyapunov function candidate (A1.12) develops one step ahead as

Vg (Ectend) - v [E(0)]) = (6ctrid) - T(6ct)) (Al.14)

The ¢-vector to be used in the identification at time (t+k) is already deter-
mined by the ¢-vector used in the control law at time k. Also, the output y at
time (t+k) is determined by the inputs up to time t. Thus, the updatings of @
at time (t+1),...,(t+k) are fully determined already at time t although they are
not performed by the recursive algorithm until k steps later. The E-vector
belongs therefore to the state-vector of the system.

Reconsider now (A1.7) with respect to the updatings to come in the next k
recursions. Formally, we have

t+k t+k
A - P = - - A -
strio=[P lr+r T arpi) TP hmtr+s T girgind)
i=t+l i=t+1
t+k
P lieeir = P ) + 2 ei)a ()
i=t+l (Al.14-15)

The computation of (Al.14) is implemented by the recursive equations (A1.3-5)
operating on the following time sequence of ¢-vectors

Qlt+l) » @(t+2) » .....> @(t+k) (Al.16)

The result is the parameter vector sequence
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A A A A
0(t) +» B(t+1) » B(t+2) » .....» O(t+k) (A1.17)

which gives the least-squares estimate based on the accumulated data
collected at each time instant.

Notice that an off-line least-squares estimate of the parameters at time (t+k)
would give the same result. Any other iteration order of the k recursion steps
would also give the same end result of (A1.14-15) and hence (A1.13). In order
to evaluate J(8(t+k)) it is thus not necessary to respect the natural iteration
order as long as no significance is given to the intermediate estimates.

A recursion order which is suitable for evaluption of the cost function and

which results in the same parameter estimates © and the same value of J after
k steps is e.g. the reverse order:

Plt+k) » @(t+k-1) 3 .....> @(t+l) (A1.19)

This order of recursion would give the following sequence of parameter
estimates

A A A A
0(t) » 8'(t+1) » .....» 6’'(t+k-1) + 6(t+k) (Al. 20)

A ~
where 6’ denotes the intermediate parameter estimates. Let ©’ denote the
corresponding parameter error vector. The first "reverse order” updating
with @(t+k) then gives rise to the prediction error €’(t+1)

A
' (t+1) = L(t+k) - L(t+klIt) =

(Al.21)

~

A - -
Lit+k) - B(E)p(t+k) = - 0T () pt+k) & vit)

where the last expression is easy to relate to the output error at time (t+k).

2

A A
J(ert+)) - J[6ctr) = - ot (A1.22)
1+ ¢ (t+KIP(t)@t+k)
Since all recursive updatings decrease J, we have
A A A
J(ect+rr]) < J(Br(t+k-11) < ...5 T(6’(t+1)] (A1.23)

The cost function J of (A1.8) then develops over k recursions at least as

vz(t)

(t+K)IP(t)p(t+k)

(Al. 24)

J(ect+r) - J[6Ctr]) < - —
1 +9

It is then possible to establish that Ve of (A1.13) develops at least as



Vo [Ett+d] - v (2] < -

vz(t)

1 + o (IP(t)@(t)

17

(Al. 25)
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APPENDIX 2

Solutions to the Lyapunov equation

The existence of solutions to (23-24) may be brought back to Kalman-Yakubo-
vich lemma as is shown in this appendix.

Consider the equations (23-24)

eTh® - A =-@ - pp’ (23)

AT =T (24)

Define now the mapping
F=(6-1)fe+1)' or e=(1+F)(z-F)" 2D

According to Kalman-Yakubovich lemma (see Narendra and Taylor (1973)
p.48ff.) there exists a positive definite matrix A solving

AF + FIA = - ay - qq’ ; Ag =h+ fyq (A2.2)

for vectors g, h, g and QO=Q0T>0 if

re{n’ [s1 - F)7'g}__ .2 - %v (A2.3)

Taking g=T it is seen that all F must obey

Re{hT[sI - F)” 1r}s cioZ " %v ; h=Aag - /¥ a (A2. 4)
Now take
@ = 21 - F]‘Tuo[x -F)7t ; aq-= 7é§[1 - F)7p (A2.5)

It is then straightforward to show from (A2.1-5) that A and Q solves

T T
®A® - A= -Q - pp Al = T (A2.6)
when F satisfies

re{r’ (s1 - F)7'r}__, 2 - %y + viRe{q" (I - F)7'r)__, (A2.7)

for some y20. In particular, when y=0
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e'A® - A =-Q@-pp'; Af =T (A2. 8)

if

Re{r” (s1 - F) 'r} 2 0 (A2.9)

s=iw

where (A2.9) is recognized as a positive real condition on the transfer
function

G(s) = r'(s1 - F)7Ir (A2.10)

This condition is transformed to a condition for the discrete-time description
via (A2.1) and

_z-1
s-—z—+1 (A2.11)
It follows that

8T - F = —2-[21 - ¢][e + 1)7* (A2.12)
and

4

G = 23T (e + 1) (21 - ¢)7'r & Hea) (A2.13)

The condition (A2.9) now becomes

1o 0
z=e*® (A2.14)

Re H(z)l i = Re{zéer[Q + 1) (=21 - ¢]'1r}

for real w in the interval -t £ 0 £ n.
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APPENDIX 3

v [xe+d]) - v [xee)] =

1+ uxT(t+1)Ax(t+l)
in (A3.1)

1+ pr(t)Ax(t)

xT(t+1)Ax(t+1) - xT(t)Ax(t)

inj1 + p = = (A3.2)
1 + px (£)Ax(t)

Now apply (23) to (A3.2) to obtain

2

xTct) [6Tae - A)x(t) + 2vctIrTaexct) + vZceorriar

= 1n|l + p T
1 + pux (t)YAx(L)
(A3.3)
Simplification of (A3.3) with (23) and (24) gives
xT(t)[- Q - ppT]x(t) v 2pTx(tIvier+ v2(t)
= 1lnj|l + p T =
1 + pux " (£)AX(L)
(A3.4)
Completing the squares gives
- xTvaxtt) - [prxie) - vier )% 2v% e
= 1ln|l + p T <
1 + px (t)Ax(t)
(A3.5)
Since In(142)<z for all real z>-1, it follows that (A3.5) is bounded by
T 2
g X1 (£)@x () } [P xctr-vet)) . 20 vZ(t)
1+ uxT(E)IAR(E) 1+ puxT(E)AxR(L) 1+ puxT(E)IAX(E)

Notice that there is only one term responsible for the growth of Vx namely

2
2p v (t) (A3.7)

1+ pr(t)Ax(t)




