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USE OF E_XPERT SYSTEMS IN CLOSED LOOP FEEDBACK CONTROL

Karl-Erik Arzén

Department of Automatic Control,
Lund Institute of Technology,
Box 118, S-221 00 Lund, Sweden.

/

Abstract: Different uses of expert systems in process control
are discussed. The paper concentrates on expert systems
for closed single loop control. Motivation for this is given
and a prototype experiment is described. The experiment
is evaluated and an expert control architecture is proposed.
The system can be compared with a real-time operating
system. An implementation based on YAPS and object-oriented
programming is described.

1. INTRODUCTION

Expert systems have many potential applications in process
control. The application domain stretches from the entire
plant to the single control loop. Both off-line and real-
time problems exist. In this paper the expert system
is used in real-time as a part of a single control loop.
Many applications incorporate expert operator knowledge
into the system. Our application is instead focused on
incorporating more control knowledge into the controller.
Good control requires high-quality process knowledge.
This can be achieved in two ways, either directly from
the operator or through experiments with the controlled
process. The goal of the expert system is to build up the
necessary process knowledge required for good control.

The paper is organized as follows. General expert
system applications in process control are discussed in
Section 2. Section 3 focuses on the single control loop. A
prototype experiment is described. In Section 4 an expert
control architecture is proposed and its implementation is
discussed in Section 5.

2. EXPERT SYSTEMS IN PROCESS CONTRROL

Expert systems is an area of Artificial Intelligence (AI) that
has expanded rapidly during the last years, (Hayes-Roth
et al, 1983; Waterman 1986). Expert systems are used
to solve problems that normally require human expertise
and where traditional computer solutions are infeasible.
The successful applications have all been in areas where

high-quality knowledge dominates over common sense. This
is true for many aspects of process control. The idea of
adding heuristics to process control is not new. In Crossman
and Cooke (1962), a heuristic decision program that used
experience to enhance its performance was proposed for
manual control of systems with slow dynamics.

Examples of possible off-line applications in process
control are process design and control design. Process
design has no clean analytical solution. Expert system
assistance has a high potential value since process design
strongly affects the achievable control quality. In control
design expert systems can guide the selection of appropriate
control structures, (Umeda and Niida, 1986), at the global
level. Expert systems have also been integrated with
computer aided control design packages, (James et al., 1985,
Birdwell et al., 1985, Larsson and Astrdm, 1985). It has
also been suggested to use expert systems to assist in
the parameter settings of adaptive controllers, (Sanoff and
Wellstead, 1985).

With few exceptions, existing expert systems are based
on propositional logic or first-order predicate calculus.
Sometimes they also allow multi-valued logic, e.g. expres-
sions with the values true, false or unknown. This is however
not enough for a real time expert system. Such a system
may have to draw conclusions based on incomplete facts.
Facts may also change after conclusions have been drawn
from them. This means that the system has to backtrack
and reconsider these conclusions. Several non-standard log-
ics exist e.g. non-monotonic logic, (McDermott and Doyle,
1980) and temporal logic, (McDermott, 1982, Allen, 1984),
that partially solve these problems but they have not yet
been applied successfully.

In spite of these problems real-time expert systems
exist. These systems tend to circumvent the fundamental
problem in different ways. The method used in PICON,
(Moore et al., 1984, 1985), is to attach a duration time to all
database elements and to test the rules periodically. When
the duration of an element ends all concluded elements
are withdrawn. It is also possible to assume that database
elements are valid only in a certain context. The usual way,
however, is to use the engineering, ad hoc method and take



care of these issues explicitly in the rules.

Monitoring and diagnosis are the most common real
time applications. Plant-specific knowledge e.g. cause-effect
relations, is used to locate a fault which caused a process
upset or an alarm and to give advice on corrective action.
Work is being done e.g. on nuclear power plants, (Nelson,
1982), and chemical plants, (Palowitch and Kramer, 1985).
A monitoring expert system could also give advice on
control optimization.

In these applications the expert system is used as a tool
for the operator. The expert system loop can also operate
in closed loop, i.e. affect the controlled plant directly. On
a global level the expert system could e.g. be used for set-
point control to optimize the system. Process start-up and
production changes. is another possible area. In the aircraft
industry expert systems are suggested that reconfigure the
flight control system in case of damage, see e.g. Trankle and
Markosian (1985). The topic of the rest of this paper is the
use of expert systems in closed single loops. The ideas were
first outlined in Astrém and Anton (1984).

3. CLOSED LOOP EXPERT CONTROL

The present project aims at incorporating a rule based
expert system in a feedback control loop. The goal of the
expert system is to enhance the performance of the single
loop controller and to learn as much as possible about the
controlled process. This is achieved by orchestrating the
application of different numerical algorithms to the process
in an “intelligent” way. The numerical algorithms can be of
different types: control algorithms, identification algorithms
and monitoring algorithms. The control algorithms may be
of varying complexity, from simple PI or relay controllers
to more complicated optimal or pole-placement algorithms.
The identification algorithms may range from simple
algorithms for estimation of static gain to more complex
algorithms such as the Least-Squares algorithm, (Astrém
and Wittenmark 1973). Supervisory algorithms should
detect e.g. static errors, alarm level crossings and ringing
in the controller output. The expert system should decide
in which order the algorithms are applied and calculate
their parameter settings. The application of one algorithm
increases the knowledge about the physical plant and affects
the application of further algorithms.

Existing single loop controllers consists of a combina-
tion of a control algorithm and a “safety jacket” of logical
conditions. Safety jackets are often logical networks which
dominate program code. They can be difficult to modify
and often make the code less readable. The goal is to im-
plement as much as possible of this as rules in the expert
system. This gives a clean separation between the numeri-
cal algorithms and the branching logic that simplifies devel-
opment and maintenance. It is often desirable to combine
different algorithms. Some examples are different identifica-

tion algorithms in self-tuning controllers, one controller for
‘steady state operation and one robust controller for startup
etc. The combination of algorithms imposes additional re-

quirements on the correctness of the logics and inforces the
need for a structured implementation.

High quality control requires good process knowledge.
Adaptive controllers extract some of this knowledge from
the process but they still need much @ priors information
such as system order, number of time delays etc., to perform
well, (Isermann, 1982, Astrom, 1983, Clark, 1984). One
idea behind the expert system approach is to include as
much process knowledge as possible in the controller. This
knowledge can be collected in two ways: by asking the
process operator or by performing experiments on the
process. An experienced process operator has knowledge
about the physical process. This knowledge is often
qualitative. Examples may be estimates of dominant time
constants and static gain, the nature of non-linearities
etc. Simple identification experiments exist, (Astram and
Higglund, 1984) that can be used to extract knowledge
from the process. The information obtained in these ways
are diverse and sometimes uncertain or contradictory. The
expert system approach gives a possibility to exploit and
refine this knowledge.

In most of the examples given in the previous section,
the expert system was used to incorporate the knowledge of
the process operator. In this paper the emphasis is more on
the expert knowledge of the control engineer. A controller
of this kind has two possible uses. As an actual industrial
controller or, perhaps more interestingly, as a testbench Jor
rapid prototyping of new control structures.

From an Al point of view the on-line control applica-
tion includes both planning and monitoring. The system
should plan how the numerical algorithms should be ap-
plied to the process and monitor both the execution of the
plan and the actual control. The expert system and the al-
gorithms must be implemented as parallel processes having
different priorities. The reason for this is that the different
processes operate in different timescales. The response time
of the algorithms must match the physical process while the
rule interpretation in an expert system is a comparatively
slow process.

An environment for experiments with expert control
has been developed on a VAX 11/78.0 running VMS.
This is described in more detail in Arzén (1986a). It
consists of three parts: the expert system, the numerical
algorithms and the man-machine interface. These parts
are implemented as subprocesses that communicate by
sending messages through mailboxes. The process structure
is described in Fig 1. The numerical algorithms are
implemented in Pascal and could be viewed as a library
of algorithms. This process is connected to A/D and D/A
converters. The algorithms works as filters that extract
symbolic, qualitative information from the numerical signal
flow. The expert system is not involved unless something
significant has been detected by the algorithms. The expert
system and the man-machine interface are implemented
in Lisp. A simulation program, Simnon ('Elmqvist, 1975),
has been interfaced to the system as an alternative
to controlling a physical process. Simnon can simulate
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Fig. 1: Process structure. The ellipses represent processes
and the rectangles represent mailboxes.

nonlinear differential or difference equations. The program
has been modified so that it operates in real time.

This environment has been used in a prototype
system where the expert system was implemented with
the conventional expert system shell OPS4 (Forgy, 1979).
The prototype system is described in more detail in Arzén
(1986b). OPS«+ is a pure forward chaining system. The
database consists of arbitrarily nested list expressions. The
condition parts of the rules are patterns that are matched
against the contents of the database. There is no possibility
of grouping rules according to context. This system was
interfaced to the real-time environment by a rule that read
new messages from the mailbox and entered them into the
database. This rule was executed when no other rules were
matched. In this way the rule execution was restarted.

The prototype system was used for experiments with
a “smart” PID controller with auto-tuning and gain
scheduling. The tuning was based on the Ziegler-Nichols
auto-tuner (Astrém, 1983). Relay oscillations are used to
determine the PID parameters. When the loop is closed
with the relay the controlled signals starts to oscillate.
This oscillation corresponds to the point where the Nyquist
curve of the process crosses the negative real axis. This
point gives the ultimate period and the ultimate gain
which are then used to compute the PID parameters. The
algorithms needed to implement the system were a PID
algorithm, a relay algorithm, an oscillation analyzer and
a noise estimator. The controller worked in three different
modes: manual, tuning and PID. When in PID mode a
table was used to schedule the PID parameters for different
operating conditions. The operator could change modes and
enter new control parameters. It was possible to change the
contents of the database and edit the rules on-line. The
rules in the system could be divided in the following groups:
noise-estimation rules, relay oscillation rules, parameter
computation rules, PID supervision rules and command
decoding rules. The system contained about 70 rules.

Blackboard

Planner

|| Generator | Executor

N\

Operators

—/

Fig. 2: An expert control architecture.

4. AN EXPERT CONTROL ARCHITECTURE

The experiments performed with the prototype system
have been promising. The expert system approach gave a
clean implementation that clearly showed the benefits of
separating the of logic from the algorithms. As an example,
the addition of gain-scheduling required only the addition
of about 10 new rules to the system. This approach is thus
very promising as a testbench for rapid prototyping.

The experiments also showed that a conventional
expert system shell is poorly suited for real-time operation.
Expert control contains a large element of planning that is
not well supported by conventional expert system shells.
An example is the tuning phase of the controller that
contains a large sequential element. First a noise estimator
algorithm is used to collect noise information which is then
used to set the relay pararieters. A detector is applied
to determine that a steady state oscillation is obtained.
The PID parameters are determined from the oscillation
wave form and PID control is initiated. It is natural to
group the rules according to the different stages in this
plan. Production systems are generally weak at sequencing
problems. The sequencing has to be explicitly expressed in
the rules. This often gives the effect that the actual domain
knowledge is obscured by the control knowledge i.e. when

" to apply the rules.

Another disadvantage with the prototype system was
the uniform inference strategy. The problem is basically of
the data-driven, forward chaining type with data in the
form of significant events being sent from the algorithms to
the expert system. The monitoring phase can, however, be,
stated as a diagnosis problem where backward chaining is
more appropriate. The same is valid in the phase where
the system tries to extract process knowledge from the
operator. The lack of structure of the database was a third
drawback. A database that allows objects with attributes
would be preferable to the nested list structures of QPS4,

A better expert control architecture might be buijlt
around a blackboard architecture (Erman et al., 1981) and
a planning module, see Fig.2. The blackboard corresponds
to a global database that is available to the different
operators. The blackboard should allow information to
be represented as objects with associated attributes. The
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operators contain the domain knowledge for a’ certain
task. It should be possible to have different problem-
solving strategies for different tasks. The operators could be
procedural or rule based with different inference strategies
depending on their task. This means that the operators
could be tailored to their task. They should also be
allowed to have their own local databases. The computation
of PID parameters from oscillation measurements is an
example of an operator task. An operator is often associated
with one or more algorithms. An example might be the
operator for the relay experiment that contains the domain
knowledge for the relay algorithm and the oscillation
analyzer algorithm.

The order in which the operators should be used is
determined by the planning module. To reach a certain
goal state e.g. safe steady-state control, requires in general
that a sequence or plan of different operators is used. This
plan often contains parallel parts. An example of this is
the last part of the plan that contains one operator that
takes care of the steady-state control algorithm and one
or more operators that handle the monitoring algorithms.
An example of a plan is shown in Fig. 3. A plan could be
generated in three different ways;

e Operator-based activation: The operators start
and stop other operators themselves. No separate plan
generator is needed in this case.

e Stored plans: A finite number of plans for different
initial and final goals are stored in the database.

¢ Dynamic plan generation: The plans are dynam-
ically generated by a plan generator. Each operator
has an associated set of preconditions that must be
fulfilled for the operator to be applicable and a set of
goals that will be met by the operator. A plan is gen-
erated by comparing the final goal and the initial state
with the goals and the preconditions of the operators.
This approach can be combined with operator-based
activation.

The actual plan is executed by the plan executor. After
each stage in the plan the outcome is compared with the
expected outcome. Replanning is performed in case of in-
consistencies. The dynamic and stochastic nature of control
makes this close interaction necessary. The uncertainty in
the outcomes of an operator application vioiates the as-
sumptions of existing domain-independent planning sys-
tems (Cohen and Feigenbaum, 1982, Wilkins, 1983). The

goal for the separation between the operators and the plan-
ning module is to separate the domain knowledge about
different tasks from the control information.

The expert control architecture described can in many
respects be compared with an ordinary real-time operating
system, (e.g. Brinch Hansen, 1973). The operators are the
equivalents of concurrent processes and the plan executor
is the equivalent of a scheduler. This is especially true in

. the parallel phases of a plan. In an operating system the

processes can wait for a certain time or for a certain event.
Similar features can be provided in this architecture by
assigning a state with the values running, ready or waiting
to each operator. When an operator calls the function
“waittime” in a rule it will be marked waiting by the plan
executor. The operator is activated when the time is over,
An operator can also wait for a specified element to be
inserted in the database, e.g. a certain message from the
algorithm part.

The operators could be implemented in two ways. The
first is to implement them as concurrent Lisp processes
that share a global database. This would probably require a
Lisp machine. The second way is to implement the system
in a single Lisp process. This has the drawback that the
operators can not be interrupted. :

5. IMPLEMENTATION

The implementation of a system along the lines of Section
4 will now be described. The system is based on the
environment described in Section 3 with a new expert
system part. This part is built around the forward chaining
production system shell YAPS, (Allen, 1983) and the
object-oriented Flavors system (Cannon, 1982).

Object-oriented programming provides a convenient
way to implement highly modular systems, see e.g. Stefik
and Bobrow (1986). Objects consist of a local state and a
behavior. Objects are asked to perform operations by send-
ing appropriate messages to them. The objects have asso-
ciated methods that handles the messages. Generic algo-
rithms can be implemented using object-oriented program-
ming. A protocol i.e. a set of messages is defined, which
specifies the external behavior of the object. This proto-
col does not define the internal implementation. Objects
or instances are created by instantiating their descriptions.
There are several different object-oriented add-ons to Lisp
such as for example Flavors.

YAPS is a forward chaining shell implemented in
Flavors. The database contains arbitrarily nested lists of
atoms, integers and flavor objects. The condition part of
the rules contains patterns that are matched against the
contents of the database. Pattern matching variables are
allowed. The condition part may also contain predicates
acting on the database that must evaluate to true for the
rule to be applicable. The action part of the rules contains
ordinary Lisp functions. The inference strategy is event-
driven forward chaining. The key feature of YAPS for our
purposes is the possibility to use flavors objects in the



database and the fact that YAPS is itself a flavor object.
This means that YAPS systems can be used as parts of the
database of other YAPS systems. These “internal” systems
can be controlled from the rules, In this way expert systems
can be used “inside” other expert systems. The internal
expert systems could also be of other types e.g. backward
chaining systems, as long as they are implemented as flavor
objects. Operators are implemented in this way. - .

The flavor objects that YAPS allows in the database
can only be matched as object units. It is not possible to
access the attributes of an object in the pattern matching.
To allow for objects that can be accessed from the rules
according to attributes, YAPS has been extended with
static objects. A description of each object type has to be:
given. This includes the attributes with possible default
values and an inheritance order. YAPS has also been
extended with a limited explanation facility. A description
of how the fact was derived is connected to each fact in the
database and to each attribute of the facts that are objects.
This gives the possibility to ask HOW questions.

The global database and the planning module are
implemented in a YAPS system. The planning module
is implemented as rules. The operators are implemented
as objects in the database. Only YAPS forward chaining
operators are presently allowed. The most important
attributes of the operator objects are the following;

e Status: Take the values active or inactive. The value
is active if the operator is used in the current phase of
the plan.

e State: Takes the values running, ready or waiting. It is
used by the plan executor when the operators is active.

e Instance: The flavor instance for this operator.
e Goal: The goals which the operator should achieve.

e Preconditions: The preconditions that are required
for the operator to be applied.

The goal and the preconditions are collections of patterns
in disjunctive normal form. The possible uncertainty of
an operator shows up in the goal expression. Other key
elements of the planning module are the actual plan and
the goal stack. The actual plan contains the current plan
and the goal stack is a stack of goal entries. A goal entry
is a conjunction of patterns to be fulfilled. A goal entry
may also consist of a collection of conjunction patterns
with associated priorities. The plan generator takes the
top goal element and attempts to generate a plan for it.
If no plan is found then a new attempt is made with a
goal of lower priority. This mechanism could be used to
implement backup control. When a plan has been generated
its execution starts. There is no guarantee that the plan is
unique nor that it is the shortest possible plan. After each
stage in the plan execution the goals achieved are compared
to the planned goals. When a goal entry has been satisfied
the next element of the goal stack is selected. A rule in the
plan executor could look as follows.

YAPS
Operators : D
YAPS I' Database [
Planner -

Fig. 4: Implementation structure.

(rule schedulel
(object operator
status active
state ready
instance -x)
(not (object operator
state running))
-=>
(modify 1 state running)
(<~ -x 'run))

In natural language this rule says: if there is an operator
which is active and ready and no operator is running then
this operator is changed to running and a run message is
sent to the actual flavor instance.

The plans are represented as nested list structures of
operator names. They can be expressed in the following
EBNF syntax where p and s denote parallel and sequential,
respectively.

PLAN
OPERATOR ::
ARGUMENT ::

(OPERATOR ARGUMENT [ARGUMENT..])
<p> | <s>
<operator-name> |

PLAN

The example in Fig. 3 looks like (s A (p (s B C) D) E
)(p F G)) in this notation. The rest of the elements in
the global database are used for domain information. The
knowledge about the actual control loop is well suited to
be represented as objects with different attributes.

The operators built on YAPS have predefined functions
for activation and deactivation of other operators, They
have also functions for waiting a certain time or for a certain
element to be inserted in the global database. Each waiting
function has two different versions. One that requests a
wakeup and suspends the rule execution and one that only
requests a wakeup. Furthermore, there are functions for
adding and deleting facts locally as well as globally and
for pushing and popping elements on the goal stack.

The waittime requests are handled by a separate timer
process. When a waittime is requested a message is sent
to an associated mailbox. The requests are queued by the
process and a message is returned to the expert system
when the requested time is over. The structure of the

-implementation is shown in Fig. 4.



The next step in the implementation will be to add
other operators than YAPS. Work on this is currently under
progress and will be described in further papers.

8. CONCLUSIONS

The expert system approach simplifies the implementation
of controllers based on process knowledge. The knowledge
required can be acquired from the process operator or
from the process. Extracting knowledge from the process
requires experiments. This means that different algorithms
are applied to the plant. An expert system is well suited for
implementation of the logic needed in this process.

A prototype environment has been built up. Experi-
ment with conventional expert system shells have shown
that they are not well suited for expert control. An archi-
tecture that is better suited is described. This architecture
is under implementation using YAPS and object-oriented
programming.
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