LUND UNIVERSITY

A Small System-Structuring System in Scheme

Nilsson, Bernt

1988

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Nilsson, B. (1988). A Small System-Structuring System in Scheme. (Technical Reports TFRT-7379). Department
of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00


https://portal.research.lu.se/en/publications/cd4c4b9e-3555-49b5-8812-180bbc85b5a6

CODEN: LUTFD2/(TFRT-7379)/1-19/(1988)

A Small System-Structuring System
in Scheme

Bernt Nilsson

Department of Automatic Control
Lund Institute of Technology
February 1988



Department of Automatic Control

Lund Institute of Technology
P.O. Box 118
S-221 00 Lund Sweden

Document name

Report

Dnte of issue

February 1988

Document Number

CODEN: LUTFD2/(TFRT-7379)/1-19/(1988)

Author(s)
Bernt Nilsson

Supervisor

Sponsoring organisation

Title and subtitle
A Small System-Structuring System in Scheme

Abstract

implemented in the second part of the project.

This report is adocumentation of a project in the course Tools and Meiaphors of Al-programming. The
project is a prototype of a system-structuring system. The prototype is written in Scheme. This study shows

that symbolic manipulation language is powerful in problems like this. A new idea for connecting systems is

Key words

Classificationt system and/or index terms (if any)

Supplementary bibliographical information

ISSN nud key title

ISBN

Language Number of pages

Eunglish 19

Security classification

Recipient’s notes

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,

5.221 03 Lund, Sweden, Telex: 33248 lubbis lund.




A Small System-Structuring System
in Scheme

Abstract:

This report is adocumentation of a project in the course Tools and Metaphors
of Al-programming. The project is a prototype of a system-structuring system.
The prototype is written in Schieme. This study shows that symbolic manip-
ulation language is powerful in problems like this. A new idea for connecting
systems is implemented in the second part of the project.

Contents:

B 115 o e AT Lot 1o ) A 2
2. A Tutotial 60 48, oo 3
3. the CutSystent. eesos s simammie weioee oo me et s 8
4. SUMMABTY. .. ... sessime dve b bee e e s shvse e Ve v ves iessdes s 11

Appendix I : the 4s code.
Appendix II : the CutSystem code.



1. Introduction

This report is a documentation of a project in a course at the department of
Automatic Control during the warm winter 1987-88. The name of the course
was Tools and Metaphors of Al-programming and Wolfgang Kreutzer held the
lectures. Three different programming languages was discussed in the course:
Scheme (a dialect of Lisp), Smalltalk and Prolog. The project documented
here is in Chez Scheme and it runs on Sun-Workstations.

The project chosen is a package for structuring systems in an interactive en-
vironment. The project has been developed in two separated parts.

The first part is a package of functions that can create systems with inputs,
outputs and subsystems. There is also a connect function that creates con-
nections between subsystems. This package is called {s.

The second part is a specialization of the connection problem. In this part
a prototype for connecting cuts with different structure is developed. This
package is called CutSystem.

In chapter two there is a tutorial to 4s. Here are the Scheme functions shown
and discussed. A tank system example is used to show how the available
operations are used. CutSystem is shown and discussed in chapter three.
There is no tutorial to CutSystem because it is not of any general interested.
The ideas and the experiences are discussed. Finally in chapter four there is
a sunmunary of this project.



2. A tutorial to 4s

The first part of the project is a Small System-Structuring System, 4s. In 4s
you can create systems and give them inputs, outputs and subsystems. In
systems, that has subsystemns, is it possible to connect subsystems to each
other in a nice interactive environment. The {s is a collection of Scheme
functions that operates on system descriptions and these system descriptions
are lists. This way of programuming is called message passing. The Sclheme
code for the 4s functions can be found in Appendix I.

2.1 Creation of systems

Systems are created with the function make-system. A system can also be
created as a copy of an other system by using system-copy. The syntax for
the functions are shown below.

(define newsystem (make-system ’newsystemname))
(define newsystem (system-copy ’newsystemname copiedsystem))

The result of the first function is a list with an identifier (newsystemname)

and a body ().
(newsystem ())

Below follows two simple examples:

> (define tankl (make-system ’tankl))

tank1l

> tankl

(tank1l ()

> (define tank2 (system-copy ’tank2 tank1))
tank?2

> tank2

(tank2 ())

2.2 Creation of cuts

A cut is a group of variable clustered under one identifier, the cut name.
Creation of cuts in 4s is similar to creation of systems. Cuts are, like systems,
only lists and there are functions that can create and cluster them. Cut is
a collection of other cuts in a hierarchical fashion. The lowest level is called
subcuts which is composed of only one variable. A subcut is created by the
function make-subcut with following syntax.

(define subcut (make-subcut ’subcutidentifier ‘‘subcuttype’’))

Cuts can now be created by the function make-cut. The cut is made of a list
of cuts or subcuts and a cut type string. See below.

(define cut (make-cut ’cutidentifier listofsubcuts ‘‘cuttype’’))



Cuts and subcuts can be copied with a function called cut-copy.
(define newcut (cut-copy ’'newcutidentifier copiedcut))

The result of the first function is a list with an identifier (cutidentifier) and a
subcut type (“string”).

(subcut ‘‘subcuttype’’)
A cut has [ollowing structure.
(cut (’list-of-subcuts’) ‘‘cuttype’’)

Examples:

> (define flowcut (make-subcut ’q ‘‘flow’’))

flowcut

> flowcut

(q “‘flow’’)

> (define compcut (make-subcut ’x ‘‘composition’’))

compcut

> (define inflow (make-cut ’inflow (list flowcut compcut)
I(Pipe)7))

inflow

> inflow

(inflow ((q ‘‘flow’’)(x ‘‘composition’’)) ‘‘pipe’?’)

> (define outflow (cut-copy ’outflow inflow))

outflow

> outflow

(outflow ((q ‘‘flow’’)(x ‘‘composition’’)) ‘‘pipe’’)

2.3 Creation of inputs and outputs

With two functions, create-input and create-output, is it possible to create
inputs to a system and create outputs from a system.

(define system (create-input system cut))
(define system (create-output system cut))

The syntax of the resulting system is following.

(system
((input ’list-of-cuts’)
(output ’list-of-cuts’)))

Examples of how to create systems with inputs and outputs are shown below.
This example is a continuation of the example above.

> (define tankl (create-input tanki inflow))
tank1

> (define tankl (create-output tankl outflow))
tank1

> tankt

(tank1



((input (inflow ((q ‘‘flow’’) (x ‘‘composition’’))
“‘pipa’’))
(output (outflow ((q ‘‘flow’’) (x ‘‘composition’’))
‘‘pipe’’))))

2.4 Creation of subsystems

To create hierarchical system descriptions, there is a function that creates a
defined system as a subsystem in an other, on forehand defined, system. This
second system then becomes the super system. The syntax of this function is
shown below.

(define supersystem (make-subsystem subsystem supersystem))

The subsystem description is inserted in the super system description. Sub-
system in a new list in the super system body list. See super system structure
below.

(system
((input ’list-of-cuts’)
(output ’list-of-cuts’)
(subsystem ’list-of-subsystem-description’)))

Below follows an example where a supersystem is created and two systems are
assigned as subsystems. The example is based on the examples above. First
is a copy of tankl created and after that is the super system tanksystem
created. The tank1 and tank2 systeins are then defined as subsystems of the
super system tanksystem.

> (define tank2 (system-copy ’tank2 tank1))

tank2

> (define tanksystem (make-system ’tanksystem))
tanksystem

> (define tanksystem (make-subsystem tankl tanksystem))
tanksystem

> (define tanksystem (make-subsystem tank2 tanksystem))
tanksystem

> tanksystem

(tanksystem
((subsystem
(tank1
((input (inflow ((q "flow") (x "composition"))
"pipe"))
(output (outflow ((q "flow") (x "composition"))
"pipe") ) ) )
(tank2
((input (inflow ((q "flow") (x "composition"))
"pipe"))

(output (outflow ((q "flow") (x "composition'"))
"pipe")))))))



2.5 A connection mechanism

In a hierarchical system description is it important to connect subsystems to
each other in a convenient way. Here in 4s, a function called connect creates
the desired connection and insert it in the super system.

(define supersystem (connect supersystem ’inputidentifier
'outputidentifier))

The structure of the cut identifiers is.

(cutidentifier (subsystem))

The connection that is created with the connect function looks like as follows.

((inputcut (subsysteml)) (outputcut (subsystem2)))

Continuing with our example, we can connect tank2 to tanki.

> (define tanksystem (connect tanksystem ’(inflow (tank2))
?(outflow (tank1))))

tanksystem
> tanksystem
(tanksystem
((subsystem
(tankt
((input (inflow ((q "flow") (x "composition"))
"pipe"))
(output (outflow ((q "flow") (x "composition"))
"pipe") ) ) )
(tank2
((input (inflow ((q "flow") (x "composition'))
npipeu))
(output (outflqw ((q "flow") (x "composition"))
"pipe")))))
(connection

((inflow ((q "flow") (x "composition")) "pipe" (tank2))
(outflow ((q "flow") (x "composition")) "pipe" (tankl))
))))

2.6 Creation of super functions

In 4s there are possibilities to create functions that uses already defined func-
tions. One exaniple of a function like this is the make-siso-system function.
This function creates a system with one input and one output. These input
and output cuts has the typing “nt”, which denotes 'no type’.

(define sisosystem (make-siso-system ’sisosystemname))

Aun example

> (define s1 (make-siso-system ’s1))
sl

> sl



(sl
((input (u (u) ‘‘mnt’’))
(output (y (y) “‘mt’’))))

2.7 Implementation in Scheme

The implemnentation of §s is doune in Chez Scheme on Sun 3/50. The Scheme
code is found in appendix [. This part of the project is the first larger Lisp
program that the author has done. Therefore is the programming style not so
well developed.

In 4s there are some general function operating on lists. Examples are insert-
list and add-to-list. But most of the functions are quite large and special-
ized. They are quite hard to read because they are fiddeling with the structure
of the lists that they are operaling on.

On the other hand is it easy to read specialized functions that are similar to
each other. The opposite programining style is to create general function and
specialize them by calling them by particular arguments. Functions like this
can sometimes be hard to understand in a specialized operation. This is also
discussed in chapter 3.4.

2.8 Conclusion

When dealing with problems on a symbolic form is it powerful to use tools
like Scheme. As shown above Scheme code is very efficient. A small amount
of code can create powerful programs like 4s. An important side effect in this
application is the interactive enviromment provided by Scheme. In structuring
systems and in modelling in general is it not common to work in an interactive
enviromment like this.

When working with large numbers of systems is it important to make the
working process more flexible and interactive. Traditional modelling can be
compared with programming in languages like Pascal. The woking process
become an iteration process, editing - compiling - linking - executing cycle.
A new working process is in the spirit of exploratory programming developed
in the area of Al. Using languages like Scheme one have an interactive envi-
ronment to work with in which it is possible to test new ideas.

To create a nice interactive environment for a modelling language is a inter-
esting task. Languages like Scheme and Smalltalk are well suited for this
task.

This problem is also well suited for object oriented programmaing.



3. the CutSystem

The CutSystem is a collection of Scheme [unctions for checking and trans-
forming cuts with different structures. When working with lot of different
subsystems is it nice to have intelligent connection mechanisms, that can con-
nect cuts that express the same thing but with other variables.

CutSystemis a prototype which contains functions that operates on cuts. They
can study the typing of cuts and subcuts. There are functions that can divide
cuts in two parts. The first part is compatible with an other reference cut.
The second part is not compatible.

When using functions like this, is it possible to transform uncompatible cut
parts to compatible by using some kind of transformation rules.

In CutSystem, is a simple prototype with a transformation rule implemented.
The transformation rule is based on the ideal gas law and it can transforin
cuts that express properties of gas.

3.1 Cut type control

In 4s, the connect function is only checking if the different cuts has identical
typing. If they have identical types, then it is assumed that the internal
structure of the cuts are identical and therefore assuines that the connection
is possible. If the internal structures of the cuts not are identical, then there
should be a mechanism that forbid the connection. Functions that handles
problemns like this, are available in CutSystem.

The function sort-cut-type~list can be used to check the internal structure
of a cut. T'his function sorts a list of the subcut types into two different parts.
One part is compatible with the reference cut and one part is not. If the
uncompatible part of the cut type list is empty, then the cuts are identical.

3.2 Cut transformation

Modelling large systems with a lot of different subsystems can be very hard,
if there is no flexibility in the modelling language. If everything in the model
must have the same notation and syntax then modelling becomes complicated.
Therefore is it interesting to create mechanisms that provides tools for a more
flexible way to work with large systems.

When cuts with dilferent internal structures, but with the intention of express-
ing the same thing, are connected to each other, then the modelling language
should have the possibility to transform the cuts, so that the connection is
possible.

Examples of desired transformations are mass flow to volume flow, concentra-
tion to mass parts etc.

CutSystem has a function that can create a interpreter for cuts that expresses
variables in the ideal gas law.



3.3 A cut interpreter

A simple prototype for transformation of cuts that express properties of a gas
tube, following the ideal gas law.

pV = RnT
Rewritten on an other form
pressure = temperature density constant

This means that one of the variables pressure, temperature and density can
be expressed in the other two.

The function that creates the interpreter is called
make-vapour-cut-interpreter.

Example:

> (define p (make-subcut ’p "pressure"))

p

> P

(p "pressure")

> (define t (make-subcut ’t "temperature"))

t

> (define d (make-subcut ’d "density"))

d

> (define in (make-cut ’in (list p t) "vapour-pipel"))

in

> in

(in ((p "pressure") (t "temperature")) "vapour-pipel")

> (define out (make-cut ’out (list d p) "vapour-pipe2"))
out

> out

(out ((d "density") (p "pressure")) "vapour-pipe2")

> (define out2 (make-cut ’out2 (list d t) "vapour-pipe3"))
out2 ,

> (define inouttrans (make-vapour-cut-interpreter in out))
inouttrans

> inouttrans

(t ((p 1) (d-1) (r -1)))

> (define outintrans (make-vapour-cut-interpreter out in))
outintrans

> outintrans

@ ((p 1) (¢ -1) (xr -1)))

3.4 Implementation of CutSystem

The programming style ifi this part of the project are quite different compared
with {s. CutSystem is really a layered design with a lot of small general
functions . No function are bigger then six rows of Scheme code, except for
one larger function.

The price is of cause a lot of function calls, but that is cheap compared with
what you gain with readable code. Of cause there must be a compromise
between small readable function and efliciency.



3.5 Conclusion

The cut interpreter developed in CutSystem is very hard to generalize.

In this implementation , the transformations are wired in the code and to
change them one have to change every transformation rules.

To use production system for a problem like this is perhaps a solution. A
production system is easier to generalize and it would be easy to add new
transformation rules.

10



4. Summary

As already discussed, is Scheme a good programming language for solving
problems on symbolic form, like the project discussed here. There is of cause
other symbolic manipulating languages that also are well suited for problemns
like this. :

The project shows the power and how easy it is to write quite advanced pro-
grams in languages like Scheme. To test new ideas and explore its opper-
tuneties is easy.

One major drawback with Scheme is the lack of graphic tools. Therefore is
Scheme not a language suited for future developments.

An other aspect is the prograinming style. As mentioned above can one use
object oriented programming style with great success. The problem is well
suited for object oriented programming.

Including the need of graphic based interface to a programn like this, Smalltalk
seems to be a good tool. 1t supports both object oriented programming and
nice graphics. The programming environment in Smalltalk is also of great
advantage.

Other programming environument of interest is KEE. KEE supportes both
object oriented prograimnming and graphics. Production system environment
is also implemented in KEE.

11



Appendix I: the 4s code.

12



projectA.scm Thu Jan 21 08:34:09 1988 1

(define (insert-list superlist identifier sublist)
(cond ((eq? (assoc identifier (list superlist)) #f) superlist)
(else
(set! superlist
(append superlist (list sublist))))))

(define (add-to-list holesuperlist identifier sublist)
(cond ((eq? holesuperlist ()) ())
(else
(set! holesuperlist
(append (list
(insert-1list (car holesuperlist) identifier sublist))
(add-to-list (cdr holesuperlist) identifier sublist))
)

(define (unique-test identifiertype identifier system)
(cond ((eg?
(assoc identifier
(cdr (assoc identifiertype (cadr system)))) ())
#t)
(else #£)))

(define (make-system system—name)
(list system—-name ‘ ()))

(define (create-input system input)
(cond ((eq? (assoc ’'input (cadr system)) ())
(set! system
(list (car system)
{(append (cadr system)
(list (list ’input input))))))
(else
(cond ((eq? (unique-test ’‘input (car input) system) #t)
(set! system
(list (car system)
(add-to-list (cadr system)
finput input))))
(else (display "Not a unique name on input")
(newline)))))
system)

(define (create-output system output)
(cond ((eq? (assoc ’output (cadr system)) ())
(set! system
(list (car system)
(append (cadr system)

(list (list "output output))))))
(else

(set! system
(list (car system)
(add-to-1list (cadr system) ‘output output))))))

(define (make-subsystem subsystem supersystem)
(cond ((eq? (assoc ’subsystem (cadr supersystem}) ())
(set! supersystem
(list (car supersystem) i
(append (cadr supersystem)

(list (list ’subsystem subsystem))))))
(else

(set! supersystem
(list (car supersystem)
(add-to-1list (cadr supersystem)
" subsystem subsystem))))))



projectA.scm Thu Jan 21 08:34:09 1988 2

(define (make-siso-system system—name)
(let ((system (make-system system-name)))
(set! system (create-input system ’ (u (u) "nt")))
(set! system (create-output system ’ (y (y) "nt")))
system))

(define (system-copy system—name system)
(list system—name (cadr system)))

(define (make~connection supersystem inputidentifier outputidentifier)
(set! connected-input
(append
(assoc (car inputidentifier)
(cdr (assoc ’input
(cadr (assoc (caadr inputidentifier)
(cdr (assoc fsubsystem
(cadr supersystem))))))))
(cdr inputidentifier)))
(set! connected-output
(append
(assoc (car outputidentifier)
(cdr (assoc 'output
(cadr (assoc (caadr outputidentifier)
(cdr (assoc ’"subsystem
(cadr supersystem))))))))
(cdr outputidentifier)))
(cond ((equal? (caddr connected-input)
(caddr connected-output))
(set! connection
(list connected-input connected-output)))
(else (set! connection
()

connection)

(define (connect supersystem inputidentifier outputidentifier)
(set! connection
(make-connection supersystem inputidentifier outputidentifier))
(cond ((eq? connection 7 ()) ,
(display "Not allowed connection")
(newline)
(display "Wrong typing of cut")
(newline))
(else
(cond ((eq? (assoc ‘connection (cadr supersystem)) ())
(set! supersystem
(list (car supersystem)
(append (cadr supersystem)
(list (list ‘connection connection}))))))
(else
(set! supersystem
(list (car supersystem)
(add-to-list (cadr supersystem)
’ connection connection)))))))

supersystem)

(define (make-subcut identifier identifiertype)
(list identifier identifiertype))

(define (make-cut cut-identifier cut-list cutidentifiertype)
(list cut-identifier cut-list cutidentifiertype))

(define (cut-—-copy newcut-name oldcut)
(append (list newcut-name) (cdr oldcut)))



projectA.scm Thu Jan 21 08:34:09 1988
3223523203383 :EXEMPEL 8is80;7;iriitii i

(define 31 (make-siso-system ’sl))
(define s2 (system—-copy ’s2 sl))

(define ssl (make-system ’ssl))
(define ssl (make-subsystem sl ssl))
(define ss31 (make-subsystem s2 ssl))

(define s3s1 (connect s8sl ’ (u (sl)) ’'(y (s2))))
(define ssl (connect ssl ’ (u (s2)) ’"(y (sl1))))

L R R R N R R R R R R R I I I e R R R R N N N N R A R Ay Y
rrrrrrerrrrrrrrrrrrrrrrrrrrrLrrrIrrrrrrrerry

(define flowcut (make-subcut ‘q "flow"))

(define compcut (make-subcut ’'x "composition"))
p

(define inflow (make-cut ‘inflow (list flowcut compcut) "pipe"))

(define outflow (cut-copy ’outflow inflow))

(define tank (make-system ’tank))

(define tank (create-input tank inflow))
(define tank (create-output tank outflow))
(define tankl (system-copy ’tankl tank))
(define tank2 (system—-copy ’tank2 tank))

(define tank-system
(define tank-system
(define tank-system

(define tank-system

(make-system ’tank-system))
(make-subsystem tankl tank-system ))
(make-subsystem tank2 tank-system ))

(connect tank-system

! (inflow (tank2)) ’ (outflow (tankl))))



Appendix II: the CutSystem code.

13



cutsystem.scm Mon Jan 25 15:28:28 1988 1

(define (make-subcut identifier identifiertype)
(list identifier identifiertype))

(define (make-cut cut-identifier cut-list cutidentifiertype)
(list cut-identifier cut-list cutidentifiertype))

(define (make-cut-copy newcut—-name oldcut)
(append (list newcut-name) (cdr oldcut)))

(define {(make-cut-type-list cutidentifier)
(let ((typelist
(map (lambda (x) (cadr x)) (cadr cutidentifier))))
typelist))

(define (make-cut-type-sorted-list newcutname)
(list newcutname ’ ()))

(define (insert-1list superlist identifier sublist)
(cond ((eq? (assoc identifier (list superlist)) #f) superlist)
(else (append superlist (list sublist))))))

(define (add-to-list holesuperlist identifier sublist)
(cond ((eq? holesuperlist ()) holesuperlist)
(else
(append (list
(insert-list (car holesuperlist) identifier sublist))
(add-to-list (cdr holesuperlist) identifier sublist)))))

(define (identifier-in-list? identifier list)
(cond ((eq? (assoc identifier list) ()) #f)
(else #t)))

(define (create-identifier-list newcuttypelist identifier cuttype)
(list (car newcuttypelist)
(append (cadr newcuttypelist)
(list (list identifier cuttype)))))

(define (add-identifier-list newcuttypelist, identifier cuttype)
(list (car newcuttypelist)
(add-to-list (cadr newcuttypelist)
identifier
cuttype)))

(define (create-cut-type-member newcuttypelist cuttype)
(cond ((identifier-in-list? ’‘member (cadr newcuttypelist))
(add-identifier-list newcuttypelist ’‘member cuttype))
(else
(create-identifier-list newcuttypelist ’‘member cuttype))))

(define (create-cut-type-nonmember newcuttypelist cuttype)
(cond ((identifier-in-1ist? ’nonmember (cadr newcuttypelist))
(add-identifier-1list newcuttypelist /nonmember cuttype))
(else
(create-identifier-list newcuttypelist ’nonmember cuttype))))

(define (member-of-list? element list)
(cond ((eq? (member element list) ()) #f)
(else #t)))

(define (insert-cut-type cuttypesortedlist cuttype referencelist)
(cond ((member-of-list? cuttype referencelist)
(create—cut-type-member cuttypesortedlist cuttype))
(else
(create-cut—-type-nonmember cuttypesortedlist cuttype))))



cutsystem, scm Mon Jan 25 15:28:28 1988 2

(define (empty-list? list)
(null? list))

(define (sort-cut-type-list-recurse sortlist cuttypelist referencelist)
(cond ((empty-list? cuttypelist)
gortlist)
(else
(insert—-cut-type (sort-cut-type-list-recurse sortlist
(cdr cuttypelist)
referencelist)
(car cuttypelist)
referencelist))))

(define (sort-cut-type-list cuttypelist referencelist)
(let ((sortedcuttypelist (make-cut-type-sorted-list ’sortedcuttypelist)))
(sort-cut-type-list-recurse sortedcuttypelist cuttypelist referencelist)))

(define (common-cut-type? cuttypeidentifier cuttypelist)
(cond ((null? (member cuttypeidentifier
(assoc ‘member (cadr cuttypelist)))) #f£)
(else #t)))

(define (uncommon-cut-type? cuttypeidentifier cuttypelist)
(cond ((null? (member cuttypeidentifier
(assoc "nonmember (cadr cuttypelist)))) #f£f)
(else #t)))

(define (pressureinterpreter)
(list ’'p (list "(t 1) "(d 1) (R 1))))

(define (temperatureinterpreter)
(list 't (list ’(p 1) "(d -1) "(R -1))))

(define (densityinterpreter)
(list ’d (list "(p 1) "(t -1) (R -1))))

(define (make-cut-interpreter output)
(cond ((equal? "pressure" output) (pressureinterpreter))
({equal? "temperature" output) (temperatureinterpreter))
((equal? "density" output) (densityinterpreter))))

(define (make-vapour-cut-interpreter firstcut secondcut)
(let ((firstcuttypelist (sort—-cut-type-list (make-cut-type-list firstcut)
(make-cut-type—-list secondcut)))
(secondcuttypelist (sort-cut-type-list (make-cut-type-list secondcut)
(make-cut—-type-list firstcut))))
(cond ((common-cut-type? "pressure" firstcuttypelist)
{cond ((uncommon-cut-type? "temperature" firstcuttypelist)
(make-cut-interpreter "temperature®))
(else
(make-cut-interpreter "density"))))
( (common~cut-type? "temperature" firstcuttypelist)
(cond ((uncommon-cut-type? "pressure" firstcuttypelist)
(make-cut-interpreter "pressure"))
(else
(make-cut-interpreter "density"))))
( (common-cut-type? "density" firstcuttypelist)
(cond ((uncommon-cut-type? "temperature" firstcuttypelist)
(make—-cut-interpreter "temperature"))
(else
(make-cut-interpreter "pressure"))))
(else
(display "No cut interpreter created")



cutsystem.scm Mon Jan 25 15:28:28 1988 3

(newline)))))

rr e r s rrrrrrrrrrerr

(define p (make-subcut ’p "pressure®))

(define t (make-subcut 't "temperature"))

(define d (make-subcut ’d "density"))

(define in (make-cut ’in (list p t) "vapour-pipel"))
(define out (make-cut ‘out (list d p) "vapour-pipe2%))
(define out2 (make-cut ’‘out2 (list d t) "vapour-pipe3"))

(define intype (make-cut-type-list in))
(define outtype (make-cut-type-list out))

(define intypesort (sort-cut-type-list intype outtype))
(define outtypesort (sort-cut-type-list outtype intype))

(define inouttrans (make-vapour-cut-interpreter in out))
(define inout2trans (make-vapour—-cut-interpreter in out2))
(define outintrans (make-vapour—cut-interpreter out in))

rrrrrrrrrrrrrrrr



