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1. Basic Requirements of Systems Modelling & Analysis

1.1 Principles of Model Design & Implementation

The craft of model building has a long history in science and everyday life and is
central to the way in which we understand the world around us. A human's model of
her world depends on knowledge and reasoning strategies encoded in both the
brain’s hardware and symbol structures acquired during a lifetime of experiences:; it
guides the way we perceive, analyse and react to our environment. The act of model
building explores alternative ways to represent this knowledge, while analysis and
simulation are used in its application.

Rivett (1972), Klir (1972), Davis & Hersch (1981), Sloman (1978), Savage (1978),
Piatelli-Palmarini (1980), Olsson (1980) and Pylyshyn (1984) offer a selection of
interesting perspective for anyone who would like to explore the roots of the underlying
concepts.

Figure 1.1 shows a much simplified picture of modelling as a mental activity. Four
distinct phases are identified. The first of these is often referred to as system
identification. It establishes relationships between an observer and some part of
reality. A system is defined as a collection of objects, their relationships and
behaviour relevant to a set of purposes. This definition stresses the fact that modelling
should be a purpose-driven activity. There is never a best or even "correct” model. Its
usefulness always depends on objectives and contexts of application.

The second phase is that of system representation, where symbolic images of
objects, relationships and behaviour patterns are bound into structures as parts of
larger mental frameworks of beliefs, background assumptions and theories owned by a
problem solver. The completely disinterested observer is just a convenient fiction. As
humans we can not avoid to be theory-driven. Our theories can be descriptive, used for
explanation and prediction, or they can be normative, prescribing what ought to be
done. Ditferent kinds of theories will yield different kinds of models.

The third phase deals with model design. A model is an "appropriate"
representation of structures and processes of a miniworld, instantiating some aspects
of a theory. Humans continually explore models to reflect about situations, be it
consciously ("Gedanken-experiments") or subconsciuosly. Models can quiclékly grow
into very complicated structures. Constraint and control of their complexity forms the
heart of any modelling methodology.

As a general rule ("Occam's razor") one should strive to keep models as simple as
possible:

"It is vain to multiply entities without need".

Model complexity can range from a one-to-one image to a few symbols on the
proverbial back of an envelope. One should always strive for the greater clarity of
simple representations; although simplicity is itself an elusive concepts. It may best be
described as a relation between what is to be represented, the medium of
representation and an interpreting observer. We seem to have some natural tendency
to strive for both a minimum set of concepts and a high degree of visualization. The
first helps us to reason about the essence of complex systems while the second allows
us to perceive systems as wholes.
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Any useful model has to simplify and idealise. Abstraction and aggregation are
important techniques to keep models of complex phenomena intellectually
manageable. Great care must be taken to preserve all and only those of a system's
characteristics which are essential. This again depends on a model's purpose.

Phase four of our model of the modelling process assumes that a computer is used. It
may be referred to as the model coding stage. Her we seek a formal representation
of symbol structures and their transformations into data structures and computational
procedures provided by some programming language.

Models must be analysed to be useful; i.e. to further our understanding of some facet
of a system, or predict the effects of alternative courses of action. Such analysis can be
deductive, based on a theory about certain classes of structures, or it can be inductive,
based on observation of a model in action. Both strategies assume that the model's
validity can be established in some way. On a "rational" basis validity can be proven
through formal correspodences between the model and the theory it was designed to
instantiate; i.e. by showing how its behaviour can be logically derived from analysis of
purely formal properties of its representation. A model's validity may also be
empirically corroborated; i.e. via a set of correspondences between its own and the
observed behaviour of the structure or process it is a model of. The ultimate test will,
however, always be a pragmatic one: "does it serve its purpose ?". This may involve an
improved understanding of some system, better decision making, or accurate
prediction of future events. In all these cases there are quite different criteria according
to which success will ultimately be judged.

Verification seeks correspondences between a model and its programmed
representation. This can again be established empirically or on a purely rational basis.
Empirical corroboration is achieved through extensive testing, while a proof of
correctness according to formal specifications would be the rational alternative. The
current state of the art in program proving, however, makes this a rather futile approach
for any but the simplest of models. We have to settle for less than certainty, just as we
can never be sure of the ultimate truth of our theories and specifications. These too can
only be increasingly corroborated but never conclusively established. Corroboration of
theories may be attempted through unsuccessful falsification or in some other way,
depending on one's personal philosophical outlook.

Brown (1977) gives an instructive account of Falsificationism and competing
philosophies of science, whose basec principles should be familiar to any practicing
scientist.

Modelling can have two considerably different goals. Its more traditional application is
in decision making. Here the emphasis is on generating numeric information; i.e. used
for comparing, tuning or predicting a system's performance.

A different kind of model strives not so much for numeric solutions, but for improved
understanding of complex systems. It supports a more exploratory, speculative style of
model analysis. A quote from Hamming (1962) nicely summarizes the essence of this
modelling style:

"The purpose of modelling is insight not Numbers".

Relatively little is known about a system. A weli defined problem may not even exist.
We are using modelling at a prototheoretical stage; as a vehicle for



thought-experiments. Its purpose lies in the acts of construction and exploration, and in
our improved intuition about a system's behaviour, essential aspects, sensitivities, ...
which we gain in the process. The mode! may never be used to genrate any numerical
results at all.

This kind of modelling may well be the only feasible way to check the consistency and
explore all consequences of complex theories. Al-miniworlds (see Winston (1984),
Rich (1983) ) are models in this sense. Many people believe that the potential of
computer-aided modelling for this style of exploration of symbol structures will in future
overshadow its importance in its traditional application as an aid to decision making.

1.2 Programming Languages for Systems Modelling & Analysis

There are intimate relationships between thought and language and language and
methodology. This is well expressed by the following Wittgenstein (1961) quotation:

"The limits of my language are the limits of my world".

The importance of appropriate conceptual and notational tools which guide and
structure a modelling activity during all its phases can hardly be overstated. A well
designed system description and programming language is not only a notation used to
communicate with computer systems. It is also a cognitive device, which structures
perception, representation and reasoning about classes of systems and problems.
Simplicity, expressiveness, flexibility and efficiency are at least partially conflicting
goals between which suitable tradeoffs have to be made. In the long run nothing is
gained from restricting a tool to too low a level. Improved machine efficiencies can be
achieved by binding languages closer to machine structures. This can, however, lead
to disproportional increases in development, debugging and maintenance efforts.
Final success of any tool depends critically on user acceptance and satisfaction. If a
programming notation fails to provide effective and natural modelling styles, then
separate methodogies, often ill-structured and inconsistent, have to be manually
mapped into low-level abstractions.Unfortunately this may require highly error-prone
transformations across large conceptual distances.

In stressing the priority of methodology over notation it has sometimes been argued
that methodologies and implementation languages should be viewed as separate
issues; that one should program into a language, not in it. This statement sweeps the
real problem somewhat under the carpet. We still need a web of concepts to express,
comprehend and use any methodology; and we surely need a methodology to guide
us in any complicated task. Since language is possibly the most important tool of
thought, concepts and methodologies can never be truly independent of formal or
informal representation in some notation.

A good notation must suggest rather than hinder an appropriate representation of
relevant ideas. It should be a catalyst which lets you "see" solutions rather than get in
the way of what one is trying to express.

There is therefore a sore need for more research into relationships and tradeoffs
between mind, concepts, representation and notation. Unfortunately neither
mathematics nor psychology, the two disciplines one would most obviously turn to for
help, offer much guidance. Although this topic is "difficult" and straddles traditional
boundaries between disciplines, it should be at the core of cognitive psychology and
computer science. Wittgenstein (1953 & 1956), Wickelgren (1974), Sloman (1978),



Hofstadter (1979), Olsson (1980) and Pylyshyn (1984) offer many stimulating ideas
and insights; as does the literature on knowledge represenation for artificial
intelligence programs.

Effective symbol systems must fit an individual's overall conceptual framework,
offering familiar ideas and mnemonics. Multi-level chunking, where clusters of related
concepts are aggregated and encoded by single symbols at higher semantic levels,
can accomplish this taks. The importance of such encapsulation strategies for
procedure and data abstraction has often not been fully recognised by programming
language designers. Modelling methodology still lacks a satisfactory theoretical
foundation. Some progress has been made in recent years, but it has generally not
been incorporated in language designs yet.

Much can be learned from research into representation and structuring of domain
specific knowledge, a filed which is explored by the artificial intelligence community.

Notational devices can be classified in a variety of ways. They can be formal or
informal, one-dimensional or graphical. Informal tools like pseudocodes and some
graphical symbol systems are especially useful during system identification and model
design, whereas formal tools must be used for final representation and coding.
Advantages of graphical representations are that structural connectivity and
symmetries are emphasized. Things that are conceptually related "appear" to be close.
They also provide a rich syntax to visually define such concepts as "links", "flows",
"directions”, ... . For most people these seems easier to grasp than their equivalent
procedural encodings. The reason seems to lie in the inherent paralielism of the
human visual system and the corresponding importance of visualization as a problem
solving tool. Graphical notations' most frequently cited disadvantage lies in the fact that
hierachies of levels must be used for complex structures (i.e. to fit them "on a single
page"), but this may actually beneficial.

For many purposes classical mathematical concepts do not seem rich enough,
whereas informal notations are too unstructured and ambiguous. Computer
programming languages provide formal concepts to describe classes of objects and
processes at fairly high levels. Translator programs can automate the process of
mapping from "higher" to "lower" levels, a method which is far safer and less
error-prone than manual tranformations by the model builder.

The "psychology of programming” is just beginning to establish itself as a respectable
subject. Shneiderman (1980), Smith & Green (1980) and Sheil (1981 & 1983) are first
steps in this direction. Comparing languages, including programming languages, for
"goodness" or "badness" is a very difficult undertaking. Beauty is always in the eyes of
the beholders. Quality is best thougth of as a relationship between a tool, a user and
an application; with complex interactions between them. To paraphrase Winograd
(1983): "To ask whether LISP is a better language than PASCAL is somewhat like
asking whether a jellyfish is a better animal than a dinosaur. One should use both,
although in their proper place. They have different strength and weaknesses and one
is possibly better suited to certain tasks than the other; although even that will be
difficult to establish empirically.

The author does not believe in the merit of any "universal" language, be it for
programming or any other task. Even natural language is not equally well suited to
everything. This is well demonstrated by specialized jargons for different areas of
human discourse (scientists, engineers, doctors, lawyers, programmers (!), ...).
Languages are cognitive tools which should be appropriate for the tasks to which they



are put and provide concepts familiar in the relevant "cultural context". Multi-purpose
tools (i.e. "basic" mathematics) can work very well for a wide range of tasks, but some
tasks will always require the higher power and precision of more specialized ones.

A number of textbooks have been written to compare programming languages;
offering interesting insights into trade-offs between basic principles involved in
language design, use and translation. Barron (1977), Tennent (1981) and MacLennan
(1983) are some of the author's favourites.

Any recommendation on what style and tool to use is necessarily made on a
somewhat subjective basis. This is how it should be, as long as the range of
alternatives and some measure of their potential and limitations is known.

It is extremely difficult to convince people of the merits of switching to a different
notation, regardless of its intellectual or practical superiority. Once user communities
have entrenched themselves they usually remain very loyal to their chosen
programming languages. Proponents (inmates) of a particular language culture hardly
ever switch; although they will eventually retire.

The best which can be hoped for is to identify different programming paradigms and
styles, define and exemplify their characteristics, and discuss their strengths and
weaknesses. Some personal bias will always remain.

The author believes that object-oriented programming, as originated in Simula and
more recently popularized by Smalitalk and so called "actor" languages, has the best
potential for describing complex systems in a well structured and natural way. lts
advantages may well become more widely appreciated in the future, since it becomes
more and more evident that conceptual closure, context building and reasoning by
analogy and default are central to the way we cope with the complexities of the world
around us. It therefore seems only reasonable to demand that computer systems
should support such problem solving styles, embedded in flexible, user-friendly and
robust programming environments.

Some other interesting developments are clearly visible. With the dramatic drop in
hardware prices the use of powerful personal workstations to host modelling tools has
now become economically viable. The current trend points away from large central
batch and time sharing systems, and towards interactive and integrated programming
environments and graphically supported user interfaces hosted by single user
machines which, via data communication networks, may draw on shared peripheral
resources (i.e. mass storage, printers, ...) locally and on specialized information or
processing power non-locally.

Well-designed interfaces for man / machine interaction should offer complete contexts
for interactive model design and execution. Graphical displays of model structure, state
and behaviour should be possible within such a framework, which should also embed
a range of visually pleasing graphical symbol systems in a window-based,
interaction-driven modelling environment.

A range of tools should be available to design and implement system models, as well
as for any other complex programming task. Graphical symbol systems, pseudocodes,
general and specialized programming languages all have their place in such a
toolbox, alongside a rich repertoire of knowledge about their safe application.

Model implementation is just one of a range of activities we must perform during a
systems analysis. These other ones include system identification, model specification
and documentation, data analysis, model validation, solution or experimentation.

A toolbox for this domain should ideally be designed around a small set of simple,
well-behaved building blocks and bound into a frame which is founded on some
uniform and natural metaphor.



1.3 Some Fundamental Issues in Modelling Control Systems

In this study we wanted to consider the requirements for modelling and analysis of
simple control system, using exploratory (Lisp) and object-oriented (Smalltalk)
programming styles.

The basic relevant concepts are quite readily identified. We need to describe
systems, which can be characterized by their inputs, states, outputs, and their
behaviour. They may have quite a rich structure. It therefore seems sensible to permit
partitioning of models into system / subsystem hierarchies. All component systems can
be of different types and may be described in terms of state models, as input / output
relations like impulse responses, or as transfer functions.

Many different represenations of systems are used in control-theory. The ordinary
differential equation model:

(Eqn.1.1) dwdt=f(x,u,t); y=9g(x,u,1)
where x is the state vector, u the input vector and y the output vector, is a common

case. Often the fundamental form of the equation is not (1.1), where the derivative is
solved explicitely, but rather

(Eqn. 1.2) F (dx/dt, x,u,t)=0; G(x,y,u,t)=0
Our discussion is restricted to systems of type (1.1). Partial differential equations and
differential equations with time delay are also common. Again we restrict ourselves to
differential equation models.
Linear systems, where the functions f and g take the form:

(Eqn.13) f=At)x+B{t)u; g=C(t)x+D(t)u

are an important special case. For linear systems it is also possible to use different
representations like input / output models of the form

(Eqn. 1.4) dly/dtN + Ay *d ("-1y (dt("'1) o+ Ay =
By *d(M Ny /dt + By *d(M 2y /at("2) + ...+ Bpu

which can also be represented by the matrix fraction
(Eqn. 1.5) G (s)=A"1(s)B (s)
where A and B symbolize the polynomials

A(s)=sq+AsM) 4 +ay; Bs)= B1s("1) +Bys(M2) 4+ ... + B,

The discrete time versions of (1.1), (1.2), (1.3), (1.4) and (1.5) are also needed.

It is a key issue to find suitable computer representations. The problem of muitiple
representations can be solved by data bases. In a typical example a system is
represented by both a transfer function and a state equation. Small systems are not
much of a problem, because transformation from one form to the other can be
preformed "when needed". Such computations may, however, be extensive for large



systems. To obtain a reasonable degree of efficiency it then becomes necessary to
store both descriptions.

It may also be desirable to have models of different complexity for the same physical
object, as well as linearized models for different operating conditions. Since it is very
difficult to visualize all possible combinations a priori, it is useful to have a flexible data
base which permits modifications of the data structures without extensive
reprogramming and recompilation.

System interconnection is another fundamental issue. The elementary types of
connections are series, parrallel and feedback. For more complex systems it is
desirable to have appropriate notations for hierarchical structures in which details of
subsystems can be hidden, and that signals and variables at lower levels can be
accessed in a well controlled fashion.

Apart from interconnection and decomposition there are many other relevant
operations on system models, i. e. linearization, computing equilibrium values, system
inversion and simulation. For linear systems it is also natural to transform coordinates,
compute poles and zeros, determine observability and controllability, and perform
Kalman decomposition. Some of these operations are conveniently done numerically.
Others require formula manipulation.

More specifically, the following operations should be supported:

* Find all subsystems
+ Find all interconnections
» Compute steady state
- compute x, given u
- compute the rest, given partial x, u
» Compute the steady state output map
* Linearize
» Compute poles and zeros
» Compute transfer functions
» Compute frequency curves
+ Compact descriptions
- eliminate all internal subsystems
« Compute sensitivity functions
» Compute well-conditioned linear representations
- break to subsystems
- scaling
- reduce to scalar product form

Chapter 3 of this study will report on an experiment to provide the necessary primitives
for these operations in a levelled and object-oriented design. Initially onl systemy
decomposition and linearization were considered.



2. Three Paradigms of Programming: A Birds' Eye View.

2.1 "Structured" Programming; the classical approach.

Classical programming style sees program development as closely related to
theorem proving. Both should proceed from axioms, in small, carefully considered
steps whose correctness must always be assured. First a program's axioms should be
defined by precise, consistent and unambiguous specifications and from there on proof
and program should be developed "hand in hand".

This is the cornerstone of an intellectually appealing paradigm, sometimes referred to
as "structured" programming, comfortably close to the customs of mathematics. Its main
concerns are correctness and efficiency. Its methods and tools have taken many years
to reach their current sophistication and many of the most famous computer scientists
have been involved in its development or subscribe to it. It is well summarized and
demonstrated by a number of influential books (Wulf et al. (1982) gives a particularly
lucid account) and taught by practically all computer science departments around the
world.

lts application has led to the development of strongly typed languages (Pascal,
Modula, Ada, Euclid, Edison, ...). Type information can be used to check the validity
of assignments and optimize storage allocation, which allows the compiler to guard
and assist the programmer. New languages are even being designed with a view to
avoid potentially dangerous (i.e. those which threaten a program's provability) or
inherently inefficient features.

The basic principles of structured programming assume that you start from clear,
unambiguous and immutable specifications. You can then design and bind a suitable
module structure and their interfaces. The modules themselves will be implemented
using the principle of "information hiding", so that no module can see more of the
global structure than it needs to know. Modules can be programmed, compiled and
verified separately, and the compiler will faithfully assist in error detection.

This methodology has been successfully applied to a wide range of problems and
works well for many of them. With further improvements in the field of program
verification it will eventually be able to give a reasonable guarantee of correctness.

There are, unfortunately, some inherent difficulties. Once data and module structures
have been frozen (which must be done quite early) it is difficult (very messy) to make
changes cutting across it. Instead of trying to patch the program it may in fact be wiser
to just start from scratch again. The methodology requires stable specifications and
demands a very early committment to the "correct " primitives and structures.

It is therefore unable to cope satisfactorily with large and complex systems which may
be not at all well understood at the outset. Being able to change one's mind about
basic assumptions without having to redo most of the work is essential here. While
some acceptable intuition of correctness (although in a weaker sense than provability)
is of course still required, machine efficiencies are secondary and may be relegated to
an optimization phase once the program has stabilized.

"Exploratory programming”, as practiced by the Artificial Intelligence (Al) community
can cope with these problems. Interestingly their is a clash of cultures here. Many of
the most influential people rooted in the classical style will argue that one should not
try to do program what one does not yet understand. One should instead try to analyze
and wait until the appropriate level of understanding is reached. If you adhere to this



principle, knowledge will safely (but only if all the basic assumptions were correct !) be
accumulated in small and thoroughly analyzed building blocks. Some people may fear
that at the current rate of progress we will unfortunately not be able to tackle many of
the most interesting and urgent problems for a long time, if ever, in this way. Without
the use of heuristics instead of formal deduction the human species would surely have
not survived. The ideals of completeness and provability are clearly inappropriate in
some contexts. It is also doubtful whether for most people the program development
process really proceeds in such a clean and linear fashion as is exhibited in may
textbooks. The heated arguments about the "context of justification" and "the context of
discovery" within the philosophy of science are clearly also relevant here.

Finally one should bear in mind that the process of designing computer-based
models ansd observing their behaviour is also an excellent way to learn. Often it is the
only way to gain an improved understanding of complex phenomena.

2.2 "Exploratory” Programming: Lisp & Smalitalk

Classical programming has been the mainstream of computing for the last three
decades. Attracting little attention outside the Al community, exploratory approaches to
program development have quietly flourished for almost the same length of time. Lately
there has been a sudden surge of interest in this programming style, mainly spawned
by publicity generated through the expert system movement.

From the viewpoint of exploratory programming one tries to find the final program
structure through a spiral process of approximation. Initially there are no well defined
specifications, just some (usually overambitious) selection of problems one wants to
understand and provide a solution for. Being able to change one's mind in midstream
becomes essential.

In this paradigm we want to committ ourselves as late as possible. Above anything
else we need flexibility and the ability to explore the space of a program's behaviour
interactively. Good programming methodology, however, is still important, because it
tells us how to decompose systems into primitives and how to combine these to form
higher-level structures.

While we require flexibility and freedom from formal restriction we must somehow still
be able to cope with the complexities we create. We therefore need to proceed via well
chosen levels of abstraction, both for data and procedure objects. This strategy is well
demonstrated by Abelson et al. (1985). We also need some means of chunking
structures into concepts, to establish and inquire about contexts and the bindings of alll
its objects. Good debugging, tracing, bookkeeping, project management and
documentation tools , which automatically handle much distracting detail, are a
necessity. All these should be part of a uniform programming environment, with a
consistent set of conventions and styles of interaction.

There must also be tools for analysis and compilation of modules to improve their
performance characteristics, once a part of the program has stabilized.

Over the last few years so called "object oriented" design methodologies have further
extended the general frame of exploratory programming. These techniques were
pioneered by Simula and elaborated by Smalltalk. Nowadays there is an increasing
number of Lisp-based systems offering these features in a slightly modified way (see
figure 3.6). They are often referred to as "flavours" and are by now an integral part of



any serious expert system building tool (i.e. LOOPS, KEE, Babylon ...).

The reason for their growing popularity lies in their powerful encapsulation techniques
and their facilities for "programming by analogy". The first feature enables us to cluster
the definitions of a data type and all its relevant operators into one textual module with
well defined interfaces. This can be used to greatly enhance a program's
understandability and reliability. The second idea allows the specification of new
program modules by stating the way in which they differ from already existing ones. All
properties (data structures and procedures) of such a module's superclasses will
automatically be inherited without having to repeat their specification. Since many
objects, actions and situations are perceived by their similarities to ones already
familiar to us and are therefore easily described by classification nets or hierarchies,
this strategy produces a high degree of cognitive economy and a considerable
simplification of complicated system descriptions.

This methodology and the associated programming tools allow us to tackle many
complex problems, whose understanding would otherwise just be outside our reach.
"Typeless" languages like Lisp and Smalltalk and the environments in which they
are embedded can provide all of the features and tools we require to program in an
exploratory style. The spiral process of building a sequence of appropriate models
approximating a given reference system will yield an improved understanding and,
eventually, a useful program.

2.3 "Declarative" Programming: Prolog

A third style of program development has recently emerged from research into artificial
intelligence (natural language understanding in particular). It builds on classical logic
as a foundation for system description.

Logic has a long and distinguished history as a scientific notation. Its properties have
been extensively researched and its suitability for the analysis of (static) structures is
indisputed. Programs, however, are commonly viewed as templates for processes,
whose states change dynamically over time. While one will therefore normally write
programs as recipes for computing solutions to a class of problems from a set of inputs,
the logic programming movement tries to redefine programs as formal specifications.
Here we need only state a class of solutions' formal properties, without prescribing
how a candidate solution may be found.

Computation of course still has to take place, but here it is hidden behind the scene.
To support this programming style we need a universal search program, a theorem
prover, which explores the programs' state spaces in some systematic (and hopefully
“intelligent") fashion. Although Robinson's resolution algorithm and advances in
computer architectures have greatly increased the efficiencies of this process, speed of
deduction (or rather the lack of it) is still the major stumbling block of this idea.

Kowalski (1979) gives a good summary of the principles logic programming.

Uniform, domain-independent deduction machines are necessarily are the

central idea of this paradigm. They are necessarily directionless; quite dramatic
speed-ups can be achieved by incorporating domain-specific heuristics in a logic
program, which guide the deduction process away from "non-promising" paths. All
tools catering for this programming style provide features (clause ordering, cuts, ...)
supporting such strategies. Their use, however, endangers the generality of a program
(i.e. it may not always find a solution, even though it exists) and the provability of its
conjectures. It invariably violates the spirit of declarative programming.



To tackle other than simple problems we must therefore hope for dramatic advances in
machine efficiency, i.e. brought about by VLSI and massive parallelism.

Even then we are still faced with the problem of structuring large programs
(assertions) so that they can be "understood" by humans, a problem which proves
elusive and which has as yet not been solved within the framework of formal logic.

Since logic has no notion of "context" or any equivalent feature, there is no handle to
introduce the idea of chunking. All assertions (clauses) are global and independant of
one another. We can of course define higher level concepts from lower level ones (i.e.
by simply writing the relevant compound clauses), but we can not group clauses into
modules or in other any way restrict the scope of our names and definitions. This
makes large logic programs unwieldy and structure must be imposed solely by textual
layout and comments.

Although others have also been proposed and implemented, Prolog {see Clocksin &
Mellish (1981)} is generally viewed as the prototypical language for logic
programming. It has quickly been rising in popularity as a language for certain classes
of Al applications (i.e. language understanding and deductive databases), particularly
in Europe. During the last few years it has attracted particular notice through its role as
a base language for Japans ambitious "Fifth Generation Computer" project. Its
proponents have suggested it as a successor for Lisp. A large number of interpreters
(written in Lisp, C, Fortran or Pascal) and compilers are available. Although there is
usually a rich library of tools, no programming environments comparable to those of
many Lisp implementations have appeared yet.

Prolog uses the Horn clause form of symbolic logic and expresses programs as rules
and assertions about some miniworld. Reasoning about this miniworld is implemented
by Prolog's deductive machinery; a unification theorem prover which tries to construct
any desired solutions as a side effect of proving their existence.
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3. An Experiment in Exploratory Programming,.
3.1 Description of Examples

To investigate the merits and drawbacks of exploratory programming and object
oriented design, a subset of the features identified as desirable for control systems
modelling (chapter 1.3) were implemented in both Lisp and Smalltalk.

Two simple examples were used to test the resulting toolboxes. Although in what
follows below we consider linearization and system / subsystem

decomposition as our only applications, a careful selection of primitives and a
levelled, modular design ensures that the toolboxes can easily be expanded to serve
more ambitious purposes. Our immediate concerns were to explore the suitability of a
set of programming tools and design methodologies for control system analysis. The
toolbox programs can, however, also be used as stepping stones towards a
full-fledged control systems modelling laboratory.

Example 1: This is a simple example taken from one of the exercises in Power &
Simpson (1978, p. 41). It defines Goodwin's mathematical model for enzyme synthesis
in cells. The system is a third-order, non-linear one, as described by the equations:

dx4 /dt=a/(b+cxg)- kx4
dxo / dt = dxq - fxo
dxz/dt=gX5 - hxg

In these equations x4 is the amount of messenger RNA in a cell, carrying blueprints

from the genes within the cell nucleus to the ribosomes, where the enzyme is actually
built up from amino acids; x5 is the amount of enzyme present; and x5 is the amount of

repressor produced, which controls the rate of production of messenger RNA by
repressing genes. All parameters are positive.

We will use this example to derive a linearized set of equations for small deviations
from equilibrium.

Example 2: Figure 3.1 shows a block diagram of a fictional control system with
hierarchical structure. At the top level there is a system s1 with single input, the
command signal ¢, and a single output, the process output y. The system s1 is
composed from the following subsystems: a model, a feedforward block and a system
s2. The model has two state variables, x1 and x2. Its state transition can be described
by the differential equations:

dxq/ dt= WXo
dxo /dt=- WXq - 2WXp + WC

and the output map is described by

y=x
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The feedforward system has one state variable. The state transition is characterized
by the differential equation

dx/dt=-ax+(a-b)u
Its output map is

y=kx+u
The system s2 is composed of three subsystems: regulator, process and sensor.
The regulator is a PID regulator with two states i and d. lts state transitions are

described by

dd/dt=N/Tq(y-d)
di/dt=1/T; (r-y)

and the output map is
U=K*(r-y+i+N(d-y))

The process has two state variables: X1 and xp. State transitions are described by
the differential equations:

dxq/dt=-a x1(1/2) + by
dxg/dt= axy(172) - px,(1/2)

Its output map is given by
y=x2

The sensor has only one state variable x. Its dynamics is defined by
dx/dt=1/(u-x)

The sensor has a nonlinear characteristic which appears in the output map
y=x/(1+x2),

We will use this example to demonstrate tools for inquiry and system decomposition.
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3.2 LISP: Abstraction, Interpretation & Programming Environments

Lisp is the most widely used programming tool for exploratory systems modelling and
has a long history as the main language of the Al community. During this time it has
been continually refined and many useful utilities have been provided. Figure 3.2
shows the genealogy of the major dialects.

Lisp's interpretative and interactive mode of operation has encouraged its continuing
modification. The Lisp culture is a toolbuilding culture. Its sparse syntax, while
often cited as one of its most annoying features ("Lots of Irritating, Spurious
Parentheses") and its potential for self-reference (programs can write or modify other
programs or even themselves) has also aided the quick and easy construction of new
tools and languages for specialized applications.

In the classical paradigm building or modifying tools or language compilers is a
difficult task, only tackled by highly trained specialists. Here the tool-users were always
clients at the mercy of the tool-builders, who had rarely occasion to use their own tools
extensively. In the Lisp culture implementation of tools and new languages was
comparatively easy. Tool-builder and user were often one and the same person, which
lead to a rapid cycle of modifications and refinements motivated by personal
experience. Over the years a number of very powerful and user-friendly programming
tools and environments were developed in this way, far superior to anything provided
by the classical paradigm.

Good examples of the use of Lisp as base language for more specialized
programming tools are many so called "Al languages" (i.e. Planner, Conniver,
CLisp, Fuzzy, Netl, FRL, KRL, OPS, KLONE, Act, ...) which offer sets of
specialized features (pattern matching, backtracking, production system interpreters,
frames, propenrty inheritance, fuzzy sets, coroutines, message passing, ... ) within
Lisp's general framework. Charniak et al. (1980) contains a good discussion.

Lisp is built on a simple foundation, with only a few primitive concepts. The strength
of the language lies in the fact that these can be combined in very flexible ways,
thereby building higher level structures which may grow to be very complicated.

Lisp was designed for symbol manipulation. lts primitive objects are therefore symbols
(atoms) which may be used to denote concepts or their instances. Symbols are
identified by names and may own properties. They can be viewed as "passive"
(describing data objects) or "active" (describing procedure objects). Properties store
states if they are passive, and behaviour if they are active.

Symbols can be combined to form structures. Lists are used as the basic structuring
mechanism. Lisp's parentheses indicate conceptual chunking within lists, so that
hierarchical (nested) structures can easily be built. The "meaning" of structures is
derived by interpretation, there is no syntactic distinction between lists representing
states and those representing actions (the same as there is no distinction between a
data item and an operation in a v. Neumann-machine).

Every list which is not quoted is interpreted as a request for an action (function call).
Its first element specifies the name of an operation applied to the objects denoted by
the rest of the elements. Some suitable operators for building and dissecting lists,
arithmetic and logical operations, modifying the interpretation sequence, defining new
operators ... are provided by any Lisp system. While the CONS function is used to
construct a list from two single elements, CAR and CDR ("return the first element of a
list", "return the rest of the list") are probably the most notorious of the list dissection
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functions. The origin of their names reach back to the time of the IBM 7040, the first
machine on which Lisp was implemented. CAR and CDR can be combined to form
cascades: CADR ("return the first of the rest of this list - i.e. the second element), CDAR,
CDDR, CADDR, ... which is a very useful shorthand notation for stepping through a list.
Most modern Lisp systems offer a wide range of predefined functions (up to more than
500 for Interlisp). This set of basic functions can easily be extended by the user's own
definitions.

To keep the syntax simple and maintain the language's easy extensibility all
operations are written in prefix notation (so called "Cambridge Polish") and all lists
are fully parenthesized (no rules of precedence to worry about). Identifiers can be of
arbitrary length and may contain most special symbols, thereby offering ample scope
for mnemonic names.

Many Lisps have no variable declarations and use dynamic scoping, where symbol
bindings are searched for along the chain of function calls. This should be contrasted
with classical programming, where declarations are usually mandatory and static
scoping is used. Static scoping has advantages over dynamic scoping. Many modemn
Lisp dialects now support it, offering dynamic scoping as an option (i.e. SPECIAL
variables). It is easier to understand, because it finds variable bindings according to
the textual nesting of function modules, thereby localizing the search process for the
human reader.

Lisp treats all symbols which are not parameters as global (so called "free" variables).
Such variables must be used with caution and many Lisp programmers use special
naming conventions for them (i.e. *...*). Local variables may be introduced through the
LET function.

Execution of Lisp programs is triggered from the so called "top level", which
operates in a "Read, Interpret, Write" cycle. Interpretation normally proceeds left to
right, inside out, with a value (possibly nil) returned by each operation. There are
functions for conditional selection of alternative execution paths and for specification of
repetition. Recursion is Lisp's traditional main control structure. It is a very powerful
instrument to define and process quite complex regular structures in a concise way. So
called tail recursion (". . . and then do the same thing to the rest of this structure") is
particularly common in list processing programs.

There are also a number of so called mapping functions, which repetetively apply a
specified operation to a list of values (i.e. MAPCAR, ...).

All modern Lisp systems now offer a rich repertoire of control structures. Various
forms of selection (i.e. IF) and iteration (i.e. DO, WHILE, DOLIST, . . .) are supported.
Side effects (printing, binding values explicitely through SETQ) are also commonly
used, although not part of "pure” Lisp (but purely applicable languages are
unfortunately poorly applicable).

Finally a great number of other useful but often complicated features (various forms of
macros, closures, exception handling, continuation passing, file handling ...) have
been added to some dialects. Great care must be taken to use them in a disciplined
fashion. Otherwise programs can quickly become tangled and opaque.

Good programming style is therefore extremely important. The temptation to "hack out"

programs in an unsystematic fashion is possibly greater than in classical programming,
where the necessity to adhere to type declarations enforced by the compiler at least
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prohibits many "clever" programming tricks by undisciplined programmer. Lisp has no
such restrictions; "everything goes".

Fortunately the concepts of symbols and symbol structures allows us to use data and
procedure abstraction in a methodology of levelled design. Abelson et al. (1985) and
Allan (1978) are excellent demonstrations of the power of this approach.

Apart from its excellent support of interactive programming, the main strength of Lisp
lies in its flexibility and freedom from arbitrary restrictions.

This requires that the system has to defer binding structures to memory
representations and machine code, but rather interprets and keeps structures
"dynamic" at run time, a convenience we have to pay for in terms of memory and
processing resources. Lisp systems have therefore a reputation of being "slow",
burdened by garbage collection and chasing long chains of indirect references. While
this was to a certain extend true in the past, it does often not hold anymore. New
implementation and hardware architectures have removed much of this overhead.
Even arithmetic, always cited as one of the language's weaker points has grown to
become excellent in many modern Lisp systems.

Figure 3.3 shows an overview of the Lisp functions in our first toolbox. We have used
Experlisp, a MacLisp / Common Lisp dialect which runs on the Apple Macintosh and
offers a pleasant interactive environment as well as a wide collection of predefined
functions. It uses static scoping by default (SPECIAL variables are dynamically
scoped). The primitive functions seem to be implemented in a surprisingly efficient
manner.

The toolbox is organized according to the princples of levelled design which were
advertised above. Great care was taken to select appropriate primitives, which were
organized around a few data types. In anticipation of the Smalltalk implementation they
were also arranged in a manner which makes their clustering into object classes as
straightforward as possible.

Currently the supported data typas are: System (implemented by using
ExperLisp's "structure” package - simulating record definitions a la Pascal),
ConnectionTable (implemented as an association list), BehaviourList
(representing a description of system behaviour by differential equations -
implemented as a list of lists of expressions), Expression (implemented as nested
lists of operators and operands), BehaviourTable (representing a description of
system behaviour by matrices - implemented as a list of coefficient matrices),
andCoefficientMatrix (implemented as lists of lists of coefficients).

All eperations are implemented as Lisp functions associated with these data types

and grouped into a number of categories. Constructor functions build instances of a
data type, while destructor functions are used to remove them. Simplification
functions may additionally simplify an object's description while building a new
instance of it. Transformer functions can change an objects representation. Query
functions are predicates, which inquire about the state of an object. Selector functions
must be used to access an objects components, while display functions will show a
nicely formatted screen or printed representation.

Figure 3.4 shows an application of this toolbox, using the two examples described in
chapter 3.1. The Lisp representation of these examples is contained in figure 3.5.
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Figure 3.3: The Lisp Toolbox - An Overview

First Level: "Primitives"

1

——— — —_—

SYSTEM (implemented as a structure with the following slots:

Name {a symbol}
Inputs {a list of symbols}
States {a list of symbols}

Outputs {a list of symbols}
Subsystems {a list of symbols}
Behaviour {a BehaviourList} )

constructor & destructor tunctions:

MakeSystem (aName anlnputList aListOfStateVars anOutputList

aListOfSubsystems

aListOfStateTansitionFns aListOfOutputFns)

NewName (aSystem aName)

AddInputs (aSystem aninputlList) Clearinputs (aSystem)
AddOutputs (aSystem anOutputList)  ClearOutputs (aSystem)
AddStates (aSystem aStateList) ClearStates (aSystem)

AddSubsystems (aSystem aSubsystemList)

ClearSubsystems (aSystem)
NewBehaviour (aSystem aStateEqnList anOutputEqnList)
ClearBehaviour

query & selector functions:

Name? (aSystem) Name (aSystem)
Inputs? (aSystem) Inputs (aSystem)
Outputs? (aSystem) Outputs (aSystem)
States? (aSystem) States (aSystem)

Subsystems? (aSystem) Subsystems (aSystem)
Connections? (aSystem) Connections (aSystem)
Behaviour? (aSystem) Behaviour (aSystem)
display functions:

ShowSystem (aSystem)

(aSystem)



CONNECTIONTABLE (implemented as a list of binary connections

(lists of pairs) )
constructor functions:

TableOfConnections (aSystem)
MakeBinaryConnection (aSource aDest)
MakeConnectionTable (anyNumberOfBinaryConnections)

query & selector functions:
Connections? (aConnectionTable)
FirstConnection (aConnectionTable)
RestOfConnections (aConnectionTable)
display functions:

ShowConnectionTable (aConnectionTable) {PrintPairs (aListOfPairs)}

BEHAVIOURLIST (implemented as a list of a list of

state equations (expressions) and a list of
output equations (expressions) )

constructor functions:

MakeBehaviourList (aStateEqnList anOutputEqnList)
AddStateEqns (aBehaviourList aStateEqnList)
AddOutputEqns (aBehaviourList anOutputEqgnList)
query & selector functions:

StateEqns? (aBehaviourList) StateEqns (aBehaviourList)

OutputEqns? (aBehaviourlist) OutputEqns (aBehaviourList)
FirstEqn  (anEgnList)
RestOfEqns (anEqnList)

display functions:

ShowBehaviourList (aBehaviourList)



EXPRESSION (implemented as a pested list of operators & operands
(prefix or infix).
Must always be fully parenthesized ! )

constructor & simplitication functions:

MakePrefixBinary (anOperator aFirstArg aSecondArg)
MakelnfixBinary (aFirstArg anOperator aSecondArg)
MakeUnary (aSign anArgument)

MakePrefixSum (aFirstArg aSecondArg)
MakePrefixDifference (aFirstArg aSecondArg)
MakePrefixProduct (aMultiplicand aMultiplier)
MalePrefixQuotient (aDividend aDivisor)
MakePrefixPower (aBase anExponent)

query & selector functions:

Constant? (anExpression) UnaryOperator (anExpression)
Variable? (anExpression) UnaryArg (anExpression)
SameVar? (firstExpression secondExpression)

Unary? (anExpression)

PrefixSum? (anExpression) PrefixOperator (anExpression)

PrefixDifference? (anExpression) PrefixFirstArg (anExpression)

PrefixProduct?  (anExpression) PrefixSecondArg (anExpression)

PrefixQuotient? (anExpression)

PrefixPower? (anExpression) InfixOperator (anExpression)
InfixFirstArg (anExpression)
InfixSecondArg (anExpression)

transformer functions:

InfixToPrefix (anExpression) {Flat? (aList)}

PrefixTolnfix (anExpression)

Derive (aPrefixExpression aVar) {DeriveAux (anInfixExpression aVar}

display functions:

ShowExpression (anExpression)



BEHAVIOURTABLE (implemented as a list of system-matrix,
input-distribution-matrix and
measurement-matrix
(all implemented as CoefficientMatrices) )

constructor functions:

MakeBehaviourTable (aSystemMatrix aninputDistMatrix aMeasureMatrix)
AddMatrix (aBehaviourTable aCoefficientMatrix)

query & sslector functions:

SystemMatrix? (aBehaviourTable)
SystemMatrix (aBehaviourTable)
InputDistMatrix? (aBehaviourTable)
InputDistMatrix (aBehaviourTable)

MeasurementMatrix? (aBehaviourTable)
MeasurementMatrix (aBehaviourTable)

display functions:

ShowBehaviourTable (aBehaviourTable)

COEFFICLENTMATRLX (implemented as a list of rows
(lists of coefficients (lists)) )

constructor functions:

MakeCoefficientMatrix (anyNumberOfRowLists)
AddRow (aCoefficientMatrix aRowList)

MakeRow (anyNumberOfCoefficients)
AddCoefficient (aRowList aCoefficient)

query & selector functions
EmptyMatrix? (aCoefficientMatrix)

FirstRow (aCoefficientMatrix)
RestOfRows (aCoefficientMatrix)



FirstinRow (aRowList)
RestinRow (aRowLlist)

display functions:

ShowCoeffMatrix (aCoefficientMatrix)
ShowRow (aCoefficientList)

; print or obtain information about subsystems
. and their hierarchical structure

ShowSubsystemHierarchy (aSystem aTabLevel)
{ShowSubsystemHierarchyAux (aSystemList someSpaces aTabLevel)
PrintSpaces (someSpaces) }

AliSubsystems (aSystem)
GetAllSubsystems (alListOfSystems) {RemoveDuplicatesFrom (aList)}

SubsystemHierarchy (aSystem)
GetSubsystemHierarchy (alListOfSystems)

; obtain information about systems' state variables

AllStates (aSystem)
GetAllStates (aListOfSystems)

; linearize a system's behaviour description
; (i.e. produce a linearized set of matrices (system, input-dist.,
; measurement) by differentiation of its state and output equations).

Linearize (aSystem)

Further Extensions (not implemented; will require additional
primitive data types & functions)



; obtain "topological" information

ContainedIn (aSystem)
Cycle? (aSystem)
ConnectedTo (aSystem)

Path? (aSource aDest) AnyPath (aSource aDest)
AllPaths (aSource aDest)
ShortestPath (aSource aDest)

; trace "signal flows" through a system

Simulate (aSystem aTerminationCondition)
Monitor (aVariable)

; allow "recursive definitions”

Replicate (aSystem aTerminationCondition)



; Eigure 3.4: ===== Trace of an Example Session =====
; (user inputs are in bold; the "structures" package, "systems" package
and "eamples™ package has ben loaded and compiled !)

; axampla 1: Linearization & ...

(States? ES)

;1

(States ES)

;(X1 x2 x3)

(Behaviour ES)

;(_(Ig(a/ (b +(c™x3))) - (k* x1))((d * x1) - (f* x2))((9 * x2) - (h * x3)))
Ni

(ShowBehaviourList (Behaviour ES))
;State-Eqns

((a/ (b +(c* x3)) - (k* x1))

((d ™ x1) - (f* x2))

(9" x2) - (h ™ x3))

;+++ No output equations defined +++
nil

(ShowSystem ES)

. SYSTEM:ES

; Inputs : nil

; Outputs : nil

; States : (x1 x2 x3)
; *** Connections ***
++++++HH+H+

: *** Behaviour ***
+++++++++
;State-Eqns

L
’
]
L]
¥
¥

@/ b+ (c*x3)) - (k* x1))

((d* x1) - (f* x2))

(9 * x2) - (h * x3))

+++ no output equations defined +++
nil



(PrefixTolnfix '(+ (+ a (* b x))(* 3 (** x 3))))
((@+({m*x)+(3 *(x™3))

(InfixToPrefix '((a + (b *x)) + (3 *(x **3))))
(+(+a("bx)("3 (*x3))

(Derive '((a + (b * x)) + (3 * (x **3))) ')
(b+(3 (3 *(x*™2))

(Linearize ES)

;(_(Ig(- l?)) 0 (@* (- (((b+(c*x3))™-2)"c)))d(-1) 0)(0 g (-h))(nilnil
nil) ni

(ShowBehaviourTable (Linearize ES))
;System - Matrix

(-K) 0 (@ (- (((b+(c*x3))*™-2)"c)))
d(-f)0

;0 g(-h)

;Input Distribution - Matrix

No coefficients in this row

:No coefficients in this row

;No coefficients in this row

;Measurement - Matrix

ol

(ShowCoeffMatrix (SystemMatrix (Linearize ES)))
(-K) 0 (@a* (- (((b+(c*x3)*™-2)"c))
d(-f)0

;0 g(-h)

il



; axampla 2: System Decomposition & ...

(ShowSystem s1)

. SYSTEM: S

; Inputs : (c)

; Outputs : (y)

; States : nil

; *** Subsystems ***
i o o 2

;(s2 model ff)

*** Connections ***
P LI I e o o o

;(c S1)

(S1y)

; *** Behaviour ***
P LA i i

+++ no state equations defined +++
;+++ no output equations defined +++
il

(TableOfConnections proc)

((u proc)(proc y))

(ShowConnectionTable (TableOfConnections proc))
,(u proc)

(proc y)

L

il

(StateEqns (Behaviour proc))
;(é(-))()a)l)* (X1 (1 72)) + (o u)((@* (x1* (1 /2))-(@* (x2** (1
(OutputEqns (Behaviour proc))

((x2))



(ShowBehaviourList (Behaviour proc))
;State-Eqns

((-@" (1™ (1 /2)))) + (b " u))
((@*(x1™ (1 /72)-(@*x2* (1 /2))
;Output-Eqns

(ShowBehaviourTable (Linearize proc))
;System - Matrix

-a*((1/2)*x2*™((1 /2)

;0 1

nil 7
(MeasurementMatrix (Linearize proc))
((0 1))

(SystemMatrix (Linearize ff))

;((b))

(InputDistMatrix (Linearize sensor))

(™ -1))

(AliStates 'model)

;((x1 x2) nil nil nil)

(GetAllStates '(reg proc sensor))
;((i d) nil ((x1 x2) nil ((x) nil nil)))
(AllSubsystems s1)

;(s2 model ff reg proc sensor)
(AllSubsystems s2)

;(reg proc sensor)
(GetAllSubsystems '(s1 s2))

;(s2 model ff reg proc sensor)
(GetSubsystemHlerarchy '(s1))
;(S1 (s2 model ff) s2 (reg proc sensor) reg nil proc nil sensor nil model nil
ff nil)



(ShowSubsystemHierarchy s1 7)
+++++-+—H—%—H+H+4+§—I—-H+++—H—|-+i-+HH—H—l—I++
Subsyststems of: S1

reg

;. proc
;  sensor

:model



; Figure 3.5:

j ========= EXAMPLES of simple control systems ==========

, Exampla #1:

(SETQ ES (MakeSystem 'ES '() '(x1 x2 x3) () nil
(((@a/(b+(c*x3))) - (k*x1))
((d * x1) - (f * x2))
'()(()9 "x2) - (h " x3)))

, Exampla #2:

(SETQ S1 (MakeSystem 's1 '(c) nil '(y)
'(s2 model ff)
‘0°0))

(SETQ S2 (MakeSystem 's2 '(r u) nil '(y)
'(reg proc sensor)

'0°0))

(SETQ Model (MakeSystem 'model '(c) '(x1 x2) '(y) nil
g ng’)' ;0?)) (((- (w*x1)) - (2" (W *x2))) + (W™ ¢)) )
'( (x

(SETQFF (MakeSystem'ff ‘'(u) '(x) '(y) nil
'(((-(B*x)) +((a-b)*u)))
(k™ (x+u)))))

(SETQReg (MakeSystem'reg '(ry)'(id) '(u) nil
(((1/Ti)* (r-y)) ((N/Td) * (d +y)))
(KT (((r-y) +) +(N*(d-y))))))

(SETQ Proc (MakeSystem 'proc '(u) '(x1 x2)'(y) nil
(((-(@* (x1™(1/2)))) + (b ™ u))
(@ (x1™(1/2)))-(a* (x2** (1/2)))))
'((x2))))

(SETQ Sensor (MakeSystem 'sensor '(u) '(x) '(y) nil
(((u-x)/T))
((x/7(1+(x"x))))))



3.3 Smalltalk: Encapsulation, Message Passing & Property Inheritance

The Smalltalk-80 system, as described by Goldberg and Robson (1983), consists of
two major components: an object-oriented programming language and a window &
mouse-based programming environment. Similar to Lisp it is designed to support an
exploratory programming style. Its excellent tools for graphical animations can be
profltably employed by simulation models (i.e. Goldberg & Robson (1979)).

Figure 3.6 sketches its historical development and its relationships to other object
oriented programming systems.

Smalltalk needs single user workstations with sufficient processing power and
memory (at least one megabyte) to support its model of computation at a satisfactory
level of performance. A memory-mapped graphics screen and a pointing device are
required for the user interface.

In Smalitalk every data structure is viewed as an object, described by an
appropriate class definition. Objects may have properties which are strictly private and
may respond to any number of so called messages. Message passing between objects
is the only way in which computations take place.

A Smallltalk program consists of class definitions. A class has a name and a
superclass and may own any number of so called class and instance variables and
class and instance methods. Class variables & methods are shared among all
members of a class, while instance variables & methods are private to individual
objects .

All messages an object will respond to form its so called protocol. Class definitions
associate methods (implementations) with these messages. Method definitions may
also be grouped into chapters (i.e. initialization methods, accessing methods, private
methods), but this is transparent to the Smalltalk interpreter.

Please note that Smalltalk, like Lisp, is a typeless language. The types of objects
should only be deducible from their names. This is not really a disadvantage, since in
interpreted languages like Lisp, Prolog or Smalitalk the notion of "strong typing" does
not buy anything for the user. Since programs in these languages are normally
developed in a highly interactive fashion, type (and other) errors can easily be
detected and corrected "on the fly"; powerful tools for doing this are part of the
programming environment. This is different from compiled languages, where the
increases in program reliability and efficiency achievable through strong typing are
very valuable.

Smalltalk's syntax is somewhat unusual, but very consistent, flexible and expressive.
New data structures (classes), operators (methods) and even control structures
(methodss) may be defined very elegantly.

The language assumes that all global variables start with an upper case letter,
whereas all locals start with lower case. Local variable declarations are enclosed in
vertical bars and the left-pointing arrow is used as an assignment symbol. Square
brackets delimit blocks, whose evaluation can be deferred. As in Lisp, all Smalltalk
messages return some value, possibly the receiver itself. An up-arrow can be used to
denote explicitely what should be returned.

Where necessary Messages can be separated by periods, or cascaded by
semicolons (i.e. "Pen turn: 30; down; go: 10; up" defines a drawing sequence of 4
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cascaded messages). Messages can be classed as binary or keyword messages.
Binary messages are written in infix notation. "2 + 1", for example is interpreted in the
following way: message "+" with argument 1 is sent to object 2 (an instance of class
"number"); numbers know "+" to denote addition, a process which is performed using
their own value as the first and the argument as the second operand; the result
(hopefully 3) is then returned. Keyword messages can either be unary (i.e. "Pen up"),
or they may take any number of arguments. The keywords are normally used to
describe the arguments' function, while the names of the arguments themselves
indicate the expected types of their values (i.e. "Circle showWithRadius: aNumber
FilledWith: aPattern at: aPoint").

"Self" and "super” are so called pseudo-variables. They allow references from the
current object to itself and its superclass. Self is sometimes needed for triggering
private messages, while super may be used to obtain the original of some method
overridden by a new definition in the subclass.

The Smalltalk system consists of a large number of predefined classes, the so called

"virtual image" and a virtual machine responsible for implementing basic primitives,
memory management and command interpretation.

Smalltalk is a very "soft" system, there are very few unchangeable primitives. The user
can browse and modify all the class definitions in the virtual image, which can both be
blessing and curse. On the positive side one gains an almost extreme degree of
flexibility to tailor one's environment to one's wishes. If you don't like a particular
feature you can always change it | On the other hand, of course, you have to know
what you are doing, because it is quite easy to crash the system by unfortunate
modifications (i.e. try to change the definition of "+" in class "numbers").

This is, however, not as bad as it may sound. Due to the object oriented nature of the
programming environment changes usually are very localized and can be traced
easily. One learns quickly to keep certain system classes alone, uniess one knows
exactly what one is doing.

The flexibility to modify almost all classes in the system is very effectively exploited by
the typical style of good Smalltalk programmers. Writing a Smalltalk program should
not consist in accumulation of large bodies of new code, but rather in skillful
modification of existing definitions. There is a story about a programmer at Xerox PARC
who over a long period of time used his workstation without any significant handicap to
his productivity after his keyboard developed a malfunction.

Smalltalk's user interface is probably the most advanced integrated computing
environment which has successfully been implemented.

Its use can be well described by employing the so called "desktop” metaphor.

This paradigm views the terminal screen as a large desk, on which documents and
tools of different kinds are arranged; beside or overlapping each other, in different
stages of execution. In Smalltalk each of these tools and documents is associated with
a window or a symbol which can be expanded to a window. Such windows can
overlap and cover all or parts of other windows. They can be opened, activated and
closed. Each of them may represent a view into a process, which can be active,
terminated or suspended. Smalltalk supports conceptual multiprocessing (coroutines)
through time slicing. Suspended processes are reactivated as soon as a window with
which they are associated is selected. The resident process can now be controlled
through typed commands or menu selection (i.e. browsing class definitions, editing
text, writing programs, executing programs, viewing an animation, drawing pictures, ...).



All processes can be temporarily suspended and reactivated at a later time. Program
development is truly "exploratory” in the sense used above; i.e. different modules of a
program can be quickly designed, tested, modified and integrated in an interleaved
fashion .

In order to write a Smalltalk program a workspace and browser window should be
visible. Workspaces allow the specification and evaluation of expressions which
need not be permanently kept. Browsers can be used to show and manipulate
(create, redefine, delete, pretty print, file, ..) messages of a specified method category
within a specified class of a specified class category. Writing or modifying messages
takes place within the lower pane of the browser window, using a syntax-driven editor.
Menu commands are available for formatting and compilation of method definitions.
Syntax and other simple errors are reported here. Spelling correction is also offered.
More complex error conditions may still occur at evaluation time, where they can be
traced through so called notifier and debugger windows.

Smalitalk's standard user interaction takes place through menus and mouse action.
Normally a three-button mouse is used or simulated, which can select information
("red" button) or bring up two different kinds of menus, the contents of which may
depend on the current context. One of these menus ("blue” button) lets you manipulate
windows themselves (collapse, close, move, resize, ...), while the other one ("yellow"
button) specifies operations on their contents (create browser, create workspace, quit,
... cut, paste, undo, format, compile, execute, print, ...).

The mouse is moved into a menu field and one of its buttons is pushed. Selected
commands and windows are shown in reverse video (white on black). Active windows
have "scroll bars", to indicate and modify the position of the current view within a
selected document.

Inspectors are another useful class of processes. They will show a view of a selected
objects with all its "property / value" bindings and permit expression evaluation within
that context.

Apart from browsers, inspectors and workspaces Smalltalk offers a large number of
powerful predefined error tracing, performance engineering, graphics editing and
project management tools whose flavour can only be conveyed by using a Smalltalk
system.

Our Smalltalk toolbox implements only a subset of the features provided in the Lisp
implementation; i.e. only system / subsystem decomposition is curently supported. The
main reason for this restriction lies in the nature of the experimental Apple Maclintosh
implementation of Smalltalk used for this experiment, which offers very little space for
user defined classes. This system is a subset of Apple's LISA Smalltalk. For our
purposes it worked quite well, with only little apparent speed disadvantage over the
LISA implementation. The fact that there is not much user space available should not
be held against it. It is perfectly adequate for demonstrating and teaching basic
principles. Since Smalltalk is an inherently memory-hungry system it is an
remarkeable achievement to squeeze it into a 512K Macintosh at all.

This implementation can, of course, not be used for building a full-fledged control
system laboratory. For this a workstation of at least the power of the Tektronix 4404
would be required (or possibly a future "huge Mac" version of this software).

Figure 3.7 summarizes of the Smalltalk toolbox, while figure 3.8 shows a snapshot of
its use.



Figure 3.7: Summary of Smalltalk-toolbox
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--- constructor & destructor methods ---
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4. Conclusions: How to constrain Complexity.

Current trends in price / performance ratios of personal workstations make powerful
interactive programming environments for control system modelling laboratories an
increasingly attractive proposition. Many intellectually challenges which could not be
adequately tackled in the past because of inadequate tools may now come within our
reach.

Model implementation is just one among a range of activities we must perform during
a modelling project. Others include system identification, model specification and
documentation, data analysis, model validation and experimentation. Currently we use
different notations and tools for all of these. It would be much more convenient to have
a single unified framework {i.e. see Oren & Zeigler (1979)} to work in. Such a system
should permit us to view different processes in different stages of execution (i.e. a
graphical model, textual documentation, views into the source program's execution,
various performance measures, ...). Each of these should reside in its own separate
window. A mouse may be used to select and activate processes, with control options
provided by pop-up menus. These may start an analysis or simulation, reset it to a
previous state, edit models and graphic scenarios, trace objects' states, perform
statistical analyses, ... .

Building such an integrated modelling environment is a very ambitious undertaking. It
will require invariably require a large amount of programming effort. In many ways it
will be a complex experiment in itself, with many possible design options to be chosen
from. Before we committ ourselves to particular strategies we will want to be sure of
their effectiveness.

Experimentation with simple prototypes in terms of expressive power, efficiency and
user acceptance becomes therefore essential and a range of appropriate tools for their
rapid development is required.

Classical techniques have in the past proved too tedious and inflexible for this task.
Exploratory tools embedded in Smalltalk-like programming environments may well
prove a major breakthrough. We should be free to specify, design, implement and
experiment with a prototype model; alternating between different activities at will.
This is typical for much of human problem solving. Several tasks may be relevant to a
particular project and they need to be interleaved at will; otherwise the creative
process may be inhibited.

Programming environment supporting these ideas may well increase both
productivity and quality of the modelling process by an order of magnitude.

This experiment has shown that Lisp, an exploratory programming style, and a
methodology of design by levels of abstraction built upon carefully chosen primitives
could easily cope with the modelling task and seems to be very well suited for rapid
prototyping.

The author of this study has had extensive experience with "classical" programming
languages (i.e. Pascal, Dynamo, GPSS, Simscript, Simula; see also Kreutzer
(1986) ) in modelling projects. Progress in building the Lisp-based toolbox was in
many ways faster and much more enjoyable. It probably also resulted in a "better"
(more "structured") product. Much of this can be credited to to the interactive nature of
Lisp and the associated freedom to change one's mind in mid-stream. In classical
programming styles one often shies away from make any fundamental changes once a
significant part of the coding has been done, because one dreads the necessity to start



from scratch again. This tends to lead to ad hoc patches which diminish the
consistency and harmony of the end product.

Debugging was also much easier, even though the ExperLisp implementation on the
Macintosh provided only rudimentary features when compared with many other
modern Lisp systems. Just the possibility to copy and evaluate expressions
interactively was invaluable. This is of course much more tedious in the classical
"edit / compile / link / execute" cycle. Matching parentheses, a recurrent nuisance in
some Lisp systems, turned out to be no problem at all, since the editor blinked
matching pairs automatically.

Part of the credit should also go to the mouse-based editing on the Macintosh. In this
environment it was very easy to make repetetive modifications in the middle of some
function, evaluate it and watch the results in a different window.

The only misgivings about the ExperLisp systems concern its lack of debugging aids
and object oriented programming features as well as the fact that some of the more
esoteric functions did "not quite” work as advertised. As always the remedy is
promised for the next release; "real soon now".

The Smallitalk environment is much more sophisticated than the ExperLisp one.
Since only a small number of features were implemented, due to reasons explained
above, only tentative conclusions can be drawn at this stage. It would certainly be
worthwhile to extend the experiment to a genuine Smalltalk workstation.

What can be said is that the Smalltalk programming metaphor supports object
oriented design well, by enforcing structuring and the definition of small functions
(methods). The programming environment is extremely pleasant to use and supports
thisprogramming style through the browser and the syntax directed editing facility. It
was very easy to quickly define a large number of methods, particularly when, as is
quite common, they did not differ all that much from one another. Property inheritance
is also very helpful here.

Smalltalks syntax was easily assimilated and felt "right" after some acclimatization. It
turned out to be highly orthogonal and lent itself to program in a very "self documented”
fashion.

The system contains a multitude of useful predefined data structures (classes) and
operations (methods). Not all were implemented in this version and only very few were
required for the toolbox.

Syntax checks seem to be thorough and the spelling correction and error tracing
features are seem useful if fully exploited. This wasnot the case here; in this
implementation you could actually crash the system (out of memory) with too
complicated error traces.

The inspection facility turned out to be particularly valuable if an error condition
occurred. The speed of the system was just adequate for the simple tasks which were
implemented, although one could easily get ahead in typing. This reflects the fact that a
"minimal" performance Smalltalk system was used.

As for the Lisp system, the possibility to leave a task (window), perform a different
action in another window (i.e. testing, error tracing, or making a modification of another
method of the same class or one of its sub- or superclasses) and return to the original
task (window) turned out to be essential for this style of programming.



Object oriented programming itself feels very natural, once one grows
accustomed to think in terms of "programming as simulation of a real-world system”.

It proceedes rather like building a model of some task domain, identifying the relevant
objects, classifying these according to similarities and differences, and defining a
language of interaction among them. The relevant objects can then be mapped into
class / subclass definitions, according to their similarities and the properties they may
inherit from or provide to other classes. The language of interaction defines all the
messages a class of objects should understand, which can then be implemented as
Smalltalk methods.

Apart from these observations some theoretical reflections on object orientation and its
effects on a models complexity may be of value.

The notion of programming as model building leads to a close correspondence
between objects, relationships, actions and processes of some relevant aspect of
reality and its formal representation. The resulting encapsulation of state descriptions
and procedures into object structures yields highly modular programs. This
methodology works best for separable systems and if their "proper" decomposition
yields classes of systems with strongly interacting components. Instances of these
classes in turn should be only loosely coupled to other instances of their own or other
classes. The fact that all references to an object's state occur through methods
encapsulated within the object itself leads to robust programs. Objects may defend
themselves against invalid inputs (messages).

In this sense there is a correspondence to the idea of "abstract data types” and other
abstraction techniques provided by some modern classical programming languages
(Edison, Modula, Ada, CLU, Alphard, Mesa, ...). This is not surprising, since all
these developments can ultimately be traced back to Simula's class concept. The
basic objectives are quite different, however.

Object oriented programming is dominated by the notion of a close correspondencs
between programs and models of some task domain. Object descriptions are
encapsulated into textually closed modules because they describe logically related
aspects of a model. Their message protocols define new levels of abstractions at which
one can talk about a system in categories which should be natural for the specified
class of applications. Instances of these objects are created by computational
processes, which are essentially simulations of the candidate system.

New levels of abstraction are of course also created by using languages catering
solely for data encapsulation. The emphasis, however, is on program reliability here,
following the principle of "information hiding". Modules should posses no more
knowledge about their environment than is absolutely necessary for their task. The
ability to defend against invalid access and incorrect information is the important
aspect, not the modelling idea. Languages supporting this kind of object encapsulation
often bind object instances already at compile time, for reasons of efficiency. Packages
and modules in Ada or Modula can not be dynamically created by some computational
process. Their primary purpose lies in improving program reliability, not model
structuring.

The idea of programming by analogy through differential descriptions and property
inheritance is therefore not relevant here. However, it occupies a central role in object
oriented programming frameworks. Here it reduces the effort of model description by
classing new objects as special cases of already known ones, stating only their
differences explicitely.



Both programming techniques ensure that only local changes (to a class' or method's
implementation) are necessary if changes in a system's performance are required.
Changes may, of course, be somewhat more extensive if the system's functionality
must be changed.

This locality improves both understandability and ease of maintenance of programs,
and it encourages independent development and testing of modules.

Names can be local within the context of a class. General naming conventions are
unnecessary apart from a few globally visible structures (like class names, ...). This
seemingly trivial property actually turns out to be extremely convenient . Even for the
small Lisp toolbox you will have noted that names tend to be very long. One reason for
this is that function descriptions must always be concatenated with the name of the
data structures they manipulate, so that we arrive at names like: ShowSystem,
ShowConnectionTable, ShowExpression, ShowCoefficientmatrix, ShowBehaviourlList,
ShowBehaviourTable. In large programs this quickly leads to "name pollution" and the
strong temptation to make do with unambiguous and ad hoc, but short names,
sacrificing structure and understandability in the process. It is of course much nicer to
be able to "overload" the "Show"identifier and let its meaning be. determined by context
(i.e. the type of object "Show" is sent to). This can be easily done in an object oriented
language where each class is independent from the rest of the program and provides
its own implementation for methods.

Conceptual parallelism (coroutines) can easily be implemented in the object oriented
paradigm. Smalltalk, for instance, provides the necessary primitives (predefined
classes). Genuine parallelism, on the other hand, is not directly suppored. After
sending a message, objects wait for an answer before proceeding on their life cycles.
Before the in principle promising properties of object oriented systems can be
exploited for genuine parallelism (multi-processing), new concepts for process
coordination and interrupt handling must be implemented. Only a few experimental
languages (i.e. ETHER, ...) have experimented with such ideas.

The main disadvantage of object oriented software architectures lies in its high
resource requirements. A multitude of transient objects have to be administered and
long chains of indirect references must be processed. This leads to "inefficient"
performance compared to classical systems. This problem may soon disappear
through performance improvements and price reductions for powerful personal
workstations. Another solution lies in the design of special purpose architectures
catering for the specific requirements of this programming style. A few experimental
projects of this kind are known (i.e. Unger (Berkeley), Suzuki (Japan), ...). Although not
an easy task for which immediate results should be expected, it should be much less
difficult to make progress here than on the problems faced by logic programming.

Figure 4.1 again summarizes the main characteristics of object oriented programming
styles.
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In closing it should be observed that the advantages of object oriented programming
hold for Lisp-based flavour systems as well as for Smalltalk. There the processing
overhead is less dramatic, because of the usually much less sophisticated user
interface.

One aspect which was not explored at all by this case study relates to graphics. Both
ExperLisp and Smalltalk support rich libraries of graphics functions, which can also
handle windows and mouse interactions. It would be interesting to explore the
programming effort required to implement at least some simple graphics interface for a
control system laboratory.

Both Lisp and Smalltalk have been shown to be very attractive candidates as
implementation languages for rapid prototyping of models of control system. Lisp is
more widely known and used and has lower resource requirements, while Smalltalk
provides both a better support for object oriented programming and a much more
sophisticated programming environment. It is, however, plagued by the expensive
hardware needed to fully exploit its potential.

Whether hardware prices will drop sufficiently to make this an irrelevant consideration
remains to be seen. The quality of the MaclIntosh implementation is certainly
remarkeable in view of the resource restrictions it has to cope with.

An extended version of ExperLisp with improved debugging support and additional
object oriented programming features may well be a reasonable compromise in the
meantime.

More research is required in a number of areas which have not be explored for
reasons of time and resource restrictions.

It would be instructive to analyze the suitability and restrictions of Prolog. The ease
(or lack thereof) of programming graphical interfaces in Lisp and Smalitalk could also
be analysed.

More complete implementations of toolboxes would have been desirable in both
cases in order to achieve some reliable intuition about their relative efficiencies.

All this would provide valuable addtional insights. It seems, however, unlikely that the
main conclusions drawn from this study would be significantly affected by them.



Appendices:

The code for the Lisp and Smalltalk toolboxes is shown in the following two appendices.

The programs have been written with a view on readability. They are thoroughly formatted,
commented and any attempt has been made to use "meaningful" identifiers.

A few coding conventions were used throughout. All global identifiers start with an

upper-case letter, whereas all locals always start with lower-case. Parameters are prefixed with
the phrase "a" or "an" or "some"” (i.e. aList, someCoefficients). In Lisp all predicate functions
end with a question (i.e. EmptyList?) and all functions which will produce side-effects

(apart from printing) end with an exclamation mark (i.e. SetThisValue!). This convention was
adopted from Scheme. It could, unfortunately, not be used in Smalltalk, because its syntax only

allows letters and numbers as parts of identifiers.

For the Smalltalk toolbox it should be noted that the left-pointing arrow is printed as a "-"
here. This is due to a restricted character set in the used font and was not changed for lack of time.
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; FERERxxxExx Implementation of "SYSTEM (as a structure)

(DEFSTRUCT System
iderlines the strvclure af sylem gescriplions)

Name inputs States  Outputs
Subsystems Behaviour)

; REEREREE sopelruator and dostruslior fue

(DEFUN MakeSystem

icregies & relurns & new system atiject/
(aMame anlnputlList aStateList anOutputlist
asubsystemlist aStateEqniist anOutputEgnList)

(LET {x)
(SETO ® {make-System))
{SETF {System-name %) aNarne)
{SETF (System-inputs %) anlnputlist)
(SETF {System-outputs ) anlutputlist)
(SETF (Systerm-states x) aStatelist)

(SETF (System-subsystems xi aSubsystemList)
{SETF (System-behaviour )
(MakeBehaviourList aStateEgnList
anDutputEgnList 3} x 1)

(DEFUN NewName (aSystem alName)
{relurns & chenged (new neme) sysiem instence)
(LET (%)
{SETQ x aSystem)
(SETF (5ystem-name x) aMame) » )

(DEFUN AddInputs (aSystem aninputList)
freturns & chonged {eaditions! inpuls) system instsnce/
. WARNING: daes natl check Ffor duplicales /7
(LET (x)
{SETUO » aSystem)
(SETF (System-Inputs %) (APPEND (Inputs aSystem]
anlnputList) )« )

{DEFUN Clearinputs (aSystem)
fraturns the system witheu! inputs fsel to Vil
(LET (%)
(SETO % aSysterm)
(SETF (System-~Inputs ») NILY % 3}



(DEFUN AddOutputs (aSystem anOutputlist)
frelurns & chenged [safitiansl sulpnl s} systam inslance)
; WARNING: DQes not check for duplicates |
{LET ()
{SETQ % aSystem)
{SETF iSystem-outputs ») (APPEND (Qutputs aSystem)
anOutputlist)) x )

(DEFUN ClearOutputs (aSystem)
fraturns the system Withaul aulouls {sel ta Mt
{LET {x)
(SETQ x aSystem)
(SETF {System-0utputs %) NIL) % ))

{(DEFUN AddStates (aSystem aStatelist)
freturns & chenged (eadilions’ states) sustam instance
L WAKNING Paes pal check Ter duplicetes /
(LET {x)
{SETQ » aSystem)
(SETF (System-States x) (APFEND (States aSystem)
aStatelist)) x )

(DEFUN ClearStates (aSystem)
fraturns the system wiltkaow! stetes {sat ta NiL )
(LET fx)
(SETO % aSystem)
(SETF {System-States &) NIL) % ))

{DEFUN AddSuhsgstems faSystem aSubsystemList)

frelurng & CRENGES {6051 ans] subisysiams) susiem instance,

S WARNING: Does nal check Ffer dupliceles 7
(LET ()
(SETQ x aSystem)
{SETF {System-Subsystems x) (APPEND (Subsystems aS g )
aSubsystemlist ]'

(DEFUN ClearSubsystems (aSystem)
freturns the syslem Wilhoul subsystems fsel la VL)
(LET £x)
(SETO % aSystem)
(SETF (System-Subsysterns %) NIL)Y % ))

{DEFUN NewBehaviour {aSystem aStateEgnlist anOutputEgnList)
freturns & cHERGed fuaw habayiour) syslem instencel
(LET {x)
(SETQ x a5ystem)
(SETF (System-Behaviour x)
{MakeBehaviourList aStateEqgnList anOutputEqgnlist) )
)

J



{DEFUN ClearBehaviour {aSystem)
freturns the syslem wilthoul &y tempiete far sensvicur
{gal to NN
(LET i{x)
{SETQ x aSystem]
(SETF (System-Behaviour x) (MakeBehaviourList NIL NIL)) % ))

j REREmRExsss quary & ssleator foe

(DEFUN Name? (aSystem) (IF (Mame asSystem) T WIL))
{DEFUM tnputs? (aSystem) (IF (nputs asystem) T NILY)
{DEFUM Outputs? (aSystem) (IF (Qutputs aSystem) T NIL))
(DEFUN States? (aSystem) (IF (States asystem) T MILY)

(DEFUN Subsystems? (aSustem) (IF (Subsystems aSystem) T NIL))
(DEFUN Connections? (aSystem) (IF (Connections 53 stem} T MIL))
(DEFUN Behaviour?  (aSystem) (IF (Behaviour usfem} T NILY)

(DEFUN Name (aSystem)
(IF (EQUAL aSystem NIL) NIL
(System-name (EVAL aSystem))))
(DEFUN Inputs (aSystem)
(IF (EQUAL aSystem NIL) MIL
(System-inputs (EVAL aSystem))))
{DEFUN Dutputs (aSysterm)
C(IF (EQUAL aSystem NIL) MIL
(System-outputs (EVAL aSystem))))
(DEFUN States (aSystem)
(IF (EDUAL aSystem NIL) NIL
(System-states (EVAL aSystem))))
(DEFUM Subsystems (aSystem)
{IF {(EQUAL aSystem MNIL) MIL
(System-subsystems (EVAL aSystem))))
(DEFUM Connections (aSystem)
(IF (EQUAL aSystem NIL} MIL
(RemoveDuplicatesFrom
(APPEND (Inputs aSystem) (Outputs aSystem)))) )
(DEFUM Behaviour (aSystem)
(IF (EQUAL aSystem MIL) WIL
(Sustem-behaviour (EVAL aSustern))))



(DEFUN Show5System {aSystem)

(PRINT “::::::::::'_':::::.__:::.’.‘:::::::::“:i
(PRINC " SYSTEM: ")

(PRINT (Mame aSysterm))

(PE'NT "::::::::::::::::::::::::::::::")

(PRINC " Inputs - "} (PRINT (Inputs aSystem))
{(PRINC " Dutputs : ") (PRINT {Dutputs aSystem))
(PRINC " States : ") (PRINT (States aSystem)) (TERPRI)
{COMD ((Subsystems? aSystem)
(PRINT " *** Subsystems *** ")
(PRINT * Frttbtbt+ "
(PRINT (Subsystems aSystem))  (TERPRI} )
(COND ({Connections? aSystem)
(PRINT " *** Connections *** ")
(PRINT * Fhtdtrtettd "
{(ShowConnectionTable (TableOfConnections aSystem))
(TERPRI)) )
(COND ({Behaviour? aSystem)
(FRINT " #%% Behaviour ®%*% ")
(PRIMT “ RO IR PPN, "
(ShowBehaviourList (Behaviour aSystem)) 3
MIL )

: Implementation of "identifier” is (directiy) via Lisp symbols.
Implementation of "Valuelist” (inputs, outputs, states) and
"SystemCollectionList” (set of systems) is (directly) via Lisp
;list-structures.

- .

; Implementation of "BinaryConnection” is via pairs (Hsts of two
; atoms). The "CONNECTIONTABLE" data type can therefore be
. represented as an association-table (list of such pairs),

ki

; ¥rRexxxexss gonetrueior-foe

(DEFUN TableOfConnections (aSystem)
(LET (%)
(SPECIAL %)
(SETO » aSystem)
(APPEND
(MAPCAR {LAMBDA (source)
(MakeBinaryConnection source (Name x}))
(Inputs x ) )
(MAPCAR (LAMEBDA (dest )
(MakeBinaryConnection (Name «) dest))
(autputs x) ) )

(DEFUN MakeBinaryCennection (aSource aDest) (LIST aSource aDest))

Bl



(DEFUN MakeConnectionTable {anAssoc &rest moreAssocs)
{APPEND {LIST anAssoc) moreAssocs) )

;HREEARRRAER fuery & aglestar fos
(DEFUM Connections? (aConnectionTable) (NOT (NULL aConnectionTable)})

(DEFUN FirstConnection (aConnectionTable) (CAR aConnectionTable))
(DEFIUN RestOfConnections (aConnectionTable) (CDR aConnectionTahle})

(DEFUN Source (sBinaryConnection) (CAR aBinaryConnection))
(DEFUN Dest  (aBinaryConnection) (CADR aBinaryConnection))

*x+x gl gplag-fe

{DEFUN ShowConnectionTable {aConnectionTable)
(PrintPairs aConnectionTable) (TERPRI) )

(DEFUN PrintPairs (aListOfPairs)
; auxiliary for "ShowConnectionTable"
{COND ({NULL aListOfPairs) NIL)
(TIPRINT  (CAR aListOfPairs))
iPrintPairs {CDR aListOfPairs)) ) )

; Implementation of "BEHAPTOURLIST" is through a nested list of
;expressions:(List of list of
: state-eqns: (list of eqns across all n state

; vars. (poss. invalving inputs))

; & listof

; output-eqns:(list of eqns across all m output
; : vars. (poss. involving states)))

; exenrxsr QORBArUBLOr-Tne

(DEFUN MakeBehaviourList (aStateEgnList anOutputEgnList)
(LIST aStateEqnList anOutputEqnList))

{DEFUN AddStateEgns (aBehaviourList aStateEqnList)
(LET (x)
(SETQ » (APPEND (StateEqns aBehaviourList) aStateEgnList))
%)}
(DEFUMN AddOutputEqns (aEehaviourList anOutputEqnList)
(LET (%)
(SETQ » (APPEND (OutputEqns aBehaviourList) anDutputEqnList))
%))



[ FREExnxxrs quary & ealeaior foe

(DEFUM StateEqns? (aBehaviourList)
(IF (StateEgns aBehaviourList) T NIL))

(DEFUN OutputEqns? (aBehaviourList)
(IF (OutputEqns aBehaviourlist) T NIL))

(DEFUM StateEqns (aBehaviourList) (CAR aBehaviourList) )
(DEFUN OutputEqns (aBehaviaurList) (CADR aBehaviourList) )

(DEFUN FirstEgqn  (anEgnList) (CAR anEqnList))
(DEFUN RestOfEqQns {anEqnList) (CDR anEgnList))

; #xxxxexxxx i an]gg=7ne

(DEFUN ShowBehaviourList (aBehaviourList)
{COND ({StateEqns? aBehaviourList)
{(PRINT "State-Eqns")
IPRINT "--—=-=—-- "1
{MAPCAR FRINT (StateEgns aBehaviourList)))
{T {PRINT "+++ no state equations defined +++")) )
(COND {{OutputEqns? aBehaviourList)
{FRINT "Output-Eqns")
(PRINT "--mmmmmm——- ")
{(MAPCAR PRINT (DutputEgns aBehaviaurlist)))
(T {PRINT "+++ no output equations defined +++")) } )

; Behaviourlists contain equations represented as expressions.
; Implementation of an "EXPRESS10N" is through nested lists in

; LTully parenthesized) infix notation (prefix notation is used
; internally and can easily be offered at the user level).

; RREREexrs= conetrueior & eimplitiealion Toe

(DEFUN MakePrefixBinary (anOperator sFirstArg aSecondArg)
(LIST anDperataor aFirstarg aSecondArg) )

(DEFUN MakelnfixBinary (sFirstarg anDperator aSecondArg)
(LIST aFirstArg anOperator aSecondarg) )

(DEFUN MakeUnary (a5ign aSytrbel) -

(COMD ((OR (EQUAL '+ aSign) (EQUAL - aSign))

(LIST aSign aSyrbel))
(T (PRINT "INVALID sign in unary expression™) NIL J ) )



{DEFUN MokeFrefixSum {erg! erg?)
(COND (fAND (NUMBERP arg1) (NUMBERF arg2)) (+ argl arg2))
{{NUIMBERP arg1)
{IF (ZEROF arg1) arg2
(MakePrefixBinary '+ argl arg2)) )
({(NUMBERP arg2)
(IF (ZEROP arg2) argt
(MakePrefixBinary '+ argl arg2)) )
(T (MakePrefixBinary '+ argl arg2)) )

{DEFUN MakePrefixDifference (arg! arg2)
(COND ((AND (NUMEERP arg1) (NUMBERF arg2)) - argl arg2))
{{NUMBERP arg1)
(COND ({ZERCP argl} (MakeUnary - argZ})
{T (MakePrefixBinary - argl arg2)}J j

{{NUMBERP arg2)
{IF (ZEROP arg2) arql

(MakeFPrefixBinary - argl arg2)) )
(T (MakePrefixBinary '- argl arg2)) )

(DEFUN MakePrefixProduct (Multiplicand Multiplier)
fCOND ({AND (NUMBERP rmultiplicand) (NUMBERP multiplier))
(* multiplicand multiplier))
{(NUMBERP multiplicand)
(COND ((ZERCOP multiplicand) 0)
(= multiplicand 1) multiplier)
{{= multiplicand -1 } (MakeUnary '- multiplier))
(T (MakePrefixBinary "* multiplicand multiplier))) )
{INUMBERP multiplier)
(COND ({ZEROP rmultiplier ) 0}
f{= multiplier 1) multiplicand)
({= multiplier -1 ) {(MakeUnary ‘- multiplicand))
(T (MakePrefixBinary * raultiplicand multiplier))) )
(T (MakePrefixBinary '* multiplicand multiplier)) J)

(DEFIIN MakePrefixQuotient (Qividend Bivisor)
{COND ({AND (NUMBERF dividend) (NUMBERP divisor)) (/ arg! arg2))
LINUMBERP dividend)
{COND ((ZEROF dividend) )
(T (MakeFrefixBinary '/ dividend divisor)y) )
({(NUMBERP divisor)
(COND ({ZEROP divisor)
{PRINT "Attempt to divide by zero ! Ighored.”))
{{= divisor 1) dividend)
(T (MakePrefixBinary '/ dividend divisor)) ) )
(T {MakePrefixBinary '/ dividend divisor)) )



{DEFUN MakePrefixPower {aBase anExpanent)
{COND {{AND (NUMBERF aBase) (NUMBERP anExponent))
(" aBase anExponent))
{({NUMBERP aBase)
{COND ({ZERDP aBase) Q)
((= aBase 1) 1)
{T {MakePrefixBinary '** aBase anExponent))) )
{(NUMBERP anExponent)
(COND ((ZEROP anExpaonent) 1)
((= anExponent 1 ) aBase)
(T {MakePrefixBinary ** aBase anExponent))) )
iT {MakePrefixBinary ** aBase anExpanent)) ))

jxxmxsxans query & eslesier fos

(DEFUN Constant? (anExpression)
(IF (ATOM anExpression) (WUMBERP anExpression)) )
(DEFUN Variable? (anExpression)
(IF {ATOM anExpression) (SYMBOLP anExpression)) )
(DEFUN SameVar? (firstExpression secondExpression)
{IF (AND (Variable? firstExpression) (Variable? secondExpression))
(EQUAL firstExpression secondExpression)) )

(DEFUN Unary? (anExpression
(NULL (PrefixSecondAryg anExpression)) )

(DEFUM PrefixSum? (anExpression)
(IF (MOT (ATOM anExpression))
(EQUAL (PrefixDperator anExpression) +3) )
(DEFUN PrefixDifference? {(anExpression)
{IF (MOT ATOM anExpression))
(EQUAL (PrefixDperator anExpression) -3 )
(DEFUN PrefixProduct? (anExpression)
(IF (NOT (ATOM snExpression))
(EQUAL (PrefixOperator anExpression) "*i) )
{DEFUN PrefixQuotient? (anExpression)
(IF (NOT (ATOM anExpression))
(EQUAL (PrefixOperator anExpression) /3 )
(DEFUN PrefixPower? (anExpression)
{IF (NOT (ATOM anExpression))
(EQUAL (PrefixOperator anExpression) **)) )

{-—--- NOTE: the corresponding “Infix.__.~ fns have not been
implemented 1}

(DEFUN UnaryDperator (anExpression) (CAR anExpression) )
(DEFUN UnaryArg (anExpression) (CADR anExpression) )



----- for PREFIX gxpiressions -----
fDEFUN PrefixOperator (anExpreszion) (CAR anExpression) )
(DEFUN PrefixFirstArg ({anExpression) (CADR anExpression) )
{DEFUN PrefixSecondArg (anExpression) (CADDR anExpression) )

e for INFIX expressions -----

(DEFUN InfixOperator ({anExpression) {CADR anExpression) )
(DEFUN InfixFirstArg (anExpression) (CAR anExpression) )

{DEFUN InfixSecondArg {anExpression) (CADDR anExpression) )

 xrexxnxes Tranefermer-oe

(DEFUN InfixToPrefix (aMNestedInfixExpression)
(COND ({MULL aMestedinfixExpression) MIL)
((ATOM aMestedInfixExpression) aMestedinfizExpression)
((Unary? aNestedInfizExpression)
(MakeUnary (UnaryOperator akestedinfizExpression)
(InfixToPrefix
(Unaryarg aMestedinfixExpression) ))
((F1at? aMNestedinfixExpression)
(MakePrefixBinary (Infiz0Operator alestedinfixExpression)
(InfixFirstArg aMestedinfixExpression)
(InfixSecondAry alestedinfixExpression)))
( T (MakePrefixBinary
(InfixQperator akestedinfixExpraession)
(InfixToPrefix (InfixFirstarg aNestedinfixExpresaion))
(InfixToPrefix (InfizSecondArg alestedinfixExpression))
0

(DEFUM PrefixTolnfix (aMestedPrefixExpression)
(COMD ((NULL aMestedPrefixExpression) NIL)
((ATOM aNestedPrefixExpression) aNestedPrefixExpression)
({Unary? aMestedPrefixExpression)
(Makeltnary (UnaryOperator alestedPrefixExpression)
(PrefixTalnfix
(UnaryArg aMestedPrefixExpression)i))
((Flat? aNestedPrefixExpression)
(MakeinfixBinary (PrefixFirstarg alestedPrefixExpression)
(PrefixOperator aMestedPrefixExpression)
(PrefixSecondarg aNestedPrefixExpression}))
(T (MakeinfixBinary
(PrefixToinfix (PrefixFirstArg aMestedPrafixExpression))
(PrefixOperator aNestedPrefixExpression)
(PrefixTolnfix
(PrefixSecondArg aMestedPrefixExpression))
)



(DEFUN Flat? (alist)
SOEGNITTErY T Py nTinTaFrelin " snd FrelinTalnlik’
JOUIE T relurns rue oniy iF & Fisl Fs patl nesled
(LET {{result T))
{COND ((ATOM alist) t)
(INULL alist) result)
(T (SETO result (ATOM (CAR aList)))
(IF result (Flat? (COR aList)) )) ) )

{DEFUN Derive (anExpression avar)

fifTaranliates & hahayitwrs! axpression Witk resnect 1o & given
variahis The expressian susl be in Fufly nesled infiv nalslion
GRT ST GNOrESETan Wil the same slruciure Is relivrned

Only the following BINARY operators are recognized:

+, -, ¥/, *= /!

J ] ]

(PrefixTalnfix (Deriveduy (InfixToPrefix anExpression) aVar)) )

(DEFUN DeriveAux (anExpression avar)
L Gees BF ine Serg wark For Perive’ This 1 owses prefix
S FEErEsantElion For equElians

{COND ; expression is a constant or variable

H 1 if same as der. var, 0 otherwise
{((Constant? anExpression) O)
{{("ariable? anExpression)

a
{IF {SameYar? anExpression avar) 1 0))
; expression is a sum or difference
; : add or subtract their differentials
{(PrefixSum? anExpression)
(MakePrefixSum
{DeriveAux (PrefixFirstarg anExpression) avar)
(DeriveAux (PrefixSecondArg anExpression) avar)) )
((PrefixDifference? anExpression)
{MakePrefixDifferance
(Derivedux (PrefixFirstArg anExpression) aVar)
{DeriveAux (PrefixSecondarg anExpression) avar)) )
. expression is a Product
;:multiply with their partners’' differentials and add
{((PrefixProduct? anExpression)
(MakePrefixSum
(MakePrefixProduct (PrefixFirstarg anExpression)
{Derivedux (PrefixSecondArg
anExpression) aVar))
(MakePrefixProduct (PrefixSecondArg anExpression)
(DeriveAux (PrefixFirstarg
anExpression) avar)) ))




; :differentiate product of first and
i {1 vver sccond arg).
((PrefixQuotient? anExpressian)
(DeriveAux
{MakePrefixProduct
{PrefixFirstArg anExpression)
(MakePrefixPower
(PrefixSecondArg anExpression) - 1)) avar))
; expression is a Poser {exponentiation)
; : differentiate product of exponent and {one less
; than original exponentiation).
{{PrefixPower? anExpression)
(MakePrefixProduct
(PrefixSecondArg anExpression)
{MakePrefixProduct
(MakePrefixPower
{PrefixFirstArg anExpression)
{MakePrefixDifference
(PrefixSecondArg anExpression) 1))
(DeriveAux (PrefixFirstArg anExpression) avar)
D).

; EEXBEEEEEXE X ﬂg“nq
(DEFUN ShowExpression (anExpression) (PRINT anExpression))

;@ system’s behaviour can alternatively be described in matriz
; notation. Such "BEHAVIOURTABLE" cbjects are represented as lists
; with 3 elements: 1) System matria

k {n*n; across all n states),

; 23 Input Distribution matrix

; (n*m; across all n states & all m inputs),
. 3) Measurement matrix

; {1*n; across all | outputs & all n states).

; Fxxxxxsxxx At MAIIP-TDe

{DEFUUN MakeBehaviourTable (aSystMat anlnputDistMat aMeasureMat)
(LIST aSystMat aninputDistMat aMeasureMat))

(DEFUN AddMatrix {aBehaviourTable aCoefficientMatrix)
{APPEND aBehaviourTable (LIST aCoefficientMatrix)))



;xxexsxesx qnary & salostor foe

(DEFUN SystemMatrix? (aBehaviourTable)

(MOT (NULL {SystemMatrix aBehaviourTable))) )
(DEFUN InputDistMatrix? (aBehaviourTable)

(NOT (NULL (inputDistMatrix aBehaviourTable))) )
(DEFUN MeasurementMatrix? (sBehaviaurTable)

{NOT (NULL (MeasurementMatrix aBehaviourTablel)) )

(DEFUN SystemMatrix (aBehaviourTable) (CAR aBehaviourTable))
(DEFUN InputDistMatrix (aBehaviourTable) (CADR aBehaviourtablel)
(DEFUN MeasurementMatrix (aBehaviourTable) (CADDR aBehaviourTablel)

SREEREEE AR R ﬂgﬂ“ﬁ@

(DEFUN ShowBehaviourTable (aEehayiourTable)
{PRINT "Systern ~ Matrix™)
(PRINT "=====mmmmmmmme ")
(ShowCoeffMatrix (SystemMatrix aBehaviourTable))
(PRINT “Input Distribution - Matrix")
(PRINT "===mmmm e ")
{ShawCoeffMatrixz {InputDistMatrix aBehaviourTable))
{PRINT "Measurement - Matrix")
(PRINT "===mmmmmmmmemmm oo ")
(ShowCoeffMatrix (MeasurementMatrix aBehaviourTable)} )

; #ach of the three components of a BehaviourTable is stored as a
: two-dimensional "COEFFICTENTMATRX" organized by rows (lists).
Orie expression (1ist) or O per coefficient.

- .

j FEREEREEEE: sonelrusiar-fns

(DEFUN MakeCoefficientMatrix (&REST someRowlists)
someRowlists)

(DEFUN AddRow (aCoefficientMatrix aRowlist)
{APPEMD aCoaefficientMatrix (LIST aRowList)))

(DEFUN MakeRow (&.REST someCoefficients)
someCoefficients)

(DEFUN AddCoefficient {aRowList aCoefficient)
(APPEND aRowList (LIST aCoefficient)))



;rERRREEEEs quary & selostar-foe
(DEFUN EmptyMatrix? (aCoefficientMatrix) (NULL aCoefficientMatrix))

(DEFUN FirstRow  f{aCoefficientmatrix) (CAR aCoefficientMatrix))
(DEFUN RestOfRows (aCnefficientmatrix) (COR aCoefficientMatrix))
(DEFUN FirstinRow (aRowList) (CAR aRowList))
(DEFUN RestInRow (aRowList) (CDR aRaowlist))

CEREREREE R ﬂﬂaﬂnfg

(DEFUN ShowCoeffMatrix {aCoefficientMatrix)
(DOLIST {row aCoefficientMatrix) (ShowRaow row)) )

(DEFUN ShowRow {aCoefficientList)
(IF {NULL aCoefficientList) (PRINC "No coefficients in this row™))
(DOLIST {(coeff aCoefficientlList)
{COND ({ATOM coeff) (PRINC coeffl )
{({EQUAL {LENGTH coeff) 1) iPRINC (CAR coeff)))
{T (FRINC coeff)) )
(PRINC " "))
(TERPRID)

N
N
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(DEFUN ShowSubsystemHierarchy {aSystem aTabLevel)
IPRINT "+++++++++++++++4+++t++++t++t++++btretts” )

(PRINC " Subsyststems of: ") (PRINT {Name aSystem))
(PRINT Tt ttbbbbb bbb bbb bbbttt bbb bbb+ 4447 (TERPRD
{COND ({NOT (Subsystems? aSystem)) NIL)
(T (ShowSubsystemHierarchyaus (Subsystems aSystem)
0
aTablevel)) )

(DEFUN ShowSubsystemHierarchyAux
{aSystemlist someSpaces aTabLevel)
(COND {NULL aSystembist) NIL)
iT {PrintSpaces someSpaces)
(PRINT (CAR aSystemlList)) (TERFRI)
{EhowSubsystemHierarchyAux (Subsystems (CAR aSystemList))
(+ someSpaces aTablLevel)
aTablevel)
{ShowSubsystemHierarchyAux (COR aSystemList)
someSpaces
aTabLevel J) })

{DEFUN PrintSpaces (someSpaces)
S BUNITTESY Tar EhawSubsystembiersrchydis
{DOTIMES {index someSpaces) (PRINC " ")) )

{DEFUN GetAl1Subsystems {aSystemCaollection)
{This Yunclion ganerales & Jial af the subsusteams cannaclad to
&/ lae systams in g cofieciion {depls-riral sesrch/!
(IF (NOT (NULL aSystemCaollection))
{RemoveDuplicatesFrom (APPEND
:get the first system’'s subsystems
(Subsystems (CAR aSystemCollection))
;get these system's subsystems
(GetAllSubsystems (Subsystems (CAR aSystemCallection)) )
Jprocess the rest of the list
{GetAllSubsysterns (COR aSystemCollection)) )3 )

{DEFUIN A11Subsystems (aSystem)

Sel & single systeny !
(GetAllSubsysterns (LIST aSystem)) )

{DEFLIN RemoveDuplicatesFrom (alizt) é‘ A/



RemaveDuplicatesFrom (REMOYE (CAR aList) (CDR aList))) )} )

{DEFUN EetSuhsgstemHlerﬂrchg
{Far esch system in the call

h.. r'ah., ¥

af Swhsysiems Wi Lf?
FEENE '? 'I"

(IF
(NULL aSystemCollection) NiL
(APPEND
.qet the first system's name

and a 1ist of its subsyste
aLIST kEAF: aEi stemCol

lection)
te WCollection) )

Isystemn’s subsystems
'.,thtSUtlt-!:IStEfllHlUtElt'E-hg

iSubsystems (CAR aSystemCollection)))
;process the tails of the lists on the 'way up’
(GetSubsystemHierarchy (COR aSystemCollection)d § 1)

(DEFUN SubsystemHierarchy {aSystem)
c e & singie sysiem !
{GetSubsystemHierarchy (LIST aSystem)))

(DEFUN GetANStates (aSystemCall
o g

ection)
?’f"??ﬁ i rf_lrl.?n'n e & P"T

Fuees & FIst af sistes Far 877 systems canleined in &
caiiec tian ANE &77 *?e‘m’ Subisysiems . (Gapih-Firsl
(F

(EQUAL aSysternCollection NIL) NIL
(L1ST
;get the first system's states
(States (CAR aSystemCollection))
recurse down the states of all its subsystems
(States  (CAR (Subsystems (COR uSI:IE-t Collection))))
{GetAllStates (CAR (Subsystems (CDR aSystemCollection))) )
now recurse down the tails of the coliections

({GetAllStates (CDR aSystemCollection)) ) ))

(DEFUN All1States (aSystem)
cal & single sysiem !

I.,GetAllEtatEt. (LIST aSysterm)i)

{DEFUN Linearize {oSy=tem)
J.lr'ﬁ?q Yo Jinssrizes el inidios h‘.:.' F&F?’f.ﬁ‘f
Ly ﬁ”é“ ingul end auipu!
= —

&t delining lree

& Sysiem's hefieyiow
gifferantisiion scrass &77 equslians,

yarighias ft relurns & BeheviawrTall
mEIrices {65 descritied shave)) ’ '.;
Float FOuh ThakT e Crmatein Frmutt s



et LT 0y

{SETQ matrix '())
{DOLIST (eqn (StateEgns (Behaviour x)))
(SETQ row '())
(DOLIST (var (States x))
(SETQ row {AddCoefficient row (Derive egn var))))
(SETQ matrix (AddRow matrix row)) )
(setq table (AddMatrix table matrix)) (setq matrix '())
{DOLIST -(eqn (StateEqgns (Behaviour %))
(SETQ row '())
(DOLIST {var {Inputs %)) ,
(SETQ row {AddCoefficient row {Derive eqn var))))
(SETQ matrix (AddRow matrix row)) )
(setq table (AddMatrix table matrix)) (setq matrix '())
(DOLIST {eqn (OutputEgns (Behaviour %))
(SETQ row '())
(DOLIST (var (States x))
(SETQ row {AddCoefficient row {Derive eqn var))))
(SETQ matrix {AddRow matrix row)) )
{setq table (AddMatrix table matrix))
table) ) ‘



Object subclass: #bemo

instanceVariableNames: 's1 s2 model ff reg proc sensor'

classVariableNames: "
poolDictionaries: "
category: 'Syst-Description'’

instance methods For: 'syst-creation’

ff

"creates a system"

ff - System new.

ff initialize; addinput: #u; addOutput: #y; addState: #x.
Aff

model

"creates a system"”

model - System new.

model initialize; addinput: #c; addOutput: #y; addState: #(x1 x2).
Amodel

proc

"creates a system"

proc - System new.

proc initialize; addinput: #u; addOutput: #y; addState: #(h1 h2).
Aproc

reg

"creates a system"”

reg - System new.

reg initialize; addinput: #(r y); addOutput: #u; addState: #(i d).
Areg

sensor

"creates a system"

sensor - System new.

sensor initialize; addinput: #u; addOutput: #y; addState: #(x1 x2).
Asensor

s

"a simple system"

s1 - System new.

s1 initialize; addinput: #c; addOutput: #y; addSubsystem: s2;



addSubsystem: model;

addSubsystem: ff;

addConnectionFrom: #uModel to: #c;
addConnectionFrom: #uFF  to: #c;
addConnectionFrom: #rS2  to: #yModel;
addConnectionFrom: #y to: #yS2.
Ast



s2

"creates a system"

s2 - System new.

s2 initialize; addinput: #(r u); addOutput: #y;
addSubsystem: reg;

addSubsystem: proc;

addSubsystem: sensor;
addConnectionFrom: #rReg  to#r;
addConnectionFrom: #yReg  to:#ySensor
addConnectionFrom: #uProc to:#uReg;
addConnectionFrom: #uProc to:#uFF;
addConnectionFrom: #ySensor to:#y.

rs2

class VariableNames: "
class Methads For: 'As yst unclassified'

new
"create a new demonstration”
Asuper new

workspace

"setup a test scenario”

| x y model ff reg proc sensor s1 s2 |
y - Demo new.

model - y model.

ff - y ff.

reg -y reg.

proc - y proc.

SEensor - y sensor.

s1-ysi.

s2 -y s2.

x - SystemCollection new.

X initialize.

x addSystem: s1; addSystem: s2.

Object subclass: #8ystem
instanceVariableNames: 'input output state subsystems connections'
classVariableNames: "

poolDictionaries: "
category: 'Syst-Description'



instance metheds For: 'initialization'

initialize
"initialize all data structures of a system"

input - Set new.
output - Set new.
state - Set new.

subsystems - Set new.
connections - Dictionary new



instance methods For: 'constructors’

addConnectionFrom: aSource to: aDest
"include a path between systems"

connections at: aSource put: aDest

addinput: aSymbol
"define an input to a system"

| |
input addAll: aSymbol

addOutput: aSymbol
"define an output from a system"

| |
output addAll: aSymbol

addState: aSymbol
"define a state of a system"”

| |
state addAll: aSymbol

addSubsystem: aSystem
"include a subsystem"

subsystems add: aSystem
instanes methods For: 'selectors'

getAliConnections
“retrieve a system's direct connections"

A connections

getAllISubsystems
"retrieve a system's direct subsystems"

A subsystems

getinput
"retrieve a system'’s input"

A input



getOutput
"retrieve a system's output”

A output

getState
"retrieve a system's state”

A state



instance methods For: 'queries'

hasConnections
"check"

A connections isEmpty not

hasinput
"check"

| |
A input isEmpty not

hasOutput
"check"

| |
A output isEmpty not

hasState
"check"

A state isEmpty not

hasSubsystems
"check"

A subsystems isEmpty not
instance methods For: 'internal’

expand: aCollection
"recursively searches a collection and returns ALL its (direct and indirect)
elements. It assumes that the structure is homogeneous."
| |
(aCollection isEmpty) ifTrue: [*self]
ifFalse: [*aCollection collect:
[:each| each expand: (each getAllSubsystems)] ]

class methods For: 'instantiaia’

new
"creates a new system”

A super new



Object subclass: #systemCollection

instanceVariableNames: 'components '
classVariableNames: "
poolDictionaries: "

category: 'Syst-Description’

instance methods For: 'initialization'

initialize
"initialize web"

components - OrderedCollection new
instance methods For: 'constructors'

addSystem: aSystem
"add the systems to the web"

components addLast: aSystem
instance methoeds For: ‘seleciors'

getAliSystemsHierarchy
"retrieve ALL the systems in the web (follows subsystem-links!!)"

A (components collect: [:each| each expand: (each getAllSubsystems)] )

getFirstSystem
"retrieve the first system in the web"

A components first

getSystems
"retrieve all 'top-level' systems in the web"

A components

getToplevelStates
"retrieve states for all 'top-level' systems in the web”
| |
A (components collect: [:each| (each hasState)
ifTrue: [each getState] ] )



instance methods For: 'destructors'

removeAll
"remove all the systems from the web"

[components isEmpty] whileFalse: [components removeFirstSystem]

removeFirstSystem
"remove the first system from the web and return it"

A components removeFirst

class methods For: 'instantiaia’

new
"creates a new web of systems"

A super new
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