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“Any intelligent fool can make things bigger, more complex, and

more violent. It takes a touch of genius – and a lot of courage

– to move in the opposite direction.”

Albert Einstein
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Abstract

This thesis considers static and dynamic team decision problems in both

stochastic and deterministic settings. The team problem is a cooperative

game, where a number of players make up a team that tries to optimize

a given cost induced by the uncertainty of nature. The uncertainty is

modeled as either stochastic, which gives the stochastic team problem, or

modeled as deterministic where the team tries to optimize the worst case

scenario. Both the stochastic and deterministic static team problems are

stated and solved in a linear quadratic setting. It is shown that linear

decisions are optimal in both the stochastic and deterministic framework.

The dynamic team problem is formulated using well known results

from graph theory. The dynamic interconnection structure is described

by a graph. It appears natural to use a graph theoretical formulation to

examine how a decision by a member of the team affects the rest of the

members.

Conditions for tractability of the dynamic team problem are given in

terms of the graph structure. Tractability of a new class of information

constrained team problems is shown, which extends existing results. For

the presented tractable classes, necessary and sufficient conditions for

stabilizability are given.

The state feedback H 2 and H∞ dynamic team problems are solved
using a novel approach. The new approach is based on the crucial idea of

disturbance feedback, which is used to separate the controller effect from

the measured output, to eliminate the controller’s dual role.

Finally, a generalized stochastic linear quadratic control problem is

considered. A broad class of team problems can be modeled by imposing

quadratic constraints of correlation type. Also, power constraints on the

control signals are very common. This motivates the development of a

generalized control theory for both the finite and infinite horizon case,

where power constraints are imposed. It is shown that the solution can be

found using finite dimensional convex optimization.
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Preface

The thesis consists of 8 chapters. We will give a brief summary of the

content and main contributions of each chapter:

Chapter 1

The first chapter gives a brief introduction to the team problem and its

history. Some motivational examples are also given.

Chapter 2

In this chapter, we introduce the notation and mathematical tools used

throughout the thesis. The graph theory section is crucial, which intro-

duces the potential use of graph theoretical concepts in the theory of linear

dynamical systems.

Chapter 3

This chapter treats static and dynamic estimation problems. The estima-

tion problem is formulated as an optimal decision problem in three kinds

of settings: deterministic (or minimax), stochastic, and error-operator min-
imization. The main contribution is to show that the linear optimal solu-

tions to the three estimation problems mentioned above coincide. We then

derive the optimal distributed (or team) estimators in the stochastic and
the deterministic setting (known as H 2 and H∞ in systems theory).
This chapter is partly based on:

Ather Gattami. Optimal Distributed Linear Quadratic Control. Submitted

to the 46th IEEE Conference on Decision and Control (CDC), 2007.

Chapter 4

Chapter 4 introduces the team decision problem in the stochastic frame-

work. Old results are reviewed and given new formulations and proofs,

which are of more modern character. The results are then used to solve

9
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the stochastic finite horizon linear quadratic team problem, where condi-

tions are given for convexity. The new conditions generalize some previous

results.

The chapter is partly based on:

Ather Gattami. Distributed Stochastic Control:

A Team Theoretic Approach. In Proceedings of the 17th International Sym-

posium on Mathematical Theory of Networks and Systems, Kyoto, Japan,

July 2006.

Chapter 5

Chapter 5 introduces the deterministic analog of the stochastic team prob-

lem. It is shown that the linear decisions are optimal for the static mini-

max team problem. Like in Chapter 4, the results are then used to solve

the deterministic finite horizon linear quadratic team problem, and con-

ditions on the problem parameters are given for convexity.

The chapter is based on:

Ather Gattami and Bo Bernhardsson. Minimax Team Decision Problems.

In Proceedings of the American Control Conference 2007, New York, USA.

Chapter 6

This chapter considers team problems in the linear quadratic dynamic set-

ting. Whereas the dynamic team problem was solved for the finite horizon

case in chapters 4 and 5, the infinite horizon case is solved here. A general

control problem setup is given, where constraints on information of the

external signals (such as disturbances) are imposed. Necessary and suffi-
cient conditions are given for stabilizability of distributed control problems

with delayed measurements. A novel approach to the H 2 and H∞ control
problem is developed. The new approach is applied to find the optimal

state feedback control law for information constrained control problems.

Also, the approach reveals that the optimal state feedback controllers for

the H 2 and H∞ control problems coincide.
The chapter is based on:

Ather Gattami. Optimal Distributed Linear Quadratic Control. Submitted

to the 46th IEEE Conference on Decision and Control (CDC), 2007.

Chapter 7

Chapter 7 considers the problem of stochastic finite and infinite horizon

linear quadratic control under nonconvex power constraints. A broad class

of stochastic linear quadratic optimal control problems with information

10



constraints can be modeled with the help of power constraints. First, the

finite horizon state feedback control problem is solved through duality.

The computations of the optimal control law can be done off-line as in the

classical linear quadratic Gaussian control theory using a combination of

dynamic programming and primal-dual methods. Then, a solution to the

infinite horizon control problem is presented. Finally, the output feedback

problem is solved.

The chapter is based on:

Ather Gattami. Generalized Linear Quadratic Control Theory. In Proceed-

ings of the 45th IEEE Conference on Decision and Control (CDC), San
Diego, USA, December 2006.

Chapter 8

The main results of the thesis are summarized in this chapter, and some

possible future research avenues are discussed.

How to read this Thesis

The dependencies between the chapters are as follows. Notation used

throughout the thesis is presented in Chapter 2. A brief introduction to

graph theory concepts is also given in Chapter 2. Graph theory is used

in chapters 4, 5, and 6. The terminology and results of the game theory

section in Chapter 2 are used in Chapter 3. Chapters 1, 3-8 can be read

independently.

Other Publications

The following publications are not included in this Thesis, but they are

closely related (some of them are cited in the introductory chapter):

Ather Gattami and Richard Murray. A Frequency Domain Condition for

Stability of Interconnected MIMO Systems. In Proceedings of the Ameri-

can Control Conference, Boston, USA, June 2004.

Ather Gattami and Johannes Berglund. Stabilization of Vehicle Forma-

tions: A Case Study. In Proceedings of the 3rd Swedish Workshop on Au-

tonomous Robotics, Stockholm, Sweden, September 2005.

Ather Gattami and Anders Rantzer. Linear Quadratic Performance Crite-

ria for Cascade Control. In Proceedings of the 44th IEEE Conference on

Decision and Control and European Control Conference, Seville, Spain,

December 2005.
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1

Introduction

In the past half century, optimal decision problems have received a large

amount of interest by mathematicians, information theorists, and control

theorists. Decision theory dates back to the 19th century when statistical

decision theory was developed. The main applications concerned the art

of war, or economic or financial speculations. In 1921, Émile Borel [10]
was the first author to evolve the concept of pure and mixed strategies,

in the framework of skew symmetric matrix games. A revolutionary re-

sult was given by John von Neumann in 1928, where he presented his

celebrated “minimax” solution to the two-person zero-sum matrix games.

In the 1950’s, a new type of game problems emerged, so-called “Team

Problems”, introduced by Marshak in 1955 [38]. The team problem is an
optimization problem, where a number of decision makers (or players)
make up a team, optimizing a common cost function with respect to some

uncertainty representing nature. Each member of the team has limited

information about the global state of nature. Furthermore, the team mem-

bers could have different pieces of information, which makes the problem

different from the one considered in classical optimization, where there

is only one decision function that has access to the entire information

available about the state of nature.

Team problems seemed to possess certain properties that were con-

siderably different from standard optimization, even for specific problem

structures such as the optimization of a quadratic cost in the state of na-

ture and the decisions of the team members. In stochastic linear quadratic

decision theory, it was believed for a while that separation holds between

estimation and optimal decision with complete information, even for team

problems. The separation principle can be briefly explained as follows.

First assume that every team member has access to the information about

the entire state of nature, and find the corresponding optimal decision for

each member. Then, each member makes an estimate of the state of na-

ture, which is in turn combined with the optimal decision obtained from

17



Chapter 1. Introduction

the full information assumption. It turns out that this strategy does not

yield an optimal solution (see [42]), as will be shown by the numerical
example below:

EXAMPLE 1.1

Consider a team of 2 players with decisions u1 and u2, and let the state of

nature be a stochastic variable x, with1 x ∼ N (0, 1). Let v1,v2 ∼ N (0, 1),
and assume that x,v1,v2 are uncorrelated. The information about x avail-

able to decision maker 1 is y1 = x + v1, and the information available
to decision maker 2 is y2 = x + v2. The team problem is to find optimal
decision functions u1 = μ1(y1) and u2 = μ2(y2) that minimize the cost

E

⎧⎪⎪⎪⎪⎪⎪⎪⎩
x

u1

u2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T ⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1

1 2 1

1 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩
x

u1

u2

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
Standard completion of squares gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎩
x

u1

u2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T ⎧⎪⎪⎪⎪⎪⎪⎪⎩
1 1 1

1 2 1

1 1 2

⎫⎪⎪⎪⎪⎪⎪⎪⎭
⎧⎪⎪⎪⎪⎪⎪⎪⎩
x

u1

u2

⎫⎪⎪⎪⎪⎪⎪⎪⎭ = xT
⎧⎪⎪⎪⎩1−⎧⎩1 1

⎫⎭ ⎧⎪⎪⎩ 2 1

1 2

⎫⎪⎪⎭−1⎧⎪⎪⎩1
1

⎫⎪⎪⎭
⎫⎪⎪⎪⎭ x+

+

⎧⎪⎪⎩u1 + 1
3
x

u2 +
1
3
x

⎫⎪⎪⎭T ⎧⎪⎪⎩2 1

1 2

⎫⎪⎪⎭ ⎧⎪⎪⎩u1 + 1
3
x

u2 +
1
3
x

⎫⎪⎪⎭ .
Since there is nothing to do about the first term in the right hand side of

the equation above, we deduce that the optimal decisions with full infor-

mation are given by ⎧⎪⎪⎩u1
u2

⎫⎪⎪⎭ = ⎧⎪⎪⎩− 13 x
− 1
3
x

⎫⎪⎪⎭ .
The optimal estimate of x of decision maker 1 is

x̂1 = E {x�y1} =
1

2
y1,

and of decision maker 2

x̂2 = E {x�y2} =
1

2
y2.

1x ∼ N (m, X ) means that x is a Gaussian variable with mean E x = m and covariance
E xxT = X .
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Hence, the decision where decision maker i combines the best determin-

istic decision with her best estimate of x is given by

ui = −
1

3
x̂i

= −
1

3
⋅
1

2
yi

= −
1

6
yi,

for i = 1, 2. This decision gives a cost equal to 0.611. However, the team
decision given by

ui = −
1

5
yi,

yields a cost equal to 0.600. Clearly, separation does not hold in team

decision problems.

A general solution to similar stochastic quadratic team problems was pre-

sented by Radner [42]. Radner’s result gave hope that some related prob-
lems could be solved using similar arguments. But in 1968, Witsenhausen

[53] showed in his well known paper that finding the optimal decision can
be complex if the decision makers affect each other’s information. Wit-

senhausen considered a dynamic decision problem over two time steps to

illustrate that difficulty. The dynamic problem can actually be written as

a static team problem:

minimize E
{
k0u

2
0 + (x + u0 − u1)

2
}

subject to u0 = μ0(x), u1 = μ1(x + u0 +w)

x ∼N (0, X ),w∼N (0,W)

Here, we have two decision makers, one corresponding to u0, and the other

to u1. Witsenhausen showed that the optimal decisions μ0 and μ1 are not
linear because of the coding incentive of u0. Decision maker 1 measures

x+ u0 +w, and hence, its measurement is affected by u0. Decision maker
0 tries to encode information about x in its decision, which makes the

optimal strategy complex. The problem above is actually an information

theoretic problem. To see this, consider the slightly modified problem

minimize E (x − u1)
2

subject to u0 = μ0(x), E u
T
0 u0 ≤ 1, u1 = μ1(u0 +w)

x ∼N (0, X ),w ∼N (0,W)

The modified problem is exactly the Gaussian channel coding/decoding
problem (see Figure 1.1)!
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Chapter 1. Introduction

decoding

μ1μ +
uu

coding

x y = u

w

0

0 + w0

1

Figure 1.1 Coding-decoding diagram over a Gaussian channel.

The property that the decision made by each team member can affect

the information of the other members of the team led to an observation

made by Ho and Chu in 1972 [29]:
“If a decision makers action affects our information, then knowing what

he knows will yield linear optimal solutions.”

This information structure is then called partially nested. The problem of

the incentive of encoding information in the decisions appears naturally

in control of dynamical systems. The most fundamental and well known

open problem in linear systems theory, namely the static output feedback

problem, is hard because of the coding incentive that arises as a result of

the lack of complete output history.

Team decision problems can be found in our everyday life. There are

many examples of such systems, and here we give only a sample of differ-

ent problems that have the issue of team decision in common. The Internet

is a very large network where issues of optimal distribution of information

flow are of great interest. Although every subsystem in the network tries

to maximize its information flow, there is a common interest of stabilizing

the entire network. The information flow transported along different links

is subject to delays. This makes it hard to stabilize the entire network if

the delays are not taken into account.

The power network is probably one of the most complex networks in

engineering. We can find stability problems not only when trying to ro-

bustly stabilize the physical power network (which is hard enough), but
also stabilize the market that is embedded into it. A power company has

group of generators in some geographical region, which are dynamically

interconnected. There are two important issues in a power network. The

first is to stabilize the entire network. The second one is to minimize the

power losses along the interconnection links. This can be modeled as a

dynamic team problem, where the generators make up a team that mini-

mizes the power losses along the interconnection links, subject to stability

of the network. An example of a power network problem arising from a

20



Figure 1.2 The Multi-Vehicle Wireless Testbed vehicle.

combination of the economics and technology of the electricity market is

the California power crisis of 2000.

In recent years, stability of vehicle formations has been of great inter-

est. Formation of unmanned air vehicles (UAV), robots, and satellites are
a few examples. we will give a toy example of a vehicle formation problem

(see [21] and the references therein):

EXAMPLE 1.2

Consider a practical example of stabilization of vehicle formations, namely

six vehicles from the Multi-Vehicle Wireless Testbed (MVWT) used at
Caltech [14]. The task is to stabilize the six vehicles in a prespecified
formation. The dynamics of each vehicle are given by

m(r̈ − rβ̇ 2) = −μ ṙ + (FR + FL) cos(θ − β )

m(rβ̈ + 2ṙβ̇ ) = −μrβ̇ + (FR + FL) sin(θ − β )

Jθ̈ = −μr2θ̇ + (FR − FL)r f

(1.1)

Each vehicle has a rectangular shape seen from above, with two fans to

control its motion, see Figure 1.2. The nonlinear dynamics are linearized

and we obtain a linear system for the error dynamics which has two inputs,

the fan forces FR and FL and two outputs, the polar coordinates r and β .
The task is to stabilize all vehicles in a formation of two groups, with three

vehicles in each group, rotating around an agreed coordinate. There is no

common coordinate-system. Each vehicle can only measure the relative

21



Chapter 1. Introduction

1

23

4

5 6

Figure 1.3 The interconnection graph.
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Figure 1.4 The vehicles rotate in two groups around a center that is agreed on

on-line. The simulation shows the stable formation, where they rotate in the desired

grouping counter-clockwise.

distance to a limited number of other vehicles. Using the fact that the

system is homogeneous (that is, the subsystems have identical dynamics),
existing results from [20] can be used for separately finding a decentralized
controller for every vehicle. The graph in Figure 1.3 shows which vehicles

that can see each other. Every node denotes a vehicle, and for instance,

the graph shows that vehicle 1 can sense the distance to vehicle 2 and

6, vehicle 2 can sense the distance to vehicle 1 and 3, and so on. Other

interconnections can also be used using the same methods for analysis

and controller design. A simulation is presented in Figure 1.4.

The problem presented in the example above has two features. The first

feature is that the vehicles have identical dynamics (homogeneous sys-
tem). The other feature is that there is no interconnection in the dynamics,
only in the cost represented by the distances between adjacent vehicles.

The analysis and synthesis become more difficult in the case of a het-

erogeneous system with dynamical coupling. This motivates the study of

team problems of a more general structure, where the subsystems are not

identical and could be dynamically interconnected.

22



2

Mathematical Background

2.1 Notation

Let R and C be the sets of real and complex numbers, respectively. The
set of natural numbers {0, 1, 2, 3, ...} is denoted by N. The set of integers
modulo n, {0, 1, ...,n− 1}, is denoted by Zn. We denote the open unit disk
in C by D:

D = {λ ∈ C : �λ � < 1},

and let D and �D be its closure and boundary, respectively:

D = {λ ∈ C : �λ � ≤ 1},

�D = {λ ∈ C : �λ � = 1}.

For a stochastic variable x, x ∼ N (m, X ) means that x is a Gaussian
variable with E x = m and E (x − m)(x − m)T = X . The Dirac delta
function δ (t) is defined as

δ (t) =

{
1 if t = 0

0 otherwise.

We denote the set of n� n symmetric, positive semi-definite, and positive
definite matrices by Sn, Sn+ and Sn++, respectively.
AT denotes the transpose of the the matrix A. The Hermitian adjoint

of a matrix A is denoted by A∗. A† denotes the pseudo-inverse of the

matrix A. We write Q 	 0 (Q 
 0) to denote that Q is positive definite
(semi-definite). Q 	 P (Q 
 P) means that Q − P 	 0 (Q − P 
 0). Tr A
denotes the trace of the quadratic matrix A. Mi, or [M ]i, denotes either
block column i or block row i of a matrix M , which should follow from the
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Chapter 2. Mathematical Background

context. For a matrix A partitioned into blocks, [A]i j denotes the block of
A in block position (i, j). Given a matrix M ∈ Rm�n, we let vec{M} denote

vec{M} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1

M2
...

Mn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where Mi denotes the ith column of M . Also, let diag(Di) denote a block
diagonal matrix with the matrices Di on its diagonal. The matrix 1m�n
denotes an m � n matrix with entries equal to 1. Let A ∈ Rm�n and
B ∈ Rp�q. The Kronecker product A⊗ B ∈ Rmp�nq is defined as:

A⊗ B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11B A12B ⋅ ⋅ ⋅ A1nB

A21B A22B ⋅ ⋅ ⋅ A2nB

...
...

. . .
...

Am1B Am2B ⋅ ⋅ ⋅ AmnB

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

2.2 Linear Systems Theory

For a matrix valued function G(q) defined on the unit circle �D we define
the norm

�G�2 =

√
1

2π

∫ 2π

0

Tr{G∗(ejθ )G(ejθ )}dθ .

L2 is a Hilbert space of matrix valued functions G defined on �D with
�G�2 < ∞. The real rational subspace of L2, which consists of all strictly
proper real rational transfer matrices is denoted by RL2. H 2 is a (closed)
subspace of L2 with matrix valued functions G(q) analytic in C\D. The
real rational subspace of H 2, which consists of all strictly proper real
rational transfer matrices analytic in C\D, is denoted by RH 2.
L∞ is a Banach space of measurable matrix valued functions G defined

on �D, with norm

�G�∞ = sup
f∈H 2

{�G f�2 : � f�2 = 1}.

The real rational subspace of L∞ is denoted by RL∞ which consists of all
proper and real rational transfer matrices. H∞ is a (closed) subspace of
L∞ with functions that are analytic and bounded in C\D. The real rational
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2.3 Graph Theory

subspace of H∞ is denoted by RH ∞ which consists of all proper and real
rational transfer matrices analytic and bounded in C\D.
The forward shift operator is denoted by q. That is xk+1 = qxk, where

{xk} is a given process. A causal linear time-invariant operator T(q) is
given by its generating function T(q) =

∑∞
k=0 Tkq

−k, Tk ∈ Rp�m. A trans-
fer matrix in terms of state-space data is denoted⎧⎪⎪⎪⎪⎩ A B

C D

⎫⎪⎪⎪⎪⎭ := C(qI − A)−1B + D.
For matrices A ∈ Rn�n, B ∈ Rn�m, C ∈ Rp�n, we say that (A, B) is

stabilizable if
⎧⎩ λ I − A B

⎫⎭ has full row rank for all λ ∈ C\D, and that

(C, A) is detectable if

⎧⎪⎪⎩ λ I − A

C

⎫⎪⎪⎭ has full column rank for all λ ∈ C\D.

2.3 Graph Theory

We will present in brief some graph theoretical definitions and results

that could be found in the graph theory or combinatorics literature (see
for example [17]). A (simple) graph G is an ordered pair G := (V ,E)
where V is a set, whose elements are called vertices or nodes, E is a set
of pairs (unordered) of distinct vertices, called edges or lines. The vertices
belonging to an edge are called the ends, endpoints, or end vertices of the

edge. The set V (and hence E) is taken to be finite in this thesis. The
order of a graph is �V � (the number of vertices). A graph’s size is �E� , the
number of edges. The degree of a vertex is the number of other vertices

it is connected to by edges. A loop is an edge with both ends the same.

A directed graph or digraph G is a graph where E is a set of ordered
pairs of vertices, called directed edges, arcs, or arrows. An edge e = (vi,vj)
is considered to be directed from vi to vj ; vj is called the head and vi is

called the tail of the edge.

A path or walk Π in a graph of length m from vertex u to v is a

sequence e1e2 ⋅ ⋅ ⋅ em of m edges such that the head of em is v and the tail

of e1 is u, and the head of ei is the tail of ei+1, for i = 1, ...,m − 1. The
first vertex is called the start vertex and the last vertex is called the end

vertex. Both of them are called end or terminal vertices of the walk. If

also u = v, then we say that Π is a closed walk based at u. A directed
graph is strongly connected if for every pair of vertices (vi,vj) there is a
walk from vi to vj .

The adjacency matrix of a finite directed graph G on n vertices is the
n�n matrix where the nondiagonal entry aij is the number of edges from
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Figure 2.1 An example of a graph G .

vertex i to vertex j, and the diagonal entry aii is the number of loops at

vertex i (the number of loops at every node is defined to be one, unless
another number is given on the graph). For instance, the adjacency matrix
of the graph in Figure 2.1 is

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 0

1 1 0 0

0 1 1 1

0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

A graph G with adjacency matrix A is isomorphic to another graph
G ′ with adjacency matrix A′ if there exists a permutation matrix P such
that

PAPT = A′

The matrix A is said to be reducible if there exists a permutation matrix

P such that

PAPT =

⎧⎪⎪⎩ E F

0 G

⎫⎪⎪⎭ (2.1)

where E and G are square matrices. If A is not reducible, then it is said

to be irreducible.

PROPOSITION 2.1

A matrix A ∈ Zn�n2 is irreducible if and only if its corresponding graph G
is strongly connected.
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2.3 Graph Theory

Proof If A is reducible, then from (2.1) we see that the vertices can
be divided in two subsets; one subset belongs to the rows of E and the

other belongs to the rows of G. The latter subset is closed, because there

is no walk from the second subset to the first one. Hence, the graph is not

strongly connected.

Now, suppose that G is not strongly connected. Then there exists an
isolated subset of vertices. Permute the vertices ofG such that the vertices
in the isolated subset comes last in the enumeration of G . Then we see
that the same permutation with A gives a block triangular form as in

(2.1).

PROPOSITION 2.2

Consider an arbitrary finite graphG with adjacency matrix A. Then there
is a permutation matrix P and a positive integer r such that

PAPT =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 A12 ⋅ ⋅ ⋅ A1 j

0 A2 ⋅ ⋅ ⋅ A2 j

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ Ar

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (2.2)

where A1, ..., Ar are adjacency matrices of strongly connected graphs.

Proof If A is strongly connected, then it is irreducible according to

Proposition 2.1, and there is nothing to do. Suppose now that A is re-

ducible. Then Proposition 2.1 gives that there is a permutation matrix P1
such that A1 = P1AP

T
1 with

A1 =

⎧⎪⎪⎩ E F

0 G

⎫⎪⎪⎭ ,
and E and G are square matrices. Now if E and G are irreducible, then

we are done. Otherwise we repeat the same argument with E and/or
G. Since the graph is finite, we can only repeat this procedure a finite

number of times, and hence there is some positive integer r where this

procedure stops. Then we arrive at a sequence of permutation matrices

P1, ..., Pr, such that (Pr ⋅ ⋅ ⋅ P1)A(Pr ⋅ ⋅ ⋅ P1)
T has a block triangular structure

given by (2.2) with A1, ..., Ar irreducible, and hence adjacency matrices of
strongly connected graphs. Taking P = Pr ⋅ ⋅ ⋅ P1 completes the proof.

Now let ω : E → R be a weight function on E with values in some
commutative ring R (we can take R = C or a polynomial ring over C).
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If Π = e1e2 ⋅ ⋅ ⋅ em is a walk, then the weight of Π is defined by w(Π) =
w(e1)w(e2) ⋅ ⋅ ⋅w(em).
Let G be a finite directed graph, with �V � = p. In this case, letting

i, j ∈ {1, ..., p} and n ∈ N, define

Aij(n) =
∑

Π

ω (Π),

where the sum is over all walks Π in G of length n from vi to vj . In
particular Aij(0) = δ (i− j). Define a p� p matrix A by

Aij =
∑
e

ω (e),

where the sum is over all edges e with vi and vj as the head and tail of

e, respectively. In other words, Aij = Aij(1). The matrix A is called the
adjacency matrix of G , with respect to the weight function ω .
The following proposition can be found in [50]:

PROPOSITION 2.3

Let n ∈ N. Then the (i, j)-entry of An is equal to Aij(n).

Proof This is immediate from the definition of matrix multiplication.

Specifically, we have

[An]i j =
∑
Aii1Ai1i2 ⋅ ⋅ ⋅ Ain−1 j ,

where the sum is over all sequences (i1, ..., in−1) ∈ {1, ..., p}
n−1. The sum-

mand is 0 unless there is a walk e1e2 ⋅ ⋅ ⋅ en from vi to vj with vik as the

tail of ek (1 < k ≤ n) and vik−1 as the head of ek (1 ≤ k < n). If such a
walk exists, then the summand is equal to the sum of the weights of all

such walks, and the proof follows.

COROLLARY 2.1

Let G be a graph with adjacency matrix A ∈ Zn�n2 . Then there is a walk

of length k from node vi to node vj if and only if [A
k]i j �= 0. In particular,

if [An−1]i j = 0, then [A
k]i j = 0 for all k ∈ N.

A particularly elegant result for the matrices Aij(n) is that the generating
function �i j(λ) =

∑
n Aij(n)λ

n is

�i j(λ) =
∑
n

Aij(n)λ
n

=
∑
n

[An]i jλ
n
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Figure 2.2 The adjoint of the graph G in Figure 2.1.

Thus, we can see that the generating matrix function

G(λ) = (I − λA)−1,

is such that [G(λ)]i j = �i j(λ).
The adjoint graph of a finite directed graph G is denoted by G ∗, and

it is the graph with the orientation of all arrows in G reversed. If the
adjacency matrix of G with respect to the weight function ω is A then the
adjacency matrix of G ∗ is A∗.

EXAMPLE 2.1

Consider the graph G in Figure 2.1. The adjacency matrix (in Z4�42 ) of
this graph is

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 0

1 1 0 0

0 1 1 1

0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
The adjoint graph G ∗ is given by Figure 2.2. It is easy to verify that the

adjacency matrix (in Z4�42 ) of G
∗ is

A∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 0 0

0 1 1 0

1 0 1 0

0 0 1 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

To see if there is a walk of length 2 or 3 between any two nodes in G , we
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calculate A2 and A3:

A2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 1 2 1

2 1 1 0

1 2 1 2

0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ , A
3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2 3 3 3

3 2 3 1

3 3 3 3

0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

Using Corollary 2.1, we can see that there is no walk of length 2 from

node 2 to node 4 since [A2]24 = 0. On the other hand, there is a walk of
length 3 since [A3]24 = 1 �= 0. There is also a walk of length 3 from node 2
to node 3, since we have assumed that every node has a loop. An example

of such a walk is node 2 → node 1 → node 1 → node 3. Note also that
since [A3]4i = 0 for i = 1, 2, 3, there is no walk that leads from 4 to any of
the nodes 1, 2, or 3.

EXAMPLE 2.2

Consider the matrix

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 0 A13 0

A21 A22 0 0

0 A32 A33 A34

0 0 0 A44

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (2.3)

The sparsity structure of A can be represented by the graph given in

Figure 2.1. Hence, if there is an edge from node i to node j, then Aij �= 0.
Mainly, the block structure of A is the same as the adjacency matrix of

the graph in Figure 2.1. Let {B(l)} be a set of k matrices having the

same sparsity structure. Consider the product A(k) =
∏k
l=1 B(l). If the

block Aij(k) �= 0, then there is a walk of length less than or equal to k
from node i to j. In particular, if each B(l) consists of compatible n � n
block matrices, then Corollary (2.1) gives that A(k) has the same block
structure for all k ≥ n− 1.

Systems over Graphs

Consider linear systems {Gi(q)} with state space realization

Gi(q) :=

⎧⎪⎪⎨
⎪⎪⎩
xi(k+ 1) = Aiixi(k) +

N∑
j �=i

Ai jui j(k) + Biui(k)

yi(k) = Cixi(k),

(2.4)
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for i = 1, ...,N. Here, Aii ∈ Rni�ni , Aij ∈ Rni�nj for j �= i, Bi ∈ Rni�mi , and
Ci ∈ Rpi�ni . The systems are interconnected as follows. We set uij = xj
for all i and j �= i. If system Gj(q) affects the dynamics of Gi(q), then
Aij �= 0, otherwise Aij = 0. This interconnection can then be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k+ 1)

x2(k+ 1)

...

xN(k+ 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11 A12 ⋅ ⋅ ⋅ A1N

A21 A22 ⋅ ⋅ ⋅ A2N
...

...
. . .

...

AN1 AN2 ⋅ ⋅ ⋅ ANN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k)

x2(k)

...

xN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k)

+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 0 ⋅ ⋅ ⋅ 0

0 B2 ⋅ ⋅ ⋅ 0

0 0
. . . 0

0 0 ⋅ ⋅ ⋅ BN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1(k)

u2(k)

...

uN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
u(k)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(k)

y2(k)

...

yN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
y(k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 0 ⋅ ⋅ ⋅ 0

0 C2 ⋅ ⋅ ⋅ 0

0 0
. . . 0

0 0 ⋅ ⋅ ⋅ CN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
C

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k)

x2(k)

...

xN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(2.5)

This block structure can be described by a graph G of order N, whose ad-
jacency matrix is A, with respect to some weighting function ω . The graph
G has an arrow from node i to j if and only if Aij �= 0. The transfer function
of the interconnected systems is given by G(q) = C(qI−A)−1B. Then, the
system GT (q) is equal to BT (qI− AT)−1CT , and it can be represented by
a graph G ∗ which is the adjoint of G , since the adjacency matrix of G ∗ is

A∗ = AT . The block diagram for the transposed interconnection is simply
obtained by reversing the orientation of the interconnection arrows. This

property was observed in [7].

EXAMPLE 2.3

Consider four interconnected systems with state space realization as in

(2.5) with N = 4 and A given by (2.3). The interconnection can be repre-
sented by the graph G in Figure 2.3. System 2 is affected directly by the
dynamics of system 1, and this is reflected in the graph by an arrow from

node 2 to node 1. It is also reflected in the A matrix, where A21 �= 0. On
the other hand, the system 1 is not affected by the dynamics of system 2,
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Figure 2.3 The graph reflects the interconnection structure of the dynamics be-

tween four systems. The arrow from node 2 to node 1 indicates that system 2 is

affected directly by the dynamics of system 1.

and therefore there is no arrow from node 1 to node 2, and A12 = 0. The
state space realization of the transpose of this system is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AT11 AT21 0 0 CT1 0 0 0

0 AT22 AT32 0 0 CT2 0 0

AT13 0 AT33 0 0 0 CT3 0

0 0 AT34 AT44 0 0 0 CT4

BT1 0 0 0 0 0 0 0

0 BT2 0 0 0 0 0 0

0 0 BT3 0 0 0 0 0

0 0 0 BT4 0 0 0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then interconnection structure for the transposed system can be described

by the adjoint of G in Figure 2.2.

2.4 Game Theory

In this section, we will review some definitions and results from classical

game theory. These can be found in for example [5] and [6].
Let J = J(u,w) be a functional defined on a product vector space

U �W, to be minimized by u ∈ U ⊂ U and maximized by w ∈ W ⊂ W,
where U and W are the constrained sets. This defines a zero-sum game,

with kernel J, in connection with which we can introduce two values, the
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upper value

J̄ := inf
u∈U
sup
w∈W

J(u,w),

and the lower value

J := sup
w∈W

inf
u∈U
J(u,w).

Obviously, we have the inequality J̄ ≥ J. If J̄ = J = J∗, then J∗ is

called the value of the zero-sum game. Furthermore, if there exists a pair

(u∗ ∈ U ,w∗ ∈ W) such that

J(u∗,w∗) = J∗,

then the pair (u∗,w∗) is called a (pure-strategy) saddle-point solution. In
this case, we say that the game admits a saddle-point (in pure strategies).
Such a saddle-point solution will equivalently satisfy the so-called pair of

saddle-point inequalities:

J(u∗,w) ≤ J(u∗,w∗) ≤ J(u,w∗), ∀u ∈ U,∀w ∈W.

We end the chapter with the following proposition:

PROPOSITION 2.4

Consider a two-person zero-sum game on convex finite dimensional action

sets U1 � U2, defined by the continuous kernel J(u1,u2). Suppose that
J(u1,u2) is strictly convex in u1 and strictly concave in u2. Suppose that
either

(i) U1 and U2 are closed and bounded, or

(ii) Ui ∈ Rmi , i = 1, 2, and J(u1,u2) → ∞ as �u1� → ∞, and J(u1,u2) →
−∞ as �u2� → ∞.

Then, the game admits a unique pure-strategy saddle-point equilibrium.

Proof Consult [6], pp. 177.
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3

Static and Dynamic
Estimation

In this chapter, static and dynamic estimation problems will be discussed.

The main point is to show that some well known formulations of estima-

tion problems have the same solution, although different measures of the

size of the error are used. We first consider estimation problems that have

been discussed earlier in the literature. These problems can be seen as a

an optimal decision problem of one decision maker, whose object is to find

the best estimate of some given variable, subject to limited information

about that variable. Different estimation error measures are considered,

and it is shown they all have the same optimal estimator. We then in-

troduce the team estimation problem, where we now have multi decision

makers. The team members have access to different pieces of informa-

tion about a given variable to be estimated by the team. Analogous to the

estimation problem of one decision maker, the team decision solution is

shown to be the same for different measures of the estimation error.

3.1 Static Estimation Problems

Let x, y, z be finite dimensional vectors with x ∈ Rn, y∈ Rp, z ∈ Rm, and

z = Mx,

y = Cx,
(3.1)

where M ∈ Rm�n and C ∈ Rp�n. Without loss of generality, we assume
that C has full row rank. It then follows that p ≤ n. This assumption
guarantees that C has a right inverse and that CCT is invertible.

The static estimation problem is to find a map μ : Rp→ Rm that min-
imizes a given functional J(x, μ(y)), J : Rn � Rm → R. We will consider
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three types of estimation problems: Minimax estimation, stochastic esti-

mation, and error-operator minimization. We will show that the optimal

decisions for the three estimation problems coincide.

Minimax Estimation

The cost used here is the induced norm of the error Mx − μ(y) by x:

J(x, μ(y)) = sup
�x��=0

�Mx − μ(y)�2

�x�2
.

So, the decision problem is to minimize the cost J above:

inf
μ
sup
�x��=0

�Mx − μ(y)�2

�x�2
.

Toward this end, we first introduce a related quadratic game with a kernel

parametrized by γ :

Lγ (x, μ(y)) = �Mx − μ(y)�2 − γ �x�2,

for which we seek the upper value with μ being the minimizer, and x the
maximizer. More precisely, we seek

L̄γ = inf
μ
sup
x

Lγ (x, μ(y)).

The following theorem has appeared in a similar form in [5], but we
give a different formulation and proof technique which we will use later

for team estimation problems:

THEOREM 3.1

For a quadratic game defined by the kernel Lγ (x, μ(y)) = �Mx− μ(y)�2−
γ �x�2, and y= Cx:

(i) There exists a γ ∗ such that for γ ≥ γ ∗ the upper value L̄γ is finite,

whereas for γ < γ ∗, it is infinite.

(ii) For all γ ≥ γ ∗, the game admits a minimax decision given by μ(y) =
MC†y.

(iii) γ ∗ is the largest eigenvalue of the matrix

(I − C†C)TMTM(I − C†C).
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Proof Let x̃ = (I − C†C)x. Then we can write

x = (I − C†C)x + C†Cx = x̃ + C†y.

x̃ is the unobservable part from y, since Cx̃ = C(I−C†C)x = 0. Introduce
Q = M(I − C†C), and let μ(y) = MC†y−ν(y), for some policy ν(y). Then

L̄γ = inf
μ
sup
x
Lγ (x, μ(y))

= inf
μ
sup
x
�Mx − μ(y)�2 − γ �x�2

= inf
μ
sup
x̃,y
�Mx̃ + MC†y− μ(y)�2 − γ �C†y+ x̃�2

= inf
ν
sup
x̃,y
�Mx̃ +ν(y)�2 − γ �C†y+ x̃�2

= sup
y

inf
ν
sup
x̃

�Mx̃ +ν�2 − γ �C†y+ x̃�2

Now for each fixed vector y, we will study the inner “inf sup” game given

by

inf
ν
sup
x̃

�Mx̃ +ν�2 − γ �C†y+ x̃�2.

Now we have that

inf
ν
sup
x̃

�Mx̃ +ν�2 − γ �C†y+ x̃�2 = inf
ν
sup
x
�Qx +ν�2 − γ �x�2

and

�Qx +ν�2 − γ �x�2 =

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭ .
This kernel is strictly convex in ν , but not necessarily strictly concave in
x, with the latter condition holding if and only if

QTQ − γ I = (I − C†C)TMTM(I − C†C) − γ I ≺ 0, (3.2)

or equivalently, γ > γ ∗, where γ ∗ is the largest eigenvalue of the matrix

(I − C†C)TMTM(I − C†C). If the concavity condition (3.2) is satisfied,
then Proposition 2.4 gives that the game admits a unique saddle-point so-

lution. On the other hand, if the matrix in (3.2) has at least one positive
eigenvalue, which occurs when γ < γ ∗, then x can be chosen in the di-

rection of the eigenvector corresponding to the positive eigenvalue of the

matrix in (3.2), implying that the upper value is unbounded. Thus, for
γ < γ ∗, we have
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sup
x
�Mx − μ(y)�2 − γ �x�2 = ∞.

Now suppose that γ > γ ∗, and let R = (QTQ−γ I)−1QT . Then, standard
completion of squares gives

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭ = νT
⎧⎩I − Q (

QTQ − γ I
)−1
QT

⎫⎭ν+

+ (x + Rν)T
(
QTQ − γ I

)
(x + Rν).

Since

QTQ − γ I ≺ 0,

and

I − Q
(
QTQ − γ I

)−1
QT 	 0,

we get

L̄γ = inf
ν
sup
x

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭
= sup

x
xT

⎧⎩QTQ − γ I
⎫⎭ x

= sup
x
xT

⎧⎩(I − C†C)TMTM(I − C†C) − γ I
⎫⎭ x

= 0,

where the minimizing ν is ν = 0, for all y. Thus, for any γ > γ ∗ the

minimax policy is μ(y) = MC†y, which is independent of γ . Furthermore,

�Mx − μ(y)�2

�x�2
≤ γ , ∀x �= 0.

Since γ can be chosen arbitrarily close to γ ∗, we conclude that

�Mx − μ(y)�2

�x�2
≤ γ ∗, ∀x �= 0,

which in turn gives that

�Mx − μ(y)�2 − γ ∗�x�2 ≤ 0, ∀x,

and the proof is complete.
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THEOREM 3.2

The minimax policy μ(Cx) for the game

inf
μ
sup
�x��=0

�Mx − μ(Cx)�2

�x�2
,

is given by μ(Cx) = MC†Cx, and the value of the game is γ ∗, where γ ∗ is

the largest eigenvalue of the matrix

(I − C†C)TMTM(I − C†C).

Proof Let γ ∗ be the largest eigenvalue of the matrix

(I − C†C)TMTM(I − C†C).

In the proof of Theorem 3.1, we showed that for γ < γ ∗

sup
x
�Mx − μ(Cx)�2 − γ �x�2 = ∞,

which implies that for every decision μ, there is a vector x �= 0 such that

γ <
�Mx − μ(Cx)�2

�x�2
,

and thus

γ < sup
�x��=0

�Mx − μ(Cx)�2

�x�2
.

We also showed that for μ(Cx) = MC†Cx, we have

sup
�x��=0

�Mx − μ(Cx)�2

�x�2
≤ γ ∗,

Since γ can be chosen arbitrarily close to γ ∗, we conclude that

γ ∗ = sup
�x��=0

�Mx − μ(Cx)�2

�x�2
,

and the proof is complete.
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Stochastic Estimation

Let x ∼N (0, I) and let y, z be given by (3.1). Define the cost J(x, μ(y)) as
the variance of the error Mx − μ(y):

J(x, μ(y)) = E �Mx − μ(y)�2.

We will first consider linear decisions μ(y) = K y= KCx. Now

J(x, KCx) = E �Mx − KCx�2

= E xT (M − KC)T(M − KC)x

= E
{
Tr (M − KC)xxT (M − KC)T

}
= Tr (M − KC)(M − KC)T

where the last equality follows from the assumption that E xxT = I. The
optimal value of K is obtained by solving �J�K = 0:

0 =
�J

�K

=
�

�K

{
Tr (M − KC)(M − KC)T

}
= 2KCCT − 2MCT .

Since CCT is assumed to be invertible, the optimal K is given by K =
MCT (CCT)−1 = MC†. It is also the optimal policy over all policies, lin-
ear and nonlinear, because of the Gaussian assumption of the stochastic

variable x, see [49].

Error-Operator Minimization

Let x be any given vector, and let y, z be given by (3.1). Consider linear
decisions μ(y) = K y = KCx, and introduce the error e = z − μ(y) =
(M−KC)x. The linear operator from the vector x to the error e is given by
the matrix M−KC. Our estimation problem is to minimize the Frobenius
norm of the matrix M − KC, that is, minimizing the cost

J(x, KCx) = Tr
{
(M − KC)T(M − KC)

}
.

Note that J is independent of x here. Just as in the stochastic estimation

problem, the optimal K is given by K = MC†.
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3.2 Optimal Filtering

Now we will consider filtering problems of linear dynamical systems. Con-

sider the linear system

G :=

{
xk+1 = Axk + Bwk

yk = Cxk + Dwk.
(3.3)

Assume that (C, A) is detectable. Introduce

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wk−1

wk−1
...

w0

x0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and

Yk−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yk−1

yk−2

...

y0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Since,

xk = A
kx0 +

k∑
t=1

Ak−tBwt−1,

yk = CA
kx0 +

k∑
t=1

CAk−tBwt−1,

we can write
xk = Mx,

Yk−1 = Ux,

for some real matrices M and U . We want to find an optimal filter μ(Yk−1)
that minimizes a cost J(x, μ). Here, we let the cost J(x, μ) be any of the
costs introduced in Section 3.1, that is

J(x,KUx) = Tr (M −KU )T(M −KU ),

and

J(x, μ(Yk−1)) = sup
�x��=0

�Mx− μ(Yk−1)�2

�x�2
,
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3.2 Optimal Filtering

or

J(x, μ(Yk−1)) = E �Mx− μ(Yk−1)�
2.

Hence, on a finite horizon, the filtering problem is converted to a static

estimation problem, and the solution is the same, no matter which of the

above costs we use. To find an optimal filter, we choose the stochastic

formulation, that is:

J(x, μ(Yk−1)) = E �Mx− μ(Yk−1)�
2,

with x ∼ N (0, I). The problem above is to find the best estimate of
xk = Mx based on the information Yk−1. Let x̂k = μ(Yk−1) be the opti-
mal estimate. Introduce the matrix

⎧⎪⎪⎩ R1 R12

R21 R2

⎫⎪⎪⎭ = ⎧⎪⎪⎩ B
D

⎫⎪⎪⎭⎧⎪⎪⎩ B
D

⎫⎪⎪⎭T .
Then, our estimation problem over a finite horizon can be solved using

the standard Kalman filter (see [1]):

x̂(k+ 1) = Ax̂(k) + K (k)(y(k) − Cx̂(k)), (3.4)

K (k) = (AP(k)CT + R12)(CP(k)C
T + R2)

−1, (3.5)

P(k+ 1) = AP(k)AT + R1 − K (k)(CP(k)C
T + R2)K

T(k), (3.6)

P(0) = E x(0)xT (0) = I, (3.7)

where we assumed that CP(k)CT + R2 is invertible for each k. The filter
above is optimal over an arbitrarily long finite horizon, so it is also optimal

over the infinite horizon. Since we assumed that (C, A) is detectable, a
stationary solution exists (k→∞) and it is given by

x̂(k+ 1) = Ax̂(k) + K (y(k) − Cx̂(k)), (3.8)

K = (APAT + R12)(CPC
T + R2)

−1, (3.9)

where P is the symmetric and positive definite solution to the algebraic

Riccati equation

P = APAT + R1 − (APC
T + R12)(CPC

T + R2)
−1(APCT + R12)

T , (3.10)

and we assumed that CPCT + R2 is invertible.
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3.3 Static Team Estimation Problems

The previous section showed that the stochastic and deterministic estima-

tion problems have identical solutions. In this section, we will show that

the same property holds for static team estimation problems, which we

will describe next.

As in the previous section, let x, y, z be finite dimensional vectors with

x ∈ Rn, y ∈ Rp, z ∈ Rm, and

z = Mx,

y = Cx,
(3.11)

where M ∈ Rm�n and C ∈ Rp�n. Let μ be a map μ : Rp → Rm. Partition
z, y, and μ in N compatible blocks:

μ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1

μ2
...

μN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1x

M2x

...

MNx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1

y2

...

yN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1x

C2x

...

CNx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where μ i : Rpi → Rmi , Mi ∈ Rmi�n, Ci ∈ Rpi�n,
∑N
i=1mi = m,

∑N
i=1 pi = p.

Without loss of generality, we will assume that Ci has full row rank (hence
pi ≤ n, for all i). This assumption guarantees that Ci has a right inverse
and that CiC

T
i is invertible for all i. The static team estimation problem is

to find a map μ : Rp → Rm that minimizes a given functional J(x, μ(y)),
J : Rn � Rm → R, where μ(y) is constrained to be of the form

μ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(y1)

μ2(y2)

...

μN(yN)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(C1x)

μ2(C2x)

...

μN(CNx)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (3.12)

Again, we will consider three types of team estimation problems: Mini-

max team estimation, stochastic team estimation, and error-operator team

minimization. We will show that the linear optimal decisions for the three

estimation problems coincide.
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Minimax Team Estimation

The cost used here is the induced norm of the error Mx − μ(y) by x:

J(x, μ(y)) = sup
�x��=0

�Mx − μ(y)�2

�x�2
.

Hence, the decision problem is to minimize the cost J above:

inf
μ
sup
�x��=0

�Mx − μ(y)�2

�x�2
.

Toward this end, we first introduce a related quadratic game with a kernel

parametrized by γ :

Lγ (x, μ(y)) = �Mx − μ(y)�2 − γ �x�2

for which we seek the upper value with μ being the minimizer, and x the
maximizer. More precisely, we seek

L̄γ = inf
μ
sup
x
Lγ (x, μ(y)).

We are now ready to state the main result of this chapter:

THEOREM 3.3

For a quadratic game defined by the kernel Lγ (x, μ(y)) = �Mx− μ(y)�2−
γ �x�2 with y = Cx and constrained policies μ(y) given by (3.12):

(i) There exists a γ ∗ such that for γ ≥ γ ∗ the upper value L̄γ is finite,

whereas for γ < γ ∗, it is infinite.

(ii) For all γ ≥ γ ∗, the game admits a minimax decision given by μ i(yi) =

MiC
†
i yi.

(iii) γ ∗ is the largest eigenvalue of the matrix

N∑
i=1

(I − C†i Ci)
TMTi Mi(I − C

†
i Ci).
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Proof Let x̃i = (I − C
†
i Ci)x. We can then write

x = (I − C†i Ci)x + C
†
i Cix

= x̃i + C
†
i yi, i = 1, 2, ...,N.

The vector x̃i is the unobservable part from the vector yi, since Cix̃i =
Ci(I−C

†
i Ci)x = 0. Introduce Qi = Mi(I−C

†
i Ci), and let μ i(yi) = MiC

†
i yi−

ν i(yi), for some policy ν i(yi). This gives

L̄γ = inf
μ
sup
x
Lγ (x, μ(y))

= inf
μ
sup
x,y
�Mx − μ(y)�2 − γ �x�2

= inf
μ
sup
x,y

N∑
i=1

�Mix − μ i(yi)�
2 − γ �x�2

= inf
μ
sup
x,x̃,y

N∑
i=1

�Mix̃i + MiC
†
i yi − μ i(yi)�

2 − γ �x�2

= inf
ν
sup
x,x̃,y

N∑
i=1

�Mix̃i +ν i(yi)�
2 − γ �x�2

= sup
y

inf
ν
sup
x,x̃

N∑
i=1

�Mix̃i +ν i�
2 − γ �x�2

= sup
y

inf
ν
sup
x

N∑
i=1

�Mi(I − C
†
i Ci)x +ν i�

2 − γ �x�2

= sup
y

inf
ν
sup
x

N∑
i=1

�Qix +ν i�
2 − γ �x�2

Now for every vector y, we will study the inner “inf sup” game given by

inf
ν
sup
x

N∑
i=1

�Qix +ν i�
2 − γ �x�2.

Introduce

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1

Q2

...

QN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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We can now write

N∑
i=1

�Qix +ν i�
2 − γ �x�2 =

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭ .
This kernel is strictly convex in ν , but not necessarily strictly concave in
x, with the latter condition holding if and only if

QTQ − γ I =

N∑
i=1

(I − C†i Ci)
TMTi Mi(I − C

†
i Ci) − γ I ≺ 0, (3.13)

or equivalently, γ > γ ∗, where γ ∗ is the largest eigenvalue of the matrix

N∑
i=1

(I − C†i Ci)
TMTi Mi(I − C

†
i Ci).

If the concavity condition (3.13) is satisfied, then Proposition 2.4 gives
that the game admits a unique saddle-point solution. On the other hand,

if the matrix in (3.13) has at least one positive eigenvalue, which occurs
when γ < γ ∗, then x can be chosen in the direction of the eigenvector

corresponding to the positive eigenvalue of the matrix in (3.13), implying
that the upper value is unbounded. Thus, for γ < γ ∗, we have

sup
x
�Mx − μ(y)�2 − γ �x�2 = ∞.

Now suppose that γ > γ ∗, and let R = (QTQ−γ I)−1QT . Then, standard
completion of squares gives

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭ = νT
⎧⎩I − Q (

QTQ − γ I
)−1
QT

⎫⎭ν+

+ (x + Rν)T
(
QTQ − γ I

)
(x + Rν) .

Since

QTQ − γ I ≺ 0,

and

I − Q
(
QTQ − γ I

)−1
QT 	 0,

45



Chapter 3. Static and Dynamic Estimation

we get

inf
ν
sup
x

N∑
i=1

�Qix +ν i�
2 − γ �x�2 =

= inf
ν
sup
x

⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭T ⎧⎪⎪⎩QTQ − γ I QT

Q I

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
ν

⎫⎪⎪⎭
= sup

x
xT

⎧⎩QTQ − γ I
⎫⎭ x

= sup
x
xT

⎧⎩(I − C†C)TMTM(I − C†C) − γ I
⎫⎭ x

= 0,

where the minimizing ν is ν = 0, for all y. Thus, for any γ > γ ∗ the

minimax policy is given by μ i(yi) = MiC
†
i yi, which is clearly independent

of γ . Furthermore,

�Mx − μ(y)�2

�x�2
≤ γ , ∀x �= 0.

Since γ can be chosen arbitrarily close to γ ∗, we conclude that

�Mx − μ(y)�2

�x�2
≤ γ ∗, ∀x �= 0,

which in turn gives that

�Mx − μ(y)�2 − γ ∗�x�2 ≤ 0, ∀x,

and the proof is complete.

THEOREM 3.4

For the game

inf
μ
sup
�x��=0

�Mx − μ(Cx)�2

�x�2
,

the minimax policy μ(Cx) with the constraint (3.12) is given by μ i(Cix) =

MiC
†
i Cix. The value of the game is γ ∗, where γ ∗ is the largest eigenvalue

of the matrix
N∑
i=1

(I − C†i Ci)
TMTi Mi(I − C

†
i Ci). (3.14)
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Proof Let γ ∗ be the largest eigenvalue of the matrix in (3.14). In the
proof of Theorem 3.3, we showed that for γ < γ ∗

sup
x
�Mx − μ(Cx)�2 − γ �x�2 = ∞,

which implies that for every decision μ, there is a vector x �= 0 such that

γ <
�Mx − μ(Cx)�2

�x�2
,

and thus

γ < sup
�x��=0

�Mx − μ(Cx)�2

�x�2
.

We also showed that for μ i(Cix) = MC
†
i Cix, we have

sup
�x��=0

�Mx − μ(Cx)�2

�x�2
≤ γ ∗,

Since γ can be chosen arbitrarily close to γ ∗, we conclude that

γ ∗ = sup
�x��=0

�Mx − μ(Cx)�2

�x�2
,

and the proof is complete.

Stochastic Team Estimation

Let x ∼N (0, I) and let y, z be given by (3.1). Define the cost J(x, μ(y)) as
the variance of the error Mx − μ(y):

J(x, μ(y)) = E �Mx − μ(y)�2.

We will first consider linear decisions μ i(yi) = Kiyi = KiCix. Now

J(x, μ(y)) = E �Mx − μ(y)�2

=
N∑
i=1

E �Mix − μ i(yi)�
2

=
N∑
i=1

E xT (Mi − KiCi)
T (Mi − KiCi)x

=

N∑
i=1

E
{
Tr (Mi − KiCi)xx

T (Mi − KiCi)
T
}

=

N∑
i=1

Tr (Mi − KiCi)(Mi − KiCi)
T
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where the last equality follows from the assumption that E xxT = I. Note
that there is no coupling between the matrices K1, K2, ..., and KN . Hence,

the optimal Ki can be found by solving
�J
�Ki
= 0:

0 =
�J

�Ki

=
�

�Ki

{
Tr (Mi − KiCi)(Mi − KiCi)

T
}

= 2KiCiC
T
i − 2MiC

T
i .

Since CiC
T
i is assumed to be invertible for all i, the optimal Ki is given by

Ki = MiC
T
i (CiC

T
i )
−1 = MiC

†
i . It is also the optimal policy over all policies,

linear and nonlinear, because of the Gaussian assumption of the stochastic

variables, see [49].

Error-Operator Team Minimization

Let x be any given vector, and let y, z be given by (3.1). Consider linear
decisions μ i(yi) = Kiyi = KiCix, and introduce the error e = z− μ(y) =
(M − KC)x, where

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 0 ⋅ ⋅ ⋅ 0

0 K2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ KN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

The linear operator from the vector x to the error e is given by the matrix

M − KC. Our estimation problem is to minimize the Frobenius norm of
the matrix M − KC, that is, minimizing the cost

J(x, KCx) = Tr
{
(M − KC)T(M − KC)

}
=

N∑
i=1

Tr
{
(Mi − KiCi)

T (Mi − KiCi)
}

Note that J is independent of x. Just as in the stochastic team estimation

problem, the optimal Ki is given by Ki = MiC
†
i .

3.4 Optimal Distributed Filtering

Consider the linear systems x = H(q)w and y = G(q)w, where

H =

⎧⎪⎪⎪⎪⎩ A B

I 0

⎫⎪⎪⎪⎪⎭ , (3.15)
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FG

e
H

w
+
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y x
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kk−1
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^

−−1q

Figure 3.1 A standard state estimation problem with one step delayed measure-

ments.

and

G =

⎧⎪⎪⎪⎪⎩ A B

C D

⎫⎪⎪⎪⎪⎭ . (3.16)

The problem we consider is to find an optimal filter F(q), with some struc-
ture that will be specified later, such that �H − FGq−1�α is minimized.
This is simply the problem of finding the optimal estimate of the state

of G with respect to some constraints on the filter (see Figure 3.1). We
let the constraints be delays on some entries of the transfer matrix of the

filter. That is, Fij(q) = fi j(q)q
−τ i j , where fi j(q) is a transfer matrix to be

optimized. Let τ = maxi, j τ i j , and let Fi and Hi be the ith block row of F
and H, respectively. Then, the estimation problem is to minimize∥∥∥∥∥∥∥

H1 − F1Gq
−1

...

HN − FNGq
−1

∥∥∥∥∥∥∥
α

.

Introduce the extended state z:

z(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(k)

y(k− 1)

...

y(k− τ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Let Ge(q) be the extended system of G(q), with state z and output

ȳ(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(k)

y(k− 1)

...

y(k−τ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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Then, a state space realization of Ge(q) is given by:

Ge =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A 0 ⋅ ⋅ ⋅ 0 0 B

C 0 ⋅ ⋅ ⋅ 0 0 D

0 I ⋅ ⋅ ⋅ 0 0 0
...
...
. . .

...
...
...

0 0 ⋅ ⋅ ⋅ I 0 0

C 0 ⋅ ⋅ ⋅ 0 0 D

0 I ⋅ ⋅ ⋅ 0 0 0
...
...
. . .

...
...
...

0 0 ⋅ ⋅ ⋅ I 0 0

0 0 ⋅ ⋅ ⋅ 0 I 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Now the delayed information constraints on every filter Fi can be seen as

if the input to Fi is given by the system G
i
e(q)q

−1, where

Gie =

⎧⎪⎪⎪⎪⎩ Ae Be

Ei Di

⎫⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A 0 ⋅ ⋅ ⋅ 0 0 B

C 0 ⋅ ⋅ ⋅ 0 0 D

0 I ⋅ ⋅ ⋅ 0 0 0
...

...
. . .

...
...

...

0 0 ⋅ ⋅ ⋅ I 0 0

Ei0 0 ⋅ ⋅ ⋅ 0 0 Di0

0 Ei1 ⋅ ⋅ ⋅ 0 0 0
...

...
. . .

...
...

...

0 0 ⋅ ⋅ ⋅ Ei(τ−1) 0 0

0 0 ⋅ ⋅ ⋅ 0 Eiτ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

(3.17)

where Eit is a block diagonal matrix partitioned in N
2 blocks such that

the jth diagonal block is the identity matrix I (Ci) for t > 0 (t = 0) if
the filter Fi has access to yj(t), and zero otherwise. Mathematically, for
r, s = 1, ...,N, we can define Eit as

[Eit]rs =

⎧⎪⎨
⎪⎩
Ci if r = s and τ ir = t = 0

I if r = s and τ ir ≤ t �= 0

0 otherwise .

(3.18)
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3.4 Optimal Distributed Filtering

In a similar way, for r = 1, ...,N, Di0 is defined as

[Di0]r =

{
[D]r if τ ir = 0

0 otherwise .
(3.19)

THEOREM 3.5

Consider the filtering problem

min
F∈S
�H − FGq−1�α ,

where S = {F : fi j ∈RLα , Fij = fi jq
−τ i j}, τ = maxτ i j , and H, G, G

i
e are

given by (3.15)-(3.18). Assume that (Ae, Ei) is detectable for all i. Then,
the optimal filter for α = 2 or α = ∞ is given by

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
F1
...

FN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,

where Fi has the state space realization for i = 1, ...,N:

⎧⎪⎪⎪⎪⎩ Ae − KiEi Ki

Γi 0

⎫⎪⎪⎪⎪⎭ , (3.20)

with

Γi =
⎧⎩0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ 0

⎫⎭ , (3.21)

where the identity matrix I in Γi is in block position i,

Ki = (AePiE
T
i + B

T
e Di)(EiPiE

T
i + D

T
i Di)

−1, (3.22)

and Pi is the symmetric positive definite solution to the Riccati equation

Pi = AePiA
T
e + BeB

T
e −

− (AePiE
T
i + B

T
e Di)(EiPiE

T
i + D

T
i Di)

−1(AePiE
T
i + B

T
e Di)

T .
(3.23)
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Proof The estimation problem

min
F∈S
�H − FGq−1�α

can be written as

min
F∈S

∥∥∥∥∥∥∥
H1 − F1Gq

−1

...

HN − FNGq
−1

∥∥∥∥∥∥∥
α

.

Introduce the system Ḡe

Ḡe :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z(k+ 1) = Aez(k) + Bew(k)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(k)

y2(k)

...

yN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E1

E2
...

EN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
z(k).

(3.24)

Let

x =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(k− 1)

w(k− 2)

...

w(0)

z(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

Yk−1i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yi(k− 1)

yi(k− 2)

...

yi(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, Yk−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk−11

Yk−12

...

Yk−1N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Since,

z(k) = Ake z(0) +

k∑
t=1

Ak−te Bew(t− 1),

yi(k) = EiA
k
e z(0) +

k∑
t=1

EiA
k−t
e Bew(t− 1),
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we can write ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1(k)

z2(k)

...

zN(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1

M2
...

MN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yk−11

Yk−12

...

Yk−1N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1

U2
...

UN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
x,

for some real matrices Mi and Ui, i = 1, ...,N. Let

M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1

M2
...

MN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and

U =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1

U2
...

UN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We want to find a constrained optimal filter μ(Yk−1) with

μ(Yk−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(Y
k−1
1 )

μ2(Y
k−1
2 )

...

μN(Y
k−1
N )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1(U1x)

μ2(U2x)

...

μN(UNx)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

that minimizes a cost J(x, μ). I follows from the definition of the norms
� ⋅ �2 and � ⋅ �∞ that minimization of the error norms �H − FGq

−1�22 and
�H − FGq−1�2∞ correspond to minimizing the costs

J(x,KUx) = Tr (M −KU )T(M −KU ),

and

J(x, μ(Yk−1)) = sup
�x��=0

�Mx− μ(Yk−1)�2

�x�2
,
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respectively, where

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 0 ⋅ ⋅ ⋅ 0

0 K2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ KN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

It was shown in Section 3.3 that minimization of the two costs above have

the same solution μ(Yk−1) = KYk−1 = KUx as that of the the stochastic
problem with cost

J(x, μ(Yk−1)) = E �Mx− μ(Yk−1)�2.

To find an optimal filter, we choose the stochastic formulation, that is:

J(x, μ(Yk−1)) = E �Mx− μ(Yk−1)�2 =

N∑
i=1

E �Mix− μ i(Y
k−1
i )�2,

where x ∼N (0, I). Hence, the solution can be found by separately finding
an estimator μ i(Y

k−1
i ) that minimizes E �Mix − μ i(yi)�

2, for i = 1, ...,N.
Let ẑi be the optimal Kalman filter estimate of z with respect to Y

k−1
i ,

which is given by

ẑi = F̄iyi,

F̄i =

⎧⎪⎪⎪⎪⎩ Ae − KiEi Ki

I 0

⎫⎪⎪⎪⎪⎭ ,
Ki = (AePiE

T
i + B

T
e Di)(EiPiE

T
i + D

T
i Di)

−1,

where Pi is the symmetric positive definite solution to the Riccati equation

Pi = AePiA
T
e + BeB

T
e −

− (AePiE
T
i + B

T
e Di)(EiPiE

T
i + D

T
i Di)

−1(AePiE
T
i + B

T
e Di)

T .

Let

Γi =
⎧⎩ 0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ 0

⎫⎭ ,
where the identity matrix I in Γi is in block position i. Then,

Mix = xi(k) = Γi z.
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So, we obtain

E �Mix− μ i(Y
k−1
i )�2 = E �Γi z− μ i(Y

k−1
i )�2,

and the minimizing μ i(Y
k−1
i ) is given by

μ i(Y
k−1
i ) = Γi ẑi.

To conclude, the minimizing μ i(Y
k−1
i ) is given by μ i(Y

k−1
i ) = Fiyi, where

Fi = Γi F̄i. That is,

Fi =

⎧⎪⎪⎪⎪⎩ Ae − KiEi Ki

Γi 0

⎫⎪⎪⎪⎪⎭ ,
and the proof is complete.
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4

Stochastic Team Decision
Problems

In the previous chapter, we considered team estimation problems with

different error measures. In this chapter, we will consider a more general

class of quadratic team decision problems in a stochastic framework. The

goal of this chapter is twofold. The first goal is to introduce the reader

to static team decision theory, and reproduce some of the earlier results,

where we give modern and easy presentation, including the proof tech-

niques. The second goal is to show how dynamic team problems can be

formulated as static team problems, and then derive conditions under

which the problems become tractable, with respect to the existing math-

ematical tools.

4.1 Introduction

The problem of distributed control with information constraints is consid-

ered in this chapter. For instance, information constraints appear natu-

rally when making decisions over networks. These problems can be for-

mulated as team problems. Early results considering team theory in [26],
[42], [48], [53], and [54] showed the possibilities and difficulties of the
linear quadratic Gaussian control problem with non-classical information

structure. Recently, Bamieh et al [4] and Rotkowitz et al [46] showed that
the distributed linear optimal control problem is convex if the rate of in-

formation propagation is faster than the dynamics.

In this chapter, we consider the distributed linear quadratic Gaussian

control problem and give a solution using statistical decision theory. We

give a mathematical definition of signaling in team decision problems,

and give necessary and sufficient conditions, determined by the system

parameters (A, B,C), for elimination of the signaling incentive in optimal
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control. Under the conditions for eliminating the signaling incentive, the

optimal distributed controller is shown to be linear. Furthermore, it can

be found by solving a linear system of equations.

4.2 Team Decision Theory

In this section we will review some classical results in team theory.

The Static Team Decision Problem

In the static team decision problem, one would like to solve

minimize E

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T ⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
u

⎫⎪⎪⎭
subject to yi = Cix + vi

ui = μ i(yi)

for i = 1, ...,N.

(4.1)

Here, x and v are independent Gaussian variables taking values in Rn

and Rp, respectively, with x ∼ N (0,Vxx) and v ∼ N (0,Vvv). Also, yi and
ui will be stochastic variables taking values in Rpi , Rmi , respectively, and
p1 + ...+ pN = p. We assume that⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ∈ Sm+n, (4.2)

and Quu ∈ Sm++, m = m1 + ⋅ ⋅ ⋅+mN .
If full state information about x is available to each decision maker ui,

the minimizing u can be found easily by completion of squares. It is given

by u = Lx, where L is the solution to

QuuL = −Qux.

Then, the cost function in (4.1) can be rewritten as

J(x,u) = E xT (Qxx − L
TQuuL)x + E (u− Lx)

TQuu(u − Lx). (4.3)

Minimizing the cost function J(x,u), is equivalent to minimizing

E (u− Lx)TQuu(u − Lx),

since nothing can be done about E {xT (Qxx − L
TQuuL)x} (the cost when

u has full information).
Now we will give the first team theoretic result of this chapter. The

result was in principle shown by Radner [42], but we give a different
formulation and proof:
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THEOREM 4.1

Let x and vi be Gaussian variables with zero mean, taking values in Rn

and Rpi , respectively, with p1 + ... + pN = p. Also, let ui be a stochastic
variable taking values in Rmi , Quu ∈ Sm++, m = m1 + ⋅ ⋅ ⋅+mN , L ∈ Rm�n,
Ci ∈ Rpi�n, for i = 1, ...,N. Set yi = Cix + vi, and assume that E yiyTi 	 0.
Then, the optimal decision μ to the optimization problem

min
μ

E (u − Lx)TQuu(u− Lx)

subject to ui = μ i(yi)

for i = 1, ...,N.

(4.4)

is unique and linear in y.

Proof Let Yi be a linear space of stochastic Gaussian variables taking
values in Rpi , such that yi ∈ Yi if and only if E yiyTi 	 0, for i = 1, ...,N.
Also, let Y be a linear space of stochastic Gaussian variables y such that
y = (yT1 , ..., y

T
N)
T , with yi ∈ Yi. Denote H as the space of all measurable

functions �(y) from Y to Rp for which

�(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1(y1)

�2(y2)

...

�N(yn)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (4.5)

and E {�T(y)Quu�(y)} < ∞. Since Quu 	 0 and E yiy
T
i 	 0, H is a Hilbert

space under the inner product

〈�,h〉 = E {�T(y)Quuh(y)},

and norm

���(y)��2 = E {�T(y)Quu�(y)}.

For a fixed stochastic variable y ∈ Y, let Z be a linear space such that
z ∈ Z if zi is a linear transformation of yi, that is zi = Aiyi for some
real matrix Ai ∈ Rmi�ni . Clearly, Z ⊂ H. Now the optimization problem
in equation (4.4) where we search for the linear optimal decision can be
written as

min
u∈Z

��u − Lx��2 (4.6)

Finding the best linear optimal decision u∗ to the above problem is equiv-

alent to finding the shortest distance from the subspace Z to the element
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Lx, where the minimizing u∗ is the projection of Lx on Z , and hence
unique. Also, since u∗ is the projection, we have

0 = 〈u∗ − Lx,u〉 = E (u∗ − Lx)TQuuu,

for all u. In particular, for fi = (0, 0, ..., zi, 0, ..., 0) with zi ∈ Z , we have

E (u∗ − Lx)TQuu fi = E {[(u
∗ − Lx)TQuu]i zi} = 0.

The Gaussian assumption implies that [(u∗ − Lx)TQuu]i is independent
of zi = Aiyi, for all linear transformations Ai. This gives in turn that
[(u∗ − Lx)TQuu]i is independent of yi. Hence, for any decision u, linear or
nonlinear, we have that

〈u∗ − Lx,u〉 = E (u∗ − Lx)TQuuu

=
∑
i

E {[(u∗ − Lx)TQuu]iui}

=
∑
i

E {[(u∗ − Lx)TQuu]iμ i(yi)} = 0.

Finally, we get

��u − Lx��2 = 〈u− Lx,u − Lx〉

= 〈u∗ − Lx + u− u∗,u∗ − Lx + u− u∗〉

= 〈u∗ − Lx,u∗ − Lx〉 + 〈u− u∗,u− u∗〉+

+ 2〈u∗ − Lx,u∗ − u〉

= 〈u∗ − Lx,u∗ − Lx〉 + 〈u− u∗,u− u∗〉

≥ 〈u∗ − Lx,u∗ − Lx〉

with equality if and only if u = u∗. This concludes the proof.

The next theorem shows how to find the linear optimal control law

u = K y, where K is block diagonal:

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 0 ⋅ ⋅ ⋅ 0

0 K2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ KN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.
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THEOREM 4.2

Let x and vi be independent Gaussian variables taking values in Rn and
Rpi , respectively with x ∼ N (0,Vxx), v ∼ N (0,Vvv). Also, let ui be a
stochastic variable taking values in Rmi , m = m1+ ⋅ ⋅ ⋅+mN , Qxu ∈ Rn�m,
Quu ∈ Sm++, Ci ∈ Rpi�n, and L = −Q−1uu Qux. Set yi = Cix + vi, with
E yiy

T
i 	 0. Then, the linear optimal solution ui = Kiyi to the optimization

problem

min
Ki

E (u − Lx)TQuu(u− Lx)

subject to ui = Kiyi, i = 1, ...,N.
(4.7)

is the solution to the linear system of equations

N∑
j=1

[Quu]i j K j(CjVxxC
T
i + [Vvv] ji) = −[Qux]iVxxC

T
i ,

Ki ∈ Rpi�ni , for i = 1, ...,N.

Proof Let K = diag(Ki) and C =
⎧⎩CT1 ⋅ ⋅ ⋅ CTN

⎫⎭T . The problem of
finding the optimal linear feedback law ui = Kiyi can be written as

minimize Tr {E Quu(u − Lx)(u − Lx)
T}

subject to u = K (Cx + v)
(4.8)

Now

f (K ) = Tr
{
E Quu(u− Lx)(u − Lx)

T
}

= Tr
{
E Quu(KCx + Kv− Lx)(KCx + Kv− Lx)

T
}

= Tr
{
E Quu(K (Cxx

TCT + vvT )KT − 2LxxTCT KT + LxxT LT )
}
+

+ Tr
{
E 2Quu(KC − L)xv

T KT
}

= Tr
{
Quu(K (CVxxC

T + Vvv)K
T − 2LVxxC

T KT + LVxx L
T )

}
= Tr

⎧⎨
⎩

N∑
i, j=1

[Quu]i j K j(CjVxxC
T
i + [Vvv] ji)K

T
i −

−2

N∑
i, j=1

[Quu]i j LjVxxC
T
i K

T
i

⎫⎬
⎭+ Tr {QuuLVxx LT}.

(4.9)
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The minimizing K is obtained by solving ∇Ki f (K ) = 0:

0 = ∇Ki f (K )

= 2

N∑
j=1

[Quu]i j K j(CjVxxC
T
i + [Vvv] ji) − 2

N∑
j=1

[Quu]i j LjVxxC
T
i .

(4.10)

Since QuuL = −Qux, we get that

N∑
j=1

[Quu]i j LjVxxC
T
i = −[Qux]iVxxC

T
i .

Hence, the equality in (4.10) is equivalent to

N∑
j=1

[Quu]i j K j(CjVxxC
T
i + [Vvv] ji) = −[Qux]iVxxC

T
i , (4.11)

and the proof is complete.

To verify existence and uniqueness of the linear solution obtained from

Theorem 4.2, we proceed as follows. The system of equations in (4.11) is
easy to pose as a standard linear system of equations Hz = �, in a simple
structural way as follows. For matrices V and U of compatible sizes, we

have the relation

vec{UX V} = (VT ⊗ U )vec{X }. (4.12)

Taking the transpose of the equations in (4.11), we obtain the equivalent
linear system:

N∑
j=1

[CVxxC
T + Vvv]i j K

T
j [Quu]

T
i j = −CiVxx[Qxu]i, (4.13)

where we have used that

(CjVxxC
T
i + [Vvv] ji)

T = CiVxxC
T
j + [Vvv]i j

= [CVxxC
T + Vvv]i j ,

since Vxx and Vvv are symmetric. Using the relation in (4.12), we can write
(4.13) as

N∑
j=1

([Quu]i j ⊗ [CVxxC
T + Vvv]i j)vec{K

T
j } = −vec{CiVxx[Qxu]i},
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or equivalently as

Hz = �,

where H consists of blocks Hij given by

Hij = [Quu]i j ⊗ [CVxxC
T + Vvv]i j ,

z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vec{KT1 }

vec{KT2 }

...

vec{KTN}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and

� = −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vec{C1Vxx[Qxu]1}

vec{C2Vxx[Qxu]2}

...

vec{CNVxx[Qxu]N}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Now we will show that H is positive definite, and hence invertible, which

proves existence and uniqueness of the solution of Ki. But first we need

the following lemma from [42]:

LEMMA 4.1

If D is a d� d symmetric positive semi-definite matrix, partitioned sym-
metrically into m2 blocks Dij of size di�dj (i, j = 1, ...,m), such that Dii is
positive definite for every i; and if Q is an m�m positive definite matrix
with elements qij ; then the matrix H composed of blocks Hij = qij Dij is
positive definite.

Proof Since D is symmetric positive semidefinite, it can be expressed

as

D =
∑
k

r(k)rT (k),

where for each k, r(k) ∈ Rd. For any vector v ∈ Rd, let {vi} be a parti-
tioning of v into subvectors, corresponding to the partitioning of D; then

for every i and j

Dij =
∑
k

ri(k)r
T
j (k).
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For any v

vT Hv =
∑
i, j

qi jv
T
i Dijvj

=
∑
k

∑
i, j

qi jv
T
i ri(k)r

T
j (k)vj

=
∑
k

∑
i, j

qi jwi(k)wj(k),

(4.14)

where wi(k) = v
T
i ri(k). Hence v

T Hv ≥ 0 for all v. Now let v �= 0; then
for some i, vi �= 0. For that i, and for some k, v

T
i ri(k) �= 0, because Dii is

positive definite. Hence, from (4.14), vT Hv > 0 if v �= 0, which completes
the proof.

Now let Y = CVxxC
T + Vvv. Partition Y into blocks such that

Yij = [CVxxC
T + Vvv]i j .

Note that Yii = E yiy
T
i 	 0. Introduce

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11 D12 ⋅ ⋅ ⋅ D1m

D21 D22 ⋅ ⋅ ⋅ D2m
...

...
. . .

...

Dm1 Dm2 ⋅ ⋅ ⋅ Dmm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

where Dij = 1mi�mj ⊗ Yij , that is:

D =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y11 ⋅ ⋅ ⋅ Y11 ⋅ ⋅ ⋅ Y1N ⋅ ⋅ ⋅ Y1N
...

. . .
...

...
. . .

...

Y11 ⋅ ⋅ ⋅ Y11 ⋅ ⋅ ⋅ Y1N ⋅ ⋅ ⋅ Y1N
...

...
...

...

YN1 ⋅ ⋅ ⋅ YN1 ⋅ ⋅ ⋅ YNN ⋅ ⋅ ⋅ YNN
...

. . .
...

...
. . .

...

YN1 ⋅ ⋅ ⋅ YN1 ⋅ ⋅ ⋅ YNN ⋅ ⋅ ⋅ YNN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

where every block Yij is repeated mi times vertically and mj times hori-

zontally. Then, it is easy to verify that the matrix H is exactly the matrix

with blocks consisting of qij Dij, where qij = [Quu]i j . Applying Lemma 4.1
gives that H is positive definite, which proves existence and uniqueness

of the solution of K .
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In general, separation does not hold for the static team problem when

constraints on the information available for every decision maker ui are

imposed, as was already demonstrated in the introductory chapter. That

is, the optimal decision is not given by ui = Lx̂i, where x̂i is the optimal
estimated value of x by decision maker i. We will now revisit the example

that was given in the introductory chapter.

EXAMPLE 4.1

Consider the team problem

minimize E

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T ⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
u

⎫⎪⎪⎭
subject to yi = Cix + vi

ui = μ i(yi)

for i = 1, ...,N

The data we will consider is:

N = 2

C1 = C2 = 1

Qxx = 1

Quu =

⎧⎪⎪⎩ 2 1

1 2

⎫⎪⎪⎭
Qxu = Q

T
ux =

⎧⎩1 1
⎫⎭

x ∼N (0, 1), v1 ∼N (0, 1), v2 ∼N (0, 1)

The best decision with full information is given by

u = −Q−1uu Quxx

= −

⎧⎪⎪⎩ 2
3
− 1
3

− 1
3

2
3

⎫⎪⎪⎭ ⎧⎪⎪⎩ 1
1

⎫⎪⎪⎭ x
= −

⎧⎪⎪⎩ 1
3

1
3

⎫⎪⎪⎭ x.
The optimal estimate of x of decision maker 1 is

x̂1 = E {x�y1} =
1

2
y1,

and of decision maker 2

x̂2 = E {x�y2} =
1

2
y2.
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Hence, the decision where each decision maker combines the best deter-

ministic decision with her best estimate of x is given by

ui = −
1

3
x̂i

= −
1

3
⋅
1

2
yi

= −
1

6
yi,

for i = 1, 2. This policy gives a cost equal to 0.611. However, solving the
team problem yields K1 = K2 = −

1
5
, and hence the optimal team decision

is given by

ui = −
1

5
yi.

The cost obtained from the team problem is 0.600. Clearly, separation does

not hold in team decision problems.

Team Decision Problems and Signaling

Consider a modified version of the static team problem posed in the previ-

ous section, where the observation yi for every decision maker i is affected

by the inputs of the other decision makers, that is

yi = Cix +
∑
j

Di juj + vi,

where Dij = 0 if decision maker j does not affect the observation yi. The
modified optimization problem becomes

minimize E (u− Lx)TQuu(u − Lx)

subject to yi = Cix +
∑
j

Di juj + vi

ui = μ i(yi)

for i = 1, ...,N.

(4.15)

The problem above is, in general, very complex if decision maker i does not

have information about the decisions ui that appear in yi (see [8]). It has
been shown by Witsenhausen [53], by means of a counterexample, that
for such problems there could be nonlinear decisions in the observations

that perform better than any linear decision. This is referred to as the

problem of signaling, where decision maker j tries to encode information

in his decision that could be decoded by other decision makers whose
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observation is affected (see Ho [26]).
If we assume that decision maker i has the value of uj available for every

j such that Dij �= 0, then he/she could form the new output measurement

y̌i = yi −
∑
j

Di juj = Cix + vi,

which transforms the problem to a static team problem without signaling,

and the optimal solution is linear and can be found according to theorems

4.1 and 4.2. Note that if decision maker i has the information available

that every decision maker j has for which Dij �= 0, then the decision
uj is also available to decision maker i. This information structure is

closely related to the partially nested information structure, which was

introduced by Ho and Chu in [29].
Finally, we state a mathematical definition of signaling incentive in

static teams:

DEFINITION 4.1—SIGNALING INCENTIVE

Consider the static team problem given by

minimize E (u− Lx)TQuu(u− Lx)

subject to yi = Cix +
∑
j

Di juj + vi

ui = μ i : Ii �→ Rmi

for i = 1, ...,N,

(4.16)

where Ii denotes the information yj available to decision maker i, for
j = 1, ...,N. Then, the problem is said to have a signaling incentive if
there exist i, j such that I j � Ii and Dij �= 0.

4.3 Distributed Linear Quadratic Gaussian Control

In this section, we will treat the distributed linear quadratic Gaussian

control problem with information constraints, which can be seen as a dy-

namic team decision problem.

Consider an example of four dynamically coupled systems according to

the graph in Figure 4.1. The equations for the interconnected system are
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1

2

3

4

Figure 4.1 The graph reflects the interconnection structure of the dynamics be-

tween four systems. The arrow from node 2 to node 1 indicates that system 1 affects

the dynamics of system 2 directly.

then given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k+ 1)

x2(k+ 1)

x3(k+ 1)

x4(k+ 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 0 A13 0

A21 A22 0 0

0 A32 A33 A34

0 0 0 A44

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k)

x2(k)

x3(k)

x4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k)

+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
u1(k)

u2(k)

u3(k)

u4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
u(k)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w1(k)

w2(k)

w3(k)

w4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
w(k)

.

(4.17)

For instance, the arrow from node 2 to node 1 in the graph means that the

dynamics of system 2 are directly affected by system 1, which is reflected

in the system matrix A, where the element A21 �= 0. On the other hand,
system 2 does not affect system 1 directly, which implies that A12 = 0.
Because of the “physical” distance between the subsystems, there will be

some constraints on the information available to each node.

The structure of the matrix A can be described by the adjacency matrix

A of the graph. For instance, the adjacency matrix of the graph in Figure
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4.1 is given by

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
1 0 1 0

1 1 0 0

0 1 1 1

0 0 0 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ .

The observation of system i at time k is given by

yi(k) = Cix(k),

where

Ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Ci1 0 0 0

0 Ci2 0 0

0 0 Ci3 0

0 0 0 Ci4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (4.18)

Here, Cij = 0 if system i does not have access to yj(k). Let Iki denote the
set of information (yj(n),uj(n)) available to node i up to time k, n ≤ k,
j = 1, ...,N.
Consider the following (general) dynamic team decision problem:

minimize

M∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T ⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

yi(k) = Cix(k) + vi(k)

ui(k) = μ i : I
k
i �→ Rmi

for i = 1, ...,N.

(4.19)

where x(k) ∈ Rn, yi(k) ∈ Rpi , ui(k) ∈ Rmi , x(0) ∼ N (0,R0), {v(k)} and
{w(k)} are sequences of independent Gaussian variables, uncorrelated
with x(0), such that

E

⎧⎪⎪⎩ v(k)
w(k)

⎫⎪⎪⎭⎧⎪⎪⎩ v(l)
w(l)

⎫⎪⎪⎭T = δ (k− l)R,

and the weighting matrix Quu is positive definite. Now for any t ∈ N such
that t ≤ k, we can write x(k) and y(k) as
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x(k) = Atx(k− t) +
t∑
n=1

An−1Bu(k− n) +
t∑
n=1

An−1w(k− n),

yi(k) = CiA
tx(k− t) +

t∑
n=1

CiA
n−1Bu(k− n)+

+

t∑
n=1

CiA
n−1w(k− n) + vi(k).

(4.20)

Note that the summation over n is defined to be zero when t = 0.

THEOREM 4.3

Consider the optimization problem given by (4.19). The problem has no
signaling incentive if

Inj ⊆ Iki for [CiA
nB] j �= 0 (4.21)

for all n such that 0 ≤ n < k, and k = 0, ...,M − 1.
In addition, the optimal solution to the optimization problem given by

(4.19) is linear in the observations Iki if condition (4.21) is satisfied, and
has an analytical solution that can be found by solving a linear system of

equations.

Proof Introduce

x̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(M − 1)

w(M − 2)

...

w(0)

x(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, ūi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(M − 1)

ui(M − 2)

...

ui(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Then, we can write the cost function

M−1∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T ⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
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as

E

⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭T Q̄⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭ , (4.22)

for some symmetric matrix Q̄ with

Q̄ =

⎧⎪⎪⎩ Q̄xx Q̄xu

Q̄ux Q̄uu

⎫⎪⎪⎭ ,
and Q̄uu 	 0. Consider the expansion given by (4.20). The problem here
is that yi(k) depends on previous values of the control signals u(n) for
n = 0, ..., k−1. The components uj(n) that yi(k) depends on are completely
determined by the structure of the matrix [CiA

nB] j . This means that, if
for every node i we have Inj ⊆ Iki for [CiA

nB] j �= 0, then there is no sig-
naling incentive. Thus, we have proved the first statement of the theorem.

Now if condition (4.21) is satisfied, we can form the new output measure-
ment

y̌i(k) = yi(k) −

k∑
n=1

CiA
n−1Bu(k− n)

= CiA
kx(0) +

k∑
n=1

CiA
n−1w(k− n) + vi(k).

(4.23)

Let

ȳi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y̌i(k)

y̌i(k− 1)

...

y̌i(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

With these new variables introduced, the optimization problem given by

equation (4.19) reduces to the following static team decision problem:

min
μ
E

⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭T Q̄⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭
subject to ui(k) = μ̄ i(ȳi(k)), k = 0, ...,M − 1

for i = 1, ...,N.

(4.24)

and the optimal solution ū is unique and linear according to Theorem 4.1,

and can be obtained using Theorem 4.2, QED .
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5

Minimax Team Decision
Problems

We considered the problem of static and dynamic stochastic team decision

in the previous chapter. This chapter treats an analogous version for the

deterministic (or worst case) problem. Although the problem formulation
is very similar, the ideas of the solution are considerably different, and in

a sense more difficult.

The deterministic problem considered is a quadratic game between a

team of players and nature. Each player has limited information that could

be different from the other players in the team. This game is formulated

as a minimax problem, where the team is the minimizer and nature is the

maximizer. We show that if there is a solution to the static minimax team

problem, then linear decisions are optimal, and we show how to find a

linear optimal solution by solving a linear matrix inequality. The result is

used to solve the distributed finite horizon H∞ control problem. It shows
that information exchange with neighbours on the graph only, is enough

to obtain a linear optimal policy.

5.1 Introduction

We consider the problem of static minimax team decision. A team of play-

ers is to optimize a worst case scenario given limited information of na-

ture’s decision for each player. The problem can be considered as the deter-

ministic analog of the stochastic team decision problems that were solved

by Radner [42].
An initial step for solving the static deterministic problem was made

in [5], where a team of two players is considered using a stochastic frame-
work. The solution given in [5] cannot easily be extended to more than two
players, since it uses common information for the two players, a concept
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that does not necessarily exist for more than two players. Also, the one

step delay H∞ control problem is solved in [5].
In this chapter, we solve the static minimax (or deterministic) team

decision problem completely for an arbitrary number of players, and show

that the optimal solution is linear and can be found by solving a linear

matrix inequality. Also, we show how to solve the dynamic finite horizon

H∞ team problem, under some conditions that prevent signaling. The
dynamic finite horizon H∞ team problem is identical to the distributed
finite horizon stochastic linear quadratic control problem treated in [26]
and its generalization in Chapter 4, see also [22]. For the infinite horizon
problem, similar conditions were obtained in [4] and [46]. We show that
the information structure where subsystems on a graph are restricted to

exchange information with neighbours only, is enough to obtain an optimal

feedback law which turns out to be linear. This reveals a broader class of

information structures that lead to tractable problems.

5.2 The Static Minimax Team Decision Problem

Consider the following team decision problem

inf
μ
sup
x �=0

J(x,u)

��x��2

subject to yi = Cix

ui = μ i(yi)

for i = 1, ...,N

(5.1)

where ui ∈ Rmi , m = m1 + ⋅ ⋅ ⋅+mN , Ci ∈ Rpi�n.
J(x,u) is a quadratic cost given by

J(x,u) =

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T ⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ⎧⎪⎪⎩ x
u

⎫⎪⎪⎭ ,
where ⎧⎪⎩ Qxx Qxu

Qux Quu

⎫⎪⎭ ∈ Sm+n.

We will be interested in the case Quu 	 0 (this can be generalized to
Quu 
 0, but the presentation of the chapter becomes more technical). The
players u1,..., uN make up a team, which plays against nature represented
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5.2 The Static Minimax Team Decision Problem

by the vector x, using

μ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
μ1(C1x)

...

μN(CNx)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ .
PROPOSITION 5.1

The value of the game in (5.1) is

γ ∗ = inf
μ
sup
x �=0

J(x,u)

��x��2
,

if and only if for every ε > 0 there is a decision με such that

γ ∗ ≤ sup
x �=0

J(x, με(x))

��x��2
< γ ∗ + ε,

and γ ∗ is the smallest such number.

Proof If the value of the game (5.1) is γ ∗, then clearly

γ ∗ ≤ sup
x �=0

J(x, με(x))

��x��2
.

for every policy με. Also, it follows from the definition of the infimum that

for every x �= 0 there is a vector ux ∈ Rm such that

J(x,ux)

��x��2
< γ ∗ + ε. (5.2)

For every pair (x,ux) satisfying (5.2), define the decision με(x) = ux. Then,

sup
x �=0

J(x, με(x))

��x��2
< γ ∗ + ε.

On the other hand, if γ ∗ is the infimal value such that for every ε > 0
there is a decision με(x) with

γ ∗ ≤ sup
x �=0

J(x, με(x))

��x��2
< γ ∗ + ε,

then it follows that

γ ∗ ≤ inf
με

sup
x

J(x, με(x))

��x��2
< γ ∗ + ε,
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Since ε can be chosen arbitrarily small, we conclude that the value of the

game must be γ ∗, and the proof is complete.

Proposition 5.1 shows that if γ ∗ is the value of the game in (5.1),
then for any given real number γ > γ ∗, there exists a policy μ such that
J(x, μ(x)) − γ �x�2 ≤ 0 for all x. Hence, we can formulate the alternative
team decision problem:

inf
μ
sup
x �=0
J(x,u) − γ ��x��2

subject to yi = Cix

ui = μ i(yi)

for i = 1, ...,N

(5.3)

The formulation above can be seen as the problem of looking for subop-

timal solutions to the game given by (5.1). Clearly, Proposition 5.1 shows
that the value of the game resulting from the decision obtained in (5.3)
approaches the optimal value in (5.1) as γ approaches γ ∗ (or as ε → 0).
From now on we will consider the equivalent game given by (5.3). Intro-
duce the matrix

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1

C2
...

CN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

C is a p� n matrix, where p = p1 + p2 + ⋅ ⋅ ⋅ + pN . Let rank C = r. For
any given vector y, a vector x with y = Cx can be written as x = C†y+ x̃,
where x̃ is the unobservable part of x from the vector y, that is Cx̃ = 0. Let
F ∈ Rn�(n−r) be a nullspace generator of the matrix C, that is, CF = 0 (F
can be taken as the matrix with column vectors orthogonal to the column

vectors of C†). Then, any vector x̃ such that Cx̃ = 0 can be written as
x̃ = Fỹ for some vector ỹ ∈ Rn−r. We will now show how to eliminate the
unobservable part of x from our problem. Define

Qγ =

⎧⎪⎪⎩Qxx − γ I Qxu

Qux Quu

⎫⎪⎪⎭ , (5.4)

and let V be given by

V =

⎧⎪⎪⎩ F C† 0

0 0 I

⎫⎪⎪⎭ . (5.5)
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5.2 The Static Minimax Team Decision Problem

Then,

J(x,u) − γ �x�2 =

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T Qγ

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭
=

⎧⎪⎪⎩C†y+ Fỹ
u

⎫⎪⎪⎭T Qγ

⎧⎪⎪⎩C†y+ Fỹ
u

⎫⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

VTQγ V

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
(5.6)

Let VTQγ V be partitioned as

VTQγ V = Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎫⎪⎪⎪⎪⎪⎪⎪⎭ ,
Z11 ∈ R(n−p)�(n−p), Z22 ∈ Rp�p, Z33 ∈ Rm�m.

(5.7)

Thus, we have

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T Qγ

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

Z

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
Then, the game (5.3) can be equivalently formulated as

inf
μ

sup
yi=Cix,x �=0

sup
ỹ

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

Z

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
subject to yi = Cix

ui = μ i(yi)

for i = 1, ...,N

(5.8)

PROPOSITION 5.2

Let Z be the matrix given by (5.7). Then, the value of the game

inf
μ

sup
yi=Cix,x �=0

sup
ỹ

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

Z

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
subject to yi = Cix, ui = μ i(yi), for i = 1, ...,N,

can be zero only if Z11 � 0.
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Proof If Z11 � 0, then ỹ can be chosen in the direction of the eigenvector
corresponding to the positive eigenvalue of Z11, which makes the value of

the game arbitrarily large. Hence, a necessary condition for the game to

have value zero is that Z11 � 0.

To ease the exposition of the chapter, we will consider the case where

Z11 ≺ 0. The case where Z11 is semi-definite can be treated similarly, but
is more technical, and therefore omitted here.

PROPOSITION 5.3

If Z11 ≺ 0, then

sup
ỹ

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

Z

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
⎧⎪⎪⎩ y
u

⎫⎪⎪⎭
(⎧⎪⎪⎩ Z22 Z23

Z32 Z33

⎫⎪⎪⎭−⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭ Z−111
⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭T
) ⎧⎪⎪⎩ y

u

⎫⎪⎪⎭ .
(5.9)

Proof Completion of squares gives⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭
T

Z

⎧⎪⎪⎪⎪⎪⎪⎪⎩
ỹ

y

u

⎫⎪⎪⎪⎪⎪⎪⎪⎭ =
(
ỹ+ F

⎧⎪⎪⎩ y
u

⎫⎪⎪⎭)T
Z11

(
ỹ+ F

⎧⎪⎪⎩ y
u

⎫⎪⎪⎭)
+

+

⎧⎪⎪⎩ y
u

⎫⎪⎪⎭
(⎧⎪⎪⎩ Z22 Z23

Z32 Z33

⎫⎪⎪⎭−⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭ Z−111
⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭T
) ⎧⎪⎪⎩ y

u

⎫⎪⎪⎭
(5.10)

where F is given by

F = Z−111

⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭T . (5.11)

Since Z11 ≺ 0, the quadratic form in (5.10) is maximized for

ỹ= −F

⎧⎪⎪⎩ y
u

⎫⎪⎪⎭ ,
which proves our proposition.

Introduce the matrix

Q =

⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭ = ⎧⎪⎪⎩ Z22 Z23

Z32 Z33

⎫⎪⎪⎭−⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭ Z−111
⎧⎪⎪⎩ Z21
Z31

⎫⎪⎪⎭T . (5.12)
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Recall that Z33 = Quu 	 0, and Z11 ≺ 0, which implies that Q22 	 0. Now
using Proposition (5.3), the game described by (5.8) reduces to

inf
μ

sup
yi=Cix,x �=0

⎧⎪⎪⎩ y
u

⎫⎪⎪⎭T Q⎧⎪⎪⎩ y
u

⎫⎪⎪⎭
subject to yi = Cix

ui = μ i(yi)

for i = 1, ...,N

(5.13)

Hence, we consider the problem of finding policies μ i(yi) such that
ui = μ i(yi) and ⎧⎪⎪⎩Cx

u

⎫⎪⎪⎭T Q⎧⎪⎪⎩Cx
u

⎫⎪⎪⎭ ≤ 0
for all x. Now we are ready to state the main result of the chapter where

we show linearity of the optimal decisions:

THEOREM 5.1

Let Q22 	 0 and yi = Cix, i = 1, ...,N. If there exist policies μ i(yi) such
that

sup
x �=0

⎧⎪⎪⎩ Cx

μ(y)

⎫⎪⎪⎭T ⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭ ⎧⎪⎪⎩ Cx

μ(y)

⎫⎪⎪⎭ ≤ 0, (5.14)

then there exist linear policies μ i(yi) = Kiyi that satisfy (5.14).

Proof Assume existence of a policy μ that satisfies (5.14). If yi = Cix = 0
for some i, then the optimal decision for player i is to set μ i(0) = 0. To
see this, take y = 0. Then

⎧⎪⎪⎩ y

μ(y)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ y

μ(y)

⎫⎪⎪⎭ = ⎧⎪⎪⎩ 0

μ(0)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ 0

μ(0)

⎫⎪⎪⎭ = μT (0)Q22μ(0).

Since Q22 	 0, we see that μ(0) = 0 is the optimal decision. In particular,
μ i(0) = 0 is the optimal decision for decision maker i.
Now suppose that yi �= 0 for i = 1, 2, ...,N. Define Ki(yi) as

Ki(yi) =
μ i(yi) ⋅ yTi
�yi�2

, yi �= 0, (5.15)
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for i = 1, ...,N. Also, define K (x) as

K (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1(C1x) 0 ⋅ ⋅ ⋅ 0

0 K2(C2x) ⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ KN(CNx)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5.16)

It is easy to see that (5.14) is equivalent to

xTCT
⎧⎪⎪⎩ I

K (x)

⎫⎪⎪⎭T ⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭ ⎧⎪⎪⎩ I

K (x)

⎫⎪⎪⎭Cx ≤ 0, ∀x �= 0. (5.17)

Hence, we have obtained an equivalent problem for which existence of

policies μ i is the same as existence of matrix functions K1(y1), ..., KN(yN),
and K (x) satisfying (5.16) and (5.17). Note that the problem of searching
for linear policies corresponds to that of searching for constant matrices

Ki(Cix) = Ki. Furthermore, (5.17) is equivalent to the problem of finding
a matrix function X �→ K such that for every X = xxT �= 0,

Tr CT
⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX ≤ 0. (5.18)

To see this, take a matrix K satisfying (5.18), for X = xxT �= 0. Then,
K (x) = K satisfies (5.17). Conversely, given K (x) satisfying (5.17), we
can take K = K (x) and (5.18) is satisfied.
Now if for a given matrix X �= 0, a matrix K is such that the inequality

in (5.18) is satisfied, then the same matrix K satisfies (5.18) with the
matrix X /Tr X instead of X . Thus, since we are considering matrices
X = xxT �= 0, it is enough to consider matrices X with Tr X = 1. Define
the set

S1 = {X : x ∈ Rn, X = xxT ,Tr X = 1}

Then (5.18) implies that

max
X∈S1

min
K
Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX ≤ 0. (5.19)

We will now extend the set of matrices X from S1 to the set

S = {X : X 
 0,Tr X = 1}.

That is, we will consider the extended problem

max
X∈S
min
K
Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX . (5.20)
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Clearly, we have that

max
X∈S1

min
K
Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX ≤
max
X∈S
min
K
Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX .
(5.21)

Now consider the extended minimax problem (5.20), and suppose that

max
X∈S
min
K
Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX = α

for some real number α . This is equivalent to

max
X∈S
min
K
Tr

{
CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX −α X

}
= 0 (5.22)

Note that

max
X∈S
min
K
Tr

{
CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX −α X

}

is the dual to the following convex optimization problem (see [11]):

min
K ,s

s

subject to CT
⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭C −α I � sI.
(5.23)

Strong duality holds since the primal problem (5.23) is convex (Q22 	 0)
and Slater’s condition is satisfied, see [11]. Thus, existence of a decision
matrix K (x) fulfilling (5.22) implies existence of a constant matrix K that
fulfills

max
X
Tr

{
CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX −α X

}
= 0. (5.24)

Now take any positive semi-definite matrix X of rank k ≤ n and TrX = 1.
Then, we can write X as

X =

k∑
i=1

λ i Xi,

79



Chapter 5. Minimax Team Decision Problems

where Xi = xix
T
i , �xi� = 1, x

T
i xj = 0 for i �= j, λ i > 0, and

∑k
i=1 λ i = 1

(see [30], pp.457). Let X∗ =
∑k
i=1 λ i Xi be

X∗ = argmax
X∈S
Tr

{
CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX −α X

}
.

This gives together with equation (5.24):

Tr CT
⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX∗ = Tr α X∗ = α .

Let X j be the matrix for which

Tr CT
⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CXi
is maximized among X1, ..., Xk. Then

α = Tr CT
⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX∗

=

k∑
i=1

λ iTr C
T

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CXi
≤

k∑
i=1

λ iTr C
T

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX j
= Tr CT

⎧⎪⎪⎩ I

K

⎫⎪⎪⎭T Q⎧⎪⎪⎩ I

K

⎫⎪⎪⎭CX j ≤ 0.
Hence, we have proved that the worst case is attained for a matrix X with

rank 1, and the extension of the set S1 to the set S does not increase the

cost. We conclude that the optimal decision can be taken to be a linear

decision with μ(y) = K y, and the proof is complete.

5.3 Computation of Optimal Team Decisions

In the previous section we showed that for the minimax team problem

given by (5.3), the linear policy u = KCx is optimal, where K is given by

K =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 0 ⋅ ⋅ ⋅ 0

0 K2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ KN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (5.25)
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5.4 Relation to the Stochastic Team Decision Problem

The problem of finding linear policies satisfying (5.17) can be written as
the following convex feasibility problem:

Find K

such that

⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭T ⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭ � 0. (5.26)

where Q22 	 0. The inequality in (5.26) can be written as

R − (KC − LC)TQ22(KC − LC) 
 0, (5.27)

where L = Q−122 Q21, and R = −C
TQ11C+C

TQ12Q
−1
22 Q21C. First note that

a necessary condition for (5.27) to be satisfied is that R 
 0. If R 
 0,
then using the Schur complement gives that the inequality in (5.27) can
be written as a linear matrix inequality (LMI):

⎧⎪⎪⎩ R (KC − LC)T

KC − LC Q−122

⎫⎪⎪⎭ 
 0,
which can be solved efficiently.

5.4 Relation to the Stochastic Team Decision Problem

In this section we consider the stochastic minimax team decision problem

min
K
max
E�x�2=1

E

{
xT

⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭T ⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭ ⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭ x
}
.

Taking the expectation of the cost in the stochastic problem above yields

the equivalent problem

min
K
max
TrX=1

Tr

⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭T ⎧⎪⎪⎩Q11 Q12

Q21 Q22

⎫⎪⎪⎭ ⎧⎪⎪⎩ C

KC

⎫⎪⎪⎭ X
where X is a positive semi-definite matrix, and is the covariance ma-

trix of x, i. e. X = E xxT . Hence, we see that the stochastic minimax
team problem is equivalent to the deterministic minimax team problem,

where nature maximizes with respect to all covariance matrices X of the

stochastic variable x with variance E �x�2 = E xT x = Tr X = 1.
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5.5 Team Decision Problems and Signaling

Consider a modified version of the static team problem posed in the previ-

ous section, where the observation yi for every decision maker i is affected

by the inputs of the other decision makers, that is

yi = Cix +
∑
j

Di juj ,

where Dij = 0 if decision maker j does not affect the observation yi. The
modified optimization problem becomes

inf
μ
sup
x

⎧⎪⎪⎩ x
u

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x
u

⎫⎪⎪⎭
subject to yi = Cix +

∑
j

Di juj

ui = μ i(yi)

for i = 1, ...,N.

(5.28)

The problem above is in general very complex if decision maker i does not

have access to the information about the decisions uj that appear in yi. We

say that the problem give rise to a signaling incentive for decision maker

j, which is the same definition as in Chapter 4. If we assume that decision

maker i has the value of uj available for every j such that Dij �= 0, then
she can form the new output measurement

y̌i = yi −
∑
j

Di juj = Cix,

which transforms the problem to a static team problem without signaling,

and the optimal solution is linear and can be found according to Theorem

5.1 and Section 5.3. Note that if decision maker i has the information

available that decision maker j has, then the decision uj is also available

to decision maker i.

5.6 Distributed H∞ Control

In this section, we will treat the distributed linear quadratic H∞ control
problem with information constraints, which can be seen as a dynamic

team decision problem. The idea is to transform the dynamic team prob-

lem to a static one, and then exploit information structures for every time

step.
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5.6 Distributed H∞ Control

1

2

3

4

Figure 5.1 The graph reflects the interconnection structure of the dynamics be-

tween four systems. The arrow from node 2 to node 1 indicates that system 1 affects

the dynamics of system 2 directly.

Consider an example of four dynamically coupled systems according to

the graph in Figure 5.1. The equations for the interconnected system are

given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k+ 1)

x2(k+ 1)

x3(k+ 1)

x4(k+ 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 0 A13 0

A21 A22 0 0

0 A32 A33 A34

0 0 0 A44

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k)

x2(k)

x3(k)

x4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k)

+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
u1(k)

u2(k)

u3(k)

u4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
u(k)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w1(k)

w2(k)

w3(k)

w4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
w(k)

.

(5.29)

For instance, the arrow from node 2 to node 1 in the graph means

that the dynamics of system 2 are directly affected by system 1, which

is reflected in the system matrix A, where the block A21 �= 0. On the
other hand, system 2 does not affect system 1 directly, which implies that

A12 = 0. Because of the “physical” distance between the subsystems, there
will be some constraints on the information available to each node.

The observation of system i at time k is given by

yi(k) = Cixi(k),
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Chapter 5. Minimax Team Decision Problems

where

Ci =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Ci1 0 0 0

0 Ci2 0 0

0 0 Ci3 0

0 0 0 Ci4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ . (5.30)

Here, Cij = 0 if system i does not have access to yj(k). The subsystems
could exchange information about their outputs. Every subsystem recieves

the information with some time delay, which is reflected by the intercon-

nection structure. As in the previous chapter, let Iki denote the set of ob-
servations yj(n) and control signals uj(n) available to node i up to time
k, n ≤ k, j = 1, ...,N.
Consider the following (general) dynamic team decision problem:

inf
μ
sup
w
J(u,w)

subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

yi(k) = Cix(k)

ui(k) = μ i : I
k
i �→ Rpi

for i = 1, ...,N,

(5.31)

where

J(u,w) = xT (M)Qf x
T (M) +

M−1∑
k=0

{⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭− γ �w(k)�2

}
,

(5.32)

Q =

⎧⎪⎪⎩Qxx Qxu

Qux Quu

⎫⎪⎪⎭ ∈ Sm+n+ ,

Qf 
 0, Quu 	 0, x(k) ∈ Rn, yi(k) ∈ Rmi , ui(k) ∈ Rpi . Now write x(k) and
y(k) as

x(k) = Atx(k− t) +
t∑
n=1

An−1Bu(k− n) +
t∑
n=1

An−1w(k− n),

yi(k) = CiA
tx(k− t) +

t∑
n=1

CiA
n−1Bu(k− n) +

t∑
n=1

CiA
n−1w(k− n).

(5.33)
Note that the summation over n is defined to be zero when t = 0. The
next theorem gives conditions where the signaling incentive is eliminated,

and states that under these condisions, an optimal decision is linear in

the observations:
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5.6 Distributed H∞ Control

THEOREM 5.2

Consider the optimization problem given by (5.31). The problem has no
signaling incentive if

Inj ⊆ Iki for [CiA
nB] j �= 0 (5.34)

for all n such that 0 ≤ n < k, and k = 0, ...,M − 1.
In addition, an optimal solution to the optimization problem given by

(5.31) is linear in the observations Iki if condition (5.34) is satisfied, and
has a solution that can be found by solving a linear matrix inequality.

Proof Introduce

x̄ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w(M − 1)

w(M − 2)

...

w(0)

x(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, ūi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(M − 1)

ui(M − 2)

...

ui(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Then, we can write the cost function J(x,u) as⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭T Q̄⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭ ,
for some symmetric matrix Q̄ with

Q̄ =

⎧⎪⎪⎩ Q̄xx Q̄xu

Q̄ux Q̄uu

⎫⎪⎪⎭ ,
and Q̄uu 	 0. Consider the expansion given by (5.33). The problem here
is that yi(k) depends on previous values of the control signals u(n) for
n = 0, ..., k−1. The components uj(n) that yi(k) depends on are completely
determined by the structure of the matrix [CiA

nB] j . This means that, if for
every node i we have Inj ⊆ Iki for [CiA

nB] j �= 0, then there is no signaling
incentive. Thus, we have proved the first statement of the theorem.

Now if condition (5.34) is satisfied, we can form the new output mea-
surement

y̌i(k) = yi(k) −

k∑
n=1

CiA
n−1Bu(k− n)

= Akx(0) +

k∑
n=1

CiA
n−1w(k− n).

(5.35)
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Let

ȳi(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y̌i(k)

y̌i(k− 1)

...

y̌i(0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

With these new variables introduced, the optimization problem given by

equation (5.31) reduces to the following static team decision problem:

inf
μ
sup
x̄

⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭T Q̄⎧⎪⎪⎩ x̄
ū

⎫⎪⎪⎭
subject to ui(k) = μ i(ȳi(k)), k = 0, ...,M − 1

for i = 1, ...,N.

(5.36)

and the optimal solution ū is linear according to Theorem 5.1, and can

be obtained by solving a linear matrix inequality as described in Section

5.3.

In fact, using the static team formulation reveals a broad class of infor-

mation structures that lead to convex problems. It turns out to be enough

to exchange information with the neighbours on the graph. We illustrate

this by an example:

EXAMPLE 5.1

Consider the example presented at the beginning of this section. The dy-

namics of the second subsystem is given by

x2(k+ 1) = A21x1(k) + A22x2(k) + B2u2(k) +w2(k).

If at time k+1, subsystem 2 has information about the state of its neigh-
bour x1(k), then it has knowledge about the value of w2(k):

w2(k) = x2(k+ 1) − A21x1(k) − A22x2(k) − B2u2(k).

Hence, if we restrict the control law u2(k + 1) to be a function of x1(k),
x2(k), u2(k) (information about the state of its neighbour and its own state
and control input at time step k), and restrict it to be based only on the
information about w2(k), then we can set u2(k+1) = μ2(w2(k)). The same
information restriction can be similarly imposed on the other subsystems.

Just as before, the dynamic H∞ team problem can be reduced to a static
team problem (5.36), where ui(k + 1) = μ i(wi(k)). This problem has an
optimal solution that is linear and can be found by solving a linear matrix

inequality.
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6

Optimal Distributed Linear
Quadratic Control

In the previous chapters, we considered distributed stochastic and deter-

ministic linear quadratic dynamic team problems over a finite horizon.

In this chapter, the problem of optimal distributed H 2 and H∞ control is
considered over an infinite horizon (the steady state problem). A general
control problem setup is given, where constraints on information of the

external signals (such as disturbances) are imposed. Necessary and suf-
ficient conditions are given for stabilizability of distributed control prob-

lems with delayed measurements. A novel approach to the H 2 and H∞
control problem is developed. The approach is based on the crucial idea

of disturbance feedback, which transforms a state feedback problem to a

feedforward problem. The feedforward problem is transformed to a filter-

ing problem, which is then solved using the methods of Chapter 3. The

new approach is applied to find the optimal state feedback control law for

information constrained control problems.

6.1 Introduction

Control of dynamical systems with information structures imposed on

the decision maker(s) has been very challenging for decision theory re-
searchers. Even in the simple linear quadratic static decision problem, it

has been shown that complex nonlinear decisions could outperform any

given linear decision (see [53]). Important progress was made for the
stochastic static team decision problems in [38] and [42]. These results
were later used to solve the one step delay control problem in [48], and
a special two player deterministic version was developed in [16] to solve
the one step delay H∞ control problem. New information structures were
explored in [26] for the stochastic linear quadratic finite horizon. These
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Chapter 6. Optimal Distributed Linear Quadratic Control

were recently explored in [4], [46], and [47] to show that the constrained
linear optimal decision problem, for infinite horizon linear quadratic con-

trol, can be posed as an infinite dimensional convex optimization problem,

given that the system considered is stable. The approach is very similar

to the problem of symmetric controllers discussed earlier in [56]. The dis-
tributed stochastic linear quadratic team problem was revisited in [22],
which generalizes previous results for tractability of the dynamic team

decision problem with information constraints. An analog deterministic

version of the stochastic team decision problem was solved in the previ-

ous section, which showed that for the finite horizon linear quadratic H∞
control problem with bounds on the information propagation, the optimal

decision is linear and can be found by solving a linear matrix inequality.

In [43], the stationary state feedback stochastic linear quadratic control
problem was solved using state space formulation and covariance con-

straints, under the condition that all of the subsystems have a common

past. With a common past, we mean that all subsystems have information

about the global state from some time step in the past. The problem was

posed as a finite dimensional convex optimization problem. The stationary

output feedback version was solved in [44] and [23]. Also, [23] generalizes
the result to the finite horizon case with general non-convex quadratic

constraints. Other approaches explore homogeneous systems on graphs

([3], [15], [20]). Heterogeneous systems over graphs were considered us-
ing approximate methods in [19], [35], [36], and [32].

6.2 Structured Linear Optimal Control

Consider a linear operator P = P(q) ∈ RLα with state space realization

P :=

⎧⎪⎨
⎪⎩
xk+1 = Axk + Buk +wk

zk = C1xk + D1uk

yk = C2xk

(6.1)

where α = 2 or α = ∞. The inputs are uk, wk and the outputs are yk,
zk. Here, yk is the measured output and zk is the controlled output. The

classical (or centralized) linear quadratic optimal control problem is to
find a stabilizing linear optimal control law uk = K (q)yk such that a
quadratic performance index is minimized with respect to {wk}, where
{wk} is the disturbance injected in the system. There are many ways of
solving the problem above. We choose to approach the problem by using

disturbance feedback. The disturbance feedback approach is reminiscent

of the Youla parametrization (or Q-parametrization) [57], although, no

88



6.2 Structured Linear Optimal Control

y u

PzuzwP
z w

K

PyuPyw

Figure 6.1 Standard feedback setting.

parametrization is used. Define the following linear systems:

Pzw :=

{
xwk+1 = Ax

w
k +wk

zwk = C1x
w
k

Pzu :=

{
xuk+1 = Ax

u
k + Buk

zuk = C1x
u
k + D1uk

Pyw :=

{
xwk+1 = Ax

w
k +wk

ywk = C2x
w
k

Pyu :=

{
xuk+1 = Ax

u
k + Buk

yuk = C2x
u
k

(6.2)

Note that xk = x
w
k + x

u
k , zk = z

w
k + z

u
k and yk = y

w
k + y

u
k . Hence, we have

separated the signals xk, zk and yk into two modes; one corresponding to

the disturbance w and the other to the controller u. Note that the controller

is restricted to be a linear function of the outputs yk, yk−1, .... In turn, the

outputs will be a linear combination of the disturbance w. To avoid the

controller’s dual effect (the signaling effect), we will let the controller be
a function of the output sequence ywk of the disturbance process given

by Pyw. This is done in practice by taking the difference yk − y
u
k , which is

possible since we have access to both the process output yk and the effect of

the controller output yuk (the controller saves the value of x
u
k at every time

step, then we obtain yuk = Cx
u
k). Thus, we will restrict the control law to be

uk = Q(q)y
w
k , where Q ∈ RLα . Hence, we get that z = (Pzw + PzuQPyw)w,

and the optimization problem becomes

min
Q
�Pzw + PzuQPyw�α

where α = 2 or∞. Compare with figures 6.1 and 6.2. We can put different
constraints on the structure of the Q parameter. For instance, we can

require that Q ∈ S, where S is the set of elements Q which have the
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y u

wz

Q

0

Pzu
Pyw
zwP

w

Figure 6.2 Feedback with respect to the mode of the output corresponding to the

disturbance.

structure Qij(q) = qij(q) fi j(q), where fi j(q) is a given operator, and qij(q)
is to be optimized.

6.3 Distributed Control with Delayed Measurements

Consider an example of four dynamically coupled systems according to the

graph in Figure 2.1. The equation for the interconnected systems is then

given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k+ 1)

x2(k+ 1)

x3(k+ 1)

x4(k+ 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k+1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
A11 0 A13 0

A21 A22 0 0

0 A32 A33 A34

0 0 0 A44

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
A

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
x1(k)

x2(k)

x3(k)

x4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
x(k)

+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
B1 0 0 0

0 B2 0 0

0 0 B3 0

0 0 0 B4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
u1(k)

u2(k)

u3(k)

u4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
u(k)

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
w1(k)

w2(k)

w3(k)

w4(k)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
w(k)

(6.3)

For instance, the arrow from node 2 to node 1 in the graph means that the

dynamics of system 2 are directly affected by system 1, which is reflected

in the system matrix A where the element A21 �= 0. On the other hand,
system 2 does not affect system 1 directly, which means that A12 = 0.
Because of the “physical” distance between the subsystems, there will be

some constraints on the information available to each node.
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Every subsystem i measures at time k its own output

yi(k) = Cixi(k).

The nodes are allowed to exchange information about their own outputs,

that may be subject to some transmission delays. Let Iki denote the set of
observations yj(n) and control signals uj(n) available to node i up to time
k, n ≤ k, j = 1, ...,N. We will start by considering the the problem of full
state measurement, that is, Ci = I for all i.
Using a graph theoretic formulation makes it easy to describe how

every subsystem is affected by the disturbance and the control signals of

the other subsystems. The following result is a special case of Theorem

4.3 and Theorem 5.2, but is formulated and proved differently:

THEOREM 6.1

Consider a linear system given by x(k+1) = Ax(k)+Bu(k)+w(k), with A
and B partitioned into blocks according to equation (2.5). The disturbance
wi(k − t) and control signal Biui(k − t) affect the state xj(k + 1) if and
only if [At] ji �= 0. In particular, if A is partitioned symmetrically in N�N
blocks, and the block [At] ji = 0 for t = 1, ...,N − 1, then wi(k − t) and
ui(k− t) never affect xj(k+ 1), for every t ∈ N and t ≤ k.

Proof We can write the state of the whole system as

x(k+ 1) = Ax(k) + Bu(k) +w(k)

= At+1x(k− t) + (I + Aq−1 + ⋅ ⋅ ⋅+ Atq−t)(Bu(k) +w(k))
(6.4)

Then we see that (Biui(k − t) + wi(k − t)) affects xj(k + 1) if and only
if [At] ji �= 0. Also, if [A

t] ji = 0 for t = 1, ...,n − 1, then [A
t] ji = 0 for all

t ∈ N according to Corollary 2.1. Hence, wi(k− t) and ui(k− t) never affect
xj(k+ 1), for all t ∈ N.

We will introduce an information structure that will be the basis for all

information structures that will be treated in this chapter. The main idea

is to put constraints on the information available about the disturbance

entering the system, rather than on the state of the system. The basic infor-

mation structure that will be required is that, at time step k, every system

i has access to information about the disturbance wi(t), for all t < k. This
requires that system i has access to its own state up to time k, and to the

states of its neighbours on the graph up to time k− 1. To show the idea,
take the example given by equation (6.3) in the beginning of the section.
We can see that if system 1 has access to x1(k), x1(k− 1), and x3(k− 1),
then it can build x1(k) − A11x1(k− 1) − A13x3(k− 1) = w1(k− 1). Then,
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the information that every system i transmits is wi(k− 1), which will be
received by other nodes with some delay. An information structure that

has been studied first in [26], and recently in [4], [47], and [43], is when
information propagates at least as fast as the dynamics on the graph, and

is called a partially nested information structure.

DEFINITION 6.1

We say that a given delayed information structure is partially nested if

Itj ⊂ Iki when uj(t) affects the information set Iki .

The definition above of partially nested information structure states that

if the decision of system j at time t affects the dynamics of system i at

time k, then system i has access to the information of system j up to time

step t.

6.4 Stabilizability

We will consider the partially nested information structure (see Definition
6.1) to explain how to analyze stabilizability with respect to disturbance
feedback. Consider again the example given by (6.3). It can be written as

x(k+ 1) =

⎧⎪⎪⎩ Ā �

0 A44

⎫⎪⎪⎭ x(k) + Bu(k) +w(k)
where Ā is the upper left block of A, that is

Ā =

⎧⎪⎪⎪⎪⎪⎪⎪⎩
A11 0 A13

A21 A22 0

0 A32 A33

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
Then we can see (using Theorem 6.1 for instance) that the disturbances
w1(t),w2(t),w3(t) and control signals u1(t),u2(t),u3(t) never affect x4(k),
while they all affect x1(k), x2(k), x3(k) for t ≤ k− 3. Also, w4(t) and u4(t)
affect system 1, 2 and 3 for all t ≤ k− 4. Then, we require that system 1,
2, and 3 has access to x(t) and u(t − 1) for t ≤ k− 3. Let Ik−3 denote the
set of information containing (x(t),u(t − 1)) for t ≤ k − 3. Then, Ik−3 ⊂
Ik−31 , I

k−3
2 , I

k−3
3 , that is, system 1, 2, and 3 have a common past. Also, system

4 requires that u4(t) and w4(t) are available at time k for all t ≤ k − 1,
that is u4(t − 1), x4(t) ∈ Ik4 for t ≤ k − 1. We will give conditions on the
system parameters in order for a controller with the delayed information

structure above to exist. First we need:
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THEOREM 6.2

Consider a linear system with N-step delayed output measurement{
xk+1 = Axk + Buk

yk = Cxk−N .
(6.5)

The following two statements are equivalent:

(i) (A, B) is stabilizable and (C, A) is detectable.

(ii) System (6.5) can be stabilized by output feedback.

Proof (i) � (ii)
Introduce

zk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk

yk−1
...

yk−N

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

We can write system (6.5) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A 0 ⋅ ⋅ ⋅ 0 0

C 0 ⋅ ⋅ ⋅ 0 0

0 I ⋅ ⋅ ⋅ 0 0
...
...
. . .

...
...

0 0 ⋅ ⋅ ⋅ I 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Az

zk +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

0

0
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Bz

uk

yk =
⎧⎩ 0 0 ⋅ ⋅ ⋅ I

⎫⎭︸ ︷︷ ︸
N+1 blocks

zk = Czzk

(6.6)

The matrix
⎧⎩ λ I − Az Bz

⎫⎭ has full row rank for all λ ∈ C\D since

(A, B) is stabilizable, and ⎧⎪⎪⎩ λ I − Az

Cz

⎫⎪⎪⎭
has full column rank for all λ ∈ C\D, since (C, A) is detectable. We de-
duce that system (6.6) is stabilizable and detectable, which implies that
a stabilizing output feedback exists.
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(ii) � (i)

The row rank of
⎧⎩ λ I − Az Bz

⎫⎭ decreases if and only if the row

rank of
⎧⎩ λ I − A B

⎫⎭ decreases, for λ ∈ C\D. Hence stabilizability of

(Az, Bz) implies stabilizability of (A, B). A similar argument shows that
detectability of (Cz, Az) implies detectability of (C, A), and we are done.

According to Proposition 2.2, we can write the A matrix for a system

in a block triangular form as in (2.2) after a suitable permutation of its
blocks. The graphs of the diagonal blocks are then strongly connected

(the adjacency matrices of the diagonal blocks are irreducible). Now we
are ready to state:

THEOREM 6.3

Let P be a linear system with state space realization

P :=

{
x(k+ 1) = Ax(k) + Bu(k) +w(k)

y(k) = Cx(k)

where

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 A12 ⋅ ⋅ ⋅ A1 j

0 A2 ⋅ ⋅ ⋅ A2 j

...
...

. . .
...

0 0 ⋅ ⋅ ⋅ Ar

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 0 ⋅ ⋅ ⋅ 0

0 B2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ Br

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

and

C =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 0 ⋅ ⋅ ⋅ 0

0 C2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ Cr

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Then, under a partially nested information structure, the system P is

stabilizable by linear controllers if and only if (Aj , Bj) is stabilizable and
(Cj , Aj) is detectable, for j = 1, ..., r.
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Proof Since we are considering linear controllers, we will let every sub-

controller ui(k) be a sum of linear functions of the disturbance correspond-

ing to each block of the system, that is ui(k) =
∑r
j=1 u

j
i (k), where

u
j
i (k) = μ ji (w̄j(k− dij)),

w̄j(k− dij) = (wj(k− dij),wj(k− dij − 1), ...) ,

and dij is the time it takes for wj to affect xi. Then, we can write x(k) as
the sum of r modes, x(k) =

∑r
j=1 x

j(k), where xj is the state of system

Gj(q) with output y
j = Cxj , and the dynamics of xj are given by

xj(k+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 A12 ⋅ ⋅ ⋅ A1 j ⋅ ⋅ ⋅ 0

0 A2 ⋅ ⋅ ⋅ A2 j ⋅ ⋅ ⋅ 0

...
...

. . .
...

. . .
...

0 0 ⋅ ⋅ ⋅ Aj ⋅ ⋅ ⋅ 0

...
...

. . .
...

. . .
...

0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Fj

x j(k)+

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

0 B2 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

...
...
. . .

...
. . .

...

0 0 ⋅ ⋅ ⋅ Bj ⋅ ⋅ ⋅ 0

...
...
. . .

...
. . .

...

0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Gj

uj(k) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0
...

wj(k)

...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.7)

The partially nested information structure implies that the controllers

ui(k), i = 1, ..., j, have common information about w̄j(k− dj − 1), for some
dj . Equivalently, u

j(k) has information about xj(k− dj), x
j(k− dj − 1), ...

But then, controlling the system Gj is a dj -step delay problem. Now we

will prove the statement of the theorem by induction over j. For j = 1,
G1 is stabilizable if and only if (A1, B1) is stabilizable and (C1, A1) is
detectable. Assume that (Ai, Bi) is stabilizable and (Ci, Ai) is detectable
for i = 1, ..., j − 1. Then, Gj is stabilizable only if (Aj , Bj) is stabilizable
and (Cj , Aj) is detectable. On the other hand, if (Aj , Bj) is stabilizable and
(Cj , Aj) is detectable, then Gj is stabilizable, since (Ai, Bi) is stabilizable
and (Ci, Ai) is detectable for i = 1, ..., j − 1 by the induction hypothesis,
and the proof is complete.
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6.5 Stabilizing Controllers

We will now show how to find a stabilizing controller for the control prob-

lem with N-step delayed measurements. Consider the system

P :=

⎧⎪⎨
⎪⎩
xk+1 = Axk + Buk +wk

zk = C1xk + D1uk

yk = C2xk,

where (A, B) is stabilizable and (C2, A) is detectable. Writing the system
above as a transfer function, we get

⎧⎪⎪⎩ zk
yk

⎫⎪⎪⎭ = P⎧⎪⎪⎩wk
uk

⎫⎪⎪⎭ = ⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭⎧⎪⎪⎩wk
uk

⎫⎪⎪⎭ .
We will now construct a stabilizing controller K (q) based on the delayed
measurement yk−N = C2xk−N , that is, uk = K (q)q

−N yk. To design a con-

troller based on the delayed measurement yk−N , we need to include the

delayed states, and then write a modified version of P with output yk−N
instead of yk:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄k+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A 0 ⋅ ⋅ ⋅ 0 0

C2 0 ⋅ ⋅ ⋅ 0 0

0 I ⋅ ⋅ ⋅ 0 0
...
...
. . .

...
...

0 0 ⋅ ⋅ ⋅ I 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Ad

x̄k +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B

0

0
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭︸ ︷︷ ︸
Bd

uk +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I

0

0
...

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
wk

yk−N =
⎧⎩ 0 0 ⋅ ⋅ ⋅ I

⎫⎭︸ ︷︷ ︸
N+1 blocks

x̄k

Obviously, this is just a standard linear quadratic control problem that can

be readily solved using standard tools. Closing the loop with the stabilizing

controller yields a closed-loop system

⎧⎪⎪⎩ zk
yk

⎫⎪⎪⎭ = T⎧⎪⎪⎩wk
uk

⎫⎪⎪⎭ = ⎧⎪⎪⎩Tzw Tzu

Tyw Tyu

⎫⎪⎪⎭⎧⎪⎪⎩wk
uk

⎫⎪⎪⎭ ,
with T stable. Then, all stabilizing controllers can be parametrized by

Q(q) ∈ S: Tzw + TzuQTyw ∈ RH α .
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6.6 A New Approach to H 2 and H∞ State Feedback

Consider the problem of state feedback control of the system⎧⎪⎪⎩ z
y

⎫⎪⎪⎭ = P⎧⎪⎪⎩w
u

⎫⎪⎪⎭
where

P =

⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩
A I B

C

I

0 D

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
The aim is to minimize the Hα norm of the linear operator from the dis-

turbance w to the performance index z, for α = 2 or α = ∞. As discussed
in section 6.3, we will consider the problem of feedback with respect to

the disturbance. Since we consider constraints on the disturbance, we

will also restrict the controller to be a function of the disturbance, that

is, uk = −R(q)q
−1wk. This can be compared to the control with respect to

the disturbance driven output discussed in section 6.2. Since we also have

that uk = QPywwk = Q(qI − A)
−1wk = Q(I − Aq

−1)−1q−1wk, the relation
between the filters Q and R is obviously given by R = −Q(I − Aq−1)−1.
The optimization problem we will be considering is then:

min
R∈S

�Pzw − PzuRq
−1�α

which is a feedforward problem. When we obtain the optimal R, we can

recover Q by setting Q = −R(I − Aq−1). Note that minimizing �Pzw −
PzuRq

−1�α with respect to R is equivalent to minimizing its transpose
�PTzw−R

T PTzuq
−1�α , with respect to R

T . But minimizing �PTzw−R
TPTzuq

−1�α
with respect to RT is a filtering problem, see Figure 6.3. Now

PTzw =

⎧⎪⎪⎪⎪⎩ AT CT

I 0

⎫⎪⎪⎪⎪⎭ ,
and

PTzu =

⎧⎪⎪⎪⎪⎩ AT CT

BT DT

⎫⎪⎪⎪⎪⎭ .
Clearly, the filtering problem is to find an optimal filter RT that finds

the optimal state estimate of PTzu, with respect to its output delayed with

one time step. An optimal filter is the Kalman filter, for both α = 2 and
α = ∞, see Section 3.2. Introduce
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RT TPzu

e
PT
zw

+
w

−q−1

Figure 6.3 The filtering problem obtained from the feedforward problem.

⎧⎪⎪⎩ W1 W12

W21 W2

⎫⎪⎪⎭ = ⎧⎪⎪⎩ CT
DT

⎫⎪⎪⎭ ⎧⎪⎪⎩ CT
DT

⎫⎪⎪⎭T

=

⎧⎪⎪⎩ CTC CTD

DTC DTD

⎫⎪⎪⎭ .
Then, the Kalman filter RT has the state space realization

RT =

⎧⎪⎪⎪⎪⎩ AT − KT BT KT

I 0

⎫⎪⎪⎪⎪⎭ ,
where

KT = (ATSA+W12)(B
TSB +W2)

−1,

and S is the symmetric and positive definite solution to the Riccati equa-

tion

S = ATSA+W1 − (A
TSB +W12)(B

TSB +W2)
−1(ATSB +W12)

T .
(6.8)

This gives the optimal filter R:

R =

⎧⎪⎪⎪⎪⎩ A− BK I

K 0

⎫⎪⎪⎪⎪⎭ .
Then, the optimal control law is given by

u = −Rq−1w

= −R(I − Aq−1)yw

= −R(I − Aq−1)(y− Pyuu).

Noting that the state space realization of the transfer function Pywu from⎧⎪⎪⎩w
u

⎫⎪⎪⎭ to the output y is given by
Pywu :=

{
xk+1 = Axk + Buk +wk

yk = xk,
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y

u

w

Pywu

K−

Figure 6.4 The closed loop of Pyuw with the control law u = Rq
−1w.

we can see that u = −Kx yields a feedback with respect to the disturbance
which is exactly u = −Rq−1w. Hence, we conclude that u = −Rq−1w is
equivalent to the state feedback law u = −Kx (see Figure 6.4). We have
arrived at:

THEOREM 6.4

Consider the system⎧⎪⎪⎩ z
y

⎫⎪⎪⎭ = P⎧⎪⎪⎩w
u

⎫⎪⎪⎭ = ⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭⎧⎪⎪⎩w
u

⎫⎪⎪⎭ .
where ⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩
A I B

C

I

0 D

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭ .
with state x. Assume that (A, B) is stabilizable. Then, the optimal con-
troller u = Q(y− Pyuu) that minimizes the norm �Pzw + PzuQPyw�α for
α = 2 or α = ∞, is obtained with Q = −R(I − Aq−1), where

R =

⎧⎪⎪⎪⎪⎩ A− BK I

K 0

⎫⎪⎪⎪⎪⎭ ,
and KT is given by

KT = (ATSA+ CT D)(CTSC + DTD)−1,

with S as the symmetric positive definite solution to the Riccati equation

S = ATSA+ CTC − (ATSB + CTD)(BTSB + DTD)−1(ATSB + CTD)T .
(6.9)

Furthermore, the optimal controller u = QPyww is equivalent to the state
feedback law u = Kx.
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It is striking that the optimal control law coincide for both the H 2 and
H∞ state feedback control problem. The solution shows also that duality
between state feedback control and filtering holds under the H∞ setting,
just like the duality in H 2 control and filtering.

6.7 Optimal Distributed State Feedback Control

Consider again the system

⎧⎪⎪⎩ z
y

⎫⎪⎪⎭ = P⎧⎪⎪⎩w
u

⎫⎪⎪⎭ ,
where

P =

⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩
A I B

C

I

0 D

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭ ,
and

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 0 ⋅ ⋅ ⋅ 0

0 B2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ BN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Let S be the set of all transfer matrices F ∈ RLα that have the same

delay structure as Pyw(q). That is, Fij(q) = Fij(q)q
−τ i j if [Pyw(q)]i j has a

factor equal to q−τ i j . The aim is to find a controller u = Qyw = Q(y− yu) =
Q(y−Pyuu) = −Rq

−1w that minimizes �Pzw+PzuQPyw�
2
α , α = 2 or α = ∞,

Q(q) ∈ S. As in the previous section, the control problem can be written
as a feedforward problem:

min
R∈S
�Pzw − PzuRq

−1�α

where

S = {F : fi j ∈RLα , Fij = fi jq
−τ i j} .

By taking the transpose, the problem above can be transformed to a dis-

tributed filtering problem that can be solved as in Section 3.4. Then, the

optimal Q can be recovered by setting Q = −R(I − Aq−1). We summarize
the discussion above:

100



6.7 Optimal Distributed State Feedback Control

THEOREM 6.5

Consider the linear system ⎧⎪⎪⎩ z
y

⎫⎪⎪⎭ = P⎧⎪⎪⎩w
u

⎫⎪⎪⎭ ,
where

P =

⎧⎪⎪⎩ Pzw Pzu

Pyw Pyu

⎫⎪⎪⎭ =
⎧⎪⎪⎪⎪⎪⎪⎪⎩
A I B

C

I

0 D

0 0

⎫⎪⎪⎪⎪⎪⎪⎪⎭ ,

B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 0 ⋅ ⋅ ⋅ 0

0 B2 ⋅ ⋅ ⋅ 0

...
...
. . .

...

0 0 ⋅ ⋅ ⋅ BN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Assume that P is stabilizable under partially nested information struc-

ture, and let Pyw ∈ S, where

S = {F : fi j ∈ RLα , Fij = fi jq
−τ i j} .

Then, the optimal control law is given by u = −R(I − Aq−1)(y− Pyuu),
where RT is the optimal distributed filter, obtained using Theorem 3.5,

that solves

min
R∈S
�PTzw − R

T PTzuq
−1�α ,

for α = 2 or α = ∞.

Discussion on the Optimal Distributed Controller Structure

We will now present the equations for the optimal distributed controllers

obtained in Theorem 6.5.

Recall that the optimal distributed state feedback control problem is

transformed to an optimal distributed filtering problem

min
R∈S
�PTzw − R

T PTzuq
−1�α ,

for α = 2 or α = ∞. Set H = PTzw, G = P
T
zu, and F = R

T . Then, Theorem

3.5 gives that the optimal filter F is given by

F =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩
F1
...

FN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎭ ,
101



Chapter 6. Optimal Distributed Linear Quadratic Control

where Fi has the state space realization for i = 1, ...,N:⎧⎪⎪⎪⎪⎩ Ae − KiEi Ki

Γi 0

⎫⎪⎪⎪⎪⎭ , (6.10)

with

Γi =
⎧⎩ 0 ⋅ ⋅ ⋅ 0 I 0 ⋅ ⋅ ⋅ 0,

⎫⎭
where the identity matrix I in Γi is in block position i,

Ki = (AeSiE
T
i + B

T
e Di)(EiSiE

T
i + D

T
i Di)

−1,

and Si is the symmetric positive definite solution to the Riccati equation

Si = AeSiA
T
e + BeB

T
e −

− (AeSiE
T
i + B

T
e Di)(EiSiE

T
i + D

T
i Di)

−1(AeSiE
T
i + B

T
e Di)

T .

Since RT = F, we get

R =
⎧⎩ FT1 FT2 ⋅ ⋅ ⋅ FTN

⎫⎭ .
Let

w =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

w2
...

wN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Then
u = −Rq−1w

= −

N∑
i=1

FTi q
−1wi.

We can see that the controller can be written as the sum of N controllers,

u =
∑N
i=1 ui, with ui = −F

T
i q
−1wi as the the feedback law with respect to

the disturbance wi entering system i. Taking the transpose of (6.10) gives
the state space realization of FTi :⎧⎪⎪⎪⎪⎩ ATe − E

T
i K

T
i ΓTi

KTi 0

⎫⎪⎪⎪⎪⎭ . (6.11)

Let

Σi := zi(k+ 1) = A
T
e zi(k) + E

T
i ui(k) + Γiwi(k).
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It is easy to verify that ui(k) = −K
T
i zi(k) and ui(k) = −F

T
i q
−1wi(k)

are equivalent. Hence, the optimal distributed controller ui = −F
T
i q
−1wi

is equivalent to the state feedback controller, with respect to the mode

generated by wi, for i = 1, 2, ...,N.
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7

Generalized Linear
Quadratic Control

This chapter considers the problem of stochastic finite and infinite horizon

linear quadratic control under power constraints. Problems such as linear

quadratic optimal control with information constraints are special cases of

the problem considered. The calculations of the optimal control law can be

done off-line as in the classical linear quadratic Gaussian control theory

using dynamic programming, which turns out to be a special case of the

new theory developed in this chapter. A numerical example is solved using

the new methods.

7.1 Introduction

In this chapter we consider the problem of linear quadratic control with

power constraints. Power constraints are very common in control prob-

lems. For instance, we often have some limitations on the control signal,

which we can express as E uTu ≤ γ . Also, Gaussian channel capacity lim-
itation can be modeled through power constraints. There has been much

work on control under power constraints, see [39], [12], [45], [55]. In [43], it
was shown how to use power constraints for distributed state feedback con-

trol. What is common to previously published papers is that they solve the

stationary state feedback infinite horizon case using convex optimization.

Output feedback is only discussed in [45], where the quadratic (power)
constraints are restricted to be convex.

The aim of this chapter is to give a complete solution to the non-

stationary and finite horizon problem for linear systems, including time

varying, with power constraints. The solution is obtained using dynamic

programming. A solution of the infinite horizon linear quadratic control

problem is derived from the finite horizon results. Also, the output feed-
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7.2 Optimal State Feedback Control through Duality

back problem with non-convex quadratic constraints is solved.

The outline of the chapter is as follows. In Section 7.2, we introduce

a novel approach for solving the state-feedback linear quadratic control

problem. Relations to the classical approach is discussed in Section 7.3.

The new approach is then used in Section 7.4 to give the main result

of the chapter, the finite horizon state-feedback linear quadratic control

with power constraints. We show how a solution to the constrained infinite

horizon control problem can be derived in Section 7.5. The constrained

output feedback control problem is solved in Section 7.6. A numerical

example is given in Section 7.7.

7.2 Optimal State Feedback Control through Duality

In this section, we will derive a state feedback solution to the classical

linear quadratic control problem using duality. This method will be used

to solve the problem of linear quadratic optimal control with power con-

straints. Consider the linear quadratic stochastic control problem

min
μk
E xT (N)Qxxx(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

E w(k)xT (l) = 0,∀l ≤ k

E w(k)wT (k) = Vww(k)

u(k) = μk(x(0), ..., x(k))

(7.1)

where Q 	 0 and it is partitioned according to the dimensions of x and u
as

Q =

⎧⎪⎪⎩Qxx Qxu

QTxu Quu

⎫⎪⎪⎭ .
Without loss of generality, we assume that

E x(0) = E w(k) = 0

E x(0)xT (0) = Vww(k) = I
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The quadratic cost in (7.1) can be written as

E {Tr Qxxx(N)x
T (N)} +

N−1∑
k=0

E

{
Tr Q

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T
}
=

= Tr Qxx{E x(N)x
T (N)} +

N−1∑
k=0

Tr Q

{
E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T
}

= Tr QxxVxx(N) +

N−1∑
k=0

Tr QV (k),

where

V (k) =

⎧⎪⎪⎩ Vxx(k) Vxu(k)

VTxu(k) Vuu(k)

⎫⎪⎪⎭ = E ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T .
Let F ∈ Rn�(m+n) be

F =
⎧⎩ I 0⎫⎭ .

Then,

Vxx(k) = FV (k)F
T .

The system dynamics implicate the following recursive equation for the

covariance matrices V (k)

FV (k+ 1)FT = Vxx(k+ 1) = E x(k+ 1)x
T (k+ 1) =

= E (Ax(k) + Bu(k) +w(k))(Ax(k) + Bu(k) +w(k))T

= E

{⎧⎩ A B

⎫⎭⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T ⎧⎩ A B

⎫⎭T +w(k)wT (k)
}

=
⎧⎩ A B

⎫⎭V (k)⎧⎩ A B
⎫⎭T + I.

The initial condition Vxx(0) = E x(0)x
T (0) = I can be written as

FV (0)FT = I.

We summarize the discussion above:
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PROPOSITION 7.1

The linear quadratic problem (7.1) is equivalent to the covariance selection
problem

min
V (0),...,V (N)

Tr QxxVxx(N) +

N−1∑
k=0

Tr QV (k)

subject to V (k) 
 0, FV (0)FT = I⎧⎩ A B
⎫⎭V (k)⎧⎩ A B

⎫⎭T + I = FV (k+ 1)FT
(7.2)

In particular, it is convex in V (0), ...,V (N).

The dual problem of (7.2) is given by

max
S(0),...,S(N)

min
V (0),...,V (N)

J(V (0), ...,V (N),S(0), ...,S(N))

where

J(V (0), ...,V (N),S(0), ...,S(N)) =

Tr QxxVxx(N) +

N−1∑
k=0

Tr QV (k) + Tr
{
S(0)(I − FV (0)FT )

}
+

N−1∑
k=0

Tr

{
S(k+ 1)

(⎧⎩ A B

⎫⎭ V (k)⎧⎩ A B

⎫⎭T + I − FV (k+ 1)FT)}

= Tr QxxVxx(N) +

N−1∑
k=0

Tr QV (k) + Tr S(0) − Tr {S(0)FV (0)FT}

+
N−1∑
k=0

Tr S(k+ 1) +
N−1∑
k=0

Tr {S(k+ 1)
⎧⎩ A B

⎫⎭ V (k)⎧⎩ A B
⎫⎭T}

−

N−1∑
k=0

Tr {S(k+ 1)FV (k+ 1)FT}

= Tr QxxVxx(N) +

N−1∑
k=0

Tr QV (k) − Tr {S(N)FV (N)FT} + Tr S(0)+

+

N−1∑
k=0

Tr S(k+ 1) +

N−1∑
k=0

Tr

{
S(k+ 1)

⎧⎩ A B

⎫⎭V (k)⎧⎩ A B

⎫⎭T}
−

−

N−1∑
k=0

Tr {S(k)FV (k)FT},

(7.3)

107



Chapter 7. Generalized Linear Quadratic Control

and S(0), ...,S(N) ∈ Sn are the Lagrange multipliers. Thus, the dual prob-
lem can be written as

max
S(0),...,S(N)

min
V (0),...,V (N)

H(N) +

N−1∑
k=0

{H(k) + Tr S(k+ 1)} + Tr S(0) (7.4)

where
H(N) = Tr {QxxVxx(N) − S(N)Vxx(N)}

= Tr {[Qxx − S(N)]Vxx(N)}

and

H(k) =

= Tr

{
QV (k) + S(k+ 1)

⎧⎩ A B

⎫⎭ V (k)⎧⎩ A B

⎫⎭T − S(k)FV (k)FT}

= Tr

{(
Q +

⎧⎩ A B
⎫⎭T S(k+ 1)⎧⎩ A B

⎫⎭− FTS(k)F)
V (k)

}
(7.5)

for k = 0, ...,N − 1. Here, H(k) plays the role of the Hamiltonian of the
system. The duality gap between (7.2) and (7.3) is zero, since Slater’s
condition is satisfied for the primal (and dual) problem (see [11] for a
reference on Slater’s condition). Now for the optimal selection of the dual
variables S(k), we must have

Qxx − S(N) 
 0,

and

Q +
⎧⎩ A B

⎫⎭T S(k+ 1)⎧⎩ A B
⎫⎭− FTS(k)F 
 0, (7.6)

because otherwise, the value of the cost function in (7.3) becomes infinite.
In order for the dual variables to maximize the cost in (7.3), S(N) is
chosen equal to Qxx

S(N) = Qxx, (7.7)

and S(k) is chosen to maximize Tr S(k) subject to the constraint (7.6).
Now

FTS(k)F =

⎧⎪⎪⎩ I
0

⎫⎪⎪⎭ S(k)⎧⎩ I 0⎫⎭
=

⎧⎪⎪⎩ S(k) 0
0 0

⎫⎪⎪⎭ ,
and

Q +
⎧⎩ A B

⎫⎭T S(k+ 1)⎧⎩ A B
⎫⎭ =

=

⎧⎪⎪⎩ ATS(k+ 1)A+ Qxx ATS(k+ 1)B + Qxu

BTS(k+ 1)A+ QTxu BTS(k+ 1)B + Quu

⎫⎪⎪⎭ .
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For every k, let the matrix L(k) be a solution to the equation

(BTS(k+ 1)B + Quu)L(k) = B
TS(k+ 1)A+ QTxu. (7.8)

Also, let R(k) be

R(k) = L(k)T (BTS(k+ 1)B + Quu)L(k). (7.9)

Then, the matrix S(k) with

S(k) = ATS(k+ 1)A+ Qxx − R(k) (7.10)

fulfills (7.6) or equivalently fulfills the inequality

Q +

⎧⎪⎪⎩ ATS(k+ 1)A− S(k) ATS(k+ 1)B

BTS(k+ 1)A BTS(k+ 1)B

⎫⎪⎪⎭ 
 0, (7.11)

and any other matrix P with Tr P > Tr S(k) violates the inequality in
(7.11). This is seen by taking the Schur complement of the matrix in the
right hand side of (7.11) to obtain an inequality equivalent to (7.11):

⎧⎪⎪⎩ ATS(k+ 1)A+ Qxx − R(k) − S(k) 0

0 BTS(k+ 1)B + Quu

⎫⎪⎪⎭ 
 0 (7.12)
Since

ATS(k+ 1)A+ Qxx − R(k) − S(k) 
 0,

we must have

Tr
{
ATS(k+ 1)A+ Qxx − R(k) − S(k)

}
≥ 0,

which is equivalent to

Tr
{
ATS(k+ 1)A+ Qxx − R(k)

}
≥ Tr S(k).

If we take S(k) = P with P such that

Tr
{
ATS(k+ 1)A+ Qxx − R(k)

}
< Tr P,

then the inequality (7.12) is not satisfied. Hence, the choice of S(k) given
by (7.10) is optimal.
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THEOREM 7.1

The dual problem of (7.1) and (7.2) is given by

max
S(k)∈Sn

N−1∑
k=0

Tr S(k)

subject to Q +

⎧⎪⎪⎩ ATS(k+ 1)A− S(k) ATS(k+ 1)B

BTS(k+ 1)A BTS(k+ 1)B

⎫⎪⎪⎭ 
 0
k = 0, ...,N − 1.

(7.13)

The problem (7.13) can be solved dynamically by sequentially solving

max
S(k)∈Sn

Tr S(k)

subject to Q +

⎧⎪⎪⎩ ATS(k+ 1)A− S(k) ATS(k+ 1)B

BTS(k+ 1)A BTS(k+ 1)B

⎫⎪⎪⎭ 
 0 (7.14)

for k = N − 1, ..., 0, with S(N + 1) = 0. The optimal solution is given by
equations (7.7)-(7.10).

With this optimal choice of the multipliers S(0), ...,S(N), the dual problem
(7.3) becomes

min
V (0),...,V (N−1)

N−1∑
k=0

Tr Z(k)V (k) +
N∑
k=0

Tr S(k)

subject to FV (0)FT − I = 0

V (k) 
 0

where

Z(k) =

⎧⎪⎪⎩ R(k) ATS(k+ 1)B + Qxu

BTS(k+ 1)A+ QTxu BTS(k+ 1)B + Quu

⎫⎪⎪⎭ ,
and R(k) is given by (7.9). The matrix Z(k) is of the form

Z =

⎧⎪⎪⎩ X Y−1X T X

X T Y

⎫⎪⎪⎭ ,
where

X = ATS(k+ 1)B + Qxu,

and

Y = BTS(k+ 1)B + Quu.
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Note that the matrix Y is invertible since Quu 	 0 and S(k+ 1) 
 0. The
matrix V given by

V =

⎧⎪⎪⎩ I −X Y−1

−Y−1X T Y−1X T X Y−1

⎫⎪⎪⎭
is such that Tr ZV = 0. In general, for any given matrix Vxx 
 0, we can
choose V as

V =

⎧⎪⎪⎩ Vxx −Vxx X Y
−1

−Y−1X TVxx Y−1X TVxxX Y
−1

⎫⎪⎪⎭
and we get Tr ZV = 0. Therefore, we see that the minimizing covariances
are given by

Vxx(0) = I

Vux(k) = −L(k)Vxx(k)

Vuu(k) = Vux(k)V
−1
xx (k)Vxu(k)

Vxx(k+ 1) =
⎧⎩ A B

⎫⎭ V (k)⎧⎩ A B

⎫⎭T + I,
(7.15)

and the optimal cost is given by

N∑
k=0

Tr S(k).

Now that we have found the covariances, it is easy to see that the optimal

control law is
u(k) = Vux(k)V

−1
xx (k)x(k)

= −L(k)x(k)
(7.16)

where L(k) is, as before, given by (7.8).

THEOREM 7.2

The optimal solution of the covariance selection problem (7.2) is given by
the equations in (7.15). The corresponding optimal control law is given by
(7.16).

Note that we could have assigned covariance matrices other than the iden-

tity matrix for the initial value of the state x(0) and the disturbances w(k),
and the solution would be similar to the case treated.

We could also have treated a time-varying system with time-varying

quadratic cost functions. The only change is that we replace Q by Q(k),
A by A(k), etc.
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7.3 Relations to Classical Linear Quadratic Control

The covariance selection method developed in the previous Section is very

closely related to the classical method of calculating the optimal state-

feedback control law. Consider the dual variable S(k). At each time-step
k, S(k) was chosen to be

S(k) = ATS(k+ 1)A+ Qxx − L
T (k)(BTS(k+ 1)B + Quu)L(k)

with L(k) such that

(BTS(k+ 1)B + Quu)L(k) = B
TS(k+ 1)A+ QTxu.

This value of S(k) is exactly the quadratic matrix for the cost to go function
from time-step k to N, given by xT (k)S(k)x(k) (see [1]).
Now we will take a closer look at the optimal cost. In the previous

section, we obtained the cost

N∑
k=0

Tr S(k).

In general, when E x(0)xT (0) = Vxx(0) and E w(k)w
T (k) = Vww(k), it

turns out that the cost becomes

Tr S(0)Vxx(0) +

N∑
k=1

Tr S(k)Vww(k).

For E x(0)xT (0) = I and E w(k)wT (k) = I, we get the cost obtained in the
previous Section. Since

Tr S(0)Vxx(0) = Tr E S(0)x(0)x
T (0)

= E xT (0)S(0)x(0),

and
Tr S(k+ 1)Vww(k) = Tr {E S(k+ 1)w(k)w

T (k)}

= E wT (k)S(k+ 1)w(k),

the optimal cost can be written as

N∑
k=0

Tr S(k) = E xT (0)S(0)x(0) +

N−1∑
k=0

E wT (k)S(k+ 1)w(k).
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We see that the cost E xT (0)S(0)x(0) is due to the initial value x(0), and

N−1∑
k=0

E wT(k)S(k+ 1)w(k)

is the cost caused by the disturbance {w(k)}N−1k=0 .

Having realized that the cost can be expressed as a quadratic function

of the uncertainty represented by x(0) and {w(k)}N−1k=1 , the dual (maximin)
problem can be seen as a game between the controller and nature’s choice

of uncertainty.

7.4 Optimal State Feedback with Power Constraints

In this Section we consider a linear quadratic problem given by (7.1), with
additional constraints of the form

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ≤ γ i(k)

or equivalently

Tr QiV (k) ≤ γ i(k), (7.17)

for k = 0, ...,N − 1, i = 1, ...,m. Note that we do not make any other
assumptions about Qi except that it is symmetric, Qi ∈ Sm+n. Note also
that the covariance constraints in (7.17) are linear in the elements of the
covariance matrices V (k), and hence convex. The dual problem, including
the covariance constraints above, becomes

max
S(k),τ i(k)≥0

min
V (k)

H(N) +
N−1∑
k=0

{H(k) + Tr S(k+ 1)}+

+ Tr S(0) −

N−1∑
k=0

m∑
i=1

τ i(k)γ i(k)

(7.18)

where τ i(k) ≥ 0 and H(k), the Hamiltonian of the system, is given by

H(N) = Tr {[Qxx − S(N)] Vxx(N)},

and

H(k) = Tr

{(
Q +

⎧⎩ A B

⎫⎭T S(k+ 1)⎧⎩ A B

⎫⎭−
−FTS(k)F +

m∑
i=1

τ i(k)Qi

)
V (k)

}
,

(7.19)
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for k = N − 1, ..., 0. The dual problem (7.18) is finite if and only if

Q +
⎧⎩ A B

⎫⎭T S(k+ 1)⎧⎩ A B
⎫⎭− FTS(k)F + m∑

i=1

τ i(k)Qi 
 0

The duality gap is zero, since Slater’s condition is satisfied for the dual

problem (7.18) (see [11]). Just like in the previous Section, for every time
step k and for fixed values of τ i(k), we solve

max
S(k)∈Sn

Tr S(k) −

m∑
i=1

τ i(k)γ i(k)

subject to

Q(k) +

⎧⎪⎪⎩ ATS(k+ 1)A− S(k) ATS(k+ 1)B

BTS(k+ 1)A BTS(k+ 1)B

⎫⎪⎪⎭ 
 0
(7.20)

where

Q(k) = Q +

m∑
i=1

τ i(k)Qi.

Now for any fixed values of τ i(k), Tr S(k) is maximized by

S(k) = ATS(k+ 1)A+ Qxx(k) − R(k) (7.21)

with

R(k) = L(k)T (BTS(k+ 1)B + Quu(k))L(k) 	 0, (7.22)

and L(k) such that

(BTS(k+ 1)B + Quu(k))L(k) = B
TS(k+ 1)A+ QTxu(k), (7.23)

and any other matrix P with Tr P > Tr S(k) violates the inequality in
(7.20). Hence, the choice of S(k) given by (7.21) is the optimal that is
obtained through the eigenvalue problem (7.20).
With the optimal values of S(k) and τ i(k), the dual problem (7.18) becomes

min
V (0),...,V (N−1)

N−1∑
k=0

Tr Z(k)V (k) +
N∑
k=0

Tr S(k) −
N−1∑
k=0

m∑
i=1

τ i(k)γ i(k)

subject to FV (0)FT − I = 0

V (k) 
 0

where the matrix Z(k) is given by

Z =

⎧⎪⎪⎩ X Y−1X T X

X T Y

⎫⎪⎪⎭ ,
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with

X = ATS(k+ 1)B + Qxu(k)

and

Y = BTS(k+ 1)B + Quu(k).

The optimal covariances V (k) are obtained just like in the previous
Section, by taking

Vxx(0) = I

Vux(k) = −L(k)Vxx(k)

Vuu(k) = Vux(k)V
−1
xx (k)Vxu(k)

Vxx(k+ 1) =
⎧⎩ A B

⎫⎭V (k)⎧⎩ A B
⎫⎭T + I

u(k) = Vux(k)V
−1
xx (k)x(k) = −L(k)x(k),

(7.24)

where L(k) is the solution of (7.23). The problem above can be solved effi-
ciently using primal-dual interior point methods (see [11], pp. 609), where
iteration is performed with respect to the dual variables τ i(0), ...τ i(N−1),
i = 1, ...,m.

7.5 Stationary State Feedback with Power Constraints

Consider the infinite horizon linear quadratic control problem with power

constraints:

min
μk

lim
N→∞

1

N

N−1∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Q0⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

u(k) = μk(x(0), ..., x(k))

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ≤ γ i

for i = 1, ...,N.

(7.25)

The solution to this problem is easily obtained using the results for the

finite horizon problem in the previous section. We have seen that the

optimal choice of S(k) is given by equation (7.21). When the control system
is stationary, we have limk→∞ S(k) = S. Thus, when k → ∞, the convex

115



Chapter 7. Generalized Linear Quadratic Control

optimization problem of the cost in (7.20) becomes

max
S∈Sn,τ i≥0

Tr S −
m∑
i=1

τ iγ i

subject to Q +

⎧⎪⎪⎩ ATSA− S ATSB

BTSA BTSB

⎫⎪⎪⎭ 
 0
Q = Q0 +

m∑
i=1

τ iQi

(7.26)

The optimal control law is then given by

u(k) = −Lx(k),

where L is the solution to

(BTSB + Quu)L = B
TSA+ QTxu.

We will now show that the controller u(k) = −Lx(k) is stabilizing. Indeed,
equation (7.24) in the previous chapter gives that the optimal stationary
covariance V is obtained according to:

Vux = −LVxx

Vuu = VuxV
−1
xx Vxu = LVxx L

T

Vxx =
⎧⎩ A B

⎫⎭ V ⎧⎩ A B
⎫⎭T + I

Then,

Vxx =
⎧⎩ A B

⎫⎭ V ⎧⎩ A B

⎫⎭T + I
=

⎧⎩ A B

⎫⎭ ⎧⎪⎪⎩ Vxx −Vxx L
T

−LVxx LVxx L
T

⎫⎪⎪⎭⎧⎩ A B

⎫⎭T + I
= AVxxA

T − AVxxL
T BT − BLVxx A

T + BLVxx L
T BT + I

= (A− BL)Vxx(A− BL)
T + I.

The equality above can be equivalently written as

(A− BL)Vxx(A− BL)
T − Vxx = −I,

which is a Lyapunov matrix equation. Since Vxx 
 0, we conclude that
A− BL is stable according to Lyapunov’s theorem (see [31], pp. 95-100).

116



7.6 Optimal Output Feedback Control

THEOREM 7.3

The dual of the infinite horizon control problem (7.25) is given by (7.26).
The optimal value of (7.26) is equal to the optimal value of the primal
problem (7.25). The optimal control law is given by

u(k) = −Lx(k),

where L solves

(BTSB + Quu)L = B
TSA+ QTxu.

Remark. The result above is similar to previous results obtained for the

continuous time infinite horizon control problem with power constraints.

The main contribution of the result above is that it gives the optimal

controller, not only the optimal value (see for instance [39], [12]).

7.6 Optimal Output Feedback Control

The problem of optimal output feedback control will be treated in this

Section. The solution will be observer-based using the optimal Kalman

filter.

The optimization problem to be considered is given by

min
μk
E xT (N)Qxx x(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
subject to x(k+ 1) = Ax(k) + Bu(k) +w(k)

y(k) = Cx(k) + v(k)

u(k) = μk(y(0), ..., y(k))

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭ ≤ γ i(k)

for i = 1, ...,N

(7.27)

We make the following assumptions:

E x(0) = E w(k) = E v(k) = 0

E x(0)xT (0) = I

E

⎧⎪⎪⎩w(k)
v(k)

⎫⎪⎪⎭⎧⎪⎪⎩w(l)
v(l)

⎫⎪⎪⎭T = δ (k− l)

⎧⎪⎪⎩ R1 R12

R21 R2

⎫⎪⎪⎭ .
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Consider the standard Kalman filter [1]:

x̂(k+ 1) = Ax̂(k) + Bu(k) + K (k)(y(k) − Cx̂(k)),

K (k) = (AP(k)CT + R12)(CP(k)C
T + R2)

−1,

P(k+ 1) = AP(k)AT + R1 − K (k)(CP(k)C
T + R2)K

T(k),

P(0) = E x(0)xT (0) = I.

(7.28)

P(k) is the covariance matrix of the error

x̃(k) = x(k) − x̂(k).

Now define the innovations

e(k) = y(k) − Cx̂(k) = Cx̃(k) + v(k).

The covariance matrix of the innovations is given by

Vee(k) = E e(k)e
T (k)

= CE [x̃(k)x̃T (k)]CT +E v(k)vT (k)

= CP(k)CT + R2.

(7.29)

Define

ŵ(k) = K (k)e(k). (7.30)

Then
Vŵŵ(k) = E ŵ(k)ŵ

T (k)

= E K (k)e(k)eT (k)KT (k)

= K (k)Vee(k)K
T (k).

(7.31)

Since x̃(k) is the error obtained from the Kalman filter, we have that
E y(t)x̃T (k) = 0 and E x̂(t)x̃T (k) = 0 for t ≤ k. Also, E u(k)x̃T (k) = 0,
since u(k) = μ(y(0), ..., y(k)). Hence,

J(x,u) = E xT (N)Qxx x(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
= E x̂T (N)Qxx x̂(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭+
+

N∑
k=0

E x̃T (k)Qxx x̃(k).

(7.32)
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Therefore, minimization of J(x,u) is the same as minimizing

E x̂T (N)Qxx x̂(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭ ,
since nothing can be done about the sum

N∑
k=0

E x̃T (k)Qxx x̃(k) =

N∑
k=0

Tr QxxP(k),

which is already a constant. We also have the inequality

γ i(k) ≥ E

⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x(k)
u(k)

⎫⎪⎪⎭
= E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭+ E x̃T (k)Qixx x̃(k)
= E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭+ Tr QixxP(k)
Since the value of Tr QixxP(k) is known, we can define the new constant
γ̂ i(k) = γ i(k) − Tr QxxP(k) to obtain the equivalent inequality

E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭ ≤ γ̂ i(k).

Thus, our output feedback problem is equivalent to the following problem:

min
μk
E x̂T (N)Qxx x̂(N) +

N−1∑
k=0

E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Q⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭
subject to x̂(k+ 1) = Ax̂(k) + Bu(k) + ŵ(k)

E ŵ(k)x̂T (0) = 0

E ŵ(k)ŵT (l) = Vŵŵ(k)

u(k) = μk(x̂(0), ..., x̂(k))

E

⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭T Qi⎧⎪⎪⎩ x̂(k)
u(k)

⎫⎪⎪⎭ ≤ γ̂ i(k)

for i = 1, ...,N.

(7.33)

We see that we have transformed the output feedback problem to a state

feedback problem, which can be solved as in the previous Sections. We

have obtained:
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THEOREM 7.4

The optimal output feedback problem (7.27) is equivalent to the static
feedback problem (7.33), where x̂(k) is the optimal estimate of x̂(k) ob-
tained from the Kalman filter given by (7.28) with P(k) as the covariance
matrix of the estimation error x(k) − x̂(k). The covariance matrix Vŵŵ(k)
is calculated according to (7.29)-(7.31), and γ̂ i(k) = γ i(k) − Tr QxxP(k).

7.7 Example

Consider the following scalar stochastic linear quadratic control problem:

min
μk
E x22 +

1∑
k=0

E {x2k + u
2
k}

subject to xk+1 = xk + uk +wk

x0,w0,w1 ∈N (0, 1)

E u20 ≤
1

10
, E u21 ≤

1

4
E x21

u0 = μ0(x0)

u1 = μ1(x0, x1)

(7.34)

Note first that

x2k + u
2
k =

⎧⎪⎪⎩ xk
uk

⎫⎪⎪⎭T ⎧⎪⎪⎩1 0

0 1

⎫⎪⎪⎭ ⎧⎪⎪⎩ xk
uk

⎫⎪⎪⎭ , u20 =
⎧⎪⎪⎩ x0
u0

⎫⎪⎪⎭T ⎧⎪⎪⎩0 0

0 1

⎫⎪⎪⎭ ⎧⎪⎪⎩ x0
u0

⎫⎪⎪⎭ .
Also, E u21 ≤

1
4
E x21 can be written as

0 ≥ E {4u21 − x
2
1} = E

⎧⎪⎪⎩ x1
u1

⎫⎪⎪⎭T ⎧⎪⎪⎩−1 0

0 4

⎫⎪⎪⎭⎧⎪⎪⎩ x1
u1

⎫⎪⎪⎭ .
We now have the weighting matrices Q, Q1(0), and Q1(1). The optimal
control law of the optimization (7.34) can be calculated efficiently using
the methods presented in Section 7.4. It is given by u0 = −0.3162x0 and
u1 = −0.5x1. The minimal cost is 4.3013, compared to the cost of the
unconstrained problem (that is, without the third constraint in (7.34))
which is 4.1. We can also check that the quadratic constraints are satisfied;

E u20 =
1
10
E x20 =

1
10
, and E u21 =

1
4
E x21.
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8

Conclusions

The thesis considers optimal decision problems where a team of decision

makers optimize a given cost induced by the uncertainty of the state of

nature. The crucial property for the team problems considered in the the-

sis is that the team members have different pieces of information about

the state of nature.

A brief introduction was given, and in particular a combination of

graph theory and linear systems theory was presented.

Optimal static team estimation was developed for different measures

of the estimation error. Then, the dynamic team estimation problem was

solved with the use of the results obtained for the static team estimation.

Linear quadratic static and dynamic team decision problems were con-

sidered in both the stochastic and deterministic setting. It was shown that

when the information structure is such that coding incentives in the deci-

sions are eliminated, linear decisions are optimal and can be easily found

using convex optimization. The results showed a broader class of informa-

tion structures that lead to convex team decision problems.

The finite horizon stochastic and deterministic team decision prob-

lems, or as they are known in systems theory, the distributed H 2 and
H∞ control problems, were solved for the state feedback case under lim-
itations on the rate of information propagation. A novel approach to the

H 2 and H∞ control problem was developed, by using the crucial idea of
disturbance feedback. It was shown that by using disturbance feedback,

the team control problem can be transformed to a team estimation prob-

lem. This problem can be readily solved using the theory developed in the

thesis for team estimation.

Necessary and sufficient conditions were given for stabilizability of

systems over graphs under distributed delayed measurements, by using

the idea of disturbance feedback.

The thesis treats a generalized stochastic linear quadratic control set-

ting, for both the finite and infinite horizon case. The main contribution
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is that non-convex quadratic constraints can be added in the optimiza-

tion problem, and the problem remains convex, by a simple restatement

of the problem. A broad class of stochastic linear quadratic optimal con-

trol problems with information constraints can be modeled with the help

of quadratic constraints. Also, many distributed control problems can be

modeled through quadratic constraints of correlation type. An example

is the distributed stochastic control problem where non-convex quadratic

constraints are forced to be zero. The advantage with this setting is that

other constraints such as limitations on the power of the control signal

can be easily added in the optimization problem. First, the finite horizon

state feedback control problem is solved through duality. The calculations

of the optimal control law can be done off-line as in the classical linear

quadratic Gaussian control theory using a combination of dynamic pro-

gramming and primal-dual methods. Then, a solution to the infinite hori-

zon control problem is presented. Finally, the output feedback problem is

solved.

Future Challenges

There are two main research directions that are of interest. The first is

to solve the output feedback deterministic (or H∞) team problem for the
infinite horizon. The other direction, which is most likely much harder, is

to examine the team decision problem where the coding incentive is not

eliminated. This is a very challenging problem, and it is anticipated that

its solution will show new avenues in systems and information theory.

Another issue that has a great importance is the implementation of

distributed controllers on a graph. In this thesis, the obtained state feed-

back controller for each subsystem is of an order equal to the sum of the

orders of all subsystems on the graph times the number of subsystems,

(that is, O(n � N), where n is the order of the global state and N is the
number of subsystems on the graph). When, the number of subsystems of
the graph is very large, the implementation might be difficult. One way

to approach this problem is to try model reduction. Another approach is

to consider the distributed control problem from a perspective similar to

that of static output feedback, with the great disadvantage that the static

output is still an open problem. The output feedback problem is in turn of

the same nature as that of team problems with coding incentives, which

gives yet another motivation for the importance of studying decisions with

coding incentives.
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